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Abstract

This thesis develops the theory of Riemannian geometry on singular spaces
(differentiable stacks) through the study of Riemannian groupoids and their
Morita-invariant properties. With this aim, we consider generalized curves
on Riemannian groupoids and define their normal length, relating it to the
natural notion of distance in the orbit space. We introduce the notion of
geodesic on Riemannian groupoids, verifying that it makes sense on the un-
derlying Riemannian stack. We establish several foundational results, such
as the existence and uniqueness of geodesics, a stacky Gauss Lemma, and a
stacky Hopf-Rinow theorem. Using the stacky Hopf-Rinow theorem, we in-
vestigate the relations between invariant linearization for Lie groupoids and
the existence of complete metrics.

Keywords: geodesics, linearization, stacks.
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Resumo

Esta tese desenvolve a teoria da geometria Riemanniana em espaços singu-
lares (stacks diferenciáveis) através do estudo de grupóides Riemannianos
e suas propriedades Morita-invariantes. Com este objetivo, consideramos
curvas generalizadas em grupóides Riemannianos e definimos seu compri-
mento normal, relacionando-o com a noção natural de distância no espaço
de órbitas. Introduzimos a noção de geodésica em grupóides Riemannianos,
verificando que esta noção descende para uma noção de geodésica nos stacks
Riemannianos. Estabelecemos resultados fundamentais, como a existência e
a unicidade de geodésicas, versões do Lema de Gauss e do teorema de Hopf-
Rinow para stacks. Utilizando o teorema de Hopf-Rinow, investigamos as
relações entre linearização invariante para grupóides de Lie e a existência de
métricas completas.

Palavras-chave: geodésicas, linearização, stacks.
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Introduction

This thesis develops the theory of Riemannian geometry on singular spaces
through the study of Riemannian groupoids and their Morita-invariant prop-
erties. In what follows we describe the main contributions of this thesis, based
on our work [22, 23].

Lie groupoids constitute a unified framework to deal with group actions,
foliations and fibrations, among other constructions, often providing new in-
sights to classic geometric questions and results. Lie groupoids have been
present in many areas, including Poisson geometry [36, 55, 56], Lie theory
[17], Riemannian geometry [40, 59], noncommutative geometry [15] and fo-
liations [32]. Our main interest in Lie groupoids in this thesis lies on their
role as models for singular spaces, as we explain next.

The study of singular spaces arising in moduli problems in algebraic ge-
ometry led to the notion of stack, introduced by Grothendieck in [30]. Stacks
can be formally defined as sheaf-like objects, which one describes locally
and glues imposing coherence conditions. In the smooth setting, stacks have
manifolds and orbifolds as special cases, providing a framework in which one
can do differential geometry on singular spaces. For some stacks, known as
differentiable or geometric, one can avoid the original abstract definition and
define them using Lie groupoids instead.

Recall that a Lie groupoid is roughly defined by two manifolds G and M ,
called the manifolds of arrows and objects, respectively, and a partial multi-
plication on G for which all elements are invertible and M is the set of units.
The manifold G encodes a natural equivalence relation on M (two objects
are equivalent if they are connected by an arrow), and its equivalence classes
are called orbits. Intuitively, one thinks of a Lie groupoid G as a model, or
atlas, for the quotient orbit space, denoted by M/G. Just as different at-
lases can represent the same differentiable structure on a manifold, different
Lie groupoids can represent the same “differentiable stack”. The extension
of the notion of equivalence of atlases to the context of Lie groupoids is
called Morita equivalence, which codifies the “transverse” geometry of the
groupoid. In this way, one can define differentiable stacks as Morita classes

1



INTRODUCTION 2

of Lie groupoids. This perspective has proven fruitful [8, 25, 53] and is fun-
damental in our work.

The notion of Morita equivalence build on the definition of Morita map (or
weak equivalence), i.e., a groupoid map that preserves “the normal structure”
around the orbits and the topological orbit space. Then we formally add an
inverse for each Morita map. This process of adding formal inverses is known
in category theory as localization. The Morita maps satisfy some properties
that ensure that their localization can be constructed in a particularly simple
way using fractions of maps. For Lie groupoids G and H, a fraction ψ/φ :

G 99K H is a pair of maps ψ : G̃ → H and φ : G̃ → G from another Lie
groupoid G̃ with φ being a Morita map. Two groupoids G and H are Morita
equivalent if there exists a fraction where both maps are Morita maps. In
this way, Morita maps become isomorphisms at the level of differentiable
stacks. More generally, we think of fractions ψ/φ : G 99K H as representing
generalized maps between Lie groupoids, and as models for maps between
the corresponding stacks.

Although Riemannian geometry is vastly developed for smooth manifolds,
it is much less studied on spaces which display singularities. This leads us to
consider Riemannian geometry on Lie groupoids. The notion of metric on Lie
groupoids, suitably compatible with the groupoid structure, was introduced
in [24], extending several previous attempts to establish such a concept [28,
33, 40]. The exponential map of these metrics on groupoids is the key tool to
prove a linearization theorem for Riemannian groupoids [24], which provides
a simpler proof and a stronger version of the Weinstein-Zung linearization
theorem for proper Lie groupoids [58, 62].

In [25], a type of Morita invariance for metrics on Lie groupoids is es-
tablished, yielding a notion of metric on underlying stacks that extends the
well-known definitions of Riemannian manifolds, orbifolds, and more. Our
goal is to develop foundational aspects of such “Riemannians stacks”, such
as the study of geodesics and completeness properties.

Contributions

If two Lie groupoids are Morita equivalent, their underlying orbit spaces
are homeomorphic. For Riemannian groupoids, the orbit spaces carry more
information, for instance, the (pseudo-)distance discussed in [47]. In this
work, we present a geometric interpretation of this distance in terms of the
length of “generalized curves’, which are our model for curves on stacks.

As part of our definition of length for generalized curves, we show that
the norm of the orthogonal component of a curve varies continuously. We do
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it in the general setup of singular Riemannian foliations.

Proposition 1. ([23]) Let (M, η,F) be a singular Riemannian foliated man-
ifold. If a : I →M is a smooth curve, then

∥∥a′(t)⊥∥∥ is continuous on t.

We conjecture in the case where the singular foliation comes from a proper
Lie groupoid that the norm varies smoothly. The normal length of a gener-
alized curve is defined using the orthogonal component of the curves. This
notion of length gives a geometric meaning for the distance in the orbit spaces
as follows:

Theorem 1. ([23]) Given (G ⇒ M, η) a Riemannian groupoid, and given
x, y ∈M , the quotient pseudo-distance dN(x̄, ȳ) is the infimum of lengths of
generalized curves connecting the points:

dN(x̄, ȳ) = inf{`N(α) : x̄, ȳ ∈ im(ᾱ)}.

Since a Morita equivalence between Riemannian stacks yields a corre-
spondence between classes of generalized curves which preserve the normal
lengths, we conclude that the (pseudo-)distance on the orbit space is a well-
defined object associated with the Riemannian stack.

We then introduce geodesics for metrics on stacks, extending previous
definitions of geodesics on orbifolds and orbit spaces of isometric actions
[41, 31, 52]. We establish the existence and uniqueness of geodesics and
other foundational results such as Gauss Lemma and Hopf-Rinow theorem.

