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Abstract We study systems of partial di�erential-algebraic equations (PDAEs)
of �rst order. Classical solutions of the theory of Hyperbolic Partial Di�erential
equation such as discontinuities (shock and contact discontinuities), rarefac-
tions and di�usive traveling waves are extended for variables living on a surface
S, which is de�ned as solution of a set of algebraic equations. We propose here
an alternative formulation to study numerically and theoretically the PDAEs
by changing the algebraic conditions into partial di�erential equations with re-
laxation source terms (PDREs). The solution of such relaxed systems is proved
to tend to the surface S, i.e., to satisfy the algebraic equations for long times.
We formulate a uni�ed numerical scheme for systems of PDAEs and PDREs.
This scheme is naturally parallelizable and has faster convergence. Evidence of
its e�ectiveness is presented by means of simulations for physical and synthetic
problems.
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1 Introduction

In many applications, systems of partial di�erential equations should be sup-
plemented with algebraic restrictions, which represent laws in physics, chem-
istry, biology or in any other �eld of application of these equations, see [15,25,
38,48,49] and references therein. These equations are called Partial Di�erential-
Algebraic Equations (PDAEs). In this work, we study systems of PDAEs given
by

∂tG(U) + ∂xF (U) = 0, (1)

H(U) = 0. (2)

Here the variables U = (U1, U2, · · · , Un) : Q ⊂ R × R+ −→ V ⊂ Rn are
the coordinates of phase space V; the accumulation and �ux functions are
G = (G1(U), · · · , Gm(U))T : V ⊂ Rn −→ Rm, F = (F1(U), · · · , Fm(U))T :
V ⊂ Rn −→ Rm; the algebraic relationships are represented by the vector
function H = (H1(U), H2(U), · · · , Hp(U))T : U ⊂ Rn −→ Rp. Eq. (1) is a
system of partial di�erential equations and Eq. (2) is a system of algebraic
equations. We assume that the functions G, F , H are su�ciently smooth.

In the �rst part of this work, we obtain theoretical results about the par-
tial di�erential-algebraic equations of �rst order (1), (2). The solution for such
PDAEs for certain models are obtained from index theory, see [7,8,12,18,34,
35] and references therein. In this theory, when the system presents algebraic
equations (or algebraic boundary conditions) these algebraic conditions are
di�erentiated to obtain the index of the PDAE, see [7,8,12,18,34,35]. In our
model, we apply a similar idea to obtain the eigenpairs (eigenvalues and eigen-
vectors) associated to PDAEs (1), (2). The eigenpairs are derived by looking
for solutions that are self-similar in the variable ξ = x/t, through a derivation
that leads to a system of di�erential-algebraic equations (DAE) in the vari-
able ξ. Using index theory, we verify under certain hypothesis that the index
of the resulting system for the calculation of eigenpairs is 1. In this way, we
extend to PDAEs some classical results for solving Riemann problem (RP)
using shocks, contact discontinuities and rarefactions waves for the system of
hyperbolic equations. This approach is similar to the one used for classical
systems of hyperbolic equations, see [13,40].

The RP is de�ned as the solutions of PDAEs (1), (2) with piecewise con-
stant initial data {

UL if x < 0,
UR if x > 0.

(3)

Of course we will assume that for each UL and UR Eq. (2) is satis�ed.
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For these PDAEs, we de�ne the main waves present in Riemann solutions
(shocks, contact discontinuities and rarefactions). Moreover, we obtain geo-
metrical loci or bifurcation structures, which are fundamental to construct the
solution of RPs. Therefore, our study is concerned with a generalization of
the standard theory for hyperbolic conservation laws, see for instance [13,40].
Here, we construct the general formalism to solve Riemann problems. E�orts
to obtain analytical Riemann solutions are always of interest, since they are
used to verify numerical procedures.

We recall that Glimm's method for system of conservation laws is based
on interactions estimated between shock, rarefactions. An extension of such
method for PDAEs (1) is presented in [39].

In our work, to study the PDAEs (1), (2) with initial condition (3), we have
two strategies depending on the availability of a global explicit parameteriza-
tion for the surface S. In the literature, such parameterization is commonly
available. Then it is possible to express a certain group of variables in terms
of another one. We denote the �rst group as V = (U1, · · · , Um), and the sec-
ond group as W = (Ul+1, · · · , Un) i.e. U = (V,W ). Applying the Implicit
Function Theorem to H(U) = 0 there exists a di�eomorphism W such that
H(V,W (V )) = 0 and

∂VH + (∂WH) ∂VW = 0 −→ ∂VW = − (∂WH)
−1
∂VH. (4)

Finally, the PDAE system (1), (2) is rewritten as:

∂tG̃(V ) + ∂xF̃ (V ) = 0, (5)

where G̃(V ) = G(V,W (V )), F̃ (V ) = F (V,W (V )). The theory of this case is
classical. Examples of S are found in [1,3,27,28]. In Appendix A, we draw
some results about the class of equations (5).

In the other case, the explicit parameterization is not available. We still
assume that the algebraic equations (2) de�ne implicitly a regular manifold
in phase space V, which we also denote by S. By using the Implicit Function
Theorem we derive the main ingredients in the construction of the RP solu-
tions of PDAEs, which are shocks and contact discontinuities, rarefaction and
traveling waves.

Instead of Equation (2), Equation (1) can be supplemented with

∂tH(U) = 0, (6)

with initial conditions (3), for UL and UR that satisfying Equation (2); or with
the relaxation equation

∂tH(U) = −1

τ
H(U) with τ > 0. (7)

In Section 3 we study the former case and in Section 4 we study the latter
one. For the problems in Sections 3 or 4 with initial data close to S, we expect
the solutions to be also close to S. In Section 4, we verify that when either t
tends to in�nity or τ tends to zero the solution tends to the surface S. Indeed,
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as we show in Proposition 6, the equation (7) is proposed in such a way that
the surface S is an attractor. In this manner, we are �relaxing� the system
of equations that models phenomena described by the PDAE (1), (2). The
system composed of (1), (7) is called partial di�erential �relaxed" equation
(PDRE).

We are interested in analyzing numerical methods for PDAEs and PDREs.
There are many works dealing with numerical modelling of PDAEs. In the
works [15,48�50], the authors cite three strategies used to solve geochemical
transport in groundwater. There is a di�erent approach in the works [1,3,27,
28].

One contribution of this work is obtaining the numerical solution for PDAEs
(1), (2) by means of PDREs (1), (7). We present a fast, robust and paralleliz-
able �nite di�erence solver for a class of equations more general than (1), (2).
We call it the Reaction-Convection-Di�usion equations Solver (RCD), which
is able to approximate the solution to partial di�erential reaction-convection-
di�usion equations:

∂tG(U) + ∂xF (U) = ∂x [B(U)∂xU ] +R(U), (8)

τ∂tH(U) = −H(U), with initial conditions U(x, 0) = U0(x), (9)

where the new terms involve the di�usion matrix B : V ⊂ Rn −→ Rm×n,
and the reaction terms R : V ⊂ Rn −→ Rm. Notice that (8), (9) extends (1),
(2) if we set B = 0, R = 0 in Eq. (8) and τ = 0 in Eq. (9). If we consider
τ 6= 0 we obtain Eq. (7). Numerically, modeling using relaxation introduces a
regularization in the solution, this behavior appears for example in [23].

We summarize each section of this work as follows. In Section 2, we describe
the main de�nitions for solutions of PDAE and we prove equivalence of these
de�nitions. We also study the formalism for shocks, rarefactions and traveling
waves.

In Section 3, we study the relationship between systems of PDAEs (1), (2),
with systems of PDEs of form (1), (6) and we prove the equivalence between the
solutions for suitable initial conditions. In Section 4, we study the alternative
relaxation model (1), (7). In Section 5, we introduce the RCD Solver for system
(8), (9). In Section 5.4.1, we perform several numerical experiments for system
(8), (9). Conclusions and comments are given in Section 6.

To complete our paper, in Appendix A, we draw results for classical hyper-
bolic systems of equations. In Appendix B, we discuss entropy-entropy pairs
for systems (1), (6) and for systems of PDAEs (1), (2). In Appendix C, we de-
�ne linear PDAEs and �nite di�erence schemes such as upwind, Lax-Friedrichs,
Crank-Nicolson and Lax-Wendro�. Moreover, in Appendix C.2, we shows that
the Lax-Richtmyer theorem for PDEs extends for linear PDAEs. In Appendix
D, we extend these classical schemes for general non-linear PDAEs.
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2 Partial Di�erential-Algebraic Equations

Systems of hyperbolic conservation laws, generically, exhibit discontinuities
in the solutions, see [13,41,42]. In this way, it is necessary to de�ne a weak
solution for the system of PDAEs (1), (2). The weak solution is de�ned by
an integral form in the presence of discontinuities. Since only (1) possesses
derivatives, we de�ne the integral form only for this equation and we assume
that Eq. (2) is satis�ed pointwise for all states:

De�nition 1 We say that U(x, t) ∈ (L∞(Q))n, for Q ⊂ R × R+, is a weak
solution of PDAEs (1), (2), if and only if, Eq. (1) is satis�ed in the classical
distribution sense and Eq. (2) is satis�ed pointwise.

In addition, to de�ne entropy solution, we will present the traveling wave
criterion to select the physical shocks in Section 2.1.3. We also prove, in Section
3, the equivalence of PDAE and a particular class of hyperbolic systems subject
to appropriate initial conditions.

Below, we present analysis for the implicit formulation. In Appendix A, we
present results for the case for which a parameterization for the surface S is
available.

2.1 The implicit formalism

Since we are interested in the Riemann problem for the implicit formulation
we analyse shock and rarefaction waves, see [13,41,42]. We also extend the
criterion of traveling waves to select the physical shocks. The Riemann problem
for system (1), (2) includes the initial conditions of form (3). For this class of
problems, we explore the self similarity in the variable ξ = x/t to obtain shock
and rarefaction waves. We show the equivalence between the above mentioned
waves in the implicit and explicit formalisms. Finally, we obtain traveling
waves. An extension of Lax's entropy criterion is useful for PDAEs, see [39].

2.1.1 Characteristic speeds

We assume that U(x, t) := Û(ξ) is a su�ciently smooth function of the variable
ξ = x/t. Using the chain rule in the new variable Û

∂tU(x, t) =
(
dξÛ(ξ)

)
∂tξ =

(
dξÛ(ξ)

)
(−ξ/t) ,

∂xU(x, t) =
(
dξÛ(ξ)

)
∂xξ =

(
dξÛ(ξ)

)
(1/t) .

(10)

We di�erentiate (1) with respect the variables x and t and using (10) we obtain:

B∂tÛ +A∂xÛ = 0 −→ −BξdξÛ +AdξÛ = 0; (11)

where B and A are the m × n jacobian matrices of G(U), F (U) in Eqs (1)-
(2) with respect to the variable U . Using the fact that the algebraic equation
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(2) is an identity for curves parameterized by ξ, we di�erentiate the algebraic
equation (2), obtaining:

dξH(Û(ξ)) = 0, −→ EdξÛ = 0, . (12)

where E is the jacobian matrix of H with respect to U . From Eqs. (11) and
(12), we �nd:

Mr = 0, where M(ξ) ≡
(
−ξB +A

E

)
and dξÛ = r. (13)

In (13) the orientation of the vector r at each point must be chosen properly.
The solution of the �rst equation in (13) de�nes the characteristic �eld,

which exists provided we impose that ξ = λ in Eq. (13), namely:

det(M(λ)) = det

(
−λB +A

E

)
= 0. (14)

The characteristic equation (14) involves a polynomial of degree m or less in
the unknown λ. Each root λ is an eigenvalue and the corresponding r is the
right eigenvector, for a generalized eigenvalue problem. Similarly we de�ne the
left eigenvector l for the eigenvalue λ as:

lTM = 0 or lT
(
−λB +A

E

)
= 0. (15)

By integrating Eq. (13) supplemented with initial conditions U(0) = (V,W )0
we obtain integral curves.

In the Proposition that follows, we prove the connection between the char-
acteristic �elds in the implicit and the explicit formalisms. To do so, let us
consider the generalized eigenvalue problem with matrices Ã and B̃ represent-
ing the jacobian of F̃ and G̃, i.e., the �ux and the accumulation functions F
and G restricted to surface S as:

Ãr̃ = λB̃r̃ −→ det(Ã− λB̃) = 0. (16)

Proposition 1 Assume that the system (1), (2) is formally hyperbolic. Then
(i) the characteristic polynomials (14) and (16) are equal. Moreover, (ii) each
eigenvector solving (16) or (13) generates the same �eld on the m-dimensional
tangent plane TU∗S for each U∗ ∈ S.

Proof: By assuming that W = W (V ), we write B̃, Ã, of Equation (16),
as:

B̃ = ∂VG+ (∂WG) ∂VW and Ã = ∂V F + (∂WF ) ∂VW, (17)

as in (4). Then M̃ ≡ Ã− λB̃ is written as:

M̃ = ∂V F − λ∂VG+ (∂WF − λ∂WG) ∂VW. (18)

The characteristic polynomial is obtained from det(M̃) = 0.
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To calculate (14) for M given by (13), notice that for the variable U =
(V,W ) (rearranging if necessary) we write the matrix M as:

M =

(
∂VM ∂WM
∂VH ∂WH

)
, where M = F − λG, λ is constant. (19)

We know that curve W (ξ) = W (V (ξ)) satis�es H(V,W (V )) = 0, which we
di�erentiate to obtain (4.a). To prove (i), we premultiply the matrix M by(

Im×m Im×p
∂VW Ip×p

)
, (20)

here Im×p is the identity matrix with m rows and p columns. We obtain:(
M̃ ∂WM

∂VH + (∂WH)∂VW ∂WH

)
, −→

(
M̃ ∂WM
0 ∂WH

)
, (21)

with M̃ given in Eq. (18). The last matrix in Eq. (21) is obtained using (4.a).
From (21), we obtain det(M) = det(M̃) det (∂WH). Notice that det (∂WH) 6=
0, thus det(M) = 0, if only if det(M̃) = 0, thus we obtain thus the character-
istic polynomial for both approaches are the same. Using similar calculations,
we prove (ii), i.e., that the eigenvectors of both approaches generate the same
�eld on the tangent space TU∗S for each each U∗ ∈ S, besides the eigenvectors
generate, locally, S. The proof is complete. �.

