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Abstract:

Stochastic approximation methods are well established for optimization problems.

The appeal of these methods is due largely to their ability to cope efficiently and ro-

bustly with inexact information about the underlying optimization problem. This

thesis proposes stochastic approximation methods for the solution of stochastic

variational inequalities, paying attention to asymptotic convergence (stability),

convergence rate, oracle complexity, knowledge of problem parameters, data avail-

ability and distributed solution. In chapter 3, we propose a method that combines

stochastic approximation with incremental constraint projections, meaning that, at

each iteration, the random operator is sampled and a component of the intersection

defining the feasible set is chosen at random. Our method allows the distributed

solution of Cartesian stochastic variational inequalities with partial coordination

between users of a network. Such sequential scheme is well suited for applications

involving large data sets, online optimization and distributed learning. We analyse

this method for the class of weak-sharp monotone operators (without regulariza-

tion) and for the class of plain monotone operators with regularization. In chapter

4, we propose a stochastic extragradient method for pseudo-monotone operators

with a novel iterative variance reduction procedure. We present convergence and

complexity analysis relaxing previous assumptions used for stochastic approxima-

tion and accelerating the convergence rate while maintaining a near-optimal oracle

complexity. Our extragradient method is also suitable for the distributed case. In

chapter 5, we propose two stochastic extragradient methods with linear search

with the same set of assumptions as in chapter 4, except that we do not require

the knowledge of the Lipschitz constant or Lipschitz continuity.

Keywords: Stochastic approximation, randomized algorithms, stochastic varia-

tional inequalities, incremental methods, extragradient method, variance-reduction,

weak-sharpness, Tykhonov regularization.
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Resumo:

Métodos de aproximação estocástica já são bem estabelecidos para otimização.

Uma vantagem destes métodos é a habilidade de lidar eficientemente de forma ro-

busta com informações inexatas sobre o problema de otimização em questão. Esta

tese propõe métodos de aproximação estocástica para a solução de desigualdades

variacionais estocásticas, com atenção para convergência assintótica (estabilidade),

taxa de convergência, complexidade do oráculo, conhecimento de parâmetros do

problema, disponibilidade de dados e solução distribúıda. No caṕıtulo 3, é pro-

posto um método que combina aproximação estocástica com projeções incremen-

tais, significando que, a cada iteração, o operador aleatório é amostrado e uma

das componentes da interseção definindo o conjunto viável é escolhida aleatoria-

mente. Este método pode ser usado na solução distribúıda de desigualdades varia-

cionais Cartesianas com coordenação parcial entre usuários de uma rede. Este é

um esquema sequencial adequado para problemas de alta dimensão, otimização

online e aprendizagem distribúıda. Este método é analizado para a classe de

operadores monótonos weak-sharp (sem regularização) e para operadores apenas

monótonos com regularização. No caṕıtulo 4, é proposto um método extragradi-

ente estocástico para operadores pseudo-monótonos usando um novo procedimento

de redução de variância iterativa. É apresentado resultados de convergência e

complexidade, relaxando-se hipóteses usadas anteriormente em aproximação es-

tocástica e acelerando-se a convergência. Este método também é adequado para

a solução distribúıda. No caṕıtulo 5, são propostos dois métodos extragradiente

estocásticos com busca linear usando-se as mesmas hipóteses do caṕıtulo 4, exceto

que não é requerido o conhecimento da constante de Lipschitz ou a continuidade

Lipschitz.

Palavras-chave: Aproximação estocástica, algoritmos randomizados, desigual-

dades variacionais estocásticas, métodos incrementais, método extragradiente, redução

de variância, weak-sharpness, regularização de Tykhonov.
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Chapter 1

Introduction

1.1 The stochastic variational problem and the

sampling methodology

The standard (deterministic) variational inequality problem, which we will denote

as VI(T, X) or simply VI, is defined as follows: given a closed and convex set

X ⊂ R
n and a single-valued operator T : Rn → R

n, find x∗ ∈ X such that for all

x ∈ X,

(1.1) 〈T (x∗), x − x∗〉 ≥ 0.

We shall denote by X∗ the solution set of VI(T, X). The variational inequal-

ity problem includes many interesting special classes of variational problems with

applications in economics, game theory and engineering. The basic prototype is

smooth convex optimization when T is the gradient of a smooth function. Other

problems which can be formulated as variational inequalities, include complemen-

tarity problems, systems of equations, saddle-point problems and many equilib-

rium problems. When X = R
n, the VI problem becomes the system of equations

problem, i.e, find x∗ ∈ R
n such that

T (x∗) = 0.

When X = R
n
+, the VI problem becomes the complementarity problem, i.e., find

x∗ ∈ R
n such that

0 ≤ x∗ ⊥ T (x∗) ≥ 0.
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See Section 1.5 of [27]. Se also Section 1.4 of [27] and [28] for an excellent review

on the applications of such formulations, which include fields such as engineering

(e.g., mechanics problems, structural design problems, obstacle problems, traffic

equilibrium problems, optimal control) and economics (e.g., General equilibria

and game theory). The complementarity problem and systems of equations are

important classes of problems where the feasible set is unbounded. The saddle-point

problem is the problem

min
y∈Y

max
z∈Z

f(y, z),

for Y × Z ⊂ R
m ×R

n and f : Rm ×R
n → R. This problem can be cast as an a VI

under suitable conditions with

T (y, z) = [∇yf(y, z) − ∇zf(y, z)]

and X = Y × Z. The saddle-point problem is an equivalent formulation of the

zero-sum Nash game. Relevant equilibrium problems which can be formulated as a

VI include: the Nash equilibrium, the Wardrop traffic equilibrium and the General

Economic Equilibrium. See, for example, [41] and Section 1.4 of [27].

In the stochastic case, we start with a measurable space (Ξ, G), a measurable

(random) operator F : Ξ × R
n → R

n and a random variable ξ : Ω → Ξ defined on

a probability space (Ω, F ,P) which induces an expectation E and a distribution

P := Pξ of ξ, that is, P(A) = P(ξ ∈ A) for any measurable A ∈ G. When no

confusion arises, we sometimes use ξ to also denote a random sample ξ ∈ Ξ. We

assume that for every x ∈ R
n, F (ξ, x) : Ω → R

n is an integrable random vector.

The solution criterion analyzed in this thesis consists of solving VI(T, X) as defined

by (1.1), where T : Rn → R
n is the expected value of F (ξ, ·), i.e.,

(1.2) T (x) = E[F (ξ, x)], ∀x ∈ R
n.

Precisely, the definition of the stochastic variational inequality problem (SVI) is

the following:

Definition 1 (SVI). Under the setting of (1.2), find a random variable x∗ : Ω →
X, such that 〈T (x∗(ξ)), x − x∗(ξ)〉 ≥ 0, for all x ∈ X and almost every ξ ∈ Ξ.

Such formulation of SVI is also called expected value formulation. It was first

proposed in [31], as a natural generalization of stochastic optimization problems

9



(SP). Recently, a more general definition of stochastic variational inequality was

considered in [19, 69] where the feasible set is also affected by randomness, that is,

X : Ξ ⇒ R
n is a random set-valued map. This setting appears, e.g., in econom-

ical or traffic equilibrium problems where an uncertain demand is present in the

constraints.

Methods for the deterministic VI(T, X) have been extensively studied (see [27]).

If T is fully available then SVI can be solved by these methods. As in the case of SP,

the SVI in Definition 1 becomes very different from the deterministic setting when

T is not available. This is often the case in practice due to expensive computation

of the expectation in (1.2), unavailability of Pξ or absence of a closed form for

F (ξ, ·). This situation requires sampling the random variable ξ and the use of

values of F (η, x), given a sample η of ξ and a current point x ∈ R
n (a procedure

often called “stochastic oracle” call). It is important to remark that the framework

in (1.2) includes the relevant discrete case where T is a prohibitively large sum of

operators, that is,

T (x) =
S∑

i=1

Ti(x), ∀x ∈ R
n,

with S ≫ 1. Computing the above operator is computationally prohibitive. Prob-

lems in this framework require methods which have the ability to make progress by

examining only a small fraction of the data set rather than scanning it entirely - an

operation that is too expensive for “big-data” modern applications, e.g., machine

learning, stochastic equilibrium problems and empirical risk minimization.

Depending on how sampling is incorporated with the algorithm, solution meth-

ods for SVIs can be classified into two basic categories. The first category consists

of the stochastic approximation (SA) methods, which perform sampling in an “in-

terior” manner, by applying an algorithm for deterministic VIs and resorting to

sampling whenever the algorithm requires values of the operator at given points.

In that respect, SA-typed methods are explicit methods in the sense that a direct

(deterministic) algorithm is used along the stochastic oracle calls. The second cat-

egory corresponds to sample average approximation (SAA) methods, which sample

in an “exterior” manner. These methods replace the mean operator T by the em-

pirical average operator to obtain the SAA problem, and then use a solution to

the SAA problem as an estimate of a solution to the true problem. SAA-typed
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methods are implicit methods in the sense that the sampled problem is solved by

means of a deterministic method of preferred choice. In this thesis we focus on

the SA approach. For analysis of the SAA methodology for SP and SVI, see e.g.,

[31, 70] and references therein.

The SA methodology has a long tradition in probability, statistics and opti-

mization, initiated by the seminal work of Robbins and Monro in [66]. In this

paper they consider X = R
n and T = ∇f in Definition 1 for a smooth strongly

convex function f under specific conditions. Thus, the problem they analyse is:

under (1.2), almost surely find x∗(ξ) ∈ R
n such that T (x∗(ξ)) = 0. The SA

methodology has been applied to SVI in [40], [42], [75], [50], [73], [36], [37], [20],

[76], [44], [45], [77]. SA-typed methods for SVI can be seen as a projection-type

method where the exact mean operator T is replaced along the iterations by a

random sample of F . This approach induces a stochastic error F (ξ, x) − T (x) for

x ∈ X in the trajectory of the method. See also [51], [2] for other problems where

the stochastic approximation procedure is relevant (such as machine learning, on-

line optimization, repeated games, queueing theory, signal processing and control

theory).

1.2 Accessing the feasible set and distributed so-

lution

A frequent additional difficulty is the possibly complicated structure of the feasible

set X. Often, the feasible set takes the form

X = ∩i∈IXi,

where {Xi : i ∈ I} is an arbitrarily family of closed convex sets. There are different

motivations for considering the design of algorithms which, at every iteration, use

only a component Xi rather than the whole feasible set X. First, in the case of

projection methods, when the orthogonal projection onto each Xi, namely Πi :

R
n → Xi, is much easier to compute than projection onto X, namely Π : Rn → X,

a natural idea consists of replacing, at iteration k, Π by one of the Πi’s, say Πik
, or

even by an approximation of Πi. This occurs, for instance, when X is a polyhedron
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and the Xi’s are halfspaces. This procedure is the basis of the so called sequencial

or parallel row action methods for solving systems of equations (see [17]) and

methods for the feasibility problem, useful in many applications, including image

restoration and tomography (see, e.g., [5] and [16]). Second, in some cases X is

not known a priori, but is rather revealed through the random realizations of its

components Xi in time through a learning process. Such problems currently arise

in fair rate allocation problems in wireless networks where the channel state is

unknown but the channel states Xi are observed in time (see e.g. [57] and [34]).

Third, in some cases X is known but the number of constraints is prohibitively

very large (e.g., in machine learning and signal processing).

In Cartesian variational inequalities, a network of m agents is associated to a

coupled variational inequality with constraint set

X = X1 × · · · × Xm

and operator

F = (F1, . . . , Fm),

where the i-th agent is associated to a constraint set X i ⊂ R
ni and a map Fi :

Ξ × R
n → R

ni such that

n =
m∑

i=1

ni.

Relevant problems which are included in the above setting are stochastic Nash

equilibrium (SNE) problems and stochastic multi-agent optimization problems. In

the SNE, for i = 1, . . . , m, X i ⊂ R
ni is closed and convex, and the problem consists

of finding, almost surely, a point x∗ = (x∗
1, . . . , x∗

m) such that for all i ∈ {1, . . . , m},

x∗
i solves the optimization problem

min
xi∈Xi

E[fi(ξ, x1, . . . , xi, . . . , xm)].

The equilibrium conditions of SNE can be formulated as a SVI with

F (ξ, x) := (∇x1f1(ξ, x), . . . , ∇xm
fm(ξ, x))

and X = X1 × · · · × Xm. The stochastic multi-agent optimization problem is the

problem

min
x∈X

m∑

i=1

E[fi(ξ, x)],
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with the additional constraint that the i-th user has only access to its objective fi

and constraints X i when deciding its variable xi ∈ X i. This problem is reformu-

lated as an SVI with X := X1 × · · · × Xm and

F (ξ, ·) := (∇x1f(ξ, ·), . . . , ∇xm
f(ξ, ·)),

where f(ξ, ·) :=
∑m

i=1 fi(ξ, ·). In these mentioned problems, the i-th agent has

only access to constraint set X i and operator Fi (which depends on other agents’

decisions) so that a distributed solution of the SVI is required in large networks.

An important class of distributed methods for Cartesian VI’s are designed so that

agents update their stepsizes independently under some partial coordination, since

communication along a large network is costly and requiring the constraint that the

agents use exactly the same stepsize or additional parameters can be a non-robust

requirement (see [43]). As an example, the distributed variant of the classical

projection method studied in [75] takes the form: for all i = 1, . . . , m,

xk+1
i = Πi

[
xk

i − αk,iFi(ξ
k
i , xk)

]
,

where Πi is the Euclidean projection onto X i (see also [43]).

1.3 Projection methods

In the deterministic setting (1.1), the classical projection method for VI(T, X),

akin to the projected gradient method for convex optimization, is

(1.3) xk+1 = Π[xk − αkT (xk)],

where Π is the projection operator onto X and {αk} is an exogenous sequence

of positive stepsizes. Convergence of this method is guaranteed assuming T is

strongly monotone, Lipschitz continuous and the stepsizes satisfy αk ∈ (0, 2σ/L2)

and infk αk > 0, where σ > 0 is the modulus of strong monotonicity and L is the

Lipschitz constant, see e.g. [27].

The strong monotonicity assumption is too demanding in some applications,

and convergence of (1.3) is not guaranteed when the operator is just monotone.

In order to deal with this situation, the following extragradient algorithm was
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proposed by Korpelevich [49]:

zk = Π[xk − αkT (xk)],

xk+1 = Π[xk − αkT (zk)],(1.4)

in which an additional auxiliary projection step is introduced. Convergence of

the method is guaranteed when the stepsizes satisfy αk ≡ α ∈ (0, 1/L). In [59],

the extragradient method was generalized and convergence rates were established

assuming compactness of the feasible set.

The next step relevant in applications is to relax the knowledge of the Lipschitz

constant or even the Lipschitz continuity in the extragradient method (1.4). In

[47], Khobotov proposed the following linear stepsize search for the extragradient

method: given iterate xk, the stepsize αk is chosen as the maximum α ∈ {θjα̂ :

j ∈ N0} such that

(1.5) α
∥∥∥T (zk(α)) − T (xk)

∥∥∥ ≤ λ‖zk(α) − xk‖,

where for all α > 0, zk(α) := Π
[
xk − αT (xk)

]
. In the above line search, α̂ > 0,

θ ∈ (0, 1) and λ > 0 are exogenous parameters.

The above extragradient method with line search does not use the Lipschitz

constant but requires Lipschitz continuity. It also requires as many projection

computations as the number of iterations in the line search. In [39], Iusem and

Svaiter proposed the hyperplane projection method in which a different line search

is introduced based on the geometric interpretation of separating the current iterate

and the solution set by a hyperplane. An advantage is that only continuity and

two projections per iteration are required. It takes the form: given iterate xk, take

αk as the maximum α ∈ {θjα̂ : j ∈ N0} such that

(1.6)
〈
T (z̄k(α)), xk − Π(gk)

〉
≥ λ

βk

‖xk − Π(gk)‖2,

where gk := xk − βkT (xk) and for all α > 0, z̄k(α) := αΠ(gk) + (1 − α)xk. Then

set zk := z̄k(αk) and xk+1 := Π
[
xk − γkT (zk)

]
, where

γk :=
〈
T (zk), xk − zk

〉
· ‖T (zk)‖−2.

Again, α̂ ∈ (0, 1], θ ∈ (0, 1), {βk} and λ > 0 are parameters to be defined a priori.

It is not difficult to see that xk+1 = Π
[
ΠHk

(xk)
]

where Hk is the hyperplane

Hk :=
{
x ∈ R

n : 〈T (zk), x − zk〉 = 0
}

.

14



See also [71, 74, 1] for improvements.

Observe that the projection method (1.3) and the extragradient method (1.4)

are explicit, i.e., the formula for obtaining xk+1 is an explicit one, up to the com-

putation of the orthogonal projection Π. An implicit approach for the solution of

monotone variational inequalities is through a Tykhonov or proximal regulariza-

tion scheme (see [27], Chapter 12). In these methods, a sequence of regularized

variational inequality problems are approximately solved at each iteration.

As commented before, a typical case occurs when the feasible set takes the form

X = ∩m
i=1Xi, where all the Xi’s are closed and convex. Row action methods and

alternate (or cyclic) projection algorithms for convex feasibility problems exploit

the computation of projections onto the components iteratively (see [3]). In such

case, the order in which the sets Xi are used along the iterations, i.e. the so called

control sequence {ωk} ⊂ {1, . . . , m}, must be specified. Several options have been

considered in the literature (such as cyclic control, almost cyclical control, most

violated constraint control and random control). A negative consequence of the

use of approximate projections is the need to use small stepsizes, i.e., satisfying
∑

k α2 < ∞ and
∑

k αk = ∞, which significantly reduces the rate of convergence

of the method, despite improving the access to the constraints or computational

complexity (in terms of projection calculations). We thus have a trade-off between

easier projection computation and slower convergence. Data availability is costly

in large-scale applications and often a solution with poorer quality but with easy

computation is the best available option.

The use of approximate projections requires some condition on the feasible

set, so that the projections onto the sets Xi’s are reasonable approximations of

the projection onto X. For this, some form of error bound, linear regularity or

Slater-type conditions on the sets Xi must be assumed (e.g., Assumption 7 in

Chapter 3 and the comments following it). See [4, 23]. Explicit methods for

monotone variational inequalities using approximate projections were studied e.g.

in [30] and [18], imposing rather demanding coercivity assumptions on T , in [6]

assuming paramonotonicity of T , and then in [8] assuming just monotonicity of T .

Another method of this type, using an Armijo search as in [39] for determining the

stepsizes, and approximate projections with the most violated constraint control,

can be found in [7].
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Related to row-action and alternate projective methods are the so called incre-

mental methods, introduced by Kibardin in [46] (see also [52, 9, 57] and references

therein). These methods are used for the minimization of a large sum of convex

functions, e.g. in machine learning applications. In such a context, instead of

using the gradient of the sum, the gradient of one of the terms is selected iter-

atively under different control rules. In [63, 57], incremental constraint methods

with random control rules were proposed for minimizing a convex function over an

intersection of a large number of convex sets. If the feasible set takes the form

(1.7) X = X0 ∩ (∩i∈IXi) ,

where {X0} ∪ {Xi : i ∈ I} is a collection of closed and convex subsets of Rn and

for every i ∈ I,

(1.8) Xi = {x ∈ R
n : gi(x) ≤ 0},

for some convex function gi with positive part g+
i (x) := max{gi(x), 0}, then the

method in [57] is given by

yk = ΠX0

[
xk − αk∇f(xk)

]
,(1.9)

xk+1 = ΠX0

[
yk − βk

g+
ωk

(yk)

‖dk‖2
dk

]
,(1.10)

where dk ∈ ∂g+
ωk

(yk) − {0} if g+
ωk

(yk) > 0, and dk = d for any d ∈ R
n − {0} if

g+
ωk

(yk) = 0. In method (1.9)-(1.10), {ωk} is a random control sequence taking

values in I and satisfying certain conditions and f : Rn → R is a convex smooth

function (the non-smooth case is also analysed). In (1.9), the method takes a step

towards the gradient direction, while in (1.10), the method takes a step towards

feasibility. Together with row-action and alternate projection methods, incremen-

tal constraint projection methods can be viewed as the dual version of (standard)

incremental methods. More recently, stochastic approximation was incorporated

in incremental constraint projections methods for stochastic convex minimization

problems in [72].
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1.4 Stochastic approximation methods

The first SA method for SVI was analyzed by Jiang and Xu in [40]. Their method

is:

xk+1 = Π[xk − αkF (ξk, xk)],(1.11)

where Π is the Euclidean projection onto X, {ξk} is a sample of ξ and {αk} is a

sequence of positive stepsizes. The almost sure convergence is proved assuming L-

Lipschitz continuity of T , strong monotonicity or strict monotonicity of T , stepsizes

satisfying
∑

k αk = ∞,
∑

k α2
k < ∞ (with 0 < αk < 2ρ/L2 in case T is ρ-strong

monotone) and an unbiased oracle with uniform variance, i.e., there exists σ > 0

such that for all x ∈ X,

(1.12) E

[
‖F (ξ, x) − T (x)‖2

]
≤ σ2.

After the above mentioned work, recent research on SA methods for SVI have

been developed in [42, 75, 50, 73, 36, 20, 76, 44, 45, 77, 37]. Two of the main

concerns in these papers were the extension of the SA approach to the general

monotone case and the obtention of (optimal) convergence rate and complexity

results with respect to known metrics associated to the VI problem. In order to

analyse the monotone case, SA methodologies based on the extragradient method

of Korpelevich [49] and the mirror-prox algorithm of Nemirovski [59], and itera-

tive Tykhonov and proximal regularization procedures (see [43]), were used in the

above mentioned works. Other objectives were the use of incremental constraint

projections in the case of difficulties when accessing the feasible set in [73], the

convergence analysis in the absence of the Lipschitz constant in [77, 75, 76], and

the distributed solution of Cartesian variational inequalities in [75, 50].

We finalize this section commenting on recent methods that our proposals in

Chapter 3 improve upon.

In [73], method (1.11) is improved by incorporating an incremental projection

scheme, instead of exact ones. They take X = ∩i∈IXi, where I is a finite index

set, and use a random control sequence, where both the random map F and the

control sequence {ωk} are jointly sampled, giving rise to the following algorithm:

yk = xk − αkF (ξk, xk)

xk+1 = yk − βk(yk − Πωk
(yk)).(1.13)
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When βk ≡ 1, the method is the version of method (1.11) with incremental con-

straint projections. For convergence, the operator is assumed to be strongly mono-

tone and Lipschitz-continuous. In this setting, method (1.13) improves on method

(1.9)-(1.10) for the particular case of X0 = R
n, I finite and {Xi : i ∈ I} with easy

projections.

In [50], regularized iterative Tychonov and proximal point methods for mono-

tone stochastic variational inequalities were introduced. In such methods, instead

of solving a sequence of regularized variational inequality problems, the regulariza-

tion parameter is updated in each iteration and a single projection step associated

with the regularized problem is taken. This is desirable since (differently from

the deterministic case), termination criteria are generally hard to meet in the

stochastic setting. The algorithm proposed allows for a Cartesian structure on the

variational inequality, so as to encompass, for example, equilibrium conditions of

monotone stochastic Nash games with a limited coordination between the player’s

stepsize and regularization sequences. Namely, the feasible set X ⊂ R
n has the

the form X = X1 × · · · × Xm, where each Cartesian component Xj ⊂ R
nj is a

closed and convex set, and the operator has components F = (F1, . . . , Fm) with

Fj : Ξ×R
n → R

nj for j = 1, . . . , m and
∑m

j=1 nj = n. The algorithm in [50] is thus

described as follows: given the k-th iterate xk ∈ X with components xk
j ∈ Xj, for

j = 1, . . . , m, the next iterate is given by the projection

(1.14) xk+1
j = ΠXj [xk

j − αk,j(Fj(ξ
k, xk) + ǫk,jx

k
j )],

for i = 1, . . . , m, where {αk,1, . . . , αk,m} are the stepsize sequences and {ǫk,1, . . . , ǫk,m}
are the regularization parameter sequences. This method is shown to converge un-

der monotonicity and Lipschitz-continuity of T and a partial coordination between

the stepsize and regularization parameter sequences (see Assumption 11 in Section

3.2). The iterative proximal point follows a similar pattern but differently from the

Tykhonov method, this method requires strict monotonicity, which in particular

implies uniqueness of solutions.
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1.5 Contributions of the thesis

The contributions of this thesis are summarized in the following and corresponds

to the papers [36, 37, 38].

1.5.1 Incremental methods [36]

As commented before, accessing data in modern large-scale problems is a chal-

lenge. In such cases, the use of stochastic approximation for computing the oper-

ator and/or easily computable approximate projections instead of exact ones is a

preferred option (or even the only one). Additionally, in many cases the constraint

set X is known but it contains a very large number of constraint components or

X is not known a priori, but is rather learned along time through random sam-

ples of its constraint components. An important feature of incremental constraint

projection methods is that they process sample operators and sample constraints

sequentially. This incremental structure is well suited for a variety of applica-

tions involving large data sets, online optimization and distributed learning. For

big-data problems, an incremental method can update simultaneously as passing

through the data set. For problems that require online learning, incremental pro-

jection methods of the type (1.9)-(1.10) or (1.13) are practically the only option

to use without the knowledge of all the constraints.

In collaboration with Iusem, A. and Jofré, A., we propose, in Chapter 3,

methods which incorporate the incremental constraint projection method with

the stochastic approximation to compute the operator. One of our main goals is

to weaken the strong monotonicity assumed in [73] by plain monotonicity. An-

other important goal is to incorporate the distributed solution of stochastic Carte-

sian variational inequalities in the framework of incremental constraint projection

methods. The incorporation of incremental constraint projection methods to dis-

tributed solution of network equilibria seems to be new.

We thus propose an incremental constraint projection method for monotone

SVIs. Precisely, assuming the structures (1.7)-(1.8), in the centralized case (m =
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1), the method takes the form

yk = ΠX0

[
xk − αk

(
F (vk, xk) + ǫkxk

)]
,(1.15)

xk+1 = ΠX0

[
yk − βk

g+
ωk

(yk)

‖dk‖2
dk

]
,(1.16)

where {ωk} is the random control, and dk ∈ ∂g+
ωk

(yk) − {0} if gωk
(yk) > 0; dk =

d ∈ R
n − {0} if gωk

(yk) ≤ 0. In Section 3.1 of Chapter 3, this method is analyzed

with no regularization, i.e., ǫk ≡ 0 and the monotone operator satisfies the weak

sharpness property (see Section 2.3 of Chapter 2) while in Section 3.2 of Chapter

3, we consider the same method with positive regularization parameters without

assuming weak sharpness. Just for simplicity, the distributed case (m ≫ 1) is

analysed only for the second variant (but the case m ≫ 1 could be generalized in

an obvious way to the case when the SVI has the weak sharpness property).

We mention the following contributions of method (1.15)-(1.16):

(i) Excepting for method (1.13) for strongly monotone stochastic variational in-

equalities, all the above mentioned works on stochastic approximation for

SVI use exact projections. We generalize (1.13) by analyzing the case of

infinite number of constraints, X0 6= R
n, and incremental constraints for a

larger class of closed convex sets. For instance, as in method (1.9)-(1.10),

our method allows the components Xi of X to have difficult projection op-

erators, as long as they take the form Xi = {x ∈ R
n : gi(x) ≤ 0} where gi is

a convex function with computable subgradients. We also extend the incre-

mental projection framework to the class of weak-sharp monotone operators

(without regularization) and to plainly monotone operators (with required

regularization), thus extending [57, 9, 72] to the framework of (stochastic)

variational inequalities. Differently from [57], we cope with unbounded op-

erators. Under weak sharpness, we prove that the sequence is bounded in L2

and give explicit estimates on the convergence rate O(1/
√

k) up to logarithm

terms. Sharper estimates are possible for bounded operators.

(ii) Method (1.15)-(1.16) is a variation of (1.14) with incremental projections.

We also incorporate the distributed solution, which appears to be new in the

setting of incremental projection methods. Due to the use of approximate
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projections instead of exact ones, an additional coordination requirement is

imposed, which is satisfied by usual choices of stepsizes and regularization

parameters (see Section 3.2.4 of Chapter 3, Assumption 11 and comments

following it and [50], Lemma 4).

(iii) It seems that the use of weak sharpness as a suitable property for incremen-

tal projections is new. In fact, differently from the strongly monotone case

in [73], where the convergence rate deteriorates with the use of incremen-

tal projections, we prove that, under weak sharpness, the rate O(1/
√

k) in

terms of E[d(xk, X∗)] is the same both with exact and incremental projec-

tions (see [45, 76]). Surprisingly, these results still hold true for the cases

of unbounded operators or unbounded feasible sets, an improvement over

[45, 76] where boundedness and exact projections are required alongside the

weak sharpness property. We also give the exact number of iterations re-

quired for an auxiliary stochastic optimization problem over X with linear

objective for solving the original SVI (which recovers a related property in

the deterministic setting, see [53]).

It should be noted that under weak sharpness, our method has robust step-

sizes in the sense of Nemirovski et al. [60], without knowledge of the Lipschitz

constant or the weak-sharp modulus. In that respect, we improve upon [76],

where under weak sharpness, robust stepsizes are given for exact projections,

compact feasible set, strict-monotonicity, knowledge of the weak sharpness

modulus and requiring a smoothing procedure and an extragradient scheme.

1.5.2 Stochastic extragradient methods [37, 38]

In Chapter 4, in collaboration with Iusem, A., Jofré, A. and Oliveira, R., we

propose the following extragradient method: given xk, define

zk = Π


xk − αk

Nk

Nk∑

j=1

F (ξk
j , xk)


,(1.17)

xk+1 = Π


xk − αk

Nk

Nk∑

j=1

F (ηk
j , zk)


,(1.18)
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where {Nk} ⊂ N is a non-decreasing sequence and {ξk
j , ηk

j : k ∈ N, j = 1, . . . , Nk}
are independent identically distributed (i.i.d.) samples of ξ. We call {Nk} the

sample rate sequence. In the sequel we need some notation. For any α > 0 we

consider the natural residual function rα, defined, for any x ∈ R
n, by rα(x) :=

‖x − Π(x − αT (x))‖. It is well known that the set of zeroes of rα coincides with

X∗ (see [27]). Given ǫ > 0, we consider an iteration index K = Kǫ, such that

E[rα(xK)2] < ǫ, and we look at E[rα(xK)2] as a non-asymptotic convergence rate.

In particular, we will have an O(1/K) convergence rate if E[rα(xK)2] ≤ Q/K

for some constant Q > 0 (depending on the initial iterate and the parameters of

the problem and the method). The oracle complexity will be defined as the total

number of oracle calls needed for E[rα(xK)2] < ǫ to hold, i.e.,
∑K

k=1 2Nk. Next we

synthetize the contributions of the algorithm presented in Chapter 3.

i) Asymptotic-convergence: Assuming pseudo-monotonicity of F , and us-

ing an extragradient scheme, without regularization, we prove that, almost

surely, the generated sequence is bounded, its distance to the solution set

converges to zero and its natural residual value converges to zero a.s. and in

L2. See [45] for recent examples where the more general setting of pseudo-

monotonicity is relevant (stochastic fractional programming, stochastic op-

tional pricing and stochastic economic equilibria). The sequence generated

by our method also possesses a new stability feature: for p = 2 or any p ≥ 4,

if the random operator has finite p-moment then the sequence is bounded

in Lp, and we are able to provide explicit upper bounds in terms of the

problem parameters. Previous work required a bounded monotone opera-

tor, specific forms of (pseudo)-monotonicity (monotonicity with acute angle,

pseudo-monotonicity-plus, strict pseudo-monotonicity, symmetric pseudo-

monotonicity or strong pseudo-monotonicity as in [44, 45]), or regularization

procedures. The disadvantage of regularization procedures in the absence of

strong monotonicity is the need to introduce additional coordination between

the stepsize sequence and the regularization parameters. Also, the regular-

ization induces a suboptimal performance in terms of rate and complexity

(see [77]).

ii) Accelerated rate with oracle complexity efficiency: To the best of our
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knowledge, our work is the first SA method for SVI with stepsizes bounded

away from zero. Such feature allows our method to achieve an accelerated

convergence rate O(1/K) in terms of the mean-squared natural residual un-

der plain pseudo-monotonicity (with no regularization requirements). As a

consequence, our method achieves a convergence rate of O(1/K) in terms

of the mean D-gap function 1 (see Subsection 4.3.1 of Chapter 4 and [27],

Proposition 10.3.7). In previous works, methods with diminishing stepsizes

satisfying
∑

k αk = ∞,
∑

k α2
k < ∞ were used, achieving a O(1/K) rate in

terms of the mean-squared distance to X∗, with more demanding monotonic-

ity assumptions (namely, bounded strongly pseudo-monotone operators and

bounded monotone weak-sharp VI) and a rate O(1/
√

K) in terms of mean

gap functions 2 for bounded monotone operators. Importantly, our method

preserves the optimal oracle complexity O(ǫ−2) up to first order logarithmic

term. By accelerating the rate, we reduce the number of projection compu-

tations, preserving the optimal oracle complexity. We provide explicit upper

bounds for the rate and complexity in terms of the problem parameters. As

a corollary of our result, we provide new classes of SVIs for which a con-

vergence rate of O(1/K) holds in terms of the mean-squared distance to

the solution set (see Section 4.3.1). In the context of large dimension data

(n ≫ 1), our algorithm complexity is proportional to n up to a scaling factor

in the sample rate (see Proposition 8).

iii) Unbounded setting: The results in items (i)-(ii) are valid for an unbounded

feasible set and unbounded operator. Important examples of such a setting

include complementarity problems and systems of equations. Asymptotic

convergence for an unbounded feasible set is analyzed in [75, 73, 45, 77] and

Section 3.1 of Chapter 3 with more demanding monotonicity hypotheses, and

in [50] and Section 3.2 of Chapter 3 for the monotone case, but with an addi-

tional regularization procedure. To the best of our knowledge, convergence

rates in the case of an unbounded feasible set were treated only in [73, 20].

In [73], a convergence rate is given only for strongly monotone operators. In

1Given a > 0, the regularized gap function is defined as ga(x) := supy∈X{〈T (x), x−y〉− a
2 ‖x−

y‖2}, for x ∈ R
n. Given b > a > 0, the D-gap function is ga,b(x) := ga(x) − gb(x), for x ∈ R

n.
2Such as the dual gap-function G(x) := supy∈X〈T (y), x − y〉 for x ∈ X .
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[20], assuming uniform variance over X (in the sense of (1.12)), a conver-

gence rate of O(1/
√

K) in terms of the mean value of a relaxed gap function
3 recently introduced by Monteiro and Svaiter [55]-[56] is achieved. However,

we provide in Example 1 (Chapter 4, Section 4.1), a simple case showing that

asymptotically the method in [20] is not stable in the unbounded setting: a.s.

the generated sequence has an unbounded subsequence (even though the gap

function value converges in mean to zero). Our convergence analysis in items

(i)-(ii) does not depend upon boundedness assumptions, and we prove the

accelerated rate O(1/K) in terms of the mean (quadratic) natural residual

and the mean D-gap function, which are new results. The natural residual

and the D-gap function are better behaved than the (standard) gap function:

the former are finite valued and Lipschitz continuous over Rn while the later

is finite valued and continuous only for a compact X.

(iv) Non-uniform variance: To the best of our knowledge, all previous works

require that the variance of the oracle error be uniform over X (in the sense

of (1.12)), excepting in [73] for the strongly monotone case, and in Chapter

3 for the case of a weak-sharp monotone operator, and also for the monotone

case with an iterative Tykhonov regularization (with no convergence rate

results). Such uniform variance assumption holds for bounded operators,

but not for unbounded ones, on a unbounded feasible set. Typical situations

where this assumption fails to hold include affine complementarity problems

and systems of equations. In such cases, the variance of the oracle error tends

(quadratically) to ∞ in the horizon (see Example 2 of Chapter 4, Section

4.1). The performance of our method, in terms of the oracle complexity,

depends on the point x∗ ∈ X∗ with minimal trade-off between variance and

distance to initial iterates “ignoring” points with high variance (see comments

after Theorem 10 and Section 4.3.1). This result also improves on the case

where (1.12) does holds but σ(x∗)2 ≪ σ2 or, on the case X is compact but

‖x0 − x∗‖ ≪ diam(X). In conclusion, the performance of method (1.17)-

(1.18) depends on solution points x∗ with minimal variance, compared to

the conservative upper bound σ2, and minimal distance to initial iterates. In

3Such gap-function is defined as G̃(x, v) := supy∈X〈T (y) − v, x − y〉 for x ∈ X and v ∈ R
n.
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the case of uniform variance over X∗ or X, we obtain sharper estimates of

rate and complexity in item (ii).

(v) Distributed solution of multi-agent system: The analysis in items (i)-

(iv) also holds true for the distributed solution of stochastic Cartesian vari-

ational inequalities, in the spirit of [75, 50, 43]. In our framework (see Al-

gorithm (4.3)-(4.4)), agents may update stepsizes bounded away from zero

independently over the range (0, 1/2L). An advantage of the extragradient

approach in the distributed case is that we do not require iterative regular-

ization procedures as in [50, 43] and the method of Section 3.2 of Chapter 3,

for coping with the plain monotone case. This implies that no coordination

is required between users’ stepsizes and regularization parameters and an

optimal convergent rate is achievable. As discussed later on, our algorithm

requires the choice of a sampling rate for dealing with the setting of items (i)-

(iv). Hence, in the distributed solution case, agents should have the choice

of sharing their oracle calls or not, and we allow both options. In the later

case of fully distributed sampling, the oracle complexity has higher order

dependence in terms of the network dimension m, which may be demanding

in the context of large networks (m ≫ 1). For this case, if an estimate of m

is available (up to a scaling factor in the sample rate) and a decreasing se-

quence of (deterministic) parameters {bi}m
i=1 is shared (in any order) among

agents, then our algorithm has oracle complexity of order m(a−1ǫ−1)2+a for

arbitrary a > 0 (see Proposition 10), that is, linear in m. Further dimension

reduction possibilities will be the subject of future work.

For achieving the results of items (i)-(v), we employ an iterative variance re-

duction procedure. This means that, instead of calling the oracle once per iteration

(as in previous SA methods for SVI studied so far), our method calls the oracle Nk

times at iteration k and uses the associated empirical average of the values of the

random operator F at the current iterates xk and zk (see (1.17)-(1.18)). Since the

presence of the stochastic error destroys the strict Fejér property (satisfied by the

generated sequence in the deterministic setting), the mentioned variance reduction

procedure is the mechanism that allows our extragradient method to converge in

an unbounded setting with stepsizes bounded away from zero, and to achieve an
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accelerated rate in terms of the natural residual. To obtain these results, we use

martingale moment inequalities and a supermartingale convergence theorem (see

Section 2.2). Our sampling procedure also possesses a robust property: a scaling

factor on the sampling rate maintains the progress of the algorithm with propor-

tional scaling in the convergence rate and oracle complexity (see Propositions 8, 9

and 10. See also [60] for robust methods). In Examples 1 and 2 of Section 4.1 of

Chapter 4, we show typical situations where such variance reduction procedure is

necessary.

To the best of our knowledge the variance reduction procedure mentioned above

is new for SA solution of SVI. During the preparation of this thesis we became

aware of references [24, 15, 29, 32, 22], where variable sample-size methods are

studied for stochastic optimization. We treat the general case of pseudo-monotone

variational inequalities with weaker assumptions. Also, our analysis and assump-

tions differ from these works relying on martingale and optimal stopping tech-

niques. In [24, 15, 29] the SA approach is studied for convex stochastic optimiza-

tion problems. In [15, 29], the focus is on gradient descent methods applied to

unconstrained strongly convex optimization problems. In [15], second order infor-

mation is assumed and an adaptive sample size selection is used. In [29] uniform

boundedness assumptions are required. In [24], a variant of the dual averaging

method of Nesterov [61] is applied for solving non-smooth stochastic convex opti-

mization, assuming a compact feasible set and uniform variance. A constant oracle

call per iteration Nk ≡ N > 1 is used, obtaining a convergence rate of O(1/
√

KN),

while we typically use Nk = O(k(ln k)1+b) with b > 0 obtaining a rate of O(1/K).

In [32, 22], the SAA approach for stochastic optimization is studied. This is an

implicit method, unlike the SA methodology. Also, uniform boundedness assump-

tions are required. In [22] the focus is on unconstrained optimization, with second

order information, using Bayesian analysis for an adaptive choice of Nk.

To better appreciate our variance reduction procedure in our SA extragradient

method, we make some remarks regarding SAA methods. In such methods, the

random variable is sampled once in an exterior manner and an uniform strong law

of large numbers guarantees the convergence of the method to the true solution. As

a consequence, X has to be compact and the performance of the method depends

on the maximum variance of the oracle over X and on the diameter of X. By
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exploring monotonicity along stochastic approximations, our variance reduction

makes use of progressive empirical averages (with increasing accuracy) at points of

the trajectory of the method. Hence, intuitively, the law of large numbers is invoked

locally along neighbourhoods of the trajectory of the method. As a consequence,

the feasible set can be unbounded and the performance of the method depends on

the distance of the initial iterate to the solution set and of the variance at points

of the trajectory and at the solution set only. Such type of results appear to be

new. 4

In Chapter 5, in collaboration with A. Iusem, A. Jofré and R. Oliveira, we

extend the analysis of Chapter 4 by proposing stochastic extragradient methods

without requiring knowledge of the Lipschitz constant or weakening the Lipschitz

continuity assumption. Motivated by the results of Chapter 4, we propose two

methods which are SA variants of the extragradient method with line search (1.5)

and the line search (1.6) of the hyperplane projection method respectively. Again,

we incorporate the variance reduction mechanism of method (1.17)-(1.18) and are

able to recover the results of items (i)-(iv) presented above for method (1.17)-

(1.18). To the best of our knowledge, these are the first extragradient methods

with line search for SVI. The introduction of line searches for the stepsize have the

objective to deal with inexistent, unknown or too large Lipschitz constant while

improving over the alternative of summable stepsizes (which require a too small

“stepsize” with a detrimental effect on the convergence rate). It is widely recog-

nized that line searches substantially enhance the numerical performance of the

method, compared with the variants which use exogenous stepsizes, be it summable

ones, or dependent on the Lipschitz constant. All these nice properties make the

stochastic extragradient methods with line search we propose more implementable.

It should be noticed that methods which avoid the use of the Lipschitz constant

or Lipschitz continuity, were proposed in [76, 77], but by means of a very different

procedure. Instead of line searches they use a random smoothing technique by

means of sampling an auxiliary random variable. It is an interesting idea, but it

requires compactness of the feasible set, uniformly bounded variance of the oracle

for monotone operators, and achieves the slower rate O(1/
√

K), while we can

4We remark that, as pointed out in [60], SA methods can be competitive and even outperform

SAA methods in some classes of convex problems.
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cope with unbounded sets, non-uniform variance for pseudo-monotone operators

and achieve the rate O(1/K).

We comment on the results of methods with line search of Chapter 5. In the

deterministic case, the hyperplane projection method (1.6) requires only continuity.

Our stochastic variant requires Hölder continuity of the random operator in order

to control the variance of the oracle error. This variant also uses two projections per

iteration with convergence rate O(1/
√

K), sample rate Nk ∼ k2 (up to logarithm

terms) and oracle complexity O(ǫ−6) (up to logarithm terms). Our stochastic

variant of the Khobotov’s line search (1.5) requires Lipschitz continuity of the

random operator, (a few more) projections per iteration 5, sample rate Nk ∼ k

(up to logarithmic terms) and oracle complexity O(ǫ−2) (up to logarithmic terms).

Hence, the choice between these two line search variants depends on a trade-

off between computational and oracle complexity (which might depend on the

application of interest). If oracle complexity is expensive, our results tend to

suggest the second variant, i.e., Algorithm 5 of Chapter 5 (if Lipschitz continuity

is available).

5The number of iterations in the line search is of logarithmic order on the Lipschitz constant

as in the deterministic case.
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Chapter 2

Preliminaries

2.1 Projection operator and notation

We shall define specific constants in every chapter with no relation to constants

outside that chapter. For x, y ∈ R
n, we denote by 〈x, y〉 the standard inner

product, and by ‖x‖ =
√

〈x, x〉 the correspondent Euclidean norm. Given C ⊂ R
n

and x ∈ R
n, we use the notation d(x, C) := inf{‖x − y‖ : y ∈ C} and D(C) :=

sup{‖x−y : x, y ∈ C‖}. Given a positive-definite symmetric matrix A ∈ R
n×n and

x ∈ R
n, we denote by 〈x, x〉A := 〈x, Ax〉 and ‖x‖A :=

√
〈x, Ax〉 the correspondent

inner product and Euclidean norm. For a closed and convex set C ⊂ R
n, we use

the notation ΠC,A(x) := argminy∈C ‖y − x‖2
A for x ∈ R

n. We use the simplified

notation ΠC := ΠC,I when I ∈ R
n×n is the identity matrix. Given H : Rn → R

n,

S(H, C) denotes the solution set of VI(H, C). For a matrix B ∈ R
n×n, we use

the notation ‖B‖ := supx 6=0 ‖Bx‖/‖x‖. The following properties of the projection

operator are well known.