In Riemannian geometry, the Gauss’s lemma asserts that any sufficiently
small geodesic sphere centered at a point is perpendicular to every geodesic
through the point, and moreover, in radial directions, the exponential map is
an isometry [14, p.69]. We prove a version of this second property for stacks:
our stacky Gauss Lemma says that locally geodesics are the “shortest” paths
to connect a given point to other points.

Proposition 2. ([23]) Let G ⇒ M be a proper Riemannian groupoid and
x ∈M . Then there exists ε > 0 such that

dN(x̄, expx̄([v])) = ‖v‖ , ∀ v ∈ BN
ε ⊂ NxM.

Geodesics on a Riemannian manifold are characterized as the curves that
locally minimize distances. It turns out that this property of locally mini-
mizing distances does not hold for geodesics on stacks, so we reformulate it
in terms of “local rays”. The Gauss Lemma shows that geodesics are “local
rays”, and we also show the converse that local rays are geodesics.
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Theorem 2. Let (G ⇒ M, η) be a proper Riemannian groupoid. A curve
fraction a/φU : I 99K G is a local ray if only if it is a geodesic fraction.

So, being a geodesic depends on the normal distance, which is a Rieman-
nian Morita invariant. We use this to show that our definition of the geodesic
is, in fact, well-defined for Riemannian stacks.

On a Riemannian manifold the assumptions of completeness as metric
space and geodesic completeness are equivalent; this is the content of the
Hopf-Rinow theorem [14, p.146]. We show that the same holds for Rieman-
nian stacks: the geodesics on a stack are defined for all time if and only if
the underlying orbit space is complete as a metric space. As simple corollar-
ies, we conclude that stacks with compact orbit space are complete and that
every stack admits a complete metric.

Theorem 3. ([23]) The stack ([M/G], [η]) is geodesically complete if and
only if (M/G, dN) is a complete metric space.

The Hopf-Rinow-Cohn-Vossen theorem states that a locally compact length
space is complete if only if curves that locally minimize distances can be ex-
tended [11, Thm. 2.5.28]. Using the Riemannian stack structure of the
locally compact length space (M/G, dN) we can see our theorem as an im-
provement of the Hopf-Rinow-Cohn-Vossen theorem since our geodesics do
not minimize distances locally.

Finally we discuss the interplay of metrics on Lie groupoids and lineariza-
tion problems. The following results are part of the project [22]. For a Lie
groupoid G⇒M and an orbit O ⊂M , let GO be given by the restriction of
G to O. We have the linear model NGO ⇒ NO, where NGO (resp. NO)
is the normal to GO in G (resp. O in G). The linearization problem asks
if there exists a groupoid isomorphism from a neighborhood of GO ⇒ O in
G ⇒ M to a neighborhood of GO ⇒ O in NGO ⇒ NO. This problem
has been studied by many authors [19, 24, 58, 62]. A linearization is called
invariant when the neighborhoods of O in M and in NO can be taken to be
saturated.

The invariant linearization for s-proper groupoids [19, 24, 58, 62] covers
classical results, such as Ehresmann’s fibration theorem [27], Reeb’s local
stability theorem for foliations [48], and linearization of compact group ac-
tions [44]. Inspired by the linearization theorem for Riemannian groupoids
presented in [24] we replace the s-properness condition by the existence of
complete metrics, showing that this implies invariant linearization.
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Proposition 3. If a proper groupoid admits a groupoid metric such that
the metric on the units is complete, then this is an invariantly linearizable
groupoid.

The linearization for s-proper groupoids does not imply the Tube the-
orem for Lie groups proper actions, as observed in [19]. In this direction,
we use the above result to set the Tube theorem for proper actions into the
groupoid linearization perspective as proposed in [24, Remark 5.15 ]. We do
this building a complete invariant metric for proper Lie group actions (cf.
[35]). This construction is independent of the classic tube theorem.

In [21] it is shown that locally trivial fiber bundles admit complete fibered
metrics; this fixes previous attempts to show the existence of complete fibered
metric in locally trivial fiber bundle [29, 38, 60]. Based on this proof we show
the following for invariantly linearizable groupoids:

Proposition 4. If a proper Lie groupoid is invariantly linearizable, then
there exists a complete transversely invariant metric on its units.

This result was stated for proper Lie groupoids in [47, Prop 3.14], but the
proof relies on an argument about re-scaling transversely invariant metrics
that only works for groupoids with compact orbits (Remark 4.4.2).

We believe that the above proposition can be improved to the existence
of a groupoid metric complete on the units. This improvement could be used
together with 3 to produce the following characterization:

Conjecture:A proper groupoid is invariantly linearizable if and only if it
admits a groupoid metric complete on the units.



Chapter 1

Lie groupoids and stacks

In this chapter, we give a short review of the definitions and properties of
Lie groupoids, Morita equivalence, and how they provide an approach to
differentiable stacks. This chapter will proceed as follows:

• In Section 1.1 we set our notation and recall the basic definitions and
properties of Lie groupoids and their maps.

• In Section 1.2 we proceed to define Morita equivalence of Lie groupoids,
leading us to differentiable stacks. We also describe some Morita in-
variants, which can be viewed as objects associated to stacks, including
coarse orbit space, normal representation, coarse tangent space, and
generalized maps.

1.1 Lie groupoids

Groupoids were first defined by Brandt in the 1920s. In differential geometry,
Lie groupoids were introduced by Ehresmann in the 1950s. The development
of Lie theory for groupoids was initiated by Pradines. The surveys [10, 57]
contain a good exposition of the history of groupoids in differential geometry
and other areas.

Lie groupoids constitute a unified framework to deal with group actions,
foliations and fibrations, among other constructions, often providing new
insights to classic geometric questions and results. Most of the content of
this section comes from [16, 20, 42].

Definition

From a categorical viewpoint, groupoids are small categories in which every
morphism is an isomorphism. A Lie groupoid G⇒M is formed by a pair of

6



LIE GROUPOIDS AND STACKS 7

manifolds G,M , two surjective submersions s, t : G → M called source and
target maps, and a smooth associative multiplicationm : G(2) → G admitting
units u : M → G and inverses i : G→ G. The notation G(2) means the pairs
(g, h) in G × G with t(h) = s(g). Because s and t are submersions G(2) is
a submanifold of G×G. The associative, unit and inverse conditions in the
definition are explicitly described as follows:

(associativity) if t(hf) = s(g) or s(gh) = t(f), then g(hf) = (gh)f ;

(unity) if t(g) = y and s(g) = x, then eyg = g and gex = g;

(inverse) if g ∈ G, then gg−1 = es(g−1) and g−1g = es(g).

We adopt the following notations: m(g, h) = gh, u(x) = ex and i(g) = g−1.
Unless otherwise stated, all our manifolds are second countable and Haus-
dorff. An exception to this convention is the total space of a Lie groupoid G
which is allowed to be non-Hausdorff. When necessary we reserve the term
Hausdorff groupoid to stress the fact that G is Hausdorff. A groupoid
G ⇒ M is called a proper groupoid if the map s × t : G → M ×M is a
proper map. If G,M have the same dimension, we call G ⇒ M an étale
groupoid.

Properties and notation

The points of M are called objects; we call the elements of G arrows, and
the elements of G(2) are the composable arrows. We denote an arrow g
in G by y

g←− x, where x = s(g), y = t(g) are its source and target. For
a point x in M , the submanifolds G(−, x) = s−1(x) and G(x,−) = t−1(x)
of G are called the source fiber and the target fiber of x respectively, or
s-fiber and t-fiber.

The setGx := s−1(x)∩t−1(x), together with the restriction of the groupoid
multiplication, is a group called the isotropy group at x. Showing that
the map t : G(−, x) → M has constant rank we conclude that the fibers
G(y, x) = t−1(x) ∩ s−1(x) are embedded submanifolds (see [42, Thm. 5.4]).
In particular, Gx becomes a Lie group with the restricted multiplication.

The groupoid structure defines an equivalence relation on M such that
two points x and y are related if there is an arrow g ∈ G with y

g←− x. The
equivalence classes are called the orbits. For a point x ∈ M its orbit is
denoted by Ox, noticing that Ox = t(s−1(x)). The isotropy group Gx acts



LIE GROUPOIDS AND STACKS 8

(on the right) freely and properly on G(−, x). The map t : G(−, x)→ M is
Gx invariant and its fibers coincide with the orbits of G(−, x) x Gx, so we
can identify the quotient G(−, x)/Gx with the orbit Ox ⊂ M , and regard it
as an immersed submanifold. The coarse orbit space M/G is the space of
orbits with the quotient topology.

The connected components of the orbits are the leaves of a singular foli-
ation FM on M , called the characteristic foliation (see [6]). Also, there
are singular foliations FG = s∗FM and FG(2) = m∗FG on G and G(2), respec-
tively. Recall that, by a singular foliation in the sense of Stefan-Sussmann
(cf.[50, 51]) on M , we mean a partition {Lx} of M into immersed subman-
ifolds such that for each point x ∈ M , there exists a local chart φ on M
around x with the following properties:

• φ is a diffeomorphism φ : U → V ×W , where V and W are neighbor-
hoods of the origin in the euclidean space;

• φ(x) = (0, 0);

• if L ∈ F , then φ(L ∩ U) = U ×WL where WL = {w ∈ W : (0, w) ∈
φ(L)}.

A chart (U, φ) which fulfills the above conditions is called a foliated chart
around x.

The normal space at a point of M,G,G(2) is the normal space to the leaf
of respectively FM ,FG,FG(2) at this point. For an orbitO ⊂M , denoteGO =

s−1(O) and G
(2)
O = m−1(GO). Thus, the normal spaces will be denoted as

NxO = TxM/TxO, NgGO = TgG/TgGO and NgG
(2)
O = T(g,h)G

(2)/T(g,h)G
(2)
O .

The normal representation of the isotropy group Gx over NxO =
TxM/TxO is given by g · [v] = [dgt(w)], where w is such that dgs(w) = v.
The normal representation is an invariant of the orbit, in the sense that if
x and y are in the same orbit, then the normal representations Gx y NxO
and Gy y NyO are isomorphic. Indeed, fix an arrow y

g←− x. Since TgGO =
ds−1(TxO) = dt−1(TyO), the following two vertical maps are isomorphisms:

NgGO
dt

zz

ds

$$
NyO NxO,

goo

(1.1)
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thus the isomorphism g = dt ◦ ds−1
together with the left multiplication

g : Gx → Gy give an isomorphism of the normal representations.

Examples

Example 1.1.1. A Lie group G seen as Lie groupoid is a groupoid which
has just one object G ⇒ {∗}. Thus, the source and target map are trivial,
the multiplication and inversion are given by the Lie group structure.

Example 1.1.2. The unit groupoid associated to manifoldM is the groupoid
M ⇒M which has only unit arrows, where the five structural maps are the
identity idM .

Example 1.1.3. Let M be a manifold. Given a equivalence relation R ⊂
M ×M such that π1 : R → M and π2 : R → M , the projections on the
first and second factors are submersions, then R⇒M is a Lie groupoid with
trivial isotropy and the orbits are the same as the equivalence classes.

Example 1.1.4. A surjective submersion p : M → B gives rise to a submer-
sion groupoid, where G = M ×BM , source and target are the projections,
and the multiplication is (z, y) · (y, x) = (z, x). The orbits are the fibers of
p, the isotropies are trivial, and the coarse orbit space identifies with B.

The submersion groupoid arising from the identity idM is the unit groupoid,
the one arising from the projection M → {∗} is the pair groupoidM×M ⇒
M , and the one arising from the inclusions

∐
Ui → M of an open cover is

the Cech groupoid

GU =
(∐

Uj ∩ Ui ⇒
∐

Ui

)
.

Example 1.1.5. A smooth action K yM of a Lie group on a manifold gives
rise to an action groupoid K nM ⇒ M , with s(k, x) = x, t(k, x) = k · x
and (l, y) · (k, x) = (lk, x). Notice that orbits and isotropy groups of K nM
coincide with the usual notions of orbits and isotropy groups of the action.

Example 1.1.6. Let G be a Lie group and p : P → B a G-principal bundle.
We can recover p : P → B as the quotient projection P → P/G of a free and
proper action Gy P . The gauge groupoid Gauge(P)⇒ B is the quotient
of the pair groupoid P ×P ⇒ P by the action of G. Clearly gauge groupoids
are transitive, in the sense that they have only one orbit. Conversely, if we
start with a transitive groupoid G⇒M we recover it as the gauge groupoid
associated to the Gx-principal bundle t : G(−, x)→ Ox = M , for any x ∈M .
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Example 1.1.7. If E →M is a vector bundle, there is an associated general
linear groupoid, denoted by GL(E), which is similar to the general linear
group associated to a vector space. The objects of GL(E) are the points
of M and the arrows between two points x and y in M consist of linear
isomorphisms Ey ←− Ex. We can recover GL(E)⇒M as the gauge groupoid
associated to the frame bundle FE → M of E → M . If the vector bundle
E →M carries a metric we can talk about the orthonormal linear groupoid
O(E)⇒M in the same fashion.

Example 1.1.8. Let be M a smooth manifold. The arrows of the funda-
mental groupoid Π1(M) ⇒ M consist of homotopy classes of paths with
fixed end points. The source and target maps s, t : Π1(M)→M are defined
by s([γ]) = [γ(0)] and t([γ]) = [γ(1)]. The multiplication of homotopy classes

is given by the concatenation of representative paths. Thinking of M̃ → M
the universal covering as a π1(M) principal bundle, the fundamental groupoid
is the gauge groupoid associated to it.

For x ∈ M , we recover the fundamental group π1(M,x) exactly as
the isotropy group Π(M)x. The fundamental groupoid does not require the
choice of a point to be defined, so it still makes sense for non-path-connected
spaces. Thus, the groupoid approach is a way to glue all these pieces of data
into a single object.

Example 1.1.9. A regular foliation F on a manifold M gives rise to a mon-
odromy groupoid Π1(F) ⇒ M , whose arrows are the leafwise homotopy
classes of paths. Its orbits are exactly the leaves of F and the isotropy groups
are their fundamental groups. Each arrow [γ] ∈ Π1(F) induces the germ of
a transverse diffeomorphism, the holonomy of the path, and the quotient
of Π1(F) ⇒ M by holonomy classes is still a Lie groupoid, the holonomy
groupoid Hol(F)⇒M (see [42]). The characteristic foliations of the mon-
odromy and holonomy groupoids are the original foliation.