We say that the system is formally hyperbolic if it satis�es:

De�nition 2 We say that PDAE (1), (2) is formally hyperbolic if the char-
acteristic polynomial admits m real eigenvalues (accounting for multiplicities)

λ1(U) ≤ λ2(U) ≤ · · · ≤ λm(U) (22)

and m independent eigenvectors ri (for i = 1, · · · ,m) satisfying (13.a). We
say that the system is formally strictly hyperbolic if the inequalities are strict.

Notice that we have m integral curves for the m eigenpairs (λ, r).

Remark 1 In A, we discuss this de�nition when we have a parameterization
of surface S, notice that the de�nition of hyperbolicity is the same the one
in the classical case. Notice, however, that for any state U∗ ∈ S satisfying
H(U∗) = 0, one can prove that the system is formally hyperbolic if, and only
if, the set r(U∗) (eigenvectors evaluated in U∗) forms a basis for the tangent
plane TU∗S for U∗ ∈ S.

The integral curve associated to (λi, ri) is called i-integral curve. The i-
rarefaction is the part of integral curve for which λi is an increasing function,
i.e,

∇λi · ri > 0. (23)

Using Propositions 1 (or (13 in A), we see that integral curves for each
�eld (λk, rk) generates the same curves using approaches described in Section
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2.1 (or A). From each integral curve on the �eld (λk, rk), we obtain the rar-
efaction satisfying (23). The next Proposition gives an useful result relating
the inequality (23) and the second derivatives of accumulation and �ux func-
tions, see [47] for more general applications in the numerical construction of
rarefaction curves.

Proposition 2 Let rk, l
T
k associated to the eigenvalue λk correspond to eigen-

pairs obtained by Eq. (14). The identity

∇λk · rk
(
lTk

(
B
0

)
rk

)
= lTk

(
−λk∂2UG+ ∂2UF

∂2UH

)
(rk, rk). (24)

is satis�ed.
Proof: For �xed λk(U(ξ)) (here we substitute ξ by λ), we di�erentiate

Mrk = 0, given in Eq. (13), and we have:(
−dξBλk −Bdξλk + dξA

dξE

)
rk +Mdξrk = 0. (25)

Multiplying (25) left from lTk , using (15) and applying the chain rule to obtain
that

dξB = (∂UB) dξU =
(
d2UG

)
rk, dξA = (dUA) dξU = d2UFrk,

dξE = (dUE) dξU = d2UHrk,

and noticing that dλ/dξ = ∇λk · rk, we �nally obtain:

lTk

(
−d2UGrkλk −B

dλk
dξ + d2UFrk

d2UHrk

)
rk = 0, or

∇λk · rk
(
lTk

(
B
0

)
rk

)
= lTk

(
−λkd2UG+ d2UF

d2UH

)
(rk, rk) � (26)

2.1.2 Discontinuities and shock waves

The Rankine-Hugoniot condition (RHC) for (1), (2) is written as:

vs
(
G(U+)−G(U−)

)
= F (U+)− F (U−), (27)

H(U+) = 0, (28)

where (U−) is the state on the left of the shock and U+ is the state on the
right of the shock; vs is the shock speed. For a given state U−, the set of states
U+ that satis�es the RHC is called Rankine-Hugoniot locus (RH locus) of U−

and it is denoted by RH(U−):

RH(U−) = {U+ ∈ S satisfying RHC (27), (28) for all vs }. (29)

Notice that from (28) if det(DWH(U−)) 6= 0, from Implicit Function The-
orem (IFT), there is an open neighborhood such that W+ = W (V +), for V +

being a vector of m independent variables. Moreover, the system (27),(28)
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yields a system with n + 1 unknowns, which are, (U+, s) for n equations.
Since we assume that the system is formally hyperbolic, Def. 2, the Rankine
Hugoniot locus depends on a single parameter in the neighborhood of U−.
Moreover, the set obtained solving (27), (28) is the same set obtained when
the variables are restricted on the surface S, see Eq. (105).

2.1.3 Travelling wave for PDAE

Once the problem on the existence of the solution system (1) is solved, we are
interested in analyzing the existence of viscous pro�les or traveling waves for
shocks on the system (1), (2). Under the assumption that such solution exist,
we �nd su�cient conditions to �nd it taking into account viscous e�ects on
the system. A procedure consist of to reduce a system of partial di�erential
equation to a easier ordinary di�erential equation.

Let us denote the system (1) with the viscous e�ects, i.e.,

∂tG(V,W ) + ∂xF (V,W ) = δ∂x (B(V,W )∂x(V,W )) , (30)

where V = (U1, · · · , Um) and W = (Wm+1, · · · , Un).
In such sense the following proposition is valid

Proposition 3 Assume that the system (1), (2) is formally hyperbolic and the
square matrix ∂WH is invertible then the traveling wave equation of system
(1), (2) is

− vs
(
G̃(V )− G̃(V −))

)
+
(
F̃ (V )− F̃ (V −)

)
= B̃(V )dηV , (31)

where vs is the shock velocity of the shock between V − and V

G̃(V ) = G(V,W (V )), F̃ (W ) = F (V,W (V )), (32)

and B̃ is given by

B̃(V ) = B(V,W (V ))

(
Im×m

∂VW (V )

)
, (33)

where W (V ) satis�es (4) and

(V −,W−) = lim
η−→−∞

(V (η),W (η), (V,W ) = lim
η−→+∞

(V +(η),W+(η)). (34)

Proof: The proof is straightforward. Let U∗ satisfyingH(U∗) = 0 and ∂WH(U∗)
invertible, then by the Implicit Function Theorem there exist a local difeo-
morphism W = W (V ) in the neighborhood of U∗ and H(V,W (V )) = 0 and
equation (4) holds.

Assuming that W =W (V ) on the equilibrium surface S, and substituting
this in Eq. (30), we obtain the viscosity formulation of (5) which is written as:

∂tG(V,W ) + ∂xF (V,W ) = δ∂x (B(V,W )∂x(V,W )) . (35)
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Assuming that the solution of (35) is smooth, the chain rule on the right hand
side term of (35) gives:

∂tG̃(V ) + ∂xF̃ (V ) = δ∂x

(
B̃(V )∂x(V )

)
(36)

where G̃(V ),F̃ (V ) and B̃(V ) are given in (33).
A traveling solution is a smooth solution that is self similar in the vari-

able η = (x − vst)/δ, i.e., (V,W ) = (V (η),W (η)), connecting two equilibria
(V −,W−) to (V +,W+) with (34).

HereH(V −,W−),H(V +,W+) and all the derivatives evaluated in (V −,W−)
and (V +,W+) vanish. Integrating (30) from −∞ to η and using (2) we obtain:

− vs
(
G(V,W )−G−

)
+ F (V,W )− F− = B(V,W )dη(V,W ), (37)

H(V,W ) = 0, (38)

where G− = G(V −,W−) and F− = F (V −,W−). For the system (37), (38)
we have m ordinary di�erential equations and p algebraic equations for n
unknowns. Since we are interested in obtaining a system of equations of ODE's
connecting equilibria, to obtain a complete system, using index theory, we
di�erentiate (38) with respect to variable η and we obtain:

∂VHdηV + ∂WHdηW = 0 −→ dηW = − (∂WH)
−1

(∂WH) dηW (39)

The resulting system has index 1. Notice that (4), (39) given the same equa-
tion. Substituting (39) in Eq. (37) we obtain:

− vs
(
G(V,W )−G−

)
+ F (V,W )− F− = B̂(W )dηW, (40)

where B̃ is given in Eq. (33).
Similarly, we integrated (33) for the reduced model and we obtain also

(40), i.e., both formulations given the same solution for the traveling pro�le,
which we summarize in the following Proposition:

Proposition 4 The systems of equations (30), (2) and (33), (34) generate the
same system of ODE's.

3 Equivalence of the PDAE and the auxiliary PDE.

Here, we prove equivalence of weak solutions of (1), (2) and the auxiliary PDE
(1), (6). We assume initial conditions satis�es Eq. (2)

De�nition 3 We say that U(x, t) ∈ (L∞(Q))n, for Q ⊂ R × R+, is a weak
solution of PDEs (1), (6) if the solution satis�es the system in distribution
sense, see [13,41].

We state the following result
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Proposition 5 Let U(x, t) be a piecewise continuous function, then U(x, t) is
a weak solution of PDEs (1), (6) if, and only if, U(x, t) is a weak solution of
PDAEs (1), (2).

The proof uses classical theory and is omitted here.
Besides this result, one can prove more direct results by studying the Hugo-

niot locus and the integral curves.

3.1 Characteristic eigenpairs and rarefaction waves

To construct the rarefaction waves, we �rst obtain the integral curves. To do so,
we assume that U(ξ) is a smooth curve parameterized by ξ. Substituting U(ξ)
in (1), (6) we obtain a system similar to (11) and (12), with the latter replaced
by −ξEdU/dξ = 0. For convenience we revert the sign of this equation. To
obtain the eigenpair (λ, r):

det

(
−λB +A

Eλ

)
= 0 −→ λpdet

(
M(λ)

)
= 0,

for the eigenvectors r solutions of

(
−λB +A

Eλ

)
r = 0.

(41)

The matrices A, B, E are obtained in Eqs. (11), (12) and M is given in (13).
Notice that the eigenvalues λ vanish or are solutions of det(M) = 0. The
multiplicity of the eigenvalue λ = 0 is at least p. Moreover, if the eigenvalue
λ is nonzero, the associated eigenspace is the same as the one obtained by
solving (13.a).

Moreover, if there are m di�erent eigenvectors associated to the m eigen-
values (accounting for their multiplicities) λ of Λ, these eigenvectors, locally,
form a basis of S.

For each pair (λ 6= 0, r) and for initial data on the surface S i.e. U∗ satis-
fying H(U∗) = 0, the integral curve associated to �xed family (λ, r) remains
on S. This invariance comes from the second equation in (41.c), because the
eigenvectors satisfy:

Er = 0, −→ (∂UH) dξU = 0 −→ dξH = 0. (42)

Since r and −r are eigenvectors, we choose as admissible the direction such
that ∇λ · r > 0. The resulting integral curve is called the rarefaction wave.

The �eld (λ = 0, r) is obtained by solving(
A
0

)
r = 0.

This �eld is linearly degenerate, i.e., ∇λ · r = 0.
We see that the system of PDAEs (1), (2) is formally hyperbolic if, and

only if, the system of PDEs (1), (6) is hyperbolic. The hyperbolicity is under-
stood as in De�nition 2, if we disregard the algebraic equations. The proof is
straightforward once we notice that the analyses for λ = 0 and λ 6= 0 require
di�erent arguments.
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3.2 Hugoniot Locus and Shock waves

The Hugoniot locus is obtained from the �Rankine-Hugoniot� condition for
(1), (6):

vs(G(U+)−G(U−)) = F (U+)− F (U−), (43)

vs(H(U+)−H(U−)) = 0. (44)

For U− �xed the Hugoniot-locus, denoted as RH(U−), consists of the states
U+ satisfying (43), (44) for any vs. Conditions of the functions F , G and H
to guarantee the existence of curves satisfying the system of equation (43) −
(44) are not trivial. However there are several examples of physical interest
where the numerical construction of Hugoniot-locus is successful, see e.g. [1,2,
6]. However, assuming that such curves exist, we can deduce some necessary
conditions about how the Riemann solution still on the surface S when initial
condition belongs to S. To verify that invariance, we use the compatibility
principle of wave sequence, i.e. the sequence of waves are ordered from the
slower to faster.

If vs 6= 0 and U− lies on the surface S, i.e. satis�es H(U−) = 0, then from
(44) we obtain that H(U+) = 0, i.e., the shock curve remains on the surface
S, moreover the system (43), (44) reduces to (27), (28).

For the case vs = 0, we have from (43) and (44):

F (U+) = F (U−). (45)

However, H(U+) − H(U−) might be nonzero in general. This implies that
states U+ and U− are not necessarily in S. In particular, for λ = vs = 0,
i.e., the �eld is linearly degenerate. The above paragraph are the basis for the
following

Claim 1 Consider Riemann data (3). Assume that the Riemann solution for
(1), (6) consists of a sequence of states and waves (shock, rarefactions and
contact discontinuities) connecting these states:

UL = U1
ω1−→ U2

ω2−→ U3 · · ·
ωk−1−−−→ Uk = UR. (46)

In addition, if we assume that H(UL) = H(UR) = 0, i.e., the Riemann data
are given on the surface S, then the Riemann solution U(x, t) of form (46)
remains on the surface S.

The sketch of the proof of this claim is constructive and general. It should be
possible to use it for several models.

Sketch of proof:
Consider the Riemann solution. If we assume by contradiction that the

Riemann solution leaves the surface S, there exists a sequence of consecutive
states on this solution far from S. Since UL ∈ S, the �rst state of this sequence
is not UL, from previous calculation, to reach the �rst state of this sequence
we have a contact with speed zero (waves leaving S have zero speed). As
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UR ∈ S, the last state of this sequence is not UR, then there exists a contact
discontinuity with zero speed connecting the last state of this sequence to S.