Lemma 1. Take a closed and convex set C ⊂ R
n and a positive-definite symmetric

matrix A ∈ R
n×n.

i) Given x ∈ R
n, ΠC,A(x) is the unique point of C satisfying the property:

〈x − ΠC,A(x), y − ΠC,A(x)〉A ≤ 0, for all y ∈ C.

Moreover, let v ∈ R
d and x ∈ C with z := ΠC [x − v]. Then, for all u ∈ C,

2〈v, z − u〉 ≤ ‖x − u‖2 − ‖z − u‖2 − ‖z − x‖2.

ii) For all x ∈ R
n, y ∈ C, ‖ΠC(x) − y‖2 + ‖ΠC(x) − x‖2 ≤ ‖x − y‖2.
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iii) For all x, y ∈ R
n, ‖ΠC(x) − ΠC(y)‖ ≤ ‖x − y‖.

iv) Given H : Rn → R
n, S(H, C) = {x ∈ R

n : x = ΠC,A[x − A−1H(x)]}.

v) For all x ∈ C, y ∈ R
n, 〈x − y, x − ΠC(y)〉 ≥ ‖x − ΠC(y)‖2.

The following lemma will be used in the analysis of the methods of Chapter

3. It was used in [57, 63] but in a slightly different form, suitable for convex

optimization problems.

Lemma 2. Consider a closed and convex X0 ⊂ R
n, and let g : Rn → R ∪ {∞}

be a convex function with dom(g) ⊂ X0. Suppose that there exists Cg > 0 such

that ‖z‖ ≤ Cg for all x ∈ X0 and all z ∈ ∂g+(x). Take x1 ∈ X0, u ∈ R
n, α > 0,

β ∈ (0, 2) and d ∈ R
n − {0} such that d ∈ ∂g+(y) − {0} if g+(y) > 0. Define

y, x2 ∈ X0 as

y = ΠX0 [x1 − αu],

x2 = ΠX0

[
y − β

g+(y)

‖d‖2
d

]
,

Then for any x0 ∈ X0 such that g+(x0) = 0 and any τ > 0, it holds that

‖x2 − x0‖2 ≤ ‖x1 − x0‖2 − 2α〈x1 − x0, u〉 + [1 + τβ(2 − β)] α2‖u‖2−

β(2 − β)

C2
g

(
1 − 1

τ

)(
g+(x1)

)2
.

Proof. We shall first give an upper bound of ‖x2 − x0‖ in terms of ‖y − x0‖.

Precisely, we shall prove:

(2.1) ‖x2 − x0‖2 ≤ ‖y − x0‖2 − β(2 − β)
(g+(y))

2

C2
g

.

Suppose first g+(y) > 0 with d ∈ ∂g+(y) − {0}. In this case we have

‖x2 − x0‖2 =

∥∥∥∥∥ΠX0

[
y − β

g+(y)

‖d‖2
d

]
− ΠX0 [x0]

∥∥∥∥∥

2

≤
∥∥∥∥∥y − β

g+(y)

‖d‖2
d − x0

∥∥∥∥∥

2

= ‖y − x0‖2 − 2β
g+(y)

‖d‖2
〈y − x0, d〉 + β2 (g+(y))

2

‖d‖2
,(2.2)
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where in first equality we used x0 ∈ X0 and in the inequality we used Lemma 1(iii).

Since g is convex on X0, so is g+. Since x0, y ∈ X0, g+(x0) = 0 and d ∈ ∂g+(y), the

definition of subgradient implies 0 = g+(x0) ≥ g+(y) + 〈x0 − y, d〉, or equivalently:

(2.3) − 2β
g+(y)

‖d‖2
〈y − x0, d〉 ≤ −2β

(g+(y))
2

‖d‖2
.

Relations (2.2)-(2.3) and −β(2 − β)/‖d‖2 ≤ −β(2 − β)/C2
g imply relation (2.1)

which was claimed. Suppose now g+(y) = 0 and d 6= 0. In this case, x2 = ΠX0 [y] =

y and hence ‖x2 − x0‖2 = ‖y − x0‖2, so that (2.1) holds trivially with equality.

We now will relate g+(y) with g+(x1). We have

(
g+(y)

)2
=

[(
g+(y) − g+(x1)

)
+ g+(x1)

]2

=
(
g+(y) − g+(x1)

)2 − 2
(
g+(y) − g+(x1)

)
g+(x1) +

(
g+(x1)

)2

≥ −2
∣∣∣g+(y) − g+(x1)

∣∣∣ g+(x1) +
(
g+(x1)

)2
.(2.4)

Using that x1, y ∈ X0 and the definition of Cg we have

∣∣∣g+(y) − g+(x1)
∣∣∣ ≤ Cg‖y − x1‖ = Cg ‖ΠX0 [x1 − αu] − ΠX0 [x1]‖ ≤ Cgα‖u‖,

where in last inequality we used Lemma 1(iii). Multiplying the previous relation

by 2g+(x1) gives

2
∣∣∣g+(y) − g+(x1)

∣∣∣ g+(x1) ≤ 2Cgα‖u‖g+(x1)

≤ τC2
g α2‖u‖2 +

1

τ

(
g+(x1)

)2
,(2.5)

for arbitrary τ > 0. In last inequality above we used relation 2ab ≤ τa2 + 1
τ
b2 for

any τ > 0. Relations (2.4) and (2.5) imply that for any τ > 0,

(2.6) −
(
g+(y)

)2 ≤ τC2
g α2‖u‖2 −

(
1 − 1

τ

)(
g+(x1)

)2
,

which is the desired relation between g+(y) and g+(x1).

From (2.1) and (2.6) we obtain for every τ > 0,

(2.7) ‖x2 − x0‖2 ≤ ‖y − x0‖2 + τβ(2 − β)α2‖u‖2 − β(2 − β)

C2
g

(
1 − 1

τ

) (
g+(x1)

)2
.
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We also have

‖y − x0‖2 = ‖ΠX0 [x1 − αu] − ΠX0 [x0]‖2

≤ ‖(x1 − x0) − αu‖2

= ‖x1 − x0‖2 − 2α〈x1 − x0, u〉 + α2‖u‖2,(2.8)

where we used Lemma 1(iii) in the inequality. Relations (2.7)-(2.8) prove the

claim.

Remark 1. We remark that if dom(g) = R
n and the subgradients of g+ are

uniformly bounded over R
n, then the result of Lemma 2 holds with y ∈ R

n given

as y = x1 − αu, instead of y = ΠX0 [x1 − αu].

We denote by R
n
>0 the interior of the nonnegative orthant R

n
+. We use the

notation [m] := {1, . . . , m} for m ∈ N and (αi)
m
i=1 := (α1, . . . , αm) for αi ∈ R and

i ∈ [m]. For α := (αi)
m
i=1 ∈ R

m
>0, D(α) denotes the block-diagonal matrix in R

n×n

defined as

D(α) :=




α1In1 0 0
. . .

0 0 αmInm


 ,

where Ini
∈ R

ni×ni denotes the identity matrix for each i ∈ [m].

We will use the following lemma, which is proved in the Appendix of Chapter

4, in the distributed solution of Cartesian SVIs. Assume that C =
∏m

i=1 Ci and

n =
∑m

i=1 ni, where Ci ⊂ R
ni is closed and convex for i ∈ [m]. We endow C

with the inner product 〈x, y〉 =
∑m

i=1〈xi, yi〉 for x = (xi)
m
i=1 and y = (yi)

m
i=1 in C.

Consider the operator H = (H1, . . . , Hm) with Hi : Rn → R
ni for i ∈ [m].

Lemma 3. For any α ∈ R
m
>0, S(D(α) · H, C) = S(H, C).

In the case of the feasible set X as in (1.1), we shall use the notation Π := ΠX .

Given an operator H : Rn → R
n, for any x ∈ R

n and α > 0, we denote the natural

residual function associated to VI(H, X) by

rα(H ; x) := ‖x − Π [x − αH(x)]‖ .(2.9)

In the case of the operator T as in (1.1), we use the notation rα := rα(T, ·). For

the unit stepsize α = 1, we use the notation r(H ; ·) := r1(H ; ·) and r := r1.
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When α ∈ R
m
>0, we will also use the notation rα(x) := ‖x − Π [x − D(α)T (x)]‖ for

x ∈ R
n.

We shall also use the following useful lemma (see [27], Proposition 10.3.6).

Lemma 4. Given x ∈ R
n, the function (0, ∞) ∋ α 7→ rα(H,x)

α
is non-increasing.

We use the abbreviation “RHS” for “right hand side”. Given sequences {xk}
and {yk}, we use the notation xk = Op(yk) or ‖xk‖ .p ‖yk‖ to mean that there

exists a constant Cp > 0 (depending only on p) such that ‖xk‖ ≤ Cp‖yk‖ for all k

(we omit the reference to p if no confusion arises or if there is no such dependence).

The notation ‖xk‖ ∼ ‖yk‖ means that ‖xk‖ . ‖yk‖ and ‖yk‖ . ‖xk‖. Given a

σ-algebra F and a random variable ξ, we denote by E[ξ], E[ξ|F ], and V[ξ], the

expectation, conditional expectation and variance, respectively. We denote by

cov[B] the covariance of a random vector B. Also, we write ξ ∈ F for “ξ is F -

measurable”. We denote by σ(ξ1, . . . , ξk) the σ-algebra generated by the random

variables ξ1, . . . , ξk. Given the random variable ξ and p ≥ 1, |ξ|p is the Lp-norm

of ξ and |ξ |F|p := p

√
E [|ξ|p |F ] is the Lp-norm of ξ conditional to the σ-algebra

F . N(µ, σ2) denotes the normal distribution with mean µ and variance σ2. Given

x ∈ R, we denote by x+ := max{0, x} its positive part and by ⌈x⌉ the smallest

integer greater than x. For a function g : Rn → R
n we denote by g+ its positive

part, defined by g+(x) = max{0, g(x)} for x ∈ R
n. If g is convex, we denote by

∂g its subdifferential and dom(g) its domain. For a matrix B ∈ R
n×n, BT denotes

its transpose, ‖B‖ denotes its spectral norm, tr(B) denotes its trace and, if B is

symmetric positive semidefinite, we denote its square root matrix by
√

B.

2.2 Probabilistic tools

As in other stochastic approximation methods, a fundamental tool to be used is

the following Convergence Theorem of Robbins and Siegmund [67], which can be

seen as the stochastic version of the properties of quasi-Fejér convergent sequences.

Theorem 1. Let {yk}, {uk}, {ak}, {bk} be sequences of non-negative random vari-

ables, adapted to the filtration {Fk}, such that a.s.
∑

ak < ∞,
∑

bk < ∞ and

for all k ∈ N, E

[
yk+1

∣∣∣Fk

]
≤ (1 + ak)yk − uk + bk. Then a.s. {yk} converges and

∑
uk < ∞.
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We will also use the following result, whose proof can be found in Lemma 10

of [64].

Theorem 2. Let {yk}, {ak}, {bk} be sequences of nonnegative random variables,

adapted to the filtration {Fk}, such that a.s. ak ∈ [0, 1],
∑

ak = ∞,
∑

bk < ∞,

limk→∞
bk

ak
= 0 and for all k ∈ N, E

[
yk+1

∣∣∣Fk

]
≤ (1 − ak)yk + bk. Then a.s. {yk}

converges to zero.

For the next result see [13, 54]

Theorem 3 (Burkholder-Davis-Gundy inequality in R
d). Let ‖·‖ be the Euclidean

norm in R
d. Then, for all q ≥ 2, there exists Cq > 0 such that for any vector-

valued martingale {yj}N
j=0 adapted to the filtration {Gj}N

j=1 with y0 = 0, it holds

that
∣∣∣∣∣sup
j≤N

‖yj‖
∣∣∣∣∣
q

≤ Cq

∣∣∣∣∣∣∣

√√√√√
N∑

j=1

‖yj − yj−1‖2

∣∣∣∣∣∣∣
q

≤ Cq

√√√√√
N∑

j=1

|‖yj − yj−1‖|2q .

Some more probabilistic tools will be needed and presented in Chapter 5.

2.3 Weak-sharpness

We briefly discuss the weak sharpness property of variational inequalities which is

used in Section 3.1 of Chapter 3 as an useful property for incremental constraint

projection methods.

For X ⊂ R
n and x ∈ X, NX(x) denotes the normal cone of X at x, given by

NX(x) = {v ∈ R
n : 〈v, y − x〉 ≤ 0, ∀y ∈ X},

The tangent cone of X at x ∈ X is defined as

(2.10) TX(x) = {d ∈ R
n : ∃tk > 0, ∃dk ∈ R

n, ∀k ∈ N, x + tkdk ∈ X, dk → d}.

For a closed and convex set X, the tangent cone at a point x ∈ X has the follow-

ing alternative representation (see Rockafellar and Wets [68], Proposition 6.9 and

Corollary 6.30):

(2.11) TX(x) = cl{α(y − x) : α > 0, y ∈ X} = [NX(x)]◦,
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where for a given set Y ⊂ R
n, the polar set Y ◦ is defined as Y ◦ = {v ∈ R

n :

〈v, y〉 ≤ 0, ∀y ∈ Y }.

In [14], the notion of weak sharp minima for the problem minx∈X f(x) with

solution set X∗ was introduced: there exists ρ > 0 such that

(2.12) f(x) − f ∗ ≥ ρ d(x, X∗),

for all x ∈ X, where f ∗ is the minimum value of f at X. Relation (2.12) means

that f − f ∗ gives an error bound on the solution set X∗. In [22], it is proved that

if f is a closed, proper, and differentiable convex function and if the sets X and

X∗ are nonempty, closed, and convex, then (2.12) is equivalent to the geometric

condition: for all x∗ ∈ X∗,

(2.13) − ∇f(x∗) ∈ int


 ⋂

x∈X∗

[TX(x) ∩ NX∗(x)]◦


.

Every linear program is weak-sharp. Also, the minimization problem associated

to non-degenerate linear complementarity problems is weak-sharp [14]. Piecewise

affine functions possess “corners” which are potentially weak-sharp minima.

In optimization problems, the objective function can be used for determining

regularity of solutions. In variational inequalities one can use for that purpose the

above geometric definition or exploit the use of gap functions associated to the VI.

The dual gap function G : Rn → R∪{∞} is defined as G(x) := supy∈X〈T (y), x−y〉.
In the sequel, we denote by B(0, 1) the unit ball in R

n and by X∗ the solution set

of VI(T, X). In order to define a meaningful notion of weak sharpness for VIs, the

following possible assumptions were considered in [53]:

(i) There exists ρ > 0, such that for all x∗ ∈ X∗,

(2.14) − T (x∗) + ρB(0, 1) ∈
⋂

x∈X∗

[TX(x) ∩ NX∗(x)]◦.

(ii) There exists ρ > 0, such that for all x∗ ∈ X∗,

(2.15) 〈T (x∗), z〉 ≥ ρ‖z‖, ∀z ∈ TX(x∗) ∩ NX∗(x∗).

(iii) For all x∗ ∈ X∗,

(2.16) − T (x∗) ∈ int


 ⋂

x∈X∗

[TX(x) ∩ NX∗(x)]◦

.
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(iv) There exist ρ > 0 such that for all x ∈ X,

(2.17) G(x) ≥ ρ d(x, X∗).

Item (iii) is the definition of a weak sharp VI(T, X) given in [53]. In Theorem

4.1 of [53], it is proved that (i)-(ii) are equivalent, and that (i)-(iv) are equivalent

when X is compact and T is paramonotone (also known as monotone+) i.e., T is

motonone and 〈T (x) − T (y), x − y〉 = 0 ⇒ T (x) = T (y), for all x, y ∈ R
n (see [35]

for other properties of paramonotone operators).

Relation (2.17) means that the gap function G provides an error bound on the

solution set X∗. Paramonotonicity implies that T is constant on the solution set

X∗. Important classes of paramonotone operators are, for example, co-coercive,

symmetric monotone and strictly monotone composite operators (see [27], Chapter

2).

Recently, the following assumption was introduced in [76]: there exists ρ > 0

such that for all x∗ ∈ X∗ and all x ∈ X,

(2.18) 〈T (x∗), x − x∗〉 ≥ ρ d(x, X∗).

Clearly, (2.18) implies (2.17). Proposition 1, proved in the Appendix of Chapter

3, states that (2.18) implies (2.15) and the converse statement holds when T is

constant on X∗. Thus, when T is constant on X∗, (2.14), (2.15) and (2.18) are

equivalent, and when T is paramonotone and X is compact, relations (2.14)-(2.18)

are all equivalent. Hence, the following proposition, which appears to be new,

gives a precise relation between property (2.18) with the previous notions of weak

sharpness (2.14)-(2.17) presented in [53]. Interestingly, property (2.18) is well

suited for the incremental constraint projection-type methods considered here.

Proposition 1. Let T : Rn → R
n be a continuous monotone operator and X ⊂ R

n

a closed and convex set. The following holds:

i) Condition (2.18) implies (2.15).

ii) If T is constant on X∗, then (2.15) implies (2.18).

Finally, we will need the following result, established in Theorem 4.2. of [53]:
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Theorem 4. If T is continuous and there exists z ∈ R
n such that

−z ∈ int

( ⋂

x∈X∗

[TX(x) ∩ NX∗(x)]◦
)

,

then

argmin
x∈X

〈z, x〉 ⊂ X∗.

As a consequence of Theorem 4, under weak sharpness and uniform continuity

of T , any algorithm which generates a sequence {xk} such that d(xk, X∗) → 0

has the property that after a finite number of iterations M , any solution of the

auxiliary program minx∈X〈T (xM), x〉, with a linear objective, is a solution of the

original variational inequality (see Theorem 5.1 in [53]). When X is a polyhedron,

this result can be interpreted as a finite convergence property of algorithms for VI

with the weak sharpness property, since a linear program is finitely solvable. Other

algorithmic implications of weak sharpness are developed in [53]. However, in prac-

tice, M may be very large. In Corollary 4 of Chapter 3 we provide an exact value of

M in terms of the “condition number” L/ρ2 for our first projection method under

the weak sharpness assumption, assuming the operator is L-Lipschitz continuous.
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Chapter 3

Stochastic incremental constraint

projection methods

3.1 An incremental projection method under weak

sharpness

In this chapter we assume that the feasible set has the form

(3.1) X = X0 ∩ (∩i∈IXi) ,

where {X0} ∪ {Xi : i ∈ I} is a collection of closed and convex subsets of Rn. We

assume that the evaluation of the projection onto X0 is computationally easy and

that for all i ∈ I, Xi is representable as

(3.2) Xi = {x ∈ R
n : gi(x) ≤ 0},

for some convex function gi with dom(gi) ⊂ X0. Also we assume that, for every

i ∈ I, subgradients of g+
i (x) at points x ∈ X0 − Xi are easily computable and that

{∂g+
i : i ∈ I} is uniformly bounded over X0, that is, there exists Cg > 0 such that

(3.3) ‖d‖ ≤ Cg,

for all x ∈ X0, all i ∈ I, and all d ∈ ∂g+
i (x).

We make the important observation that the collection {Xi : i ∈ I} of con-

straints can be infinite as long as (3.3) and certain regularity assumptions are

satisfied (see Assumption 7 and comments following it).
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3.1.1 Statement of the algorithm

In this chapter, v will denote the random variable acting in the random operator F .
1 The following incremental algorithm advances in such a way that the “operator

step” and the “feasibility step” are updated in separate stages. In the first stage,

given the current iterate xk, the method advances in the direction of a sample

−F (vk, xk) of the random operator, producing an auxiliary iterate yk. In this step,

the hard constraint set X0 is considered while the soft constraints {Xi : i ∈ I}
are “ignored”. In the second stage, a soft constraint Xωk

is randomly chosen for

ωk ∈ I, and the method advances in the direction opposite to a subgradient of

g+
ωk

at the point yk, producing the next iterate xk+1. Thus, the method exploits

simultaneously the stochastic approximation of the random operator (in the first

stage) and a randomization of the incremental selection of constraint projections

(in the second stage).

Algorithm 1 (Incremental constraint projection method for SVI).

1. Initialization: Choose the initial iterate x0 ∈ R
n, the stepsizes {αk} and

{βk}, the random controls {ωk} and the sample {vk} of v.

2. Iterative step: Given xk, define:

yk = ΠX0 [xk − αkF (vk, xk)],(3.4)

xk+1 = ΠX0

[
yk − βk

g+
ωk

(yk)

‖dk‖2
dk

]
,(3.5)

where dk ∈ ∂g+
ωk

(yk) − {0} if g+
ωk

(yk) > 0; dk = d ∈ R
n − {0} if g+

ωk
(yk) = 0.

Before analyzing the algorithm, we present some special cases which illustrate

that the mentioned framework is very general. If, for i ∈ I, the Euclidean projec-

tion onto Xi is easy, then we can always construct a function satisfying (3.2)-(3.3)

with “easy” subgradients. Indeed, defining the function gi(x) := d(x, Xi), for

x ∈ R
n, then gi satisfies (3.2), is convex, nonnegative and finite valued over Rn for

which ‖d‖ ≤ 1 for all x ∈ R
n, d ∈ ∂gi(x). Also, for any x /∈ Xi,

x − ΠXi
(x)

gi(x)
=

x − ΠXi
(x)

‖x − ΠXi
(x)‖ ∈ ∂gi(x),

1In Chapters 1, 4 and 5, we use the notation ξ for the random variable.
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provides a subgradient which is easy to evaluate. In that case, using the above

directions as subgradients dk of g+
ωk

at yk, method (3.4)-(3.5) can be rewritten as

yk = xk − αkF (vk, xk),

xk+1 = ΠX0

[
yk − βk

(
yk − ΠXωk

(yk)
)]

.

In first equality above, the projection onto X0 is not required since dom(gi) = R
n

and {∂g+
i : i ∈ I} is uniformly bounded in R

n(see Remark 1). If, additionally,

X0 = R
n and βk ≡ 1 then the method takes the form xk+1 = ΠXωk

[
xk − αkF (vk, xk)

]
.

3.1.2 Discussion of the assumptions

In the sequel we consider the natural filtration

Fk = σ(x0, ω0, . . . , ωk−1, v0, . . . , vk−1).

Next we present the assumptions necessary for our convergence analysis.

Assumption 1 (Consistency). The solution set X∗ of VI(T, X) is nonempty.

Assumption 2 (Monotonicity). The mean operator T in (1.2) satisfies: for all

y, x ∈ R
n,

〈T (y) − T (x), y − x〉 ≥ 0.

Assumption 3 (Lipschitz-continuity or boundedness). We suppose T : Rn → R
n

is continuous and, at least, one of the following assumptions hold:

i) There exists L > 0, such that a.s. for all y, x ∈ R
n, k ∈ N,

E

[
‖F (vk, y) − F (vk, x)‖2

∣∣∣Fk

]
≤ L2‖y − x‖2.

ii) There exists CF > 0 such that a.s.

sup
x∈X0

sup
k∈N

E

[
‖F (vk, x)‖2

∣∣∣Fk

]
≤ 2C2

F .

Assumption 3(i) is satisfied if there is a random variable L(v) with finite second

moment such that for all x, y ∈ R
n,

‖F (v, y) − F (v, x)‖ ≤ L(v)‖y − x‖,
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and {vk} is an i.i.d. sample of v. Assumption 3(ii) is satisfied if there exists CF > 0

such that a.s.

sup
x∈X0

E

[
‖F (v, x)‖2

]
≤ 2C2

F ,

and {vk} is an i.i.d. sample of v.

Assumption 4 (Unbiased sampling). The sequence {vk} has the same distribution

as v and a.s. for all x ∈ R
n and all k ∈ N, E

[
F (vk, x)

∣∣∣Fk

]
= T (x).

Assumption 5 (Finite variance). There exists x̄ ∈ X and σ(x̄) > 0 such that a.s.

for all k ∈ N, E
[
‖F (vk, x̄) − T (x̄)‖2

∣∣∣Fk

]
≤ σ(x̄)2.

Observe that since {vk} is a sample drawn from v, σ(x̄)2 is an upper bound

on the variance of F (v, x̄). Minkowski’s inequality and Assumptions 3(i)-5 imply

that for all x ∈ X0 and k ∈ N,

(3.6) E

[
‖F (vk, x) − T (x)‖2

∣∣∣Fk

]
≤ [2L‖x − x̄‖ + σ(x̄)]2 < ∞,

while Assumptions 3(ii)-5 imply that for all x ∈ X0 and k ∈ N,

(3.7) E

[
‖F (vk, x) − T (x)‖2

∣∣∣Fk

]
≤ 8C2

F .

In the following we denote by σ : Rn → [0, ∞), the function defined by, for every

x ∈ R
n,

(3.8) σ(x)2 := sup
k∈N

E

[
‖F (vk, x) − T (x)‖2

∣∣∣Fk

]
.

The variance of F (v, x) is bounded above by σ(x)2. If {vk} is an i.i.d. sample of

v, then σ(x)2 is exactly the variance of F (v, x). Observe that σ : Rn → [0, ∞)

is measurable and locally bounded, since (3.6) or (3.7) hold. It should be noted

that Assumption 5 is merely a finite variance condition, which is standard in the

stochastic setting. Excepting for [73], the much stronger uniform condition (1.12)

was asked in the previously literature of SA methods for SVI. We do not require

(1.12) when the operator is Lipschitz continuous (Assumption 3(i)).

Assumption 6 (weak sharpness). There exists ρ > 0, such that for all x∗ ∈ X∗

and all x ∈ X,

(3.9) 〈T (x∗), x − x∗〉 ≥ ρ d(x, X∗).
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We now state the assumptions concerning the incremental projections.

Assumption 7 (Constraint sampling and regularity). There exists c > 0 such

that for all x ∈ X0 and all k ≥ 1,

d(x, X)2 ≤ cE
[(

g+
ωk

(x)
)2 ∣∣∣Fk

]
.

As commented in [57], this assumption is quite general. For instance, it is

satisfied when the index set I is arbitrary and X has an interior point under non-

demanding properties of {ωk, vk} (e.g. {ωk} is i.i.d. and independent of {vk}).

The constant c > 0 depends on the distribution of {ωk} and {vk} and of regularity

properties of the set X. As an example, if I is finite, X0 := R
n, gi := d(·, Xi) such

that for some η > 0 and all x ∈ R
n,

(3.10) d(x, X)2 ≤ η max
i∈I

d(x, Xi)
2,

and for some δ ∈ (0, 1] and all i ∈ I and k ∈ N,

(3.11) P (ωk = i|Fk) ≥ δ

|I| ,

then Lemma 4 in [73] shows that Assumption 7 holds with c := η|I|/δ, where |I|
is the cardinality of I. Condition (3.11) is satisfied, for instance, when {ωk} is

i.i.d. and uniform over I and {ωk, vk} is independent. Condition (3.10), studied

in [4, 23], is satisfied when X is an polyhedron. Assumption 7 is satisfied if

d(x, X)2 ≤ η maxi∈I(g+
i (x))2 for some η > 0 and all x ∈ X0, which holds under

nondemanding regularity conditions on the set X, e.g., a Slater condition.

Assumption 8 (Small stepsizes). For all k ∈ N, αk > 0, βk ∈ (0, 2), and

∞∑

k=0

αk = ∞,
∞∑

k=0

α2
k < ∞,

∞∑

k=0

α2
k

βk(2 − βk)
< ∞.

We remark here that the use of small stepsizes is forced by two factors: the use

of approximate projections instead of exact ones, and the stochastic approximation.

Indeed, even with exact projections, the method (3.4)-(3.5) still requires small

stepsizes.
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3.1.3 Convergence analysis

We first state a lemma which is immediate from the Lipschitz continuity 3(i) and

convexity of t 7→ t2.

Lemma 5. Suppose that Assumptions 3(i)-5 hold and define the function B :

R
n → [0, ∞) as B(x) := σ(x) + ‖T (x)‖, for any x ∈ R

n. Then, almost surely, for

all x, y ∈ R
n, k ∈ N,

‖T (x)‖2 ≤ E

[
‖F (vk, x)‖2

∣∣∣Fk

]
≤ 2L2‖x − y‖2 + 2B(y)2.

We now prove an iterative relation to be used in the convergence analysis. We

mention that (3.12) is sufficient for the convergence analysis and includes the case

of unbounded X and T . If the operator is bounded or X0 is compact, then (3.13)

allows an improvement of the convergence rate.

Lemma 6 (Recursive relation). Suppose that Assumptions 1-8 hold. For all x∗ ∈
X∗, k ∈ N and τ > 1 define Ak,τ := βk(2 − βk)(τ − 1)/(cC2

g τ), Bk,τ := βk(2 − βk)τ

and C(x∗) := ρ + B(x∗).

If Assumption 3(i) holds, then for all x∗ ∈ X∗, τ > 1 and k ∈ N,

E

[
‖xk+1 − x∗‖2

∣∣∣Fk

]
≤
[
1 + 2 (1 + Bk,τ) L2α2

k

]
‖xk − x∗‖2 − 2ραk d(xk, X∗)

(3.12) +

[
C(x∗)2

Ak,τ
+ 2 (1 + Bk,τ) B(x∗)2

]
α2

k.

If Assumption 3(ii) holds, then for all x∗ ∈ X∗, τ > 1 and k ∈ N,

E

[
d(xk+1, X∗)2

∣∣∣Fk

]
≤ d(xk, X∗)2 − 2ραk d(xk, X∗)

(3.13) +




(
ρ +

√
2CF

)2

Ak,τ
+ 2 (1 + Bk,τ) C2

F


α2

k.

Proof. Take x∗ ∈ X∗, τ > 1 and k ∈ N. We claim that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2αk〈xk − x∗, F (vk, xk)〉+

(3.14) [1 + τβk(2 − βk)] α2
k‖F (vk, xk)‖2 − βk(2 − βk)

C2
g

(
1 − 1

τ

) (
g+

ωk
(xk)

)2
.
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Indeed, by the definition of the method (3.4)-(3.5), we can invoke Lemma 2 with

g := gωk
, x1 := xk, x2 := xk+1, y := yk, x0 := x∗, α := αk, u := F (vk, xk), β := βk

and d := dk, obtaining (3.14).

We now take the conditional expectation with respect to Fk in (3.14) obtaining,

E

[
‖xk+1 − x∗‖2

∣∣∣Fk

]
≤ ‖xk − x∗‖2 − 2αk〈xk − x∗, T (xk)〉+

[1 + τβk(2 − βk)] α2
kE

[
‖F (vk, xk)‖2

∣∣∣Fk

]
−

βk(2 − βk)

C2
g

(
1 − 1

τ

)
E

[(
g+

ωk
(xk)

)2 ∣∣∣Fk

]
≤ ‖xk − x∗‖2 + 2αk〈x∗ − xk, T (xk)〉+

(3.15) [1 + τβk(2 − βk)] α2
kE

[
‖F (vk, xk)‖2

∣∣∣Fk

]
− βk(2 − βk)

c · C2
g

(
1 − 1

τ

)
d(xk, X)2,

using xk ∈ Fk and Assumption 4 in the first inequality, and Assumption 7 in the

second inequality.

Next, we will bound the second term in the right hand side of (3.15). We write

〈T (xk), x∗ − xk〉 = 〈T (xk) − T (x∗), x∗ − xk〉+

(3.16) 〈T (x∗), x∗ − ΠX(xk)〉 + 〈T (x∗), ΠX(xk) − xk〉.

By monotonicity of T (Assumption 2), the first term in the right hand side of

(3.16) satisfies

(3.17) 〈T (xk) − T (x∗), x∗ − xk〉 ≤ 0.

Regarding the second term in the right hand side of (3.16), the weak sharpness

property (Assumption 6) and the fact that x ∈ X∗ imply

(3.18) 〈T (x∗), x∗ − ΠX(xk)〉 ≤ −ρ d
(
ΠX(xk), X∗

)
.

We now observe that
∣∣∣d
(
ΠX(xk), X∗

)
− d(xk, X∗)

∣∣∣ ≤ ‖ΠX(xk) − xk‖ = d(xk, X),

so that

(3.19) d
(
ΠX(xk), X∗

)
≥ d(xk, X∗) − d(xk, X).

From (3.18)-(3.19), we get

(3.20) 〈T (x∗), x∗ − ΠX(xk)〉 ≤ −ρ d(xk, X∗) + ρ d(xk, X).
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Concerning the third term in the right hand side of (3.16), we have

(3.21) 〈T (x∗), ΠX(xk) − xk〉 ≤ ‖T (x∗)‖‖ΠX(xk) − xk‖ ≤ B(x∗) d(xk, X),

using the Cauchy-Schwarz inequality in the first inequality, and the definition of

B(x∗) in Lemma 5 in the second inequality. Combining (3.17), (3.20) and (3.21)

with (3.16), we finally get

(3.22) 〈T (xk), x∗ − xk〉 ≤ −ρ d(xk, X∗) + (ρ + B(x∗)) d(xk, X).

We use (3.22) in (3.15) and get

E

[
‖xk+1 − x∗‖2

∣∣∣Fk

]
≤ ‖xk − x∗‖2 − 2ραk d(xk, X∗)

+ [1 + τβk(2 − βk)] α2
kE

[
‖F (vk, xk)‖2

∣∣∣Fk

]

(3.23) − βk(2 − βk)

c · C2
g

(
1 − 1

τ

)
d(xk, X)2 + 2(ρ + B(x∗))αk d(xk, X).

Now we rearrange the last two terms in the right hand side of (3.23), using the

fact that 2ab ≤ λ2a2 + b2

λ2 for any λ > 0. With a := d(xk, X), b := C(x∗)αk and

λ := Ak,τ we get

(3.24) − Ak,τ d(xk, X)2 + 2C(x∗)αk d(xk, X) ≤ C(x∗)2α2
k

Ak,τ

.

From Lemma 5 and xk ∈ Fk, we obtain

(3.25) E

[
‖F (vk, xk)‖2

∣∣∣Fk

]
≤ 2L2‖xk − x∗‖2 + 2B(x∗)2.

Putting together relations (3.23)-(3.25) and rearranging terms, we finally get (3.12),

as requested.

Suppose now that Assumption 3(ii) holds. In this case, the inequalities in

(3.21) can be replaced by

(3.26) 〈T (x∗), ΠX(xk) − xk〉 ≤ ‖T (x∗)‖‖ΠX(xk) − xk‖ ≤
√

2CF d(xk, X),

using, in the last inequality, Assumption 3(ii) and the fact that ‖T (x∗)‖2 ≤
E

[
‖F (vk, x∗)‖2

∣∣∣Fk

]
≤ 2C2

F , which follows from Jensen’s inequality. Hence, com-

bining (3.17), (3.20) and (3.26) we get, instead of (3.22),

(3.27) 〈T (xk), x∗ − xk〉 ≤ −ρ d(xk, X∗) +
(

ρ +
√

2CF

)
d(xk, X).
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Using Assumption 3(ii) and (3.27) in (3.15) we get

E

[
‖xk+1 − x∗‖2

∣∣∣Fk

]
≤ ‖xk − x∗‖2 − 2ραk d(xk, X∗) + 2C2

F [1 + Bk,τ ] α2
k

(3.28) − Ak,τ d(xk, X)2 + 2
(

ρ +
√

2CF

)
αk d(xk, X).

In view of Assumption 1, we define x̄k := ΠX∗(xk). Note that x̄k ∈ Fk because

ΠX∗ is continuous and xk ∈ Fk. From (3.28) we get

E

[
d(xk+1, X∗)2

∣∣∣Fk

]
≤ E

[
‖xk+1 − x̄k‖2

∣∣∣Fk

]
≤ d(xk, X∗)2 − 2ραk d(xk, X∗)

(3.29) + 2C2
F [1 + Bk,τ ] α2

k − Ak,τ d(xk, X)2 + 2
(

ρ +
√

2CF

)
αk d(xk, X),

using the fact that xk, x̄k ∈ Fk, ‖xk − x̄k‖ = d(xk, X∗) and (3.28) in the second

inequality. We rearrange now the last two terms in the right hand side of (3.29)

(as we did in (3.24)), and obtain (3.13).

Theorem 5 (Asymptotic convergence). Under Assumptions 1-8, method (3.4)-

(3.5) generates a sequence {xk} which a.s. is bounded and limk→∞ d(xk, X∗) = 0.

In particular, a.s. all cluster points of {xk} belong to X∗.

Proof. We suppose first that Assumption 3(i) holds. Choose some x∗ ∈ X∗ (As-

sumption 1) and τ > 1. By Assumption 8 and the definitions given in Lemma 6, we

have that
∑

k α2
k < ∞,

∑
k α2

kA−1
k,τ < ∞ and 0 < Bk,τ ≤ τ , since βk(2 − βk) ∈ (0, 1],

for βk ∈ (0, 2) for all k. Hence, we can invoke (3.12) in Theorem 1 in order to

conclude that, a.s., {‖xk − x∗‖} converges and, in particular, {xk} is bounded.

In view of Assumption 1, we can define x̄k := ΠX∗(xk). We have x̄k ∈ Fk

because xk ∈ Fk and ΠX∗ is continuous. Since (3.12) in Lemma 6 holds for any

x∗ ∈ X∗ and d(xk, X∗) = ‖xk − x̄k‖, we conclude that for all k ∈ N,

E

[
d(xk+1, X∗)2

∣∣∣Fk

]
≤ E

[
‖xk+1 − x̄k‖2

∣∣∣Fk

]
≤
[
1 + 2 (1 + Bk,τ) L2α2

k

]
‖xk − x̄k‖2−

2ραk d(xk, X∗) +

[
C(x̄k)

Ak,τ
+ 2 (1 + Bk,τ) B(x̄k)2

]
α2

k

=
[
1 + 2 (1 + Bk,τ) L2α2

k

]
d(xk, X∗)2−
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(3.30) 2ραk d(xk, X∗) +

[
C(x̄k)

Ak,τ
+ 2 (1 + Bk,τ) B(x̄k)2

]
α2

k,

using relation (3.12) and the fact that x̄k ∈ Fk in the second inequality.

We observe that the function B : X∗ → R+ defined in Lemma 5 is locally

bounded, because σ is locally bounded and T is continuous. Using this fact, the

continuity of ΠX∗ , the a.s.-boundedness of {xk} and the fact that x̄k = ΠX∗(xk), we

conclude that {B(x̄k)} and {C(x̄k)} are a.s.-bounded. From the a.s.-boundedness

of {B(x̄k)} and {C(x̄k)} and the conditions
∑

k α2
k < ∞,

∑
k α2

kA−1
k,τ < ∞ and

0 < Bk,τ ≤ τ for all k, which hold by Assumption 8, we conclude from Theorem 1

and (3.30) that a.s. {d2(xk, X∗)} converges, and that

(3.31)
∞∑

k=0

2ραk d(xk, X∗) < ∞.

By Assumption 8, we also have
∑

k αk = ∞, so that (3.31) implies that, almost

surely, lim infk→∞ d(xk, X∗) = 0. In particular, the sequence {d(xk, X∗)} has a

subsequence that converges to zero almost surely. Since {d(xk, X∗)} a.s. con-

verges, we conclude that the whole sequence a.s. converges to 0. The proof under

Assumption 3(ii) is similar, using (3.13).

3.1.4 Convergence rate analysis

Next, we present convergence rate results in terms of d(xk, X∗) for the method

(3.4)-(3.5) under the weak sharpness property (3.9). We apply these results for

obtaining an estimate of the number of iterations required so that any solution of

an auxiliary stochastic optimization problem with linear objective is a solution of

the variational inequality (see Corollary 4).

In order to give convergence rates for the case of an unbounded feasible set

X or unbounded constraint components {X0} ∪ {Xi : i ∈ I}, we shall need the

following proposition, which ensures that the sequence is bounded in L2. A typical

situation is the case in which X is a polyhedron, i.e. X0 = R
n and the selected

constraints {Xi}i∈I are halfspaces, which have easily computable projections but

are unbounded sets. If the uniform bound of Assumption 3(ii) holds, then sharper

bounds are given in (3.34).
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Proposition 2 (Boundedness in L2). Suppose that Assumptions 1-8 hold. Under

Assumption 3(i), choose τ > 1, k0 ∈ N and 0 < γ < 1
2(1+τ)L2 such that

(3.32)
∑

k≥k0

α2
k

βk(2 − βk)
< γ.

Define Gτ := cC2
g τ(τ − 1)−1 and Hτ := 2 (1 + τ) . Then for all x∗ ∈ X∗,

(3.33) sup
k≥k0

E

[
‖xk − x∗‖2

]
≤

E

[
‖xk0 − x∗‖2

]
+ [Gτ C(x∗)2 + Hτ B(x∗)2] γ

1 − Hτ L2γ
.

Define, for ℓ ≤ k, ak
ℓ :=

∑k
i=ℓ α2

i , bk
ℓ :=

∑k
i=ℓ

α2
i

βi(2−βi)
. If Assumption 3(ii) holds,

then for all k ∈ N,

(3.34) sup
0≤i≤k

E

[
d(xk, X∗)2

]
≤ d(x0, X∗)2 + Gτ

(
ρ +

√
2CF

)2

· bk−1
0 + Hτ C2

F · ak−1
0 .

Proof. We first prove (3.33) under Assumption 3(i). Recall definitions of Ak,τ and

Bk,τ in Lemma 6. By Assumption 8, we can choose k0 ∈ N and γ > 0 such that

(3.32) holds. Observe that βk(2 − βk) ∈ (0, 1], because βk ∈ (0, 2), so that

∑

k≥k0

α2
k ≤

∑

k≥k0

α2
k

βk(2 − βk)
< γ.

Fix x ∈ X∗ and τ > 1. Define

zk := E[‖xk − x∗‖2], D2
k :=

C(x∗)2

Ak,τ
+ 2 (1 + Bk,τ) B(x∗)2,

D2 :=
C(x∗)2cC2

g τ

τ − 1
+ 2 (1 + τ) B(x∗)2.

For any k > k0, we take the total expectation and sum (3.12) from k0 to k − 1,

obtaining

(3.35) zk ≤ zk0 +
k−1∑

i=k0

[
2 (1 + Bi,τ ) L2α2

i zi + D2
i α2

i

]
.

Given an arbitrary a > z
1/2
k0

, define

(3.36) Γa := inf{k ≥ k0 : zk > a2}.
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Suppose first that Γa < ∞ for all a > z
1/2
k0

. Then by (3.32), (3.35) and (3.36) we

get

a2 < zΓa
≤ zk0 +

Γa−1∑

i=k0

[
2 (1 + Bi,τ ) L2α2

i a2 + D2
i α2

i

]
≤ zk0 + 2(1 + τ)L2γa2 + D2γ,

using βi(2 − βi) ∈ (0, 1] in the definition of Bi,τ , and the definitions of Ai,τ , D2
i and

D2. Hence

a2 ≤ zk0 + D2γ

1 − 2(1 + τ)L2γ
,

using 0 < γ < [2(1 + τ)L2]−1. Since a > z
1/2
k0

is arbitrary, it follows that

(3.37) sup
k≥k0

zk ≤ zk0 + D2γ

1 − 2(1 + τ)L2γ
,

using again that 0 < γ < [2(1 + τ)L2]−1. In view of (3.36)-(3.37), we have a

contradiction with the assumption that Γa < ∞ for any a > z
1/2
k0

. Hence, there

exists some ā > z
1/2
k0

such that Γā = ∞, so that the set in the right hand side of

(3.36) is empty. In this case we have supk≥k0
zk ≤ ā2 < ∞. If supk≥k0

zk = zk0 , then

(3.33) holds trivially, since 1 − Hτ L2γ ∈ (0, 1). Otherwise, â := (supk≥k0
zk)1/2 >

z
1/2
k0

. From (3.32), (3.35), βi ∈ (0, 2) and the definitions of Ai,τ , Bi,τ , D2
i and D,

we have for all k ≥ k0,

zk ≤ zk0 +
k−1∑

i=k0

[
2 (1 + Bi,τ) L2α2

i â2 + D2
i α2

i

]
≤ zk0 + 2(1 + τ)L2γâ2 + D2γ,

implying that â2 = supk≥k0
zk ≤ zk0 + 2(1 + τ)L2γâ2 + D2γ, so that

(3.38) sup
k≥k0

zk = â2 ≤ zk0 + D2γ

1 − 2(1 + τ)L2γ
,

using again 0 < γ < [2(1 + τ)L2]−1. From (3.38) and the definitions of Gτ , Hτ and

D, we conclude that (3.33) holds.

We now prove (3.34) under Assumption 3(ii). As before, we define

D̂2
k :=

(
ρ +

√
2CF

)2

Ak,τ
+ 2 (1 + Bk,τ) C2

F .

Taking total expectation in (3.13) and summing from 0 to k − 1, we get

E

[
d(xk, X∗)2

]
≤ d(x0, X∗)2 +

k−1∑

i=0

D̂2
i α2

i
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(3.39) ≤ d(x0, X∗)2 +
(

ρ +
√

2CF

)2 cC2
g τ

τ − 1
bk−1

0 + 2(1 + τ)C2
F ak−1

0 ,

for all k ≥ 0, using the fact that βi ∈ (0, 2) and the definitions of Ai,τ , Bi,τ , D̂2
i ,

ak−1
0 and bk−1

0 . We conclude from (3.39) and the definitions of Gτ and Hτ that

(3.34) holds.

We give now convergence rate results. We define, for ℓ ≤ k,

Sk
ℓ :=

k∑

i=ℓ

αi, x̂k :=

∑k
i=0 αix

i

Sk
0

, x̂k
ℓ :=

∑k
i=ℓ αix

i

Sk
ℓ

,

where x̂k is the ergodic average of the iterates and x̂k
ℓ is the window-based ergodic

average of the iterates. Next we will give convergence rate results for the original

sequence {xk} and for the ergodic average sequences. We consider separately the

cases of unbounded operators (Assumption 3(i)) and the case of bounded ones

(Assumption 3(ii)), because in the later case sharper rates are possible.

Theorem 6 (Rate of convergence: unbounded case). Suppose that Assumptions 1-

8 and Assumption 3(i) hold. Recall definitions of Proposition 2 and {Sk
ℓ }. Choose

τ > 1, k0 ∈ N and φ ∈ (0, 1) such that

(3.40)
∑

k≥k0

α2
k

βk(2 − βk)
≤ φ

2(1 + τ)L2
.

Define for x∗ ∈ X∗,

(3.41) Ek(x∗) := (2ρ)−1 ·
{
‖x0 − x∗‖2 +

[
I(x∗)L2 + B(x∗)2

]
Hτ ak

0 + Gτ C(x∗)2bk
0

}
,

(3.42) I(x∗) :=
max0≤k≤k0 E

[
‖xk − x∗‖2

]
+ [Gτ H−1

τ C(x∗)2L−2 + B(x∗)2L−2] φ

1 − φ
.

Then

a) For any ǫ > 0, there exists M := Mǫ ∈ N, such that E
[
d(xM , X∗)

]
< ǫ and

for all x∗ ∈ X∗, SM−1
0 ≤ E∞(x∗)/ǫ.

b) For all k ∈ N and all x∗ ∈ X∗, E
[
d(x̂k, X∗)

]
≤ Ek(x∗)/Sk

0.
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Proof. Fix τ > 1, k0 ∈ N and φ ∈ (0, 1) as in (3.40). This is possible since
∑

i≥k α2
i β−1

i (2 − βi)
−1 converge to 0 as k → ∞ by Assumption 8. We now invoke

Lemma 6. We take the total expectation in (3.12) and sum from ℓ to k, obtaining,

for every x∗ ∈ X∗,

2ρ
k∑

i=ℓ

αiE

[
d(xi, X∗)

]
≤

≤ E

[
‖xℓ − x∗‖2

]
+

k∑

i=ℓ

2 (1 + Bi,τ) L2α2
iE

[
‖xi − x∗‖2

]

+
k∑

i=ℓ

[
C(x∗)2

Ai,τ
+ 2 (1 + Bi,τ ) B(x∗)2

]
α2

i

≤ E

[
‖xℓ − x∗‖2

]
+

(
sup

ℓ≤i≤k
E

[
‖xi − x∗‖2

]) k∑

i=ℓ

2 (1 + Bi,τ ) L2α2
i

+
k∑

i=ℓ

[
C(x∗)2

Ai,τ
+ 2 (1 + Bi,τ) B(x∗)2

]
α2

i ,

(3.43)

≤ E

[
‖xℓ − x∗‖2

]
+

(
sup
i≥0

E

[
‖xi − x∗‖2

])
Hτ L2ak

ℓ + Gτ C(x∗)2bk
ℓ + Hτ B(x∗)2ak

ℓ ,

using βi(2 − βi) ∈ (0, 1] and the definitions of Ai,τ , Bi,τ , Gτ , Hτ , ak
ℓ and bk

ℓ in the

last inequality.

We now invoke Proposition 2. Setting γ := φ
2(1+τ)L2 , (3.32) can be rewritten as

(3.40). From (3.33) and 1 − Hτ L2 ∈ (0, 1), we get, for all x∗ ∈ X∗,

(3.44)

sup
i≥0

E

[
‖xi − x∗‖2

]
≤ max0≤i≤k0 E [‖xi − x∗‖2] + [Gτ C(x∗)2 + Hτ B(x∗)2] γ

1 − Hτ L2γ
= I(x∗),

using the definitions of Hτ = 2(1 + τ), γ and I(x∗).

We prove now item (a). For every ǫ > 0, define

(3.45) M = Mǫ := inf
{
k ∈ N : E

[
d(xk, X∗)

]
< ǫ

}
.

From the definition of M we have, for every k < M ,

(3.46) 2ρǫ
k∑

i=0

αi ≤ 2ρ
k∑

i=0

αiE

[
d(xi, X∗)

]
.

We claim that M is finite. Indeed, if M = ∞, then (3.43), (3.44) and (3.46) hold

for ℓ := 0 and all k ∈ N. Hence, letting k → ∞ and using that a∞
0 < ∞ and
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b∞
0 < ∞, which hold by Assumption 8, we obtain

∑
k αk < ∞, which contradicts

Assumption 8. Hence, the set in the right hand side of (3.45) is nonempty, which

implies E[d(xM , X∗)] < ǫ. Setting ℓ := 0 and k := M − 1 in (3.43), (3.44) and

(3.46), we get, for all x∗ ∈ X∗,

M−1∑

i=0

αi ≤ EM−1(x
∗)

ǫ
≤ E∞(x∗)

ǫ
,

using the definition of Ek(x∗). We thus obtain item (a).

We now prove item (b). In view of the convexity of the function x 7−→ d(x, X∗),

and the linearity and monotonicity of the expected value, we have

(3.47) E

[
d(x̂k

ℓ , X∗)
]

= E

[
d

(∑k
i=ℓ αix

i

∑k
i=ℓ αi

, X∗
)]

≤
∑k

i=ℓ αiE [d(xi, X∗)]
∑k

i=ℓ αi

.

Set ℓ := 0, divide (3.43) by 2ρ
∑k

i=0 αi = 2ρSk
0 and use (3.47), the definition of

Ek
0(x∗) together with (3.44) in order to bound supi≥0 E[‖xi − x∗‖2], and obtain

item (b) as a consequence.

Corollary 1 (Rate of convergence with robust stepsizes: unbounded case). As-

sume that the hypotheses of Theorem 6 hold. Given θ > 0 and λ > 0, define {αk}
as: α0 = α1 = θ and for k ≥ 2,

(3.48) αk :=
θ√

k (ln k)1+λ
,

and choose βk ≡ β ∈ (0, 2), τ > 1 and φ ∈ (0, 1). Take k0 ≥ 2 as the minimum

natural number such that

(3.49) k0 ≥ exp



(

2(1 + τ)L2θ2

λβ(2 − β)φ

)1/λ

+ 1.

Define for x∗ ∈ X∗, J(x∗) := [I(x∗)L2 + B(x∗)2] Hτ + Gτ C(x∗)2β−1(2 − β)−1.

Then d(xk, X∗) a.s.-converges to 0 and the following statements hold:

a) For every ǫ > 0, there exists M = Mǫ ≥ 2 such that E
[
d(xM , X∗)

]
< ǫ with

ǫ ≤ max{θ, θ−1}
2ρ

· [ln(M − 1)]
1+λ

2

√
M − 1

·

inf
x∗∈X∗

{
‖x0 − x∗‖2 + J(x∗)

[
2 +

1

2(ln 2)1+λ
+

1

λ(ln 2)λ

]}
,
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b) For all k ≥ 2,

E

[
d(x̂k, X∗)

]
≤ max{θ, θ−1}

2ρ
· (ln k)

1+λ
2√

k
·

inf
x∗∈X∗

{
‖x0 − x∗‖2 + J(x∗)

[
2 +

1

2(ln 2)1+λ
+

1

λ(ln 2)λ

]}
.

Proof. Let k ≥ 2. We first estimate the sum of the stepsize sequence. For any

0 ≤ ℓ ≤ k we have

(3.50) Sk
ℓ =

k∑

i=ℓ

αi ≥ θ(k − ℓ + 1)√
k(ln k)1+λ

,

using the fact that the minimum stepsize between ℓ and k ≥ 2 is θk− 1
2 (ln k)

1+λ
2 .

The sum of the squares of the stepsizes sequence can be estimated as

ak
0 ≤ a∞

0 =
∞∑

i=0

α2
i = 2θ2 +

θ2

2(ln 2)1+λ
+

∞∑

i=3

θ2

i(ln i)1+λ

(3.51)

≤ 2θ2 +
θ2

2(ln 2)1+λ
+ θ2

∫ ∞

2
t−1(ln t)−(1+λ) d t = θ2

[
2 +

1

2(ln 2)1+λ
+

1

λ(ln 2)λ

]
.

We assume without loss on generality that we have M ≥ 2 in (3.45). Item (a)

follows from (3.50) with k := M − 1 and ℓ := 0, (3.51), Theorem 6(a) and the

definitions of J(x∗), E∞(x∗), a∞
0 = β(2 − β)b∞

0 .

Similarly, item (b) follows from (3.50)-(3.51) with ℓ := 0, Theorem 6(b), the

definitions of J(x∗) and Ek(x∗) and the facts that bk
0 ≤ b∞

0 and a∞
0 = β(2 − β)b∞

0 .

Finally, we estimate k0 in (3.42). Since

∑

k≥k0

α2
k < θ2

∫ ∞

k0−1
t−1(ln t)−(1+λ) d t =

θ2

λ [ln(k0 − 1)]λ
,

we conclude from (3.40) that it is enough to choose the minimum k0 ≥ 2 such that

θ2

λ [ln(k0 − 1)]λ
≤ β(2 − β)φ

2(1 + τ)L2
,

that is to say, the minimum k0 ≥ 2 such that (3.49) holds.

Remark 2. As an immediate consequence of Corollary 1, we get that {d(x̂k, X∗)}
converges to 0 in L1 (besides the a.s. convergence). This property may fail with

{xk} instead of {x̂k}.
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Theorem 7 (Rate of convergence: bounded case). Suppose that Assumptions 1-8

and Assumption 3(ii) hold. Recall definitions of Proposition 2 and {Sk
ℓ }. Choose

τ > 1. Define for ℓ ≤ k in N0 ∪ {∞}, R > 0,

Ek
ℓ [R] := (2ρ)−1

{
R2 + Gτ

(
ρ +

√
2CF

)2

bk
ℓ + Hτ C2

F ak
ℓ

}
.

Then, d(xk, X∗) a.s.-converges to zero and

a) for any ǫ > 0, there exists M := Mǫ ∈ N, such that E

[
d(xM , X∗)

]
< ǫ and

SM−1
0 ≤ E∞

0 [d(x0, X∗)]/ǫ,

b) for all k ∈ N, E
[
d(x̂k, X∗)

]
≤ Ek

0[d(x0, X∗)]/Sk
0,

c) If X0 is compact, then for all ℓ, k ∈ N with ℓ < k, E
[
d(x̂k

ℓ , X∗)
]

≤ Ek
ℓ [diam(X0)]/Sk

ℓ .

Proof. Fix τ > 1. We invoke Lemma 6. We take the total expectation in (3.13)

and sum from ℓ to k, obtaining

2ρ
k∑

i=ℓ

αiE

[
d(xi, X∗)

]
≤ E

[
d(xℓ, X∗)2

]
+

k∑

i=ℓ




(
ρ +

√
2CF

)2

Ai,τ

+ 2 (1 + Bi,τ) C2
F


α2

i

(3.52) ≤ E

[
d(xℓ, X∗)2

]
+ Gτ

(
ρ +

√
2CF

)2

bk
ℓ + Hτ C2

F ak
ℓ ,

using βi(2 − βi) ∈ (0, 1] and the definitions of Ai,τ , Bi,τ , Gτ , Hτ , ak
ℓ and bk

ℓ in last

inequality. From (3.52) on, the proofs of items (a)-(c) are similar to the proof

of Theorem 6. We omit the details, but make the following remarks: differently

from the proofs of items (a)-(b) in Theorem 6, the proofs of items (a)-(b) of

Theorem 7 do not require Proposition 2. In the proof of item (c), we use the

bound E[d(xℓ, X∗)2] ≤ diam(X0)
2 in (3.52).

Corollary 2 (Rate of convergence with robust stepsizes: bounded case). Assume

that the hypotheses of Theorem 7 hold. Given θ > 0 and λ > 0, define {αk} as:

α0 = α1 = θ and for k ≥ 2,

(3.53) αk :=
θ√

k (ln k)1+λ
,

and choose βk ≡ β ∈ (0, 2), τ > 1. Define Ĵ := Hτ C2
F + Gτ

(
ρ +

√
2CF

)2
β−1(2 −

β)−1.

Then {d(xk, X∗)} a.s.-converges to 0 and
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a) For every ǫ > 0, there exists M = Mǫ ≥ 2 such that E
[
d(xM , X∗)

]
< ǫ with

ǫ ≤ max{θ, θ−1}
2ρ

· [ln(M − 1)]
1+λ

2

√
M − 1

·
{

d(x0, X∗)2 + Ĵ

[
2 +

1

2(ln 2)1+λ
+

1

λ(ln 2)λ

]}
,

b) for all k ≥ 2,

E

[
d(x̂k, X∗)

]
≤

max{θ, θ−1}
2ρ

· (ln k)
1+λ

2√
k

·
{

d(x0, X∗)2 + Ĵ

[
2 +

1

2(ln 2)1+λ
+

1

λ(ln 2)λ

]}
,

c) if X0 is compact, then given r ∈ (0, 1), for all k ≥ 2r−1, it holds that

E

[
d(x̂k

⌈rk⌉, X∗)
]

≤

max{θ, θ−1}
2ρ

· (ln k)
1+λ

2√
k

·
{

(1 − r)−1 diam(X0)
2 +

r−1Ĵ

[ln k − ln(1/r)]1+λ

}
.

Proof. We assume that we have M ≥ 2 in (3.45). Item (a) follows from (3.50) with

k := M − 1 and ℓ := 0, (3.51), Theorem 7(a), the definition of Ĵ, E∞
0 [d(x0, X∗)]

and a∞
0 = β(2 − β)b∞

0 .

Similarly, item (b) follows from (3.50)-(3.51) with ℓ := 0, Theorem 7(b), the

definition of Ĵ, Ek
0[d(x0, X∗)] and the facts that bk

0 ≤ b∞
0 and a∞

0 = β(2 − β)b∞
0 .

We now prove item (c). Let r ∈ (0, 1), k ≥ 2r−1 and set ℓ := ⌈rk⌉. We have

ℓ ≥ 2 and rk ≤ ℓ ≤ rk + 1. We estimate

(3.54) ak
ℓ =

k∑

i=ℓ

α2
i =

k∑

i=ℓ

θ2

i(ln i)1+λ
≤ θ2(k − ℓ + 1)

ℓ(ln ℓ)1+λ
.

From (3.50) and (3.54) we have

(3.55)
ak

ℓ

Sk
ℓ

≤
θ
√

k(ln k)1+λ

ℓ(ln ℓ)1+λ
≤ θr−1

√
k

·
√

(ln k)1+λ

(ln(rk))1+λ
= θr−1 (ln k)

1+λ
2√

k [ln k − ln(1/r)]1+λ ,

(3.56)
1

Sk
ℓ

≤
θ−1

√
k(ln k)1+λ

k − ℓ + 1
≤ θ−1(1 − r)−1 (ln k)

1+λ
2√

k
,

using the inequality ℓ ≥ rk in the second inequality of (3.55) and k−ℓ+1 ≥ (1−r)k

in the second inequality of (3.56). Item (c) follows from (3.55)-(3.56), Theorem

7(c), the definitions of Ĵ and Ek
ℓ [diam(X0)], and the fact that β(2 − β)bk

ℓ = ak
ℓ .
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Remark 3. Corollary 2(c) implies that, if X0 is compact, then {x̂k
⌈rk⌉} has a better

performance than {xk} and x̂k when stepsizes as in (3.53) are used. Indeed, in

Corollary 2(c), λ > 0 can be arbitrarily small, without affecting the constant in

the convergence rate, and the “stochastic error” r−1Ĵ [ln k − ln(1/r)]−(1+λ) decays

to zero. For unbounded operators, (3.49) in Corollary 1 suggests the use of λ > 1

and θ ∼ L so that k0 does not become too large. As an example, if τ = 1.5, θ = L,

β = 1, φ = 0.5 and λ = 2, we have k0 = 11.

In Corollaries 1-2, stepsizes of O(1)k−1/2(ln k)−(1+λ)/2 are small enough to

guarantee asymptotic a.s.-convergence and large enough as to ensure a rate of

O(1)k−1/2(ln k)(1+λ)/2. If asymptotic a.s.-convergence of the whole sequence is not

the main concern, we show next that one may use larger stepsizes of O(1)k−1/2 for

ensuring convergence in L1 (hence convergence in probability and a.s.-convergence

of a subsequence) with a convergence rate of O(1)k−1/2. When a constant stepsize

α is used in method (3.4)-(3.5), we can also give an error bound on the performance

proportional to α. Precisely, we have E[d(x̂k, x∗)] . k−1+O(α). Such error bounds

justify rigorously the practical use of constant stepsizes in incremental methods

for machine learning, where only an inexact solution is required.

Corollary 3 (Convergence rates for large stepsizes: bounded case). Assume that

the hypotheses of Theorem 7 hold. Recall the definition of Ĵ in Corollary 2. Choose

θ > 0, βk ≡ β ∈ (0, 2) and τ > 1.

a) If we choose a constant stepsize αk ≡ θα, then for all k ≥ 1,

E

[
d(x̂k, X∗)

]
≤ max{θ, θ−1}

2ρ

{
d(x0, X∗)2

α(k + 1)
+ Ĵα

}
.

b) If the total number of iterations K ≥ 1 is given a priori and for all k ∈ [K],

αk ≡ θ d(x0,X∗)√
Ĵ(K+1)

, then

E

[
d(x̂K, X∗)

]
≤ max{θ, θ−1}

ρ
· d(x0, X∗)

√
Ĵ√

K + 1
.

c) If X0 is compact and we choose α0 := θ and for k ≥ 1, αk := θ√
k
, then, given

r ∈ (0, 1), for all k ≥ r−1,

E

[
d(x̂k

⌈rk⌉, X∗)
]

≤ max{θ, θ−1}
2ρ

· 1√
k

·
{

(1 − r)−1 diam(X0)2 + r−1Ĵ
}

.
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Proof. Item (a) follows from Theorem 7(b) and the definitions of Ĵ, Ek
0[d(x0, X∗)],

Sk
0, ak

0 and bk
0. Item (b) follows by setting k := K and minimizing the right hand side

inequality in item (a) with respect to α. We prove now item (c). Take r ∈ (0, 1),

k ≥ r−1 and set ℓ := ⌈rk⌉. We have ℓ ≥ 1 and rk ≤ ℓ ≤ rk + 1. We estimate

(3.57) Sk
ℓ =

k∑

i=ℓ

αi ≥ θ(k − ℓ + 1)√
k

,

using the fact that the minimum stepsize between ℓ and k ≥ 2 is θk− 1
2 . We also

estimate

(3.58) ak
ℓ =

k∑

i=ℓ

α2
i =

k∑

i=ℓ

θ2

i
≤ θ2(k − ℓ + 1)

ℓ
.

From (3.57)-(3.58) we have

(3.59)
ak

ℓ

Sk
ℓ

≤ θ
√

k

ℓ
≤ θr−1

√
k

,

(3.60)
1

Sk
ℓ

≤ θ−1
√

k

k − ℓ + 1
≤ θ−1(1 − r)−1

√
k

,

using ℓ ≥ rk in the second inequality of (3.59) and k − ℓ + 1 ≥ (1 − r)k in the

second inequality of (3.60). Item (c) follows from (3.59)-(3.60), Theorem 7(c), the

definitions of Ĵ and Ek
ℓ [diam(X0)], and the fact that β(2 − β)bk

ℓ = ak
ℓ .

We make a remark concerning the robustness of the stepsize sequence in Corol-

laries 1, 2 and 3 in the spirit of Nemirovski et al. [60]. The stepsizes presented

above are robust in the sense that the knowledge of L is not required, and does

not affect the progress of the method. Also, a scaling of θ in the stepsize implies a

scaling in the convergence rate which is linear in max{θ, θ−1}. It is important to re-

mark that by Corollary 1 this property holds true even in the case of an unbounded

operator, a result which appears to be new, as well as the use of robust stepsizes

with approximate projections, which greatly decreases the computational effort.

Also, these two new features still hold with a near optimal rate (up to logarithmic

terms).

We close this section by showing that, in the case of stochastic approximation,

the weak sharpness property implies that after a finite number of iterations an
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auxiliary stochastic program with linear objective solves the original variational

inequality. This recovers a similar property satisfied in the deterministic setting

(see [53], Theorem 5.1). We give exact values of the minimum number of iterations

in terms of the condition number L/ρ2, the variance and the distance of x0 to the

solution set, in case T is L-Lipschitz continuous.

Corollary 4 (An auxiliary simpler optimization problem). Suppose that T is

(L, δ)-Hölder continuous with δ ∈ (0, 1] and

1. the assumptions of Corollary 1 hold with δ = 1 (unbounded case), or

2. the assumptions of Corollary 2 hold (bounded case).

Then, there exists V > 0, such that for all k ≥ 2 with k
(ln k)1+λ >

(
VLδ

ρ1+δ

)2
, we have

argmin
x∈X

〈E
[
F (v, x̂k)

]
, x〉 ⊂ X∗.

Moreover, under condition 1,

V :=
max{θ, θ−1}

2
· inf

x∗∈X∗

{
‖x0 − x∗‖2 + J(x∗)

[
2 +

1

2(ln 2)1+λ
+

1

λ(ln 2)λ

]}
,

while, under condition 2,

V :=
max{θ, θ−1}

2
·
{

d(x0, X∗)2 + Ĵ

[
2 +

1

2(ln 2)1+λ
+

1

λ(ln 2)λ

]}
.

Proof. Call x̄k := ΠX∗(x̂k). By the choice of k, the definition of V and item (b) of

Corollaries 1-2 we have

(3.61) E

[
‖x̂k − x̄k‖

]
= E

[
d(x̂k, X∗)

]
< (ρ/L)δ.

From the Hölder-continuity of T ,

∥∥∥E[T (x̂k)] − E[T (x̄k)]
∥∥∥ ≤

(3.62) E

[∥∥∥T (x̂k) − T (x̄k)
∥∥∥
]

≤ LE
[
‖x̂k − x̄k‖δ

]
≤ LE

[
‖x̂k − x̄k‖

] 1
δ < ρ,

using Jensen’s inequality in the first inequality, Hölder’s inequality in third in-

equality and (3.61) in last inequality.
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From Proposition 1, Assumption 6 and the equivalence between (2.14) and

(2.15), we get that the Euclidean ball with center −T (x̄k) and radius ρ is contained

in
⋂

x∈X∗ [TX(x) ∩ NX∗(x)]◦. By the convexity of the ball and Jensen’s inequality,

we have

(3.63) − E

[
T (x̄k)

]
+ ρB(0, 1) ⊂

⋂

x∈X∗

[TX(x) ∩ NX∗(x)]◦.

From (3.62) and (3.63) we get that −E[T (x̂k)] ∈ int
(⋂

x∈X∗ [TX(x) ∩ NX∗(x)]◦
)
.

Hence we conclude from Theorem 4 that

(3.64) argmin
x∈X

〈E[T (x̂k)], x〉 ⊂ X∗.

Finally, we observe that E

[
T (x̂k)

]
= E

[
E

[
F (v, x̂k)

∣∣∣Fk

]]
= E[F (v, x̂k)], using

Assumption 4, x̂k ∈ Fk and the property E[E[·|Fk]] = E[·]. The result follows

from (3.64) and the fact that E

[
T (x̂k)

]
= E[F (v, x̂k)].

We remark 2 that, when X is a compact polyhedron, T is (L, δ)-Hölder contin-

uous and ρ1+δ/Lδ ≫ ǫ for a specified tolerance ǫ > 0, solving the linear program

in Corollary 4 may be more advantageous than maintaining method (3.4)-(3.5).

Indeed, N repeated runs of method (3.4)-(3.5) with the same initial iterate un-

til iteration k (as stated in Corollary 4), produce N i.i.d. samples {(v̄i, x̂k
i )}N

i=1

of (v, x̂k
⌈k/2⌉), which may be used to estimate the coefficient E[F (v, x̂k

⌈k/2⌉)]. The

oracle complexity needed to produce an ǫ-approximated solution of a stochastic

linear program (SLP) via the SAA method is N ∼ 1/ǫ2. Hence, we may solve the

linear program minX〈 1
N

∑N
i=1 F (v̄i, x̂k

i ), x〉 by efficient methods (such as the Sim-

plex method or interior point methods), after kN ∼ [Lδ/(ρ1+δǫ)]2 total iterations

of method (3.4)-(3.5). Moreover, solving this SLP produces a ǫ-solution of the SVI

with high-probability (not just in mean, as stated in Corollaries 2-3).

2Supposing that X0 is compact, the results of Corollary 4 may be refined: for all r ∈ (0, 1),

there exists V > 0, such that for all k > (VLδ/ρ1+δ)2, argminx∈X〈E[F (v, x̂k
⌈rk⌉)], x〉 ⊂ X∗. The

proof uses Corollary 3(c).
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3.2 An incremental projection method with Tykhonov

regularization

3.2.1 Cartesian structure

We assume in this section that the stochastic variational inequality (1.1)-(1.2) has

a Cartesian structure. We consider the decomposition R
n = R

n1 × · · · ×R
nm , with

n = n1 + . . .+nm and furnish this Cartesian space with the standard inner product

〈x, y〉 =
∑m

j=1〈xj, yj〉, for x = (x1, . . . , xm) and y = (y1, . . . , ym). We suppose that

the feasible set X ⊂ R
n has the form X = X1 × · · · × Xm, where each component

Xj ⊂ R
nj is a closed and convex set for j ∈ [m].

We also assume that the random operator F : Ξ × R
n → R

n has the form

F = (F1, . . . , Fm), where each component is of the form Fj : Ξ × R
n → R

nj for

j ∈ [m]. From (1.2), the mean operator has the form T = (T1, . . . , Tm) with

Tj(x) = E[Fj(v, x)] for j ∈ [m]. We emphasize that the orthogonal projection

under a Cartesian structure is simple: for x = (x1, . . . , xm) ∈ R
n and Y = Y 1×. . .×

Y m ⊂ R
n with xj ∈ R

nj and Y j ⊂ R
nj , we have ΠY (x) = (ΠY 1(x1), . . . , ΠY m(xm)).

3.2.2 Constraint structure

In order to exploit the use of incremental projections (as in Section 3.1) in the

Cartesian framework, we assume from now on that for j ∈ [m], each Cartesian

component Xj of X = X1 × . . . × Xm has the following form:

(3.65) Xj = Xj
0 ∩

(
∩i∈Ij

Xj
i

)
,

where {Xj
0} ∪ {Xj

i : i ∈ Ij} is a collection of closed and convex subsets of Rnj .

Given j ∈ [m], we assume that the projection operator onto Xj
0 is computationally

easy to evaluate, and that for every i ∈ Ij, Xj
i is representable in R

nj as

(3.66) Xj
i = {x ∈ R

nj : gi(j|x) ≤ 0},

for some convex function gi(j|·) : Rnj → R ∪ {∞} with domain dom gi(j|·) ⊂ Xj
0 .

We shall denote the positive part of gi(j|·) as g+
i (j|x) := max{gi(j|x), 0}, for

x ∈ R
nj . We also assume that, for every i ∈ Ij , the subgradients of g+

i (j|·) at
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points x ∈ Xj
0 −Xj

i are easily computable and that {∂g+
i (j|·) : i ∈ Ij} is uniformly

bounded over Xj
0 , i.e., there exists Cj

g > 0 such that

(3.67) ‖d‖ ≤ Cj
g ,

for all x ∈ Xj
0 , all i ∈ Ij and all d ∈ ∂g+

i (j|x).

3.2.3 Statement of the algorithm

The idea of our Tykhonov method consists of combining the stochastic approx-

imation proposed by the explicit iterative Tykhonov method in [50], for coping

with the monotone case, with the incremental projection method proposed in [57],

exploiting simpler constraint structures, which reduce significantly the computa-

tional complexity. Our method improves over the results of [73], by proposing

an incremental projection method for a SVI which is monotone but not strongly

monotone. Our method also generalizes the work in [73] in the sense that it allows

the distributed solution of Cartesian SVIs with approximate projections, and in-

cludes a larger class of closed and convex feasible sets (see item (i) in Subsection

1.5.1).

For problems endowed with the Cartesian structure and the constraint struc-

ture of Sections 3.2.1 and 3.2.2, our method advances in a distributed fashion for

each Cartesian component j ∈ [m], as in the incremental projection method (3.4)-

(3.5) with an additional Tykhonov regularization (in order to cope with the mono-

tone case). Precisely, fix the Cartesian component j ∈ [m]. In a first stage, given

the current iterate xk, the method advances in the direction −Fj(v
k, xk) − ǫk,jx

k
j ,

after taking the sample vk of v, producing an auxiliary iterate yk
j , where ǫk,j > 0

is a regularization parameter. In the second stage, a soft constraint Xj
ωk,j

is ran-

domly chosen with the random control ωk,j ∈ Ij , and the method advances in

the direction opposite to a subgradient of g+
ωk,j

(j|·) at the point yk
j , producing the

next iterate xk+1
j . The iterates are collected in xk+1 and the method continues.

Formally, the method takes the form:

Algorithm 2 (Incremental projection and Tykhonov regularization).

1. Initialization: Choose the initial iterate x0 ∈ R
n, the stepsize sequences

αk = (αk,1, . . . , αk,m) ∈ (0, ∞)m and βk = (βk,1, . . . , βk,m) ∈ (0, 2)m, the
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regularization sequence ǫk = (ǫk,1, . . . , ǫk,m) ∈ (0, ∞)m, the random control

sequence ωk = (ωk,1, . . . , ωk,m) ∈ I1 ×. . .×Im and the operator samples {vk}.

2. Iterative step: Given xk = (xk
1, . . . , xk

m), define, for each j ∈ [m],

yk
j = ΠXj

0

[
xk

j − αk,j

(
Fj(v

k, xk) + ǫk,jx
k
j

)]
,(3.68)

xk+1
j = ΠXj

0


yk

j − βk,j

g+
ωk,j

(j|yk
j )

‖dk
j ‖2

dk
j


 ,(3.69)

where dk
j ∈ ∂g+

ωk,j
(j|yk

j ) − {0} if gωk,j
(j|yk

j ) > 0, and dk
j = d for any d ∈

R
nj − {0} if gωk,j

(j|yk
j ) ≤ 0.

The first stage (3.68) of the iterative step can be written compactly as

yk = ΠX0

[
xk − D(αk) ·

(
F (vk, xk) + D(ǫk)xk

)]
,

where X0 := X1
0 × . . . × Xm

0 .

3.2.4 Discussion of the assumptions

We consider the natural filtration

Fk = σ(x0, ω0, . . . , ωk−1, v0, . . . , vk−1).

Assumption 9. We request Assumptions 1-5 and Assumption 3(i).

We now state the assumptions concerning the approximate projections which

accommodate the Cartesian structure. Basically, we require each Cartesian com-

ponent Xj given by (3.65) to satisfy Assumption 7. This is formally stated in

Assumption 10. Also, as in [50], the stepsize and regularization sequences require

a partial coordination specified in Assumption 11.

Assumption 10 (Constraint sampling and regularity). For each j ∈ [m], there

exists cj > 0, such that a.s. for all k ∈ N and all x ∈ Xj
0,

d(x, Xj)2 ≤ cj · E
[
g+

ωk,j
(j|x)

∣∣∣∣Fk

]
.
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We observe that Assumption 10 requires a sampling coordination between the

control sequences {ωk,j}∞
k=0 for j ∈ [m] since the filtration Fk accumulates the

history from the control sequence of every Cartesian component. Such assumption

is satisfied, e.g., when {ωk,j, vk : j ∈ [m]} is an independent sequence and, for

each j ∈ [m], Xj satisfies nondemanding regularity assumptions (e.g., a Slater

condition).

Assumption 11 (Partial coordination of stepsizes and regularization sequences).

Let uk,min := minj∈[m] uk,i, uk,max := maxj∈[m] uk,j for u ∈ {α, β, ǫ}. Denote ∆k :=

αk,max − αk,min, Γk := ǫk,max − ǫk,min and Θk := βk,min(2 − βk,max). Then,

(i) For each j ∈ [m], {ǫk,j}∞
k=1 is a decreasing sequence converging to zero.

(ii) limk→∞
α2

k,max

αk,minǫk,min
= 0, limk→∞

α2
k,max

Θkαk,minǫk,min
= 0, limk→∞

∆k

αk,minǫk,min
= 0 and

limk→∞ αk,minǫk,min = 0.

(iii)
∑∞

k=0 αk,minǫk,min = ∞.

(iv)
∑∞

k=0 α2
k,max < ∞,

∑∞
k=0

α2
k,max

βk,min(2−βk,max)
< ∞,

∑∞
k=0

(
Γk

ǫk,min

)2 (
1 + α−1

k,minǫ−1
k,min

)
<

∞ and
∑∞

k=0
∆2

k

αk,minǫk,min
< ∞.

(v) limk→∞
Γ2

k

ǫ3
k,min

αk,min

(
1 + α−1

k,minǫ−1
k,min

)
= 0.

Assumption 11 contains usual conditions on the regularization parameters of

Tykhonov algorithms and on the stepsize for SA algorithms, with certain coor-

dination across stepsizes and regularization parameters. Assumption 11 includes

Assumption 2 in [50] with the following addition, due to the use of approximate

projections:

(3.70)
∞∑

k=0

(αk,max − αk,min)2

αk,minǫk,min

< ∞.

We observe that this condition is trivially satisfied when αk,j = αk,ℓ for all k, j, ℓ.

Lemma 4 of [50] establishes that stepsizes and regularization parameters of the

form αk,j = (k + Cj)
−c and ǫk,j = (k + Dj)

−d, satisfy Assumption 2 in [50],

when c, d ∈ (0, 1) are such that c > d and c + d < 1, the Cj’s belong to the

interval [C, C] and the Di’s belong to the interval [D, D] for some 0 < C < C

and 0 < D < D. These stepsizes and parameters, together with βk,j ≡ βj ∈ (0, 2)
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for j ∈ [m], also satisfy our extra condition (3.70) and Assumption 11: indeed, if

Cmax = max1≤i≤m Ci, Cmin = min1≤i≤m Ci and Dmax = max1≤i≤m Di, then

αk,minǫk,min = (k + Cmax)−c(k + Dmax)−d =

k−(c+d)(1 + Cmax/k)−c(1 + Dmax/k)−d > k−(c+d) > k−1,

because 0 < c + d < 1. Therefore,

(αk,max − αk,min)2

αk,minǫk,min

<
α2

k,max

k
=

1

k(k + Cmin)2c
≤ 1

k1+2c
.

3.2.5 Convergence analysis

We present next our convergence result for method (3.68)-(3.69). We shall need

two lemmas.

Lemma 7 (Asymptotic strong-monotonicity). Defining the operator Hk := D(αk)·
(T + D(ǫk)) and σk = αk,minǫk,min − L(αk,max − αk,min), then for all y, x ∈ R

n and

k ∈ N, 〈Hk(y) − Hk(x), y − x〉 ≥ σk‖y − x‖2.

Proof. We consider the decomposition

(3.71)

〈Hk(y)−Hk(x), y−x〉 = 〈D(αk)·(T (y)−T (x)), y−x〉+〈D(αk)D(ǫk)(y−x), y−x〉.

Concerning the second term in the right hand side of (3.71), if Dk is the diagonal

matrix with entries (α1ǫ1, . . . , αmǫm), then

(3.72) 〈D(αk)D(ǫk)(y − x), y − x〉 = 〈Dk(y − x), y − x〉 ≥ αk,minǫk,min‖y − x‖2.

The first term in the right hand side of (3.71) is equal to

m∑

i=1

αk,i〈Ti(y) − Ti(x), yi − xi〉 = αk,min

m∑

i=1

〈Ti(y) − Ti(x), yi − xi〉

+
m∑

i=1

(αk,i − αk,min)〈Ti(y) − Ti(x), yi − xi〉.(3.73)

The first term in the right hand side of (3.73) is nonnegative by monotonicity of

T . For the second term in the right hand side of (3.73), we have

m∑

i=1

(αk,i −αk,min)〈Ti(y)−Ti(x), yi −xi〉 ≥ −
m∑

i=1

(αk,i −αk,min)‖Ti(y)−Ti(x)‖‖yi −xi‖
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≥ −(αk,max − αk,min)
m∑

i=1

‖Ti(y) − Ti(x)‖‖yi − xi‖

≥ −(αk,max − αk,min)‖T (y) − T (x)‖‖y − x‖

(3.74) ≥ −(αk,max − αk,min)L‖y − x‖2,

using Cauchy-Schwartz inequality in the first inequality, Hölder-inequality in the

third one and Lipschitz continuity of T in the last one. The result follows from

(3.71)-(3.74).

We will use the following result proved in Lemma 3 of [50]:

Lemma 8 (Properties of the Tykhonov sequence). Assume that X ⊂ R
n is convex

and closed, that the operator T : Rn → R
n is continuous and monotone over X

and that Assumption 12 hold. Assume also that the sequences {ǫk,i}∞
k=1 for i =

1, . . . , m decrease to 0 and satisfy lim supk→∞
ǫk,max

ǫk,min
< ∞, with ǫk,max = maxi ǫk,i

and ǫk,min = mini ǫk,i. Denote by tk the solution of VI(T + D(ǫk), X). Then

(i) {tk} is bounded and all cluster points of {tk} belong to X∗.

(ii) The following inequality holds for all k ≥ 1:

‖tk − tk−1‖ ≤ ǫk−1,max − ǫk,min

ǫk,min
Mt,

where Mt is an upper bound of maxk∈N ‖tk‖.

(iii) If lim supk→∞
ǫk,max

ǫk,min
≤ 1 then {tk} converges to the least-norm solution in

X∗.

Theorem 8 (Asymptotic convergence). If Assumptions 9-11 hold, then the method

(3.68)-(3.69) generates a sequence {xk} such that:

(i) if lim supk→∞
ǫk,max

ǫk,min
< ∞, then almost surely {xk} is bounded and all cluster

points of {xk} belong to the solution set X∗,

(ii) if lim supk→∞
ǫk,max

ǫk,min
≤ 1, then almost surely {xk} converges to the least-norm

solution in X∗.
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Proof. Let {tk} denote the Tykhonov sequence of Lemma 8. We claim that for all

τ > 1, j ∈ [m], k ∈ N,

‖xk+1
j − tk

j ‖2 ≤ ‖xk
j − tk

j ‖2 − 2αk,j〈xk
j − tk

j , Fj(v
k, xk) + ǫk,jx

k
j 〉+

(3.75)

[1 + τβk,j(2 − βk,j)] α2
k,j

∥∥∥Fj(v
k, xk) + ǫk,jx

k
j

∥∥∥
2−βk,j(2 − βk,j)

(Cj
g)2

(
1 − 1

τ

) (
g+

ωk,j
(j|xk

j )
)2

.

Indeed, in view of (3.68)-(3.69) and tk
j ∈ Xj ⊂ Xj

0 ∩Xj
ωk,j

, we can invoke Lemma 2

with g := gωk,j
(j|·), x1 := xk

j , x2 := xk+1
j , x0 := tk

j α := αk,j, u := Fj(v
k, xk)+ǫk,jx

k
j ,

y := yk
j , β := βk,j and d := dk

j obtaining (3.75).

We define zk
j := xk

j − αk,j(Fj(v
k, xk) + ǫk,jx

k
j ) for j ∈ [m]. We sum the inequal-

ities in (3.75) with j between 1 and m, getting

‖xk+1 − tk‖2 ≤ ‖xk − tk‖2 + 2
m∑

j=1

〈tk
j − xk

j , xk
j − zk

j 〉+

(3.76)

[1 + τβk,max(2 − βk,min)]
∥∥∥zk − xk

∥∥∥
2− βk,min(2 − βk,max)

C2
g

(
1 − 1

τ

) m∑

j=1

(
g+

ωk,j
(j|xk

j )
)2

,

where βk,min := minj∈[m] βk,j, βk,max := maxj∈[m] βk,j and Cg := minj∈[m] Cj
g .

Concerning the second term in the right hand side of (3.76), Assumption 4 and

the fact that xk
j ∈ Fk imply that

E

[
〈tk

j − xk
j , xk

j − zk
j 〉
∣∣∣Fk

]
= αk,j〈tk

j − xk
j ,E

[
Fj(v

k, xk)
∣∣∣Fk

]
+ ǫk,jx

k
j 〉 =

(3.77) αk,j〈tk
j − xk

j , Tj(x
k) + ǫk,jx

k
j 〉.

We now analyse the third term in the right hand side of (3.76). The triangular

inequality and the inequality (
∑4

i=1 ai)
2 ≤ 4

∑4
i=1 a2

i imply that

E

[
‖zk

j − xk
j ‖2

∣∣∣Fk

]
= α2

k,jE

[
‖Fj(v

k, xk) + ǫk,jx
k
j ‖2

∣∣∣Fk

]

= α2
k,jE

[
‖Fj(v

k, xk) − Fj(v
k, tk) + ǫk,j(x

k
j − tk

j ) + Fj(v
k, tk) + ǫk,jt

k
j ‖2

∣∣∣Fk

]

≤ 4α2
k,jE

[
‖Fj(v

k, xk) − Fj(v
k, tk)‖2

∣∣∣Fk

]
+ 4α2

k,jǫ
2
k,j‖xk

j − tk
j ‖2

+4α2
k,jE

[
‖Fj(v

k, tk)‖2
∣∣∣Fk

]
+ 4α2

k,jǫ
2
k,j‖tk

j ‖2
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≤ 4α2
k,maxE

[
‖Fj(v

k, xk) − Fj(v
k, tk)‖2

∣∣∣Fk

]
+ 4α2

k,maxǫ2
k,max‖xk

j − tk
j ‖2

(3.78) + 4α2
k,maxE

[
‖Fj(v

k, tk)‖2
∣∣∣Fk

]
+ 4α2

k,maxǫ2
k,max‖tk

j ‖2.

Summing the inequalities in (3.78) with j between 1 and m, we get from Assump-

tions 3(i), 5, Lemma 5 and xk ∈ Fk,

E

[
‖zk − xk‖2

∣∣∣Fk

]
=

m∑

j=1

E

[
‖zk

j − xk
j ‖2

∣∣∣Fk

]

≤ 4α2
k,maxE

[
‖F (vk, xk) − F (vk, tk)‖2

∣∣∣Fk

]
+ 4α2

k,maxǫ2
k,max‖xk − tk‖2

+4α2
k,maxE

[
‖F (vk, tk)‖2

∣∣∣Fk

]
+ 4α2

k,maxǫ2
k,max‖tk‖2

≤ 4L2α2
k,max‖xk −tk‖2 +4α2

k,maxǫ2
k,max‖xk −tk‖2+4α2

k,maxB2(tk)+4α2
k,maxǫ2

k,max‖tk‖2

(3.79) ≤ 4(L2 + ǫ2
k,max)α2

k,max‖xk − tk‖2 + 4α2
k,max(B2

t + ǫ2
k,maxM2

t ),

where the last inequality follows from the fact that Bt and Mt are positive con-

stants (depending on the Tykhonov sequence) satisfying maxk∈N ‖B(tk)‖ ≤ Bt and

maxk∈N ‖tk‖ ≤ Mt, because {tk} is a bounded sequence by Lemma 8, and B is a

nonnegative locally bounded function by Assumption 5 and Lemma 5.

We now analyse the last term in the right hand side of (3.76). Denoting

C := maxj∈[m] cj, we get from Assumption 10 and xk
i ∈ Fk,

m∑

j=1

E

[(
g+

ωk,j
(j|xk

j )
)2
∣∣∣∣Fk

]
≥

m∑

j=1

1

cj
‖ΠXj (xk

j ) − xk
j ‖2

(3.80) ≥ 1

C

m∑

j=1

‖ΠXj (xk
j ) − xk

j ‖2 =
1

C
d(xk, X)2.

Now we use again the fact that xk ∈ Fk, take the conditional expectation in (3.76)

and combine the result with (3.77)-(3.80), in order to obtain

E

[
‖xk+1 − tk‖2

∣∣∣Fk

]
≤
[
1 + Hk,τ(L2 + ǫ2

k,max)α2
k,max

]
‖xk − tk‖2+

2
m∑

j=1

αk,j〈tk
j − xk

j , Tj(x
k) + ǫk,jx

k
j 〉

(3.81) + Hk,τ(B2
t + M2

t ǫ2
k,max)α2

k,max − Ak,τ d(xk, X)2,
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where Hk,τ , Ak,τ and Gτ are defined as

Hk,τ := 4 [1 + τβk,max(2 − βk,min)] , Ak,τ :=
βk,min(2 − βk,max)

Gτ
, Gτ :=

CC2
g τ

(τ − 1)
.

The sum in the second term of the right hand side of (3.81) is equal to

〈D(αk) · (T + D(ǫk))(xk), tk − xk〉 = 〈D(αk) · (T + D(ǫk))(xk)

−D(αk) · (T + D(ǫk))(tk), tk − xk〉

(3.82) +〈D(αk)·(T +D(ǫk))(tk), tk−Π(xk)〉+〈D(αk)·(T +D(ǫk))(tk), Π(xk)−xk〉.

Calling ∆k := αk,max − αk,min, it follows from Lemma 7 that the first term in the

right hand side of (3.82) satisfies

〈D(αk) · (T + D(ǫk))(xk) − D(αk) · (T + D(ǫk))(tk), tk − xk〉 ≤

(3.83) − (αk,minǫk,min − L∆k)‖xk − tk‖2.

