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Abstract

The collaborative mobile app Fogo Cruzado delivers instant alerts every time a
user reports a gunfire in the Rio de Janeiro metropolitan area (Brazil). This app
contributes to public safety and generates a valuable dataset comprising the location
and time of occurrence of gun shootings, which analysis may allow reserchers to
understand gunfire dynamics in Rio and support the development of crime reduction
plans. Prior to apply existing crime forecasting methods, such as kernel hotspot
maps and self-exciting, we should test if the gunfire patterns meet their assumptions.
For this purpose, we have applied nonparametric first and second-order point process
inference. The kernel intensity estimator describes the spatial distribution of gunfire
and identifies chronic hotspots. The nonparametric test for comparison of first-order
intensities found differences between gunfires with and without fatalities or police
intervention. The recently developed log-ratio based first-order separability test found
that the spatial distribution of gunfire, fatalities and police presence varied over
time. Finally, spatiotemporal inhomogeneous K-tests detected clustering between
gunfire events, fatalities and police interventions. These results suggest that we could
consider a self-exciting point process with nonseparable background component as a
starting point in the development of a suitable approach to forecast gunfire hotspots
in Rio de Janeiro.

Keywords: First-order intensity, Fogo cruzado, gunfire, kernel smoothing, inhomogeneous
K-function, separability test
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1 Introduction

Crime, as many socio-economic and environmental processes such as forest fires, earth-

quakes or disease outbreaks, takes the form of events occurring irregularly in space and

time. Spatial and spatiotemporal point processes, which govern the location of a random

number of events in a continuous domain (Diggle, 2013), are a suitable framework for the

analysis of this type of data. Point process modeling has been increasingly applied during

the last decade to analyze a wide variety of crimes against both property, such as residence

or car burglaries (Chainey et al., 2008; Mohler et al., 2011), and citizens, such as homicides

and violent crimes (Mohler, 2014; Taddy, 2010).

Point process modeling of crime data has mainly focused on the detection and forecast-

ing of hotspots, i.e, geographic locations of high crime concentration in comparison with

the distribution of crime across the whole region of interest (Chainey et al., 2008). We can

find two types of crime hotspots, chronic and temporary, which have different nature and

require different strategies to be reduced (Mohler, 2014). Chronic or long-term hotspots are

characterized by a high crime volume over several years, and need problem oriented policing

strategies that focus on the root causes of crime. Temporary or short-term hotspots last

on the time scale of days or weeks, may be caused by contagious like processes and can

be reduced through a temporary increase of police presence in the affected area. Hotspot

prediction models should be able to distinguish between chronic and temporary hotspots in

order to aid law enforcement and police to implement accurate crime reduction strategies

for each type of hotspot.

The statistical techniques used in crime hotspot forecasting can be grouped into two
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broad categories, multivariate analysis and event-based nonparametric methods. Multi-

variate models incorporate additional variables such as demographics (Wang et al., 2012),

income levels (Liu and Brown, 2003), distance to crime attractors (Kennedy et al., 2011;

Liu and Brown, 2003; Wang et al., 2012), and leading-indicator crimes (Cohen et al., 2007;

Gorr, 2009). Static variables such as demographics and distance to crime attractors are

used to predict long-term crime hotspots, whereas recent crime activity is useful in short-

term hotspot forecasting.

The most popular nonparametric event-based tool in the analysis of crime data is ker-

nel density estimation, which produces static maps of crime occurrence. Chainey et al.

(2008) showed the suitability of spatial kernel density estimations for hotspot mapping

and prediction of future crime patterns through its application to several types of crime

in London, including residential burglaries, street crimes, thieves from vehicles and thieves

of vehicles. Gerber (2014) incorporated twitter information as covariates in the kernel

density estimator to forecast the occurrence of 25 types of crime in Chicago. Both works

discussed bandwidth selection, which is crucial for the good performance of any kernel

estimator, Chainey et al. (2008) proposed using a rule of thumbs or a subjective scalar

bandwidth, whereas Gerber (2014) used a plug-in bandwidth matrix. However, none of

them applied edge-correction to the kernel hotspot maps, which is required to reduce the

bias near the boundary when the observation domain is bounded. The main drawback of

kernel density estimation and other event-based approaches is that these models are not

able to reflect multiple timescales simultaneously. Therefore researchers should choose be-

tween long-term or short-term hotspot maps. Long-term maps are generated using several

years of data (Weisburd et al., 2012), whereas short-term hotspot maps are based on some
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weeks or months of data and use spatial bandwidths in the order of tens or hundreds of

meters (Chainey et al., 2008; Kennedy et al., 2011; Wang et al., 2012).

Prospective hotspot maps (Bowers et al., 2004), which use spatiotemporal kernel density

estimators that give larger weights to recent events than to events further in the past, are a

natural extension of static hotspot maps. Research on near-repeat offender behavior (Bow-

ers et al., 2004; Farrell and Pease, 2001; Johnson et al., 2007; Johnson, 2008) suggests that

prospective hotspot maps can help police departments in the reduction of contagious effects

associated with certain crimes. However, the accuracy of both short-term and prospective

hotsptot maps can be reduced as small sample sizes and small bandwidths increase the

variance of kernel estimators. Furthermore, prospective maps allow us to estimate chronic

or near-repeat hotspots through a suitable selection of the temporal observation domain

and bandwidth parameter, but we cannot either estimate both types of hotspots simulta-

neously nor discriminate between them.

Certain types of crime, such as burglaries and gang violence, present highly clustered

patterns. This behavior is close to that observed in seismology, where the occurrence of an

earthquake increases the risk of aftershocks in its neighborhood. Considering this similarity

and the limitations of both spatial and spatiotemporal kernel hotspot maps, Mohler et al.

(2011) proposed using self-exciting point processes, which were developed to model earth-

quake patterns, in crime modeling and illustrated the suitability of this approach through

application to the analysis of residential burglaries in Los Angeles. Self-exciting point

processes decompose the rate of crime into a stationary background component, which es-

timates chronic hotpots, and a component analogous to prospective hotspot maps that cap-
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tures near-repeat effects. Mohler (2014) extended this model to the framework of marked

point processes to predict homicides in Chicago incorporating information of precursory

gun crimes to the second component. Reinhart and Greenhouse (2018) incorporated spa-

tial covariates to the background component. Zhuang and Mateu (2018) introduced daily

and weekly periodicity in the background component of self-exciting point process models

for the analysis of robbery related violence in Castellón, (Spain).

Crime modeling with kernel hotspot maps or self-exciting point processes requires the

assumption of a series of hypothesis that may not be fulfilled by the observed crime pat-

terns under study. The spatial kernel estimator assumes that the time of occurrence of

crimes is a realization of a stationary Poisson point pattern, whereas prospective maps

allow the temporal point process to be nonstationary but Poisson. In both cases the spa-

tial component of the spatiotemporal point process is assumed to be Poisson, i.e., crimes

occur independently in both space and time. Self-exciting point process models assume a

contagious behavior in crime. As pointed out in recent works (Loeffler and Flaxman, 2018;

Wooditch and Weisburd, 2016), these hypothesis need to be tested prior to the application

of any hotspot model. Wooditch and Weisburd (2016) applied a spatiotemporal stationary

K-test to check whether stop-question-frisk (SQF) practices contribute to reduce crime inci-

dence in New York. Loeffler and Flaxman (2018) combined Bayesian spatiotemporal point

process modeling and classical space/time interaction tests to check whether spatiotem-

poral distinguish between hetereogeneity, referred as endemic or first-order clustering, and

clustering associated to epidemic or contagions-like processes in gun violence.

This work analyzes, for the first time, gunfire reports collected by the collaborative app
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Fogo Cruzado in the Rio de Janeiro metropolitan area during 2017. Fogo Cruzado records

the GPS location and time of occurrence of each gunfire event, as well as some additional

information, such as number of victims or an indicator of police presence. Therefore we

have a realization of a spatiotemporal marked point process that could be modeled through

any of the methods outlined above. However, as a first approach to these data we need

to conduct a complete exploratory analysis in order to understand the behavior of gun

violence in Rio de Janeiro and support the selection of an accurate model to predict future

gunfire hotspots. For this purpose we apply novel nonparametric inference techniques for

spatiotemporal point processes to analyze the spatial and spatiotemporal distribution of

gun shootings and to test for interaction between them. We describe the spatial distribution

of gun shootings by kernel intensity estimation, and apply a nonparametric comparison of

first-order intensities to test if police presence has the same distribution as gunfire events

and to compare the spatial distribution of events with and without victims. A nonpara-

metric separability test allows us to check whether the spatial distribution of gunfire varies

over time. Finally, the inhomogeneous spatial and spatiotemporal K-tests check whether

the occurrence of a gun shooting in a given location may increase or reduce future crime

risk in its neighborhood.

The remainder of this work is organized as follows, in Section 2 we introduce the study

area and crime data. Section 3 provides an overview of the nonparametric inference tech-

niques used in this work. In Section 4 we show the results of the spatial and spatiotemporal

analysis of the Fogo Cruzado data set. We discuss these results and future research lines

in Section 5. In the Supporting Information we provide more detailed information for Sec-

tion 3 for those with are not familiar with these techniques (Appendix A), and the kernel
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spatiotemporal intensity functions of the gunfire pattrns under study (Appendix B).

2 Data

2.1 Study area and data collection

Rio de Janeiro, the capital of the state of Rio de Janeiro, with a population of 6.45 million

in 2017, is the second-most populous municipality in Brazil and the sixth-most populous

in the Americas. It is also the largest municipality of the Rio de Janeiro metropolitan area

(Figure 1), which has a total population of 12.3 million. Both the city and metropolitan

area have suffered a continuous increase in violent crimes during the last decades. This

violence increase has been linked to the large social and financial inequalities and to the

regional distribution of the population (Arias and Barnes, 2017; Silva et al., 2017). In

particular Arias and Barnes (2017), which highlight the need of local-level research on or-

ganized crime to understand violent crime dynamics, describe two main types of organized

crime in the city, drug gangs in the Zona Norte (North zone) and police-linked extortion

rackets known as miĺıcias in the Zona Oeste (West Zone) of Rio de Janeiro.

Reducing crime rates has become a major concern for the government and public safety

institutions (Silva et al., 2017), which have adopted both confrontation and community

oriented strategies to fight violent crime. Among the latter we find the UPP (Unidades de

Policia Pacificadora) project, which have occupied favelas with high crime rates since 2008

and conducted community oriented methods to reduce violence (Oliveira, 2018; Passos,

2018)
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Figure 1: Location and municipalities of the Rio de Janeiro metropolitan area in Brasil.

Population from the Census 2010 (IBGE).

The Instituto de Segurança Pública de Rio de janeiro (ISP-RJ) has developed a cen-

tralized database including information from the 190 crime report hotline, military, and

civil police in the Rio de Janeiro metropolitan area during the last decades. These data

have been used in recent studies to develop interactive visualization tools and crime risk

maps such as CrimeVis (Silva et al., 2017) and CrimeRadar (Igarapé Institute, https:

//igarape.org.br/en/). Both the centralized database and the crime visualization tools

provide support to researchers and public policy makers addressing the challenging task

of reducing violent crime in Rio de Janeiro. However, a group of independent researchers

found serious difficulties to obtain accurate information about gunfire violence in the press,

social media, and police reports when they attempted to quantify gun shootings after an

extremely violent outbreak in 2015. These difficulties pointed out the need of a highly
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visible channel to report gunfire events and motivated the development of Fogo Cruzado

(https://fogocruzado.org.br/), a mobile app that was released for Android (R) and

Apple (R) mobile smart phones in June 2016 by Amnesty International. In January 2018

the project became autonomous and independent of Amnesty International, and has been

managed by the Update Institute since then. The users of Fogo Cruzado, who can iden-

tify themselves or not, report gun shootings in real time to the app, which delivers an

instant alert to nearby users. In addition to the location, which is obtained through the

GPS of the device, the witness can include some details in the report, such as number of

victims or whether police was involved in the shooting. The Fogo cruzado management

team applies a data validation procedure that discards incomplete information, repeated

reports, and data that can not be confirmed by the project team. The discard rate from

July 2016, when the app was released, to the end of 2018 was 16% of received notifications.

The database is completed through the incorporation of information provided by in-site

partners, such as collectives, communicators and active residents, as well as with press and

law enforcement reports. Therefore, in addition to its contribution public safety helping

residents avoid stray bullets, Fogo Cruzado generates a valuable database which analysis

shall allow researchers to understand the dynamics of violent crime, identify the causes of

gun violence and develop more efficient strategies to fight against gun violence.

2.2 Data description

This work analyses the 5945 gun shootings, an average of 16 events per day, reported to

Fogo Cruzado in the Rio de Janeiro metropolitan area during 2017. Each event is charac-

terized by the spatial coordinates of its location, date and time of occurrence, an indicator

of police interventions, and the number of mortal and injured police and civil victims. This
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work focuses on factor variables that indicate whether gunfire events caused injuries or

mortal victims (see details in Table 1 and Figure 2).

Table 1: Gunfire reports in the Rio de Janeiro metropolitan area

Total Rio de Janeiro Metropolitan area

Crimes 5945 3965 1980

Police interventions 686 483 203

With mortal victims 1141 488 653

With injured victims 967 615 352

Fogo Cruzado project published periodic reports summarizing the information collected

by the app (https://fogocruzado.org.br/relatorios-rj/). The 2017 Annual Balance

provides detailed information about the neighborhoods and municipalities with more gun-

fire reports, rates of fatalities and injuries, police presence during shootings, periods with

higher gunfire incidence and higher number of victims. The balance also analyzes gunfire

incidence in areas with UPPs, shopping malls, and closure of schools/suspension of classes

due to gun violence. Rio de Janeiro (3997 events and 669 mortal victims), São Gonçalo

(589 shootings and 232 fatalities) and Niterói (311 events and 59 mortal victims) were

the most affected municipalities. In the city of Rio de Janeiro, which suffered the 67% of

gunfire events recorded in the whole metropolitan area, the districts of Cidade de Deus and

Complexo do Alemão, with 175 notifications each, reported the highest gunfire incidence.

The Alemão UPP, which covers an area larger than the favela of Complexo do Alemão, had

the highest shooting rate with 193 notifications. Furthermore, 20 gunfire events, with 5

mortal victims, were recorded in shopping malls located in the Rio de Janeiro metropolitan
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Figure 2: Spatial and temporal patterns of gunfire in Rio de Janeiro (region in blue) and

its metropolitan area during 2017. Gun shootings with police interventions (top), mortal

victims (center) and injured (bottom) in red.
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area. Gunfire violence affected 165804 students in Rio´s municipal school system, which

suffered at least one day of closure. Acari, with 45 days of suspension out of a total of 198

in the academic year 2017, was the most affected area.

3 Nonparametric point processes analysis

Point processes are mathematical models that govern the occurrence of a random number

of events on a bounded domain, W ⊂ Rd. If each event has associated any measure or mark

we have a marked point process. A multitype point process is a marked point process with

categorical marks that define different point processes according with the type of event.

Spatial point processes generate a random number of events X = {x1, . . . ,xN} in a planar

region W ⊂ R2 with area |W | > 0. Spatiotemporal point processes comprise the location

and time of occurrence of a random number of events, S = {(x1, t1), . . . , (xN, tN)}, irregu-

larly placed in W × T ⊂ R2 ×R+ Throughout this paper point processes and patterns are

denoted in bold capitals and events are denoted in bold.

The Fogo Cruzado dataset introduced in Section 2.2, which reports the location and

time of occurrence of gunfire in the Rio de Janeiro metropolitan area, can be seen as a re-

alization of a spatiotemporal point process. Each event is marked by the number of mortal

and injured police and civil victims. For simplicity, in this work we classify gun shootings

into those with and without mortal and injured victims but do not account for the amount.

Shootings are also divided into those with and without police intervention.
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Nonparametric inference techniques recently developed for first and second-order anal-

ysis of spatial and spatiotemporal point processes allow us to answer important questions

regarding the distribution and behavior of gunfire in the Rio de Janeiro metropolitan area.

Kernel estimators of the first-order intensity functions (Diggle, 1985; Fuentes-Santos et al.,

2016) characterize the spatial distribution of the different types of gunfire events under

study, and the nonparametric comparison of first-order intensities (Fuentes-Santos et al.,

2017) tests, for instance, whether gun shootings with and without mortal victims have

the same spatial distribution or there is any area with higher mortality risk. A first-order

spatiotemporal separability test (Fuentes-Santos et al., 2018) checks whether the spatial

distribution of gunfire varies over time. Second-order characteristics, which analyze pair-

wise interactions between events, allow us to test if the gunfire patterns are clustered,

regular or random, i.e., whether a shooting at a given location enhances (clustered) or

inhibits (regular) gunfire occurrence in its neighborhood. Second-order characteristics of

multitype point processes allow us to analyze the relationship between different types of

events. We can test, for instance, if gun shootings with and without police interventions

appear closer or further apart than expected if they were independent.

3.1 First-order analysis

First-order intensity estimation is a main issue in the analysis of any observed spatial point

pattern. In our case, the first-order intensity describes the spatial distribution of gunfire

in the Rio de Janeiro metropolitan area, and allows us to identify areas with high violence

incidence, i.e., chronic hotspots. The first-order intensity function, λ(x), is defined as
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λ(x) = lim
|dx|→0

{
E [N(dx)]

|dx|

}
(1)

where E denotes expectation in both the number and location of events, |dx| and N(dx)

denote the area and number of events of X in dx, which is an infinitesimal disc centered at lo-

cation x. Intuitively. λ(x)|dx| is the probability for dx to contain exactly one event of X. A

point process is homogeneous if its first-order intensity is constant, λ(x) = λ > 0, and inho-

mogeneous otherwise. The density of event locations is defined as λ0(x) = λ(x)/
∫
W
λ(x)dx.

Diggle (1985) introduced the kernel intensity estimator for point processes in R, whose

extension to the spatial framework is natural and has been extensively used. The first-order

intensity of gunfire patterns in this work is estimated through kernel smoothing with full

bandwidth matrix (Fuentes-Santos et al., 2016)

λ̂H (x) = pH(x)−1|H|−1/2
N∑
i=1

k
(
H−1/2 (x− xi)

)
(2)

where k(·) is a Gaussian kernel, H, is a positively defined bandwidth matrix and |H|

denotes the determinant of H. We apply the 2-stages plug-in algorithm introduced by

Fuentes-Santos et al. (2016) to select the optimal bandwidth matrix. Here, pH(x) =∫
W
|H|−1/2k

(
H−1/2(x− y)

)
dy is the edge-correction term that reduces the bias near the

boundary of the observation domain, W , and guarantee the consistency of the kernel den-

sity of event locations

λ̂0,H(x) = N−1λ̂H (x) I (N > 0) (3)
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where I(·) denotes the indicator function (See Appendix A1 for further details).

The nonparametric test proposed by Fuentes-Santos et al. (2017) was used to compare

the first-order intensity of different types of gunfire events. This procedure cna be used to

test whether gun shootings with and without victims have the same spatial distribution.

The first-order intensity of two spatial point processes, X1 and X2, with the same spatial

distribution are proportional and consequently, their densities of event locations are equal.

Conditional to the number of events, Nj = nj, the observed patterns can be seen as random

samples of the bivariate random distributions with densities λ0j(x), j = 1, 2. Considering

these properties, Fuentes-Santos et al. (2017) extended the nonparametric test proposed

by Duong et al. (2012) for multivariate data to the spatial point process framework, and

proposed using a classical squared discrepancy measure to compare the spatial distribution

of two observed spatial point patterns

T =

∫
W

(λ01 (x)− λ02(x))2 dx = ψ1 + ψ2 − (ψ12 + ψ21) (4)

where λ01 (x) and λ02 (x) are the densities of event location of each spatial point process,

ψj = EXj
[λ0j (x)] and ψij = EXi

[λ0j (x)], for i, j = 1, 2. Using kernel smoothing with

plug-in bandwidth to estimate each component of T (Chacón and Duong, 2010), we obtain

the test statistic.

T̂ = ψ̂1 + ψ̂2 −
(
ψ̂12 + ψ̂21

)
(5)

The null distribution of T̂ is asymptotically normal under regularity conditions analo-

gous to those assumed in the classical multivariate distribution framework. However, the
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slow convergence rate to the normal distribution discourages using the asymptotic null dis-

tribution as calibration procedure. For this reason, Fuentes-Santos et al. (2017) proposed

a smooth bootstrap algorithm, which computes the relative position of the test statistic

of the observed pattern, T̂1, with respect to B − 1 test statistics, {T̂b}Bb=2 measuring the

discrepancy between pairs of inhomogeneous Poisson point processes with expected number

of events equal to those of the observed patterns and first-order intensity proportional to

that of the unmarked point process X = X1 ∪X2. The empirical p-value of the test is the

proportion of bootstrap T-statistics larger than T̂1. (See Appendix A2 for further details)

If the T-test finds differences between, for instance, gunfire with and without mortal

victims, we may be interested on where did those differences occur. This, we need a local

test that identifies areas with high and low mortality risk. This question can be addressed

through the relative risk function, which was introduced by Bithell (1990) to compare the

geographical distribution of disease cases, X1, and a random sample of the population at

risk (controls), X2 , and is defined as the ratio between their densities of event locations,

r(x) = λ01(x)/λ02(x). Given that λ0j(x), j = 1, 2 are strictly positive, it is preferable

working with the log-relative risk ρ(x) = log (λ01(x)/λ02(x)) to handle the asymmetry

between the number of cases and controls. We have estimated the log-relative risk of police

presence and victims using the symmetric adaptive kernel method proposed by Davies et al.

(2016). The kernel log-relative risk is defined as ρ̂(x) = log
(
λ̂01,h(x)/λ̂02,h(x)

)
, where for

j = 1, 2

λ̂0j,h (x) =
1

Nj

Nj∑
i=1

1

h2ji
k

(
x− xji

hji

)
I (Nj > 0) (6)
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where hji = h(xji) is a local bandwidth, which adapts the degree of smoothing to the

number of events in the neigborghood of xji and, consequenlty, proivdes more accurate

estimates of local features than a fixed bandwidth parameter. Following the proposal of

Davies et al. (2016), we use a common bandwidth function h(x) = h0α(x) based on the

unmarked point processes X = X1 ∪X2 to estimate the density of event locations of cases

and controls. Thus h (x) = h0α̂ (x), where the global bandwidth h0 is obtained by optimal

smoothing (Terrell, 1990), and following Abramson (1982) α̂ (x) = γ̂−1λ̂0,hp(x)−1/2 with pi-

lot scalar bandwidth hp = 0.5h0, and γ̂ = exp{N−1
N∑
i=1

λ̂0,hp (xi)}. Comparing expressions

(A-3) and (A-8) we observe that the latter does not correct for edge effects. The edge

corrector depends on the spatial locations and the bandwidth parameter,then, ths term

cancels out in ρ̂(x) if the same bandwidth function is used to obtain the kernel density

of event locations for for cases and controls. Finally, as proposed by Kelsall and Diggle

(1995), we compute Monte-Carlo tolerance contours to identify areas with high mortality

risk or police presence. To do so (i) we simulate B−1 pairs of inhomogeneous spatial point

patterns with expected number of events equal to those of the observed case and control

patterns and first-order intensity proportional to that of the unmarked point processes

X = X1 ∪ X2. (ii) we estimate the log-relative risk function for each pair of simulated

case and control patterns {ρ̂b(x)}Bb=2, (iii) given a significance level α we compute the tol-

erance surface, ρ̂1−α(x), as the 100 (1− α) percentile of the Monte-Carlo log-relative risk

functions at each location, (iv) we have high risk at any location x where ρ̂ (x) > ρ̂1−α(x)

(See Appendix A3 for further details).

Up to now we have focused on the spatial distribution of gunfire in the Rio de Janeiro

metropolitan area, overlooking the temporal dimension. This gap can be addressed through
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first-order analysis of spatiotemporal point processes, which allows us to characterize the

distribution of gunfire events in both space and time. The spatiotemporal intensity function

is defined as a natural extension of the first-order intensity function of a spatial point process

(Diggle, 2013)

λ(x, t) = lim
|dx×dt|→0

{
E [N(dx, dt)]

|dx× dt|

}
(7)

where N(dx, dt) is the number of events in the volume dx× dt, dx is an infinitesimal disc

containing location x, and dt is an infinitesimal interval around time t. As well as in the

spatial domain, we have applied kernel smoothing to estimate the spatiotemporal intensity

of gunfire

λ̂Hs,ht (x, t) = pHs,ht(x, t)
−1|Hs|−1/2h−1t (8)

N∑
i=1

ks
(
H−1/2s (x− xi)

)
kt
(
h−1t (t− ti)

)
where ks(·) and kt(·) are bivariate and univariate Gaussian kernels, Hs is the two-dimensional

bandwidth matrix for the spatial component, and ht is the bandwidth for the temporal com-

ponent. pHs,ht(x, t) =
∫
T

∫
W
ks,Hs(x−u)kt,ht(t−v)dudv =

∫
W
ks,Hs(x−u)du

∫
T
kt,ht(t−v)dv

is the spatio-temporal edge-corrector, where pHs(x) =
∫
W
ks,Hs(x − u)du and pht(t) =∫

T
kt,ht(t − v)dv represent, respectively, the bivariate edge-corrector for spatial locations

and the univariate edge-corrector for the temporal component.

Testing whether gunfire patterns are separable, i.e., whether their spatiotemporal in-

tensity function can be decomposed into the product of its spatial and temporal marginals,
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λ(x; t) = λ1(x)λ2(t), is crucial for two reasons. On one hand, the separabilty test allows us

to determine whether the spatial distribution of gunfire remained constant during 2017 or

varied over time. On the other hand, separability simplifies its estimation avoiding the curse

of dimensionality. Taking into account that in a separable point process the risk of observing

an event at time t is spatially invariant, i.e., the ratio between the intensity functions of the

spatiotemporal point process and its spatial marginal does not depend on event locations,

Fuentes-Santos et al. (2018) proposed testing separability through a regression test that

checks if the log-ratio function ρ(x, t) = log (λ(x, t)/λ1(x)) depends on the spatial locations.

