Preprint A541/2007
Stochastic Galerkin method for elliptic SPDEs: A white noise approach
Marcus Sarkis | Roman , Luis
Keywords: Stochastic Differential Equations | Galerkin Method | White Noise | Elliptic Partial Differential Equations
An equation that arises in mathematical studies of the transport of pollutants in groundwater and of oil recovery processes is of the form: $-\nabla_{x}\cdot(\kappa(x,\cdot)\nabla_{x}u(x,\omega))=f(x)$, for $x\in D$, where $\kappa(x,\cdot)$, the permeability tensor, is random and models the properties of the rocks, which are not know with certainty. Further, geostatistical models assume $\kappa(x,\cdot)$ to be a log-normal random field. The use of Monte Carlo methods to approximate the expected value of $u(x,\cdot)$, higher moments, or other functionals of $u(x,\cdot)$, require solving similar system of equations many times as trajectories are considered, thus it becomes expensive and impractical. In this paper, we present and explain several advantages of using the {\it White Noise} probability space as a natural framework for this problem. Applying properly and timely the Wiener-Itô Chaos decomposition and an eigenspace decomposition, we obtain a symmetric positive definite linear system of equations whose solutions are the coefficients of a Galerkin-type approximation to the solution of the original equation. Moreover, this approach reduces the simulation of the approximation to $u(x,\omega)$ for a fixed $\omega$, to the simulation of a finite number of independent normally distributed random variables.

Anexos: