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Abstract. An equation that arises in mathematical studies of the transport
of pollutants in groundwater and of oil recovery processes is of the form:

−∇x · (κ(x, ·)∇xu(x, ω)) = f(x), for x ∈ D, where κ(x, ·), the permeability

tensor, is random and models the properties of the rocks, which are not know
with certainty. Further, geostatistical models assume κ(x, ·) to be a log-normal

random field. The use of Monte Carlo methods to approximate the expected

value of u(x, ·), higher moments, or other functionals of u(x, ·), require solving
similar system of equations many times as trajectories are considered, thus it

becomes expensive and impractical. In this paper, we present and explain sev-

eral advantages of using the White Noise probability space as a natural frame-
work for this problem. Applying properly and timely the Wiener-Itô Chaos

decomposition and an eigenspace decomposition, we obtain a symmetric pos-
itive definite linear system of equations whose solutions are the coefficients of

a Galerkin-type approximation to the solution of the original equation. More-
over, this approach reduces the simulation of the approximation to u(x, ω)
for a fixed ω, to the simulation of a finite number of independent normally

distributed random variables.
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1. Introduction. In the mathematical studies of the transport of pollutants in
groundwater and of oil recovery processes one faces a system of stochastic partial
differential equations, which models the two-phase flow in a porous medium. The
system is composed of two equations, a transport equation for the saturation (the
relative volume of one of the two fluids) coupled with an equation for the velocity
field, which is given by Darcy’s Law and the incompressibility condition of the flow.
The randomness enters the problem through the unknown properties of the rocks,
especially the permeability tensor. With no sources of sink, and neglecting the
effects of gravity and capillarity these equations are of the form(see [3, 4, 5]):

u = λ(s)K∇p ∇ · u = 0
∂s

∂t
+∇ · (F (s)u) = 0

Here, u is the total seepage velocity, s is the water saturation, K is the permeabil-
ity, and p is the pressure. The constitutive functions λ(s) and F (s) represent the
total mobility and the fractional flow of water. In Furtado-Pereira ([3, 4, 5]), they
take K to be a log-normal random field so that ξ(x, ·) = log K(x, ·) is Gaussian so
its distribution is determined by its mean E[ξ(x, ·)] = 0, and its covariance func-
tion Cξ(x, y) = E[ξ(x, ·)ξ(y, ·)]. They assumed also that {ξ(x, ·)}x∈D is stationary,
isotropic and fractal. In this paper we deal with one of the equations derived from
(1), specifically we consider an equation of the form: −∇x. (κ(x, ·)∇xu(x, ·)) = f(x), for x ∈ D

u(x, ·) = 0, on ∂D,
(1)

where κ(x, ·) = ρ0 + eWφ(x,·), for some ρ0 > 0, and Wφ(x, ·) is the well-known 1-
dimensional White Noise, which is a stationary Gaussian process. The permeabil-
ity function κ(x, ·) also might be the one characterized by its covariance function
Cκ(x, y) .= E[(κ(x, ·) − E[κ(x, ·)])(κ(y, ·) − E[κ(y, ·)])], and not the process ξ(x, ·)
in the exponent. Knowing the covariance function Cκ(x, y) is the same assumption
taken in [1, 2, 10, 14, 15]. Here in this paper we consider both approaches since all
the calculations can be carried with very little changes if one considers the covari-
ance of ξ(x, ·) instead of the one for κ(x, ·) or vice-versa. With these assumptions
κ(x, ·) satisfies:

0 < ρ0 < κ(x, ω) (2)
for all x ∈ D, and ω in the probability space where Wφ(x, ·) is defined. The addi-
tion of the positive constant ρ0 is to guarantee the existence of the solution and,
in practice, this is what is done when numerical solutions of the coupled system
(1) are to be found. Besides, notice that the positive constant ρ0 added to the
original permeability function does not change the form of the covariance function.
We emphasize that the assumption of the stochastic structure of the permeability
function κ(x, ·) is due, more than anything else, to lack of accuracy in the measure-
ments of the media. Further, the isotropic assumption and specific forms of the
covariance function are features suggested by empirical data. On the other hand,
observe that in principle, given a trajectory or path of the permeability function,
i.e., κ(x, ω) : Rd → R, for fixed ω ∈ Ω, we can approximate the solution of (1)
by a finite element technique. This procedure will produce a linear system whose
dimensions depend on the discretization implemented. In any case, typically these
are very large systems, then in order to approximate the expected value of u(x, ·),
or other moments, we could use Monte Carlo methods, in which case, we will have
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to solve a similar system of equations as many times as trajectories are going to be
used in the Monte Carlo approximation. This whole work would be expensive and
slow since the stiffness matrices associated to each trajectory are distinct and there-
fore need to be assembled and factorized each time. To find alternatives ways to
solve (1) using less expensive and faster methods is still a very interesting research
problem for many scientists and engineers (see [1, 2, 3, 4, 6, 7, 8, 10, 14, 15] among
others). One attempt to approach this problem without having to solve very large
linear systems many times, is considered in the work of Babuška in [1, 2], where
they proposed an auxiliary deterministic partial differential equation in higher di-
mension, whose solution is an approximation to the solution of (1), but, under
very restrictive assumptions on the function κ(x, ·). In fact, they consider (1) on
a bounded domain D in Rd, and assumed that there exist positive constants α1,
α2, such that α1 ≤ κ(x, ·) ≤ α2, P-almost everywhere, for all x ∈ D. They further
assumed that κ(x, ·) has an expansion of the form

κ(x, ·) = E[κ(x, ·)] +
∞∑

n=1

bn(x)Xn(·), (3)

where the Xn are mutually independent random variables such that E[Xn] = 0,
E[X2

n] = 1, and the bn(x) are uniformly bounded functions. In addition, they
require that the Xn′s have bounded images Γn

.= Xn(Ω), with Ωn = (−γn, γn),
γn > 0. Furthermore, they impose yet another restriction on the coefficients of this
expansion such that they can consider a finite truncation which satisfies also the
ellipticity condition. These assumptions are not satisfied neither in model (1) nor
in other permeability functions used in practice, indeed they are very restrictive.
On the other hand, in [6, 10, 14] a broader and similar approach to ours is taken,
however, they do not explore the specific form of our κ, and moreover, the equations
they get after truncating terms in the expansion for κ is not guaranteed to satisfy
a condition like (2), and thus the existence of their approximation is questionable.
Here, we present and explain several features which show the advantages of using
the white noise probability space as a natural framework for this problem. Apply-
ing the Wiener-Itô Chaos decomposition, we obtain a symmetric positive definite
linear system of equations whose solutions are the coefficients of a Galerkin-type
approximation to the solution of the original equation. We would like to emphasize
that a remarkable difference between the works in [1, 2, 10, 14] and ours, is that we
do not need to truncate the permeability function κ(x, ·), therefore the ellipticity
condition is maintained. In addition, using the white noise approach, we propose a
modification on the Karnunen-Loeve expansion in order to have the process κ(x, ·)
statistically stationary.

This paper is structured as follows: in Section 2 we introduce the framework
under which these equations can be studied, it is included to make this manuscript
more self-contained and accessible to an audience not necessarily familiar with white
noise theory. Next, Section 3 presents and discuss the problem with more details
and gives results on the Wiener-Itô chaos expansion of κ. Section 4 develops the
variational formulation associated to the original problem (1) and then we introduce
the finite-dimensional stochastic Galerkin method approximation. Finally, in Sec-
tion 5 we explain how to choose the function φ for the white noise Wφ(x, .) so that a
given covariance function is matched, and last, details on how to use the Karhunen-
Loeve expansion to choose the underlying functions ηj′s in the construction of the
white noise are given.
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2. Framework: White Noise. Let d be a positive integer and S(Rd) the Schwartz
space of rapidly decreasing functions. S(Rd) is a Fréchet space under the family of
semi-norms:

‖f‖k,α
.= sup

x∈Rd

{
(1 + |x|k)|∂αf(x)|

}
,

where k is nonnegative integer, α = (α1, . . . , αd) is a multi-index of nonnegative
integers and

∂αf
.=

∂|α|f

∂xα1
1 . . . ∂xαd

d

where |α| = α1 . . . αd. Denote by S ′ the dual of S(Rd), which equipped with the
weak-star topology is known as the space of tempered distributions. This space
is the one we will use as our basic probability space. As events we will use the
family B(S ′(Rd)) of Borel subsets of S ′(Rd), and the probability measure µ is
given by the Bochner-Minlos theorem (see [9], page 12). We will call the triplet
(S ′(Rd),B(S ′(Rd)), µ) the 1-dimensional white noise probability space, and µ is
called the white noise measure. The measure µ is also often called the (normal-
ized) Gaussian measure on S ′(Rd). The measure µ has the following property

Eµ

[
ei<·,φ>

] .=
∫
S′

ei<ω,φ>dµ(ω) = e−
1
2‖φ‖

2
, (4)

for all φ ∈ S(Rd), where ‖φ‖2 = ‖φ‖2L2(Rd), < ω, φ >= ω(φ) is the action of
ω ∈ S ′(Rd) on φ ∈ S(Rd), and Eµ denotes the expectation with respect to µ.

Remark 1. Equation (4) says that: for any φ ∈ S(Rd), the random variable φ −→<
·, φ >, from L2(Rd) to S ′(Rd), is normal distributed with zero mean and variance
‖φ‖2.

Remark 2. We will denote the expectation with respect to the normalized Gaussian
measure µ by Eµ.

Further, the lemma below will be used throughout this paper:

Lemma 3. ([9], Lemma 2.1.2) Let η1, . . . , ηn be functions in S(Rd) that are or-
thonormal in L2(Rd). Let λn be the normalized Gaussian measure in Rn, i.e.,

dλn(x) = (2π)−n/2e−
1
2 |x|

2
dx1 . . . dxn; x = (x1, . . . , xn) ∈ Rn

Then the random variable

ω −→ (< ω, η1 >, . . . , < ω, ηn >)

has distribution λn. Equivalently,

Eµ [f(< ω, η1 >, . . . , < ω, ηn >)] =
∫

Rn

f(x)dλn(x), for all f ∈ L1(λn) (5)

Remark 4. Lemma (3) implies that: if η1, . . . , ηn are orthonormal in L2(Rd)
then the random variables < ·, η1 >, . . . , < ·, ηn > defined on the probability space
(S ′(Rd),B(S ′(Rd)), µ), are independent and normally distributed with zero mean
and variance equal to one.

Definition 5. The 1-dimensional (d-parameter) smoothed white noise is the map

w : S(Rd)× S ′(Rd) −→ R
given by

w(φ) = w(φ, ω) =< ω, φ >,
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for ω ∈ S ′(Rd), φ ∈ S(Rd).

Using Lemma 3 it is not difficult to prove that if φ ∈ L2(Rd) and we choose
φm ∈ S(Rd) such that φm → φ in L2(Rd), then

< ω, φ >
.= lim

m→+∞
< ω, φm >

exists in L2(µ), and is independent of the choice of φm. Thus, the definition of
smoothed white noise can be extended to functions in L2(Rd).

Definition 6. Using w(φ, ω) we can construct a stochastic process, called the
smoothed white noise process Wφ(x, ω), as follows:

Wφ(x, ω) .= w(φx, ω), x ∈ Rd, ω ∈ S ′(Rd),

where φx(y) = φ(y − x), is the x-shift of φ; x, y ∈ Rd.

Remark 7. Note that the process {Wφ(x, ·)}x∈Rd has the following properties:
i): If supp φx1∩supp φx2 = ∅, then Wφ(x1, ·) and Wφ(x2, ·) are independent,
ii): {Wφ(x, ·)}x∈Rd is a stationary process,
iii): For each x ∈ Rd, the random variable Wφ(x, ·) is normally distributed with

mean 0 and variance ‖φ‖2.

So {Wφ(x, ·)}x∈Rd is indeed a mathematical model for what one usually intu-
itively thinks of as white noise. In explicit applications the test function or “win-
dow” φ can be chosen such that the diameter supp φ is the maximal distance within
which Wφ(x1, ·) and Wφ(x2, ·) might be correlated.

2.1. The Wiener-Itô Chaos Expansion. The Hermite polynomials hk(x) are
defined by

hk(x) = (−1)kex2/2 dk

dxk
(e−x2/2); for k = 0, 1, 2, . . . . (6)

for k = 0, 1, 2, . . . , . The Hermite functions ξk(x) are defined by

ξk(x) = π−1/4((k − 1)!)−1/2e−x2/2hk−1(
√

2x); for k = 1, 2, . . . . (7)

The collection {ξk}∞k=1 constitutes an orthonormal basis for L2(R) and ξk ∈ S(R)
for all k. In the following we show how to construct a set of orthonormal fuctions
ηj′s

on L2(Rd). We note that on the last section we propose an alternative way
to define the ηj′s taking into account that a covariance function associated to the
permeability stochastic field is given.

Let δ = (δ1, . . . , δd) denote d-dimensional multi-indices with δ1, . . . , δd ∈ N. It
follows that the family of tensors products

ξδ
.= ξ(δ1,...,δd)

.= ξδ1 ⊗ · · · ⊗ ξδd
; δ ∈ Nd

forms an orthonormal basis for L2(Rd). Let δ(j) = (δ(j)
1 , . . . , δ

(j)
d ) be the jth multi-

index in some fixed ordering of all d-dimensional multi-indices δ = (δ1, . . . , δd) ∈ Nd.
We can, and will assume that this ordering has the property that

i < j =⇒ δ
(i)
1 + · · ·+ δ

(i)
d ≤ δ

(j)
1 + · · ·+ δ

(j)
d

i.e., the
{
δ(j)
}∞

j=1
occur in increasing order. Now define

ηj
.= ξδ(j) = ξ

δ
(j)
1
⊗ · · · ⊗ ξ

δ
(j)
d

; j = 1, . . . . (8)
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. We will need to consider multi-index of arbitrary length. To simplify the no-
tation, we regard multi-indices as elements of the space (NN

0 )c of all sequences
α = (α1, α2, . . . ) with elements αj ∈ N0 and with compact support, i.e., with only
finitely many αj 6= 0. We write J = (NN

0 )c. Given α ∈ J , define the order and
length of α, denoted by d(α) and |α| respectively, by

d(α) .= max {j : αj 6= 0}
and

|α| .= α1 + α2 + · · ·+ αd(α).

Definition 8. Let α = (α1, α2, . . . ) ∈ J . Then we define

Hα(ω) .=
∞∏

j=1

hαj
(< ω, ηj >); ω ∈ S ′(Rd)

The following are two important results about the {Hα}α∈J :

Theorem 9. ([9], Theorem 2.2.3) The family {Hα}α∈J constitutes an orthogonal
basis for L2

µ(S ′). Moreover, if α ∈ J , we have the norm expression

‖Hα‖2L2
µ(S′) = α! .= α1!α2! . . . .

and

Theorem 10. (Wiener-Itô chaos expansion theorem, [9], Theorem 2.2.4) Every
f ∈ L2

µ(S ′) has a unique representation

f(ω) =
∑
α∈J

cαHα(ω) (9)

where cα ∈ R for all α. Moreover, we have the isometry

‖f‖2L2
µ(S′) =

∑
α∈J

α!c2
α (10)

3. The Problem. Given a function φ ∈ L2(Rd) (fixed), the problem that we want
to consider is the following: −∇x. (κ(x, w;φ)∇xu(x, w;φ)) = f(x), for x ∈ D

u(x, ·, φ) = 0, on ∂D
(11)

for all w ∈ S ′(Rd), where κ(x, ω;φ) .= ρ0 + eWφ(x,ω), and Wφ(x, ω) is the 1-
dimensional smoothed white noise process defined on the 1-dimensional white noise
probability space

(
S ′(Rd),B(S ′(Rd)), µ

)
constructed in the previous section, and

ρ0 > 0. Thus, κ is the sum of a positive constant and a log-normal random pro-
cess, i.e., κ − ρ0 is the exponential of a Gaussian (i.e. normal) stochastic process.
Observe that for different φ ∈ L2(Rd) there is a different permeability function
κ(·, ·, φ) associated to it. In what follows, we will omit, whenever there is no danger
of confusion, the dependence of κ on the function φ just to make the notation less
cumbersome. The log-normal assumption on κ−ρ0 is the same as, up to normaliza-
tion, the one used in [3, 4, 5], where in practice they take the absolute permeability
K as K(x,w) = ρ0 + eξ(x,w), where {ξ(x, ·)}x∈Rd is assumed to be a stationary,
isotropic, and fractal Gaussian field characterized by its mean Eξ(x, ·) = 0, and its
covariance function Cξ(x, y) = (a + b|x − y|)β , for x, y ∈ Rd, a, b > 0, and, β < 0.
In the context of equation (11), κ− ρ0, defined for all x ∈ D, and ω ∈ S ′(Rd), is a
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stationary and log-normal distributed in the 1-dimensional white noise probability
space. It is important to mention that in [9] they consider a similar problem to
this one, but κ(x, ·) = e�Wφ(x,·), where � stands for the Wick product. However, it

is well-known that e�Wφ(x,·) = eWφ(x,·)− ‖φ‖2
2 , and therefore both situations are the

same up to a multiplicative constant, and all the calculations presented here can be
carried over.

3.1. The Wiener-Chaos Decomposition of κ(x, ·). In this section we develop
on the computation of the coefficients κγ(x), which can be used later in equation
(31). First of all, let us define

L∞(D,L2
µ(S ′)) .=

{
ζ : D × S ′ −→ R : sup

x∈D
Eµ[ζ2(x, ·)] < +∞

}
(12)

Since Wφ(x, ·) is normally distributed with mean 0 and variance ‖φ‖2 it follows that

Eµ[κ(x, ·, φ)] = ρ0 + e‖φ‖
2/2

Eµ[κ2(x, ·, φ)] = ρ2
0 + 2ρ0e

‖φ‖2/2 + e2‖φ‖2 (13)

therefore, we have that κ ∈ L∞(D,L2
µ(S ′)). Then by the Wiener-Itô chaos expan-

sion Theorem 10, (or see [9], Theorem 2.2.4), it follows that κ(x, ω) has a unique
representation of the form:

κ(x, ω) = ρ0 +
∑
γ∈J

κγ(x)Hγ(ω) (14)

Remark 11. Notice that from (14) and properties of the basis {Hγ}, it yields

Eµ[κ2(x, ·, φ)] = ρ2
0 + 2ρ0κ0(x) +

∑
γ∈J

γ!κ2
γ(x) (15)

Thus, if κ ∈ L∞(D,L2
µ(S ′)), it follows easily that κγ ∈ L∞(D) uniformly for all

γ ∈ J .

Next, we compute explicitly the coefficients κγ(x):

Lemma 12. Let γ ∈ J such that d(γ) = n ≤ N , then

κγ(x) = e‖φ‖
2/2

n∏
j=1

aj(x)γj

γj !
,

where aj(x) = (φx, ηj).
Proof: The 1-dimensional smoothed white noise w(φ, ω) has the expansion

w(φ, ω) = < ω, φ >=< ω,
∞∑

j=1

(φ, ηj)ηj >

=
∞∑

j=1

(φ, ηj) < ω, ηj >

Therefore,

Wφ(x, ω) = w(φx, ω) =
∞∑

j=1

(φx, ηj) < ω, ηj >=
∞∑

j=1

aj(x) < ω, ηj >
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where aj(x) = (φx, ηj). Now, let γ ∈ J such that d(γ) = n ≤ N , then

Hγ(ω) =
n∏

j=1

hγj (< ω, ηj >)

and
κγ(x)γ! = Eµ [(κ(x, ·)− ρ0)Hγ(·)]

Thus,

κγ(x)γ! = Eµ

e
∑∞

j=1 aj(x)<·,ηj>
n∏

j=1

hγj (< ·, ηj >)


= Eµ

 n∏
j=1

eaj(x)<·,ηj>hγj (< ·, ηj >)
∞∏

j=n+1

eaj(x)<·,ηj>

 (16)

=
n∏

j=1

Eµ

[
eaj(x)<·,ηj>hγj

(< ·, ηj >)
] ∞∏

j=n+1

Eµ[eaj(x)<·,ηj>] (17)

= e
1
2

∑∞
j=n+1 a2

j (x)
n∏

j=1

∫
R

eaj(x)yj hγj
(yj)

e−y2
j /2

√
2π

dyj (18)

where from equation (16) to (17) we have used the independence of the
< ·, ηj >′ s, and from (17) to (18) Lemma 3. On the other hand, the generating

function of Hermite polynomials is e−
t2
2 +tx, i.e., we have that

e−
t2
2 +tx =

+∞∑
k=0

tk

k!
hk(x) (19)

therefore substituting t = a in (19) we get that

eax =
+∞∑
k=0

ckhk(x) (20)

where ck = ak

k! e
a2/2. Using this expansion for eaj(x)yj and substituting in equation

(18) we obtain that

κγ(x)γ! = e

1
2

∞∑
j=n+1

a2
j (x) n∏

j=1

(aj(x))γj

γj !
ea2

j (x)/2Eµ[h2
γj

(< ·, ηj >)]

= e

1
2

∞∑
j=n+1

a2
j (x) n∏

j=1

(aj(x))γj ea2
j (x)/2

= e‖φ‖
2/2

n∏
j=1

(aj(x))γj (21)

where we have used the fact that ‖Hγ‖2L2(µ) = γ! from Theorem 9. Hence it yields
that

κγ(x) = e‖φ‖
2/2

n∏
j=1

(aj(x))γj

γj !
(22)
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for γ = (γ1, . . . , γn, 0, . . . , 0, . . . ).

�

4. Variational and Galerkin Formulations. We next introduce the variational
formulation associated to the problem (11) to define the exact solution u(x, ·) and
its Galerkin approximation. Given a permeability function κ(x, ·) ∈ L∞(D,L2

µ(S ′))
such that there exists a positive constant ρ0 for which ρ0 < κ(x, ω) for all x ∈ D,
and all ω ∈ S ′, define the following spaces:

H1(κ, D) .=
{

υ : D × S ′ −→ R : Eµ

∫
D

κ(x, ·)|∇υ(x, ·)|2dx < +∞
}

(23)

and

H1
0(κ, D) .=

{
υ ∈ H1(κ, D) : v(x, ·) = 0 on ∂D

}
. (24)

Remark 13. Notice that if υ ∈ H1
0(κ, D) then υ ∈ L2

µ(S ′,H1
0 (D)) since κ is

assumed to be bounded from below away from zero, and hence it has a Wiener-Itô
chaos expansion of the form

υ(x, ω) =
∑
α∈J

υα(x)Hα(ω) (25)

Next, let vβ(x)Hβ(ω) ∈ H1
0(κ, D), for β ∈ J , be a test function then integrating

the left-hand side of (11) with u ∈ H1
0(κ, D) against this function yields∫

S′

∫
D

κ(x, ω)∇x

(∑
α∈J

uα(x)Hα(ω)

)
∇xvβ(x)Hβ(ω)dx dµ(ω) (26)

=
∫
S′

∫
D

f(x)vβ(x)Hβ(ω)dx dµ(ω)

Remark 14. Notice that the variational formulation (26) induces the bilinear form
associated to H1

0(κ, D), as a consequence ellipticity and continuity are automatically
satisfied. The assumption 0 < ρ0 < κ(x, ω) permits to consider H1

0(κ, D) closed and
separable since it is embedded into the closed and separable space L2

µ(S ′,H1
0 (D)).

In addition, that assumption makes the Poincaré inequality to hold on the space
H1

0(κ, D) with respect to the norms H1(κ, D) and L2
µ(S ′, L2(D)), and hence the

right hand side of (26) belongs to the dual of H1
0(κ, D). The existence, uniqueness,

and stability of the solution u satisfying (26) for all β ∈ J , follows from the Lax-
Milgram Theorem.

4.1. The Galerkin Approximation. Now, consider

JN,k
.= {α ∈ J : d(α) ≤ N , and, |α| ≤ k} (27)

Then to obtain a (N, k)-Galerkin approximation for u(x, ω) we restrict to α ∈ JN,k.
We will denote this approximation as u(N,k)(x, ·) and of the form:

u(N,k)(x, ω) .=
∑

α∈JN,k

u(N,k)
α (x)Hα(ω) (28)
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Definition 15. The function u(N,k) ∈ H1
0(κ, D) given in (28) is the Galerkin

approximation in H1(κ, D), or the H1(κ, D)-orthogonal projection of the so-
lution u if it satisfies for all β ∈ JN,k and vβ(x)Hβ(ω) ∈ H1

0(κ, D)∫
S′

∫
D

κ(x, ω)∇x

 ∑
α∈JN,k

u(N,k)
α (x)Hα(ω)

∇xvβ(x)Hβ(ω)dx dµ(ω) (29)

=
∫
S′

∫
D

f(x)vβ(x)Hβ(ω)dx dµ(ω)

Remark 16. Observe that our Galerkin approximation u(N,k) satisfies a variational
equation with the original permeability tensor κ, as opposed to truncations of κ, and
therefore the ellipticity is now maintained. As a consequence, Lax-Milgram Theo-
rem can be applied to the Galerkin approximation problem and hence uniqueness,
existence, and stability also follow.

We point out that the left hand side of equation (26) results in∑
α∈JN,k

∫
S′

∫
D

κ(x, ω)∇xu(N,k)
α (x)∇xvβ(x)Hα(ω)Hβ(ω)dxdµ(ω)

=
∫
S′

∫
D

f(x)vβ(x)Hβ(ω)dxdµ(ω)

which can be written as∑
α∈JN,k

∫
D

∇xu(N,k)
α (x)∇xvβ(x)Eµ[κ(x, ·)HαHβ ]dx =

∫
D

f(x)vβ(x)Eµ[Hβ ]dx (30)

Notice that the right hand side of (30) is zero unless β = 0, i.e. Hβ ≡ 1. Also,
in Section 3.1 we computed exactly the coefficients κγ(x) in the Wiener-Itô-Chaos
decomposition of κ(x, ω) for log-normal permeability functions. Then, if we substi-
tute the Wiener-Itô-Chaos decomposition of κ(x, ·) in Eµ[κ(x, ·)HαHβ ] of (30) we
have∑
α∈JN,kγ∈J

∫
D

κγ(x)∇xu(N,k)
α (x)∇xvβ(x)Eµ[HγHαHβ ]dx =

∫
D

f(x)vβ(x)Eµ[Hβ ]dx

(31)
for each β ∈ JN,k. Notice that the later sum is actually a finite sum, since for
α, β ∈ JN,k, HαHβ can be written in terms of a polynomial of degree at most
2k, and therefore Eµ[HγHαHβ ] = 0 for |γ| ≥ 2k + 1, due to the orthogonality of
the Hermite polynomials. Moreover, the terms Eµ[HγHαHβ ] may be computed
beforehand (see [10] and references therein). Therefore, (31) produces a linear
system that can be re-written as∑

α∈JN,k

∫
D

κα,β(x)∇xu(N,k)
α ∇xvβ(x)(x)dx =

∫
D

f(x)vβ(x)Eµ[Hβ ]dx,

where
κα,β(x) .= Eµ[κ(x, ·)HαHβ ] =

∑
γ∈J :|γ|≤2k

κγ(x)Eµ[HγHαHβ ].



GALERKIN METHOD FOR ELLIPTIC SPDES 11

After solving u
(N,k)
α , for each α ∈ JN,k we compute

u(N,k)(x, ω) .=
∑

α∈JN,k

u(N,k)
α (x)Hα(ω).

5. On the Choice of φ and the Orthonormal Functions ηj′s . In this section,
we show another of the advantages of using the white noise probability space. Em-
pirical studies in geophysical applications suggest specific forms of the covariance
function. Some of these typical covariance functions are considered in [3, 4, 5]. On
the other hand, different choices for the φ function will lead to different covariance
functions. Our goal now is to show that the white noise probability space gives some
flexibility to choose this function so that an specific form of a covariance function
for Cκ or Cξ is obtained. We complete the section showing a suitable choice of the
orthonormal basis ηj′s in order to get simpler expressions than using (8) for the co-
efficients aj(x) defined on Lemma 12 as well as to explore the fact that a covariance
function is given. The expressions are based on eigenvector space decomposition of
an integral equation with φ(x − y) as its kernel, opposed to C(x − y) as its kernel
used for building the Karnunen-Loeve expansion.

5.1. The Covariance Function Cκ(x1, x2). By definition, the covariance function
of κ(x, ·) is

Cκ(x1, x2)
.= Eµ [(κ(x1, ·)− Eµ[κ(x1, ·)])(κ(x2, ·)− Eµ[κ(x2, ·)])]

Also, since the covariance of κ(x, ·) = ρ0 + eWφ(x,ω) is the same as the covariance of
eWφ(x,ω) it is enough to show our results considering only eWφ(x,ω), and we have

Lemma 17. The covariance of eWφ(x,ω), where Wφ(x, ω) is the smoothed white
noise defined in Section 2, is given by:

Cκ(x1, x2)
.= e‖φ‖

2
(
e(φx1 ,φx2 ) − 1

)
(32)

Proof: In order to show this we will choose η1 and η2 such that they are orthonormal,
and span {η1, η2} = span {φx1 , φx2}. This can be done by using the Gram-Schmidt
orthogonalization procedure. Straightforward computations give η1 = φx1/‖φ‖, and
η2 = a1φx1 + a2φx2 , where

a1 = ∓(φx1 ,φx2 )

‖φ‖(‖φ‖4−(φx1 ,φx2 )2)1/2 , and a2 = ±‖φ‖
(‖φ‖4−(φx1 ,φx2 )2)1/2

Then, using Lemma 3 we have that

Eµ[eWφ(x1,·)eWφ(x2,·)] =
1
2π

∫
R2

e‖φ‖te
(φx1 ,φx2 )t

‖φ‖ e
(‖φ‖4−(φx1 ,φx2 )2)1/2

s

‖φ‖ e−t2/2e−s2/2dtds

= e‖φ‖
2+(φx1 ,φx2 ) (33)