To implement the test we first estimate ρ(x, t) as the log-ratio of the kernel spatiotempo-

ral (8) and spatial (2) intensity functions with diagonal bandwidth matrices selected by

least-squares cross-validation, as the lack of robust estimates for the reciprocals of density

functions hampers the use of a plug-in bandidth selctor. (see details in Fuentes-Santos

et al. (2018)). Once obtained ρ̂(x, t), we consider a regression problem where the log-ratio

function evaluated at each event is a response variable, Y = {yi = ρ̂(xi, ti), i = 1, . . . , n},

that may depend on the spatial covariate X = {xi = (xi1, xi2), i = 1, . . . , n} comprising

the event locations, and we test for the effect of X on Y . Following Bowman and Azzalini

(1997), we shall discriminate between two competing models

H0 : E [Yi|Xi] = µ. H1 : E [Yi|Xi] = m(Xi)

We estimate µ by the empirical mean, ŷ = n−1
∑n

i=1 Yi, and the unknown smooth

function, m(x), by kernel regression. We compute the residual sum of squares for the null,

RSS0, and alternative, RSS1, models and define the generalized test statistic, F , as follows
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F =
(RSS0 −RSS1) / (df1 − df0)

RSS1/df1
(9)

where df0, df1 denote the degrees of freedom for these residuals. The test is calibrated

through a permutation test, which relies on the fact that under H0 the pairing of any

particular x and y is completely random. Then, the distribution of the test statistic, F ,

can be generated by simulation, computing the test statistic for B − 1 random pairings of

the observed values of X and Y . The empirical p-value of the test is the proportion of

simulated F-statistics larger than that obtained for the observed data (See Appendix A4

for further details).

3.2 Second-order analysis

Once characterized the spatial and spatiotemporal distribution of gunfire patterns, we focus

on searching for interactions between events. The reduced second moment measure or K-

function (Ripley, 1977) has been commonly used to describe the dependence structure of

spatial point patterns, i.e to check whether events are independent (Poisson point process)

or there is any kind of interaction between them. The K-function of a homogeneous spatial

point process is defined as

K (r) = λ−1E [N0(r)] (10)

where N0(r) is the number of further events within distance r of an arbitrary event.
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The homogeneity assumption can be very restrictive and unrealistic when dealing with

real data. For this reason Baddeley et al. (2000) extended the K-function to the case

of second-order reweighted stationary (SORS) point processes, which first-order intensity

is inhomogeneous and bounded away from 0 and second-order properties depend on the

distance between events but not on their locations, and defined the inhomogeneous K-

function as follows

Kinhom(r) =
1

|W |
E

 i 6=j∑
xi,xj∈X

⋂
W

I (‖ xi − xj ‖< r)

λ(xi)λ(xj)

 (11)

which natural empirical estimator is

K̂inhom(r) =
1

|W |

i 6=j∑
xi,xj∈X

⋂
W

I (‖ xi − xj ‖≤ r)

λ̂ (xi) λ̂ (xj)
ω−1i,j ; 0 ≤ r ≤ rmax (12)

where I(·) is the indicator function, rmax is the maximum distance at which the function

is evaluated. wij, defined as the reciprocal of the proportion of the disc centered at lo-

cation xi with radius ‖ xi − xj ‖ that lays inside W , is Ripley´s edge-corrector. λ̂(x)

is an estimator of the first-order intensity, in this work the kernel estimator with plug-

in bandwidth matrix defined in expression (2). The L-function (Besag, 1977), defined as

Limhom(r) =
√
Kinhom(r)/π, is a transformation of the K-function widely used in practice.

The K-function of a spatial Poisson point processes is K(r) = πr2, consequently

L(r) = r, whereas K(r) < πr2 and K(r) > πr2 indicate inhibition or clustering be-

tween events at distance r, respectively. This property suggests using the L-function as

an statistic in a Monte-Carlo test to check whether gunfire events occurred independent
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or they had a clustered or regular distribution. The Monte-Carlo test is implemented as

follows: (i) compute the empirical L-function, L̂inhom,1(r), for the observed pattern; (ii)

obtain {L̂inhom,b(r)}Bb=2 for B − 1 realizations of the inhomogeneous spatial Poisson point

process with the same first-order intensity as the observed pattern, (iii) compute the upper

and lower envelopes of the simulated L-functions

L̂loinhom = min
b=2,...,B

L̂inhom,b(r) L̂hiinhom = max
b=2,...,B

L̂inhom,b(r)

and (iv) gunfire events are independent if L̂inhom,1(r) falls within the upper and lower en-

velopes, clustered or regular when L̂inhom,1(r) is above the upper or below the lower enve-

lope, respectively. The maximum distance, r, at which L̂inhom,1(r) is outside the envelopes

is the interaction radius. As usual in practice, we consider B = 40 to get a significance

level α = 0.05 when the envelopes are given by the minimum and maximum values of the

statistic in the Monte-Carlo simulations.

We may also wonder whether different types of gunfires, e.g. those with and without

mortal victims, are independent or occur closer or further apart than expected if they were

independent. This question can be answered by Monte-Carlo tests based on the K-cross

function (Ripley, 1981), which is a natural extension of the K-function to the multitype

framework. The K-cross of a homogeneous spatial point process is

Kij (r) = λ−1j E [N0ij(r)] (13)

where N0ij(r) is the number of type j events within distance r of an arbitrary type i event.

If any of the marginal point processes is inhomogeneous we define the inhomogeneous K-
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cross as an extension of the inhomogeneous K-function (11), and its empirical estimated as

follows

K̂inhom,ij(r) =
1

|W |
∑

xi,k∈Xi
⋂
W

xj,l∈Xj
⋂
W

I (‖ xi.k − xj,l ‖< r)

λ̂i(xi,k)λ̂j(xj,l)
ω (xi,k, xj,l)

−1 0 ≤ r ≤ rmax (14)

where the edge-corrector ω (xi,k, xj,l) is analogous to ωij in expression (12). λ̂i(x) and λ̂j(x)

are the kernel estimators of the first-order intensity functions for type i and type j spatial

point patterns. As well as in the univariate case, Kinhom,ij(r) = πr2 if Xi and Xj are

independent, while values above or below this threshold indicate attraction or inhibition

between type i and type j events, respectively. Therefore, we can test for dependence

between two types of gunfire events through a Monte-Carlo test analogous to the L-test

outlined above.

The Monte Carlo tests introduced above analyze the spatial interaction between gun

shootings without accounting for the temporal lag between them. However, testing for

spatiotemporal interaction, i.e., testing if a gun shooting increases or reduces the risk of

new events on its neighborhood during the next hours or days, is crucial for a proper

analysis of crime behavior and to detect near-repeat effects. To address this issue we

have applied a Monte-Carlo test based on the spatiotemporal inhomogeneous K-function

(Gabriel and Diggle, 2009), the natural extension of (9) to the spatiotemporal framework,

which is defined as follows
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KST,inhom(r, t) =
1

|W × T |
E

 i 6=j∑
xi,xj∈W
ti,tj∈T

I (‖ xi − xj ‖< r, |ti − tj| < t)

λ((xi, ti))λ((xj, tj))

 (15)

KST,inhom(r, t) = πr2t for a Poisson point process, while larger and smaller values indi-

cate, respectively, clustering and inhibition (Gabriel and Diggle, 2009). To implement the

spatiotemporal K-test we first obtain the empirical estimator of KST,inhom(r, t)

K̂ST,inhom(r, t) =
1

|W × T |

i 6=j∑
xi,xj∈W
ti,tj∈T

I (‖ xi − xj ‖< r, |ti − tj| < t)

λ̂ (xi, ti) λ̂ (xj, tj)
ω−1i,j (16)

0 ≤ r ≤ rmax 0 ≤ t ≤ tmax

where I(·) is the indicator function, ωij is Ripley´s spatiotemporal edge-corrector, rmax,

tmax are the maximum spatial and temporal distances at which the function is evaluated,

and λ̂(x, t) is an estimator of the spatiotemporal first-order intensity function. Gabriel

and Diggle (2009) assume first-order separability, i.e., they use a separable estimator of

the spatiotemporal intensity function, λ̂(x, t) = λ̂1(x)λ̂2(t), and attribute any non separa-

ble effect to the second-order structure. We have used separable or nonseparable kernel

intensity estimated in agreement with the results of the first-order separability test intro-

duced in Section 3.1. As well as in the spatial framework, the Monte-Carlo test compares

the spatiotemporal K-function of the observed pattern, K̂ST,inhom(x, t), with upper and

lower envelopes determined by Monte-Carlo realizations of spatiotemporal Poisson pro-

cesses with the same intensity as the observed pattern. The maximum values r and t for

which K̂ST,inhom(x, t) falls above or bellow the envelopes determine respectively the spatial
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and temporal interaction radius.

3.3 Software

The statistical analysis of the gunfire spatial and spatiotemporal patterns was conducted

with the R statistical software (R Core Team, 2018). The Spatstat package (Baddeley

et al., 2015) was used for kernel intensity estimation and second-order analysis of spatial

point patterns, whereas plug-in bandwidths were obtained with the help of the ks package

(Duong, 2018). The kde.test function in the ks package was adapted by (Fuentes-Santos

et al., 2017) to implement the T-test for comparison of first-order intensities. Kernel log-

relative risk functions and their tolerance contours were estimated using the sparr package

(Davies et al., 2018). Fuentes-Santos et al. (2018) extended some functions in the sparr

package (Davies et al., 2018) to estimate the spatiotemporal intensity and log-ratio func-

tions to implement the separability test with the help of the sm package (Bowman and

Azzalini, 2014).

4 Results

In this section we outline the results of the first and second-order analysis of gun shootings

registered in the Rio de Janeiro metropolitan area during 2017.

4.1 Spatial and spatiotemporal distribution of gunfire

Figure 3 shows the kernel intensity (left) and kernel density (right) estimators for the spa-

tial and temporal patterns of gunfire reports in the Rio de Janeiro metropolitan area. We
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Figure 3: Kernel estimator for the first-order intensity and edge-corrected kernel estimatior

of the temporal density of gunfire in the Rio de Janeiro metropolitan area.

observe a clear inhomogeneous pattern with hotspots in Niteroi and São Gonçalo, although

the highest gunfire incidence was registered in the eastern area of Rio de Janeiro, which

includes the favelas complexes in the Zona Norte. The temporal pattern of gunfire is also

inhomogeneous, Figure 3 (right) shows higher gunfire incidence in the second semester of

2017, after the peak registered in July. In order to test whether the spatial distribution

of gunfire varied over time we have compared the first-order intensity of gun shootings

by months (Figure 4, Table 2), the T-test found differences between months except for

January and February, which had similar spatial distribution. Finally, the nonparametric

spatatiotemporal separability test confirms that the spatial distribution of gunfire violence

in the Rio de Janeiro metropolitan area varied over time (F-test, p-value < 0.005), see the

spatiotemporal intensity in B.1 (Appendix B).

Comparison between the first-order intensity of gunfire events with and without po-

lice intervention (Figure 5) can be used, for instance, by police departments to analyze

their patrolling strategies. The T-test (p-value < 0.005) found significant differences be-
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Figure 4: Kernel intensity function of gunfire in the Rio de Janeiro metropolitan area by

month.
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Table 2: P-values for pairwise nonparametric comparison of gunfire intensities between

months. T-test (A-7) with B = 200 realization of the null hypothesis for bootstrap cali-

bration
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Feb 0.399

Mar 0.041 <0.005

Apr <0.005 <0.005 <0.005

May <0.005 <0.005 <0.005 <0.005

Jun <0.005 <0.005 <0.005 <0.005 <0.005

Jul <0.005 <0.005 <0.005 <0.005 <0.005 <0.005

Aug <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005

Sep <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005

Oct <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005

Nov <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005

Dec <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005

tween their spatial distributions. The log-relative risk function comparing the intensity

of gunfire with (cases) and without (controls) police intervention (Figure 5, bottom left)

shows high police presence in some hotspots but also in areas with low gunfire incidence

(Figure 3). We also observe differences between the temporal patterns (p-value < 0.005),

with a relative decrease in police interventions in the second semester of 2017. Note that

this period suffered higher gunfire activity than the first semester (Figure 3). Finally, the

F-test found that both gunfire patterns are nonseparable (p-value < 0.005), see the spa-

tiotemporal intensities of gunfire with and without police intervention in B.2 (Appendix B).

Now we focus on the severity of gunfire violence through the analysis of gun shootings

with mortal (Figure 6) and injured (Figure 7) victims. Gunfire with and without mortal

victims have different spatial distribution (T-test, p-value < 0.005, Figure 6 top). In par-

29



Figure 5: Top: kernel intensity function for the spatial patterns of gun shootings with and

without police intervention (Figures have different scale). Bottom left: kernel log-relative

risk function with Monte-Carlo tolerance contours (B = 200, α = 0.05) for high police

presence (black lines). Bottom right: kernel density estimator for the temporal pattern of

gunfire events with and without police intervention.

ticular, the log-relative risk function (Figure 6, bottom left) reports high mortality in areas

with low gunfire activity, and low risk in the eastern area of Rio de Janeiro, which suffered

extremely large gun violence during 2017 (Figure 3). We also observe differences between

the temporal patterns (p-value < 0.005), with a relative mortality decrease between April

and August followed by an increase from September onward. The F-test rejected sepa-

rability for gunfire with and without mortal victims (p-value < 0.005), i.e., their spatial

distribution varied over time, as can be seen in B.3 (Appendix B).
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The T-test detected significant differences between the spatial distribution of gun shoot-

ings with and without injured victims (p -value < 0.005). As well as for fatalities, Figure 7

(bottom, left) shows high risk of injuries in areas with low gunfire incidence. We also found

differences between the temporal patterns (p− value < 0.005), with higher density of gun

shootings with injured victims during the first semester of 2017 and low relative incidence

thereafter. The F-test found that gunfire with and without injuries have nonseparable

first-order structure (p− value < 0.005, see B.4 in Appendix B).

4.2 Interaction between gun shootings

Once characterized the spatial and spatiotemporal distribution of gunfire violence in the

Rio de Janeiro metropolitan area, our next aim is searching for spatial and spatiotemporal

interactions between gun shootings. For this purpose, we have applied the Monte-Carlo

tests outlined in Section 3.2. We have tested for spatial and temporal interactions up to

rmax = 5 km and tmax = 15 days, respectively.

The inhomogeneous L-test (Figure 8, left) detected spatial clustering between gun shoot-

ings at small distances (r < 0.5 km). The spatiotemporal K-test (Figure 8, right) indicates

that this aggregation occurs within 1 day, i.e., the occurrence of a gunfire at a given loca-

tion increases the risk of suffering more events within 0.5 km during the next 24 hours.

The inhomogeneous L-test also found attraction up to 1 km for gunfire with and without

police intervention (Figure 9, top). Similar results were found when testing for interactions
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Figure 6: Top: kernel intensity function for the spatial patterns of gunfire events with and

without mortal victims (Figures have different scale). Bottom left: Bottom left: kernel

log-relative risk function with Monte-Carlo tolerance contours (B = 200, α = 0.05) for

high mortality risk (black lines). Bottom right: edge-corrected kernel density estimator for

the temporal pattern of gunfire with and without mortal victims.
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Figure 7: Top: kernel intensity function for the spatial patterns of gunfire events with

and without injuries (Figures have different scale). Bottom left: relative risk function

with Monte-Carlo tolerance contours (α = 0.05) for high injury risk (black lines). Bottom

right: edge-corrected kernel density estimator for the temporal pattern of gunfire with and

without injured victims.
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Figure 8: Left: inhomogeneous L-test for spatial interactions between gunfire events. Right:

inhomogeneous K-test for spatiotemporal interactions between gunfire events, in grey spa-

tiotemporal volume with KST,obs(r, t) > KST,hi(r, t), where KST,hi(r, t) is the upper envelope

for B − 1 = 39 realizations of a spatiotemporal Poisson point process with the same first-

order intensity as the observed pattern.

between gunfire events with and without police intervention (Figure 9, bottom left). The

spatiotemporal K-test found long-term clustering in police interventions up to 0.5 km,

which may indicate that there are some neighborhoods with constant police presence. The

clustering radius increases to 1.5 km within 36 hours, this may indicate an intensification

of police presence in a given neighbourhood after a gun shooting is reported in order to

reduce near-repeat phenomena.

The second-order analysis of gunfire with and without mortal victims (Figure 10) de-

tected spatial clustering in the marginal patterns, and between gun shootings with and

without mortal victims at small distances (r < 1 km). The spatiotemporal K-test shows

long-term clustering in gun shootings with mortal victims up to 0.5 km, this radius in-
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Figure 9: Inhomgoeneous L-test for gunfire with or without police intervention (top),

L-cross test for interaction between crimes with and without police intervention (bottom

left), and Inhomogeneous K-test for spatiotemporal interactions between crimes with police

interventions (bottom right), see details in the caption of figure 8)
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creases up to 1 km within 6 days after the occurrence of an event with mortal victims.

The inhomogeneous L-test (Figure 11) detected clustering in the spatial patterns of

gun shootings with and without injuries, and positive interaction between them at small

distances (r < 1 km). The spatiotemporal K-test found that the occurrence of a gunfire

with injured victims increases the risk of new events with injuries within 0.5 km during the

next 6 days.

5 Discussion

As police departments have created centralized databases of crime reports comprising,

among other information, the location and time of occurrence of each event, point process

modeling has been widely used to predict the risk of future crime. In the particular case

of the Rio de Janeiro metropolitan area (Brazil), which has been suffering a continuous

increase of violent crime over the last decades (Arias and Barnes, 2017), the ISP-RJ cen-

tralizes reports from the 190 crime report hotline, military, and civil police in a global crime

database. In parallel with the official sources, the collaborative mobile app Fogo Cruzado,

which collects real time gunfire reports and delivers instant alerts to help citizens avoid

stray bullets, has generated a valuable data set of gunfire violence in Rio de Janeiro.

This work analyzes the gunfire reports collected by Fogo Cruzado in 2017 that, in ad-

dition to the spatial location and time of occurrence, contain information about police

presence and victims. Previous application of point process methods in criminology have
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Figure 10: Inhomgoeneous L-test for gunfire with or without mortal victims (top), L-cross

test for interaction between gunfire with and without mortal victioms (bottom left), and

Inhomogeneous K-test for spatiotemporal interactions between gun shootings with morlal

vicitoms (bottom right, see details in the caption of figure 8)
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Figure 11: Inhomgoeneous L-test for gunfire with or without injured victims (top), L-cross

test for interaction between gunfire with and without injured victioms (bottom left), and

Inhomogeneous K-test for spatiotemporal interactions between gun shootings with injured

vicitoms (bottom right, see details in the caption of figure 8)
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mainly used kernel density estimation (Bowers et al., 2004; Chainey et al., 2008; Gerber,

2014) or self-exciting point process modeling (Mohler et al., 2011; Mohler, 2014; Rein-

hart and Greenhouse, 2018; Zhuang and Mateu, 2018) to predict future crime distribution.

Using any of these methods implies assuming some hypothesis for the observed patterns,

kernel density estimation assumes that events occur independently, whereas self-exciting

point process modeling assumes a contagious like behavior. However, as this is the first

spatiotemporal approach to Fogo Cruzado data, and we do not have enough information

about gunfire dynamics in Rio de janeiro, we need a complete exploratory analysis prior

to apply any of these models. For this reason we have applied nonparametric inference for

spatial and spatiotemporal point processes to characterize the distribution of gunfire in the

Rio de Janeiro metropolitan area, and test for interactions between gunfire events.

We have applied kernel intensity estimation to characterize the spatial distribution of

gunfire. This method is analogous to the kernel hotpsot maps used by Chainey et al.

(2008), but incorporates an edge-correction term, as the observation domain is bounded.

The kernel intensity of gunfire identifies a hotspot in the eastern area of Rio de Janeiro, this

area includes the Zona Norte, whose high violence rates may be linked to the presence of

drug traffic gangs (Arias and Barnes, 2017). Although we also observe high police presence

and hotspots for mortal and injured victims in the eastern area of Rio, the nonparametric

comparison between point processes (Fuentes-Santos et al., 2017) found differences between

the first-order structure of gunfire with police intervention or victims and those without

them. In particular the relatively low mortality risk observed in the hotspot of the eastern

area, which contrasts with the large risk in areas with low gunfire activity, suggests the need

of a deeper analysis to find which factors increase mortality risk in the latter. Information
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about the cause of gun shootings may be useful for this purpose.

The spatiotemporal separability test (Fuentes-Santos et al., 2018) found that the spatial

distribution of gun shootings, police intervention and victims varied over time. Therefore,

in addition to static environmental or demographic factors, some time varying covariate,

such as precursory crimes, need to be considered for an accurate modeling of gunfire spa-

tiotemporal dynamics.

Taking into consideration the results of the separability test, we have applied an in-

homogeneous spatiotemporal K-test with nonseparable kernel intensity, in contrast with

the common practice which assumes first-order separability and attributes any nonsepa-

rable effect to the second-order structure (Gabriel and Diggle, 2009). The spatiotemporal

K-test found clustering between gun shootings at short distances (r = 0.5 km) within 24

hours suggesting short-term contagious like effects. We have also found clustering for gun

shootings with police interventions, mortal and injured victims. The temporal interaction

radius for victims is larger than the observed for the whole gunfire pattern, suggesting that

it is more difficult to control retaliatory effects as violence gets more severe. From the

methodological point of view, these results suggest that a self-exciting point process model

(Mohler et al., 2011) would be an accurate approach for the spatiotemporal behavior of

gunfire in Rio de Janeiro.

In conclusion, this work provides a first analysis of violent crime data obtained from real

time reports of users in a mobile app. Social media, in particular twitter has been used by

Gerber (2014) as covariate in the analysis of crime data provided by Chicago police depart-
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ment. Nonparametric estimators and tests for first and second-order properties of point

processes allowed us to describe the dynamics of gunfire in the Rio de Janeiro metropolitan

area and provide valuable information for future research. The first-order analysis revealed

that gun shootings have a highly inhomogeneous spatial distribution, the spatial distri-

bution of police presence differs from that of gunfire, and the relative risk of mortal and

injured victims is also inhomogeneous. We have also seen that the spatial distribution of

gunfire, police intervention and victims varies over time. Second-order analysis suggests

short-term near repeat effects in the gunfire patterns. Taking into account all this infor-

mation, we can consider developing a self-exciting point process model with nonseparable

background to forecast gunfire in the Rio de Janeiro metropolitan area. Visual inspection

of the spatial first-order intensity may help criminologists to select environmental, demo-

graphic or socioeconomic covariates to include in the background component, as done by

Reinhart and Greenhouse (2018), but we also need some short-term varying covariate to

model the nonseparable gunfire dynamics. In view of the differences found between gun-

fire with and without police intervention and victims, we shall need different covariates to

model each type of gunfire. Finally, the different spatial and temporal interaction radius

found for each type of gunfire indicates differences in their near repeat behavior. Thus, in

case of using leading indicators, such as precursory crimes, in the self-exciting component

of the model, as done by Mohler (2014), we should select different indicators for each type

of gunfire.

41



APPENDIX A. Nonparametric inference for spatial

and spatiotemporal point processes

Point processes are mathematical models that govern the occurrence of a random number

of events on a bounded domain, W ⊂ Rd, d ≥ 1. If each event has associated any measure

or mark we have a marked point process. A multitype point process is a marked point pro-

cess with categorical marks that define different point processes according with the type of

event. Spatial point processes generate a random number of events X = {x1, . . . ,xN} in a

planar region W ⊂ R2 with area |W | > 0. Spatiotemporal point processes comprise the lo-

cation and time of occurrence of a random number of events, S = {(x1, t1), . . . , (xN, tN)},

irregularly placed in W × T ⊂ R2 × R+.

This work analyses the spatiotemporal point pattern of gun shootings recorded by Fogo

Cruzado in the Rio de Janeiro metropolitan area during 2017. In addition to the location

and time of occurrence of each event, we also have information about police interventions,

mortal victims and injuries. In this first approach to the Fogo Cruzado data set our aim is

to characterize the distribution of gunfire and check if there are interactions between gun

shootings in order to understand the dynamics of violent crime in Rio de Janeiro metropoli-

tan areas. As pointed out by Diggle (2013), we cannot distinguish between hetereogeneity

and interaction between events in an observed pattern when, as in this case, we lack of

additional information such as covariates or a parametric model. Therefore, following the

common practice in these situations, we first focus on first-order analysis assuming that

the point process is Poisson, i.e., assuming that events are independent, and test for in-

teractions between events once the first-order structure has been characterized. Bellow
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we provide detailed information about the nonparametric first and second-order inference

methods applied in this work.

APPENDIX A.1. Kernel intensity estimation

Let X be a spatial point process defined in R2 and {x1, . . . ,x1} a realization of X observed

on a bounded region W ⊂ R2. The spatial distribution of events in the observation domain

is characterized by the first-order intensity function, λ(x), defined as follows

λ(x) = lim
|dx|→0

{
E [N(dx)]

|dx|

}
(A-1)

where E denotes expectation in both the number and location of events, |dx| and N(dx)

denote the area and number of events of X in dx, which is an infinitesimal disc centered

at location x. Intuitively. λ(x)|dx| is the probability for dx to contain exactly one event

of X. A point process is homogeneous if its first-order intensity is constant, λ(x) = λ > 0,

and inhomogeneous otherwise.

The first-order intensity can be estimated assuming a parametric model and estimating

the unknown parameters by maximum pseudolikelihood (Waagepetersen, 2007). However,

this procedure can lead to unreliable estimates if the assumed parametric model deviates

from the true intensity function. A better alternative when, as in our case, we do not

have enough information to define a parametric model is using a nonparametric estimator.

Diggle (1985) introduced the kernel intensity estimator for one-dimensional point processes,
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which has been directly extended to the spatial domain as follows:

λ̂h(x) =
1

ph(x)

N∑
i=1

kh (x− xi) , x ∈ R2 (A-2)

where h is the bandwidth parameter, k denotes a bivariate kernel function, kh(x) =

h−2k (x/h) is the smoothed kernel, and ph(x) =
∫
W
h−2k(h−2(x− y))dy is the edge cor-

rection term. This term reduces the bias of the kernel intensity estimator near the bound-

ary of the observation domain, which appears because events occurring outside W are not

observed and, consequently not included in the estimator. The kernel intensity estima-

tor has been limited to exploratory analysis because it is inconsistent. To overcome this

drawback, Cucala (2006) defined the density of events locations as λ0(x) = λ(x)/m, where

m =
∫
W
λ(x)dx is the expected number of events lying in W , and proved that its kernel

estimator is consistent.

Kernel intensity estimation for spatial point processes has been usually conducted with

scalar bandwidth parameters, which can be quite restrictive when dealing with anisotropic

and highly inhomogeneous point processes. Following the propssal of Cucala (2006) to

obtain consistent estimators, and the philosophy of bivariate kernel density estimation for

bandwidth selection, Fuentes-Santos et al. (2016) propose a kernel estimator of the density

of event locations with bandwidth matrix:

λ̂0,H(x) =
λ̂H(x)

N
1 (N > 0) = (pH(x)N)−1 |H|−1/2

N∑
i=1

k
(
H−1/2 (x− xi)

)
1 (N > 0) (A-3)

where H is a symmetric and positive-definite matrix, and |H| denotes the determinant

of H. This banwidth matrix can be estimated using the plug-in algorithm detailed in

Fuentes-Santos et al. (2016), which minimizes the asymptotic mean integrated square error

44



(AMISE) of λ̂0,H(x)

AMISE(H) =
1

4
µ2(k)2

∫
R2

tr
(
HD2λ0(x)

)2
dx+ A(m)|H|−1/2R(k) (A-4)

where µ2(k)2 = |
∫
R2 uu

Tk(u)du|, D2λ0(x) is the Hessian matrix of λ0, R(k) =
∫
R2 k(x)2dx,

A(m) = E
[
1
N
I[N > 0]

]
= e−m

∑∞
k=1

mk

kk!
< e−m

∑∞
k=0

2mk

(k+1)!
= 2/m→ 0, and for any matrix

A, tr(A) denotes the sum of its diagonal terms.

APPENDIX A.2. Nonparametric comparison of first-order in-

tensity functions

A common question in the analysis of multitype spatial point processes is whether two

types of events have the same spatial structure. In this application we can wonder, for

instance, if gunfires with and without mortal victims have the same spatial distribution or

there is any area with high mortality risk. Taking into account that the first-order intensity

describes the distribution of events in the observation domain, comparing the first-order

intensities of two point patterns appears as a natural way to address this question.

Let X be a realization of a bivariate inhomogeneous spatial Poisson point process ob-

served in a bounded region W ⊂ R2, and X1, X2, the spatial patterns of type 1 and type

2 events in X. Although the Poisson assumption is required to guarantee the consistency

of the kernel densities of event locations and to obtain the asymptotic null distribution of

the test statistic introduced bellow. We can also apply this test to compare non-Poisson

point processes. It should also be noted that the Poisson assumption is not very restrictive,

as assuming that the point process is Poisson to estimate its first-order properties of an

observed pattern is the common practice when additional information, such as covariates,
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is not available. If X1 and X2 have the same spatial distribution their first-order intensi-

ties, λ1(x) and λ2(x), are proportional and, consequently, they have the same density of

event locations. Conditional to the number of events, Nj = nj, the observed patterns can be

seen as random samples of the bivariate random distributions with densities λ0j(x), j = 1, 2.

Considering this property, we can extend the nonparametric test developed by Duong et al.

(2012) for multivariate data to the spatial point process framework and use an L2-distance

to measure the discrepancy between the density of event locations of X1 and X2

T =

∫
W

(λ01 (x)− λ02 (x))2 dx (A-5)

=

∫
W

λ01 (x)2 dx+

∫
W

λ02 (x)2 dx−
∫
W

λ01 (x)λ02 (x) dx−
∫
W

λ02 (x)λ01 (x) dx

= EX1 [λ01 (x)] + EX2 [λ02 (x)]− EX2 [λ01 (x)]− EX1 [λ02 (x)]

Expression (A-5) can be rewritten as T = ψ1 + ψ2 − (ψ12 + ψ21), where ψj = EXj
[λ0j (x)]

and ψij = EXi
[λ0j (x)], for i, j = 1, 2. Assuming W = R2 to avoid the limitation of edge-

effects, and using kernel smoothing to estimate each component of T we obtain the test

statistic

T̂ = ψ̂1 + ψ̂2 −
(
ψ̂12 + ψ̂21

)
(A-6)

where,

ψ̂j = N−2j

Nj∑
k1=1

Nj∑
k2=1

kGj
(xk1 − xk2) I (Nj > 0) j = 1, 2

ψ̂ij = (NiNj)
−1

Ni∑
k=1

Nj∑
l=1

kGi
(xk − xl) I (Ni > 0) I (Nj > 0) i, j = 1, 2
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where G1 and G2 are the bandwidth matrices for the kernel estimators of the density func-

tionals ψ1 and ψ2. Given the closeness between the kernel estimators of the density of event

locations of spatial point processes and the density of bivariate random variables, we select

these bandwidths using the plug-in algorithm proposed by Chacón and Duong (2010) for

integrated density derivatives considering, in this case, order r = 0.

T̂ = ψ̂1 + ψ̂2 −
(
ψ̂12 + ψ̂21

)
(A-7)

The null distribution of T̂ is asymptotically normal under regularity conditions analo-

gous to those assumed in the classical multivariate distribution framework. However, the

slow convergence rate to the normal distribution discourages using the asymptotic null dis-

tribution as calibration procedure. For this reason, Fuentes-Santos et al. (2017) developed

a smooth bootstrap algorithm to calibrate the test, which is implemented as follows:

1. Compute the test statistic T̂1 for the observed patterns, X1 and X2.

2. Let X = {X1,X2} be the unmarked spatial point pattern comprising both types of

events, obtain the kernel estimator of its density of event locations, λ̂0,H(x).

3. For b = 2, . . . , B:

3.1 Generate a bivariate spatial point process Xb = {X1,b,X2,b} where for j = 1, 2,

Xj,b are realizations of spatial Poisson point processes with first-order intensity

proportional to that of the unmarked pattern and the same number of events as

Xj.
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3.2 Compute the corresponding test statistic T̂b.

4. The probability of rejecting the null hypothesis is the proportion of bootstrap statis-

tics {T̂b}Bb larger than T̂1.

Two bandwidth selection procedures are involved in the calibration algorithm. The

bandwidth matrix for the kernel density of event locations (A-3) in step 2 is obtained by

the plug-in bandwidth selector introduced by Fuentes-Santos et al. (2016). whereas, as

stated above, we use the plug-in algorithm proposed by Chacón and Duong (2010) to se-

lect the bandwidth matrices, Gj, j = 1, 2, for the kernel estimators of the squared density

integrals ψj, j = 1, 2 in (A-7) to conduct steps 1 and 3.2.

APPENDIX A.3. Kernel estimator and tolerance contour for the

log-relative risk function

If the T-test finds differences between, for instance gunfire with and without mortal victims,

we may be interested on where did those differences occur. To answer this question we can

use the relative-risk function, introduced by Bithell (1990) to compare the geographical

distribution of disease cases, X1, and a random sample of the population at risk referred as

controls, X2. The relative risk function is defined as the ratio between the densities of event

locations of cases and controls, r(x) = λ01(x)/λ02(x). Given that λ0j(x), j = 1, 2 are strictly

positive, and taking into account that the number of cases is often much smaller than the

number of controls, it is usual to work with the log-relative risk ρ(x) = log (λ01(x)/λ02(x))

to handle this asymmetry.
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Kelsall and Diggle (1995) proposed estimating the log-relative risk function as the ratio

between the kernel density of event locations of cases and controls ρ̂(x) = log
(
λ̂01,h(x)/λ̂02,h(x)

)
,

where λ̂0j,h(x) = N−1j λ̂j(x)I (N > 0) with λ̂j(x) as defined in expression (A-2). Kelsall and

Diggle (1995) also developed a least-squares cross-validation bandwidth selector and pro-

posed using the same bandwidth parameter h = h1 = h2 for cases and controls, which leads

to bias cancellation in areas where λ01 = λ02.