Generalizing the previous example, we can think of Lie groupoids as a
way to present singular foliations and to perform differential and Riemannian
geometry in their leaf spaces. In contrast with regular foliations, it may
be unclear how to represent a given singular foliation by a Lie groupoid.
An approach to holonomy groupoids of singular foliations (which are not
necessarily Lie) can be found in [6]. For singular Riemannian foliations, see
[4] for progress in identifying underlying Lie groupoids.



LIE GROUPOIDS AND STACKS 11

Groupoid maps

A groupoid map (or just a map) φ : (H ⇒ N) → (G ⇒ M) is a pair of
smooth maps φ(1) : G → H and φ(0) : M → N such that s ◦ φ(1) = φ(0) ◦ s,
t ◦ φ(1) = φ(0) ◦ t, and φ(1)(gh) = φ(1)(g)φ(1)(h) for all (g, h) ∈ G(2). This in-
duces a map φ(2) : G(2) → H(2) on the composable arrows. We will denote by
φ both φ(0), φ(1) and φ(2) when there is no risk of confusion. If φ is invertible
we call it a groupoid isomorphism.

The condition that the maps commute with the source and target implies
that groupoid maps send orbits to orbits. Given a groupoid map φ : G→ H,
we denote by φ : M/G→ H/N the continuous map induced by φ.

A groupoid map yields Lie group morphisms between the isotropy groups
φx : Hx → Gφ(x), and since it must send orbits to orbits, it also yields lin-

ear maps dxφ : NxO → Nφ(x)O. This gives rise to a morphism φx : Gx y
NxO → Hφ(x) y Nφ(x)O between the normal representations.

When we see groupoids as categories, a groupoid map is by definition a
smooth functor, so it makes sense to talk about natural isomorphism of
groupoid maps. A natural isomorphism between two groupoid maps

φ
γ +3 ψ is a smooth map γ : N → G with s ◦ γ = φ and t ◦ γ = ψ

and satisfying ψ(g)γx = γyφ(g) for all y
g←− x. If φ, ψ are isomorphic then

φ̄ = ψ̄ : N/H → M/G and the maps φx, dxφ are related to ψx, dxψ by
conjugation by γx.

Examples of maps

Example 1.1.10. Lie group homomorphisms and smooth maps between
manifolds are standard examples of Lie groupoid maps.

Example 1.1.11. Let K y M , L y N be Lie group actions on manifolds.
If ϕ : M → N is a smooth action and λ : K → L a Lie group homomorphism,
then φ : K nM → LnN given by φ(k, x) = (λ(k), ϕ(x)) is a Lie groupoid
map. If the groups are discrete and the manifolds are connected, then any
groupoid map K nM → LnN has this form (see [13, Lem. 3.2]).

Example 1.1.12. The fundamental groupoid can be thought of as a functor
from smooth manifolds to Lie groupoids, in the same fashion as the funda-
mental group. A smooth map f : M → N defines a groupoid map

f∗ : Π1(M)→ Π1(N) by f∗([γ]) = [f ◦ γ].
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This construction extends to foliated manifolds: given a foliated map f :
(M,F) → (M ′,F ′), every leafwise path in M is sent to a leafwise path in
M ′, and this defines a groupoid map

f∗ : Π1(F)→ Π1(F ′).

Example 1.1.13. The holonomy of paths inside leaves is constant in the
homotopy classes, so it can be viewed as a groupoid map Π1(F) → Hol(F)
which covers the identity on M .

Example 1.1.14. Let (E →M,∇) be a vector bundle with a flat connection.
The flat connection ∇ defines a parallel transport along the curves in M
which depends only on the curve homotopy class, so each homotopy class
[γ] gives rise to a linear isomorphism Eγ(1) ←− Eγ(0). Hence, the parallel
transport defines a groupoid map

Π1(M)→ GL(E).

Actions and representations

Let G⇒ M be a Lie groupoid and µ : P → M a smooth map. A (left) Lie
groupoid action of G over P with moment map µ is a map

θ : G×M P → P

such that the following action identities are satisfied:

i) µ(gp) = t;

ii) θ(g, θ(h, p)) = θ(gh, p), for all (g, h) ∈ G(2) and (h, p) ∈ G×M P ;

iii) θ(eµ(p), p) = p, for all p ∈ P .

An action θ realizes the arrows of the groupoid G ⇒ M as symmetries
of the fibers of the moment map, which means that to each arrow y

g←− x
we have a diffeomorphism θg : Px → Py. Associated to the action we can
construct the action groupoid G×M P ⇒ P , where the source is the projec-
tion, the target is the action, the multiplication is the induced by those on G.

If µ : P → M is a vector bundle and each θg is a linear isomorphism,
then we call it a representation.

Example 1.1.15. Parallel transport of flat connections are simple examples
of groupoid representations.
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Example 1.1.16. Let G⇒M be a Lie groupoid and consider an orbit O ⊂
M . Given x ∈ M , we have defined the normal representation Gx y NxO.
Note that this is encoded in the groupoid representation of the restriction
groupoid GO ⇒ O over the normal bundle NO → O, where for each arrow
y

g←− x in GO the isomorphism g : NxO → NyO is the one built from the
diagram (1.1). We will denote the action groupoid from GO y NO by
GO nNO ⇒ NO.

1.2 Differentiable stacks

The stack concept is a generalization of the notion of “space”. These objects
permit the study of the singular behavior of geometric and algebraic struc-
tures, such as those present in the theory of moduli spaces. The references
used as a base to differentiable stacks in this chapter are [8, 12, 20].

We use the point of view that differentiable stacks can be represented by
Morita equivalence classes of Lie groupoids, avoiding the technicalities from
the categorical point of view. For more details about the equivalence between
groupoids modulo Morita equivalence and differentiable stacks, see [8, Sec.
2] and [54, Thm. 1.3.27].

Morita maps

A Lie groupoid map φ : (H ⇒ N) → (G ⇒ M) is a Morita map if the
following conditions hold:

• φ̄ : N/H →M/G is an homeomorphism;

• φx : Hx y NxO → Gφ(x) y Nφ(y)O is an isomorphism of representa-
tions for all x ∈M .

For instance, if N/H and M/G are smooth manifolds the map φ̄ is smooth
and φ be Morita is exactly the condition to φ̄ be a diffeomorphism.

The above definition is a more geometric formulation for Morita maps
provided in [20, Thm. 4.3.1]. The classical approach to Morita maps is
in terms of equivalence functors, re-writing the fully faithful and essentially
surjective conditions in the smooth setup. Recall that a Lie groupoid map
φ : H → G is fully faithful if the following diagram is a fiber product

H
φ //

t×s
��

G

t×s
��

N ×N φ×φ //M ×M,
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and it is essentially surjective if the map tpr1 : G ×M N → M given by

(y
g←− φ(x), x) 7→ y is a surjective submersion; it is a Morita map if it is both

essentially surjective and fully faithful.

Remark 1.2.1. [20, Cor. 4.3.2] It directly follows from the definition that:

• the composition of two Morita maps is again a Morita map;

• if two maps are isomorphic and one of them is Morita, then so is the
other.

Examples of Morita maps

Example 1.2.2. A Morita map between Lie groups is the same as a Lie
group isomorphism.

Example 1.2.3. Let {(Ui, φi)} be an atlas for a smooth manifold M . The
inclusion maps Ui →M give rise to a groupoid map

GU =
(∐

Uj ∩ Ui ⇒
∐

Ui

)
φ−→ (M ⇒M)

between the Cech groupoid and the unit groupoid. Clearly,

φx : {ex}y TxUi → {ex}y TxM

is an isomorphism of representations and the map between the quotients is
a homeomorphism. Hence, φ is a Morita map.

Example 1.2.4. Let G⇒ M be a transitive groupoid. Fix a point x ∈ M .
The inclusion (Gx ⇒ {x})→ (G⇒M) is Morita map, since the orbit spaces
have just one orbit and Gx y {0} → Gx y {0} is clearly an isomorphism of
trivial representations.

Example 1.2.5. Let O be an orbit of a Lie groupoid G⇒M . For any x in
O the inclusion:

(Gx nNxO ⇒ NxO)→ (GO nNO ⇒ NO)

is a Morita map between the normal representation Gx y NxO and the
normal representation groupoid GO n NO ⇒ NO. To see that, we check
that the inclusion is fully faithful and essentially surjective. The fiber product

(GO nNO)×NxO×NxO (NO ×NO)
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is giving by the points in GOnNO×NO×NO of the form (x
g←− x, v, v, v)

with v in NxO. So,

Gx nNxO ∼= (GO nNO)×NxO×NxO (NO ×NO)

showing that the inclusion is fully faithful. The fiber product GO×NO×NO
NxO is formed by the points of the form (y

g←− x, v, v) with v in NxO, so the
map t ◦ pr1 : GO ×NO ×NO NxO → NO is a surjective submersion.

Example 1.2.6. Let (M,F) be a foliated manifold. Recall that a complete
transversal is an immersed (not necessarily connected) submanifold W ⊂
M with dimension equal to the codimension of F , which is transversal to
the leaves of F and intersects any leaf in at least one point. For instance,
one can take W to be the union of a countable disjoint family of (local)
transversal sections. We can obtain an étale groupoid by restricting the
holonomy groupoid Hol(F) to a complete transversal W . The inclusion of
Hol(F)W into Hol(F) induces a map

π : W/Hol(F)W →M/F ,

which is a bijection by the definition of W , and it is an open map because the
saturation of a transversal section is an open set, thus π is a homeomorphism.
The normal representation

Hol(F)x y NxF

represents the linear holonomy at x in M , i.e., the first jet of germs of diffeo-
morphisms on transversal sections. From this we see that Hol(F)x y NxF
is isomorphic to (Hol(F)W )x y TxW . Hence, the inclusion Hol(F)W into
Hol(F) is a Morita map. A groupoid which is equivalent to a étale groupoid
is known as foliation groupoid.

Morita equivalence

We would like to think of Morita maps as a notion of isomorphism, but such
maps are not necessarily invertible. A way to circumvent this problem is by
using ”fractions” to formally invert them.

Given G ⇒ M and H ⇒ N Lie groupoids, a fraction ψ/φ : G 99K H is
given by a pair of maps

G̃⇒ M̃
φ

yy

ψ

%%
G⇒M H ⇒ N
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where φ is a Morita map.

Two Lie groupoids G⇒M and H ⇒ N are Morita equivalent if there
is a fraction ψ/φ : H 99K G, where both φ : G̃ → H and ψ : G̃ → G are
Morita maps.

Morita equivalence is, in fact, an equivalence relation. Reflexivity and
symmetry follow from the definition. For transitivity, we need to use ho-
motopy fiber products. More precisely, given Lie groupoids F ⇒ L, G ⇒
M, H ⇒ N and Morita equivalences ψ′/φ′ : F 99K G and ψ/φ : G 99K H,
we consider the groupoid homotopy fiber product (see [20, 42]):

F̃ ×G G̃
pr2

##

pr1

{{
F̃

ψ′

##

φ′

��

G̃
ψ

  

φ

{{
F G H.

The fraction (φ′ ◦ pr1)/(ψ ◦ pr2) is then a Morita equivalence between
F ⇒ L and H ⇒ N .

Stacks

A differentiable stack is a Lie groupoid up to Morita equivalence. We write
[M/G] for the differentiable stack presented by the Lie groupoid G⇒M .

Differentiable stacks are enhanced topological spaces on which it makes
sense to perform differential geometry. For a Lie groupoid G⇒M , the nor-
mal representation Gx y NxO is a model for the tangent space of [M/G] at
x̄ ∈ M/G, see [26] for more details about the tangent stack [TM/TG]. We
define the coarse tangent space Tx̄[M/G] at x̄ as the coarse orbit space
of the normal representation Gx nNxO ⇒ NxO. This is well-defined, in the
sense that two points in the same orbit have isomorphic normal representa-
tions and Morita equivalences preserve the normal representations.

A stack [M/G] is separated if it is presented by a proper Lie groupoid
G⇒M . This notion is well-defined, since properness is a property preserved
by Morita maps (see [20, Prop. 5.1.3]). Since proper groupoids are lineariz-
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able (see Thm 3.2.1), separated stacks can be locally recovered from their
normal representations, see Corollary 3.2.2.

Examples

Example 1.2.7. Smooth manifolds can be identified with separated differ-
entiable stacks that have no isotropy. In fact, a Lie groupoid G ⇒ M is
Morita equivalent to the unit groupoid of a manifold N ⇒ N if and only if
G ⇒ M is a submersion groupoid arising from some submersion M → N .
This identification is functorial.

Example 1.2.8. Orbifolds were first introduced as Hausdorff spaces locally
modeled by the orbit space of a finite group acting effectively on Euclidean
space (see [49]). In order to define suborbifolds and orbifold maps, it is
convenient not to force the local actions to be effective. From a modern per-
spective, we can define orbifolds as separated differentiable stacks with finite
isotropy groups, i.e., stacks that can be presented by proper étale groupoids.
Details on the correspondence between the classic and new approaches can
be found in [1, 39, 42].

Example 1.2.9. Given K a Lie group, the differentiable stack [∗/K] asso-
ciated to the groupoid K ⇒ ∗ is called the classifying stack for K. This is a
finite-dimensional stacky model for the usual infinite-dimensional classifying
space BK; in fact, they are equivalent from a homotopy-theoretic point of
view.

Example 1.2.10. Given K yM a Lie group acting on a manifold, the dif-
ferentiable stack [M/K] arising from the action groupoid encodes the equiv-
ariant geometry of the action. When the action is free and proper this is
just the quotient manifold. In general, [M/K] can be used to compute the
equivariant cohomology, see [7, p. 263]. If K is discrete and H1(M) = 0,
then [M/K] captures all the “dynamical data” up to conjugation [13].

Example 1.2.11. The leaf space M/F of a foliated manifold (M,F) can be
realized as a stack [M/F ] presented by the holonomy groupoid

Hol(F)⇒M.

We can simplify this representative to a étale one, by restricting the holonomy
groupoid to a complete transversal W ⊂M of the foliation, namely

Hol(F)|W ⇒ W,
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see Example 1.2.6). The bisections of Hol(F)W give rise to a pseudo-group of
diffeomorphisms on W . Different choices of transversals give Morita equiv-
alent étale groupoids, and Morita equivalent étale groupoids produce equiv-
alent pseudo-groups. Seeing M/F as a stack we recover the approach of its
differential geometry by pseudo-groups. For more details about the pseudo-
groups and its relation with foliation groupoids see [43, Appendix D] and
[42].

Stacky maps

When representing stacks by Lie groupoids, isomorphisms of stacks corre-
spond to Morita equivalences. More general maps between stacks are de-
scribed as follows. Two fractions ψ1/φ1, ψ2/φ2 are equivalent if there are
Morita maps α1, α2, such that ψ1 ◦ α1 is isomorphic to ψ2 ◦ α2, and φ1 ◦ α1

is isomorphic to φ2 ◦ α2. This can be visualized in the following diagram:

G̃1 ⇒ M̃1

φ1
∼

uu

ψ1

))
G⇒M ⇓ G̃3 ⇒ M̃3

α1o

OO

α2o
��

⇓ H ⇒ N

G̃2 ⇒ M̃2.

φ2

∼
ii

ψ2

55

A class of fraction between two groupoids is called a generalized map be-
tween them.

A stacky map [φ/ψ] : [N/H] → [M/G] of differentiable stacks is the
same as a generalized map for us. The identity is id/id and composition can
be defined by using homotopy fiber products of Lie groupoids (see [20, 42]).
This easily follows from the definition of Morita maps that a fraction ψ/φ is
invertible if and only if ψ is Morita as well.

Maps of stacks admit a cocycle description. Given G ⇒ M a Lie
groupoid and U = {Ui} an open cover of M , a new groupoid can be defined,

GU =

(∐
j,i

G(Uj, Ui)⇒
∐
i

Ui

)

with arrows (y, j)
(g,j,i)←−−− (x, i) for x ∈ Ui, y ∈ Uj and y

g←− x is an arrow in G.
The composition is set by (h, k, j)(g, j, i) = (hg, k, i). The obvious projection
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φU : GU → G is Morita, and it can be proven (see [20, Prop. 4.5.4]) that
every map of stacks can be expressed as a cocycle fraction ψ/φU for some
open cover U of N .

Examples of stacky maps

Example 1.2.12. We have seen in Example 1.2.7 that there is a natural map
from the Cech groupoid of an atlas to the manifold, so generalized maps for
manifolds can be interpreted as smooth maps given by charts.

Example 1.2.13. Let M be a manifold and G a Lie group. We saw that
generalized maps admit a cocycle description. Then a generalized map f :
[M/M ] → [G/{∗}] can be seen as a fraction ψ/φU , where ψ is a groupoid
map from the Cech groupoid

∐
j,i Uj ∩Ui ⇒

∐
i Ui to G. But a map between

the Cech groupoid and a Lie group is exactly a cocycle ψji : Uj ∩ Ui → G.
Hence, generalized maps between manifolds and Lie groups are the same as
isomorphism classes of principal bundles.

Example 1.2.14. Let p : M → B be a submersion. The submersion
groupoid M ×BM ⇒M is an atlas for B thought of as a stack. If γ : I → B
is a smooth curve, there is an open covering {Ui} of I such that in Ui we
can lift γ|Ui to M along p, say to a curve γi : Ui → M . If x ∈ Uj ∩ Ui, then
p(γj(x)) = p(γi(x)), so the local lifts define a groupoid map

γ̃ :

(∐
j,i

Uj ∩ Ui ⇒
∐
i

Ui

)
→ (M ×B M ⇒M) .

Thus generalized maps from the open interval unit groupoid I ⇒ I to M ×B
M ⇒M are exactly the smooth curves on B.

Coarse differential and coarse map

The stacky maps have well-defined maps at the level of coarse quotient space
and normal representation. The Morita maps preserve the normal represen-
tation and the coarse quotient space, and isomorphic groupoid maps have the
same induced maps on the quotient space and on the normal representations.

Let f : [M/G]→ [N/H] be a stacky map, and ψ/φ a fraction presenting
f . We define the coarse map of f as

f := ψ ◦ φ−1
: M/G→ N/H,
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and the coarse differential of f at x̄ ∈M/G by

dx̄f := dzψ ◦ dxφ
−1

: Tx̄[M/G]→ Tȳ[N/H],

where ψ(z) = x and φ(z) = y. Because the maps φ, ψ, dxφ, dzψ are invariant
under isomorphisms of groupoid maps, then we conclude that the definitions
of f and dx̄f do not depend on the fraction which represents f .

Remark 1.2.15. Given M a manifold and K a Lie group, stacky maps

M → [∗/K]

into the classifying stack BK = [∗/K] are in 1-1 correspondence with iso-
morphism classes of principal K-bundles over M . When representing stacky
maps as fractions ψ/φU this gives the usual characterization of principal bun-
dles by cocycles. This correspondence between maps and bundles also makes
sense when replacing both the base manifold and the structure group by ar-
bitrary Lie groupoids. The resulting approach to stacky maps via groupoid
bundles is followed by several authors [12, 20, 34, 45, 61].



Chapter 2

Riemannian groupoids and
Stacks

In this chapter, we give a short review of the definitions and properties of
Riemannian groupoids, Morita fibrations, and how to define a notion of met-
ric on stacks. We introduce the length of a stacky curve and explore its
relations with the natural notion distance on the coarse orbit space. The
chapter is organized as follows:

• In Section 2.1 we set our notation and recall the basic definitions and
properties of Riemannian groupoids.

• In Section 2.2 we review the pullback and pushforward of groupoid
metrics along Morita fibrations, leading us to Riemannian stacks. We
also study some Morita invariants such as the pseudo-distance on the
coarse orbit space and normal representations by isometries.

• In Section 2.3 we define the normal length of a stacky curve. As part
of this definition, we show that the speed of a stacky curve depends
continuously on the curve parameter. We recover the normal pseudo-
distance between two points as the infimum over all the normal length
of stacky curves connecting the points, and conclude that the coarse
orbit space together with the normal distance is a Riemannian stack
invariant.

2.1 Riemannian groupoids

The notion of metric on Lie groupoids, suitably compatible with the mul-
tiplication, was introduced in [24], extending several previous attempts to

21
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establish such a concept [28, 33, 40]. It is shown that many families of Lie
groupoids admit such metrics, including the important class of proper Lie
groupoids. The exponential map of these metrics is the key tool to prove
a linearization theorem for Riemannian groupoids in [24], which provides
a simpler proof and a stronger version of the Weinstein-Zung linearization
theorem for proper Lie groupoids [19, 58, 62].

Definition

Given a Lie groupoid G ⇒ M , the space of pairs of composable arrows
G(2) = G ×M G can be identified with the space of commutative triangles
whose vertices are points of M and the edges are the arrows of G. So G(2)

carries a natural S3-action by permuting the vertices. For instance, in the
diagram below, the permutation (13)(2) acts as follows:

z

y

g
66

x

gh
gg

h

kk
7→

x

y

h−1
77

z

(gh)−1
gg

g−1

kk
(2.1)

In order to define groupoid metrics, we need a preliminary notion of
metrics fibered along submersions. Let (M, η) be a Riemannian manifold
and p : M → B a submersion. For x in M denote

TxM/ ker dpx by NxM, and p−1(p(x)) by Fx.

Using the metric η we identify NxM with TxF
⊥. Given x, y ∈ M belonging

to the same fiber p−1(b), we have isomorphisms:

NxM
dp−→ TbB

dp←− NyM.