The second term in the right hand side of (3.82) is equal to

m∑

j=1

αk,j〈Tj(t
k) + ǫk,jt

k
j , tk

j − ΠXj (xk
j )〉 = αk,min

m∑

j=1

〈Tj(t
k) + ǫk,jt

k
j , tk

j − ΠXj (xk
j )〉

(3.84) +
m∑

j=1

(αk,j − αk,min)〈Tj(t
k) + ǫk,jt

k
j , tk

j − ΠXj (xk
j )〉.

The first term in the right hand side of (3.84) satisfies

(3.85)
m∑

j=1

〈Tj(t
k) + ǫk,jt

k
j , tk

j − ΠXj (xk
j )〉 = 〈(T + D(ǫk))(tk), tk − Π(xk)〉 ≤ 0,

since tk solves VI(T +D(ǫk), X). Regarding the second term in the right hand side

of (3.84), we use the fact that ΠXj (tk
j ) = tk

j , so that for each µ ∈ (0, 1) we have

m∑

j=1

(αk,j − αk,min)〈Tj(t
k) + ǫk,jt

k
j , tk

j − ΠXj (xk
j )〉 ≤

m∑

j=1

(αk,j − αk,min)‖Tj(t
k) + ǫk,jt

k
j ‖‖ΠXj (tk

j ) − ΠXj (xk
j )‖
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≤ ∆k

m∑

j=1

(‖Tj(t
k)‖ + ǫk,j‖tk

j ‖)‖tk
j − xk

j ‖ ≤

∆k(Bt + ǫk,maxMt)‖tk − xk‖ = 2
(Bt + ǫk,maxMt)∆k

2
√

µαk,minǫk,min
· √

µαk,minǫk,min‖tk − xk‖

(3.86) ≤ (Bt + ǫk,maxMt)
2∆2

k

4µαk,minǫk,min

+ µαk,minǫk,min‖tk − xk‖2,

using Cauchy-Schwartz inequality in the first inequality, Lemma 1(iii) for ΠXi in

the second one, the fact that ‖T (tk)‖ ≤ B(tk) ≤ Bt and ‖tk‖ ≤ Mt for all k ∈ N in

the third one, and the relation 2ab = −(a− b)2 +a2 + b2 in the fourth one. Putting

together (3.84)-(3.86), we finally get that the second term in the right hand side

of (3.82) is bounded by

(3.87)

〈D(αk)·(T +D(ǫk))(tk), tk−Π(xk)〉 ≤ (Bt + ǫk,maxMt)
2∆2

k

4µαk,minǫk,min

+µαk,minǫk,min‖xk−tk‖2.

For the third term in the right hand side of (3.82), we have

〈D(αk) · (T + D(ǫk))(tk), Π(xk) − xk〉 ≤ ‖D(αk)‖‖T (tk) + ǫktk‖‖Π(xk) − xk‖
≤ αk,max(Bt + ǫk,maxMt) d(xk, X).(3.88)

Combining (3.83), (3.87) and (3.88) with (3.82), we obtain

2〈D(αk) · (T + D(ǫk))(xk), tk − xk〉 ≤
[

− 2(1 − µ)αk,minǫk,min + 2L∆k

]
‖xk − tk‖2

(3.89) +
(Bt + ǫk,maxMt)

2∆2
k

2µαk,minǫk,min

+ 2αk,max(Bt + ǫk,maxMt) d(xk, X).

Now we use (3.89) in (3.81), getting

E

[
‖xk+1 − tk‖2

∣∣∣Fk

]
≤ qk‖xk − tk‖2 + Hk,τ (B2

t + M2
t ǫ2

k,max)α2
k,max

(3.90) +
(Bt + ǫk,maxMt)

2∆2
k

2µαk,minǫk,min
+ 2αk,max(Bt + ǫk,maxMt) d(xk, X) − Ak,τ d(xk, X)2,

where

(3.91) qk := 1 − 2(1 − µ)αk,minǫk,min + Hk,τ(L2 + ǫ2
k,max)α2

k,max + 2L∆k.
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The last term in the right hand side of (3.90) becomes

(3.92)

− Ak,τ d(xk, X)2 + 2(Bt + ǫk,maxMt)αk,max d(xk, X) ≤ (Bt + ǫk,maxMt)
2α2

k,max

Ak,τ
,

using the relation 2ab ≤ λ2a2 + b2

λ2 with λ2 := Ak,τ , a := d(xk, X) and b :=

(Bt + ǫk,maxMt)αk,max. Using (3.92) in (3.90) we get that for all k ∈ N,

E

[
‖xk+1 − tk‖2

∣∣∣Fk

]
≤ qk‖xk − tk‖2

(3.93) +


Hk,τ(B2

t + M2
t ǫ2

k,max) +
(Bt + Mtǫk,max)2

Ak,τ


α2

k,max +
(Bt + ǫk,maxMt)

2∆2
k

2µαk,minǫk,min
.

Next we relate ‖xk−tk‖2 with ‖xk−tk−1‖2, using the properties of the Tykhonov

sequence (Lemma 8). We have

‖xk − tk‖2 ≤ (‖xk − tk−1‖ + ‖tk − tk−1‖)2

= ‖xk − tk−1‖2 + ‖tk − tk−1‖2 + 2‖xk − tk−1‖‖tk − tk−1‖

(3.94) ≤ ‖xk −tk−1‖2 +
(

Mt
ǫk−1,max − ǫk,min

ǫk,min

)2

+2Mt
ǫk−1,max − ǫk,min

ǫk,min
‖xk −tk−1‖.

Using the relation 2ab ≤ λ2a2 + b2

λ2 , the last term in the rightmost expression in

(3.94) can be estimated as

2Mt
ǫk−1,max − ǫk,min

ǫk,min
‖xk − tk−1‖ =

2
√

αk,minǫk,min‖xk − tk−1‖ · Mt
ǫk−1,max − ǫk,min√
αk,minǫk,minǫk,min

(3.95) ≤ αk,minǫk,min‖xk − tk−1‖2 + M2
t

(
ǫk−1,max − ǫk,min)2

αk,minǫ3
k,min

.

Putting (3.95) in (3.94) yields

(3.96)

‖xk−tk‖2 ≤ (1+αk,minǫk,min)‖xk−tk−1‖2+
(

Mt
ǫk−1,max − ǫk,min

ǫk,min

)2(
1+

1

αk,minǫk,min

)
.
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We combine (3.93) and (3.96) in order to get

E

[
‖xk+1 − tk‖2

∣∣∣Fk

]
≤ qk(1 + αk,minǫk,min)‖xk − tk−1‖2

+


Hk,τ(B2

t + M2
t ǫ2

k,max) +
(Bt + Mtǫk,max)2

Ak,τ


α2

k,max +
(Bt + ǫk,maxMt)

2∆2
k

2µαk,minǫk,min

(3.97) + qk

(
Mt

ǫk−1,max − ǫk,min

ǫk,min

)2(
1 +

1

αk,minǫk,min

)
.

We now estimate the coefficient qk(1 + αk,minǫk,min) in (3.97). In view of (3.91),

we have

(3.98) qk = 1 − αk,minǫk,min


2 − 2µ − Hk,τ(L2 + ǫ2

k,max)α2
k,max

αk,minǫk,min

− 2L∆k

αk,minǫk,min


.

Assumption 11(ii) and 0 < Hk,τ = 4[1 + βk,min(2 − βk,max)τ ] ≤ 4(1 + τ) guarantee

that
Hk,τ(L2 + ǫ2

k,max)α2
k,max

αk,minǫk,min

+
2L∆k

αk,minǫk,min

→ 0.

Since µ ∈ (0, 1) is arbitrary, we can ensure the existence of c ∈ (0, 1) such that

(3.99) ck := 2µ +
Hk,τ(L2 + ǫ2

k,max)α2
k,max

αk,minǫk,min

+
2L∆k

αk,minǫk,min

< c

for all sufficiently large k. Next we show that qk ∈ (0, 1) for large k. Indeed, from

(3.99) and c ∈ (0, 1) we have that 1 < 2 − ck < 2 for large enough k, so that we

obtain, from (3.98),

(3.100) 1 − 2αk,minǫk,min < qk < 1 − αk,minǫk,min.

Finally, limk→∞ αk,minǫk,min = 0 by Assumption 11(ii), so that (3.100) implies that

qk ∈ (0, 1) for sufficiently large k. Using this fact and (3.99) we get the following

estimate:

0 < qk(1 + αk,minǫk,min) ≤ qk + αk,minǫk,min = 1 − αk,minǫk,min(2 − ck) + αk,minǫk,min

(3.101) = 1 − αk,minǫk,min(1 − ck) ≤ 1 − αk,minǫk,min(1 − c),

using (3.99) in the last inequality.
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Combining (3.97), (3.101) and Ak,τ = βk,min(2 − βk,max)G−1
τ , we obtain

(3.102) E

[
‖xk+1 − tk‖2

∣∣∣Fk

]
≤ (1 − ak)‖xk − tk−1‖2 + bk,

for all sufficiently large k, with ak := αk,minǫk,min(1 − c) and

bk :=


Hk,τ(B2

t + M2
t ǫ2

k,max) +
Gτ (Bt + Mtǫk,max)2

βk,min(2 − βk,max)


α2

k,max

(3.103) +
(Bt + ǫk,maxMt)

2∆2
k

2µαk,minǫk,min
+ qk

(
Mt

ǫk−1,max − ǫk,min

ǫk,min

)2(
1 +

1

αk,minǫk,min

)
.

From (3.101) and c ∈ (0, 1), we conclude that ak ∈ [0, 1], while from Assumption

11(iii) we have that
∑

k ak = ∞. From Assumption 11(iv) and (3.103) we also have

that
∑

k bk < ∞. Finally, denoting Γk := ǫk−1,max − ǫk,min and Θk := βk,min(2 −
βk,max) we obtain from (3.103):

0 ≤ bk

ak
= C1

α2
k,max

αk,minǫk,min
+ C2

α2
k,max

Θkαk,minǫk,min
+ C3


 ∆k

αk,minǫk,min




2

+C4
Γ2

k

ǫ3
k,minαk,min

(
1 +

1

αk,minǫk,min

)

for some positive constants C1, C2, C3 and C4. Therefore, we get limk→∞ bk/ak = 0

from Assumption 11(ii) and (v). These conditions, Theorem 2 and (3.102) imply

that limk→∞ ‖xk − tk−1‖ = 0 almost surely. The result follows from this fact and

Lemma 8.

Remark 4. The previous convergence analysis does not present feasibility rate

guarantees for method 1 neither rate guarantees for method 2. For such type of

statements we refer to the improved version of this chapter published in [36].

3.3 Appendix of Chapter 3

We give the proof of Proposition 1:

Proof. Suppose that (2.18) holds and let x∗ ∈ X∗. If TX(x∗) ∩ NX∗(x∗) = {0},

then (2.15) holds trivially. Otherwise, take d ∈ TX(x∗) ∩ NX∗(x∗) with d 6= 0.
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Since d ∈ NX∗(x∗), the definition of NX∗(x∗) implies that X∗ is a subset of the

halfspace H−
d := {y : 〈d, y − x∗〉 ≤ 0}. In view of (2.10) and d ∈ TX(x∗), there

exist sequences dk ∈ R
n, tk > 0 such that x∗ + tkdk ∈ X, dk → d and tk → 0. We

claim that, taking a subsequence if needed,

(3.104) x∗ + tkdk ∈ X − H−
d .

for all k. Indeed, otherwise we would have

(3.105) 0 ≥ 〈d, x∗ + tkdk − x∗〉 = tk〈d, dk〉

for large enough k. Dividing (3.105) by tk and letting k → ∞ we get d = 0

which entails a contradiction. Hence, (3.104) holds. From (2.18), x∗ ∈ X∗ and

x∗ + tkdk ∈ X we get

(3.106)

〈T (x∗), x∗ + tkdk − x∗〉 ≥ ρ d(x∗ + tkdk, X∗) ≥ ρ d(x∗ + tkdk, H−
d ) = ρtk

〈d, dk〉
‖d‖ ,

using (3.104) and X∗ ⊂ H−
d in second inequality. Dividing (3.106) by tk and letting

k → ∞, we conclude that (2.15) holds for d.

Now suppose that (2.15) holds and that T is constant on X∗. Take x ∈ X,

x∗ ∈ X∗ and let x̄ := ΠX∗(x). Since x, x̄ ∈ X and X is closed and convex, we have

that x − x̄ ∈ TX(x̄), using the first equality in (2.11). Since T is monotone and

X is closed and convex, X∗ is closed and convex (see [27], Theorem 2.3.5). From

this fact, x̄ = ΠX∗(x) and Lemma 1(i), we obtain that x − x̄ ∈ NX∗(x̄), using the

definition of the polar cone. Thus, x − x̄ ∈ TX(x̄) ∩ NX∗(x̄). We conclude from

(2.15) that

(3.107) 〈T (x̄), x − x̄〉 ≥ ρ‖x − x̄‖ = ρ d(x, X∗).

Since T is constant on X∗, we have

(3.108)

〈T (x̄), x− x̄〉 = 〈T (x∗), x− x̄〉 = 〈T (x∗), x−x∗〉+ 〈T (x∗), x∗ − x̄〉 ≤ 〈T (x∗), x−x∗〉,

using the fact that 〈T (x∗), x∗ − x̄〉 ≤ 0, which holds because x∗ ∈ X∗ and x̄ ∈ X.

The desired claim (2.18) follows from (3.108) and (3.107).

73



Chapter 4

A variance-based stochastic

extragradient method

Our extragradient method takes the form:

Algorithm 3 (Stochastic extragradient method with stepsize away from zero).

1. Initialization: Choose the initial iterate x0 ∈ R
n, a positive stepsize se-

quence {αk}, the sample rate {Nk} and initial samples {ξ0
j }N0

j=1 and {η0
j }N0

j=1

of the random variable ξ.

2. Iterative step: Given iterate xk, generate samples {ξk
j }Nk

j=1 and {ηk
j }Nk

j=1 of

ξ and define:

zk = Π


xk − αk

Nk

Nk∑

j=1

F (ξk
j , xk)


,(4.1)

xk+1 = Π


xk − αk

Nk

Nk∑

j=1

F (ηk
j , zk)


,(4.2)

where Π is the projection operator onto X. Method (4.1)-(4.2) is designed so

that at iteration k the random variable ξ is sampled 2Nk times and the empirical

average of F at x is used as the approximation of T (x) at each projection step.

In order to incorporate the distributed case mentioned in Section 1.5.2, item(v),

we will also analyze the case in which the SVI has a Cartesian structure. We

consider the decomposition R
n =

∏m
i=1 R

ni, with n =
∑m

i=1 ni, and furnish this
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space with the inner product mentioned before Lemma 3. We suppose that the

feasible set has the form X =
∏m

i=1 X i, where X i ⊂ R
ni is a closed and convex set

for i ∈ [m]. The random operator F : Ξ×R
n → R

n has the form F = (F1, . . . , Fm),

where Fi : Ξ × R
n → R

ni for i ∈ [m]. Given i ∈ [m], we denote by Πi : Rni → R
ni

the orthogonal projection onto X i. We emphasize that the orthogonal projection

under a Cartesian structure has a simple form: for x = (xi)
m
i=1 ∈ R

n, we have

ΠX(x) = (ΠX1(x1), . . . , ΠXm(xm)).

In such a setting, the method takes the form:

Algorithm 4 (Stochastic extragradient method with stepsize away from zero:

distributed case).

1. Initialization: Choose the initial iterate x0 ∈ R
n, the stepsize sequence

αk = (αk,i)
m
i=1 ∈ (0, ∞)m, the sample rates Nk = (Nk,i)

m
i=1 ∈ N

m and, for each

i ∈ [m], generate the initial samples {ξ0
j,i}

N0,i

j=1 and {η0
j,i}

N0,i

j=1 of the random

variable ξ.

2. Iterative step: Given xk = (xk
i )m

i=1, for each i ∈ [m], generate samples

{ξk
j,i}

Nk,i

j=1 and {ηk
j,i}

Nk,i

j=1 of ξ and define:

zk
i = Πi


xk

i − αk,i

Nk,i

Nk,i∑

j=1

Fi(ξ
k
j,i, xk)


,(4.3)

xk+1
i = Πi


xk

i − αk,i

Nk,i

Nk,i∑

j=1

Fi(η
k
j,i, zk)


.(4.4)

Method (4.1)-(4.2) is a particular case of method (4.3)-(4.4) with m = 1. The

only additional requirement when m > 1 is the sampling coordination between

agents (Assumption 17). We define next the stochastic errors: for each i ∈ [m],

ǫk
1,i :=

1

Nk,i

Nk,i∑

j=1

Fi(ξ
k
j,i, xk) − Ti(x

k),(4.5)

ǫk
2,i :=

1

Nk,i

Nk,i∑

j=1

Fi(η
k
j,i, zk) − Ti(z

k),(4.6)

in which case method (4.3)-(4.4) is expressible in a compact form as:

zk = Π[xk − D(αk)(T (xk) + ǫk
1)],(4.7)

xk+1 = Π[xk − D(αk)(T (zk) + ǫk
2)],(4.8)
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where Π : R
n → R

n is the projection operator onto X and ǫk
l := (ǫk

l,i)
m
i=1 for

l ∈ {1, 2}.

4.1 Discussion of the assumptions

For simplicity of notation, we aggregate the samples as

ξk
i := {ξk

j,i : j ∈ [Nk,i]}, ξk := {ξk
i : i ∈ [m]},

ηk
i := {ηk

j,i : j ∈ [Nk,i]}, ηk := {ηk
i : i ∈ [m]}.

In method (4.7)-(4.8), the sample {ξk} is used in the first projection while {ηk}
is used in the second projection. In the case of a Cartesian SVI, {ξk

i } and {ηk
i }

are the samples used in the first and second projections in (4.3)-(4.4) by the i-th

agent respectively.

We shall study the stochastic process {xk} with respect to the filtrations

Fk = σ(x0, ξ0, . . . , ξk−1, η0, . . . , ηk−1), F̂k = σ(x0, ξ0, . . . , ξk, η0, . . . , ηk−1).

We observe that by induction, xk ∈ Fk and zk ∈ F̂k but zk /∈ Fk. The filtration

Fk corresponds to the information carried until iteration k, to be used on the

computation of iteration k + 1. The filtration F̂k corresponds to the information

carried until iteration k plus the information produced at the first projection step

of iteration k + 1, namely, F̂k = σ(Fk ∪ σ(ξk)). The way information evolves

according to filtrations {Fk, F̂k} is natural in applications. Also, the use of two

filtrations will be important since we have E[ǫk
2 |Fk] 6= 0 but zk ∈ F̂k, so that, given

i ∈ [m]:

E[ǫk
2,i|F̂k] = E


 1

Nk,i

Nk,i∑

j=1

Fi(η
k
j,i, zk) − Ti(z

k)

∣∣∣∣∣∣
F̂k




=
1

Nk,i

Nk,i∑

j=1

E

[
Fi(η

k
j,i, zk)

∣∣∣F̂k

]
− Ti(z

k)

=
1

Nk,i

Nk,i∑

j=1

Ti(z
k) − Ti(z

k) = 0,(4.9)

if for every i ∈ [m], {ηk
j,i : j ∈ [Nk,i]} is independent of F̂k and identically dis-

tributed as ξ. We exploit (4.9) for avoiding first order moments of the stochastic
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errors, which drastically diminishes the complexity by an order of one, and for

using martingale techniques 1. We remark that, with some minor extra effort,

the same samples can be used in both projections in method (4.3)-(4.4). Next we

describe the assumptions required in our convergence analysis.

Assumption 12 (Consistency). The solution set X∗ := S(T, X) is non-empty.

Assumption 13 (Stochastic model). X ⊂ R
n is closed and convex, (Ξ, G) is a

measurable space such that F : Ξ×X → R
n is a Carathéodory map, 2 ξ : Ω → Ξ is

a random variable defined on a probability space (Ω, F ,P) and E[‖F (ξ, x)‖] < ∞
for all x ∈ X.

Assumption 14 (Lipschitz continuity). The mean operator T : X → R
n defined

by (1.2) is Lipschitz continuous with modulus L > 0.

Assumption 15 (Pseudo-monotonicity). The mean operator T : R
n → R

n is

pseudo-monotone,3 i.e., 〈T (x), z − x〉 ≥ 0 =⇒ 〈T (z), z − x〉 ≥ 0 for all z, x ∈ R
n.

Assumption 16 (Sample rate). Given {Nk}, define Nk,min := mini∈[m] Nk,i and
1

Nk
:= 1

n

∑m
i=1

ni

Nk,i
. Then one of the following conditions is satisfied:

i)
∑∞

k=0
1

Nk
< ∞,

ii)
∑∞

k=0
1

Nk,min
< ∞.

Note that Nk is the harmonic average of {Nk,i}m
i=1 with weights {ni/n}m

i=1.

Hence Nk ≥ Nk,min, so that (ii) implies (i). Items (i) and (ii) are different only

for the Cartesian SVI (see comment below). Typically a sufficient choice is, for

i ∈ [m]:

Nk,i = Θi (k + µi)
1+ai

(
ln
(
k + µi

))1+bi

,

for any Θi > 0, µi > 0 with ai > 0, bi ≥ −1 or ai = 0, bi > 0 (the latter is

the minimum requirement). It is essential to specify choices of the above parame-

ters that induce a practical complexity of method (4.3)-(4.4), i.e., practical upper

1 If also {ξk
j,i : j ∈ [Nk,i]} is independent of Fk and identically distributed as ξ, then, for

i ∈ [m], V[ǫk
1,i] = N−1

k,i V[Fi(ξ, xk)] and V[ǫk
2,i] = N−1

k,i V[Fi(ξ, zk)], so that our method iteratively

reduces the variance of the oracle error as long as {Nk,i}k∈N increases.
2 That is, F (ξ, ·) : X → R

n is continuous for a.e. ξ ∈ Ξ and F (·, x) : Ξ → R
n is measurable.

3Pseudo-monotonicity is a weaker assumption than monotonicity, i.e., 〈T (z)−T (x), z−x〉 ≥ 0

for all x, z ∈ R
n.
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bounds on the total oracle complexity
∑K

k=1

∑m
i=1 2Nk,i, where K is an estimate

of the total numbers of iterations needed for achieving a given specified tolerance

ǫ > 0. A convergence rate in terms of K is also desirable. As commented after

Theorem 10, our algorithm achieves an optimal accelerated rate O(1/K) and an

optimal complexity O(ǫ−2) up to a first order logarithmic term ln(ǫ−1). 4

We offer two options of sampling coordination among the agents:

Assumption 17 (Sampling coordination). For each i ∈ [m] and k ∈ N0, {ξk
i }

and {ηk
i } are i.i.d. samples of ξ such that {ξk

i } and {ηk
i } are independent of each

other. Also, one of the two next coordination conditions is satisfied:

i) (Centralized sampling) For all i ∈ [m], Nk,i ≡ Nk, ξk
i ≡ ξk and ηk

i ≡ ηk.

ii) (Distributed sampling) {ξk, ηk : k ∈ N} is an i.i.d. sample of ξ.

We remark that, with some extra effort, it is possible to use the same samples

in each projection step of method (4.3)-(4.4), that is, ξk
i ≡ ηk

i for k ∈ N0 and

i ∈ [m]. We ask independence in Assumption 17 to simplify the analysis. Both

conditions (i) and (ii) in Assumption 17 are the same for m = 1.5 Assumption

17 implies in particular that {ξk} is independent of Fk, {ηk} is independent of F̂k

4 In Machine Learning, the dependence of the rate and complexity estimates on the dimension

is relevant in the case of large constraint dimension (ni ≫ 1) or large networks (m ≫ 1). We

show our method has complexity O(nσ2) up to a scaling factor in the sample rate, where σ2 is

the variance, even for the case of an unbounded feasible set and a non-uniform variance. Sharper

constants are available in case of uniform variance (see Proposition 9). In the case of networks,

although Assumption 16(ii) is sufficient, the definition of Nk could be exploited in the sampling

procedure for reducing the dimension dependence or the sampling effort among the agents, if

information about the dimensions {ni}m
i=1 of the agents’ problems is available. Further dimension

reduction possibilities are the subject of future work.
5 In the case when m > 1, item (i) corresponds to the case where one stochastic oracle

is centralized. In this case, less samples are required but the sampling process needs total

coordination. Item (ii) corresponds to the other extreme case, where the agents have completely

distributed oracles so that the sampling process of each agent is conducted independently. We do

not explore the intermediate possibilities between (i) and (ii). In the case of item (ii), the oracle

complexity has higher order dependence in terms of the network dimension m, which may be

demanding in the context of large networks (m ≫ 1). However, if a rapidly decreasing sequence

of deterministic exponents {bi}m
i=1 is coordinated among agents, then the oracle complexity is

linear in m (see Proposition 10) as in the case of centralized sampling.
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and both are identically distributed to ξ. In particular, for any x ∈ R
n, k ∈ N,

i ∈ [m], j ∈ [Nk,i]:

E

[
F (ξk

j,i, x)
∣∣∣∣Fk

]
= E

[
F (ηk

j,i, x)
∣∣∣∣F̂k

]
= T (x).

Assumption 18 (Stepsize bounded away from zero with partial coordination).

Defining αk,min := mini∈[m] αk,i and αk,max := maxi∈[m] αk,i, the stepsize sequence

{αk} satisfy 0 < infk∈N αk,min ≤ supk∈N
αk,max < 1

2L
.

The following two sets of assumptions ensure that the variance of the error

F (ξ, x)−T (x) is controlled, so that (together with Assumption 16 on the sampling

rate) boundedness is guaranteed, even in the case of an unbounded operator.

Assumption 19 (Variance control). There exists p ≥ 2, such that one of the

following three conditions holds:

i) There exist x∗ ∈ X∗ and σ(x∗) > 0 such that for all x ∈ X,

|‖F (ξ, x) − T (x)‖|p ≤ σ(x∗) (1 + ‖x − x∗‖).

ii) There exists a locally bounded and measurable function σ : X∗ → R+ such

that for all x∗ ∈ X∗, x ∈ X, the inequality in (i) is satisfied.

iii) There exist positive sequence {σl,i : i ∈ [m], l ∈ [ni]} such that for all i ∈ [m],

l ∈ [ni], x ∈ X, |Fℓ,i(ξ, x) − Tℓ,i(x)|p ≤ σℓ,i, where Fℓ,i and Tℓ,i are the

components of Fi and Ti respectively.

In item (iii) we define σ2 :=
∑m

i=1

∑ni

ℓ=1 σ2
ℓ,i. Note that when p = 2, σ(x∗)2 (1 +

‖x − x∗‖)2 in the case of (i)-(ii), and σ2 in the case of item (iii), are, respectively,

upper bounds on the variance of the components of F (ξ, x). Items (i) and (ii) are

essentially the same, excepting that (i) only requires the condition to hold at just

one point x∗ ∈ X∗ rather than on the entire solution set. Item (i) is sufficient for

the analysis, but (ii) allows for sharper estimates in the case of unbounded feasible

set and operator. Item (iii) allows for even sharper ones. In the sequel we shall

denote q := p/2.

For the important case in which the random operator F is Lipschitz, both items

(i)-(ii) are satisfied with a continuous σ : X∗ → R+. Namely, if for any x, y ∈ R
n,

‖F (ξ, x) − F (ξ, y)‖ ≤ L(ξ)‖x − y‖,
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for some measurable L : Ξ → R+ with finite Lp-norm for some p ≥ 2, then

Assumptions 13-14 and 19 hold with

σ(x∗) := max{|‖F (ξ, x∗) − T (x∗)‖|p, 2|L(ξ)|p}

for x∗ ∈ X∗, in view of Minkowski’s inequality. Thus, Assumption 19(i)-(ii) is

merely a finite variance assumption even for the case of an unbounded feasible set.

Assumption 19(iii) means that the variance is uniformly bounded over the feasible

set X. It has been assumed in most of the past literature [42, 50, 75, 20, 76, 44,

45, 77] on stochastic approximation algorithms for SVI. 6 Assumptions 19(i)-(ii)

are much weaker than Assumption 19(iii) and, to the best of our knowledge, seem

to be new for monotone operators without regularization.

The next two examples provide instances where Assumption 19(i)-(ii) and the

iterative variance reduction in method (4.3)-(4.4) are necessary for asymptotic

convergence, in the case of an unbounded feasible set (e.g., stochastic equations

and stochastic complementarity problems).

Example 1 (Equation problem for zero mean random constant operator). The

following example shows that, in the case of an unbounded feasible set, the varia-

tion of the mirror-prox method in [20] diverges asymptotically in terms of solutions

in the sense that a.s. the generated sequence is unbounded (even though it con-

verges in terms of the gap function). Precisely, the method in [20] say that given

a prescribed number of iterations K, for k ∈ [K] compute:

zk = Π
[
xk − αK

k F (ξK
k , xk)

]
,

xk+1 = Π
[
xk − αK

k F (ηK
k , zk)

]
,

with a final output z̄K =
∑K

k=1 pK
k zk, where {pK

k } is a positive sequence such

that
∑

k=1 pK
k = 1. For an unbounded X, assuming uniformly bounded variance

(Assumption 19(iii)) and a single oracle call per iteration, it is shown that there

6 Assumption 19(iii) is weakened in previous works only in situations in which the operator

satisfies more demanding monotonicity conditions (strongly monotone operator in [73] and weak-

sharp monotone operator in method of Section 3.1 of Chapter 3) or when the operator is merely

monotone, but with additional Tykhonov regularization (as in method of Section 3.2 of Chapter

3, without convergence rate results).
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exists {vK} ⊂ R
n such that E[G̃(z̄K , vK)] . 1/

√
K and E[‖vK‖] .

√
K (see [20],

Corollary 3.4). In these statements, for z, v ∈ R
n,

(4.10) G̃(z, v) = sup
y∈X

〈T (y) − v, z − y〉,

is the relaxed dual gap function recently introduced by Monteiro and Svaiter

[55, 56], based on the enlargement of monotone operators introduced in [12]. The

following example shows, however, that lim supK→∞ ‖z̄K‖ = ∞ with total proba-

bility.

We shall consider n = 1, but one can easily generalize the argument for any

n > 1. Consider X = R and the random operator given by

F (ξ, x) = ξ,

for all x ∈ R, where ξ is a random variable with zero mean, finite variance σ2 and

finite third moment (one could generalize the argument assuming finite q-moment

for any q > 2). In this case, trivially T ≡ 0, X∗ = R and Assumption 19(iii) holds.

It is easy to check that the mirror-prox method in [20] gives, after K iterations,

for k ∈ [K]:

zk = x1 −
k∑

i=1

αK
i ξK

i , z̄K =
K∑

k=1

pK
k zk,

where pK
k = c0ΓKαK

k , γk(ΓkαK
k )−1 ≡ c0 is a constant, γk := 2(1 + k)−1, {Γk} is

defined recursively as Γ1 := 1, Γk := (1 − γk)Γk−1 and the stepsize is

αK
k :=

k

3LK + σK
√

K − 1
,

(see [20], Corollary 3.4). Using the expression of {pK
k } and

∑K
k=1 pK

k = 1, we get

(4.11) z̄K = x1 −
K∑

k=1

θK
k · ξK

k ,

where θK
k := c0ΓKαK

k

∑K
i=k αK

i . Note that Γk = 2
k(k+1)

and

θK
k =

c0ΓKk
(
3LK + σK

√
K − 1

)2

K∑

i=k

i =
c0k(K − k + 1)(K + k + 2)

K(K + 1)
(
3LK + σK

√
K − 1

)2 ,

from which the following estimates follow:

s2
K :=

K∑

k=1

(
θK

k

)2 ∼ 1,
K∑

k=1

(
θK

k

)3 ∼ K−5 (as K → ∞).
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We invoke Lyapounov’s criteria ([10], Theorem 7.3) with δ = 1 for the sum
∑K

k=1 θK
k · ξK

k of independent random variables, obtaining

lim
K→∞

E

[
|ξ|3

]

s3
K

K∑

k=1

(
θK

k

)3
= lim

K→∞
E

[
|ξ|3

]
K−5 = 0.

Hence (σsK)−1∑K
k=1 θK

k ξK
k converges in distribution to N(0, 1). Therefore, there

is some constant C > 0 such that for any R > 0,

P

(
lim sup

K→∞
z̄K > R

)
= P

(
lim sup

K→∞

K∑

k=1

θK
k

σsK
· ξK

k > CR

)

≥ lim sup
K→∞

P

(
K∑

k=1

θK
k

σsK
· ξK

k > CR

)
> 0,(4.12)

using (4.11) and sK ∼ 1 in the equality of (4.12). For every R > 0, the event

AR := [lim supK→∞ z̄K > R] is a tail event with positive probability and, hence,

has total probability from Kolmogorov’s zero-one law ([26], Theorem 2.5.1). We

conclude then that

P

(
lim sup

K→∞
z̄K = ∞

)
= lim

R→∞
P (AR) = 1,

as claimed.

Example 2 (Linear SVI with unbounded feasible set). The following relevant

example 7 is a typical situation of a non-uniform variance over a unbounded feasible

set. Let the random operator be:

F (ξ, x) = A(ξ)x,

for all x ∈ R
n, where A(ξ) is an random matrix whose entries have finite mean and

variance, such that Ā := E[A(ξ)] is nonnull and positive semidefinite. In this case,

T (x) = Āx (x ∈ R
n) is monotone and linear. For all x ∈ R

n, V[F (ξ, x)] = xtBx,

where B :=
∑m

i=1 cov [Ai(ξ)] is positive semidefinite and A1(ξ), . . . Am(ξ) are the

rows of A(ξ). Hence, for all x ∈ R
n − {0} we have

V[F (ξ, x)]

‖x‖2
≥ λ+(

√
B) > 0,

7It includes, for instance, quadratic programming, stochastic linear equations and comple-

mentarity problems, affine convex-concave saddle-point problems and bimatrix games.
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where λ+(
√

B) is the smallest nonnull eigenvalue of
√

B. This shows that Assump-

tion 19(iii) does not hold if X is unbounded (in fact, the variance grows quadrat-

ically in the infinite horizon, that is, Assumption 19(i)-(ii) hold with equality).

Hence, in the case in which X is unbounded, this example cannot be studied un-

der the uniform variance Assumption 19(iii). Note that if X is a compact set and

e.g. X ⊃ {0}, then 0 ∈ X∗ and V[ǫ(ξ, 0)] = 0, so that σ2 in Assumption 19(iii)

can be a very conservative upper bound on the oracle variance over X. This sit-

uation might suggest to invoke Assumption 19(i)-(ii) even in the compact case so

that in the convergence analysis of the method, only the variance at points of the

trajectory and the solution set matter.

4.2 Convergence analysis

For any x = (xi)
m
i=1 ∈ R

n and α = (αi)
m
i=1 ∈ R

m
>0, we denote the (quadratic)

residual function by

rα(x)2 := ‖x − Π [x − D(α)T (x)]‖2 =
m∑

i=1

‖xi − Πi [xi − αiTi(x)]‖2 .

We start with two key lemmas whose proofs are given in the Appendix. First, we

define recursively, for k ∈ N0, A0 := 0,

(4.13) Ak+1 := Ak + (8 + ρk)α2
k,max‖ǫk

1‖2 + 8α2
k,max‖ǫk

2‖2,

and, for x∗ ∈ X∗, M0(x∗) := 0,

(4.14) Mk+1(x
∗) := Mk(x∗) + 2〈x∗ − zk, D(αk) · ǫk

2〉.

Lemma 9 (Recursive relation). Suppose that Assumption 12, 14 and 18 hold, and

let ρk := 1 − 4L2α2
k,max > 0. Then, almost surely, for all k ∈ N and x∗ ∈ X∗,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ρk

2
rαk

(xk)2 + Mk+1(x
∗) − Mk(x∗) + Ak+1 − Ak.

From definitions (4.13)-(4.14), {Ak} is a non-decreasing process for which Ak ∈
Fk and, for any x∗ ∈ X∗, {Mk(x∗), F̂k} is a martingale (since zk ∈ F̂k, E[ǫk

2 |F̂k] =

0).
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Lemma 10 (Error decay). Consider Assumptions 13-19. For each i ∈ [m] and

Ni ∈ N, let ξi := {ξj,i : j ∈ [Ni]} be an i.i.d. sample of ξ with 1/N := 1
n

∑m
i=1 ni/Ni

and Nmin := mini∈[m] Ni. For any x ∈ X set

ǫi(x) :=
Ni∑

j=1

Fi(ξj,i, x) − Ti(x)

Ni
, ǫ(x) := (ǫ1(x), . . . , ǫm(x)).

If Assumption 19(i) hold for some x∗ ∈ X∗, then for all x ∈ X, v ∈ R
n,

|‖ǫ(x)‖|p ≤
√

A

N Cpf(x, x∗), |〈v, D(α)ǫ(x)〉|p ≤ ‖v‖‖D(α)‖
√

B

N Cpf(x, x∗),

where f(x, x∗) := σ(x∗)(1 + ‖x − x∗‖) and

1. A = n if m = 1 and A = 2n if m > 1,

2. B = 2n if m > 1 and {ξj,i : 1 ≤ i ≤ m, 1 ≤ j ≤ Ni} is i.i.d.,

3. B = 1 if m = 1 or if m > 1 with Ni ≡ N , ξj,i ≡ ξj for all i ∈ [m].

Moreover, if Assumption 19(iii) holds, then for all x ∈ X, v ∈ R
n,

|‖ǫ(x)‖|p ≤ Cpσ√
Nmin

, |〈v, D(α) · ǫ(x)〉|p ≤ ‖v‖‖D(α)‖ Cpσ√
Nmin

.

The following two results will establish upper bounds on Ak+1−Ak and Mk+1(x
∗)−

Mk(x∗) in terms of ‖xk − x∗‖2 for any x∗ ∈ X∗. Under the Assumptions 19(i)-(ii)

of non-uniform variance, we need first a bound of ‖x∗ −zk‖2 in terms of ‖xk −x∗‖2.

Proposition 3. Consider Assumptions 12-19. If Assumption 19(i) holds for some

x∗ ∈ X∗, then

∣∣∣‖zk − x∗‖
∣∣∣Fk

∣∣∣
p

≤ (1 + Lαk,max + Hk(x∗)) ‖xk − x∗‖ + Hk(x∗),

where Hk(x∗) := Gk(x∗)
√

A

Nk
and Gk(x∗) := αk,maxCpσ(x∗).

Moreover, if Assumption 19(iii) holds, then

∣∣∣‖zk − x∗‖
∣∣∣Fk

∣∣∣
p

≤ (1 + Lαk,max) ‖xk − x∗‖ + αk,max


M +

Cpσ√
Nk,min


 ,

with L = L and M = 0 or, alternatively, if supx∈X ‖T (x)‖ ≤ M < ∞, with L = 0

and M = 2M .
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Proof. Recall that zk = Π[xk − D(αk) (T (xk) + ǫk
1)]. By Lemma 1(iv) and Lemma

3, we have x∗ = Π[x∗ − D(αk) T (x∗)].

Consider first Assumption 19(i). By Lemma 1(iii),

‖x∗ − zk‖ ≤ ‖x∗ − xk − D(αk)(T (x∗) − T (xk)) + D(αk)ǫk
1‖

≤ ‖x∗ − xk‖ + ‖D(αk)‖‖T (xk) − T (x∗)‖ + ‖D(αk)‖
∥∥∥ǫk

1

∥∥∥

≤ (1 + Lαk,max) ‖x∗ − xk‖ + αk,max

∥∥∥ǫk
1

∥∥∥ ,(4.15)

using the Lipschitz continuity of T and ‖D(αk)‖ = αk,max in last inequality. We

now recall the definition of ǫk
1 in (4.5). We have

(4.16)

∣∣∣∣
∥∥∥ǫk

1

∥∥∥
∣∣∣∣Fk

∣∣∣∣
p

≤
(

A

Nk

) 1
2

Cpσ(x∗) (1 + ‖xk − x∗‖),

using Lemma 10, xk ∈ Fk and the independence of ξk with Fk. Invoking Minkowski’s

inequality, we take |·|Fk|p in (4.15) and use (4.16) together with xk ∈ Fk in order

to finish the proof.

We now consider Assumption 19(iii). In this case, (4.15) may be replaced by

(4.17) ‖x∗ − zk‖ ≤ (1 + Lαk,max) ‖x∗ − xk‖ + αk,max

(
M +

∥∥∥ǫk
1

∥∥∥
)

,

with L = L and M = 0 as stated in the proposition. By Lemma 10, relation

(4.16) is replaced by
∣∣∣∣
∥∥∥ǫk

1

∥∥∥
∣∣∣∣Fk

∣∣∣∣
p

≤ Cpσ√
Nk,min

, which together with (4.17) implies the

required statement, after taking |·|Fk|p in (4.17).

The following proposition gives bounds on the increments of {Ak} and {Mk(x∗)}
in terms of ‖xk − x∗‖2, using the definitions given in Proposition 3.

Proposition 4 (Bounds on increments). Consider Assumptions 12-19. If As-

sumption 19(i) holds for some x∗ ∈ X∗, then, for all k ∈ N0,

|Ak+1 − Ak|Fk|q ≤
[
32 (1 + Lαk,max + Hk(x∗))2 + 2(8 + ρk)

]
Hk(x∗)2‖xk − x∗‖2

+
[
32Hk(x∗)2 + 16 + 2(8 + ρk)

]
Hk(x∗)2,

|Mk+1(x
∗) − Mk(x∗)|Fk|q ≤

√
B

A
Hk(x∗) [1 + Lαk,max + Hk(x∗)]2 ‖xk − x∗‖2

+

√
B

A
Hk(x∗)

[
1 + Lαk,max + (3 + 2Lαk,max)Hk(x∗) + 2Hk(x∗)2

]
‖xk − x∗‖
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+

√
B

A
Hk(x∗)

[
Hk(x∗) + Hk(x∗)2

]
.

Moreover, if Assumption 19(iii) holds, then, for all k ∈ N0,

|Ak+1 − Ak|Fk|q ≤ (16 + ρk) α2
k,max

C2
pσ2

Nk,min

,

|Mk+1(x
∗) − Mk(x∗)|Fk|q ≤ (1 + Lαk,max) αk,max

Cpσ√
Nk,min

‖xk − x∗‖

+


M +

Cpσ√
Nk,min


α2

k,max

Cpσ√
Nk,min

.

Proof. Assume first that Assumption 19(i) holds. We start with the bound on

Ak+1 − Ak. Definition (4.5), Lemma 10, xk ∈ Fk, the independence of {ξk} and

Fk and relation (a + b)2 ≤ 2a2 + 2b2 imply

(4.18)

∣∣∣∣
∥∥∥ǫk

1

∥∥∥
2
∣∣∣∣Fk

∣∣∣∣
q

=

∣∣∣∣
∥∥∥ǫk

1

∥∥∥
∣∣∣∣Fk

∣∣∣∣
2

p
≤ 2

A

Nk
C2

pσ(x∗)2 (1 + ‖xk − x∗‖2).

We proceed similarly for a bound of ǫk
2 defined in (4.6), but with the use of the

filtration F̂k. Lemma 10, zk ∈ F̂k and the independence of {ηk} and F̂k imply

(4.19)
∣∣∣∣
∥∥∥ǫk

2

∥∥∥
∣∣∣∣F̂k

∣∣∣∣
p

≤
(

A

Nk

) 1
2

Cpσ(x∗) (1 + ‖zk − x∗‖).

We condition (4.19) with

∣∣∣∣∣

∣∣∣∣·
∣∣∣∣F̂k

∣∣∣∣
p

∣∣∣∣Fk

∣∣∣∣∣
p

=
∣∣∣∣·
∣∣∣∣Fk

∣∣∣∣
p
, and then take squares, getting

(4.20)
∣∣∣∣
∥∥∥ǫk

2

∥∥∥
2
∣∣∣∣Fk

∣∣∣∣
q

=
∣∣∣∣
∥∥∥ǫk

2

∥∥∥
∣∣∣∣Fk

∣∣∣∣
2

p
≤ 2

A

Nk

C2
pσ(x∗)2

(
1 +

∣∣∣∣‖zk − x∗‖
∣∣∣∣Fk

∣∣∣∣
2

p

)
.

Finally we use (4.18), (4.20), (4.13), Proposition 3 and the relation (a + b)2 ≤
2a2 + 2b2, obtaining the required bounds on Ak+1 − Ak.

Now we deal with Mk+1(x
∗) − Mk(x∗). Definition (4.6), Lemma 10, zk ∈ F̂k

and the independence of {ηk} and F̂k imply

(4.21)
∣∣∣∣〈x∗ − zk, D(αk)ǫk

2〉
∣∣∣∣F̂k

∣∣∣∣
p

≤ ‖zk − x∗‖‖D(αk)‖
√

B

Nk
Cpσ(x∗)(1 + ‖zk − x∗‖).