When, as in this case, we are interseted on local features, fixed bandwidth kernel estima-

tors can lead to disappointing results, as a single bandwidth is not able to simultaneously

provide sufficient degree of smoothing in areas with low density and capture details in

those with high density. Davies and Hazelton (2010) pointed out this drawback and pro-

posed using an adaptive kernel estimator to overcome this limitation. Therefore we replace

λ̂0j(x), j = 1, 2 by

λ̂0j,hj (x) =
1

Nj

Nj∑
i=1

1

phji(x)h2ji
k

(
x− xji

hji

)
I (Nj > 0) (A-8)

where hji = h(xji) is a local bandwidth, which adapts the degree of smoothing to the num-

ber of events in the neighborhood of xji and, consequenlty, gives more accurate estimates

of local features than a fixed bandwidth parameter. Following the proposal of Abramson

(1982), the adaptive bandwidth for λ0j(x) is defined as

hji(x) =
h0j

γjλ0j(x)
(A-9)

where h0j is a fixed smoothing parameter referred as global bandwidth and γj = exp{N−1j
Nj∑
i=1

λ0j (xji)}

is a normalizing parameter that reduces the dependence of the bandwidth on the scale of
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the data.

In practice, as the density of event locations is unknown, we cannot obtain the adaptive

bandwidth directly. We need to replace λ0j(x) in (A-9) by a pilot estimator. This pliot

estimator is usually obtained by kernel smoothing, which requires the selection of a pilot

bandwidth, hpj. Davies and Hazelton (2010) propose using optimal smoothing (Terrell,

1990) to select the global bandwidth h0j, and hpj = 0.5h0j as pilot bandwidth.

Following the proposal of Davies et al. (2016), we use a common bandwidth function

h(x) = h0 (γλ0(x))−1 , where λ0(x) is the density of event locations of the unmarked point

processes, X = X1 ∪X2, to estimate the density of event locations of cases and controls.

This symmetric bandwidth reduces the halo effect, which generates artificial high risk rings

in the boundary of areas with high control density but low risk. In addition, given that the

edge corrector phji(x) depends on the spatial locations and the bandwidth parameter, this

term cancels out in ρ̂(x) when we use the same bandwidth function for cases and controls.

Once estimated the log-relative risk function, we can generate Monte-Carlo tolerance

countours to identify areas with high mortality risk or police presence. As proposed by

Kelsall and Diggle (1995), the tolerance contours are computed through the following al-

gorithm

1. Simulate B−1 pairs of inhomogeneous point patterns with expected number of events

equal to those of the observed case and control patterns and first-order intensity

proportional to that of the unmarked point processes X = X1 ∪X2.

2. Estimate the log-relative risk function for each case-control simulated pattern, {ρ̂b(x)}Bb=2.
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3. Compute the tolerance surface of significance level α, ρ̂1−α(x), as the 100 (1− α)

percentile of the Monte-Carlo log-relative risks at each location.

4. We have high risk functions at any location, x, where ρ̂ (x) > ρ̂1−α(x).

APPENDIX A.4. Log-ratio based separability test

Let S = {(xi, ti), i = 1, . . . , N} ⊂ W × T ⊂ R2 × R+be a realization of a spatiotemporal

point process observed on a bounded domain W × T ⊂ R2 × R+, the spatio-temporal

intensity function is a natural extension of the first-order intensity function of a spatial

point process (Diggle, 2013)

λ(x, t) = lim
|dx×dt|→0

{
E [N(dx, dt)]

|dx× dt|

}
(A-10)

where N(dx, dt) represents the number of events in the volume dx× dt, dx is an infinitesi-

mal disc containing the location x, and dt is an infinitesimal interval around time t.

One of the first steps in the analysis of any observed pattern is testing whether the

spatiotemporal intensity is separable, i.e., whether it can be expressed as the product

of its spatial and temporal components λ(x, t) = λ1(x)λ2(t). Under separability the ra-

tio between the spatio-temporal and spatial intensities, ρ(x, t) = log (λ(x, t)/λ1(x)), does

not depend on the spatial locations, x, for any t ∈ T . Considering this property Fuentes-

Santos et al. (2018) propose using a no effect test that checks whether the log-ratio function

ρ(x, t) = λ(x, t)/λ(x) depends on the spatial locations.

Let S = {(xi, ti), i = 1, . . . , N} ⊂ W×T ⊂ R2×R+ be a realization of an inhomogeneous

spatiotemporal Poisson point process, and X = {xi, i = 1, . . . , N} ⊂ W ⊂ R2 the corre-
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sponding marginal spatial point process, and let λ0(x, t) = λ(x, t)/m and λ01(x) = λ1(x)/m,

where m =
∫
T

∫
W
λ(x, t)dxdt =

∫
W
λ1(x)dx is the expected number of events of both the

spatial and spatiotemporal point processes, be their densities of event locations. The ratio

r(x, t) =
λ(x, t)

λ1(x)
=
λ0(x, t)

λ01(x)

can be seen as a spatiotemporal relative risk function whose control distribution remains

constant over time (Sarojinie Fernando and Hazelton, 2014). The log-ratio function ρ(x, t) =

log(λ0(x, t)/λ01(x)) can be estimated by kernel smoothing

ρ̂(x, t) = log
λ̂0,hs,ht(x, t) + δ

λ̂01,hs(x) + δ
= log

(
λ̂0,hs,ht(x, t) + δ

)
− log

(
λ̂01,hs(x) + δ

)
(A-11)

where λ̂0,hs,ht(x, t) and λ̂01,hs(x) are the kernel estimators of the spatiotemporal and spatial

densities of event locations, respectively. hs = (hs1, hs2) denotes the main diagonal of the

common diagonal bandwidth matrix used in the spatial component of the kernel estima-

tors of λ0(x, t) and in the kernel estimator of λ01(x), and ht is the scalar bandwidth for the

temporal component in the numerator of ρ̂(x, t). In this work the optimal bandwidth was

selected by least-squares cross-validation (LSCV). δ is a stabilizing constant that reduces

the negative effect of data sparseness on the log-ratio estimator.

For a separable spatiotemporal point process, λ(x, t) = λ1(x)λ2(t), therefore the log-

ratio function, ρ(x, t) = log (λ(x, t)/λ1(x)) does not depend on the spatial locations, x, for

any t ∈ T . Thus we have a regression problem where the log-ratio function evaluated at

each event, Y = {yi = ρ(xi, ti), i = 1, . . . , n} is a response variable that may depend on the

spatial covariate X = {xi = (xi1, xi2), i = 1, . . . , n} comprising the event locations, and we
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test for the effect of X on Y . Following Bowman and Azzalini (1997), we shall discriminate

between two competing models

H0 : E [yi|xi] = µ. H1 : E [yi|xi] = m(xi)

where, for any x = (x1, x2) ∈ R2, m(·) is an unknown smooth function, which can be

estimated by kernel regression (Nadaraya, 1964; Watson, 1964)

ˆm(x) = m̂(x1, x2) =

n∑
i=1

wg1(xi1 − x1)wg2(xi2 − x2)yi
n∑
i=1

wg1(xi1 − x1)wg2(xi2 − x2)
(A-12)

where the kernel, w(·), is a univariate symmetric density function and g = (g1, g2) is the

vector of smoothing parameters. Three alternative procedures have been commonly used

to select this parameter: (i) bandwidth selector associated to the approximate degrees of

freedom, df , of the regression errors, (ii) least-squares cross-validation, CV, and (iii) an

AICC-based method.

Once computed ŷ =
∑n

i=1 yi, which is the empirical estimator of µ in H0, and the

regression function, m̂(·) in H1, we compute the residual sum of squares for the null, RSS0,

and alternative, RSS1, models and define the generalized test statistic

F =
(RSS0 −RSS1) / (df1 − df0)

RSS1/df1
(A-13)

where df0 and df1 denote the degrees of freedom for the residuals under each hypothesis.

This separability test is refereed here as F-test.

Bowman and Azzalini (1997) proposed two calibration procedures: (i) a χ2 approxi-

mation of the null distribution of F , which can be used when the errors of the regression
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model are normal, and (ii) a computationally intensive procedure based on permutation

tests otherwise.

The permutation test relies on the fact that under H0 the pairing of any particular

x and y is completely random. Then, the distribution of the test statistic, F , can be

generated by simulation, using random pairings of the observed values of X and Y and

computing the corresponding test statistic in each case. The empirical p-value of the test

is the proportion of simulated F -statistics larger than that obtained from the observed data.
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