From the compatibility principle of wave sequence, all waves of this se-
quence are contact discontinuity with zero speed. Thus, from shock triple rule,
see [26], there is only a contact discontinuity connecting the �rst and the last
state of this sequence i.e., the wave sequence does not leave the surface S and
we prove our statement.

�.
The Claim 1 is used to establish the equivalence between the solutions of

systems (1), (2) and (1), (6). Such connection, we need to obtain an entropy
pairs (U ,U1) (see Appendix B). However, we stress out that the existence of
entropy pairs is very rare for most part of hyperbolic systems, however it is
very useful for theoretical purposes, including in numerical methods, we brie�y
discuss this theory in the appendix B.

3.3 Composite wave curve

The i-rarefaction wave stop when either arrive the physical boundary or along
the integration path there exist a point satisfying

χi(U) = ∇λi · ri = 0, (47)

with ∇χi(U) · ri 6= 0.
In this case, the continuation method for wave curves require a curve pass-

ing the submanifold given by ∇λi · ri = 0. To construct such wave curve the
composite wave is proposed in [32,33] for system of conservation laws. Here,
we present a generalization of such concept for PDAEs. A composite wave
curve satis�es the set of equations

vs(G(U+)−G(U−)) = F (U+)− F (U−), (48)

vs(U+, U−) = λi(U
−), (49)

H(U+) = 0. (50)

Here vs is the shock velocity and λi the characteristic velocity associated to
the i-rarefaction.

Parametrizations for composite wave curve for system of conservation law
were studied in [4]. Such parametrizations can be extended for PDAEs (48)-
(50).

4 Relaxation formulation

In general the exact solution for algebraic relation (2) is not available, so the
initial data lies near rather than the equilibrium surface S. The nice feature
of relaxation it is implement by means of orbits for such initial data which
tend to S monotonically. The purpose of this section is to verify these features
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of relaxation. On the other hand, the numerical implementation of relaxation
gives rise to stable and reliable algorithm, as shown in Section 5.

To prove that the solution of (1), (7) tends to equilibrium surface S we
de�ne:

De�nition 4 Consider the weight function ωε(x) (see Fig. 1) and a U(x, t)
solution of eqs. (1), (7). Let H1 and H2 be two vector valued functions on the
solution space Vτ of (1), (7), we de�ne:{

H1, H2

}
(t) =

∫ ∞
−∞

H1(U(t, x))H2(U(t, x))ωε(x)dx, (51)

where the product H1 and H2 is understood as the inner product between two
vectors. Here, ωε(x) is the continuous top hat function given by:

ωε(x) =


1 if x ∈ [a+ ε, b− ε],
x
ε −

a
ε if x ∈ (a, a− ε),

−xε +
b
ε + 1 if x ∈ (b, b+ ε),

0 otherwise.

(52)

Here a < b ∈ R are any value and 0 < ε << 1. Let us denote

|H(t)|2 =
{
H,H

}
(t). (53)

0

1

a- a b+b

Fig. 1 The weight function ωε(x).

Proposition 6 Let U(x, t) ∈ L∞(R × R+) be a solution of (1), (7), where
H(U) is a continuously di�erentiable function. Then the solution of PDRE
(1), (7) for increasing t satis�es :

|H(t)| −→ 0, (54)

i.e., Eq. (2) is satis�ed almost everywhere in the support of ωε.
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Proof: We di�erentiate |H(t)|2, with respect to variable t (weak derivative),
thus, we obtain:

dt|H(t)|2 = dt

({
H,H

}
(t)
)
= 2
{
∂tH,H

}
(t). (55)

For the last equality comes from the symmetry of pseudo-inner product. Using
(7) in (55), we obtain:

dt|H(t)|2 = 2

{
−H
τ
,H

}
(t) = −2|H(t)|2

τ
. (56)

From (56), we have a ODE for the variable |H(t)|2, for the initial condition
U0 = U(0, x), we obtain:

|H(0)|2 =
{
H,H

}
(0) (57)

The solution of (56) with initial condition (57) gives us (after some algebra):

|H(t)| = |H(0)|e−t/τ . (58)

Notice that when t increases (or τ −→ 0) |H(t)| −→ 0, which implies that
H(U(x, t)) goes to zero almost everywhere in the support of ωε, i.e., the solu-
tion tends to the surface S almost everywhere. �

From Eq. (58), if the initial data belongs to S, then the solution of PDRE
(1), (7) remains on S.

5 Numerical Method for PDAEs - The RCD Solver a general case

Numerical methods are largely used to solve systems of partial di�erential
equations of form (1) Cauchy initial data. There are several kinds of schemes
that are used to this end, which we cite, �nite di�erences, see [24,30,45],
�nite elements, see [44], �nite volumes, see [16,24,31], spectral techniques, see
[17,19]. For the majority of methods, the theory for linear systems of partial
di�erential equations of form (1) is very well known, however, there are few
results for system of partial di�erential and algebraic equations. In Appendix
C, we discuss the theory for the linear case, where we prove the convergence
and we extend the celebrated Lax-Richtmyer theorem, see [29,45].

Here we are interested in �nite di�erence method. To obtain the discretiza-
tion by these methods, we introduce a grid of points on the domain (x, t)
of PDAEs. The grid are the points Dd = {(xi, tγ) = (i∆x, γ∆t), for i ∈ Z,
γ ∈ {0, 1, 2, · · · } }, where ∆x, ∆t are positive numbers. We de�ne α = ∆t/∆x.
Although ∆x, ∆t do not need to be constant, here in this work we will assume
this condition.

To discretize the system of PDAEs (1), (2) (or Eq. (6)), we take the restric-
tion of vector V (x, t) on Dd and we call Uγi = ((u1)

γ
i , (u2)

γ
i , · · · , (un)

γ
i ) the

function de�ned in the grid Dd and as V γi = V (xi, t
γ) the function V (x, t) de-

�ned continuously on (x, t) and restricted to Dd. In D, we obtain the extension
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of some classical numerical methods for PDAEs (1), (2) (or Eq. (6)). In this
Section, we obtain numerical method for a more complex group of equations,
in which we consider also di�usive e�ects. For this class of problems, because
of stability, the most e�ective methods are the implicit ones, see [45].

In this section, we developed numerical methods for Eq. (8), (9). Most �rst
or second order schemes in space and time for reaction-convection-di�usion
equations give rise to numerical methods in which the most consuming task is
solving block-tridiagonal linear systems, [43,46]. Among the most used tech-
niques to solve these linear systems, we cite block LU factorization, divide
and conquer and cyclic reduction methods, see [9�11,36,37]. Block LU factor-
ization is by far the fastest among these if there is only one processing unit,
although it relies on block diagonal dominance [14]. The divide and conquer
algorithm performs better in shared memory machines with small to medium
sized blocks, and for large blocks (several PDEs), the cyclic reduction is usually
a slightly better choice, particularly for distributed memory machines where
the cost of communication is high [5,21,22]. All these methods have been de-
veloped and analyzed for uniform block-tridiagonal matrices (PDEs) rather
than non-uniform block-tridiagonal ones (PDAEs).

Our solver has specialized routines implemented to take advantage of the
zero entries of the non-uniform block-tridiagonal linear system obtained from
numerical discretization. We propose a version of the Divide and Conquer algo-
rithm that preserves the sparsity of the matrix during the process of solution,
obtaining as a result a method with fewer �oating point operations and fewer
operation that require memory access. We also obtain asymptotic speedup
expressions for the cases of few or many algebraic restrictions in the PDAEs
system (8). We also focus on adapting the classical method for solving linear
systems used for the numerical resolution of these equations to take advan-
tage of the sparsity of the linear systems, obtaining a fast and robust solver
for PDAEs. This approach has also the advantage that the discretization of
(1) for implicit methods, such as the Crank-Nicolson method, gives rise to
linear systems that are e�ciently solved using classical sequential or parallel
methods, such as the block LU decomposition method [36] or the divide and
conquer [37] and cyclic reduction methods [10]. When one cannot obtain the
surface S directly, in the second case described above, the solution to solve
the system (1), (2) using the classical available tools is to consider the alge-
braic restrictions as another system of degenerate PDEs. Although one can
solve these equations as if they were n coupled PDEs, the calculations and
data necessary for doing so increase dramatically when compared to the case
in which the solver routines identify the PDEs which are actually algebraic
constraints, as strategies we propose a parallelization of methods.

The remaining of this section is organized as follows: in Subsection 5.1 we
brie�y present the underlying numerical scheme implemented in RCD, and
how we developed it to �t the classical discretization techniques known in
the literature for �nite di�erence schemes. Section 5.2 presents a discussion
on di�erent block LU decompositions and their impact in terms of �oating
point operation costs and sparsity of the matrix during the decomposition and
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substitution part of the solver. We perform a �oating point operation count
of the methods discussed and we compare them in order to determine the
most e�cient one for non-uniform block-tridiagonal matrices, which we study
in Appendix F. In Section 5.3, we present the Divide and Conquer method for
non-uniform block-tridiagonal matrices. We compare the cost of the parallel
algorithm proposed in terms of �oating point operations and we compare it to
the cost of the most e�cient sequential block LU algorithm. In Section 5.4, we
present some numerical experiments for particular PDAEs. We conduct some
experiments to determine the validity of the asymptotic speedups obtained
theoretically. We also conduct experiments to determine the behavior of RCD
for di�erent sized problems.

5.1 Numerical Scheme

We present now the general �nite di�erence scheme used to approximate (8),
(9) numerically. We introduce the scalars αi ∈ [0, 1], βi = 1 − αi, i = 1, 2.
These values are used in such a way that the scheme is explicit if αi = 0,
implicit if αi = 1 or Crank-Nicholson if αi = 1/2. The di�erence equations
that allow such correspondence are

(Gt)
k+αi =

Gk+1 −Gk

∆t
+O((βi − αi)∆t) +O((∆t)2), (59)

and
φk+αi = αiφ

k+1 + βiφ
k +O((∆t)2), (60)

where φ is a general vector-valued or matrix-valued function, and the subscript
(·)t denotes time di�erentiation. Applying these equations to system (8), (9)
and disregarding the errors, we obtain the approximation

Gk+1
l −Gkl
∆t

+ α1(Fx)
k+1
l + β1(Fx)

n
l = α1((BUx)x)k+1

l + β1((BUx)x)kl +
+α1R

k+1
l + β1R

k
l

τ(Hk+1
l −Hk

l )

∆t
= −α2H

k+1
l − β2Hk

l

.

(61)
The approximation in space for the �ux and di�usion terms can be done
in di�erent ways. To �x ideas, we discretize (Fx)l, ((BUx)x)l using central
di�erences, so that

(Fx)l =
Fl+1 − Fl−1

2∆x
+O((∆x)2), (62)

and

((BUx)x)l =
1

2(∆x)2
((Bl+1 + Bl)(Ul+1 − Ul) (63)

−(Bl + Bl−1)(Ul − Ul−1)) +O((∆x)2
)
. (64)
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Thus, the �nal scheme is written in the form

κGk+1
l − µ1[(Bk+1

l+1 + Bk+1
l )(Uk+1

l+1 − U
k+1
l )− (Bk+1

l + Bk+1
l−1 )(U

k+1
l − Uk+1

l−1 )]+

+η1(F
k+1
l+1 − F

k+1
l−1 )− α1R

k+1
l =

κGkl + µ2[(Bkl+1 + Bkl )(Ukl+1 − Ukl )− (Bkl + Bkl−1)(Ukl − Ukl−1)]−

−η2(F kl+1 − F kl−1) + β1R
k
l ,

(65)
τκHk+1

l + α2H
k+1
l = τκHk

l − β2Hk
l , (66)

where the constants are given by

κ =
1

∆t
, µ1 =

α1

2(∆x)2
, η1 =

α1

2∆x
,

µ2 =
β1

2(∆x)2
, η2 =

β1
2∆x

.

Notice that the scheme is second order convergent in time only if αi = 1/2,
i = 1, 2. If the scheme is also second order convergent in space, then it is
desirable that the approximation of the boundary conditions are also second
order convergent. For example, if we consider Robin boundary conditions such
as

AiU + BiUx = Vi, (67)

with Ai,Bi ∈ Rm×n, Vi ∈ Rm and the index i = L,R used to denote left and
right boundaries respectively, then a second order convergent approximation
in space of these equations would be

α1ALU
k+1
0 +η1BL(−3Uk+1

0 + 4Uk+1
1 − Uk+1

2 ) = VL

− β1ALU
k
0 − η2BL(−3Uk0 + 4Uk1 − Uk2 ), (68)

and

α1ARU
k+1
M +η1BR(U

k+1
M − 4Uk+1

M−1 + 3Uk+1
M−2) = VR

− β1ARU
k
0 − η2BR(U

k
M − 4UkM−1 + 3UkM−2). (69)

A �rst order convergent �nite di�erence is used to approximate Ux if the
scheme in the internal mesh points is only �rst order space convergent. In that
case one would approximate the �ux term in equation (62) using a forward or
backward di�erence rather than a central one.

To solve the system (65), (66) with (68), (69), we apply the Newton method

G(V k+1) = 0,

where G(V k+1) = F(V k+1) − Y(V k) is such that F(V k+1) is the left hand
side of (65), (66), (68), (69), while Y(V k) is its right hand side. Given the
initial guess v(0) = Uk, we perform the iterations

v(j+1) = v(j) + δ(j),
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where

JG(v(j))δ(j) = −G(v(j)), (70)

until ||δ(j)|| ≤ ε1, ||G(v(j+1))|| ≤ ε2 or j ≤ jmax. The equation (70) represents
the most expensive calculation in the scheme. However, the jacobian matrix
JG(v(j))δ(j) is typically block-tridiagonal1, therefore one can use certain prop-
erties to e�ciently solve the system. This discussion is presented next in more
details.

5.2 Block LU decompositions

The block LU decompositions are known to be a good tool to solve general
block-tridiagonal linear systems directly, as long as the matrix involved is di-
agonally dominant either by columns or rows [36,14]. For the system (70), the
matrix JG is composed of M + 1 square blocks of size n × n, and 2M non-
uniform blocks of size m × n (2(M + 1) if we consider the discretized Robin
boundary conditions (68), (69) rather than the classical �rst order approxi-
mation). Because of the non-uniformity of these last blocks, certain decom-
positions are better suited to be used in the solution of (70) because they do
not introduce non-zero entries. As a result, storage is kept at a minimum and
computations are saved during the execution of the linear system solver. In
this section, we present a version of the block LU decomposition that pre-
serves the structure of the non-uniform block-tridiagonal matrix in which it
is applied. We also compare two di�erent block LU decompositions in terms
of �oating point operations, and we derive two di�erent asymptotic speedups
for the case of only one right hand side vector and for the case of several right
hand side vectors.

Let us start by de�ning a non-uniform block-tridiagonal linear system:

AX =



A1 B1

C1 A2 B2

C2 A3 B3

. . .
. . .

. . .

CM−2 AM−1 BM−1
CM−1 AM





X1

X2

X3

...
XM−1
XM


=



D1

D2

D3

...
DM−1
DM


= b, (71)

where Ai, Bi, Ci are square blocks of size n × n, Xi, Di are vectors of size
n × 1, for i = 1, · · · ,M . The blocks Bi, Ci have their last p = n − m rows
with zero entries. Out of the several di�erent LU decompositions for matrix
A above, we extract the two that have the property that the diagonal blocks
of either L or U are identity blocks. We call them the �top-to-bottom� version,

1 Appendix E shows the structure of the blocks of JG.
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given by

LU =


I
C1 I

. . .
. . .

CM−2 I
CM−1 I




A1 B1

A2 B2

. . .
. . .

AM−1 BM−1
AM

 , (72)

and the �left-to-right� version, given by

LU =


A1

C1 A2

. . .
. . .

CM−2 AM−1
CM−1 AM




I B1

I B2

. . .
. . .

I BM−1
I

 . (73)

These names are inspired by the decomposition process, as in Algorithms 1
and 3. Although these algorithms have the same mathematical properties,
[20], their implementation causes one method to be better than the other in
terms of computational cost. The explanation behind this fact is given by
line 3 of Algorithm 1 and line 3 of Algorithm 3. In the top-to-bottom LU
decomposition, one needs to solve the linear system

(Ai)
T (Ci)

T = (Ci)
T , (74)

in which the right hand side matrix (Ci)
T has the last p columns with zero

entries. As a result, the matrix (Ci)
T has also p columns with zero entries,

which do not need to be stored. In practice, the top-to-bottom LU decom-
position can be stored in the same data structure used to store A. However,
in the left-to-right LU decomposition, the full-rank system that needs to be
solved is

AiBi = Bi. (75)

In this case one cannot guarantee that any entry of Bi will be zeroed by the
decomposition process. As a result, more computations are needed, and if the
decomposition is to be stored in the same data structure of A, the zero entries
of Bi, Ci need to be stored. This comparison makes it clear that Algorithm 1
is more e�cient to solve our problem. Algorithms 2 and 4 show how to use the
top-to-bottom and left-to-right decompositions to solve the linear system (71).
The process is basically the same in both algorithms: �rst we solve LY = b
and using Y we solve UX = Y .

As in the block LU decompositions, there are two UL decompositions
processes that have the property that the diagonal blocks of either U or L are
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Algorithm 1 Top-to-bottom LU decomposition
Require: A

Ensure: L, U
1: A1 = A1

2: for i = 1 to M − 1 do

3: Ci ← CiA
−1
i

4: Bi ← Bi
5: Ai+1 ← Ai+1 − CiBi
6: end for

Algorithm 2 Top-to-bottom LU solver
Require: L, U, b
Ensure: X

1: Y1 = D1

2: for i = 1 to M − 1 do

3: Yi+1 ← Di+1 − CiYi
4: end for

5: XM = A
−1
M YM

6: for i =M − 1 to 1 do

7: Xi ← A
−1
i (Yi −BiXi+1)

8: end for

Algorithm 3 Left-to-right LU decomposition
Require: A

Ensure: L, U
1: A1 = A1

2: for i = 1 to M − 1 do

3: Bi ← A
−1
i Bi

4: Ci ← Ci
5: Ai+1 ← Ai+1 − CiBi
6: end for

Algorithm 4 Left-to-right LU solver
Require: L, U, b
Ensure: X

1: Y1 = A
−1
1 D1

2: for i = 1 to M − 1 do

3: Yi+1 ← A
−1
i+1(Di+1 − CiYi)

4: end for

5: XM = YM
6: for i =M − 1 to 1 do

7: Xi ← Yi −BiXi+1

8: end for

identity blocks: the �bottom-to-top� process that leads to

UL =


I B1

I B2

. . .
. . .

I BM−1
I




A1

C1 A2

. . .
. . .

CM−2 AM−1
CM−1 AM

 , (76)
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and the �right-to-left� process that creates upper and lower matrices given by

UL =


A1 B1

A2 B2

. . .
. . .

AM−1 BM−1
AM




I
C1 I

. . .
. . .

CM−2 I
CM−1 I

 . (77)

A similar analysis to that proposed for LU decompositions shows that Al-
gorithm 7 is less e�cient than Algorithm 5: the right-to-left UL decomposi-
tion forces performing more calculations and storing more memory than the
bottom-to-top UL decomposition. Notice that if one were to apply an LU or
UL decomposition with pivoting without taking into account the structure
of the blocks, the pivoting process would demand storage of the zero entries
of blocks Bi, Ci anyway. However, in the case of block decompositions, the
pivoting process can be applied only for the linear systems related to Ai. Al-
gorithms 6 and 8 show how to perform the linear systems UY = b, LX = Y ,
necessary to compute the solution using the block UL decompositions.

Algorithm 5 Bottom-to-top UL decomposition
Require: A

Ensure: L, U
1: AM = AM
2: for i =M − 1 to 1 do

3: Bi ← BiA
−1
i+1

4: Ci ← Ci
5: Ai ← Ai −BiCi
6: end for

Algorithm 6 Bottom-to-top UL solver
Require: L, U, b
Ensure: X

1: YM = DM
2: for i =M − 1 to 1 do

3: Yi ← Di −BiYi+1

4: end for

5: X1 = A
−1
1 Y1

6: for i = 1 to M − 1 do

7: Xi+1 ← A
−1
i+1(Di+1 − CiXi)

8: end for

While the left-to-right and right-to-left algorithms seem to be discarded,
they may be chosen over the top-to-bottom and bottom-to-top versions, de-
pending on other issues. When the blocks Bi, Ci have all their entries �lled
with non-zero values, all the decompositions presented before perform simi-
larly. However, notice that when decomposing, if the right hand side vectors
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Algorithm 7 Right-to-Left UL decomposition
Require: A, M
Ensure: L, U
1: AM = AM
2: for i = 1 to M − 1 do

3: Ci ← A
−1
i+1Ci

4: Bi ← Bi
5: Ai ← Ai −BiCi
6: end for

Algorithm 8 Right-to-Left UL solver
Require: L, U, b
Ensure: X

1: YM = A
−1
M DM

2: for i =M − 1 to 1 do

3: Yi ← A
−1
i (Di −BiYi+1)

4: end for

5: X1 = Y1
6: for i = 1 to M − 1 do

7: Xi+1 ← Yi+1 − CiXi
8: end for

are already known, the �rst of the back substitutions can be executed while
the decomposition is made (LY = b or UY = b). This fact, along with the
assumption that the cache size is big enough, allows one to save memory ac-
cesses, since the blocks used in the �rst of the back substitutions can be fetched
from memory only once. In that scenario, which only happens for small blocks,
the left-to-right and right-to-left decompositions save more memory operations
than the bottom-to-top and top-to-bottom ones, since their back substitutions
involve more block operations. In subsection 5.4, we will see numerical results
that verify this statement. In Appendix F.1 we perform an analysis of �oating
point cost comparison of the block decomposition of the algorithms 1 to 4.

5.3 The Divide and Conquer Method

The Divide and Conquer Method for block-tridiagonal systems (DCB) has
been designed and analyzed in [9,37]. The main idea of the method is to use
Schur complements to isolate a few degrees of freedom in such a way that their
solution is dependent on the solution of several smaller block-tridiagonal linear
systems. These small linear systems are solved in parallel, and then the isolated
degrees of freedom are also a solution to a block-tridiagonal linear system. In
this Subsection, we present the DCB method for non-uniform block-tridiagonal
linear systems. We derive a slightly improved asymptotic speedup than that
obtained in [37] for uniform block-tridiagonal matrices, and we also show the
asymptotic speedup in the case of non-uniform block-tridiagonal matrices.

To brie�y present the DCBmethod, letA be a non-uniform block-tridiagonal
matrix of size nM × nM . The linear system associated to A is the one from
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equation (71). Let us select ρ−1 unknown vectors ξj , and write them in terms
of the remaining ρ unknown vectors Xi. To better describe these relations, we
partition the original system in the following form

A1 θ1

γT1 λ1 ϕT1

ω1 A2 θ2

γT2 λ2 ϕT2

ω2 A3 θ3

. . .
. . .

. . .

ωρ−2 Aρ−1 θρ−1

γTρ−1 λρ−1 ϕTρ−1

ωρ−1 Aρ





X1

ξ1

X2

ξ2

X3

...

Xρ−1

ξρ−1

Xρ





=

b1

β1

b2

β2

b3

...

bρ−1

βρ−1

bρ





,

(78)
where

� Ai, for i = 1, 2, . . . ρ, are non-uniform block-tridiagonal submatrices of size
nMi × nMi;

� λi, for i = 1, 2, . . . ρ− 1, are blocks of size n× n;
� Xi, bi, for i = 1, 2, . . . ρ, are vectors of size nMi × 1;
� ξi, βi, for i = 1, 2, . . . ρ− 1, are vectors of size n× 1.

The remaining elements of the partition are matrices of size nMi×n such that

ωi =

[
ωNi
ωZi

]
, (79)

ϕi =

[
ϕNi
ϕZi

]
, (80)

θi =

[
θZi
θNi

]
, (81)

γi =

[
γZi
γNi

]
, (82)

where the superscript [·]N denotes a non-uniform block of sizem×n �lled with
nonzero entries, while the superscript [·]Z denotes matrices of size (n(Mi−1)+
p)× n �lled with zero entries. The unknowns Xi are written in terms of ξj in
the following manner

Xi = bi − ωi−1ξi−1 − θiξi, i = 1, 2, . . . ρ, (83)



Mathematics and Numerics for Balance PDAEs 25

where we have de�ned bi, ωi−1, θi to be the solution to the non-uniform block-
tridiagonal linear systems

Aibi = bi, Aiωi−1 = ωi−1, Aiθi = θi, (84)

and ω0ξ0 = θρξρ = 0. Replacing the solution (83) into equations of the form

γTi Xi + λiξi + ϕTi Xi+1 = βi, (85)

with γT0 X0 = ϕTρXρ+1 = 0, leads to the following non-uniform block-tridiagonal
linear system for the unknowns ξi:

λ1 ϕ1 0 0 0 · · · 0

γ1 λ2 ϕ2 0 0 · · · 0

0 γ2 λ3 ϕ3 0 · · · 0

0 0 γ3 λ4 ϕ4 · · · 0
...

. . .
. . .

. . .

0 0 0 · · · γρ−3 λρ−2 ϕρ−2
0 0 0 · · · 0 γρ−2 λρ−1





ξ1
ξ2
ξ3
ξ4
...

ξρ−2
ξρ−1


=



β1

β2

β3

β4
...

βρ−2
βρ−1


, (86)

where the blocks and vectors above are given by

λi = λi − γTi θi − ϕTi ωi, i = 1, 2, . . . , ρ− 1,

ϕi = −ϕTi θi+1, i = 1, 2, . . . , ρ− 2,
γi = −γTi+1ωi, i = 1, 2, . . . , ρ− 2,

βi = βi − γTi bi − ϕTi bi+1, i = 1, 2, . . . , ρ− 1.

(87)

The solution of the system (87) can be obtained in two di�erent ways. The
�rst one considers that ρ is small (typically the number of threads in a shared
memory environment or the number of nodes of a cluster) and the system can
be solved using a direct solver such as the block LU decomposition methods
(see Subsection 5.2). The second one considers that ρ is as big as it can be, and
therefore the partition process can be applied again and again for systems in
the form of 87 until a small enough matrix is obtained. This latest methodology
is commonly called cyclic reduction, [10,11]. Algorithm 9 summarizes the DCB
method. Notice that maybe except for step 3, all the remaining steps are
parallelizable.

The solution of the non-uniform block-tridiagonal linear systems (84) can
be done using any direct solver. However, depending on the method, compu-
tations can be saved due to the particular structure of the right hand sides
ωi−1, θi. Let us consider, for instance, the block LU decompositions intro-
duced in Subsection 5.2. The top-to-bottom block LU decomposition (72),
when used to solve a linear system with the right hand side is θi, is such that
the solution to the intermediate linear system LY = θi gives Y = θi. As a
result, the computations used to solve LY = θi can be saved, reducing the
cost of the Algorithm 2. Similarly, if the left-to-right LU decomposition (73)
is applied to the linear systems with form Aiθi = θi, then the process used
to solve LY = θi is reduced to solving only one full-rank linear system with
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Algorithm 9 Divide and Conquer Method
Require: A, b, M , ρ
Ensure: X

1: Solve

Aibi = bi, for i = 1, . . . , ρ
Aiωi−1 = ωi−1, for i = 2, . . . , ρ

Aiθi = θi, for i = 1, . . . , ρ− 1

2: Calculate


λi = λi − γTi θi − ϕTi ωi, i = 1, 2, . . . , ρ− 1,

ϕi = −ϕTi θi+1, i = 1, 2, . . . , ρ− 2,
γi = −γTi+1ωi, i = 1, 2, . . . , ρ− 2,

βi = βi − γTi bi − ϕTi bi+1, i = 1, 2, . . . , ρ− 1.
3: Solve linear system (86)
4: Calculate Xi = bi − ωi−1ξi−1 − θiξi, i = 1, 2, . . . ρ

the size of the diagonal blocks. That fact also reduces the cost of algorithm
4. Unfortunately, no similar conclusions can be easily reached for the case of
block LU decompositions with right hand side ωi−1, and therefore the impact
of this observation in the cost of the method is small. Notice that although
the savings related to each of the block LU decompositions is di�erent, the
amount of �oating point operations being saved is basically the same (the cost
of only the forward and backward substitutions cfbs is equal to the cost of the
add and multiply operations cam for n ≈ m� 1). In Appendix F.1.1 we per-
form an analysis of �oating point cost comparison of the block decomposition
of the algorithm 9.

5.4 Numerical experiments

In this section we present numerical experiments with two goals. The �rst
one is to verify the convergence of numerical method and their behaviour for
a system of equations of type (1), (2), which is performed in Section 5.4.1.
On the other hand, we are interested in verifying the practical e�ciency of
the DCB method for our class of PDAEs, and the asymptotic speedup values
derived in Appendix F.1.1. For this e�ciency analysis, we propose a class
of problems which is composed of a typically small system of PDAEs, and
our simulations typically take no longer than what a modern memory shared
machine can handle. For that reason, we ran our experiments in a Dell R© R910
server machine, composed of 4 sockets with Intel R© Xeon R© X7560 processors.
The processors operate with a base frequency that ranges from 2.27 GHz to
2.67 GHz, and they have an L3 cache of 24 MB. Each of the processors have
8 physical cores, but 16 logical ones are available through the multithreading
technology.

5.4.1 Numerical experiments - Physical model

We present a numerical example with RCD solver (see Section 5) considering
the solution of the Riemann problem governed by equations of type (1) and
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(2) with initial data

V (x, t = 0) =

{
VL if x < 0,
VR if x > 0.

(88)

We apply the Upwind numerical scheme in a particular compositional model

st + (uf(s))x = 0, (89)

φ(sc1 + (1− s)c2)t + (uc1f(s) + uc2(1− f(s)))x = 0, (90)

c1 −Kc22 = 0. (91)

where u, φ, K are constants and the unknowns are s, c1 and c2, representing
the water saturation, the concentration of solvent in the water phase and
concentration of solvent in the oil phase.

The model in (89), (90), (91) simulates the transport of a solvent in porous
media with carbonated water and oil. The solvent appears both in the aqueous
and oil phases, where the relationship (91) determines the proportion in which
it distributes between phases. Here, the function f is given in [1] which is
similar to f(s) = s2/(s2 + ν(1− s)2), where ν is a constant (Corey core Model,
see[6]). RCD solver was used successful for the numerical simulations in [3].

Denoting V = (s, c1, c2), the accumulation and �ux functions are given by
G(V ) = (sc1, sc1 + (1− s)c2), F (V ) = (uf, uc1f + uc2(1− f)). The algebraic
restriction is given by H(V ) = c1 −Kc22.

We use relaxation techniques to incorporate the algebraic restriction to the
system (89), (90), (91) with the di�erential equation

τ(c1 −Kc22)t = −(c1 −Kc22). (92)

Notice that when τ = 0, formally, the system of equations (89), (90) and (92)
reduces to

φst + (uf(s))x = 0. (93)

φ(sKc22 + (1− s)c2)t + (Kuc22f(s) + uc2(1− f(s)))x = 0. (94)

where the unknowns variables are s, c2.
We verify numerically that when τ → 0 or t increasing the solution of

equation (89), (90), (92) tends to the solution of system (93), (94). To do so,
we solve numerically the Riemann data case I for initial data V = (s, c1, c2)
given by

V (x, t = 0) =

{
(1, 2.07, 1.08) if x < 0,

(0.15, 1.08, 0.71) if x > 0.
(95)

for system (89), (90) and (92) and the case II with initial data given by

V (x, t = 0) =

{
(1, 1.083) if x < 0,
(0.15, 0.71) if x > 0.

(96)

for system (93), (94) with V = (s, c2).
Since the Riemann solution describes the behavior of solution for long

times, we choose several times and stop the simulation when no signi�cant
changes are observed in the solution pro�le.
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We verify that in both cases I and II the solution match well. Figures 2
and 3 show the pro�les of saturation (s) and concentration solution (c1) for
di�erent times. In simulation we take δx = 0.008, with x ∈ (0, 1.6), δt = 0.2
and t ∈ (0, 18000). In the Figure 3, the solution is shown in the phase space
(s, c1). The Riemann solution consists of a rarefaction wave connected with a
solvent shock wave with slower speed than the saturation shock.

Fig. 2 a).The saturation pro�le from the RCD simulation at di�erent times. b). The pro�le
of the concentration of the solvent in the aqueous phase (c1). Here x represents the space
and T the �nal time.

5.4.2 Speedups for a Synthetic Physics

We discuss now the speedup values we observed through a few tests performed
in the above mentioned shared memory machine. To obtain non-uniform block-
tridiagonal matrices of any desired size and block con�guration, we have de-
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Fig. 3 Solution in the phase space. Saturation (s) and concentratation of �rst solvent (c1)

veloped a simple synthetic physics given by the PDAE

∂tvi + ∂x
∑
j

ai,j
v2j
2

= 0, (97)

vk −
∑
j

b(k−m),j

v2j
2

= 0, (98)

with boundary conditions

vi(−1, t) = 1, vi(1, t) = 0, (99)

and initial conditions

vi(x, 0) =

{
1, x < 0
0, x ≥ 0

, (100)

where i = 1, . . . ,m, j = 1, . . . ,m, and k = m + 1, . . . , n. The matrices ai,j ,
bi,j are α-matrices ci,j(α) given by ci,j(α) = 1 if i = j, ci,j(α) = α otherwise.
Notice that the constraint variables vk do not interfere with the PDE, although
their relations with vi are nonlinear. The solutions are shocks traveling with
speed 1 + (m − 1)α for the �rst m unknowns, and p = n − m more linear
combinations of those shocks for the remaining unknowns. In all the tests in
this section we have adopted ai,j = ci,j(0.001), bi,j = ci,j(0.1).

The simulations were made using scheme (65), (66) with α1 = α2 =
1/2, which corresponds to the Crank-Nicholson scheme for our PDAE (97),
(98). Although the scheme is unconditionally stable [45], we chose time step
sizes respecting the CFL condition to maintain accuracy. Because the Crank-
Nicholson scheme is dispersive, we have added to the right hand side of the
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PDE (97) a stabilization term ε∂
2vi
∂x2 , where the small and positive stabilization

constant ε was chosen to be equal to the space step size.
To estimate the time taken to solve a non-uniform block-tridiagonal linear

system derived from the Newton method applied to the discretization of (97),
(98) in our shared memory machine, we have collected the times during the
�rst 100 time steps of a simulation. The time needed to solve the linear system
is then approximated by the mean value of the collected times. The exact
number of linear systems solved is however larger than 100, since the Newton
method typically takes more than one iteration (we have observed that more
iterations are needed if we have more restrictions).

In what follows next, we will refer to sequential algorithm to be the top-
to-bottom block LU decomposition algorithms 1-2. We will refer to parallel
algorithm to be the DCB algorithm 9 with ρ = 64 partitions. We have im-
plemented the step 1 of algorithm 9 in two di�erent ways: when p = 0 (no
algebraic constraints), the left-to-right block LU decomposition method (73)
is applied to solve the linear systems using an algorithm that performs both
the decomposition and the �rst of the back substitutions at the same time.
This technique allows for a reduced number of memory accesses, since the
blocks Ai, Ci are fetched from memory only once. When p > 0 (at least one
algebraic constraint), the sequential algorithm is applied to solve the linear
system.

Behavior for di�erent linear system sizes: In our �rst test we at-
tempted to determine how the absolute speedup (time taken to execute the
sequential version divided by the time taken to execute the parallel version of
an algorithm) behaves as the space mesh size increases (size of the linear system
increases). In Figure 4 we see the absolute speedup obtained when the number
of PDEs varies and the number of algebraic constraints is 0 (n = m > 0,
p = n −m = 0). The best absolute speedup is reached when there are only
two PDEs (n = m = 2) and the linear system size is between 105, 106. For
a larger number of PDEs, the maximum speedup is reached for a larger lin-
ear system size. For this speci�c block structure, it is evident that the DCB
method is better for a small number of PDEs, when the maximum absolute
speedup is about 25. For a very large number of PDEs, which in the �gure
is exempli�ed by n = m = 32, n = m = 64, the maximum absolute speedup
observed does not go beyond 12. As we have mentioned before, this behavior
may be explained by the fact that the cache memory is used more e�ciently
when the blocks are small, so that the memory used in the block computations
can be fetched only once, avoiding cache misses. Another explanation is that
for small blocks our shared memory machine can better use the hyperthreading
feature, since a lesser amount of calculations is necessary for the same amount
of memory.

The absolute speedup observed for di�erent space mesh sizes and di�erent
number of PDEs with only one algebraic constraint is showed in Figure 5.
In this situation, we have calculated in Appendix F.1.1 that the asymptotic
speedup obtained when the linear system is large enough is given by 7ρ/22,
as long as only �oating point operations are considered. If we consider the
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Fig. 4 Absolute speedup obtained for di�erent space meshes, di�erent number of PDEs
and no algebraic constraints (p = 0). We have used the maximum number of threads 64.
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Fig. 5 Absolute speedup obtained for di�erent space meshes, di�erent number of PDEs
and 1 algebraic constraints (p = 1). We have used the maximum number of threads 64.

number of logical cores of our shared memory machine, this number translates
to 7 × 32/22 ≈ 10.2. Figure 5 shows that for a small number of PDEs, the
DCB method can be faster than the value predicted by the theory, reaching
an absolute speedup of about 14 when n = 2, n = 4. However, for a larger
system of PDAEs, we observed absolute speedups that reach at most 10.2, as
predicted in the theory.



32 Wanderson Lambert et al.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

0

5

10

15

n=2

n=4

n=32

n=64

Linear System Size

Fig. 6 Absolute speedup obtained for di�erent space meshes, di�erent number of algebraic
constraints and one PDE (p = n− 1). We have used the maximum number of threads 64.

When the number of algebraic constraints is very large compared to the
number of PDEs, we have calculated that the asymptotic speedup obtained
when the linear system is large enough is ρ/7, which in our case equals to
4.57 if we consider 1e physical cores and to 9.14 if we consider all the logical
ones. In Figure 6 we see that for a system of PDAEs of size 2 or 4, the
algebraic constraints are not large enough, as the maximum absolute speedup
still ranges from 13 to 14. However, when n = 32 or n = 64, although the
maximum absolute speedup can still be larger than predicted by the theory, it
tends to stabilize to the predicted absolute speedup for a large enough linear
system size.

Small problems: For small problems, the divide and conquer method is
known to outperform the cyclic reduction method [21], since the parallelization
is very e�ective even though it requires more memory. By small problems we
mean that the space mesh size is as big as to take long enough to solve a linear
system, so that the essential tasks running in the system do not interfere much
with the time spent solving the problem. The space mesh size was chosen so
that the times collected during a linear system solving with the sequential
algorithm have a standard deviation at least 100 times smaller than the mean
value. In Figure 7 we can see a typical histogram of the collected times.

The calculation of the absolute speedup ςa(ρ,M, n, p) in solving a non-
uniform block-tridiagonal linear system using the DCB method rather than
the top-to-bottom block LU decomposition method is given by the ratio
ςa(M,n, p) = t0(M,n, p)/ti(ρ,M, n, p), where t0(M,n, p) is the average time
spent to solve using the sequential algorithm, while ti(ρ,M, n, p) is the av-
erage time spent to solve using the parallel algorithm for j > 0. Rewrit-
ing the absolute speedup in terms of the relative speedup ςr(ρ,M, n, p) =
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Fig. 7 Histogram of the time spent to solve the linear systems necessary to compute the
numerical solution to the PDAE (97), (98) with n = 16, m = 15, p = 1 during the �rst 100
time steps of a simulation. Algorithms 1-2 were used to solve the linear systems.

t1(ρ,M, n, p)/ti(ρ,M, n, p) gives ςa(ρ,M, n, p) = (t0(M,n, p)/t1(ρ,M, n, p))ςr(ρ,M, n, p).
Here ρ is the number of partitions used in the DCB method,M is the size of the
linear system, n is the size of the blocks in the diagonal, m = n− p is the size
of the blocks in the other two diagonals of the non-uniform block-tridiagonal
matrix, and i is the number of processing units.