In (4.21), we first use
∣∣∣·|F̂k

∣∣∣
q

≤
∣∣∣·|F̂k

∣∣∣
p

and then take
∣∣∣∣·
∣∣∣∣Fk

∣∣∣∣
q
, obtaining

∣∣∣∣〈x∗ − zk, D(αk)ǫk
2〉
∣∣∣∣Fk

∣∣∣∣
q

≤
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αk,max

√
B

Nk

Cpσ(x∗)

(∣∣∣∣‖x∗ − zk‖
∣∣∣∣Fk

∣∣∣∣
q

+
∣∣∣∣‖x∗ − zk‖2

∣∣∣∣Fk

∣∣∣∣
q

)
≤

(4.22) αk,max

√
B

Nk

Cpσ(x∗)

(∣∣∣∣‖x∗ − zk‖
∣∣∣∣Fk

∣∣∣∣
p

+
∣∣∣∣‖x∗ − zk‖

∣∣∣∣Fk

∣∣∣∣
2

p

)
,

using the facts that

∣∣∣∣∣

∣∣∣∣·
∣∣∣∣F̂k

∣∣∣∣
q

∣∣∣∣Fk

∣∣∣∣∣
q

=

∣∣∣∣·
∣∣∣∣Fk

∣∣∣∣
q

and αk,max = ‖D(αk)‖ in the first in-

equality and the fact that |·|Fk|q ≤ |·|Fk|p in the second inequality. Definitions

(4.14), (4.22), Proposition 3 and the relation (a+b)2 ≤ 2a2+2b2 entail the required

bound on Mk+1(x∗) − Mk(x∗).

Suppose now that Assumption 19(iii) hold. First we prove the bound on

{Ak+1 − Ak}. The proof is similar to the previous case, but (4.18) and (4.20)

are replaced respectively by

(4.23)
∣∣∣∣
∥∥∥ǫk

1

∥∥∥
2
∣∣∣∣Fk

∣∣∣∣
q

≤ C2
pσ2

Nk,min

,
∣∣∣∣
∥∥∥ǫk

2

∥∥∥
2
∣∣∣∣Fk

∣∣∣∣
q

≤ C2
pσ2

Nk,min

,

using Lemma 10. From Definitions (4.13) and (4.23) we obtain the required bound

on Ak+1 − Ak. We deal now with {Mk+1(x
∗) − Mk(x∗)}. The proof is similar to

the previous case, but instead of (4.21) now we have

(4.24)
∣∣∣∣〈x∗ − zk, D(αk)ǫk

2〉
∣∣∣∣F̂k

∣∣∣∣
p

≤ ‖zk − x∗‖‖D(αk)‖ Cpσ√
Nk,min

,

using Lemma 10. In (4.24), we use
∣∣∣·|F̂k

∣∣∣
q

≤
∣∣∣·|F̂k

∣∣∣
p

and then take
∣∣∣∣·
∣∣∣∣Fk

∣∣∣∣
q
, to get

(4.25)

∣∣∣∣〈x∗ − zk, D(αk)ǫk
2〉
∣∣∣∣Fk

∣∣∣∣
q

≤ αk,max
Cpσ√
Nk,min

∣∣∣∣‖zk − x∗‖
∣∣∣∣Fk

∣∣∣∣
q
,

using the facts that

∣∣∣∣∣

∣∣∣∣·
∣∣∣∣F̂k

∣∣∣∣
q

∣∣∣∣Fk

∣∣∣∣∣
q

=
∣∣∣∣·
∣∣∣∣Fk

∣∣∣∣
q

and αk,max = ‖D(αk)‖. Definition

(4.14), Proposition 3 with |·|Fk|q ≤ |·|Fk|p and (4.25) imply the required bound

on Mk+1(x
∗) − Mk(x∗).

Now, we combine Lemma 9 and Proposition 4 in the following recursive relation.

Proposition 5 (Stochastic quasi-Fejér property). Consider Assumptions 12-19.

Then, there exists x∗ ∈ X∗ such that

E

[
‖xk+1 − x∗‖2|Fk

]
≤ ‖xk − x∗‖2 − ρk

2
rαk

(xk) + Ck(x∗)
I‖xk − x∗‖2 + 1

N ′
k

.
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In the above relation, under Assumption 19(i)-(ii), I = 1, N ′
k = Nk and

Ck(x∗) := AGk(x∗)2
(
32 (1 + Lαk,max + Hk(x∗))2 + 18

)
,

while, under Assumption 19(iii), I = 0, N ′
k = Nk,min and

Ck(x∗) := Ck = (16 + ρk)α2
k,maxC2

pσ2.

Proof. We take the conditional expectation with respect to F̂k in relation of Lemma

9 obtaining

(4.26) E[‖xk+1 − x∗‖2|F̂k] ≤ ‖xk − x∗‖2 − ρk

2
rαk

(xk)2 + E[Ak+1 − Ak|F̂k],

using the facts that xk, zk ∈ F̂k and E[Mk+1 − Mk|F̂k] = 0, because {Mk, F̂k} is a

martingale. We now take the conditional expectation with respect to Fk in (4.26)

obtaining

(4.27) E[‖xk+1 − x∗‖2|Fk] ≤ ‖xk − x∗‖2 − ρk

2
rαk

(xk)2 + E[Ak+1 − Ak|Fk],

using the fact that xk ∈ Fk and the hereditary property E[E[·|F̂k]|Fk] = E[·|Fk].

We have that

32 (1 + Lαk,max + Hk(x∗))2 + 2(8 + ρk) > 32Hk(x∗)2 + 16 + 2(8 + ρk).

Hence, under Assumption 19(i)-(ii), the bound of {Ak+1−Ak} given in Proposition

4 implies that

(4.28) |Ak+1 − Ak|Fk|q ≤ Ck(x∗)
I‖xk − x∗‖2 + 1

N ′
k

,

for all k ≥ 0, with I = 1, N ′
k = Nk and definition of Ck(x∗).

Under Assumption 19(iii), Proposition 4 implies (4.28), with I = 1 and N ′
k =

Nk,min and definition of Ck. The claimed relation follows from (4.27) and (4.28)

for q = 1.

Remark 5 (Bounds of Ak+1 −Ak). Under Assumption 19(i)-(ii), the upper-bound

on C(x∗) := supk Ck(x∗) depends only on p, L, α̂ := supk αk,max and the sampling

rate Nk and nσ(x∗)2. From the definition of Ck(x∗) in Proposition 5 under As-

sumption 19(i)-(ii), there exists c > 1 such that

(4.29)
Ck(x∗)

Nk
≤ cHk(x∗)2

(
1 + Hk(x∗)2

)
≤ cα̂2C2

p

Aσ(x∗)2

Nk

(
1 + α̂2C2

p

Aσ(x∗)2

Nk

)
,
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that is, C(x∗) . n2σ(x∗)4, since A ∈ {n, 2n}. But since at least Nk ≥ Nk,min ≈
Θk1+a(ln k)1+b, for some Θ > 0, a > 0, b ≥ −1 or a = 0, b > 0, the following

non-asymptotic bound holds:

(4.30) Ck(x∗) . nσ(x∗)2

(
1 +

nσ(x∗)2

Θk1+a(ln k)1+b

)
,

which is ≈ nσ(x∗)2 for an iteration index k large enough as compared to 8 nσ(x∗)2.

Under Assumption 19(iii), the following uniform bound holds on X∗: Ck . σ2.

We finish this section with an asymptotic convergence result.

Theorem 9 (Asymptotic convergence for extragradient method with stepsize away

from zero). Under Assumptions 12-19, a.s. the sequence {xk} generated by (4.3)-

(4.4) is bounded, limk→∞ d(xk, X∗) = 0, and rαk
(xk) converges to 0 almost surely

and in L2. In particular, a.s. every cluster point of {xk} belongs to X∗.

Proof. The result in Proposition 5 may be rewritten as

(4.31) E

[
‖xk+1 − x∗‖2|Fk

]
≤
(

1 +
IC(x∗)

N ′
k

)
‖xk − x∗‖2 − ρk

2
rαk

(xk)2 +
C(x∗)

N ′
k

,

for all k ≥ 0 and for some x∗ ∈ X∗, as ensured by Assumption 19. Taking into

account Assumption 16, i.e.,
∑

k N −1
k < ∞, (4.31) and the fact that xk ∈ Fk,

we apply Theorem 1 with yk := ‖xk − x∗‖2, ak = IC(x∗)/N ′
k, bk = C(x∗)/N ′

k

and uk := ρkrαk
(xk)2/2, in order to conclude that a.s. {‖xk − x∗‖2} converges.

In particular, {xk} is bounded, and ρ̂
∑

k rαk
(xk)2 ≤ ∑

k ρkrαk
(xk)2 < ∞, where

ρ̂ := 1 − 4α̂2L > 0 and α̂ := supk αk,max by Assumption 18. Hence, almost surely,

0 = lim
k→∞

rαk
(xk)2 = lim

k→∞

∥∥∥xk − Π
[
xk − D(αk)T (xk)

]∥∥∥
2

.

The fact that limk→∞ E[rαk
(xk)2] = 0 is proved in a similar way, taking the total

expectation in (4.31). The boundedness of the stepsize sequence, (4.32), and the

continuity of T (Assumption 14), Π (Lemma 1(iii)) and D(·) imply that a.s. every

cluster point x̄ of {xk} satisfies

0 = x̄ − Π [x̄ − D(ᾱ)T (x̄)] ,

8In terms of i numerical constants, a sharper bound can be obtained by exploiting the first

order term Hk(x∗) ∼ n1/2σ(x∗)N −1/2
k in the definition of Ck(x∗). Using this, we get roughly

c ≈ 32, but we do not carry out this procedure here.
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for some ᾱ ∈ R
m
>0, in view of Assumption 18: i.e. the fact that the stepsizes

are bounded away from zero; from Lemmas 1(iv) and 3 we have that x̄ ∈ X∗.

Almost surely, the boundedness of {xk} and the fact that every cluster point of

{xk} belongs to X∗ imply that limk→∞ d(xk, X∗) = 0 as claimed.

4.3 Convergence rate and complexity analysis

We now study the convergence rate and the oracle complexity of our algorithm.

Besides the relation in Proposition 5 for p = 2, we can also obtain a recursive

relation for higher order moments, assuming that p ≥ 4. This recursion, derived

as consequence of Propositions 4 and 6(i), will give an explicit upper-bound on

the p-norm of the generated sequence (see Proposition 7). The explicit bound

on the 2-norm of the sequence will be used for giving explicit estimates on the

convergence rate and complexity under Assumption 19(i)-(ii), i.e., when X and

T are unbounded, in Theorem 10. In this setting, we will also obtain sharper

estimates of the constants assuming uniform variance over the solution set (see

Propositions 6(ii), Proposition 7(ii) and Theorem 11). Important cases satisfying

these assumptions include the cases in which X∗ is a singleton or a compact set

(which can occur even when the feasible set X is unbounded)9. Under the stronger

Assumption 19(iii), that is, uniform variance over the feasible set, even sharper

bounds on the estimates will be presented (see Propositions 6(iii) and 7(iii) and

Theorem 11).

The definitions in Proposition 5 and Remark 5 will be used in the next propo-

sition.

Proposition 6 (Improved stochastic quasi-Fejér properties).

i) If Assumption 19(i) holds for p ≥ 4 and some x∗ ∈ X∗, then for all k0, k

9This occurs when the solution set is a singleton in the case of a strictly or strongly pseudo-

monotone operator. See Theorems 2.3.5 and 2.3.16 in [27] for general conditions ensuring com-

pactness of the solution set of a pseudo-monotone VI. An example is the so called strictly feasible

complementarity problem over a cone.
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such that 0 ≤ k0 < k, it holds that

∣∣∣‖xk − x∗‖2
∣∣∣
q

≤
∣∣∣‖xk0 − x∗‖2

∣∣∣
q

+

Cq

√√√√
k∑

i=k0+1

|Mi(x∗) − Mi−1(x∗)|2q +
k∑

i=k0+1

|Ai − Ai−1|q.

ii) If Assumption 19(ii) holds for p ≥ 2, then C := supk Ck : X∗ → R+ is a

locally bounded and measurable function, and for all k ≥ 0,

E

[
d(xk+1, X∗)2|Fk

]
≤ d(xk, X∗)2−ρk

2
rαk

(xk)2+Ck

(
ΠX∗(xk)

) d(xk, X∗)2 + 1

Nk
.

iii) If Assumption 19(iii) holds then for all k ≥ 0,

E

[
d(xk+1, X∗)2|Fk

]
≤ d(xk, X∗)2 − ρk

2
rαk

(xk)2 +
17C2

p α̂2σ2

Nk,min

.

Proof. i) Define for simplicity dk := ‖xk − x∗‖2. Sum relation in Lemma 9 from k0

to k − 1 obtaining 0 ≤ dk ≤ dk0 + Mk(x∗) − Mk0(x∗) + Ak − Ak0 , which implies

(4.32) 0 ≤ dk ≤ dk0 + [Mk(x∗) − Mk0(x∗) + Ak − Ak0 ]+,

using that a ≤ b ⇒ [a]+ ≤ [b]+ for any a, b ∈ R. We take the q-norm in (4.32),

getting

|dk|q ≤ |dk0|q + |[Mk(x∗) − Mk0(x∗) + Ak − Ak0 ]+|q
≤ |dk0|q + |Mk(x∗) − Mk0(x∗) + Ak − Ak0|q

≤ |dk0|q + |Mk(x∗) − Mk0(x∗)|q +
k∑

i=k0+1

|Ai − Ai−1|q,(4.33)

using Minkowski’s inequality in the first and last inequalities and the fact that

|U+|q ≤ |U |q for any random variable U in the second inequality.

Since q ≥ 2 (p ≥ 4), the norm of the martingale term above may be estimated

via the BDG inequality (3) applied to the martingale M̃i := Mk0+i(x
∗) − Mk0(x

∗).

This gives:

(4.34) |Mk(x∗) − Mk0(x∗)|q ≤ Cq

√√√√
k∑

i=k0+1

|Mi(x∗) − Mi−1(x∗)|2q .
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Plugging (4.34) into (4.33) completes the proof of item (i).

ii) Under Assumption 19(ii), we define x̄k := ΠX∗(xk), recalling Assumption

12, and obtain from Proposition 5:

E

[
d(xk+1, X∗)2|Fk

]
≤ E

[
‖xk+1 − x̄k‖2

∣∣∣Fk

]

≤ ‖xk − x̄k‖2 − ρk

2
rαk

(xk)2 + Ck(x̄k)
‖xk − x̄k‖2 + 1

Nk

= d(xk, X∗)2 − ρk

2
rαk

(xk)2 + Ck

(
ΠX∗(xk)

) d(xk, X∗)2 + 1

Nk
,

using the fact that x̄k ∈ X∗ in the first inequality, the facts that Ck(x̄k) ∈ Fk (which

holds because xk ∈ Fk, ΠX∗ is continuous and Ck is measurable) and x̄k ∈ X∗ (cf.

Proposition 5) in the second inequality, and the fact that d(xk, X∗) = ‖xk − x̄k‖
in the equality. Note that the function C : X∗ → R+ is measurable and locally

bounded by Assumption 19(ii) and definition of Ck(x∗).

iii) we use a proof line analogous to the one in item (ii), with Assumption 19(iii)

and Proposition 5.

The following result gives explicit bounds on the p-norm of the sequence in the

unbounded setting. In order to make the presentation easier, we introduce some

definitions. Recall the definitions of Lemma 10, Propositions 3 and 5 and Remark

5. Set D(x∗) := 2cα̂2C2
pnσ(x∗)2, G̃p(x∗) := Cpα̂σ(x∗), B2(x

∗) := 0 and for p ≥ 4,

(4.35) Bp(x∗) :=
√

3BCqG̃p(x∗)
[
(1 + Lα̂)2 + (3 + 2Lα̂)

√
AG̃p(x∗) + 2AG̃p(x∗)2

]
.

Proposition 7 (Uniform boundedness in Lp).

i) Let Assumptions 12-19(i) hold for some x∗ ∈ X∗ and p ∈ {2} ∪ [4, ∞).

Choose k0 := k0(x
∗) ∈ N and γ := γ(x∗) > 0 such that

(4.36) β(x∗) := Bp(x∗)
√

γ + D(x∗)γ + D(x∗)2γ2 < 1,
∑

k≥k0

1

Nk

< γ.

Then

sup
k≥k0

∣∣∣‖xk − x∗‖
∣∣∣
2

p
≤ cp(x∗)

[
1 +

∣∣∣‖xk0 − x∗‖
∣∣∣
2

p

]
,

with c2(x∗) = [1 − β(x∗)]−1 and cp(x∗) = 4[1 − β(x∗)]−2 for p ≥ 4.
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ii) Let Assumptions 12-19(ii) hold and suppose there exists σ > 0 such that

σ(x∗) ≤ σ for all x∗ ∈ X∗. Let φ ∈ (0,
√

5−1
2

). Choose k0 ∈ N such that
∑

k≥k0

1
Nk

≤ φ
2cα̂2C2

pnσ2 . Then

sup
k≥k0

E

[
d(xk, X∗)2

]
≤

1 + E

[
d(xk0 , X∗)2

]

1 − φ − φ2
.

iii) If Assumptions 12-19(iii) hold then

sup
k≥0

E

[
d(xk, X∗)2

]
≤ d(x0, X∗)2 +

∞∑

k=0

17C2
p α̂2σ2

Nk,min
.

Proof. i) Denote dk := ‖xk − x∗‖. We first unify the Fejér-type relations obtained

so far under Assumption 19(i)-(ii) as: for all k > k0,

|dk|2p ≤ |dk0|2p + Bp(x∗)

√√√√√
k−1∑

i=k0

1 + |di|2p + |di|4p
Ni

+

+ D(x∗)
k−1∑

i=k0

1 + |di|2p
Ni

+ D(x∗)2
k−1∑

i=k0

1 + |di|2p
N 2

i

.(4.37)

Indeed, for p = 2, we have B2(x
∗) = 0 so that (4.37) results by summing the

relation in Proposition 5 from k0 to k−1 and using the estimate in (4.29), the facts

that A ≤ 2n, c > 1, and the definition of D(x∗) as stated before this proposition.

For p ≥ 4, we recall the bounds of increments of {Mk(x∗)} in Proposition 4.

The common factor is bounded by
√

B/A · H(x∗) ≤
√

BG̃p(x∗)/
√Nk. Using the

definitions of H(x∗), α̂ and G̃p(x∗), and the fact that Nk ≥ 1, it is easy to see that,

in the bound of Mk+1(x
∗)−Mk(x∗) in Proposition 4, the sum of terms multiplying√

B/A · H(x∗) is less than or equal to (1 + Lα̂)2 + (3 + 2Lα̂)
√

AG̃p + 2AG̃2
p. We use

these bounds, the fact that (|di|2p + |di|p + 1)2 ≤ 3(|di|4p + |di|2p + 1) and Definition

(4.35) in order to obtain, for all i ∈ N0,

(4.38) |Mi+1(x
∗) − Mi(x

∗)|2q ≤ Bp(x
∗)2

1 + |di|2p + |di|4p
Ni

.

The proof of (4.37) for p ≥ 4 follows from (4.28), (4.29) with A ≤ 2n, c > 1 and

the definition of D(x∗), as well as (4.38) and Proposition 6(i).

By Assumption 16, we can choose k0 ∈ N0 and γ > 0 as in (4.36). In particular,
∑

i≥k0
N −2

i < γ2. Given an arbitrary a > |dk0|p, define: τa := inf{k > k0 : |dk|p ≥
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a}. Suppose first that τa < ∞ for all a > |dk0|p. By (4.36), (4.37) and the definition

of τa, we have

a2 ≤ |dτa
|2p ≤ |dk0|2p + Bp(x

∗)

√√√√
τa−1∑

i=k0

1 + a2 + a4

Ni
+

+D(x∗)
τa−1∑

i=k0

a2 + 1

Ni
+ D(x∗)2

τa−1∑

i=k0

a2 + 1

N 2
i

(4.39) ≤ |dk0|2p + Bp(x
∗)

√
γ
(
1 + a + a2

)
+ D(x∗)γ

(
1 + a2

)
+ D(x∗)2γ2

(
1 + a2

)
.

For p = 2, B2(x∗) = 0. Relation (4.39) and β := β(x∗) ∈ (0, 1) in (4.36) imply

(4.40) a2 ≤
|dk0|2p + 1

1 − β
.

For p ≥ 4, (4.39) and β := β(x∗) in (4.36) imply λa2 ≤ |dk0|2p + a + 1, with

λ := 1 − β. This gives

(
a − 1

2λ

)2

≤
4λ|dk0|2p + 4λ + 1

4λ2
=⇒ a ≤

2|dk0|p +
√

5 + 1

2λ
≤

|dk0|p + 2

λ
,

and finally

(4.41) a2 ≤ 4
|dk0|2p + 1

(1 − β)2
.

Since (4.40)-(4.41) hold for an arbitrary a > |dk0|p and β ∈ (0, 1), it follows

that supk≥k0
|dk|2p ≤ cp(x∗)

[
1 + |dk0|2p

]
, with cp(x∗) as in the statement of this

proposition. This contradicts the initial assumption that τa < ∞ for all a > |dk0|p.

Hence there exists ā > |dk0|p such that â := supk≥k0
|dk|p ≤ ā < ∞ by the definition

of τā. For any k > k0, we use that |di|p ≤ â for k0 ≤ i < k in (4.37) obtaining

(4.42)

|dk|2p ≤ |dk0|2p + Bp(x∗)
√

γ
(
1 + â + â2

)
+ D(x∗)γ

(
1 + â2

)
+ D(x∗)2γ2

(
1 + â2

)
.

Note that (4.42) holds trivially for k := k0. Thus, after taking the supremum over

k ≥ k0 in (4.42), we proceed as done immediately after inequality (4.39), obtaining

(4.40) and (4.41), respectively for p = 2 and p ≥ 4, but with â substituting for a,

which proves the claim, in view of the definition of cp(x∗).
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ii): The proof line is the same as for the case p = 2 in item (i), but summing the

relation in Proposition 5 with the estimate (4.29), which gives the following uniform

estimate: for all k ≥ 0, Ck

(
Π
(
x̄k
))

N −1
k ≤ 2cα̂2C2

pnσ2N −1
k

(
1 + 2α̂2C2

pnσ2N −1
k

)
.

We remark that we may replace β(x∗) in (4.36) and (4.40) by β := 2cα̂2C2
pnσ2 +

4cα̂4C4
pn2σ4. In this case, the definition of φ and k0 imply 0 < 1 − φ − φ2 ≤ 1 − β.

iii): Given k ∈ N, we take total expectation in the relation of Proposition 6(iii)

and sum from 0 to k obtaining

E

[
d(xk+1, X∗)2

]
≤ d(x0, X∗)2 +

k∑

i=0

17C2
p α̂2σ2

Ni,min
≤ d(x0, X∗)2 +

∞∑

i=0

17C2
p α̂2σ2

Ni,min
,

and the claim follows.

Remark 6. In the statement of Proposition 7(i), for p ≥ 2, it is sufficient to set

φ ∈ (0,
√

5−1
2

) and k0 ∈ N0 such that
∑

k≥k0
N −1

k ≤ φD(x∗)−1 in order to obtain

that supk≥k0
E[‖xk − x∗‖2] ≤ 1+E[‖xk0 −x∗‖2]

1−φ−φ2 .

We now give explicit estimates on the convergence rate and oracle complexity.

In the sequel we assume that the stepsize sequence is constant. Proposition 10.3.6

in [27] states that {ra : a > 0} is a family of equivalent merit functions of VI(T, X).

Hence, the convergence rate analysis can be established for varying stepsizes sat-

isfying Assumption 18 and constant stepsizes are assumed just for simplicity. We

need now the following definitions: for ℓ ≤ k, ak
0 :=

∑k
i=0

1
Ni

, and bk
0 :=

∑k
i=0

1
N 2

i

.

In the remainder of this section, we need the definitions of the constants used in

Lemma 10, Propositions 3, 5 and 7 and Remark 5.

Theorem 10 (Convergence rate: non-uniform variance). Consider Assumptions

12-19(i) for some x∗ ∈ X∗. Take αk ≡ α ∈ (0, 1/2L)m, φ ∈ (0,
√

5−1
2

) and k0 ∈ N

such that:

(4.43)
∑

k≥k0

1

Nk

≤ φ

D(x∗)
.

Define

J(x∗) :=
1 + max0≤k≤k0 E[‖xk − x∗‖2]

1 − φ − φ2
.

Then for all ǫ > 0 there exists Kǫ ∈ N such that E[rα(xKǫ)2] ≤ ǫ ≤ Q∞(x∗)
Kǫ

,

where for all k ∈ N0 ∪ {∞},

Qk(x∗) :=
2

ρ

{
‖x0 − x∗‖2 + [1 + J(x∗)]

[
D(x∗)ak

0 + D(x∗)2bk
0

]}
.
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Additionally, if Assumption 19(ii) holds then Kǫ is independent of x∗ ∈ X∗.

Proof. First note that finiteness of a∞
0 , b∞

0 as defined in the statement of this

theorem follows from Assumption 16, which also ensures existence of k0 satisfying

(4.43), because
∑

i≥k N −1
i → 0 as k → ∞. We now invoke Proposition 5. Let

k ≥ 0. Given 0 ≤ i ≤ k, we take total expectation in the relation of Proposition

5, with the estimate (4.29), using the facts that A ≤ 2n, c > 1 and the definition

of D(x∗). We then sum with i running from 0 to k, obtaining:

ρ

2

k∑

i=0

E[rα(xi)2]

≤ ‖x0 − x∗‖2 + D(x∗)
k∑

i=0

1 + E [‖xi − x∗‖2]

Ni
+ D(x∗)2

k∑

i=0

1 + E [‖xi − x∗‖2]

N 2
i

≤ ‖x0 − x∗‖2 +

(
1 + sup

0≤i≤k
E[‖xi − x∗‖2]

)(
D(x∗)

k∑

i=0

1

Ni

+ D(x∗)2
k∑

i=0

1

N 2
i

)

≤ ‖x0 − x∗‖2 + [1 + J(x∗)]
[
D(x∗)ak

0 + D(x∗)2bk
0

]
=

ρ

2
Qk(x∗).

(4.44)

The last inequality in (4.44) follows from (4.43), Proposition 7(i) for p = 2 and

Remark 6, which imply

sup
k≥k0

E[‖xk − x∗‖2] ≤ 1 + E[‖xk0 − x∗‖2]

1 − φ − φ2
≤ 1 + max0≤k≤k0 E[‖xk − x∗‖2]

1 − φ − φ2
= J(x∗),

and, hence, supk≥0 E[‖xk − x∗‖2] ≤ J(x∗), since 1 − φ − φ2 ∈ (0, 1).

Given ǫ > 0, define K = Kǫ := inf{k ∈ N0 : E[rα(xk)2] ≤ ǫ}. From the

definition of K we have, for every k < K,

(4.45)
ρ

2
ǫ(k + 1) ≤ ρ

2

k∑

i=0

E[rα(xi)2].

We claim that K is finite. Indeed, if K = ∞, then (4.44) and (4.45) hold for all

k ∈ N. Hence, we arrive at a contradiction by letting k → ∞ and using the facts

that a∞
0 < ∞ and b∞

0 < ∞, which hold by Assumption 16. Since K is finite, we

have that E[rα(xK)2] ≤ ǫ by definition. Setting k := K − 1 in (4.44)-(4.45), we

get K ≤ QK−1(x∗)
ǫ

≤ Q∞(x∗)
ǫ

, using the definition of Qk(x∗). We thus proved the

claim. Under Assumption 19(ii), the proof is valid for any x∗ ∈ X∗ and, hence, K

is independent of x∗ ∈ X∗.
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In Theorem 10 given x∗ ∈ X∗, the constant Q∞(x∗) := Q∞(x∗, k0(x
∗), φ) de-

pends on nσ(x∗)2 and on the distance of the k0(x
∗) initial iterates to x∗, where

k0(x
∗) and φ are chosen so that (4.43) is satisfied. Under Assumption 19(ii),

since Kǫ does not depend on x∗ ∈ X∗, we get indeed the uniform estimate:

supǫ>0 ǫKǫ ≤ infx∗∈X∗ Q∞(x∗, k0(x
∗), φ). In the sense of the previous inequality

and in the case of non-uniform variance, the performance of method (4.3)-(4.4)

depends on the solution x∗ ∈ X∗ such that Q∞(x∗, k0(x
∗), φ) is minimal.

Proposition 8 (Rate and oracle complexity for m = 1: non-uniform variance).

Suppose that the assumptions of Theorem 10 hold. Define Nk as

(4.46) Nk =
⌈
θnσ(x∗)2(k + µ)(ln(k + µ))1+b

⌉

for any θ > 0, b > 0, ǫ > 0 and 2 < µ ≤ ǫ−1. Choose φ ∈ (0,
√

5−1
2

) and let k0 be

the minimum natural number satisfying

(4.47) k0 ≥ exp



(

2cα̂2C2
p

φbθ

)1/b

− µ + 1.

Define λ := 2cα̂2C2
p ,

A :=
λ

b(ln(µ − 1))b
,

B :=
λ2

(µ − 1)(1 + 2b)[ln(µ − 1)]1+2b
.

Then Theorem 9 holds and for all ǫ > 0, there exists K := Kǫ ∈ N such that

E[rα(xK)2] ≤ ǫ and

ǫ ≤ 2ρ−1 max{1, θ−2}
K

·
{

‖x0 − x∗‖2 + (A + B) [1 + J(x∗)]
}

,(4.48)

K∑

k=1

2Nk ≤ 12 max{1, θ−2} max{1, θnσ(x∗)2}P(x∗)

ǫ2
I(x∗),(4.49)

P(x∗) :=
{

ln
[
(Q∞(x∗) + 1)ǫ−1

]}1+b
+ µ−1,

I(x∗) := ρ−2‖x0 − x∗‖4 + ρ−2(A + B)2 [1 + J(x∗)]2 + 1.
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Proof. For φ ∈ (0,
√

5−1
2

), we look for k0 satisfying (4.43). We have

∑

k≥k0

1

Nk

≤ θ−1n−1σ(x∗)−2
∑

k≥k0

1

(k + µ)(ln(k + µ))1+b

≤ θ−1n−1σ(x∗)−2
∫ ∞

k0−1

dt

(t + µ)(ln(t + µ))1+b

=
θ−1n−1σ(x∗)−2

b(ln(k0 − 1 + µ))b
.(4.50)

From (4.50) and (4.43), it is enough to choose k0 as the minimum natural number

such that the right hand side of (4.50) is less than φ/D(x∗). From the definition

of D(x∗), it follows that it is enough to choose k0 as in (4.47).

We now give an estimate of Q∞(x∗). We have the bound

D(x∗)a∞
0 + D(x∗)2b∞

0 ≤
∫ ∞

−1

λθ−1dt

(t + µ)(ln(t + µ))1+b
+(4.51)

+
∫ ∞

−1

λ2θ−2dt

(t + µ)2(ln(t + µ))2+2b
≤ λθ−1

b(ln(µ − 1))b
+

λ2θ−2

(µ − 1)(1 + 2b)[ln(µ − 1)]1+2b
.

From Theorem 10, (4.51) and the definitions of Q∞(x∗), J(x∗), A and B we get

(4.48).

We now prove (4.49). Using K := Kǫ ≤ Q∞(x∗)/ǫ, µǫ ≤ 1 and Nk ≤
θnσ(x∗)2(k + µ)(ln(k + µ))1+b + 1, we have

K∑

k=1

2Nk ≤ max{θnσ(x∗)2, 1}
K∑

k=1

2
[
(k + µ)(ln(k + µ))1+b + 1

]

≤ max{θnσ(x∗)2, 1}K(K + 2µ)

[
(ln(K + µ))1+b +

2

K + 2µ

]

(4.52)

≤ max{θnσ(x∗)2, 1}
{
[ln (Q∞(x∗)ǫ−1 + ǫ−1)]

1+b
+ µ−1

}
Q∞(x∗) (Q∞(x∗) + 2)

ǫ2
.

We now use (4.52) with Q∞(x∗)(Q∞(x∗) + 2) ≤ (Q∞(x∗) + 2)2, the definitions of

Q∞(x∗), J(x∗), A, B, equation (4.51) and the relation (a + b + c)2 ≤ 3(a2 + b2 + c2)

in order to prove (4.49).

We give next sharper estimates in the case in which the variance is uniform

over X∗ or X. We state them without proofs since they follow the same proof

line of Theorem 10 and Proposition 8, but using Proposition 6(ii) and Proposition
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7(ii), in the case in which the variance is uniform over X∗, or using Proposition

6(iii), in the case in which the variance is uniform over X.

Theorem 11 (Convergence rate: uniform variance). Consider Assumptions 12-

19. Take αk ≡ α ∈ (0, 1/2L)m. Suppose first that Assumption 19(ii) holds and

there exists σ > 0 such that σ(x∗) ≤ σ for all x∗ ∈ X∗. Define D := 2cα̂2C2
pnσ2

and

J :=
1 + max0≤k≤k0 E[d(xk, X∗)2]

1 − φ − φ2
.

Take φ ∈ (0,
√

5−1
2

) and k0 ∈ N such that
∑

k≥k0
N −1

k ≤ φ/D. Then, for all ǫ > 0,

there exists Kǫ ∈ N, satisfying E[rα

(
xKǫ

)2
] ≤ ǫ ≤ Q∞

Kǫ
, where, for all k ∈ N0∪{∞},

Qk :=
2

ρ

{
d(x0, X∗)2 + (1 + J)

(
Dak

0 + D2bk
0

)}
.

Suppose now that Assumption 19(iii) holds. Then, for all ǫ > 0, there exists

Kǫ ∈ N, satisfying E[rα

(
xKǫ

)2
] ≤ ǫ ≤ Q̃∞

Kǫ
, where, for all k ∈ N0 ∪ {∞},

Q̃k :=
2

ρ

{
d(x0, X∗)2 + 17C2

p α̂2σ2
k∑

i=0

1

Ni,min

}
.

Proposition 9 (Rate and oracle complexity for m = 1: uniform variance). Sup-

pose that the assumptions of Theorem 11 hold and that supx∗∈X∗ σ(x∗) ≤ σ for

some σ > 0. Define Nk as

Nk =
⌈
θσ2(k + µ)(ln(k + µ))1+b

⌉

for any θ > 0, b > 0, ǫ > 0 and 2 < µ ≤ ǫ−1. Suppose that either:

(i) Assumption 19(ii) holds, in which case we choose φ ∈ (0,
√

5−1
2

) and k0 ∈ N

as in (4.47), or that

(ii) Assumption 19(iii) holds.

Then Theorem 9 holds and for all ǫ > 0, there exists Kǫ ∈ N such that E[rα(xKǫ)2] ≤
ǫ where:

(i) if Assumption 19(ii) holds, then

ǫ ≤ 2ρ−1 max{1, θ−2}
Kǫ

{
d(x0, X∗)2 + (A + B)(1 + J)

}
,

Kǫ∑

k=1

2Nk ≤ 12 max{1, θ−2} max{1, θσ2}{ln [(Q∞ + 1) ǫ−1]}1+b
+ µ−1

ǫ2
I,

I := ρ−2 d(x0, X∗)4 + ρ−2(A + B)2 (1 + J)2 + 1.
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(ii) if Assumption 19(iii) is satisfied then

ǫ ≤ 2ρ−1 max{1, θ−1}
Kǫ

{
d(x0, X∗)2 +

17C2
p α̂2

b(ln(µ − 1))b

}
,

Kǫ∑

k=1

2Nk ≤ 12 max{1, θ−1} max{1, θσ2}
{

ln[(Q̃∞ + 1)ǫ−1]
}1+b

+ µ−1

ǫ2
Ĩ,

Ĩ := ρ−2 d(x0, X∗)4 + ρ−2 172C4
p α̂4

b2(ln(µ − 1))2b
+ 1.

We now turn our attention to the distributed solution of a Cartesian SVI for

a large network (m ≫ 1). If a decentralized sampling is used, then higher order

factors of m appear in the convergence rate and the complexity estimates. The

next results shows that if, in addition, a deterministic and decreasing sequence

of exponents {bi}m
i=1 and an approximate estimate of the network dimension m is

coordinated, then the convergence rate is approximately independent of m and the

oracle complexity is proportional to m (that is, a performance similar to the case

of centralized sampling in terms of dimension).

Proposition 10 (Oracle complexity linear in the size of network). Under As-

sumptions 12-19(i) with Assumption 17(i) (centralized sampling), the results of

Proposition 8 hold.

Consider Assumption 17(ii) (decentralized sampling). Let {bi}m
i=1 be a positive

sequence such that

Nk,i =
⌈
θiniσ(x∗)2(k + µi)

1+a(ln(k + µi))
1+bi

⌉
,(4.53)

b1 ≥ bi + 2 ln(i + 1) − ln S and θi ∼ θm, ∀i ∈ [m],(4.54)

for any θ > 0, a > 0, S ≥ 1, ǫ > 0, 2 < µi ≤ ǫ−1. Choose φ ∈ (0,
√

5−1
2

) and let k0

be the minimum natural number greater than e − µmin + 1 such that

(4.55) k0 ≥
[

2cC2
p α̂2n

φθminbminnmin

]1/a

− µmin + 1.

Define λ := 2cα̂2C2
p , ν := 2 + a, Am :=

∑m
i=1

λθ
θia(µi−1)a and

Bm :=
λ2θ2

(1 + 2bmin)(µmin − 1)1+2a ln(µmin − 1)

{
m∑

i=1

1

θi[ln(µmin − 1)]bi

}2

.
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Then Theorem 9 holds and for all ǫ > 0, there exists K := Kǫ ∈ N such that

E[rα(xKǫ)2] ≤ ǫ and

ǫ ≤ 2ρ−1 max{1, θ−2}
K

·
{
‖x0 − x∗‖2 + (Am + Bm) [1 + J(x∗)]

}
,(4.56)

K∑

k=1

m∑

i=1

2Nk,i ≤ 4 · 31+aS max {1, θ−2ν} max{θmaxnmaxσ(x∗)2, 1}P̂(x∗)̂I(x∗)

ǫ2+a
,

P̂(x∗) :=
{
ln
[
(Q∞(x∗) + 1)ǫ−1

]}1+b1

,

Î(x∗) := (2ρ−1)ν‖x0 − x∗‖2ν + (2ρ−1)ν(Am + Bm)ν [1 + J(x∗)]ν + 1,

where the subscripts “min” and “max” refer, respectively, to the minimal and max-

imal terms of the corresponding sequences.

Proof. In the sequel we will use the following estimate. For any k ∈ N0, a > 0,

0 < b < 1, µ > 1,

(4.57)
∫ ∞

k

dt

(t + µ)1+a(ln(t + µ))1+b
≤ max

{
1

a(k + µ)a
,

1

(k + µ)ab[ln(k + µ)]b

}
.

For φ ∈ (0,
√

5−1
2

) we look for k0 satisfying (4.43). Since Nk is an harmonic

average of {Nk,i}m
i=1 and Nk,i ≥ θminnminσ(x∗)2(k + µmin)1+a[ln(k + µmin)]1+bmin for

all i ∈ [m], we get from (4.57):

∑

k≥k0

1

Nk
≤ θ−1

minn−1
minσ(x∗)−2

∑

k≥k0

1

(k + µmin)1+a[ln(k + µmin)]1+bmin

(4.58) ≤ θ−1
minn−1

minσ(x∗)−2

(k0 − 1 + µmin)abmin[ln(k0 − 1 + µmin)bmin ]
≤ θ−1

minn−1
minσ(x∗)−2

(k0 − 1 + µmin)abmin
,

if k0 ≥ e − µmin + 1. In view of (4.58) and (4.43), it is enough to choose k0 as

the minimum natural number greater than e − µmin + 1 such that the rightmost

expression of (4.58) is less than φ/D(x∗). Taking into account the definition of

D(x∗), it suffices to choose k0 as in (4.55).

Next we estimate the value of Q∞(x∗). Recall that

1

Nk

=
m∑

i=1

ni

n
· 1

Nk,i

.
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The definitions of D(x∗), λ, a∞
0 and b∞

0 imply

D(x∗)a∞
0 + D(x∗)2b∞

0 ≤ λ
∑

k≥0

m∑

i=1

θ−1
i

(k + µi)1+a(ln(k + µi))1+bi
+

λ2
∑

k≥0

[
m∑

i=1

θ−1
i

(k + µi)1+a(ln(k + µi))1+bi

]2

.(4.59)

The first summation in (4.59) is bounded by

(4.60) λ
m∑

i=1

∑

k≥0

θ−1
i

(k + µi)1+a
≤ λ

m∑

i=1

∫ ∞

−1

θ−1
i dt

(t + µi)1+a
≤

m∑

i=1

λ

θia(µi − 1)a
=:

Am

θ
.

In view of (4.57), the second summation in (4.59) is bounded by

λ2
m∑

i=1

m∑

j=1

∑

k≥0

θ−1
i θ−1

j

(k + µmin)2+2a[ln(k + µmin)]2+bi+bj

≤ λ2

ϑ

{
m∑

i=1

1

θi[ln(µmin − 1)]bi

}2

=:
Bm

θ2
,(4.61)

where ϑ := (1 + 2bmin)(µmin − 1)1+2a ln(µmin − 1). From Theorem 10, (4.59)-(4.61)

and the definitions of Q∞(x∗), J(x∗), Am and Bm, we obtain (4.56).

We now prove the bound on the oracle complexity. Using the facts that K ≤
Q∞(x∗)/ǫ and µi ≤ ǫ−1, together with the definition of Nk,i we obtain

K∑

k=1

m∑

i=1

2Nk,i ≤
K∑

k=1

m∑

i=1

2
[
θiniσ(x∗)2(k + µi)

1+a(ln(k + µi))
1+bi + 1

]

≤ 2 max{θmaxnmaxσ(x∗)2, 1}K
m∑

i=1

[
(K + µi)

1+a (ln (K + µi))
1+bi + 1

]

≤ 4 max{θmaxnmaxσ(x∗)2, 1}K
m∑

i=1

[
(K + µi)

1+a (ln (K + µi))
1+bi

]

(4.62) ≤ 4Φ
(Q∞(x∗) + 1)2+a

ǫ2+a

m∑

i=1

(
ln
(
Q∞(x∗)ǫ−1 + ǫ−1

))1+bi

,

using the fact that 1 ≤ (K + µi)
1+a (ln (K + µi))

1+bi for i ∈ [m] in the third

inequality and defining Φ as max{θmaxnmaxσ(x∗)2, 1} in the rightmost expression

of (4.62).
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Set h := ln (Q∞(x∗)ǫ−1 + ǫ−1) with h ≥ e for sufficiently small ǫ > 0. By

definition of {bi}m
i=1 we have, for i ∈ [m],

(4.63) b1 ≥ bi + 2 ln(i + 1) − ln S ≥ bi +
2 ln(i + 1) − ln S

ln h
⇒ hbi ≤ Shb1

(i + 1)2
.

It follows from (4.63) that

(4.64)
m∑

i=1

hbi ≤ Shb1

m∑

i=1

1

(i + 1)2
≤ Shb1 .

From (4.62), the bounds (4.59)-(4.61), (4.64) the definitions of h, P̂(x∗), Î(x∗),

Q∞(x∗), J(x∗), Am and Bm and the relation (x+y+z)2+a ≤ 31+a(x2+a+y2+a+z2+a),

we obtain the required bound on
∑K

k=1

∑m
i=1 2Nk,i.

Remark 7 (Few initial iterates and complexity of O(m)). We remark that for

the choice of parameters (4.53)-(4.54), we have θmin ∼ θm so that Am . 1
a(µmin−1)a

and Bm . 1
(µmin−1)1+2a . Also, bmin ≤ b1 + ln S − 2 ln(m + 1) so that it is enough to

choose b1 > 2 ln(m + 1) − ln S, which is reasonably small in terms of m. Moreover,
n

bminθminnmin
. nmax

θnminm ln m
. Hence, in view of (4.55), k0 is approximately constant

and small for m ≫ 1. Finally, the bound on the oracle complexity in Proposi-

tion 10 is of order max{1, θ−2ν}θmaxnmax . max{θ, θ−(3+2a)}mnmax, that is, it is

linear in m. Moreover, the sampling is robust in the sense that the convergence

rate is proportional to max{1, θ−2} and the oracle complexity is proportional to

max{θ, θ−(3+2a)}. We remark that improvements can be achieved if a coordination

µmin ∼ ǫ−1 is possible (given a prescribed tolerance ǫ > 0).

For simplicity we do not present the analogous results of Proposition 9 for the

case m ≫ 1 under Assumption 19(iii). In that case, the estimates depend on

d(x0, X∗) and on smaller exponents of θ.

4.3.1 Comparison of complexity estimates

A merit function for VI(T, X) is a non-negative function f over X such that

X∗ = X ∩ f−1(0). Next, we briefly compare our complexity results in terms of

the quadratic natural residual, given in this section, with related results presented

in the literature in terms of other merit functions for the stochastic variational

inequality.
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Given a compact feasible set X, the dual gap-function of VI(T, X) is defined

as G(x) := supy∈X〈T (y), x − y〉 for x ∈ X. In [42, 20, 76, 77], a rate of con-

vergence of O(1/
√

K) is given in terms of the expected value of G in the case

in which X is compact or, in the case in which X is unbounded, in terms of

the relaxed dual-gap function G̃, shown in (4.10). In the case in which X is

compact, the dual gap-function is a modification of the primal gap-function, de-

fined as g(x) := supy∈X〈T (x), x − y〉 for x ∈ X. Both the primal and dual

gap-functions are continuous only if X is compact. A gap-function suitable for

unbounded feasible sets is the regularized gap-function, defined, for fixed a > 0,

as ga(x) := supy∈X{〈T (x), x − y〉 − a
2
‖x − y‖2}, for x ∈ R

n. The regularized gap-

function is continuous over R
n. Another option is the so called D-gap function.