We call the resulting composition

τyx = (dpy)
−1 ◦ (dpx)

by normal transportation from x to y. If for all pairs x, y with p(x) = p(y)
the map

τyx : (NxM, ηx)→ (NyM, ηy)

is an isometry, we say that η is fibered with respect to η. When η is p-fibered
we can endow B with a pushforward metric p∗η, this is the unique metric

on B which makes NxM
dp−→ Tp(x)B an isometry.
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A submersion p : (M, ηM → (B, ηB) between Riemannian manifolds is
called a Riemannian submersion if ηM is p-fibered and p∗η

M = ηB.

Definition 2.1.1. ([24, 25]) A groupoid metric on G⇒M is a metric η on
G(2) that is S3-invariant and is fibered to the multiplication m : G(2) → G.
We say that two groupoid metrics η1, η2 on a Lie groupoid G ⇒ M are
equivalent if for every point x ∈ M the induced inner products on NxO
coincide.

Remark 2.1.2. Groupoids can be thought of as simplicial manifolds by
means of their nerves, whose k-simplices are chains of k composable arrows
and whose face and degeneracy maps are induced by the multiplication and
unit maps. There is a more general notion of metric for simplicial manifolds,
see [24]; in this context, a groupoid metric, as defined above, is the same as
a 2-metric, which is the original terminology in [24].

Properties

A groupoid metric η induces a metric η(1) on G satisfying that the maps
m,π1, π2 : G(2) → G are Riemannian submersions. This because η is m-
fibered and the isometries of S3 acting in G(2) interchange the maps m,π1, π2.
The groupoid metric η on G⇒M also induces a metric η(0) on M , by show-
ing that η is s ◦m-fibered, see [24, Prop 3.16].

Note that there is a permutation σ in S3 such that i ◦ m = m ◦ σ (see
Diag. 2.1), then the inversion map i preserves the metric η(1). The units
u(M) ⊂ G are formed by connected components of the fixed points of the
inversion map. Since the inversion map is an isometry, u(M) is a totally
geodesic submanifold.

Given an arrow y
g←− x, using the metrics η(1) and η(0) we identify NgGO ∼=

TgG
⊥
O and NxO ∼= TxO⊥. The resulting isomorphism g : NxO → NyO from

the following diagram,

NgGO
dt

zz

ds

$$
NyO NxO,

goo
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is an isometry of vector spaces, since s and t are Riemannian submersions.
The argument above gives more, namely that the normal representation
Gx y NxO is by isometries.

A singular Riemannian foliation F on a Riemannian manifold (M, η)
is a singular foliation such that every geodesic that is perpendicular at one
point to a leaf remains perpendicular to every leaf it meets. The character-
istic foliation of a Riemannian groupoid is a singular Riemannian foliation
(see [24, Prop 3.8]). To briefly justify this claim, note first that the foli-
ations on G given by the source and target fibers are Riemannian, since
they are fibers of Riemannian submersions. For every g ∈ G we have
TgG

⊥
O = (ker dsg)

⊥ ∩ (ker dtg)
⊥, so the foliation FG on G is also Rieman-

nian. If γ is a geodesic in M orthogonal to FM = s∗(FG) at some point,
we can locally lift γ along s to a geodesic which is orthogonal to FG and
conclude that γ is orthogonal to FM .

We say that a geodesic in G (or M) is orthogonal if this is orthogonal
to FG (FM) in each time.

The orthogonal geodesics satisfy a multiplicative property [24], as we will
see. Let w and v be normal vectors in NgG and NhG satisfying ds(w) =
dt(v). Denote by αdm(w,v) the geodesic in G with initial conditions gh and
dm(w, v). Consider in G(2) the geodesic α(w,v)(t) with initial conditions (g, h)
and (w, v). This is perpendicular to the fibers of m,π1 and π2 at t = 0.
Since m,π1, π2 : G2 → G are both Riemannian submersions, α(w,v)(t) stays
perpendicular to those fibers. We conclude that m(α(w,v)(t)), π1(α(w,v)(t))
and π2(α(w,v)(t)) are both geodesics in G with initial conditions dm(w, v), w
and v respectively. Hence, the following holds:

α(w,v)(t) = (αw(t), αv(t)), (2.2)

αdm(w,v)(t) = m(αw(t), αv(t)). (2.3)

In general, if d : X × X → R is a distance function and R ⊂ X × X is
an equivalence relation, the naive function d′ : X/R ×X/R → R, d′(x̄, ȳ) =
infa∈x̄,b∈ȳ d(a, b) fails to be a distance, for d′(x̄, ȳ) may vanish even when
x̄ 6= ȳ, and the triangle inequality may not hold. This second issue can
be fixed by considering discrete chains and defining a quotient pseudo-
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distance d̄ : X/R×X/R→ R as

d̄(x̄, ȳ) = inf

{
n∑
i=1

d(xi, yi) : n ∈ N, x1 ∼ x, yi ∼ xi+1, yn ∼ y

}
(2.4)

The previous construction defines the normal pseudo-distance dN on the
coarse orbit space M/G of a Riemannian groupoid (G ⇒ M, η). This dN
was studied in [47], in the more general setting of a Lie groupoid G ⇒ M
equipped with a metric on the units that is transversely invariant. If the
groupoid G⇒M is proper, then the pseudo-distance dN is in fact a distance
[47, Thm 4.1].

The following theorem provides a large family of examples of Lie groupoids
which inherit a groupoid metric; this result can be thought of as a generaliza-
tion of the fact that Hausdorff paracompact manifolds admit a Riemannian
metric.

Theorem 2.1.3. [24, Thm.4.13] Any Hausdorff proper Lie groupoid G⇒M
admits a Riemannian structure.

Examples

Example 2.1.4. Groupoid metrics on the unit groupoid M ⇒ M are the
same thing as metrics on M . The normal space at each poitn x in M is TxM ,
so two metrics in M ⇒M are equivalent if only if they are equal.

Example 2.1.5. Let p : M → B be a submersion and M×BM ⇒M be the
associated submersion groupoid. Denote the projections of M ×B M ×B M
to M by p1, p2, p3, and pB the projection to B. Given metrics ηM and ηB

such that p is a Riemannian submersion, the following expression defines a
groupoid metric on the submersion groupoid:

η = p∗1η
M + p∗2η

M + p∗3η
M − 2p∗Nη

B,

where η(0) = η. This is a standard fiber product construction for Riemannian
submersions. Conversely, if we start with a groupoid metric η on M ×B
M ⇒ M then the metric η(0) is p-fibered and makes it into a Riemannian
submersion. Two groupoid metrics η, η′ on M ×BM are equivalent if only if
they induce the same metric on B, i.e., p∗η

(0) = p∗η
′(0).

Example 2.1.6. Given G y (M, ηM) an isometric action of a Lie group,
a metric η can be built on the action groupoid G nM ⇒ M through the
following recipe:
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i) The submersion groupoid of s : G×M →M is isomorphic to G×G×
M ⇒ G ×M , the product of the pair groupoid G × G ⇒ G with the
unit groupoid M ⇒M .

ii) The group G acts on G ×M , G × G ×M and G × G × G ×M by
k · (g, x) = (gk−1, kx), k · (g, h, x) = (gk−1, hk−1, kx), k · (f, g, h, x) =
(fk−1, gk−1, hk−1, kx). The groupoid structure is G-invariant. Since
the actions are free and proper we take the quotient groupoid (G×G×
M ⇒ G×M)/G, which is isomorphic to GnM ⇒M . For instance, at
the level of composable arrows the quotient map is π : G×G×G×M →
GnM (2), π(f, g, h, x) = (fg−1, gh−1, hx).