If we consider the cost of only �oating point operations, the ratio satis�es
(t0(M,n, p)/t1(ρ,M, n, p)) is bounded by the inverse of the redundancy. Re-
dundancy is a measure given by the total cost of the parallel method divided
by the cost of the sequential method, and it tells how many more calculations
are necessary to replace the sequential method by the parallel method. The
calculation of the redundancy is similar to the calculation of the asymptotic
speedup presented in Appendix F.1.1, and for big linear systems it can be
approximated by ρ times the inverse of the asymptotic speedup. That is, for
M � 1, n � 1, p = 0 the DCB takes approximately 22/7 times more calcu-
lations than the block LU decomposition method, while for M � 1, n � 1,
p ≈ n the DCB method is approximately 7 times more costly than the block
LU decomposition method. If the DCB method is perfectly parallelizable,
then ςr(ρ,M, n, p) = ρ and the absolute speedup approaches the asymptotic
speedup obtained in Appendix F.1.1 (considering that the number of process-
ing units is equal to the number of partitions ρ). However, communication
between the several processing units as well as the inherent cost of the dis-
tribution of work among them usually makes the relative speedup be smaller
than the maximum theoretical one, and as a result, the absolute speedup is
smaller than the asymptotic speedup.
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ci,j Relative Speedup Absolute Speedup

c0,0 27.020 11.470
c1,0 0.9625 0.0137
c0,1 -0.3564 -0.5223
c2,0 -0.1102 0.0053
c1,1 0.0416 0.0200
c0,2 0.0211 0.0115
c3,0 0.0024 -0.0006
c2,1 -0.0009 0.0005
c1,2 -0.0012 -0.0012
c0,3 0.0003 0.0002

Table 1 Values of the coe�cients ci,j of the speedup surface z(n, p) = c0,0+c1,0n+c0,1p+
c2,0n2+c1,1np+0,2p2+c3,0n3+c2,1n2p+c1,2np2+c0,3p3. The coe�cients were determined
using the least squares method. The Algorithm 9 was used in the parallel version, and the
Algorithms 1-2 were used in the sequential version.

In Figure 8 we can see the relative speedup surface ςr(64,M, n, p) when
using the maximum number of threads 64 in our shared memory machine.
The Figure 9 shows the absolute speedup we observed with 64 threads. We
recall that, although we have an allowed maximum number of threads of 64,
the maximum number of processing units (cores), is 32. In Table 1 we show
the coe�cients of the surface constructed using the least squares method for a
third degree polynomial in both n, p direction. Although there are variations
in the data we collected with the �tted surfaces (which we attribute to cache
e�ects), we can say that the surface is a good approximation to the data.
Using the �tted surfaces, we see that the relative speedup ranges from 27.875 to
21.022, while the absolute speedup ranges from 11.488 to 8.8810. The observed
absolute speedup is in this case bigger than the relative speedup divided by
the estimated redundancy 22/7, and the reason may be explained by the fact
that either the linear system or the block sizes are too small to qualify the
asymptotic case.

6 Conclusions and Remarks

In this work we discuss a formalism for the class of PDAEs (1), (2) and we
study the connections between their solutions with two another formulations:
(1), (6) and (1), (7).

We prove that the solution of (1), (6) for initial data on the equilibrium
surface S remains on the equilibrium surface S. Moreover, for Riemann data,
this solution is the same solution obtained for the PDAEs (1), (2).

Using relaxation formulation (1), (7), we prove that the solution tends to
equilibrium S if initial data are not on S. If the initial data are on S the
solution remains on S.

We also develop a faster and reliable numerical method that is naturally
parallelizable. We perform several numerical experiments to verify that the
numerical method agrees with the theory. Moreover, we also study the speedup
of the algorithms.
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Fig. 8 The relative speedup surface obtained when varying n, p for small problems. The
results were collected on a shared memory environment which supports at most 64 threads.
Algorithm 9 was used to solve the linear systems with ρ = 64.

20
15

10
5

020

10

13

12

11

10

9

8

7

0

Fitted Surface

Data

p

n

Fig. 9 The absolute speedup surface obtained when varying n, p for small problems. The
results were collected on a shared memory environment which supports at most 64 threads.
Algorithm 9 was used to solve in parallel with ρ = 64 and Algorithms 1-2 were used to solve
in sequential.
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A Parameterizing the surface S

We assume that H(U) is parameterized by a subgroup of variables V = (U1, · · · , Um) of
original set U = (U1, · · · , Un). The remain variables W = (Um+1, · · · , Un) are given as a
function of V . As discussed in Introduction, if for a U∗, we have that det(∂WH(U∗)) 6= 0,
in a state then there is a di�eomorphism in a neighborhood of U∗ and we can write W as
function of V and we rewrite system (1), (2) as (5). This form motivates the de�nition for
hyperbolicity (see [39] for a most complete study about this theme)

De�nition 5 We say that PDAE (1), (2) is formally hyperbolic if (5) is hyperbolic, i.e., if
the system (16):

Ãr̃ = λB̃r̃ −→ det(B̃ − λÃ) = 0

admits m real linearly independent eigenvectors r̃ = (r̃1, · · · , r̃m) and m real eigenvalues
λ := λ(W ) (accounting the multiplicities if necessary). Here Ã, B̃ are jacobian of F̃ =
F (V,W (V )), G̃ = G(V,W (V )), with respect to W , respectively.

The eigenvectors satisfying (16) form a local basis for the variable V , thus the eigenvec-
tors supplemented with the condition W =W (V ), satisfying H(V,W (V )) = 0, form a local
basis for S.

We have m eigenpairs denoted as (λi, r̃i) for i = 1, · · · ,m, which eigenvalues we can
order as:

λ1(V ) ≤ λ2(V ) ≤ · · · ≤ λm(V ). (101)

The integral curve of family i is given by V = V (ξ):

dξVj = (r̃i)j , for j = 1, 2, · · · ,m, on this curve W =W (V (ξ)), (102)

where (r̃i)j is the j-th component of vector r̃i. To obtain the integral curve it is necessary to
set the correct direction of eigenvector. The variable W on the integral curve is obtained as
W = W (V (ξ)). For numerical purposes, sometimes, is valid to obtain the integral equation
for each component of W by di�erentiating Wi =Wi(V ), for i = 1, · · · , p as:

∂ξWi =

m∑
l=1

(
∂VlWi

)
∂ξVl =

m∑
l=1

(
∂VlWi

)
(r̃i)l = ∇VWi · r̃i. (103)

Here ∇V is the gradient with respect to variable V .
The k-rarefaction curve is the segment of k-integral curve for which the characteristic

speed λk is an increasing function, i.e., the direction for which

∇V λ · r̃j > 0. (104)

A.1 Hugoniot-Locus and shock curves

Another important wave appears when we look for discontinuities of the solution in the (x, t)-
plane. For non-linear hyperbolic systems is well known that these discontinuities appear in
solutions for any initial data. These discontinuities should satisfy an important identity,
the so called Rankine-Hugoniot (RH) condition. This condition expresses conservation of
physical and chemical quantities in the system. For system (5) is written as:

vs(G̃(V +)− G̃(V −)) = F̃ (V +)− F̃ (V −). (105)

Moreover, W = W (V ), i.e, W± = W (V ±) on the surface S. For a �xed V −, the states
V + satisfying (105) form the Rankine-Hugoniot locus through V −, which we denote as
RH(V −).

It is well known that weak solutions are, in general, non-unique, see [13,41,42]. To over-
come this non-uniqueness it is necessary to de�ne some entropy criterion. A weak solution
satisfying a entropy criterion is called entropy solution. Since the approach discussed in this
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section we can reduce PDAE system (1), (2) into a system to the form (5), we can use as
entropy criterion Lax's or Liu's criteria (depending on the characteristic of each �eld) or we
can use the traveling wave or viscous pro�le to select physical shocks satisfying (105). In
Section 2.1.3 we discuss the existence of traveling wave. But, since the theory for this class
of equations is well known, we recommend [13,41,42].

In other hand, in many di�erent applications it is impossible to obtain a subset of U to
parameterize S. In the next Sections we draw some formalism to deal with the system of
PDAEs (1), (2) where we can not have a explicit parametrization to S.

B Entropy for the system (1), (6).

De�nition 6 Let U = U(x, t) be a weak solution of the hyperbolic PDE system (1), (6).
Then we say that U satis�es an entropy inequality if there exists functions U ,U1,F : Rn −→
R such that U , U1 are convex satisfying

DU = DU1
(
B
E

)
, DU1

(
A
0

)
= F and ∂tU(U) + ∂xF(U) ≤ 0 (106)

in the distributional sense. The pair (U ,F) is called an entropy pair.

From this de�nition, we can prove the following result:

Proposition 7 Let us assume that there are functions U , U1, F satisfying De�nition 6.
Let Uε ∈ H1,2(R× R+,Rm) be a solution of

∂t

(
G (Uε)
H(Uε)

)
+ ∂x

(
F (Uε)

0

)
= εI∂2xUε R× R+. (107)

Additionally we assume that U , U1, F , G, H, F , Uε are su�ciently smooth, and Uε −→ V
(when ε −→ 0) in R × R+, thus V is solution of PDEs (1), (6) in the distributional
sense. Besides, we have that entropy inequality (106) is satis�ed in the distributional sense.

Proof: First, we prove that V (x, t) (that represents the limit when ε −→ 0) is a weak
solution of (1), (6). To to so, we multiply (107) by a test function ϕ and integrate by parts
and we obtain:∫ ∫

Q

(
∂tϕ(x, t)

(
G (Uε)
H(Uε)

)
+ ∂xϕ(x, t)

(
F (Uε)

0

)
+ εIUε∂

2
xϕ(x, t)

)
dxdt−

∫ ∫
Q
∂tϕ(x, t)

(
G (Uε(x, 0))
H(Uε(x, 0))

)
dx = 0

(108)
Taking ε −→ 0, using the dominated convergence theorem and using that H(Uε(x, 0)) = 0,
we obtain the weak solution of (1), (2).

To prove that (106) is satis�ed, we multiply (to right) (107) by DU1, performing the
chain rule in (107) (here the solution of (107) are smooth functions) and using eq. (106), we
obtain:

∂tU(Uε)+∂xF(Uε) = (εDU1) ∂2xUε −→ ∂tU(Uε)+∂xF(Uε) = ε∂2xU1(Uε)−D2U1 (∂xUε)2
(109)

Notice that D2U1 (∂xUε)2 > 0, thus (109) satis�es

∂tU(Uε) + ∂xF(Uε) < ε∂2xU1(Uε) (110)

Multiplying (110) by a test function ϕ(x, t) (with compact support for t > 0), performing
integration by parts, we obtain:∫ ∫

Q
∂tϕ(x, t)U(Uε) + ∂xϕ(x, t)F(Uε)dxdt+ ε∂2xϕ(x, t)U1(Uε) > 0 (111)

Taking the limit of ε −→ 0 in Eq. (111) and using the theorem of dominated convergence, we
obtain that (111) satis�es (106) in the distributional sense and the result is proved. �
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C Finite Di�erence Methods for PDAEs - The linear case

In this Section we are interested in obtaining some results for the linear PDAEs. There are
many numerical methods applied for PDEs of form (5), that we can cite, �nite di�erences,
see [24,30,45], �nite elements, see [44], C �nite volumes, see [16,24,31], spectral techniques,
see [17,19], however, here we focus only on �nite di�erence methods. We also extend the
Lax-Richtmyer theorem, see [45], is a very important theorem stating that consistence and
stability for linear systems of partial di�erential equations implies in convergence. For non-
linear system of partial di�erential equations this theorem is not valid, however, proposition
of numerical methods for nonlinear systems should satisfy the same condition for linear ones.
Here, we extend the Lax-Richtmyer theorem, besides some su�cient conditions for stability,
and we prove the convergence of extension of classical numerical methods for LPDAE. Here
the term linear means that accumulation, �ux and algebraic equations are linear, i.e.,

G(U) = BU, F (U) = AU and H(U) = CU − α, (112)

where B, A are m×n matrices, C is a p×n matrix and α column p-vector. We also extend
the numerical methods for general systems of PDAEs.

C.1 Finite Di�erence Methods for LPDAEs

We can consider the most used explicit (�rst and second order) and the implicit Crank-
Nicholson schemes, see [45], and to adapt these schemes for LPDAEs system. The basic idea
here is to utilize these numerical schemes for linear PDEs and to apply these for (2). For
the algebraic equation, given by restriction (2), we assume that this equation is satis�ed for
any Uγi for all (xγ , ti) ∈ Dd.

Here, we admit that we know the states Uθi are known for all i ∈ Z and θ ≤ γ. Then
the numerical schemes will be condition to obtain the solution for the time level γ + 1. The
numerical schemes will be written for the (1), (2) (and (112)) system in the matricial form
as:

L(S+, S−)Uγ+1 = Q(S+, S−)Uγ + Γ, (113)

where are using that S+Uj = Uj+1, S
−Uj = Uj−1. Here L, Q are polynomials of S+, S−

and the matrices A, B, C.
The classical methods for hyperbolic systems of equations are extended for PDAE as:
Upwind: Forward-time/forward-space

B

(
Uγ+1
i − Uγi
∆t

)
+A

(
Uγi+1 − U

γ
i

∆x

)
= 0, (114)

CUγ+1
i = ϑ. (115)

We can rewrite (114), (115) in the form (113) as:

JUγ+1
i = KUγi − αL

(
Uγi+1 − U

γ
i

)
+ Γ, (116)

where matrices J , K, L, Γ are obtained are given by

J =

(
B
C

)
, K =

(
B
0

)
, L =

(
A
0

)
; M =

(
0
C

)
; and the vector Γ =

(
0̂
α

)
. (117)

For (116), matrices L, Q are

L = J and Q = (K − αL) + αLS+.

Since the states Uγi are known, using the matrices and vector de�ned in (117), and since
matrix J admits inverse, the numerical system (114), (115) is recasted as:

Uγ+1
i = J−1

(
KUγi − αL

(
Uγi+1 − U

γ
i

)
+ Γ

)
. (118)
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Upwind: Forward-time/backward-space. The backward-space is written in the form (113)
with L, Q given by:

L = J and Q = (K − αL) + αLS−.