It is defined, for fixed b > a > 0, as ga,b(x) := ga(x) − gb(x), for x ∈ R
n. It is

well known that ga,b : R
n → R+ is a continuous unrestricted merit function of

VI(T, X), i.e., X∗ = g−1
a,b(0). Moreover, the quadratic natural residual and the

D-gap function are equivalent merit functions in the sense that, given b > a > 0,

for all x ∈ R
n, rb−1(x)2 . ga,b(x) . ra−1(x)2 (see [27], Theorems 10.2.3, 10.3.3 and

Proposition 10.3.7). These properties hold independently of the compactness of

X. An immediate consequence is that the previous complexity analysis, given in

Theorems 10-11 and Propositions 8-10 in terms of the quadratic natural residual,

are also valid in terms of the D-gap function. In this sense, our rate of conver-

gence of O(1/K) in terms of the D-gap function improves over the rate O(1/
√

K)

in terms of the dual gap-functions analyzed in [42, 20, 76, 77].

From Proposition 8, if Assumption 19(ii) holds, then the algorithm perfor-

mance, in terms of convergence rate and oracle complexity, depends on a x∗ ∈ X∗

such that Q̂(x∗) := σ(x∗)2 max0≤k≤k0(x∗) E[‖xk−x∗‖2]2 is minimal, that is to say, we

have a trade-off between variance of the oracle error and distance to initial iterates.

We also remark that the sampling rate Nk possesses a robust property: a scaling in

the sampling rate by a factor θ, keeps the algorithm running with a proportional

scaling of max{1, θ−2} in the rate and max{θ, θ−3} in the oracle complexity (see [60]

for a discussion on robust algorithms). From Proposition 9, when the variance is

bounded by σ2 over X∗, the estimates depend on Q̂ := σ2 max0≤k≤k0 E[d(xk, X∗)2]2

and k0 is independent of any x∗ ∈ X∗. When the variance is uniform over X, the

estimates depend only on d(x0, X∗) and a scaling factor θ in the sampling rate
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implies a factor of max{1, θ−1} in the rate and of max{θ, θ−1} in the oracle com-

plexity. Interestingly, in the case of a compact feasible set, the estimates do not

depend on diam(X), as in [42, 20], but rather on the distance of the initial iterates

to X∗, which is a sharper result. In the case of networks the same conclusions hold,

except that the dependence in the dimension is higher if a centralized sampling is

used. From Proposition 10, if a distributed sampling is used and a coordination

of a rapid decreasing sequence of positive numbers is implemented (in any order)

then the oracle complexity depends linearly on the size of the network.

We briefly compare our convergence rate and complexity bounds presented in

Propositions 8 and 9 with those in [20] (Corollaries 3.2 and 3.4). In [20], for a

compact X and uniform variance over X, the convergence rate obtained in terms

of the dual gap function is of order L diam(X)2K−1 + σ diam(X)K−1/2, and the

oracle complexity is of order L diam(X)2ǫ−1 + σ2 diam(X)2ǫ−2. For an unbounded

X with uniform variance over X, the convergence rate in terms of gap function

(4.10), is of order L‖x0 −x∗‖2K−1 +σ‖x0 −x∗‖2K−1/2, while the oracle complexity

is of order L‖x0 −x∗‖2ǫ−1 +σ2‖x0 −x∗‖4ǫ−2. In the estimates given in Propositions

8-9, the “coercivity” modulus ρ−1 introduced by the extragradient step behaves

qualitatively as L. We improve on the rate of convergence to O(1/K) with respect

to the stochastic term σ/
√

K by reducing iteratively the variance, while preserving

the complexity performance in terms of σ and ǫ (up to first order logarithm term).

Differently from [20], our analysis is the same for a compact or unbounded X, in

the sense that the same merit function is used. For the case of a compact X, our

bounds depend on d(x0, X∗) rather diam(X) as in [20], which is a sharper result.

In the case the variance is uniform over an unbounded X, our bounds depend

on d(x0, X∗) instead of ‖x0 − x∗‖ for a given x∗ ∈ X∗ as in [20], which is also a

sharper bound. We analyze the new case of non-uniform variance, which has a

similar performance, except that the estimates depend on a point x∗ ∈ X∗ with a

minimum trade-off between variance σ(x∗)2 and distances to a few initial iterates.

Moreover, we include asymptotic convergence, which it is not the case in [20] (see

Example 1).

Finally, we discuss error bounds on the solution set. It is well known that

important classes of variational inequalities admit the natural residual as an error

bound for the solution set, i.e., for all α > 0, there exists δ > 0 such that for
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all x ∈ R
n with rα(x) ≤ δ, there holds d(x, X∗) . rα(x). This property holds,

for example, for (i) semi-stable VIs, (ii) composite strongly monotone VIs such

that X is a polyhedron, (ii) VIs such that T is linear and X is cone (see [27]).

Item (ii) includes affine VIs and strongly monotone VIs. Item (iii) includes linear

homogeneous complementarity problems and linear system of equations. When

such property holds, the results of Theorems 10-11 and Propositions 8-10 provide

other classes of SVI for which convergence of O(1/K) holds in terms of the mean-

squared distance to the solution set. In the previous literature, such property was

shown only for strongly pseudo-monotone or weak-sharp SVIs on a compact set.

4.4 Appendix of Chapter 4

Proof of Lemma 3

Proof. Set A := D(α)−1 for α = (αi)
m
i=1 ∈ R

m
>0. We first prove that ΠC ≡ ΠC,A.

Indeed, let x = (xi)
m
i=1 and set x̂ := ΠC(x) with x̂ = (x̂i)

m
i=1. It is not difficult to

check, using Lemma 1(i), that x̂i = ΠCi
(xi) for i ∈ [m]. Given y = (yi)

m
i=1 ∈ C,

we use the fact that αi > 0 and Lemma 1(i) with x̂i = ΠCi
(xi), yi ∈ Ci for every

i ∈ [m], in order to obtain 〈x− x̂, A(y − x̂)〉 =
∑m

i=1 α−1
i 〈xi − x̂i, yi − x̂i〉 ≤ 0. Again

by Lemma 1(i), we conclude that x̂ = ΠC,A(x) as claimed.

The required statement follows immediately from Lemma 1(iv) and the fact

that ΠC ≡ ΠC,A.

Proof of Lemma 9

Proof. Let x∗ ∈ X∗. In order to simplify the notation, define F̂ (ǫk
2, zk) := T (zk)+ǫk

2

and yk := xk − D(αk)F̂ (ǫk
2, zk), so that, xk+1 = Π(yk). For every x ∈ X, we have

‖xk+1 − x‖2 = ‖Π(yk) − x‖2

≤ ‖yk − x‖2 − ‖yk − Π(yk)‖2

= ‖(xk − x) − D(αk)F̂ (ǫk
2, zk)‖2 − ‖(xk − xk+1) − D(αk)F̂ (ǫk

2, zk)‖2

= ‖xk − x‖2 − ‖xk − xk+1‖2 + 2〈x − xk+1, D(αk)F̂ (ǫk
2, zk)〉

= ‖xk − x‖2 − ‖xk − xk+1‖2 + 2〈x − zk, D(αk)F̂ (ǫk
2, zk)〉+
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2〈zk − xk+1, D(αk)F̂ (ǫk
2, zk)〉 = ‖xk − x‖2 − ‖(xk − zk) + (zk − xk+1)‖2+

2〈zk − xk+1, D(αk)F̂ (ǫk
2, zk)〉 + 2〈x − zk, D(αk)F̂ (ǫk

2, zk)〉

= ‖xk − x‖2 − ‖xk − zk‖2 − ‖zk − xk+1‖2

−2〈xk − zk, zk − xk+1〉 + 2〈zk − xk+1, D(αk)F̂ (ǫk
2, zk)〉+

2〈x − zk, D(αk)F̂ (ǫk
2, zk)〉

= ‖xk − x‖2 − ‖xk − zk‖2 − ‖zk − xk+1‖2+

(4.65) 2〈xk+1 − zk, xk − D(αk)F̂ (ǫk
2, zk) − zk〉 + 2〈x − zk, D(αk)F̂ (ǫk

2, zk)〉,

using Lemma 1(ii) in the inequality and simple algebra in the equalities.

Looking at the fourth term I := 2〈xk+1 − zk, xk − D(αk)F̂ (ǫk
2, zk) − zk〉 in

the rightmost expression of (4.65), we take into account (4.7) and the fact that

F̂ (ǫk
2, zk) = T (zk) + ǫk

2, and then we apply Lemma 1(i) with C = X, x = xk −
D(αk)(T (xk) + ǫk

1) and y = xk+1 ∈ X, obtaining:

I = 2〈xk+1 − zk, xk − D(αk)(T (xk) + ǫk
1) − zk〉 +

2〈xk+1 − zk, D(αk) ·
[
(T (xk) + ǫk

1) − (T (zk) + ǫk
2)
]
〉(4.66)

≤ 2‖D(αk)‖‖xk+1 − zk‖‖(T (zk) + ǫk
2) − (T (xk) + ǫk

1)‖,

using Cauchy-Schwartz inequality. Next we apply Lemma 1(iii) to (4.7)-(4.8),

obtaining

‖xk+1 − zk‖ = ‖Π[xk − D(αk)(T (zk) + ǫk
2)] − Π[xk − D(αk)(T (xk) + ǫk

1)]‖
≤ ‖D(αk)‖‖(T (zk) + ǫk

2) − (T (xk) + ǫk
1)‖.(4.67)

Combining (4.66) and (4.67) we get

I ≤ 2‖D(αk)‖2‖(T (zk) + ǫk
2) − (T (xk) + ǫk

1)‖2

≤ 4‖D(αk)‖2‖T (zk) − T (xk)‖2 + 4‖D(αk)‖2‖ǫk
2 − ǫk

1‖2(4.68)

≤ 4L2‖D(αk)‖2‖zk − xk‖2 + 4‖D(αk)‖2‖ǫk
2 − ǫk

1‖2,

using the fact that (a + b)2 ≤ 2a2 + 2b2 in the second inequality and the Lipschitz

continuity of T in the last one. We set x := x∗ in (4.65). Looking now at the last
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term in the rightmost expression of (4.65), we get

2〈x∗ − zk, D(αk)F̂ (ǫk
2, zk)〉 = 2〈x∗ − zk, D(αk)(T (zk) + ǫk

2)〉
= 2〈x∗ − zk, D(αk)T (zk)〉 + 2〈x∗ − zk, D(αk)ǫk

2〉(4.69)

≤ 2〈x∗ − zk, D(αk)ǫk
2〉 =: Jk,

using the fact that 〈x∗ −zk, D(αk)T (zk)〉 ≤ 0, (which follows from Assumption 15,

the facts that x∗ ∈ X∗ and zk ∈ X and Lemma 3) in the last inequality of (4.69).

Combining (4.65), (4.68) and (4.69), we get

‖xk+1 − x∗‖2 ≤ ‖xk − x‖2 − ‖zk − xk‖2 − ‖zk − xk+1‖2 +

4L2‖D(αk)‖2‖zk − xk‖2 + 4‖D(αk)‖2‖ǫk
2 − ǫk

1‖2 + Jk

≤ ‖xk − x‖2 − ρk‖zk − xk‖2 + 8‖D(αk)‖2(‖ǫk
2‖2 + ‖ǫk

1‖2) + Jk,(4.70)

using the facts that ‖D(αk)‖ = αk,max, ρk = 1−4L2α2
k,max and (a+b)2 ≤ 2a2 +2b2.

Recalling that zk = Π[xk − D(αk)(T (xk) + ǫk
1)], we note that

rαk
(xk)2 = ‖xk − Π[xk − D(αk)T (xk)]‖2

≤ 2‖xk − zk‖2 + 2‖Π[xk − D(αk)(T (xk) + ǫk
1)] − Π[xk − D(αk)T (xk)]‖2

≤ 2‖xk − zk‖2 + 2‖D(αk)‖2‖ǫk
1‖2,(4.71)

using Lemma 1(iii) in the second inequality. From (4.70), (4.71), ‖D(αk)‖ = αk,max

and definitions (4.13)-(4.14) and Jk = Mk+1(x
∗) − Mk(x∗), we get the claimed

relation.

Proof of Lemma 10

Proof. We first prove the result under Assumption 19(i)-(ii). Consider first item

1). Assume first that m > 1 and take i ∈ [m]. For 1 ≤ t ≤ Ni, define U t
i ∈ R

ni by

U t
i :=

t∑

j=1

Fi(ξj,i, x) − Ti(x)

Ni
,

with real components U t
1,i, . . . , U t

ni,i
. Defining U0

i = 0 and the natural filtration

Gt := σ(ξ1,i, . . . , ξt,i) for 0 ≤ t ≤ Ni, then each {U t
l,i, Gt}Ni

t=0 for l ∈ [ni] defines
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a real valued martingale (since it is a sum of Ni independent mean-zero random

variables) whose increments satisfy

∣∣∣U t
l,i − U t−1

l,i

∣∣∣
p

=

∣∣∣∣∣
Fi(ξ, x) − Ti(x)

Ni

∣∣∣∣∣
p

≤
|‖F (ξ, x) − T (x)‖|p

Ni

≤ σ(x∗) (1 + ‖x − x∗‖)

Ni

,

by Assumption 19. Hence, for l ∈ [ni]

(4.72)
∣∣∣UNi

l,i

∣∣∣
p

≤ Cp σ(x∗) (1 + ‖x − x∗‖)√
Ni

,

which follows from the BDG inequality (3). For each i ∈ [m], UNi

1,i , . . . , UNi

ni,i are the

real components of ǫi(x) ∈ R
ni . Hence, since q ≥ 1, from Minkovski’s inequality

and (4.72) we get:

(4.73)

|‖ǫ(x)‖|2p =
∣∣∣‖ǫ(x)‖2

∣∣∣
q

≤
m∑

i=1

ni∑

l=1

∣∣∣∣
∣∣∣UNi

l,i

∣∣∣
2
∣∣∣∣
q

≤ C2
p

(
m∑

i=1

2ni

Ni

)
σ(x∗)2 (1 + ‖x − x∗‖2),

using (a + b)2 ≤ 2a2 + 2b2. The first claim follows from (4.73) with A = 2n. If

m = 1, the same proof line holds with A = n, since relation (a + b)2 ≤ 2a2 + 2b2

is not required.

We now prove item 2). Suppose that m > 1 and that {ξj,i : 1 ≤ i ≤ m, 1 ≤
j ≤ Ni} is i.i.d.. We have

(4.74) |〈v, D(α)ǫ(x)〉|p ≤ ‖v‖‖D(α)‖|‖ǫ(x)‖|p,

by Cauchy-Schwarz inequality. The claim follows from (4.73) and (4.74) with

B = 2n.

We now prove item 3). Suppose that m = 1, or m > 1 with Ni ≡ N , ξj,i ≡ ξj

for all i ∈ [m]. Define U t := (U t
1, . . . , U t

m) and Wt := 〈v, D(α) · U t〉. Observe that

{(Wt, Gt)}N
k=0 defines a real valued martingale with the filtration Gt := σ(ξ1, . . . , ξt),

since it is a sum of N i.i.d. random variables. Its increments |Wt − Wt−1|p are equal

to
∣∣∣∣∣

〈
v, D(α)

F (ξt, x) − T (x)

N

〉∣∣∣∣∣
p

≤
‖v‖‖D(α)‖ |‖F (ξ, x) − T (x)‖|p

N

≤ ‖v‖‖D(α)‖σ(x∗)(1 + ‖x − x∗‖)

N
,(4.75)
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using Cauchy-Schwarz inequality in the first inequality and Assumption 19 in the

last one. Hence, from (4.75) and the BDG-inequality (3), we get the claim with

B = 1 (in this case N = N).

The proof of the bounds under the stronger Assumption 19(iii) is essentially

the same with sharper bounds on the increments, and so we omit it.
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Chapter 5

Stochastic extragradient methods

with line search

The estimation in SA methods is measured by the oracle error. This is the map

ǫ : Ξ × X → R
d defined by

(5.1) ǫ(ξ, x) := F (ξ, x) − T (x), (ξ ∈ Ξ, x ∈ X).

For p ≥ 2, the oracle error’s p-moment function is defined by

(5.2) σp(x) := p

√
E [‖ǫ(ξ, x)‖p] (x ∈ X).

In the deterministic case, assumptions on the operator T provide local surrogate

models to establish the convergence of methods which solve VI(T, X). In order to

define and analyze SA methods, assumptions on the variance σ(·)2 := σ2(·)2 (or

even higher order moments) are as important as assumptions on T . This is because

local surrogate models also need the estimation of T from the SO. In that respect,

we will consider Lemma 1 which is a consequence of the following assumption.

Assumption 1 (Heavy-tailed Hölder continuous operators). Consider definition

(1). There exist δ ∈ (0, 1] and nonnegative random variable L : Ξ → R+ such that,

for almost every ξ ∈ Ξ, L(ξ) ≥ 1 and, for all x, y ∈ X,

‖F (ξ, x) − F (ξ, y)‖ ≤ L(ξ)‖x − y‖δ.

Define a := 1 if X is compact and a := 2 for a general X. We assume there exist

x∗ ∈ X and p ≥ 2 such that P [‖F (·, x∗)‖ap] < ∞ and P [L(·)ap] < ∞. We define

L := PL(·) and Lq := q

√
P[L(·)q] + L for any q > 0.
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Lemma 1 (Hölder continuity of the mean and the standard deviation). Consider

definitions (5.1)-(5.2), suppose Assumption 1 holds and take q ∈ [p, 2p] such that

the integrability conditions of Assumption 1 are satisfied. Then T is (L, δ)-Hölder

continuous on X and σq(·) is (Lq, δ)-Hölder continuous1 on X with respect to the

norm ‖ · ‖.

From a practical point of view, our statistical analysis will be built upon the

standard assumption of an unbiased oracle with i.i.d. sampling (UO). In the rest

of the paper, it will be convenient to define the following quantities associated

to an i.i.d. sample ξN := {ξj}N
j=1 drawn from P. Recall definitions (1) and

(5.1). We define the empirical mean operator and the oracle’s empirical mean

error associated to ξN , respectively, by

F̂ (ξN , x) :=
1

N

N∑

j=1

F (ξj, x), ǫ̂(ξN , x) :=
1

N

N∑

j=1

ǫ(ξj, x), (x ∈ X).

(5.3)

The main purpose of this chapter is the introduction of an extragradient method

with a line search for determining the stepsizes, as was done by Khobotov [47] and

by Iusem and Svaiter [39] for the deterministic case. The introduction of such

a line search has two goals. First, it allows the method to deal with problems

where the Lipschitz constant of the operator T is inexistent, unknown, or too

large, in which case the stepsizes become too small, with a significant detrimental

effect on the convergence rate. It also improves over the alternative of “small”

exogenous stepsizes, (i.e., a summable sequence {αk}), considered in Chapter 3,

which has also a very detrimental effect on the convergence. The intuition is that a

line search provides a procedure which uses the information available at iteration

k in order to determine the largest possible value of the stepsize αk for which

the convergence properties of the algorithms can be ensured. The prototype of

the line search is the Armijo search applied to the steepest descent method for

unconstrained optimization problems, adapted to the VI problem in [47] and [39].

It is widely recognized that the Armijo search substantially enhances the numerical

performance of the steepest descent method, compared with the variants which use

exogenous stepsizes, be it summable ones, or dependent on the Lipschitz constant.

1We say T is (L, δ)-Hölder continuous if ‖T (x) − T (y)‖ ≤ L‖x − y‖δ for all x, y ∈ X .
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All these nice properties make the extragradient methods with line search we

propose more implementable.

Algorithm 5 (The stochastic extragradient method with line search).

1. Initialization: Choose the initial iterate x0 ∈ R
d, parameters α̂, θ ∈ (0, 1],

λ ∈
(
0, 1

2
√

2

)
and β ∈ (0, α̂−1], the sample rate {Nk} ⊂ N and the sequence

{δk} ⊂ (0, ∞).

2. Iterative step: Given iterate xk, generate sample ξk := {ξk
j }Nk

j=1 from P.

Then compute F̂ (ξk, xk) := N−1
k

∑Nk
j=1 F (ξk

j , xk) and rk := xk − Π[xk −
α̂F̂ (ξk, xk)]. Set

dk :=





0, if ‖rk‖ > 0,

δk
x̂k−xk

‖x̂k−xk‖ , for any x̂k ∈ X such that x̂k 6= xk, if ‖rk‖ = 0.

(5.4)

Line search rule: define αk as the maximum α ∈ {θℓα̂ : ℓ ∈ {0} ∪ N} such

that

(5.5) α
∥∥∥F̂

(
ξk, zk(α)

)
− F̂

(
ξk, xk + dk

)∥∥∥ ≤ λ‖zk(α) − (xk + dk)‖,

where, for all α ∈ (0, α̂],

(5.6) zk(α) := Π
[
xk + dk − α

(
F̂ (ξk, xk) + βdk

)]
,

and F̂
(
ξk, zk(α)

)
:= N−1

k

∑Nk
j=1 F (ξk

j , zk(α)).

Extragradient step: Generate sample ηk := {ηk
j }Nk

j=1 from P and set

zk = Π
[
xk − αkF̂ (ξk, xk)

]
,(5.7)

xk+1 = Π
[
xk − αkF̂ (ηk, zk)

]
.(5.8)

Note that if T is Lipschitz continuous with constant L, Algorithm 5 recovers

Algorithm 3 in Chapter 4 if we set 0 < infk αk ≤ supk αk = α̂ < 1/2L (i.e., the

line search rule (5.5) is satisfied in the first iteration with αk := α̂).
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Remark 1 (Initialization of the line search rule). We make a remark regarding

the exogenous parameters β and {δk} and the endogenous sequence {dk} defined

in Algorithm 5. By the definition of dk in (5.4) and convexity of X, we have that,

for all k ∈ N,

‖dk‖ ≤ δk, xk + dk ∈ X.(5.9)

Moreover, it can be shown that, if β ∈ (0, α̂−1], then, for all α ∈ (0, α̂] and k ∈ N,

‖zk(α) − (xk + dk)‖ > 0,(5.10)

where zk(α) is defined in (5.6) (see the proof of Lemma 16 in the next section).

In fact, the rule (5.4) chosen to update dk could be replaced by any rule satisfying

(5.47)-(5.48).

The purpose of β, {δk} and dk is solely to initialize the line search rule with a

well defined direction. In deterministic regimes, this is not needed since if rk = 0

(see Algorithm 5), xk is an exact solution and we can stop the algorithm. In our

framework, we use a sampled-based line search scheme so that the termination

criteria is generally not clear. By choosing β, {δk} and dk as above, the sampled-

based line search rule (5.5)-(5.6) is always clearly specified and terminates in a

finitely number of iterations. The direction dk serves merely as a small perturbation

to address the case rk = 0. Since ‖dk‖ ≤ δk holds for all k, we can set δk → 0

in any desired rate so to correct iteratively such small perturbations. In this way,

the optimality of the iteration and oracle complexities of Algorithm 5 are unaltered.

We refer to the convergence analysis in the next section for further details.

Remark 2 (Intuition for the line search scheme). The stochastic approximated line

search (5.5) is motivated by [47]. We make some comments for the case dk = 0

(see Remark 10). Using definition (2.9), (5.5) can be rewritten as

(5.11)
∥∥∥F̂

(
ξk, zk(α)

)
− F̂

(
ξk, xk

)∥∥∥ ≤ λ
rα(Hk; xk)

α
,

where Hk := F̂ (ξk, ·). Provided that rα̂(Hk; xk) 6= 0, the line search tests (5.49)

for decreasing α ∈ (0, α̂]. The idea is that the right hand side of (5.49) does

not increase by Lemma 4 while the left hand side tends to 0 by continuity of the

operator. Hence, (5.49) will hold eventually.
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We now present the stochastic hyperplane projection method.

Algorithm 6 (The stochastic hyperplane projection method).

1. Initialization: Choose the initial iterate x0 ∈ R
n, parameters β̃ ≥ β̂ > 0,

λ ∈ (0, 1), α̂ ∈ (0, 1] and θ ∈ (0, 1), the step sequence {βk} ⊂ [β̂, β̃], the

sample rate {Nk}.

2. Iterative step: Given xk, generate samples ξk := {ξk
j }Nk

j=1 of ξ.

If xk = Π
[
xk − βkF̂ (ξk, xk)

]
stop. Otherwise:

Line search rule: Find the maximum α ∈ {θjα̂ : j ∈ N0} such that

(5.12)
〈
F̂
(
ξk, z̄k(α)

)
, xk − Π(gk)

〉
≥ λ

βk
‖xk − Π(gk)‖2,

where gk := xk −βkF̂ (ξk, xk) and for all α > 0, z̄k(α) := αΠ(gk)+(1−α)xk.

Denoting by αk > 0 the above maximum value, set

zk := z̄k(αk) = αkΠ
[
xk − βkF̂ (ξk, xk)

]
+ (1 − αk)xk,(5.13)

xk+1 := Π
[
xk − γkF̂ (ξk, zk)

]
,(5.14)

where γk :=
〈
F̂ (ξk, zk), xk − zk

〉
· ‖F̂ (ξk, zk)‖−2.

Set yk := xk −γkF̂ (ξk, zk). We remark that, as in the deterministic hyperplane

projection method of Iusem-Svaiter [39], xk+1 is the projection of xk onto the

hyperplane Hk := {x ∈ R
n : 〈F̂ (ξk, zk), x − zk〉 = 0}, or alternatively onto the

halfspace Lk := {x ∈ R
n : 〈F̂ (ξk, zk), x − zk〉 ≤ 0}. In the deterministic case,

the monotonicity of the operator implies a crucial fact used in the convergence

analysis: if the method does not stop in finitely many iterations then xk /∈ Lk and

Hk strictly separates the solution set X∗ from the iterate xk, which entails a strict

Fejér relation. In Algorithm 6, we still have xk /∈ Lk, but the separation property

is no longer valid, since a solution x∗ ∈ X∗ may fail to belong to Lk if the angle

〈ǫ(ξk, zk), x∗ − zk〉 is positive. Nevertheless, a recursive relation can be obtained

to control this infeasibility of the solution to Lk in terms of 〈ǫ(ξk, zk), x∗ − zk〉 (see

Lemma 20).
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Remark 8. For simplicity of presentation, we have not introduced a initialization

for the line search rule in method 6. A similar adaptation can be introduced in

method 6 so that a more implementable stopping rule is used than the one presented

in such method.

A significant difference between Algorithms 6, 5 and Algorithm 3 in Chapter 4

is that the stepsize αk obtained in the line search depends on the sample ξk. The

inevitable consequence is that the errors {ǭk
2, ǭk

3} in Algorithm 6 and ǫk
3 in Algo-

rithm 5 do not induce martingales. This complicates considerably the convergence

analysis requiring other statistical tools (see Theorem 12).

5.1 An empirical process theory for DS-SA line

search schemes

If L in Assumption 1 is known then the analysis of SA methods with the CSP can

exploit the fact that the oracle error’s define a martingale difference. This type

of errors can be controlled in a relatively straightforward way (see Lemma 15 in

Section 5.1.3). The main objective of this section is to prove the following theorem.

This is will the most sensitive part of our analysis and it is the cornerstone tool to

handle nonmartingale-like oracle errors obtained when stepsize DS-SA line search

schemes are used to estimate an unknown L.

Theorem 12 (Local bound for the Lp-norm of the correlated error in DS-SA line

search schemes). Consider the SVI given by (1.2) and Definition 1 with solution

set X∗. Let ξN := {ξj}N
j=1 be an i.i.d sample drawn from P and let αN : Ξ → [0, α̂]

be a random variable for some 0 < α̂ ≤ 1. Suppose that Assumption 1 holds, recall

definitions (5.1)-(5.3) and define δ1 := 0 if δ = 1 and δ1 := 1 if δ ∈ (0, 1).

Given (α, x) ∈ [0, α̂] × X, we define

z
(
ξN ; α, x

)
:= Π

[
x − αF̂

(
ξN , x

)]
,

and zβ(ξN ; α, x) := αz(ξN ; β, x)+(1−α)x, given β > 0. Then the following holds:

(i) There exist positive constants {ci}4
i=1 (depending on d, δ, p and L2pα̂) such
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that, for any x ∈ X and x∗ ∈ X∗,

∣∣∣
∥∥∥ǫ̂
(
ξN , z(ξN ; αN , x)

)∥∥∥
∣∣∣
p

≤
c1σ2p(x∗) + L2p

[
δ1 ∨ ‖x − x∗‖δ

]

√
N

,

where L2p := c2L2 + c3Lp + c4L2p.

(ii) If X is compact, there exist positive constants d2 and Cp (depending on d, δ

and p) such that, for any x ∈ X and x∗ ∈ X∗,

∣∣∣
∥∥∥ǫ̂
(
ξN , z(ξN ; αN , x)

)∥∥∥
∣∣∣
p

≤ Cpσp(x∗) + L∗
p diam(X)δ

√
N

,

where L∗
p := d2L2 + pLp.

Up to universal constants, the same bounds above holds for
∣∣∣
∥∥∥ǫ̂
(
ξN , zβ(ξN ; αN , x)

)∥∥∥
∣∣∣
p
.

For further detail on the constants of Theorem 12, see Remark 9 in Section

5.1.3. To prove Theorem 12, we will crucially require intermediate results which

rely on a branch of statistics called Empirical Process Theory. Let {Xj}N
j=1 be a

sequence of independent stochastic processes Xj := (Xj,t)t∈T indexed by a count-

able set T with real-valued random components Xj,t. The associated empirical

process (EP) is the stochastic process T ∈ t 7→ Zt :=
∑N

j=1 Xj,t. An essential

quantity in this theory is Z := supt∈T Zt. If T = {t}, then Z is simply a sum of

independent random variables. Otherwise, Z is a much more complicated object.

To understand Z, it is important to bound its expectation and variance. EPs arise

in many different settings in mathematical statistics [11].

We apply EP theory as a novel way to successfully analyze stochastic approx-

imated line search schemes. Referring to Algorithm 5 and Theorem 12, we have

zk = z(ξk; αk, xk) and must control the correlated error ǫ̂(ξk, z(ξk; αk, xk)). Our

strategy is to construct an EP that locally decouples the dependence in ǫ̂(ξk, zk)

between ξk and zk at the k-th iteration.2 The intuition behind our decoupling

technique is that, although zk is a function of (ξk, xk), zk lies at a ball Bk centered

at any given x∗ ∈ X∗ with radius of O(‖xk − x∗‖ + ‖ǫ̂(ξk, xk)‖). Based on this

fact and that, by i.i.d. sampling, ξk ⊥⊥ xk, we can decouple ξk and zk using the

following guidelines:

2Recall that such dependence is produced by the need to evaluate F̂ (ξk, ·) along the path

α 7→ zk(α) in order to choose the stepsize αk. Analogous observations hold for (5.12): zk =

zβk
(ξk; αk, xk).
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(i) we condition on the past information Fk, noting that xk ∈ Fk and ξk ⊥⊥ Fk,

(ii) we then control an EP indexed by the ball Bk,

(iii) we further note that in item (ii) we must also control ǫ̂(ξk, xk) which affects

the radius of the ball Bk. Nevertheless, since xk ∈ Fk and ξk ⊥⊥ Fk, ǫ̂(ξk, xk)

is a martingale difference and, hence, easier to estimate.

The developed theory is presented in consecutive sections. The statistical pre-

liminaries used outside the proofs are carefully introduced so to make the pre-

sentation as self contained as possible. We refer to the excelent book [11] by S.

Boucheron, G. Lugosi and P. Massart, a standard reference in the area. A global

outline is as follows. Typically, if Z := supt∈T Zt for a stochastic process (Zt)t∈T ,

an upper bound on E[Z] is derived under a suitable tail property on the incre-

ments of (Zt)t∈T and chaining arguments [25]. In Section 5.1.1, we derive instead

an upper bound on |Z|2 ≥ E[Z] in Lemma 13. The main reason to do so is that we

assume heavy-tailed random operators satisfying Assumption 1. As a consequence,

we will work with the square of sub-Gaussian random variables (see Definition 2).

In Section 5.1.2, we apply Lemma 13 derived in Section 5.1.1 to obtain the general

Lemma 14. This lemma provides an uniform bound over a ball on the Lp-norm of

empirical error increments of heavy-tailed Hölder continuous operators, the main

stochastic object in this work. Self-normalization (see [62] and Theorem 15), vari-

ance bounds (Theorem 14) and a simple decoupling argument based on Hölder’s

inequality are also needed for that purpose. Finally, the proof of Theorem 12 is

given in Section 5.1.3. It relies on Lemma 14, the Burkholder-Davis-Gundy’s mo-

ment inequality for martingales in Hilbert spaces [13, 54] and the ideas of items

(i)-(iii) above.

5.1.1 The L2-norm of suprema of sub-Gaussian processes

In order to bound the expectation or the L2-norm of supt∈T Zt for a stochastic

process (Zt)t∈T , it is important to understand the tail behavior of its increments

(Zt − Zt′)(t,t′)∈T ×T . We will thus need the definitions of sub-Gaussian and sub-

Gamma random variables.
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Definition 2 (sub-Gaussian and sub-Gamma random variables). A random vari-

able Y ∈ R is called sub-Gaussian with variance factor σ2 > 0 if, for all s ∈ R,

lnE

[
esY

]
≤ σ2s2

2
. A random variable Y ∈ R is called sub-Gamma on the right

tail with variance factor σ2 > 0 and scale parameter c > 0 if, for all 0 < s < 1
c
,

lnE

[
esY

]
≤ σ2s2

2(1−cs)
.

Hence, a random variable Y is sub-Gaussian if Y and −Y are sub-Gamma

on the right tail with scale parameter c = 0. In order to compute L2-norms

under heavier tails, we will need also the following result which establishes that

the centered square of a sub-Gaussian random variable is sub-Gamma on the right

tail. It follows, e.g., as a corollary of Theorem 2.1 and Remark 2.3 in [33] in the

one dimensional setting.

Theorem 13 (Square of sub-Gaussian random variables). Suppose that Y ∈ R is a

sub-Gaussian random variable with variance factor σ2. Then, for all 0 ≤ s < 1
2σ2 ,

lnE

[
esY 2

]
≤ σ2s + σ4s2

1−2σ2s
.

One celebrated technique to understand supt∈T Zt for a stochastic process

(Zt)t∈T is the so called chaining method (see e.g. [25]). This consists in ap-

proximating T by a increasing chain of finer discrete subsets. In this quest, the

“complexity” of the index set T plays an important role. This is formalized in the

next definition.

Definition 3 (Metric entropy). Let (T , d) be a totally bounded metric space. Given

θ > 0, a θ-net for T is a finite set Tθ ⊂ T of maximal cardinality N(θ, T ) such

that for all s, t ∈ Tθ with s 6= t, one has d(s, t) > θ. The θ-entropy number is

H(θ, T ) := ln N(θ, T ). The function H(·, T ) is called the metric entropy of T .

In particular, for all t ∈ T , there is s ∈ Tθ such that d(s, t) ≤ θ. Note that the

metric entropy is a nonincreasing real-valued function. The next lemma establishes

the metric entropy of the Euclidean unit ball B of Rd (see Lemma 13.11 of [11]).

Lemma 11 (Metric entropy of Euclidean balls). Let B be the Euclidean unit ball

of Rd. For all θ ∈ (0, 1], H(θ,B) ≤ d ln
(
1 + 1

θ

)
.

Hence, the “complexity” of B is proportional to d, an effect perceived in high-

dimensional problems. However, note that H(θ,B) grows slowly when the dis-
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cretization precision θ diminishes. This is a key property in order for the chaining

method to work.

Before proving the main Lemma 13 in this section, we state one more needed

preliminary result. It bounds the expectation of the maximum of a finite number

of sub-Gamma random variables (see, e.g., Corollary 2.6 of [11]). It is an essential

lemma while using discretization arguments.

Lemma 12 (Expectation of maxima of sub-Gamma random variables). Let {Yi}N
i=1

be real-valued sub-Gamma random variables on the right tail with variance factor

σ2 > 0 and scale parameter c > 0. Then

E

[
max

i=1,...,N
Yi

]
≤

√
2σ2 ln N + c ln N.

Lemma 13 (L2-norm of suprema of sub-Gaussian processes). Let (T , d) be a

totally bounded metric space and θ := supt∈T d(t, t0) for some t0 ∈ T . Suppose

(Zt)t∈T is a continuous stochastic process for which there exist a, v > 0 and δ ∈
(0, 1] such that, for all t, t′ ∈ T and all λ > 0,

(5.15) lnE[exp{λ(Zt − Zt′)}] ≤ a d(t, t′)δλ +
v d(t, t′)2δλ2

2
.

Then
∣∣∣∣∣sup
t∈T

Zt − Zt0

∣∣∣∣∣
2

≤ (3θ)δ
√

2(a2 + v)


 1

2δ − 1
+

∞∑

i=1

4

√
8H (θ2−i, T ) + 2

√
H (θ2−i, T )

2iδ


 .

Proof. We first note that the continuity of t 7→ Zt and separability of T imply

that, for any continuous function f , supt∈T f(Zt) is measurable since it equals

supt∈T ′ f(Zt) for a countable dense subset T ′ of T .

Set T0 := {t0}. Given i ∈ N, we set θi := θ2−i and denote by Ti a θi-net for

T with maximal cardinality N(θi, T ). We also denote by Πi : T → Ti the metric

projection associated to d, that is, for any t ∈ T , Πi(t) ∈ argmint′∈Ti
d(t, t′). By

the definition of a net, we have that, for all t ∈ T and i ∈ N, d(t, Πi(t)) ≤ θi. By

the triangular inequality, this implies that for all t ∈ T and i ∈ N,

(5.16) d(Πi(t), Πi+1(t)) ≤ θi + θi+1 = 3θi+1.

For any t ∈ T , limi→∞ Πi(t) = t and Π0(t) = t0 imply that

Zt = Zt0 +
∞∑

j=0

(ZΠi+1(t) − ZΠi(t)).
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In the following, we denote ∆i(t) := ZΠi+1(t) − ZΠi(t) for all i ∈ N and t ∈ T . The

above equality implies that (Zt − Zt0)2 =
∑∞

i=0

∑∞
k=0 ∆i(t)∆k(t). Hence,

E

[
sup
t∈T

(Zt − Zt0)2

]
≤

∞∑

i=0

∞∑

k=0

E

[
sup
t∈T

{∆i(t)∆k(t)}
]

≤
∞∑

i=0

∞∑

k=0

∣∣∣∣∣sup
t∈T

|∆i(t)|
∣∣∣∣∣
2

·
∣∣∣∣∣sup
t∈T

|∆k(t)|
∣∣∣∣∣
2

=

[ ∞∑

i=0

∣∣∣∣∣sup
t∈T

|∆i(t)|
∣∣∣∣∣
2

]2

,(5.17)

using Hölder’s inequality in the second inequality.

Fix i ∈ N. Since N(θi, T ) ≤ N(θi+1, T ), we have that

(5.18) |{(Πi(t), Πi+1(t)) : t ∈ T }| ≤ N(θi+1, T )2 = e2H(θi+1).

Relations (5.15) and (5.16) imply that, for all t ∈ T ,

lnE

[
eλ∆i(t)

]
≤ a d (Πi(t), Πi+1(t))

δ λ +
v d (Πi(t), Πi+1(t))

2δ λ2

2
≤ aiλ +

viλ
2

2
,

where we have defined ai := a(3θi+1)δ and vi := v(3θi+1)2δ. The above relation

implies that, for all t ∈ T , ∆i(t)−ai is sub-Gaussian with variance factor vi. This,

Theorem 13, the bound ∆i(t)
2 ≤ 2[∆i(t) − ai]

2 + 2a2
i and the change of variables

λ 7→ 2λ imply that, for all t ∈ T and 0 < λ < 1
4vi

,

(5.19) lnE

[
eλ∆i(t)2

]
≤ 2(a2

i + vi)λ +
4v2

i λ2

(1 − 4viλ)
,

that is, for all t ∈ T , ∆i(t)
2 − 2(a2

i + vi) is sub-Gamma on the right tail with

variance factor 8v2
i and scale parameter 4vi. Relations (5.18)-(5.19) and Lemma

12 imply further that

E

[
sup
t∈T

∆i(t)
2

]
≤ 2(a2

i + vi) +
√

2 · 8v2
i · 2H(θi+1, T ) + 4vi · 2H(θi+1, T )

≤ 2 · 9δ(a2 + v)
[
θ2δ

i+1 + θ2δ
i+1

√
8H(θi+1, T ) + 4θ2δ

i+1H(θi+1, T )
]

.

Taking the square root in the above relation we get

(5.20)∣∣∣∣∣sup
t∈T

|∆i(t)|
∣∣∣∣∣
2

≤ 3δ
√

2(a2 + v)
[
θδ

i+1 + θδ
i+1

4

√
8H(θi+1, T ) + 2θδ

i+1

√
H(θi+1, T )

]
.
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We now take the square root in (5.17) and use (5.20), valid for any i ∈ N,

obtaining

∣∣∣∣∣sup
t∈T

Zt − Zt0

∣∣∣∣∣
2

≤ 3δ
√

2(a2 + v)

[ ∞∑

i=1

θδ
i +

∞∑

i=1

θδ
i

4

√
8H(θi, T ) + 2

∞∑

i=1

θδ
i

√
H(θi, T )

]
.

To finish the proof, we use θi = θ2−i and
∑∞

i=1 θδ
i = θδ

2δ−1
in the above inequality.

5.1.2 Heavy-tailed Hölder continuous operators: self-normalization

and sup-norms

We will now focus on bounds of EPs associated to sums of the form x 7→ ∑N
j=1

F (ξj ,x)−T (x)

N
,

where {ξj}N
j=1 is an i.i.d. sample of P and F : Ξ × X → R

d satisfies Assumption

1. The main result proved in this section is Lemma 14. Its proof will need Lemma

13 and the following theorem (see Theorem 15.14 in [11]).

Theorem 14 (Lq-norm for suprema of EPs). Let {Xj}N
j=1 be an independent se-

quence of stochastic processes Xj := (Xj,t)t∈T indexed by a countable set T with

real-valued random components Xj,t such that E[Xj,t] = 0 and E[X2
j,t] < ∞ for all

t ∈ T and j ∈ [N ]. Define Z := supt∈T
∣∣∣
∑N

j=1 Xj,t

∣∣∣ and

M := max
j∈[N ]

sup
t∈T

|Xj,t|, σ̂2 := sup
t∈T

N∑

j=1

E

[
X2

j,t

]
.

Set κ :=
√

e
2(

√
e−1)

< 1.271. Then, for all q ≥ 2,

|Z|q ≤ 2E[Z] + 2
√

2κqσ̂ + 4
√

κq|M |2 + 20κq|M |q.

In order to cope with a heavy-tailed L(ξ) in Assumption 1, we will need Theo-

rem 15, a result due to Panchenko (see Theorem 1 in [62] or Theorem 12.3 in [11]).

It establishes a sub-Gaussian tail for the deviation of an EP around its mean after

a proper normalization with respect to a random quantity V . In our set-up, the

standard Hölder continuous assumption turns out to be sufficient to estimate this

quantity.

Theorem 15 (Panchenko’s inequality for self-normalized EPs). Consider a count-

able family G of measurable functions f : Ξ → R such that Pf(·)2 < ∞. Let
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{ξj}N
j=1 and {ηj}N

j=1 be i.i.d. samples of P independent of each other. Set

Y := sup
f∈G

N∑

j=1

f(ξj), and V := E



sup

f∈G

N∑

j=1

[f(ξj) − f(ηj)]
2

∣∣∣∣∣∣
ξ1, . . . , ξN



 .

Then there exists an universal constant c > 0 such that, for all t > 0,

P

{
Y − E[Y ] ≥ c

√
V (1 + t)

}∨
P

{
Y − E[Y ] ≤ −c

√
V (1 + t)

}
≤ e−t.

Finally, before proving Lemma 14, we will need Theorem 16 which is a standard

tail characterization of sub-Gaussian random variables. Theorem 2.1 in [11] gives

a proof for the case E[Ỹ ] = 0. The adaptation for the general case is immediate

using the facts that E[e−tỸ ] ≥ e−tE[Ỹ ] by Jensen’s inequality, the integral formula

E[Ỹ ] ≤ E[|Ỹ |] =
∫∞

0 P(|Ỹ | > t) d t and
∫∞

0 e− t2

2 d t =
√

π
2
.

Theorem 16 (Tail characterization of sub-Gaussian random variables). If Ỹ ∈ R

is a random variable such that, for some v > 0 and for all t > 0,

P

{
Ỹ ≥

√
2vt

}∨
P

{
Ỹ ≤ −

√
2vt

}
≤ e−t,

then, for all t > 0, we have lnE

[
etỸ
]

≤ e
√

vπ
2

t+8vt2

.

We now prove the main lemma of this section. It uses Lemma 13 and Theorems

14-16.

Lemma 14 (Local uniform bound for the Lp-norm of empirical error increments).