Having computed this, we obtain

Cκ(x1, x2) = Eµ[eWφ(x1,·)eWφ(x2·)]− Eµ(eWφ(x1,·))Eµ(eWφ(x2,·))

= e‖φ‖
2
(
e(φx1 ,φx2 ) − 1

)
(34)

�
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Remark 18. Notice that if we assume that φ is symmetric with respect to the
origin, i.e., φ(x) = φ(−x), for all x ∈ Rd, then in the expression above for the
covariance of the function κ, we have that (φx1 , φx2) can be written as

(φx1 , φx2) =
∫

Rd

φ(y − x1)φ(y − x2)dy =
∫

Rd

φ(z)φ(z − (x2 − x1))dz

= (φ ∗ φ)(x2 − x1) = (φ, φx2−x1)

=
∫

Rd

φ(y)φ(y + x2 − x1)dy =
∫

Rd

φ(y)φ(y − (x1 − x2))dy

= (φ ∗ φ)(x1 − x2) = (φ, φx1−x2) (35)

where we have used the symmetry of φ and made the change of variable z = y−x1.
Using this result in Lemma 17 we obtain that Cκ(x1, x2) = Cκ(x1−x2), where Cκ(x)
is an even function. We observe that if we want to match specific given values for
the mean and variance of κ(x, ·) = ρ0 + k1e

Wφ(x,·), it is enough to match values for
the stochastic part. Denote κ̄ := Eµ[κ(x, ·)] and σ2 = V ar[κ(x, ·)]. We can proceed
as follows: define k2 = ‖φ‖ and we need to have

κ̄ = ρ0 + k1e
‖φ‖2/2 = ρ0 + k1e

k2
2/2

σ2 = k2
1(e

2‖φ‖2 − e‖φ‖
2
) = k2

1(e
2k2

2 − ek2
2 ) (36)

hence straightforward computations yield

k1 =
κ̄− ρ0√

1 + σ2

(κ̄−ρ0)2

(37)

k2 =

√
log
(

1 +
σ2

(κ̄− ρ0)2

)
(38)

All the computations made in this section are done for a given φ. However,
sometimes we might be interest in choosing φ so that a specific covariance function
can be matched. We discuss this next.

5.1.1. Choosing φ to Match a Covariance Function. We will assume that φ is sym-
metric with respect to the origin, i.e., φ(x) = φ(−x). Then, in our case and accord-
ing to our results in the previous section, we need to consider covariance functions
Cκ(x1, x2) that depend only on the difference |x1 − x2|, so that they can be writ-
ten as Cκ(x1 − x2), where Cκ(x) is an even function. Now, let κ̄, and σ2 be the
mean and variance of the stochastic permeability field, then we find k1, and k2 from
equations (37)-(38), and by Lemma 17, all we need to do is to choose φ such that
‖φ‖ = k2 and

Cκ(x) = k2
1e

k2
2 (e(φ,φx) − 1)

hence

ln
(

1 +
Cκ(x)
k2
1e

k2
2

)
= (φ, φx)

Let g(x) := ln
(

1 + Cκ(x)

k2
1ek2

2

)
, and since (φ, φx) is actually a convolution, then taking

the Fourier transform on both sides of the last equation, we arrive to

ĝ(ξ) = (φ̂(ξ))2 (39)

Equation (39) gives the condition on g(x) for the existence of such φ, this condition
is that the Fourier transform of g(x) must be in L1(Rd) and nonnegative, i.e. g
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must be a positive definite function (see [16]). Hence, g real and even function such
that ĝ ∈ L1(Rd) and positive implies the existence of a real and even φ ∈ L2(Rd).
Furthermore, by choosing φ̂ nonnegative, the operator associate to the convolution
on φ is going to be nonnegative and of Hilbert-Schmidt type.

Below, we give two one-dimensional examples of functions g(x) satisfying these
properties.

Example 1.: (d = 1) and g(x) = ln (1 + ae−b|x|). In fact,

ĝ(ξ) = 2
∫ +∞

0

ln (1 + ae−bx) cos (2πξx)dx,

and using that
∫ +∞
0

ln (1 + ae−bx)dx ≤ C1, where C1 is a constant, then
| ˆφ(ξ)| ≤ C1. Let us compute

∫ +∞
0

ln (1 + ae−bx) cos (2πξx)dx. Integrating by
parts, we have that∫ +∞

0

ln (1 + ae−bx) cos (2πξx)dx

=
∫ +∞

0

abe−bx

1 + ae−bx

sin (2πξx)dx

2πξ

=
∫ +∞

0

ab

ebx + a

sin (2πξx)dx

2πξ

= −
∫ +∞

0

ab2ebx

(ebx + a)2
cos (2πξx)dx

4π2ξ2
− ab

ebx + a

cos (2πξx)
4π2ξ2

|+∞0

and it is not hard to see that last terms are of order 1
ξ2 , therefore ĝ ∈ L1. In

addition, using that abe−bx

1+ae−bx is positive and strictly decreasing, it is easy to
see that the second integral above is positive for any ξ, i.e. ĝ(ξ) is positive.