Then the numerical method is written in the matricial form as:

Uγ+1
i = J−1

(
KUγi − αL

(
Uγi − U

γ
i−1

)
+ Γ

)
. (119)

Lax-Friedrichs scheme. The matricial form for Lax-Friedrichs scheme for (1), (2) (and
(112)) is extended in the form (113) with L, Q given by:

L = J and Q =

(
K

2
− α

L

2

)
S+ +

(
K

2
+ α

L

2

)
S−,

which after some manipulation reduces to:

Uγ+1
i = J−1

(
K

2

(
Uγi+1 + Uγi−1

)
−
α

2
L
(
Uγi+1 − U

γ
i−1

)
+ Γ

)
. (120)

Lax-Wendro� scheme. The Lax-Wendro� scheme for PDEs is second order of accuracy,
see [24,45]. For (1), (2) (and (112)), the Lax-Wendro� scheme is written in the matricial
form (113) with L, Q given by:

L = J and Q =

(
L2α

2∆x
−
α

2
L

)
S+ +K − 2

L2α

2∆x
+

(
L2α

2∆x
+
α

2
L

)
S−,

which after some manipulation, is written as:

Uγ+1
i = J−1

(
KUγi −

α

2
L
(
Uγi+1 − U

γ
i−1

)
+
L2α

2∆x

(
Uγi+1 − 2Uγi + Uγi−1

)
+ Γ

)
. (121)

Crank-Nicholson scheme. This is the most used implicit numerical scheme for PDEs.
It is based in means performed in the space and time. For (1), (2) (and (112)), the Crank-
Nicholson, in the matricial form, is written as:

B

(
Uγ+1
i − Uγi
∆t

)
+A

(
Uγ+1
i+1 − U

γ+1
i−1 + Uγi+1 − U

γ
i−1

4∆x

)
= 0, (122)

CUγ+1
i = ϑ. (123)

Passing the known states to the right side and letting the unknowns on the right side, the
system (122), (123) is written as:

A
α

4
Uγ+1
i+1 +BUγ+1

i −A
α

4
Uγ+1
i−1 = −A

α

4
Uγi+1 +BUγi +A

α

4
Uγi−1, (124)

CUγ+1
i = ϑ. (125)

The Crank-Nicholson scheme is also written in matricial form (113) with L, Q given by:

L = −
α

4
LS− + J +

α

4
LS+ and Q =

α

4
LS− +K −

α

4
LS+.

The Crank-Nicholson scheme is applied for limited domains with left and right boundary
conditions. If we set the spatial indices i = {0, 1, · · · , l} and denote the right side of (122) as
bi and assuming that the boundary states U0, Un are known, called Dirichlet condition (other
kinds of boundary conditions are possible as Newman or Robin conditions), the system (1),
(2) (and (112)) is written as the tridiagonal matrix form:


J −α

4
K 0 0 · · ·

α
4
K J −α

4
K 0 · · ·

...
. . .

...
...

0 · · · α
4
K J −α

4
K

0 · · · 0 α
4
K J





Uγ+1
1

Uγ+1
2

...

Uγ+1
n−1


=



b1 +K α
4
U0

b2
...

bn−2

bn−1 −K α
4
Un


(126)
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An important property that we are interested in the above numerical schemes is that for
each level time the solution remains on the surface S. This condition motivates the following
de�nition:

De�nition 7 A numerical scheme for a LPDAE is S-persistent if states on S remains on
S for the time evolution.

We can state the following proposition.

Proposition 8 Uγi , obtained by any numerical schemes (118), (121), lies on S, i.e., the
numerical schemes (118), (121) are S-persistent.

Proof: Notice that since J−1 is the inverse of matrix J , then:

JJ−1 =

(
(B)m×n
(C)p×n

)
J−1 = (I)n×n −→ thus KJ−1 =

(
(I)m×m (0)m×p
(0)p×m (0)p×p

)
and MJ−1 =

(
(0)m×m (0)m×p
(0)p×m (I)p×p

) (127)

Notice also that KU = ((BU)m×1, (0)p×1), LU = ((AU)m×1, (0)p×1) and L2U =
((A2U)m×1, (0)p×1).

For any scheme (118), (121), multiplying both side by C on the right by C and using

(127) and previous observation, we obtain CUγ+1
i = α, i.e., Uγ+1

i is on the surface S.
�

In section 5.4.1, we present some numerical experiments of the above schemes for di�er-
ent systems of equations. In the next section, we prove necessary conditions to guarantee the
convergence of numerical methods, extending the fundamental theorem of Lax-Richtmyer.

To prove the convergence, it is useful to extend the function Uγi de�ned in the grid to
all R× R, we de�ne for 0 ≤ γ:

U(x, t) := Uγi , for γ∆t ≤ t < (1 + γ)∆t and

(
i−

1

2

)
∆x < x ≤

(
i−

1

2

)
∆x. (128)

For a �xed time tγ = ∆tγ, we denote the function U(x, t) only as Uγ := U(x, tγ).

C.2 Consistency, Stability and Convergence - Lax-Richtmyer theorem

The most important question arising when we propose numerical schemes is: The solution
Uγi obtained from numerical scheme converges to the solution V (x, t) of LPDAEs when ∆t,
∆x tend to zero?

Generically, to obtain the answer for this question is very hard. In 1956, Lax and Richt-
myer, see [29,45], proved a very important theorem for Linear systems of partial di�erential
equations that utilizes the prove of two more simple conditions on the numerical schemes
for linear PDES that are stability and consistence. The original theorem states, roughly
speaking, that a consistent numerical scheme for linear PDEs is convergence if, only if, is
stable.

For stability we mean a certain uniform boundedness on Uγi on Dd for any ∆t, ∆x and
for consistence we mean that the numerical schemes approximates, locally, the time and
spatial derivatives. There are many ways to de�ne stability, however for our purposes we
de�ne stability as:

De�nition 8 For a �xed time T , we say that the numerical scheme (113) is stable with
respect to a norm || || if there exist constants c1(T ), c2, c3 and τ satisfying:

||Uγ || ≤ c1(T )ec2γ∆t/T ||u0||+ c3||Γ || for all 0 ≤ ∆t < τ and γ ≤
T

∆t
. (129)
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Besides stability we need to de�ne consistence, i.e., how the numerical method approx-
imates the solution

De�nition 9 We say that the numerical scheme (113) is consistent of order (q, p) with
respect to the norm || · || if we have for any smooth solution V (x, t) of the di�erential
equation (1), (2) (and (112))

||V (·, tγ+1)− (L−1QV (·, tγ) + L−1Γ )|| = O(∆tq+1) +O(∆xp∆t). (130)

Moreover we assume that the L, Q satisfy:

L−1QL−1Γ = 0. (131)

Notice that the consistence condition guarantees that the scheme is S-persistent.

De�nition 10 The numerical scheme (113) is convergent of order (q, p) with respect to the
norm || · || if

||v(·, tn)− un|| = O(∆tq) +O(∆xp)uniformly for all n ∈ N, (132)

here v is the exactly solution of (1), (2) (and (112)).

Since we are able to prove the stability of numerical scheme using the norm of operators, it
is useful to prove the following result:

Lemma 1 A su�cient condition for stability of numerical scheme (113) if there exist con-
stants c1(T ), c2, c3, τ such that:

||L|| ≤ c3 and ||L−1Q||γ ≤ c1(T )ec2γ∆t/T for all 0 ≤ ∆t < τ and γ ≤
T

∆t
. (133)

Proof: Since J is invertible, there exists constants k1, k2 such that ||J || < k1, ||J−1|| < k2.
Moreover we have that:

||Uγ || = ||L−1QUγ−1 + L−1Γ || = ||L−1Q(L−1QUγ−2 + L−1Γ ) + L−1Γ ||

= ||(L−1Q)2Uγ−2 + L−1Γ ||.

Here we have used the consistence conditions (131). Applying recursively and using (131)
we obtain that:

||Uγ || = ||(L−1Q)γU0 + L−1Γ ||, (134)

which give us:
||Uγ || ≤ ||(L−1Q)||γ ||U0||+ ||L−1||||Γ ||, (135)

Taking ||(L−1Q)||γ , ||L|| satisfying (133), from stability de�nition Eq. (129) the result fol-
lows. �.

Remark 2 Notice that from Eq. (133) that we have

||L−1Q||γ ≤ c1(T )ec2γ∆t/T −→ ||L−1Q|| ≤ γ
√
c1(T )e

c2∆t/T , (136)

taking ∆t −→ 0 then, for a �xed T , we have that γ −→ ∞, from Eq. (136) we have that a
su�cient condition for stability is that:

||L−1Q|| ≤ 1, (137)

Remark 3 Let the partial di�erential system (1) (and (112)). The di�erential form for this
system is given by:

L1(S+, S−)Uγ+1 = Q(S+, S−)Uγ . (138)

Notice that Q(S+, S−) is the same that for the discretization of system (1), (2) (and (112)).
If the L1 = L the numerical method for (1), (2) (and (112)) is stable if, only if, the numerical
scheme for (1) is stable. Generically, for explicit numerical methods this condition is veri�ed.
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Now, we are able to prove the equivalence result connecting stability, consistence and con-
vergence.

Proposition 9 Let us assume that (1), (2) and (113) are linear in V (x, t), U , that (133)
is satis�ed and that (113) is consistent of order (q, p) and ||U0 − V (·, 0)|| = O(∆xp). Then
(113) is convergent of order (q, p), i.e.,

||Uγ − V (·, tγ)|| = O(∆xp) +O(∆tq) uniformly for all γ ≤
T

∆t
. (139)

Proof: Since the scheme is consistent of order (q, p), from (130), the exact solution
satis�es:

V γ := V (·, tγ) = L−1QV γ−1 + L−1Γ +∆tR, (140)

where the rest R satis�es ||R|| = O(∆xp)+ ′(∆tq). Taking the di�erence between the exact
solution and the numerical approximation W γ := V γ − Uγ , we obtain:

W γ = L−1QV γ−1 + L−1Γ +∆tR−
(
L−1QUγ−1 + L−1Γ

)
= L−1Q(V γ−1 − Uγ−1) +∆tR

Applying recursively, we obtain:

W γ = (L−1Q)2(V γ−2 − Uγ−2) +∆tL−1QR+∆tR

= (L−1Q)γ(V 0 − U0) +∆t

γ−1∑
i=0

(L−1Q)iR.

Since ||V 0 − U0||O(∆xp), and using (133.b) we obtain:

||Uγ − V γ || = ||W γ || ≤ ∆t
γ−1∑
i=0

||(L−1Q)iR||+O(∆xp)

≤ ||R||∆t
γ−1∑
i=0

c1e
c2j∆t/T +O(∆xp)

≤ ||R||γ∆tc1ec2γ∆t/T +O(∆xp) = ||R||Tc1ec2 +O(∆xp) = O(∆xp) +O(∆tq),

that proves the convergence of numerical scheme (113). �

D Numerical schemes for Eqs. (1), (2) ( or Eq. (6))

To de�ne the numerical method for (1), (2) (or Eq. (6)) we utilize the integral form. Assume
that we have a uniform grid on R×R+ with xi = i∆x, tγ = γ∆t. Integrating Eq. (1) in the
box [xi−1/2, xi+1/2]× [tγ , tγ+1] we obtain:

∫ xi+1/2

xi−1/2

(G(U(x, tγ+1)−G(U(x, tγ))dx+

∫ tγ+1

tγ
(F (U(x1+ 1

2
, t)− F (U(x1− 1

2
, t))dt = 0,

(141)

If we consider the numerical method for (1), (2), the numerical discretization for (2) reduces
to:

H(U(x, tγ)) = 0. (142)

For equation (6), the integration on the box [xi−1/2, xi+1/2]× [tγ , tγ+1] give us∫ xi+1/2

xi−1/2

(H(U(x, tγ+1)−H(U(x, tγ))dx = 0. (143)
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We de�ne:

Gγi =
1

∆x

∫ xi+1/2

xi−1/2

G(U(x, tγ)dx and Hγ
i =

1

∆x

∫ xi+1/2

xi−1/2

H(U(x, tγ)dx. (144)

We de�ne V γi the solution (G(V γi ) − Gγi , H(V γi ) − Hγ
i ) = 0. Since we assume that the

jacobian of (G,H)T is nonsingular this solution is unique.
We also de�ne the approximation f : Rn × Rn −→ Rm the �ux function as:

fγ
i+ 1

2

:= f(Uγi , U
γ
i+1) ∼

1

∆t

∫ tγ+1

tγ
F (U(x1+ 1

2
, t)dt (145)

Then, we can write (141), (143) as

Gγ+1
i −Gγi = −α

(
fγ
i+ 1

2

− fγ
i− 1

2

)
and Hγ+1

i = Hγ
i . (146)

The function f is called the numerical �ux and is assumed to be consistent with the �ux
function F (V ) if

f(U,U) = F (U), for all U ∈ Rn. (147)

De�nition 11 Let F ∈ C2(Rn,Rm), f ∈ C(Rn×Rn,Rm) and suppose that f is consistent,
i.e., satis�es (147). Assume that we have a sequence V 0

i ∈ Rn, i ∈ Z of initial values and
∆t, ∆x ∈ R+. Then we de�ne successively for γ ≥ 1, i ∈ Z the numerical method given by
(146). Then we call f the numerical �ux and (146) the numerical scheme in conservation
form for the system (1), (6).

Remark 4 Notice that the conservation form guarantees that

(∑
i

Gγ+1
i =

∑
i

Gγi ,
∑
i

Hγ+1
i =

∑
i

Hγ
i

)
.

If
∑
iH

0
i = 0, (i.e., initial states on the surface S) then

∑
iH

γ
i = 0 for all γ.

Using similar calculations, we can de�ne the numerical method for (1), (2):

De�nition 12 Let F ∈ C2(Rn,Rm), f ∈ C(Rn×Rn,Rm) and suppose that f is consistent,
i.e., satis�es (147). Assume that we have a sequence V 0

i ∈ Rn, i ∈ Z of initial values and
∆t, ∆x ∈ R+. Then we de�ne successively for γ ≥ 1, i ∈ Z the numerical method given by

Gγ+1
i −Gγi = −α

(
fγ
i+ 1

2

− fγ
i− 1

2

)
and Hγ+1

i = 0. (148)

Then we call f the numerical �ux and (146) the numerical scheme in conservation form for
the system (1), (6).