Consider (1.2) and let ξN := {ξj}N
j=1 be an i.i.d. sample from P. Suppose that

Assumption 1 holds and recall definitions (5.1)-(5.3). Given x∗ ∈ X and R > 0,

we define

(5.21) Z := sup
x∈B[x∗,R]∩X

∥∥∥ǫ̂(ξN , x) − ǫ̂(ξN , x∗)
∥∥∥ .

Then

|Z|p .




3δ
√

dL2
√

δ
(√

2
δ − 1

) +
√

pL2 + pLp




Rδ

√
N

.
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Proof. A first step is to rewrite Z as the supremum of a suitable EP and use

Theorem 14. In the following, we define the set BX := {u ∈ B : x∗ + Ru ∈ X} for

x∗ ∈ X and R > 0 as stated in the theorem. Note that

Z = sup
u∈BX

1

N

∥∥∥∥∥∥

N∑

j=1

ǫ(ξj, x∗ + Ru) − ǫ(ξj , x∗)

∥∥∥∥∥∥

= sup
u∈BX

1

N
sup
y∈B

〈
N∑

j=1

ǫ(ξj , x∗ + Ru) − ǫ(ξj, x∗), y

〉
(5.22)

= sup
(u,y)∈BX ×B

1

N

N∑

j=1

〈ǫ(ξj, x∗ + Ru) − ǫ(ξj, x∗), y〉 ,

where the second equality uses the fact that ‖ · ‖ = supy∈B〈y, ·〉. Next, we define

the index set T := BX × B and, for every j ∈ [N ] and t := (u, y) ∈ BX × B, we

define the random variables

Xj,t :=
1

N
〈ǫ(ξj, x∗ + Ru) − ǫ(ξj , x∗), y〉 ,(5.23)

Z̃t :=
N∑

j=1

Xj,t.(5.24)

From Assumption 1, it is not difficult to show that, for every j ∈ [N ], the process

T ∋ t 7→ Xj,t is Hölder continuous with respect to the metric

(5.25) d(t, t′) := ‖u − u′‖ + ‖y − y′‖.

This fact, the separability of T and (5.22), imply that (Z̃t)t∈T is a continuous

process and Z = supt∈T0
Z̃t = supt∈T0

∣∣∣Z̃t

∣∣∣ is measurable, where T0 is a dense

countable subset of T . Hence, we may assume next that T is countable without

loss on generality. Our next objective is to use Theorem 14, bounding |Z|p in terms

of E[Z], M and σ̂2.

PART 1 (An upper bound on E[Z]): To bound E[Z] we will need Lemma 13

and Theorems 15-16. At this point, let’s fix t = (u, y) ∈ T and t′ = (u′, y′) ∈ T
and define the measurable function

f(·) :=
1

N
〈ǫ(·, x∗ + Ru) − ǫ(·, x∗), y〉 − 1

N
〈ǫ(·, x∗ + Ru′) − ǫ(·, x∗), y′〉 .

We have that Pf(·)2 < ∞ since |‖F (ξ, ·)‖|2 < ∞ on X (Assumption 1). By

construction and (5.23)-(5.24), we have f(ξj) = Xj,t − Xj,t′ for all j ∈ [N ] and
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Z̃t − Z̃t′ =
∑N

j=1 f(ξj). Note also that E

[∑N
j=1 f(ξj)

]
= 0, using (1.2), (5.1) and

that {ξj}j∈[N ] is an i.i.d. sample of P.

The previous observations allow us to claim Theorem 15 with G := {f} and

Y :=
∑N

j=1 f(ξj). Precisely, if {ηj}N
j=1 is an i.i.d. sample from P which is inde-

pendent of {ξj}N
j=1, then Theorem 15 and E

[∑N
j=1 f(ξj)

]
= 0 imply that, for all

λ > 0,

(5.26) P





N∑

j=1

f(ξj) ≥ c
√

V (1 + λ)




∨

P





N∑

j=1

f(ξj) ≤ −c
√

V (1 + λ)



 ≤ e−λ,

for some universal constant c > 0 and

V := E




N∑

j=1

[f(ξj) − f(ηj)]
2

∣∣∣∣∣∣
ξ1, . . . , ξN


 .

We will now give an upper bound on V . Given ξ ∈ Ξ, (1.2), (5.1) and Hölder

continuity of F (ξ, ·) and T (Assumption 1 and Lemma 1) imply that ǫ(ξ, ·) is

(L(ξ) + L, δ)-Hölder continuous on X. This, definition of f and the facts that

y, y, u, u′ ∈ B and x∗ + Ru, x∗ + Ru′ ∈ X imply that, for all j ∈ [N ] and ∆fj :=

N |[f(ξj) − f(ηj)]|,

∆fj ≤ |〈ǫ(ξj , x∗ + Ru) − ǫ(ξj, x∗) − ǫ(ηj , x∗ + Ru) + ǫ(ηj , x∗), y − y′〉|
+ |〈ǫ(ξj , x∗ + Ru) − ǫ(ξj, x∗ + Ru′) − ǫ(ηj , x∗ + Ru) + ǫ(ηj , x∗ + Ru′), y′〉|
≤ [L(ξj) + L(ηj) + 2L] Rδ

[
‖y − y′‖ + ‖u − u′‖δ

]

≤ [L(ξj) + L(ηj) + 2L] Rδ21−δ
[
‖y − y′‖ 1

δ + ‖u − u′‖
]δ

≤ [L(ξj) + L(ηj) + 2L] Rδ2(1−δ) [‖y − y′‖ + ‖u − u′‖]
δ
,

where we used concavity of R+ ∋ x 7→ xδ in third inequality and the fact that

‖y − y′‖ 1
δ ≤ 2

(1−δ)
δ ‖y − y′‖ for y, y′ ∈ B in last inequality. We take squares in

the above inequality, use relation (
∑3

i=1 ai)
2 ≤ 3

∑3
i=1 a2

i and definitions of V and

(5.25). We thus obtain

V ≤ 3 · 41−δR2δ d(t, t′)2δ

N





N∑

j=1

L(ξj)
2

N
+

N∑

j=1

E [L(ηj)
2|ξ1, . . . , ξN ]

N
+ 4L2





=
3 · 41−δR2δ d(t, t′)2δW 2

N

N
,(5.27)
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where we have defined

(5.28) WN :=

√√√√√ 1

N

N∑

j=1

L(ξj)2 + |L(ξ)|22 + 4L2,

and used that {ηj}j∈[N ] is an i.i.d. sample of P independent of {ξj}j∈[N ].

Set Ỹ := Z̃t−Z̃t′

WN
−

√
3c21−δRδ d(t,t′)δ

√
N

. Relations (5.26)-(5.27) and
∑N

j=1 f(ξj) =

Z̃t − Z̃t′ , together with
√

1 + λ ≤ 1 +
√

λ for λ > 0, imply that

P

{
Ỹ ≥

√
3c21−δRδ d(t, t′)δ

√
N

√
λ

}∨
P

{
Ỹ ≤ −

√
3c21−δRδ d(t, t′)δ

√
N

√
λ

}
≤ e−λ.

The above relation and Theorem 16 imply that for some universal constants

C1, C2 > 0 and for all λ > 0,

(5.29) lnE

[
exp

{
(Z̃t − Z̃t′)

WN
λ

}]
≤ C12

1−δRδ d(t, t′)δ

√
N

λ +
C2

241−δR2δ d(t, t′)2δ

2N
λ2.

We now observe that (5.29) holds for any t, t′ ∈ T . Inequality (5.29) and

Lemma 13 with (T , d) as defined in (5.25), the continuous process T ∋ t 7→ Zt :=
Z̃t

WN
, t0 := (0, 0), θ := supt∈T d(t, 0) ≤ 2, a := C121−δRδ√

N
and v :=

C2
2 41−δR2δ

N
imply

that

(5.30)
∣∣∣∣∣sup
t∈T

Zt

∣∣∣∣∣
2

≤
√

2C21−δ(6R)δ

√
N


 1

2δ − 1
+

∞∑

i=1

4

√
8H (2−i+1, T ) + 2

√
H (2−i+1, T )

2iδ


 ,

where we defined C =
√

C2
1 + C2

2 and used the fact that Zt0 =
Z̃t0

WN
= 0. From

Lemma 11 and the fact that, for any θ > 0, H(θ,BX ×B) ≤ H(θ,BX) + H(θ,B) ≤
2H(θ,B), we also have that

∞∑

i=1

4

√
8H (2−i+1, T ) + 2

√
H (2−i+1, T )

2iδ
.

√
d

∞∑

i=1

√
ln(1 + 2i+1)

2iδ

.
√

d
∞∑

i=1

√
i + 1

2iδ
.

√
d/δ

2
δ
2 − 1

,(5.31)

where we used the facts that ln(1+x) ≤ x,
√

i + 1 ≤ 2
iδ
2√

δ ln 2
and3 ∑∞

i=1 2− iδ
2 = 1

2
δ
2 −1

.

3The previous fact can be derived from the inequality 2x ≥ 1 + (ln 2)x.
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Hölder’s inequality implies that

(5.32) E[Z] = E

[
sup
t∈T

|Z̃t|
]

= E

[
sup
t∈T

|Zt| · WN

]
≤
∣∣∣∣∣sup
t∈T

|Zt|
∣∣∣∣∣
2

· |WN |2.

Since {ξj}j∈[N ] is an i.i.d. sample from P, we also obtain from (5.28) that |WN |2 .

|L(ξ)|2 + L = L2. Finally, this, relations (5.30)-(5.32) and the facts that 21−δ6δ =

2 · 3δ and 2δ − 1 ≥ 2
δ
2 − 1 imply that

E[Z] .

√
d(3R)δL2(

2
δ
2 − 1

)√
δN

.(5.33)

PART 2 (An upper bound on M and σ̂2): From the definition of σ̂2 in Theorem

14 and (5.23), we get

σ̂ =

√√√√√ sup
(u,y)∈T

1

N2

N∑

j=1

E

[
〈ǫ(ξj , x∗ + Ru) − ǫ(ξj, x∗), y〉2

]

≤

√√√√√ 1

N
sup

(u,y)∈T
E




N∑

j=1

(L(ξj) + L)2

N
R2δ‖u‖2δ‖y‖2




≤ Rδ(|L(ξ)|2 + L)√
N

,(5.34)

where we used the fact that ‖ǫ(ξj, x∗ + Ru) − ǫ(ξj, x∗)‖ ≤ [L(ξj) + L]Rδ for u ∈ BX

(Assumption 1 and Lemma 1) in first inequality and the fact that {ξj}j∈[N ] is an

i.i.d. sample of P in the last inequality.

From the definition of M in Theorem 14 and (5.23), we get

|M |pp = E

[(
max
j∈[N ]

sup
t∈T

|Xj,t|
)p]

= E

[
max
j∈[N ]

sup
t∈T

|Xj,t|p
]

≤ 1

Np

N∑

j=1

E

[
sup
t∈T

|〈ǫ(ξj, x∗ + Ru) − ǫ(ξj, x∗), y〉|p
]

≤ 1

Np−1
sup

(u,y)∈T
E




N∑

j=1

(L(ξj) + L)p

N
Rpδ‖u‖pδ‖y‖p




≤
Rpδ|L(ξ) + L|pp

Np−1
,

where, again, we used the fact that ‖ǫ(ξj , x∗ + Ru) − ǫ(ξj , x∗)‖ ≤ [L(ξj) + L]Rδ for

u ∈ BX in second inequality and the fact that {ξj}j∈[N ] is an i.i.d. sample of P in
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the last inequality. We take the p-th root in the above inequality and note that

for p ≥ 2 we have N
p−1

p ≥
√

N , obtaining

(5.35) |M |p ≤
(|L(ξ)|p + L)Rδ

√
N

.

From (5.33)-(5.35) and definitions of L2 and Lp in Assumption 1, we obtain

the required claim.

5.1.3 The proof of Theorem 12

With the theory developed in Sections 5.1.1-5.1.2, we are now ready to prove

Theorem 12. We shall use Lemma 14 and follow the ideas of items (i)-(iii) presented

in the introduction of Section 5.1. We will also need the next Lemma 15 which

controls the oracle’s empirical error. Its control is easier than the oracle’s correlated

error, since it defines a martingale difference. Its proof uses Assumption 1 and a

version of Burkholder-Davis-Gundy’s inequality in Hilbert spaces (see [13, 54]),

which we recall here for convenience.

Theorem 17 (Burkholder-Davis-Gundy inequality in R
d). Let ‖ · ‖ be the Eu-

clidean norm in R
d. Then, for all q ≥ 2, there exists Cq > 0 such that for any

vector-valued martingale {yj}N
j=0 adapted to the filtration {Gj}N

j=1 with y0 = 0, it

holds that

∣∣∣∣∣sup
j≤N

‖yj‖
∣∣∣∣∣
q

≤ Cq

∣∣∣∣∣∣∣

√√√√√
N∑

j=1

‖yj − yj−1‖2

∣∣∣∣∣∣∣
q

≤ Cq

√√√√√
N∑

j=1

|‖yj − yj−1‖|2q .

Lemma 15 (Local bound for the Lq-norm of the empirical error). Consider (1.2)

and let ξN := {ξj}N
j=1 be an i.i.d. sample from P. Suppose that Assumption 1

holds and take q ∈ [p, 2p] such that the integrability conditions of Assumption 1

are satisfied. Recall definitions in (5.1)-(5.3) and definition of Cq in Theorem 17.

Set C2 := 1 if q = p = 2. Then, for any x, x∗ ∈ X,

∣∣∣
∥∥∥ǫ̂(ξN , x)

∥∥∥
∣∣∣
q

≤ Cq
σq(x

∗) + Lq‖x − x∗‖δ

√
N

.

Proof. We define the R
d-valued process {yt}N

t=0 by y0 = 0 and yt :=
∑t

j=1
ǫ(ξj ,x)

N
for

t ∈ [N ] and the filtration Gt := σ(y0, . . . , yt) for t ∈ {0} ∪ [N ]. Since {ξj}N
j=1 is an
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i.i.d. sample of P, {yt, Gt}N
t=0 is a R

d-valued martingale whose increments satisfy

|‖yt − yt−1‖|q =

∣∣∣∣∣
‖ǫ(ξ, x)‖

N

∣∣∣∣∣
q

≤
|‖ǫ(ξ, x∗)‖|q + Lq‖x − y‖δ

N
,

using that |‖ǫ(ξ, ·)‖|q is Hölder continuous with modulus Lq = |L(ξ)|q + L and

exponent δ (Lemma 1) in the inequality. The required claim follows from the

above relation, Theorem 17 and ǫ̂(ξN , x) = yN . We note that if q = 2, then

the linearity of the expectation, the Pythagorean identity (valid for the Euclidean

norm) and independence imply the sharper equality
∣∣∣
∥∥∥ǫ̂(ξN , x)

∥∥∥
∣∣∣
2

=
|‖ǫ(ξ,x)‖|2√

N
. This

fact and Lemma 1 imply the claim of the lemma with C2 = 1.

Proof of Theorem 12. We fix x ∈ X and x∗ ∈ X∗ as stated in the theorem and

set zN := z(ξN ; αN , x) and zN := z(ξN ; αN , x). In the following, we only give

a proof for ǫ̂(ξN , zN ). The proof for ǫ̂(ξN , zN) requires only minor changes. For

reasons to be shown in the following, it will be convenient to define ∆(x, x∗) :=

‖x − x∗‖ ∨ ‖x − x∗‖δ and, for any s > 0, R(s) := (1 + Lα̂)∆(x, x∗) + α̂s and the

ball B(s) := B[x∗, R(s)].

Example 14.29 of [68] and Assumption 1 imply that the map Ξ×X ∋ (ω, x) 7→
‖ǫ̂(ξN(ω), x)‖ is a normal integrand, that is,

ω 7→ epi
∥∥∥ǫ̂(ξN(ω), ·)

∥∥∥ := {(x, y) ∈ X × R :
∥∥∥ǫ̂(ξN(ω), x)

∥∥∥ ≤ y}

is a set-valued measurable function. This fact and Theorem 14.37 in [68] imply

further that, for any measurable function ǫ : Ω → [0, ∞) and R > 0,

ω 7→ sup
x′∈B(ǫ(ω))∩X

∥∥∥ǫ̂(ξN(ω), x′)
∥∥∥ and ω 7→ sup

x′∈B[x∗,R]∩X

∥∥∥ǫ̂(ξN(ω), x′)
∥∥∥

(5.36)

are measurable functions.

We first prove item (ii) for the easier case when X is compact. We set R :=
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diam(X) and note that zN ∈ B[x∗, R] ∩ X. This and (5.36) imply that

∣∣∣‖ǫ̂(ξN , zN )‖
∣∣∣
p

≤
∣∣∣∣∣ sup
x′∈B[x∗,R]∩X

‖ǫ̂(ξN , x′)‖
∣∣∣∣∣
p

≤
∣∣∣∣∣ sup
x′∈B[x∗,R]∩X

‖ǫ̂(ξN , x′) − ǫ̂(ξN , x∗)‖
∣∣∣∣∣
p

+
∣∣∣‖ǫ̂(ξN , x∗)‖

∣∣∣
p

≤ c




3δ
√

dL2
√

δ
(√

2
δ − 1

) +
√

pL2 + pLp




diam(X)δ

√
N

+
Cp|‖ǫ(ξ, x∗)‖|p√

N
,

for some universal constant c > 0, where we used Lemmas 14 and 15 with q = p

in the last inequality. The above inequality and definition (5.2) prove item (ii).

We now prove item (i) in the case X may be unbounded. Given α ∈ [0, α̂],

Lemma 1(iv) implies that x∗ = Π[x∗ − αT (x∗)]. Taking into account this fact,

Lemma 1(iii) and definitions of z(ξN ; α, x), (5.1) and (5.3), we get that, for any

α ∈ [0, α̂],

∥∥∥x∗ − z(ξN ; α, x)
∥∥∥ =

∥∥∥Π [x∗ − αT (x∗)] − Π
[
x − α

(
T (x) + ǫ̂(ξN , x)

)]∥∥∥

≤ ‖x∗ − x‖ + α‖T (x) − T (x∗)‖ + α
∥∥∥ǫ̂(ξN , x)

∥∥∥

≤ (1 + Lα̂)
[
‖x − x∗‖ ∨ ‖x − x∗‖δ

]
+ α̂

∥∥∥ǫ̂(ξN , x)
∥∥∥ ,(5.37)

where, in last inequality, we used Hölder continuity of T (Lemma 1).

In the sequel we define the quantities

(5.38) s∗ := L2p∆(x, x∗) and ǫN :=
∥∥∥ǫ̂(ξN , x)

∥∥∥ .

Setting α := αN in (5.37), we have that4 zN ∈ B(ǫN ) ∩ X. We now make the

following decomposition

∣∣∣
∥∥∥ǫ̂(ξN , zN )

∥∥∥
∣∣∣
p

= I1 + I2,(5.39)

using the definitions

I1 :=
∣∣∣
∥∥∥ǫ̂(ξN , zN)

∥∥∥ I{ǫN ≤s∗}
∣∣∣
p

and I2 :=
∣∣∣
∥∥∥ǫ̂(ξN , zN )

∥∥∥ I{ǫN >s∗}
∣∣∣
p
.

4Note that from αN ∈ [0, 1] and convexity of X and B(ǫN ), we also have that zN ∈ B(ǫN )∩X .
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PART 1 (Upper bound on I1): from the fact that zN ∈ B(ǫN ) ∩ X and (5.36),

we may bound I1 by

I1 =
∣∣∣‖ǫ̂(ξN , zN)‖I{ǫN ≤s∗}

∣∣∣
p

≤
∣∣∣∣∣ sup
x′∈B(s∗)∩X

‖ǫ̂(ξN , x′)‖
∣∣∣∣∣
p

≤
∣∣∣∣∣ sup
x′∈B(s∗)∩X

‖ǫ̂(ξN , x′) − ǫ̂(ξN , x∗)‖
∣∣∣∣∣
p

+
∣∣∣‖ǫ̂(ξN , x∗)‖

∣∣∣
p

≤ c




3δ
√

dL2
√

δ
(√

2
δ − 1

) +
√

pL2 + pLp




R(s∗)δ

√
N

+
Cp|‖ǫ(ξ, x∗)‖|p√

N
,

where we used Lemmas 14 and 15 with q = p in the last inequality. Using the fact

that R(s∗) = (1 + Lα̂ + L2pα̂) ∆(x, x∗) and setting cδ := c3δ

√
δ(

√
2

δ−1)
, we get from

the above chain of inequalities that

(5.40) I1 ≤
[(

cδ

√
d + c

√
p
)

L2 + cpLp

]
Cδ

Lα̂,p

∆(x, x∗)δ

√
N

+
Cp|‖ǫ(ξ, x∗)‖|p√

N
,

with CLα̂,p := 1 + Lα̂ + L2pα̂.

PART 2 (Upper bound on I2): Defining L̂N := N−1∑N
j=1 L(ξj), we note that

∥∥∥ǫ̂(ξN , zN )
∥∥∥ ≤

∥∥∥ǫ̂(ξN , zN) − ǫ̂(ξN , x∗)
∥∥∥+

∥∥∥ǫ̂(ξN , x∗)
∥∥∥

≤
∥∥∥∥∥∥

1

N

N∑

j=1

[
F (ξj, zN ) − F (ξj, x∗)

]
∥∥∥∥∥∥

+
∥∥∥T (zN ) − T (x∗)

∥∥∥+
∥∥∥ǫ̂(ξN , x∗)

∥∥∥

≤
(
L̂N + L

) ∥∥∥zN − x∗
∥∥∥

δ
+
∥∥∥ǫ̂(ξN , x∗)

∥∥∥

≤
(
L̂N + L

)
(1 + Lα̂)∆(x, x∗) + α̂

(
L̂N + L

)
ǫN + ǫ∗

N ,

using Assumption 1 and Lemma 1 in the third inequality and (5.37) with α := αN ,

(5.38) and the definition ǫ∗
N :=

∥∥∥ǫ̂(ξN , x∗)
∥∥∥ in the last inequality. The inequality

above and definition of I2 imply that

I2 =
∣∣∣
∥∥∥ǫ̂(ξN , zN )

∥∥∥ I{ǫN >s∗}
∣∣∣
p

≤ (1 + Lα̂)∆(x, x∗)
∣∣∣
(
L̂N + L

)
I{ǫN >s∗}

∣∣∣
p

+ α̂
∣∣∣
(
L̂N + L

)
ǫN

∣∣∣
p

+ |ǫ∗
N |p

≤ (1 + Lα̂)∆(x, x∗)
∣∣∣L̂N + L

∣∣∣
2p

∣∣∣I{ǫN >s∗}
∣∣∣
2p

+ α̂
∣∣∣L̂N + L

∣∣∣
2p

|ǫN |2p + |ǫ∗
N |p,(5.41)

where we used Hölder’s inequality.
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With respect to the last term in the rightmost expression of (5.41), we have,

in view of Lemma 15 with q = p,

|ǫ∗
N |p =

∣∣∣‖ǫ̂(ξN , x∗)‖
∣∣∣
p

≤
Cp|‖ǫ(ξ, x∗)‖|p√

N
.(5.42)

Concerning the second term in the rightmost expression of (5.41), Lemma 15

with q = 2p implies that

(5.43) |ǫN |2p =
∣∣∣
∥∥∥ǫ̂(ξN , x)

∥∥∥
∣∣∣
2p

≤ C2p

|‖ǫ(ξ, x∗)‖|2p + L2p‖x − x∗‖δ

√
N

.

From Markov’s inequality and (5.43) we obtain

∣∣∣I{ǫN >s∗}
∣∣∣
2p

= 2p

√
E

[
I{ǫN >s∗}

]
= 2p

√
P (‖ǫ̂(ξN , x)‖ > s∗)

≤ 2p

√√√√E

[
‖ǫ̂(ξN , x)‖2p

]

s2p
∗

=

∣∣∣
∥∥∥ǫ̂(ξN , x)

∥∥∥
∣∣∣
2p

s∗

≤ C2p

|‖ǫ(ξ, x∗)‖|2p + L2p‖x − x∗‖δ

s∗
√

N
.(5.44)

The convexity of t 7→ t2p and the fact that {ξj}j∈[N ] is an i.i.d. sample of P

imply that
∣∣∣L̂N + L

∣∣∣
2p

≤ |L(ξ)|2p + L = L2p. Using this fact and putting together

relations (5.41)-(5.44) we get

I2 ≤ (1 + Lα̂)
∆(x, x∗)L2p

s∗
C2p

|‖ǫ(ξ, x∗)‖|2p + L2p‖x − x∗‖δ

√
N

+L2pα̂C2p

|‖ǫ(ξ, x∗)‖|2p + L2p‖x − x∗‖δ

√
N

+
Cp|‖ǫ(ξ, x∗)‖|p√

N

= C2p (1 + Lα̂ + L2pα̂)
|‖ǫ(ξ, x∗)‖|2p√

N
+

Cp|‖ǫ(ξ, x∗)‖|p√
N

+C2p (1 + Lα̂ + L2pα̂)
L2p‖x − x∗‖δ

√
N

,(5.45)

where we used the fact that5 s∗ = L2p∆(x, x∗).

5Note that [∆(x, x∗)‖x−x∗‖δ]2 . ‖x−x∗‖4δ with 4δ > 2 in the Lipschitz continuous case. The

geometry of projection methods implies the derivation of a recursion in terms of {‖xk − x∗‖2}.

It is then crucial for the convergence analysis that follows that we can choose a s∗ that balances

the bounds R(s∗)δ . ‖x−x∗‖β1 in I1 and ∆(x,x∗)
s∗

‖x−x∗‖δ . ‖x−x∗‖β2 in I2 with β1, β2 ∈ (0, 1].
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Relations (5.39)-(5.40) and (5.45), definition (5.2) and the facts that ∆(x, x∗)δ ≤
δ1 ∨ ‖x − x∗‖δ and |‖ǫ(ξ, x∗)‖|p ≤ |‖ǫ(ξ, x∗)‖|2p prove item (i).

Remark 9 (Constants). In Theorem 12, the constants satisfy

c1 := 2Cp + C2pCLα̂,p, c3 . pCδ
Lα̂,p, c4 := C2pCLα̂,p,

c2 .




3δ
√

d
√

δ
(√

2
δ − 1

) +
√

p


Cδ

Lα̂,p, d2 .




3δ
√

d
√

δ
(√

2
δ − 1

) +
√

p


 ,

where CLα̂,p := 1 + 2Lα̂ + |L(ξ)|2pα̂ and Cp and C2p are defined in Lemma 15.

5.2 Analysis of Algorithm 5 for Lipschitz contin-

uous operators

We state next additional assumptions needed for the convergence analysis of Al-

gorithm 5. In this section we always assume that in Assumption 1 we have δ = 1.

For brevity, we will not mention it any further.

Assumption 2 (Consistency). The solution set X∗ of VI(T, X) is non-empty.

Assumption 20 (Pseudo-monotonicity). We assume that T : X → R
d as defined

in (1.2) is pseudo-monotone: for all z, x ∈ X, 〈T (x), z−x〉 ≥ 0 =⇒ 〈T (z), z−x〉 ≥
0.

Pseudo-monotonicity includes monotonicity as a special class [42, 20]. Pseudo-

monotone SVIs were also considered in [44]. In these works knowledge of param-

eters such as the Lipschitz constant are still assumed and no variance reduction

schemes are presented in [44]. Recall that the gradient of a smooth convex function

is monotone and the quotient of a positive smooth convex function with a positive

smooth concave function has a pseudo-monotone gradient. Recall the notation

[Nk] := {1, . . . , Nk}.

Assumption 21 (I.I.D. sampling). In Algorithm 5, the sequences {ξk
j : k ∈ N0, j ∈

[Nk]} and {ηk
j : k ∈ N0, j ∈ [Nk]} are i.i.d. samples drawn from P independent of

each other. Moreover,
∑∞

k=0 N−1
k < ∞.
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We set ξk := {ξk
j }Nk

j=1 and ηk := {ηk
j }Nk

j=1. Concerning Algorithm 5, we shall

study the stochastic process {xk} with respect to the filtrations

Fk = σ(x0, ξ0, . . . , ξk−1, η0, . . . , ηk−1), F̂k = σ(Fk ∪ σ(ξk)).

Recalling (5.1), (5.3) and Algorithm 5, we will define the following oracle errors:

ǫk
1 := ǫ̂(ξk, xk), ǫk

2 := ǫ̂(ηk, zk), ǫk
3 := ǫ̂(ξk, zk).(5.46)

Assumption 21 implies that the processes [Nk] ∋ t 7→ N−1
k

∑t
j=1 ǫ(ξk

j , xk), [Nk] ∋
t 7→ N−1

k

∑t
j=1 ǫ(ηk

j , zk), k 7→ ǫk
1 and k 7→ ǫk

2 define martingale differences. Such

property does not hold for the correlated error ǫk
3 since αk and zk are measurable

functions of ξk. It is also important to note that the stepsize αk is a random

variable satisfying αk /∈ Fk and αk ∈ F̂k.

Remark 10 (Initialization of the line search rule). We make a remark regarding

the exogenous parameters β and {δk} and the endogenous sequence {dk} defined

in Algorithm 5. By the definition of dk in (5.4) and convexity of X, we have that,

for all k ∈ N,

‖dk‖ ≤ δk, xk + dk ∈ X.(5.47)

Moreover, it can be shown that, if β ∈ (0, α̂−1], then, for all α ∈ (0, α̂] and k ∈ N,

‖zk(α) − (xk + dk)‖ > 0,(5.48)

where zk(α) is defined in (5.6) (see the proof of Lemma 16 in the next section).

In fact, the rule (5.4) chosen to update dk could be replaced by any rule satisfying

(5.47)-(5.48).

The purpose of β, {δk} and dk is solely to initialize the line search rule with a

well defined direction. In deterministic regimes, this is not needed since if rk = 0

(see Algorithm 5), xk is an exact solution and we can stop the algorithm. In our

framework, we use a sampled-based line search scheme so that the termination

criteria is generally not clear. By choosing β, {δk} and dk as above, the sampled-

based line search rule (5.5)-(5.6) is always clearly specified and terminates in a

finitely number of iterations. The direction dk serves merely as a small perturbation

to address the case rk = 0. Since ‖dk‖ ≤ δk holds for all k, we can set δk → 0
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in any desired rate so to correct iteratively such small perturbations. In this way,

the optimality of the iteration and oracle complexities of Algorithm 5 are unaltered.

We refer to the convergence analysis in the next section for further details.

Remark 11 (Intuition for the line search scheme). The stochastic approximated

line search (5.5) is motivated by [47]. We make some comments for the case dk = 0

(see Remark 10). Using (2.9), (5.5) can be rewritten as

(5.49)
∥∥∥F̂

(
ξk, zk(α)

)
− F̂

(
ξk, xk

)∥∥∥ ≤ λ
rα(Hk; xk)

α
,

where Hk := F̂ (ξk, ·). Provided that rα̂(Hk; xk) 6= 0, the line search tests (5.49)

for decreasing α ∈ (0, α̂]. The idea is that the right hand side of (5.49) does

not increase by Lemma 4 while the left hand side tends to 0 by continuity of the

operator. Hence, (5.49) will hold eventually.

5.2.1 Derivation of an error bound

In this section we show that Algorithm 5 is well defined and, given some x∗ ∈ X∗,

we derive a recursive bound for the iteration error sequence {‖xk − x∗‖2}.

Lemma 16 (Finite termination of the line search). Consider Assumption 1. Then

the line search (5.5) in the iteration k of Algorithm 5 terminates after a finite

number ℓk of steps.

Proof. Set Hk(x) := F̂ (ξk, x−dk)+βdk for every x ∈ X. In particular, F̂ (ξk, xk)+

βdk = Hk(xk + dk). Note that, from (5.6) and definition (2.9), we have that, for

all α ∈ (0, α̂],

‖zk(α) − (xk + dk)‖ =
∥∥∥Π

[
xk + dk − αHk(xk + dk)

]
− (xk + dk)

∥∥∥ = rα(Hk; xk + dk).

We first show that rα̂(Hk; xk +dk) > 0. From (5.4), if ‖rk‖ > 0, we immediately

have that dk := 0 and rα̂(Hk; xk) = ‖rk‖ > 0. If rk = 0, again by (5.4), we have
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that dk 6= 0. Hence,

rα̂(Hk; xk + dk) =
∥∥∥(xk + dk) − Π

[
xk + dk − α̂Hk(xk + dk)

]
− rk

∥∥∥

=
∥∥∥dk + Π

[
xk − α̂F̂ (ξk, xk)

]
− Π

[
xk + dk − α̂Hk(xk + dk)

]∥∥∥

≥ ‖dk‖ −
∥∥∥Π

[
xk − α̂F̂ (ξk, xk)

]
− Π

[
xk + dk − α̂Hk(xk + dk)

]∥∥∥

≥ ‖dk‖ −
∥∥∥−α̂F̂ (ξk, xk) − dk + α̂Hk(xk + dk)

∥∥∥

= ‖dk‖ −
∥∥∥(α̂β − 1)dk

∥∥∥ = α̂β‖dk‖ > 0,

using Lemma 1(iii) in last inequality and 0 < α̂β ≤ 1 in last equality.

We now conclude the proof of the lemma. Set γℓ := θ−ℓα̂. Assuming by

contradiction that the line search (5.5) does not terminate after a finite number of

iterations, for every ℓ ∈ N0,

∥∥∥F̂
(
ξk, zk(γℓ)

)
− F̂

(
ξk, xk + dk

)∥∥∥ > λ
rγℓ

(Hk; xk + dk)

γℓ
≥ λ · rα̂(Hk; xk + dk),

using definition of rα(Hk; ·) in (2.9), the fact that γℓ ∈ (0, α̂] and Lemma 4 in

the last inequality. The contradiction follows by letting ℓ → ∞ in the above

inequality and invoking the continuity of F̂ (ξk, ·), resulting from Assumption 1,

the fact that limℓ→∞ zk(γℓ) = xk + dk, which follows from the continuity of Π and

xk +dk ∈ X, and the fact that rα̂(Hk; xk +dk) > 0, which follows from the previous

paragraph.

The next lemma shows that the DS-SA line search scheme (5.5) either chooses

the initial stepsize α̂ or it is an UO for a lower bound of the Lipschitz constant

L = E[L(ξ)] (using the same samples generated by the operator’s SO): if α̂ is not

chosen, then (λθ)∧α̂
αk

is a.s. a lower bound for L̂(ξk) = 1
Nk

∑Nk
j=1 L(ξk

j ).

Lemma 17 (Unbiased lower estimation of the Lipschitz constant). Consider As-

sumptions 1 and 21. Then αk ≥
(

λθ

L̂(ξk)

)
∧ α̂, a.s. and

∣∣∣αk

∣∣∣Fk

∣∣∣
2
· |L(ξ)|2 ≥ (λθ) ∧ α̂.

Proof. If α̂ satisfies (5.5), then αk = α̂. Otherwise, we have

(5.50) θ−1αk

∥∥∥F̂
(
ξk, zk(θ−1αk)

)
− F̂ (ξk, xk + dk)

∥∥∥ > λ
∥∥∥zk

(
θ−1αk

)
− (xk + dk)

∥∥∥ .

Assumption 1 and definition of F̂ (ξk, ·) in (5.3) imply that

(5.51)
∥∥∥F̂

(
ξk, zk(θ−1αk)

)
− F̂ (ξk, xk + dk)

∥∥∥ ≤ L̂(ξk)
∥∥∥zk

(
θ−1αk

)
− (xk + dk)

∥∥∥ .
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The fact that zk (θ−1αk) 6= xk + dk and (5.50)-(5.51) imply that αk ≥ λθ

L̂(ξk)
. We

have thus proved the first statement.

Since a.s. L(ξ) ≥ 1, we also have a.s. L̂(ξk)αk ≥ (λθ)∧α̂. The second statement

follows from this fact and

(λθ) ∧ α̂ ≤ E

[
αkL̂(ξk)

∣∣∣∣Fk

]

(by Hölder’s inequality) ≤
∣∣∣αk

∣∣∣Fk

∣∣∣
2

·
∣∣∣∣L̂(ξk)

∣∣∣∣Fk

∣∣∣∣
2

(by convexity of t 7→ t2) ≤
∣∣∣αk

∣∣∣Fk

∣∣∣
2

√√√√√ 1

Nk

Nk∑

j=1

E

[
L(ξk

j )2

∣∣∣∣Fk

]
=
∣∣∣αk

∣∣∣Fk

∣∣∣
2

· |L(ξ)|2,

using Assumption 21 in last equality.

Recall (5.3) and (5.46). We define, for k ∈ N0 and for x∗ ∈ X∗,

∆Ak := (1 − 8λ2)α̂2‖ǫk
1‖2 + 8α̂2‖ǫk

2‖2 + 8α̂2‖ǫk
3‖2,(5.52)

∆Mk(x∗) := 2αk〈x∗ − zk, ǫk
2〉,(5.53)

∆Pk := 8(2 − αkβ)2[λ + αkL̂(ξk)]2δ2
k.(5.54)

We recall the reader to the definition r := r1(T ; ·) in (2.9).

Lemma 18 (A recursive error bound for Algorithm 5). Consider Assumptions 1

and 2-20. The sequence generated by Algorithm 5 satisfies, for all x∗ ∈ X∗ and

k ∈ N0,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1 − 8λ2)α2
k

2
r2(xk) + ∆Mk(x∗) + ∆Ak + ∆Pk.

Proof of Lemma 18. We divide the proof in two parts. The first uses the extra-

gradient step (5.7)-(5.8). The second uses the line search (5.5)-(5.6) with some

judicious error bounds.

PART 1 (Extragradient step): by (5.7)-(5.8), we invoke twice Lemma 1(i) with

v := αkF̂ (ξk, xk), x := xk and z := zk and with v := αkF̂ (ηk, zk), x := xk and

z := xk+1, obtaining, for all x ∈ X,

2〈αkF̂ (ξk, xk), zk − x〉 ≤ ‖xk − x‖2 − ‖zk − x‖2 − ‖zk − xk‖2,(5.55)

2〈αkF̂ (ηk, zk), xk+1 − x〉 ≤ ‖xk − x‖2 − ‖xk+1 − x‖2 − ‖xk+1 − xk‖2.(5.56)
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We now set x := xk+1 in (5.55) and sum the obtained relation with (5.56)

eliminating ‖xk − xk+1‖2. We thus get, for all x ∈ X,

I := 2〈αkF̂ (ξk, xk), zk − xk+1〉 + 2〈αkF̂ (ηk, zk), xk+1 − x〉
≤ ‖xk − x‖2 − ‖xk+1 − x‖2 − ‖zk − xk+1‖2 − ‖zk − xk‖2.

Using definitions (5.1), (5.3) and (5.46), we have

I = 2αk〈F̂ (ξk, xk) − F̂ (ηk, zk), zk − xk+1〉 + 2〈αkF̂ (ηk, zk), zk − x〉
= 2αk〈F̂ (ξk, xk) − F̂ (ηk, zk), zk − xk+1〉 + 2αk〈T (zk), zk − x〉 + 2αk〈ǫk

2, zk − x〉.

The two previous relations imply that, for all ∈ X,

2αk〈T (zk), zk − x〉 ≤ 2αk〈F̂ (ηk, zk) − F̂ (ξk, xk), zk − xk+1〉 + 2αk〈ǫk
2, x − zk〉

+‖xk − x‖2 − ‖xk+1 − x‖2 − ‖zk − xk+1‖2 − ‖zk − xk‖2

≤ 2αk‖F̂ (ηk, zk) − F̂ (ξk, xk)‖‖zk − xk+1‖ + 2αk〈ǫk
2, x − zk〉

+‖xk − x‖2 − ‖xk+1 − x‖2 − ‖zk − xk+1‖2 − ‖zk − xk‖2

≤ 2α2
k‖F̂ (ηk, zk) − F̂ (ξk, xk)‖2 + 2αk〈ǫk

2, x − zk〉
+‖xk − x‖2 − ‖xk+1 − x‖2 − ‖zk − xk‖2,(5.57)

where we used Cauchy-Schwartz in second inequality and Lemma 1(iii) with (5.7)-

(5.8) in the third inequality.

PART 2 (Line search rule): For simplicity, we set z̃k := zk(αk) and x̃k := xk +dk

as defined in (5.6). We first note that, by (5.6)-(5.7), Lemma 1(iii), 0 < αkβ ≤
α̂β ≤ 1 and ‖dk‖ ≤ δk,

‖z̃k − zk‖ ≤ ‖dk − αkβdk‖ ≤ (1 − αkβ)δk, ‖x̃k − xk‖ ≤ δk.(5.58)

Recall that, according to (5.3), L̂(ξk) = 1
Nk

∑Nk
j=1 L(ξk

j ). Concerning the first

term in the rightmost expression in (5.57), we have by the triangle inequality,

αk‖F̂ (ηk, zk) − F̂ (ξk, xk)‖ ≤ αk‖F̂ (ηk, zk) − F̂ (ξk, z̃k)‖ + αk‖F̂ (ξk, z̃k) − F̂ (ξk, x̃k)‖
+αk‖F̂ (ξk, x̃k) − F̂ (ξk, xk)‖.(5.59)
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The first term above can be bounded as

αk‖F̂ (ηk, zk) − F̂ (ξk, z̃k)‖ ≤ αk‖F̂ (ηk, zk) − T (zk)‖ + αk‖F̂ (ξk, zk) − T (zk)‖
+αk‖F̂ (ξk, zk) − F̂ (ξk, z̃k)‖

≤ αk‖ǫk
2‖ + αk‖ǫk

3‖ + αkL̂(ξk)‖zk − z̃k‖
≤ αk‖ǫk

2‖ + αk‖ǫk
3‖ + αkL̂(ξk)(1 − αkβ)δk,(5.60)

using the triangle inequality in first inequality, Assumption 1 and definitions in

(5.1), (5.3) and (5.46) in second inequality and (5.58) in the last inequality. Simi-

larly, the third term in (5.59) satisfies

αk‖F̂ (ξk, x̃k) − F̂ (ξk, xk)‖ ≤ αkL̂(ξk)‖x̃k − xk‖ ≤ αkL̂(ξk)δk.(5.61)

Finally, from the line search (5.5)-(5.6) and (5.58), the second term in (5.59)

satisfies

αk‖F̂ (ξk, z̃k) − F̂ (ξk, x̃k)‖ ≤ λ‖z̃k − x̃k‖
≤ λ‖z̃k − zk‖ + λ‖zk − xk‖ + λ‖xk − x̃k‖
≤ λ‖zk − xk‖ + λ(2 − αkβ)δk.(5.62)

Putting together (5.59)-(5.62), squaring, using the fact that (
∑4

i=1 ai)
2 ≤ 4

∑4
i=1 a2

i

and using definition (5.54), we obtain

2α2
k‖F̂ (ηk, zk) − F̂ (ξk, xk)‖2 ≤ 8λ2‖zk − xk‖2 + 8α̂2(‖ǫk

2‖2 + ‖ǫk
3‖2) + ∆Pk.

(5.63)

From zk = Π[xk − αk(T (xk) + ǫk
1)] and Lemma 4 with αk ∈ (0, 1], we also have

α2
kr2(xk) ≤ r2

αk
(xk)

= ‖xk − Π[xk − αkT (xk)]‖2

≤ 2‖xk − zk‖2 + 2‖Π[xk − αk(T (xk) + ǫk
1)] − Π[xk − αkT (xk)]‖2

≤ 2‖xk − zk‖2 + 2α̂2‖ǫk
1‖2,(5.64)

where we used Lemma 1(iii) in the second inequality. The claim is proved using

relations (5.57) and (5.63)-(5.64) with x := x∗, for a given x∗ ∈ X∗, definitions

(5.52)-(5.53) and the facts that 0 < 1 − 8λ2 < 1 (see Algorithm 5) and 〈T (zk), zk −
x∗〉 ≥ 0, which follows from 〈T (x∗), zk − x∗〉 ≥ 0 (since x∗ ∈ X∗) and Assumption

20.
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5.2.2 Bound on oracle error

This section is devoted to the control of the oracle errors in (5.52)-(5.53). Since

{ǫk
1}, {ǫk

2} and {∆Mk(x∗)} define martingale difference sequences, their control is

simpler and uses Lemma 15.

As mentioned in the introduction, one of the significant challenges in analyzing

our sampled-based line search scheme is to control the correlated error ‖ǫk
3‖2 in

(5.52). Indeed, zk = z(ξk; αk, xk) is a function of the sample ξk so that ǫk
3 =

ǫ̂(ξk, zk) is not a martingale. In order to bound it, we will use Theorem 12. We

are now ready to obtain the following result.

Proposition 11 (Bound on oracle error). Consider Assumptions 1, 2 and 21.

Recall definitions in (5.1), (5.52), Lemma 15 and Theorem 12. Then there exist

positive constants Cp and Cp (depending only on d, p, L(ξ)α̂ and {Nk}) such that,

for all x∗ ∈ X∗,

|∆Ak|Fk| p
2

≤
Cp [α̂σap(x∗)]2 + Cp

(
α̂L̃p

)2
D2

k

Nk
.

In above, for X compact, we have a = 1, L̃p := (CpLp) ∨ L∗
p and Dk :≡ diam(X).

For a general X, we have a = 2, L̃p := L2p and Dk := ‖xk − x∗‖.