Example 2.: (d = 1) Let g(x) = ln
(
1 + (a + b|x|)β

)
, for β < 0. Let us compute

the Fourier transform of φ. As in the previous example, since g is even then
its Fourier transform is real and therefore

ĝ(ξ) = 2
∫ +∞

0

ln
(
1 + (a + bx)β

)
cos (2πξx)dx

Next, integrating by parts twice we have∫ +∞

0

ln
(
1 + (a + bx)β

)
cos (2πξx)dx

= −β

∫ +∞

0

b(a + bx)β−1

1 + (a + bx)β

sin (2πξx)dx

2πξ

= −β

∫ +∞

0

b

(a + bx)1−β + (a + bx)
sin (2πξx)dx

2πξ

= βb
cos (2πξx)

[(a + bx)1−β + (a + bx)](2πξ)2
|+∞0

− βb2

∫ +∞

0

1 + (1− β)(a + bx)−β

[(a + bx)1−β + (a + bx)]2
cos (2πξx)dx

(2πξ)2
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Evaluating the last terms we obtain order O( 1
ξ2 ), i.e ĝ(ξ) ∈ L1[1,+∞). For ξ

small, we procedure as follows:

−β

∫ +∞

0

b(a + bx)β−1

1 + (a + bx)β

sin (2πξx)
2πξ

dx

= −β

∫ 1
4ξ

0

b(a + bx)β−1

1 + (a + bx)β

sin (2πξx)
2πξ

dx

− β

∫ +∞

1
4ξ

b(a + bx)β−1

1 + (a + bx)β

sin (2πξx)
2πξ

dx

For the first term we use that | sin (2πξx)
2πξ | ≤ Cx to obtain O( 1

ξ1+β ) and for

the second term is bounded by Cβ
∫ +∞

1
4ξ

1
ξx1−β dx and gives O( 1

ξ1+β ), therefore

ĝ(ξ) ∈ L1[0, 1]. Finally, using that −β b
(a+bx)1−β+(a+bx)

is positive and strictly
decreasing, we have that ĝ(ξ) is positive.

5.2. The Covariance Function Cξ(x1, x2). If one takes the approach of Furtado-
Pereira in [3, 4, 5], where the type of stochastic fields are of the form K(x, ·) =
k1e

ξ(x,·), and ξ(x, ·) is a stationary Gaussian random field, with zero mean and
covariance function Cξ(x, y), the result analogous to (32) that one needs is

Eµ[Wφ(x1, ·)Wφ(x2, ·)] = (φx1 , φx2),

and the φ to be found is such that

Cξ(x1, x2) = (φx1 , φx2),

and therefore, in accordance to the results in this section, the conditions to guaran-
tee the existence of such a φ are that the Fourier transform of Cξ(x) is in L1(Rd),
and Cξ(x) is a positive definite function.

5.3. On the Choice of the Orthonormal Functions ηj′s . The kernel K(x, y) =
φ(x − y) is real and symmetric since φ is a real and even function. In addition,
for fixed x or y, K(x, y) is square integrable in Rd since φ̂ ∈ L2(Rd). Therefore,
since the domain D is bounded, K(x, y) is square integrable on D×D. Hence, the
operator AD : L2(D) → L2(D) given by h = ADϑ where

h(x) =
∫

D

K(x, y)ϑ(y)dy,

is compact of Hilbert-Schmidt type. We note that the operator AD is nonnegative,
i.e. (ADϑ, ϑ)D ≥ 0. Indeed, let us define the function θ ∈ L2(Rd) as equal to ϑ on
D and equal to zero on Dc the complement of D. Hence, (ADϑ, ϑ)D = (Aθ, θ)Rd ,
where

Aθ(x) =
∫

Rd

φ(x− y)θ(y)dy, x ∈ Rd.

Using standard Fourier analysis, we obtain

(Âθ, θ̂)Rd = (φ̂θ̂, θ̂)Rd

which is nonnegative since φ̂ is assumed real and nonnegative. For the two examples
considered in the paper, ĝ(ξ) is always positive, hence it follows that (Aϑ, ϑ)D is
always positive whenever ‖ϑ‖L2(D) 6= 0. Since AD is a Hilbert-Schmidt operator,
there exists a sequence of orthonormal basis ϑj for L2(D) which are eigenfunctions
for AD with corresponding nonnegative and nonincreasing eigenvalues µj ≥ 0. We
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define the ηj ∈ L2(Rd) as equal to ϑj on D and zero on Dc. We next evaluate
aj(x) = (φx, ηj)Rd . We note that (φx, ηj)Rd = (φx, ϑj)D. In addition, when x ∈ D,
(φx, ϑj)D = µjϑj(x), while when x ∈ Dc we cannot explore the eigenfunctions
properties since they are not defined outside D; fortunately the evaluation of aj(x)
for x ∈ Dc is not required in the proposed methods. An orthonormal basis for
L2(Rd) can be constructed by adding any orthonormal basis for L2(Dc) to the ηj′s .
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