We can generalize (146), (148) for more general case (that consider implicit one) sub-
stituting (146.a), (148.a) by convex mean:

Gγ+1
i −Gγi = −α

(
θ

(
fγ+1

i+ 1
2

− fγ+1

i− 1
2

)
+ (1− θ)

(
fγ
i+ 1

2

− fγ
i− 1

2

))
, (149)

for 0 ≤ θ ≤ 1. For θ = 0 the scheme reduces to (146), (148) in the explicit form; for θ = 1
the scheme is completely implicit.

We can consider some examples of numerical schemes. For any numerical scheme, the
discretization of Eq. (2) is H(Uγ+1

i ) = 0 and for Eq. (6) the numerical discretization give

us H(Uγ+1
i ) = H(Uγ+1

i ) (single time step). For Eqs. (1) the numerical discretizations are
the same obtained only for a PDE, for instance:

Upwind: Forward-time/backward-space

G
(
Uγ+1
i

)
−G

(
Uγi
)

∆t
+
F
(
Uγi
)
− F

(
Uγi−1

)
∆x

= 0.
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here f(u, v) = F (v). Upwind: Forward-time/forward-space

G
(
Uγ+1
i

)
−G

(
Uγi
)

∆t
+
F
(
Uγi+1

)
− F

(
Uγi
)

∆x
= 0.

here f(u, v) = F (u).
Lax-Friedrichs scheme.

G
(
Uγ+1
i

)
−

(G
(
U
γ
i+1

)
+(G

(
U
γ
i−1

)
2

∆t
+
F
(
Uγi+1

)
− F

(
Uγi
)

∆x
= 0.

The most complex numerical implementation is to solve the nonlinear case, because we
need to linearize the numerical schemes that we are interested in obtaining the solution.
We consider (146) in the explicit case, other methods are very similar and can be obtained

using the same process. Since we are interested in obtain V γ+1
i it is obtained by solving

(G(V γi )−Gγi , H(V γi )−Hγ
i ) = 0, we substitute −Gγi H

γ
i by G(V γi ), H(V γi ) in the numerical

scheme that is writing as:

G(V γi )−Gγi = −α
(
fγ
i+ 1

2

− fγ
i− 1

2

)
and H(V γi ) = Hγ

i . (150)

We apply a Newton method to linearize the system. Our initial estimative for V γ+1
i is V γi .

Each approximation of the iterative method is denoted as (Vi)
l, then (Vi)

0 = V γi . The
linearize scheme (150) is written, in the matricial form, as:

JG,H

(
(Vi)

l
)
((∆Vi)

l) = −

−α(f li+ 1
2

− f l
i− 1

2

−
(
fγ
i+ 1

2

− fγ
i− 1

2

))
(Hl

i −H
γ
i )

 , (151)

where (∆Vi)
l = (Vi)

l+1 − (Vi)
l, Hl

i = H
(
(Vi)

l
)
and f l

i+ 1
2

, f l
i− 1

2

are the numerical �ux

evaluated in (Vi)
l.

The state (Vi)
l is updated by (Vi)

l = (Vi)
l + (∆Vi)

l.
For de�ned tolerances tol the method stops if ||(∆Vi)l|| < tol or l ≥ nmax, for nmax

the maximum number of iterations. We also can substitute ||(∆Vi)l|| < tol using the image
of function that we want obtain the root.

E Expression of the non-uniform block-tridiagonal matrix

In this section we derive expressions for the blocks of the non-uniform block matrix JG in
equation (70), which has the general form

JG =



A0 B0 B̃
C0 A1 B1

C1 A2 B2

. . .
. . .

. . .

CM−2 AM−1 BM−1

C̃ CM−1 AM


. (152)

The expression above di�ers from matrix A of equation (71) by the presence of the two
extra blocks B̃ and C̃. This fact implies on slight modi�cations to the decompositions and
algorithms of Section 5.2, but it does not change considerably the cost or the speedup ratios
discussed in Section 5.3.
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The expression of blocks Al, Bl and Cl−1, for 0 < l < M , is obtained by deriving the

residuals of equations (65), (66), with respect to U l+1
k , for 0 < k < M . This calculation

implies on matrices of the form

Al =


κ[G

′
]k+1
l − µ1

[
[B′ ]k+1

l (Uk+1
l+1 − 2Uk+1

l + Uk+1
l−1 )−

−(Bk+1
l+1 + 2Bk+1

l + Bk+1
l−1 )I

]
− α1[R

′
]k+1
l

(τκ+ α2)
[
H
′
]k+1

l

 , (153)

Bl =

−µ1[B′ ]k+1
l+1 (Uk+1

l+1 − U
k+1
l )− µ1(Bk+1

l+1 + Bk+1
l )I + η1[F

′
]k+1
l+1

0

 , (154)

Cl−1 =

µ1[B′ ]k+1
l−1 (U

k+1
l − Uk+1

l−1 )− µ1(Bk+1
l + Bk+1

l−1 )I − η1[F
′
]k+1
l−1

0

 , (155)

with I denoting an identity matrix of size n × n and G
′
, F
′
, B′ , R′ and H′ denoting the

jacobian matrices of G, F , B, R and H respectively. For l = 0 and l = M , we have to �nd
the derivatives of the residuals of the boundary conditions in (68), (69). In this case, we
obtain

A0 =
[
α1AL − 3η1BL

]
, B0 =

[
4η1BL

]
, B̃ =

[
−η1BL,

]
(156)

and
C̃ =

[
3η1BR

]
, CM−1 =

[
−4η1BR

]
, AM =

[
α1AR + η1BR

]
. (157)

F A �oating point cost comparison of the block decompositions

F.1 A �oating point cost comparison of the block decompositions: 1 to 8

To be more precise about the di�erence among the decompositions presented in Section 5.2,
we now perform an approximate �oating point count of the Algorithms 1 and 3. Let us start
de�ning cls(n,m) to be the cost of a solver algorithm for a full-rank linear system of size
n × n with m right hand sides, and cam(n, p,m) to be the cost of the add and multiply
operation A := B+CD for A, B of size n×m, C of size n× p, D of size p×m. Using these
de�nitions, we can see that the �op count for the block LU decomposition in Algorithm 1
is

cbdcp(M,n,m) :=

M−1∑
i=1

cls(n,m) + cam(m,m,m) = (M − 1)(cls(n,m) + cam(m,m,m)),

(158)
while the �op count for Algorithm 3 is cbdcp(M,n, n). As a result, the advantage of the
Algorithm 1 over 3 can be expressed as

ς(M,n, p) =
cbdcp(M,n, n)

cbdcp(M,n, n− p)
. (159)

Here ς represents how many times is one algorithm faster than the other, at least in terms
of �oating point operations. We will refer to this quantity as speedup (in analogy to the
speedup quantity in parallel programming).

The asymptotic speedup ς(M,n, p) when p ≈ n � 1 can be measured theoretically as
follows: to �x ideas, let us take the linear solver algorithm to be the one for the classical LU
decomposition method, so that

cls(n,m) = cdcp(n) + cfbs(n,m), (160)
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Fig. 10 Graph of the speedup ς(M,n, p) de�ned in (159), using equations (160) and (161).
Here M was considered very large, so that M ≈M − 1 is true.

where the cost of the decomposition is cdcp(n) ≈ 4n3−3n2+5n
6

and the cost of the forward
and backward substitution for m right hand sides is cfbs(n,m) ≈ nm(2n − 1). Taking the
cost of the add and multiply algorithm to be

cam(n, p,m) ≈ 2mnp, (161)

one can easily prove that

lim
(M,n,p)→(∞,∞,n)

ς(M,n, p) = lim
(n,p)→(∞,n)

28n3 − 9n2 + 5n

28n3 − 48n2p+ 36np2 − 12p3 − 9n2 + 6np+ 5n
= 7,

(162)
which means that for M , n large, and p close to n, Algorithm 1 is up to 7 times faster than
Algorithm 3. In Figure 10 we can see the graph of ς(M,n, p) for n up to 20, M � 1. In the
worst case scenario, which corresponds to n = 20, p = 1, m = 19, all algorithms perform
similarly: ς(n, p) ≈ 1.09. In the best case scenario, corresponding to n = 6, p = 5, m = 1,
we get ς(n, p) ≈ 7.33 and it is clear that choosing Algorithm 3 is the best choice amongst
the discussed ones. For case n = 20, p = 10, m = 10, we still have ς(n, p) greater than 1:
ς(n, p) ≈ 2.46, and therefore it is evident that using the appropriate decomposition matters.
Even when m = n, the cost of both algorithms is the same, so there is no disadvantage
in using the top-to-bottom block LU decomposition rather than the left-to-right block LU
version.

Usually the decomposition process represents most of the work to be done for the linear
solver. That is the case for only one right hand side vector: the decomposition process is
of order 3, while the forward and backward substitution process is only order 2. However,
the block forward and backward substitution part can become order 3 as well if there are
su�cient right hand side vectors. That is the case for the Divide and Conquer method,
discussed in the next section. By taking the right hand side b to be of size nM × q, we can
measure the asymptotic speedup obtained by solving (71) using Algorithm 1 along with 2
instead of using 3 along with 4 by the following expression:

ς∗(M,n, p, q) =
cbls(M,n, n, q)

cbls(M,n, n− p, q)
, (163)
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where
cbls(M,n,m, q) = cbdcp(M,n,m) + cbfbs(M,n,m, q), (164)

for cbfbs(M,n,m, q) ≈ 2(M − 1)cam(m,n, q) + Mcfbs(n, q) being the cost of the block
forward and backward substitutions with q right hand side vectors. As expected, if there is
only one right hand side vector in the block-tridiagonal linear system, we have

lim
(M,n,p,q)→(∞,∞,n,1)

ς∗(M,n, p, q) = lim
(n,p,q)→(∞,n,1)

4n3 + 12n2p+ 12p3 + 9n2 + 18np− n
28n3 − 48n2p+ 36np2 − 12p3 + 21n2 − 18np− n

= 7,

(165)
and the maximum theoretical speedup is still 7. However, considering the case q = n, we
have

lim
(M,n,p,q)→(∞,∞,n,n)

ς∗(M,n, p, q) lim
(n,p,q)→(∞,n,n)

4n3 + 12n2p+ 24npq + 12n2q + 12p3 + · · ·
28n3 − 48n2p+ 36np2 − 24npq + 36n2q − 12p3 + · · ·

= 4,

(166)
and asymptotic speedup is now reduced to 4. The reason for this reduction in the speedup
for a big number of right hand side vectors is explained by the fact that the �oating point
operations necessary to compute the forward and backward substitutions is independent of
p in equation (163). As a result, no matter the value of p, whenever q = n we have that
cfbs(n, q) is of order O(n3), which causes this term to in�uence both the numerator and
denominator equally. However, independently on the number of right hand sides in the non-
uniform block-tridiagonal linear system, using the top-to-bottom block LU decomposition
is still better than left-to-right version.

F.1.1 A �oating point cost comparison to the block LU decomposition:
algorithm 9

We will now perform a �oating point operation count of the most expensive part of the
DCB method: the step 1 of Algorithm 9. We will further compare it to the �oating point
cost of the top-to-bottom block LU decomposition presented in Subsection 5.2, the fastest
sequential method we have discussed.

Let us consider that the machine in which the non-uniform block-tridiagonal linear
system is to be solve has ρ processing units. We assume the perfect partition M = ρM1 +
(ρ − 1), so that Mi = M1, for i = 2, · · · , ρ in (78). Considering only one right hand side
vector, the most expensive step in Algorithm 9 is the �rst one, with �oating point count
that can be approximated by:

cstp1(M1, n,m) = cbdcp(M1, n,m) + cbfbs(M1, n,m, n+ 1) + c∗bfbs(M1, n,m, n), (167)

where c∗bfbs(M1, n,m, q) ≈ (M1 − 1)cam(m,n, q) +M1cfbs(n, q) is the �oating point oper-
ation count of the block forward and backward substitution that accounts for the special
structure of θi, i = 1, · · · ρ − 1. Considering that the decomposition process is the most
expensive in the top-to-bottom block LU decomposition method (Algorithm 1), we can
approximate the speedup ςDCB of the DCB method as

ςDCB(ρ,M1, n, p) =
cbdcp(ρM1 + (ρ− 1), n, n− p)

cstp1(M1, n, n− p)
, (168)

where p = n −m is the number of zero rows in the non-uniform blocks of the matrix. We
�rst consider the case p = 0, which gives

lim
(M1,n,p)→(∞,∞,0)

ςDCB(ρ,M1, n, p) = lim
n→∞

ρ(28n2 − 9n+ 5)

88n2 + 15n− 1
=

7ρ

22
. (169)

The asymptotic speedup 7ρ
22

is a slight improvement of the one obtained in [37]: 7ρ
25
. The

reason for that is simply because of the �oating point operation savings due to the special
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form of θi, i = 1, · · · ρ−1. We now consider the case of non-uniform blocks �lled with several
rows of zeros:

lim
(M1,n,p)→(∞,∞,n)

ςDCB(ρ,M1, n, p) = lim
n→∞

ρ(4n2 − 3n+ 5)

28n2 − 3n− 1
=
ρ

7
, (170)

and therefore the asymptotic speedup is reduced when more null rows are inserted into
the non-linear block systems. Although the ratio ρ

7
may look discouraging at �rst, we have

only considered �oating point operations in our calculations. Several other aspects usually
in�uence in the parallelization of the method, such as memory operations.
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