Proof of Proposition 11. First, we obtain a bound on ‖zk − x∗‖. Recall that zk =

Π[xk − αk(T (xk) + ǫk
1)], x∗ = Π[x∗ − αkT (x∗)] (Lemma 1(iv)), ǫk

1 = ǫ̂(ξk, xk) and

xk ∈ Fk. From these facts, Lemma 1(ii) and Lipschitz continuity of T , we obtain

(5.65)
∣∣∣‖zk − x∗‖|Fk

∣∣∣
p

≤ (1 + Lα̂)‖xk − x∗‖ + α̂
∣∣∣‖ǫk

1‖|Fk

∣∣∣
p
.

Lemma 15 with q = p, (5.46) and the facts that xk ∈ Fk and ξk ⊥⊥ Fk imply that

(5.66)
∣∣∣‖ǫk

1‖|Fk

∣∣∣
p

≤ Cp
σp(x∗) + Lp‖xk − x∗‖√

Nk

.

Lemma 15 with q = p, (5.46) and the facts that zk ∈ F̂k, ηk ⊥⊥ F̂k and∣∣∣∣
∣∣∣·|F̂k

∣∣∣
p
|Fk

∣∣∣∣
p

= |·|Fk|p imply that

(5.67)
∣∣∣‖ǫk

2‖|Fk

∣∣∣
p

=

∣∣∣∣
∣∣∣‖ǫk

2‖
∣∣∣F̂k

∣∣∣
p

∣∣∣∣Fk

∣∣∣∣
p

≤ Cp

σp(x∗) + Lp

∣∣∣‖zk − x∗‖|Fk

∣∣∣
p√

Nk

.
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Finally, Theorem 12(i), (5.46), Assumption 21, 0 < αk ≤ α̂ ≤ 1 and the facts

that zk = z(ξk; αk, xk), xk ∈ Fk and ξk ⊥⊥ Fk imply that

(5.68)
∣∣∣‖ǫk

3‖|Fk

∣∣∣
p

=
∣∣∣
∥∥∥ǫ̂
(
ξk, z(ξk; αk, xk)

)∥∥∥
∣∣∣Fk

∣∣∣
p

≤ c1σ2p(x∗) + L2p‖xk − x∗‖√
Nk

.

The required claim is proved by putting together relations (5.52), (5.65)-(5.68)

and using the facts that |a2|Fk|p
2

= |a|Fk|2p, (a + b)2 ≤ 2a2 + 2b2, L2p > LpCp,

c1 > Cp (as defined in Assumption 1, Lemma 15, Theorem 12 and Remark 9) and

σ2p(x∗) ≥ σp(x∗). The proof for the case X is compact is analogous but replacing

(5.65) by the facts that ‖xk − x∗‖ ≤ diam(X) and ‖zk − x∗‖ ≤ diam(X) and

replacing (5.68) by the bound of Theorem 12(ii).

Remark 12 (Constants of Proposition 11). Recall definitions in Assumption 1,

Algorithm 5, Lemma 15, Theorem 12 and Remark 9. Let Gp := supk
CpLpα̂√

Nk
. The

constants in Proposition 11 are given, for a general X, by

Cp := 2c2
1

[
8 (1 + Gp)2 + 9 − 8λ2

]
, Cp := 2

[
8 (1 + Lα̂ + Gp)2 + 9 − 8λ2

]
.

For a compact X, the constants are Cp := (34 − 16λ2)C2
p and Cp := 34 − 16λ2.

5.2.3 Asymptotic convergence, convergence rate and ora-

cle complexity

In this section, we establish the asymptotic convergence of Algorithm 5 and give

bounds on its iteration and oracle complexities. In the following, we set p = 2 (see

Remark 15 for the interest in p > 2).

Proposition 12 (Stochastic quasi-Fejér property). Consider Assumptions 1 and

2-21 and definitions in Proposition 11 with p = 2. Set ν := (1−8λ2)[(λθ)∧α̂]2

2|L(ξ)|22
and

C0 := 64λ2 + 64α̂2
E[L(ξ)2]. The sequence generated by Algorithm 5 satisfies, for all

x∗ ∈ X∗ and k ∈ N0,

E

[
‖xk+1 − x∗‖2|Fk

]
≤ ‖xk − x∗‖2 − νr2(xk) +

C2 [α̂σ2a(x
∗)]2 + C2(α̂L̃2)

2D2
k

Nk

+ C0δ
2
k.

Proof. We first show that {∆Mk(x∗), Fk} defines a martingale difference even if

αk /∈ Fk. Indeed, the facts that zk ∈ F̂k and ηk ⊥⊥ F̂k imply that E[ǫk
2|F̂k] =
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0, where ǫk
2 is defined in (5.46). This fact, zk ∈ F̂k and αk ∈ F̂k imply that

E[∆Mk(x∗)|F̂k] = 0 and, hence, E[∆Mk(x∗)|Fk] = E[E[∆Mk(x∗)|F̂k]|Fk] = 0 as

claimed.

From definition (5.54), αk ≤ α̂ and the fact that (
∑2

i=1 ai)
2 ≤ 2

∑2
i=1 a2

i , it

follows that ∆Pk ≤ 32(2λ2 + 2α̂2L̂(ξk)2)δ2
k. This fact and E[L̂(ξk)2|Fk] = E[L(ξ)2]

imply that E[∆Pk|Fk] ≤ C0δ2
k.

After we take E[·|Fk] in Lemma 18, the recursion follows from the facts that

{∆Mk(x∗), Fk} is a martingale difference and E[∆Pk|Fk] ≤ C0δ2
k, the facts that

E

[
α2

k

∣∣∣Fk

]
≥ [(λθ)∧α̂]2

|L(ξ)|22
(Lemma 17) and xk ∈ Fk and Proposition 11 with p = 2.

Theorem 1 (Asymptotic convergence). Consider Assumptions 1 and 2-21. Sup-

pose that
∑

k δ2
k < ∞. Then Algorithm 5 generates an infinite sequence {xk} such

that a.s. it is bounded, limk→∞ d(xk, X∗) = 0, and r(xk) → 0 a.s. and in L2. In

particular, a.s. every cluster point of {xk} belongs to X∗.

Proof. Take some x∗ ∈ X∗. Taking into account
∑

k N−1
k < ∞ and

∑
k δ2

k < ∞,

Proposition 12 for a general X (a := 2) and the fact that xk ∈ Fk, we ap-

ply Theorem 1 with yk := ‖xk − x∗‖2, ak := C2(α̂L4)2

Nk
, bk := C2[α̂σ4(x∗)]2

Nk
+ C0δ2

k

and uk := νr2(xk), in order to conclude that a.s. {‖xk − x∗‖2} converges and
∑∞

k=0 r2(xk) < ∞. In particular, a.s. {xk} is bounded and 0 = limk→∞ r2(xk) =

limk→∞
∥∥∥xk − Π

[
xk − T (xk)

]∥∥∥
2

. This fact and the continuity of T (Lemma 1)

and Π (Lemma 1(ii)) imply that a.s. every cluster point x̄ of {xk} satisfies

0 = x̄ − Π [x̄ − T (x̄)] . From Lemma 1(iv), we conclude that x̄ ∈ X∗. On an

event of probability 1, the boundedness of {xk} and the fact that every cluster

point of {xk} belongs to X∗ imply that limk→∞ d(xk, X∗) = 0. The fact that

limk→∞ E[r2(xk)] = 0 is proved in a similar way, taking expectation in the recur-

sion of Proposition 12.

Under lack of boundedness of X or σ2(·) we cannot infer a priori the bounded-

ness of the sequence
{∣∣∣‖xk‖

∣∣∣
2

}
. This is obtained next and later used to obtain an

iteration complexity and oracle complexity in terms of local parameters.

Proposition 13 (L2-boundedness of the iterates: unbounded case). Let Assump-

tions 1 and 2-21 hold and suppose that
∑

k δ2
k < ∞. Recall definitions in Algorithm

5, (5.1), Theorem 12 and Propositions 11-12 with p = 2. Let x∗ ∈ X∗ and choose
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k0 := k0(C2, α̂L4, C0) ∈ N and φ ∈ (0, 1) such that

(5.69)
∞∑

i=k0

1

Ni
≤ φ

C2

(
α̂L4

)2 and
∞∑

i=k0

δ2
i ≤ 1

C0
.

Then supk≥k0

∣∣∣‖xk − x∗‖
∣∣∣
2

2
≤

|‖xk0−x∗‖|2

2
+

φC2σ4(x∗)2

C2L
2
4

+1

1−φ
.

Proof. In the following, we set di := ‖xi − x∗‖2 for i ∈ N0. Let k > k0 in N0

with k0 as stated in (5.69). Note that such k0 always exists since
∑

k N−1
k <

∞ by Assumption 21. Consider the recursion of Proposition 12 for the case X

is unbounded (a := 2). We take expectation, use E[E[·|Fi]] = E[·] and drop

the negative term in the right hand side. We then sum recursively the obtained

inequality from i := k0 to i := k − 1, obtaining

(5.70) |dk|22 ≤ |dk0|22 + C2

(
α̂L4

)2
k−1∑

i=k0

|di|22
Ni

+ C2 [α̂σ4(x
∗)]2

k−1∑

i=k0

1

Ni
+ C0

k−1∑

i=k0

δ2
i .

For any a > 0, we define the stopping time τa := inf{k ≥ k0 : |dk|2 > a}. From

(5.69)-(5.70) and definition of τa, we have that, for any a > 0 such that τa < ∞,

a2 < |dτa
|22 ≤ |dk0|22 + C2

(
α̂L4

)2
τa−1∑

i=k0

|di|22
Ni

+ C2 [α̂σ4(x
∗)]2

τa−1∑

i=k0

1

Ni
+ C0

τa−1∑

i=k0

δ2
i

≤ |dk0|22 + φa2 +
φC2σ4(x∗)2

C2L
2
4

+ 1,

and hence, a2 <
|dk0|2

2
+

φC2σ4(x∗)2

C2L
2
4

+1

1−φ
=: B, where we used that φ ∈ (0, 1). By

definition of τa for any a > 0, the argument above implies that any threshold a2

which the sequence {|dk|22}k≥k0 eventually exceeds is bounded above by B. Hence

{|dk|22}k≥k0 is bounded and it satisfies the statement of the proposition.

Theorem 18 (Rate of convergence). Consider Assumptions 1 and 2-21. Take any

positive sequence {δk} such that ∆ :=
∑

k δ2
k < ∞. Recall definitions in Algorithm

5, (5.1) and Propositions 11-12 with p = 2. Set

(5.71) Nk := N
⌈
(k + µ)(ln(k + µ))1+b

⌉
,

for any N ∈ N, b > 0 and µ > 2. Then Theorem 1 holds and the sequence {xk}
generated by Algorithm 5 is bounded in L2. Moreover, for any x∗ ∈ X∗, if J > 0 is
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such that supk≥0

∣∣∣‖xk − x∗‖
∣∣∣
2

2
≤ J, the following bound holds for all k ∈ N0:

min
i∈{0,...,k}

E[r2(xi)] ≤ ν−1

k + 1





‖x0 − x∗‖2 +
C2[α̂σ2a(x

∗)]2 + C2

(
α̂L̃2

)2
J

Nb[ln(µ − 1)]b
+ C0∆





.

Proof. Clearly, {Nk} satisfies Assumption 21 and
∑

k δ2
k < ∞. Hence, Theorem 1

and Proposition 13 hold. In particular, {xk} is bounded in L2. Let x∗ ∈ X∗ and J

as stated in the theorem. Hence, supk E[D2
k] ≤ J. In the recursion of Proposition

12, we take expectation, use E[E[·|Fi]] = E[·] and sum recursively the obtained

inequality from i := 0 to i := k. We then obtain

ν
k∑

i=0

E

[
r2(xi)

]
≤ ‖x0 − x∗‖2 +

{
C2[α̂σ2a(x

∗)]2 + C2

(
α̂L̃2

)2
J
}

Sk + C0∆,

where Sk :=
∑k

i=0 N−1
i . The proof of the statement follows from the above inequal-

ity, the bound

Sk ≤
∞∑

i=0

1

Ni
≤
∫ ∞

−1

d t

N(t + µ)[ln(t + µ)]1+b
=

1

Nb[ln(µ − 1)]b
,

and mini∈{0,...,k} E [r2(xi)] ≤ 1
k+1

∑k
i=0 E [r2(xi)].

We end this section with an estimate on the iteration and oracle complexities.

Unlike SA methods with endogenous stepsizes, the number of oracle calls in Al-

gorithm 5 is a random variable. In order to compute the first operator step (5.7)

of iteration k, the oracle is called ℓkNk times using a sampled-based line search

(which terminates in ℓk random iterations).6 For the second operator step (5.8)

of iteration k, the oracle is called Nk times. We thus present two types of oracle

complexities for which mini∈{0,...,K} E[r2(xi)] ≤ ǫ after Algorithm 5 is run K times.

The first is an upper bound of
∑K

i=0(1 + ℓi)Ni with probability 1. This bound

will depend on the logarithm of the largest empirical mean Lipschitz constant of

previous iterations. The second result is an upper bound on the mean oracle com-

plexity
∑K

i=0(1+E[ℓi])Ni. This will depend on the logarithm of the mean Lipschitz

constant L.

6During one step of the line search testing a stepsize α, we count all Nk oracle calls

{F (ξk
j , zk(α))}Nk

j=1 used to compute step (5.5). In all such ℓk steps, the same sample ξk = {ξk
j }Nk

j=1

is used.
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Corollary 5 (Iteration and oracle complexities). Let the assumptions of Theorem

18 hold and set N := O(d). Given ǫ > 0, Algorithm 5 achieves the tolerance

min
i∈{0,...,K}

E[r2(xi)] ≤ ǫ,(5.72)

after K = b−1O(ǫ−1) iterations.

Additionally, with probability 1, (5.72) is ensured with an oracle complexity
∑K

i=0(1 + ℓi)Ni upper bounded by

b−2 · log 1
θ

(
α̂ maxi∈{0,...,K} L̂(ξi)

(λθ) ∧ α̂

)
·
[
ln
(
b−1ǫ−1

)]1+b · O(dǫ−2),

where ℓk is the number of oracle calls used in the line search scheme (5.5) at

iteration k and L̂(ξk) = 1
Nk

∑Nk
j=1 L(ξi

j).

Moreover, (5.72) is ensured with a mean oracle complexity
∑K

i=0(1 + E[ℓi])Ni

upper bounded by

b−2 · log 1
θ

(
α̂L

(λθ) ∧ α̂

)
·
[
ln
(
b−1ǫ−1

)]1+b · O(dǫ−2).

Proof. We recall the definitions in Assumption 1, Lemma 15, Theorem 12, Remark

9, Propositions 11 and 12 and Remark 12 with p = 2. The definitions of L̃2, L4,

L∗
2, c2 and d2 (which depend on d) and Theorem 18 imply that, up to a constant

B > 0, for every k ∈ N, mini∈{0,...,k} E[r(xi)2] ≤ Bd(Nbk)−1. Hence, given ǫ > 0,

we obtain mini∈{0,...,K} E[r2(xi)] ≤ ǫ after K = O(dN−1b−1ǫ−1) iterations.

The total number of oracle calls after K iterations is upper bounded by

K∑

i=0

(1 + ℓi)Ni .

(
max

i∈{0,...,K}
ℓi

)
K∑

i=1

Ni(ln i)1+b .

(
max

i∈{0,...,K}
ℓi

)
NK2(ln K)1+b

.

(
max

i∈{0,...,K}
ℓi

)
N−1d2b−2ǫ−2

[
ln
(
dN−1b−1ǫ−1

)]1+b
.(5.73)

Moreover, Lemma 17 implies that ℓk ≤ log 1
θ

(
α̂L̂(ξk)
(λθ)∧α̂

)
. This fact, (5.73) and N =

O(d) imply the claimed bound on
∑K

i=0(1 + ℓi)Ni.

The concavity of t 7→ log 1
θ

t and Jensen’s inequality imply

E[ℓk] ≤ E

[
log 1

θ

(
α̂L̂(ξk)

(λθ) ∧ α̂

)]
≤ log 1

θ

(
α̂L

(λθ) ∧ α̂

)
,
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where we used that E[L̂(ξk)] = L by definitions of L̂(ξk) and L and Assumption 21.

We take expectation in (5.73), use the above relation and the fact that N := O(d).

This implies the claimed bound on
∑K

i=0(1 + E[ℓi])Ni.

Remark 13 (Linear memory budget per operation). The policy in Corollary 5

requires the computation of a sum of size Nk ∼ dk (up to logs) of d-dimensional

vectors at iteration k of the Algorithm 5. For large d, such computation is still

cheap in terms of memory budget per operation: it can be computed in parallel or

serially in k steps, each one requiring memory of O(d) per operation.

Remark 14. Recall the constant definitions in Assumption 1, Lemma 15, Theorem

12, Remark 9 and Remark 12 with p = 2. Recall also the definition of C0 in

Proposition 12. By Proposition 13 (X unbounded), the constant J in Theorem 18

satisfies

(5.74)

J ≤
maxk∈{0,...,k0}

∣∣∣‖xk − x∗‖
∣∣∣
2

2
+ φC2σ4(x∗)2

C2L
2
4

+ 1

1 − φ
. max

k∈{0,...,k0}

∣∣∣‖xk − x∗‖
∣∣∣
2

2
+

σ4(x∗)2

|L(ξ)|24
.

Moreover, if we choose the sequence {δk} in Algorithm 5 such that, for some ∆0 >

0,

δk :=
∆0

(k + µ)1/2(ln(k + µ))
1+b

2

,

then, from (5.69) and (5.71), k0 in (5.74) can be estimated by

(5.75) k0 :=




exp





b

√√√√√C2

(
α̂L4

)2

φbN





− µ + 1




∨


exp





b

√
C0∆2

0

b



− µ + 1




.

Remark 15 (Boundedness in Lp). Adapting the proofs of Propositions 11 and

13, it is possible to prove, in case X is unbounded, that the sequence {xk} is

Lp-bounded for any given p ≥ 4 satisfying Assumption 1. This is a significant

statistical stability property. The proof exploits that ∆Mk(x∗) in (5.53) is still a

martingale difference even if ǫk
3 in (5.46) is not.
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5.3 Analysis of Algorithm 6 for Hölder continu-

ous operators

With respect to Algorithm 6, we will set yk := xk − γkF̂ (ξk, zk) and study the

stochastic process {xk} with respect to the filtration

Fk = σ(x0, ξ0, . . . , ξk−1).

We will replace Assumption 21 by the following one.

Assumption 22 (I.I.D. sampling). In Algorithm 6, the sequence {ξk
j : k ∈ N0, j ∈

[Nk]} is an i.i.d. sample drawn from P and
∑∞

k=0 N
− 1

2
k < ∞.

We also define the oracle errors:

ǭk
1 := F̂ (ξk, xk) − T (xk),(5.76)

ǭk
2 := F̂ (ξk, zk) − T (zk),(5.77)

ǭk
3 := F̂ (ξk, ẑk) − T (zk),(5.78)

where ẑk := z̄k(θ−1αk) (see line search (5.12) for the definition of z̄k(α)). We

remark that ǫk
2 and ǫk

3 are correlated errors in the sense that zk and ẑk are dependent

on ξk. In the setting of Theorem 12, this means that zk = zβk
(ξk; αk, xk) and

ẑk = zβk
(ξk; θ−1αk, xk). We start by showing the line search (5.12) in Algorithm 6

is well defined.

Lemma 19 (Good definition of the line search). Consider Assumption 1. Then

i) The line search (5.12) in Algorithm 6 terminates after a finite number of

iterations.

ii) If Algorithm 6 does not stop at iteration k +1, then
〈
F̂ (ξk, zk), xk − zk

〉
> 0.

In particular, γk > 0 in (5.14).

Proof. Item (ii) is a direct consequence of (i). We prove next item (i). Assume by

contradiction that for every ℓ ∈ N0,

〈
βkF̂

(
ξk, zk

(
θ−ℓα̂

))
, xk − Π(gk)

〉
< λ‖xk − Π(gk)‖2.
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We let ℓ → ∞ above and by continuity of F̂ (ξk, ·), resulting from Assumption 1,

we obtain

λ‖xk − Π(gk)‖2 ≥ 〈xk − gk, xk − Π(gk)〉 ≥ ‖xk − Π(gk)‖2,

using Lemma 1(v) in the last inequality. Since we have xk 6= Π(gk) by the definition

of the method, we obtain that λ ≥ 1, a contradiction.

The following Lemma is also proved in the Appendix.

Lemma 20. Consider Assumptions 2-20 and (5.77). Suppose that Algorithm 6

does not stop at iteration k + 1. Then, for all x∗ ∈ X∗,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖yk − xk‖2 + 2γk〈ǭk
2, x∗ − zk〉.

We now aim at controlling the error term γk〈ǭk
2, x − zk〉. This term is not a

martingale difference, since zk depends on ξk. We shall need the following lemma.

Lemma 21. Suppose that Algorithm 6 does not stop at iteration k + 1. Then

(5.79) 0 < γk <
αkβk

λ
≤ α̂βk

λ
.

Proof. We only need to prove the second inequality. The line search (5.12) and

the fact that xk − zk = αk(xk − Π(gk)) imply that

(5.80) 〈F̂ (ξk, zk), xk − zk〉 ≥ λ

αkβk
‖xk − zk‖2.

From (5.80) and the definition of γk we get

γk =
〈F̂ (ξk, zk), xk − zk〉

‖F̂ (ξk, zk)‖2
>

λ

αkβk

‖xk − zk‖2

‖F̂ (ξk, zk)‖2
,(5.81)

while the definition of γk gives

γk =
〈F̂ (ξk, zk), xk − zk〉

‖F̂ (ξk, zk)‖2
≤ ‖F̂ (ξk, zk)‖‖xk − zk‖

‖F̂ (ξk, zk)‖2
=

‖xk − zk‖
‖F̂ (ξk, zk)‖

,(5.82)

using the Cauchy-Schwartz inequality. Inequalities (5.81)-(5.82) imply the claim.
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Lemma 22 (Error decay). Consider Assumptions 1, 2 and 22 and (5.77). Suppose

that Algorithm 6 does not stop at iteration k + 1. Then, for all x∗ ∈ X∗,

∣∣∣γk〈ǭk
2, x∗ − zk〉

∣∣∣Fk

∣∣∣
p
2

.
1 + ‖xk − x∗‖2

√
Nk

.

Proof. We denote z̃k := Π(gk), so that

x∗ − zk = αk(x∗ − z̃k) + (1 − αk)(x∗ − xk),(5.83)

using the fact that x∗ = αkx∗ + (1 − αk)x∗. In view of (5.83), we have

γk〈ǭk
2, x∗ − zk〉 = γkαk〈ǭk

2, x∗ − z̃k〉 + γk(1 − αk)〈ǭk
2, x∗ − xk〉

≤ β̃

λ
‖ǭk

2‖
(
‖x∗ − z̃k‖ + ‖x∗ − xk‖

)
,(5.84)

using the Cauchy-Schwarz inequality, Lemma 21, and the facts that 0 < αk ≤ α̂ ≤
1 and 0 < βk ≤ β̃.

Since x∗ ∈ X∗, by Lemma 1(iv), we use the fact that x∗ = Π[x∗ −βkT (x∗)] and

the definitions of z̃k, gk and ǭk
1 in order to obtain

‖z̃k − x∗‖ = ‖Π[xk − βk(T (xk) + ǭk
1)] − Π[x∗ − βkT (x∗)]‖

≤ ‖xk − x∗ + βk(T (x∗) − T (xk)) − βkǭk
1‖

≤ ‖xk − x∗‖ + β̃L‖xk − x∗‖δ + β̃‖ǭk
1‖,(5.85)

using Lemma 1(iii) in the first inequality, and the fact that 0 < βk ≤ β̃ together

with Lemma 1 in the last inequality.

Using (5.84)-(5.85) and the fact that ‖xk −x∗‖δ ≤ 1+‖xk −x∗‖, we take |·|Fk| p

2

and get

∣∣∣γk〈ǭk
2, x∗ − zk〉

∣∣∣Fk

∣∣∣ p

2

≤
[
β̃L + (2 + β̃L)‖xk − x∗‖

] β̃

λ

∣∣∣‖ǭk
2‖
∣∣∣Fk

∣∣∣p

2

+
β̃2

λ

∣∣∣‖ǭk
1‖‖ǭk

2‖
∣∣∣Fk

∣∣∣p

2

,

(5.86)

using the fact that xk ∈ Fk. By Lemma 15 with q = p and the facts that xk ∈ Fk

and ξk ⊥⊥ Fk, we get

(5.87)
∣∣∣‖ǭk

1‖
∣∣∣Fk

∣∣∣
p

≤ Cp
σp(x∗) + Lp + Lp‖xk − x∗‖√

Nk

,
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where we used the fact that ‖xk − x∗‖δ ≤ 1 + ‖xk − x∗‖. By Theorem 12, (5.77)

and the facts that zk = zβk
(ξk; αk, xk), xk ∈ Fk and αk ∈ (0, 1], we get

(5.88)
∣∣∣‖ǭk

2‖
∣∣∣Fk

∣∣∣
p
2

≤
∣∣∣‖ǭk

2‖
∣∣∣Fk

∣∣∣
p
.

σ2p(x∗) + ‖xk − x∗‖√
Nk

,

where we used the fact that δ ∨ ‖xk − x∗‖δ ≤ 1 + ‖xk − x∗‖. Invoking Hölder’s

inequality, we also get

(5.89)
∣∣∣‖ǭk

1‖‖ǭk
2‖
∣∣∣Fk

∣∣∣
p
2

≤
∣∣∣‖ǫk

1‖
∣∣∣Fk

∣∣∣
p

·
∣∣∣‖ǫk

2‖
∣∣∣Fk

∣∣∣
p
.

Relations (5.86)-(5.89) prove the claim.

Proposition 14 (Stochastic quasi-Fejér property). Consider Assumptions 1, 2-20

and 22. Assume that Algorithm 6 generates an infinite sequence {xk}. Then

(i) For all x∗ ∈ X∗, there exists c(x∗) ≥ 1 such that, for all k ∈ N,

E

[
‖xk+1 − x∗‖2

∣∣∣Fk

]
≤ ‖xk − x∗‖2 − E

[
‖yk − xk‖2

∣∣∣Fk

]
+ c(x∗)

1 + ‖xk − x∗‖2

√
Nk

.

(ii) A.s. {‖xk − x∗‖} and {d(xk, X∗)} converge for all x∗ ∈ X∗. In particular,

{xk} is a.s.-bounded.

(iii) A.s. if a cluster point of {xk} belongs to X∗ then limk→∞ d(xk, X∗) = 0.

Proof. i) It is an immediate consequence of Lemmas 20, 22 and the fact that

xk ∈ Fk, after taking E[·|Fk] in Lemma 20.

ii) Set ck(x∗) := c(x∗)√
Nk

. From (i), for all k ∈ N0,

(5.90) E

[
‖xk+1 − x∗‖2

∣∣∣Fk

]
≤ [1 + ck(x∗)] ‖xk − x∗‖2 + ck(x∗).

By Assumption 22, we have
∑

k ck(x∗) < ∞. Hence, from (5.90) and Theorem 1

we conclude that a.s. {‖xk − x∗‖} converges and, in particular, {xk} is bounded.

Set x̄k := ΠX∗(xk). Relation (5.90) and the fact that xk ∈ Fk imply

(5.91) E

[
d(xk+1, X∗)2

∣∣∣Fk

]
≤
[
1 + ck(x̄k)

]
d(xk, X∗)2 + ck(x̄k).

The boundedness of {x̄k} and Assumption 22 imply that a.s.
∑

k ck(x̄k) < ∞.

Hence, Theorem 1 and (5.91) imply that {d(xk, X∗)} a.s.-converges.
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iii) Suppose that a.s. there exists x̄ ∈ X∗ and a subsequence {kℓ} such that

limℓ→∞ ‖xkℓ − x̄‖ = 0. Clearly, d(xkℓ , X∗) ≤ ‖xkℓ − x̄‖ a.s., and therefore it

follows that limℓ→∞ d(xkℓ , X∗) = 0. By (ii), {d(xk, X∗)} a.s.-converges and hence

limk→∞ d(xk, X∗) = 0.

We now prove asymptotic convergence of Algorithm 6.

Theorem 19 (Asymptotic convergence). Under Assumptions 1, 2-20 and 22,

either Algorithm 6 stops at iteration k + 1, in which case xk is a solution of

VI(T, X), or it generates an infinite sequence {xk} that a.s. is bounded and such

that limk→∞ d(xk, X∗) = 0. In particular, a.s. every cluster point of {xk} belongs

to X∗.

Proof. If Algorithm 6 stops at iteration k, then xk = Π[xk − βkF̂ (ξk, xk)]. From

this fact and Lemma 1(iv) we have

(5.92) 〈F̂ (ξk, xk), x − xk〉 ≥ 0, ∀x ∈ X.

From Assumption 22, (1.2) and the facts that xk ∈ Fk and ξk ⊥⊥ Fk, we get

E[F̂ (ξk, xk)|Fk] = T (xk). Using this equality and the fact that xk ∈ Fk, we take

E[·|Fk] in (5.92) and obtain 〈T (xk), x − xk〉 ≥ 0, for all x ∈ X. Hence xk ∈ X∗.

We now suppose that the sequence {xk} is infinite. By Proposition 14(iii), it is

sufficient to show that a.s. the bounded sequence {xk} has a cluster point in X∗.

Choose any x∗ ∈ X∗. As in Proposition 14, set ck(x∗) := c(x∗)√
Nk

. Using the property

that E[E[·|Fk]] = E[·], we take the expectation in Proposition 14(i), and get, for

all k ∈ N0,

(5.93) E

[
‖xk+1−x∗‖2

∣∣∣Fk

]
≤ [1 + ck(x∗)]E

[
‖xk − x∗‖2

]
−E

[
‖yk − xk‖2

]
+ck(x∗).

From the fact that
∑

k ck(x∗) < ∞ (Assumption 22), (5.93) and Theorem 1 we

conclude that

(5.94)
∞∑

k=0

E

[
‖yk − xk‖2

]
< ∞,

and that
{
E

[
‖xk − x∗‖2

]}
converges. In particular,

{
E

[
‖xk − x∗‖2

]}
is a bounded

sequence.
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By the definition of Algorithm 6, we have that ‖yk − xk‖2 = 〈T (zk) + ǭk
2, xk −

zk〉2‖T (zk) + ǭk
2‖−2. Hence, from (5.94) we get

(5.95) lim
k→∞

E


〈T (zk) + ǭk

2, xk − zk〉2

‖T (zk) + ǭk
2‖2


 = 0.

From the definitions of {ǭk
1, ǭk

2, ǭk
3} in (5.76)-(5.78), Lemma 15 with q = p = 2,

Theorem 12(i) and the facts that zk = zβk
(ξk; αk, xk) and ẑk = zβk

(ξk; θ−1αk, xk),

the property that E[E[·|Fk]] = E[·] and the boundedness of
{
E

[
‖xk − x∗‖2

]}
, we

get

E

[
‖ǭk

s‖2
]
.

supk∈N0
E

[
‖xk − x∗‖2

]
+ 1

Nk
,

for s ∈ {1, 2, 3} and all k ∈ N0. Since limk→∞ N−1
k = 0 (Assumption 22), we have

in particular that, for s ∈ {1, 2, 3},

(5.96) lim
k→∞

E[‖ǭk
s‖2] = 0.

Since L2-convergence implies a.s.-convergence along a subsequence, from (5.95)-

(5.96), we may take a (deterministic) subsequence {kℓ}∞
ℓ=1 such that a.s. for s ∈

{1, 2, 3},

lim
ℓ→∞

αkℓ
〈T (zkℓ) + ǭkℓ

2 , xkℓ − Π(gkℓ)〉
‖T (zkℓ) + ǭkℓ

2 ‖
= 0,(5.97)

lim
ℓ→∞

ǭkℓ
s = 0,(5.98)

using the fact that xk − zk = αk[xk − Π(gk)]. Since βk ∈ [β̂, β̃] with β̂ > 0, we may

refine {kℓ} if necessary so that, for some β > 0,

(5.99) lim
ℓ→∞

βkℓ
= β.

From Proposition 14(ii), the a.s.-boundedness of the sequence {xkℓ} implies

that, on a set Ω1 of total probability, there exists a (random) subsequence N ⊂
{kℓ}∞

ℓ=1 such that

(5.100) lim
k∈N

xk = x∗,

for some (random) x∗ ∈ R
d. Using the fact that gk = xk − βk[T (xk) + ǭk

1], (5.98)-

(5.100) and the continuity of T and Π, for the event Ω1, we have

(5.101) g∗ := lim
k∈N

gk = x∗ − βT (x∗).
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Also, for the event Ω1, from the definition of zk in (5.13), the fact that αk ∈ (0, 1],

(5.98) and (5.100)-(5.101), we get that {T (zk) + ǭk
2}k∈N is bounded so that, since

(5.97), we obtain

(5.102) lim
k∈N

αk〈T (zk) + ǭk
2, xk − Π(gk)〉 = 0.

We now consider two cases for the event Ω1.

Case (i): limk∈N αk 6= 0. In this case, we may refine N if necessary, and find

some (random) ᾱ > 0 such that αk ≥ ᾱ for all k ∈ N. It follows from (5.102) that

on Ω1,

(5.103) lim
k∈N

〈T (zk) + ǭk
2, xk − Π(gk)〉 = 0.

From (5.12)-(5.13), we get

(5.104) 〈T (zk) + ǭk
2, xk − Π(gk)〉 ≥ λ

βk
‖xk − Π(gk)‖2 ≥ λ

β̃
‖xk − Π(gk)‖2

for all k. Relations (5.103)-(5.104) imply that, on Ω1,

(5.105) 0 = lim
k∈N

‖xk − Π(gk)‖.

From (5.100)-(5.101), we take limits in (5.105) and obtain, by continuity of Π,

0 = ‖x∗ − Π[x∗ − βT (x∗)]‖.

Therefore, x∗ = Π[x∗ − βT (x∗)], so that x∗ ∈ X∗ by Lemma 1(iv).

Case (ii): limk∈N αk = 0. In this case we have

(5.106) lim
k∈N

θ−1αk = 0.

Since ẑk := θ−1αkΠ(gk) + (1 − θ−1αk)xk and {gk}k∈N is bounded, we get from

(5.100) and (5.106) that

(5.107) lim
k∈N

ẑk = x∗.

Observe that, by the definition of the line search rule (5.12) and (5.78), we have

(5.108) 〈T (ẑk) + ǭk
3, xk − Π(gk)〉 <

λ

βk

‖xk − Π(gk)‖2,
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for all k ∈ N0. We take limit in (5.108) along N, and we get, using the continuity

of T and Π and relations (5.98)-(5.101) and (5.107) that

(5.109) 〈T (x∗), x∗ − Π(g∗)〉 ≤ λ

β
‖x∗ − Π(g∗)‖2.

Since the sequence {xk} is feasible and X is closed, the limit point x∗ belongs to

X. Thus, from (5.109) and Lemma 1(v), we get that, on Ω1,

(5.110)

λ‖x∗ − Π(g∗)‖2 ≥ β〈T (x∗), x∗ − Π(g∗)〉 = 〈x∗ − g∗, x∗ − Π(g∗)〉 ≥ ‖x∗ − Π(g∗)‖2.

Since λ ∈ (0, 1), (5.110) implies that ‖x∗ − Π(g∗)‖ = 0. Hence, in view of (5.101),

we have x∗ = Π(x∗ − βT (x∗)). By Lemma 1(iv), we conclude that x∗ ∈ X∗.

We have proved that on the event Ω1 of total probability, both in case (i) and

in case (ii), {xk} has a cluster point which solves VI(T ,X). The claim follows from

Proposition 14(iii).

5.4 Discussion on the complexity constants of

Algorithm 5

Suppose the oracle is exact. In that case, Algorithm 5 would have essentially the

same rate estimates, up to universal constants and a factor of O(ln L) in the oracle

complexity, either if a line search scheme is used or a CSP is used with a known

Lipschitz constant (LC). The reason is that the Lipschitz continuity is only related

to the smoothness class of the operator. The situation is different when the oracle

is stochastic: the Lipschitz continuity also quantifies the spread of the oracle’s error

variance.7 Consequently, the lack of knowledge of the LC is much more demanding

in the stochastic case. It is instructive to compare the complexity constants when

the LC is known or not. In the following, we recall the rate of convergence of

Theorem 18 and the constants defined in Assumption 1, Theorem 12, Lemma 15,

Remarks 9 and 12 and Proposition 11 with p = 2.

7This is true either for the martingale difference errors {ǫk
i }i=1,2 or the correlated error ǫk

3

in (5.46). The Lipschitz continuity in the analysis of ǫk
3 is crucial in our chaining and self-

normalization arguments of Lemmas 13 and 14.
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Suppose first the LC is known. This was already considered in Chapter 4

under a more general condition than Assumption 1. However, it leads to weaker

complexity constants as argued in the following.8 It is possible to show that if the

stronger but fairly general condition of Lemma 1 holds and α̂ = O( 1
L2

), then the

rate statement of Theorem 18 and the estimates (5.74)-(5.75) are valid when we

replace σ4(x
∗) by σ2(x∗), L4 by L2 and9 the coefficient (1−6λ2)[(λθ)∧α̂] by a term

of order 1−O(1)(α̂L2)
2. Since α̂L2 . 1 we also have C2 . 1 and C2 . 1. Assuming

L2 is known, we obtain a property not satisfied by the estimates in Chapter 4: k0

in (5.75) is independent of the oracle’s error variances {σ2(x)2}x∈X over X and

there exist b, N and µ and policy α̂ = O( 1
L2

) such that k0 := 0. It is then possible

to obtain the rate

min
i=0,...,k

E

[
r(xi)2

]
.

L2
2‖x0 − x∗‖2 + σ2(x∗)2

k
,(5.111)

which depends only on the local variance σ2(x∗)2 and the initial iterate x0. This

can be seen as a variance localization property. We note that the above rate is

sharper than those obtained in Chapter 4.10

Consider now the more challenging regime when the LC is unknown. As ex-

pected, the constants in the rate of Theorem 18 are less sharp then the ones in

(5.111). First, (5.111) is not explicitly dependent on the dimension d. In terms of

dimension, the rate in Theorem 18 is of O( d
N

) and, thus, it is valid in the large

sample regime N := O(d). This is a manifestation of our need to treat correlated

errors when using a line search scheme. Such scheme is an inner statistical esti-

mator for the LC. Second, if we set M := (α̂|L(ξ)|4)2, then the constants in the

rate of Theorem 18 satisfy C2 . M

N
, C2 . M and (α̂L̃2)2J

N
. M2J, for a general11 X

and C2 . 1, C2 . 1 and (α̂L̃2)2J

N
. M diam(X)2, for a compact X. Observe that

a line search scheme can only estimate a lower bound for |L(ξ)|4. For a large α̂,

8Differently than Lemma 1, it allows the multiplicative noise to depend on the reference point

x∗ ∈ X∗.
9Up to universal constants, C2 and C2 are unchanged.

10In Chapter 4, given x∗ ∈ X∗, the rate is of the order of σ(x∗)4 · max0≤i≤k0(x∗) E[‖xi − x∗‖2],

where k0(x∗) ∈ N0 depends on σ(x∗).
11The given order of dependence on M for an unbounded X is an artifact of our proof tech-

niques. We believe a sharper dependence can be obtained via more sophisticated concentration

inequalities (instead of moment inequalities).
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the lack of an upper bound leads to a rate with larger constants when compared

to (5.111). This is a manifestation of our absence of information of the LC. Note

that robust methods are expected to have nonoptimal constants since the endoge-

nous parameters are unknown [60]. Third, note that (5.111) only depends on the

initial iterate x0. This is possible since k0 in (5.75) can be calibrated using the

knowledge of the LC. For an unknown LC and for an unbounded X, k0 depends

on M but it still independent of the oracle’s error moments {σ4(x)}x∈X over X.

Differently than (5.111), for a large α̂ (implying a larger value for M), the rate

in Theorem 18 will depend on D2
k0

(x∗) := maxk=0,...k0 E[‖xk − x∗‖2] for a possibly

large k0. Although not as sharp as (5.111), the resulted rate estimate for a large k0

is not a limiting issue. It is still in accordance to, and in fact generalize, previous

estimates which rely on compactness of X (see e.g. [60]): for a compact X, we

have maxk=0,...k0 E[‖xk − x∗‖2] ≤ diam(X)2.

Appendix

Proof of Lemma 1. By Jensen’s inequality and Assumption 1 we get

‖T (x) − T (x∗)‖ ≤ E [‖F (ξ, x) − F (ξ, x∗)‖] ≤ E[L(ξ)]‖x − y‖δ.

Using this fact and definition (5.1), we get

|‖ǫ(ξ, x)‖|q ≤ |‖F (ξ, x) − F (ξ, x∗)‖|q + |‖F (ξ, x∗) − T (x∗)‖|q + |‖T (x) − T (x∗)‖|q
≤

∣∣∣L(ξ)‖x − x∗‖δ
∣∣∣
q

+ |‖ǫ(ξ, x∗)‖|q + L‖x − x∗‖δ

= |‖ǫ(ξ, x∗)‖|q +
(
|L(ξ)|q + L

)
‖x − y‖δ,

where we used the triangle inequality for ‖ · ‖ and Minkowski’s inequality for |·|q.
The claim is proved from the above fact, (5.2) and Lq = |L(ξ)|q + L.

Proof of Lemma 20. By Lemma 19(ii), we have that γk > 0. Thus

‖xk+1 − x∗‖2 = ‖Π(yk) − x∗‖2

≤ ‖yk − x∗‖2 − ‖yk − Π(yk)‖2

≤ ‖yk − x∗‖2

= ‖(xk − x∗) − γk(T (zk) + ǭk
2)‖2

= ‖xk − x∗‖2 + γ2
k‖T (zk) + ǭk

2‖2 − 2γk〈T (zk) + ǭk
2 , xk − x∗〉,(5.112)
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using Lemma 1(ii) in the first inequality. Concerning the last term in the rightmost

expression of (5.112), we have

−2γk〈T (zk) + ǭk
2, xk − x∗〉 = −2γk〈T (zk) + ǭk

2, xk − zk〉 +

2γk〈T (zk), x∗ − zk〉 + 2γk〈ǭk
2, x∗ − zk〉

= −2γk(γk‖T (zk) + ǭk
2‖2)

+2γk〈T (zk), x∗ − zk〉 + 2γk〈ǭk
2, x∗ − zk〉

≤ −2γ2
k‖T (zk) + ǭk

2‖2 + 2γk〈ǭk
2, x∗ − zk〉,(5.113)

using the definition of γk in the second equality, and the facts that γk > 0 and

〈T (zk), x∗ − zk〉 ≤ 0 (which follows from the pseudo-monotonicity of T , and the

facts x∗ ∈ X∗, zk ∈ X) in the inequality. Combining (5.112)-(5.113) we get

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + γ2
k‖T (zk) + ǭk

2‖2 − 2γ2
k‖T (zk) + ǭk

2‖2 + 2γk〈ǭk
2, x∗ − zk〉

= ‖xk − x∗‖2 − γ2
k‖T (zk) + ǭk

2‖2 + 2γk〈ǭk
2, x∗ − zk〉

= ‖xk − x∗‖2 − ‖yk − xk‖2 + 2γk〈ǭk
2, x∗ − zk〉,(5.114)

using the fact that ‖yk − xk‖ = γk‖T (zk) + ǫk
2‖ (which follows from the definition

of γk), in the last equality.
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Chapter 6

Conclusions and open questions

This thesis proposes stochastic approximation methods for the solution of stochas-

tic variational inequalities, paying attention to asymptotic convergence (stability),

convergence rate, oracle complexity, knowledge of problem parameters, data avail-

ability and distributed solution. See Section 1.5 for the precise statements of our

contributions. We make some comments regarding possible interesting open ques-

tions.

In Chapter 3, we have proposed an incremental projection method for monotone

SVIs using regularization. Motivated by the results of Chapter 4 (which avoids

regularization by means of an extragradient method with a variance reduction

procedure), we would like to device, if possible, an incremental projection method

for plain monotone SVIs without regularization. By avoiding regularization, we

may be able to prove optimal convergence rates, which are not reported in Chapter

3.

Regarding Chapters 4 and 5, we would like to prove convergence rates and or-

acle complexity with exponentially high probability, refine the analysis for impor-

tant classes of VIs and support the results with a computational study of relevant

large-scale problems. Importantly, we would like to maintain the assumptions in

Chapters 4 and 5 of unboundedness of the feasible set and non-uniform variance

of the oracle (which were major improvements compared to previous works).

The variance reduction scheme in Chapter 4 accelerates the rate without com-

promising the oracle complexity. Interestingly, our variance reduction scheme is

robust. We would like to study a stochastic extragradient method for SVIs which
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combines our robust variance reduction scheme with robust stepsizes in the sense

of [60]. These features are very relevant in practice. Another important question

for large-scale problems (such as equilibrium problems over large networks) is the

devise of methods with optimal dependence on data dimension or diameter of the

feasible set. Thus, we would also like to include dimension-reduction techniques

in the mentioned proposals. Another relevant question in practice is the use of

inexact projections. We also would like to include this feature in our method. In

case of distributed solution of Cartesian variational inequalities, another interest-

ing question would be to explore the topology of the network in order to require

minimal coordination between agents as possible.
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