(iii) The product metric on G × G × G ×M is a groupoid metric and G-
invariant. Therefore, the quotient metric η on (G×G×G×M)/G =
GnM (2) is a groupoid metric.

Given x a point in M , the kernel of dt at (e, x) is equal to

ker dt|(e,x) = {(ξ,−Xξ(x)) : ξ ∈ TeG},

where Xξ is the fundamental vector field associated to ξ. Let {ξi} be an
ortonormal basis for TeG, then a straightforward calculus shows that

ker dt|(e,x)
⊥ =

{(∑
i

ηMx (Xξi(x), v) ξi, v

)
: v ∈ TxM

}
.

Remember that t#(ηG × ηM) = η(0), so we can lift TxM to ker dt|(e,x)
⊥ and

obtain η(0) at x. In fact, we have the following expression

η(0)
x (v, w) = ηMx (v, w) +

∑
i

ηMx (Xξi(x), v) ηMx (Xξi(x), w).

for all v, w in TxM . If v in TxM is such that ηMx (v, u) = 0 for all u in TxO,

then η
(0)
x (v, w) = ηMx (v, w) for all w in TxM . We conclude that the metrics

η(0) and ηM have the same orthogonal complement to the orbits. Moreover,
they agree on the normal directions to the orbits, i.e., they are equivalent.

The above recipe is a “baby” example of the gauge trick developed in
[24] to prove Theorem 2.1.3. If G is compact and we consider a bi-invariant
metric on it, then the metric η(0) on M is also known as Cheeger deformation
of ηM , see [2, Sec. 6.1].

Example 2.1.7. An irrational flow R y T 2 is an isometric action with
respect to the standard metric on T 2. So, we can give to R n T 2 ⇒ T 2 a
groupoid metric. Because T 2/R is non-Hausdorff the pseudo-distance dN can
not be a distance.
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Example 2.1.8. Let G ⇒ M be an étale Lie groupoid with a Riemannian
structure. In this case, the source and target maps are local isometries.
Thus the bisections on G ⇒ M for a isometry pseudo-group. Conversely,
if we start with an isometry pseudo-group on a Riemannian manifold M ,
then the germs of this pseudo-group form an étale groupoid (see [42]). We
can pullback the metric from M to the germ groupoid, turning this into a
Riemannian groupoid.

Example 2.1.9. Let F be a foliation on M . A groupoid metric η on its
holonomy groupoid induces a metric on M that makes F into a Riemannian
foliation, as we previously observed.

In the other direction, let F be a Riemannian foliation for a metric ηM .
In the following, we use the fact that for Riemannian foliations the holonomy
and the linear holonomy coincide. The holonomy groupoid Hol(F)⇒M acts
by isometries in the transversal sections. The germs of isometries are com-
pletely determined by their differentials. So, we have an injective groupoid
map

(Hol(F)⇒M)→ (O(NF)⇒M).

Because the gauge groupoid O(NF) ⇒ M is Hausdorff, then Hol(F) ⇒ M
is Hausdorff.

By [24, Prop.3.11] the metric ηM can be lift to a metric ηHol(F) on Hol(F)
which satisfies t#η

Hol(F) = ηM and s#η
Hol(F) = ηM . From the fact that the

map
s : (Hol(F ), ηHol(F))→ (M, ηM)

is a Riemannian submersion, we can build a groupoid metric η̃ on the sub-
mersion groupoid

Hol(F )×s Hol(F)⇒ Hol(F)

with η̃(0) = ηHol(F). Supposing that the holonomy groupoid is proper, then
Theorem 2.1.3 proceeds by averaging the metric η̃, producing a metric η̃
which is fibered with respect to the fibration

Hol(F)×s Hol(F)×s Hol(F) ////
//

(h,g,f)7→(hg−1,gf−1)
��

Hol(F)×s Hol(F) ////

(h,g)7→(hg−1)
��

Hol(F)

(y
g←−x) 7→y

��
Hol(F)(2) ////

//
Hol(F) ////M

So, η̃ descends to a groupoid metric η on the holonomy groupoid. The

facts that t#η̃
(0) = ηM and t#η̃

(0) = t#η̃
(0) implies η(0) = ηM , see [24,

Prop.4.12]. Thus, we conclude that given a Riemannian foliation with proper
holonomy groupoid, then there exists a groupoid metric whose the metric on
the objects is equal to the first one.
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2.2 Metrics on stacks

In [25], a type of Morita invariance for metrics is established, yielding a notion
of metric on stacks that extends the well-known definitions of Riemannian
manifolds and orbifolds.

Metrics and Morita fibrations

A Riemannian submersion φ : (G̃ ⇒ M̃, η̃) → (G ⇒ M, η) between
Riemannian groupoids is a groupoid map for which the induced map φ(2) :
G̃(2) → G(2) is a Riemannian submersion in the usual sense. This implies
that the maps φ(1) : G̃→ G and φ(0) : M̃ →M are Riemannian submersions.

A Morita fibration is a special case of fibration, where φ : (G̃⇒ M̃)→
(G ⇒ M) is a Morita map and φ(0) : M̃ → M is surjective submersion, see
[25] for a discussion about fibrations. If φ is also a Riemannian submersion
we say that it is a Riemannian Morita map.

Riemannian Morita maps preserve normal representations together with
their inner products. To see that, let φ : (G̃, η̃) → (G, η) be a Riemannian
Morita map. Given y ∈ M , the fiber F = φ−1(y) is included in an orbit of

G̃. Now note that NxF
dφ−→ TxM is an isometry that takes NxÕ to NyO.

Similar to the pullback of Riemannian metrics along submersions from
the choice of a connection, it is possible to pullback groupoid metrics along
Morita fibrations in the same fashion.

Proposition 2.2.1 (Prop. 6.3.1, [25]). If φ : G̃ → G is a Morita fibration

and η a metric on G, then there exists a metric η̃ on G̃ that makes φ into a
Riemannian submersion.

Given a submersion M → B, we know that metrics in M are not pro-
jectable to B in general. Similarly, the pushforward of a groupoid metric
along Morita fibrations is not always possible. But, as we will see now, it
is possible by an averaging process to obtain an equivalent metric which is
“projectable” along the Morita fibration.

The kernel K of a fibration φ : G̃→ G consists of the arrows in G̃ that are
mapped into identities. We can think of G⇒M as a quotient of G̃⇒ M̃ by
K ⇒ M̃ (see [25, Prop 6.1.2]), for instance G(2) is the quotient of the action
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K3 y G̃(2),
(k1, k2, k3) · (g, h) = (k3gk

−1
2 , k2hk

−1
1 ).

Given a metric η̃ on G̃, we can use this action to produce a “cotangent av-
erage metric” η̃ (see [25, Def. 3.1.2]) on G̃, which depends on choices of a
Haar system and a connection on K3. (Recall that a connection is a vector
bundle map σ : s∗TM → TG such that ds ◦ σ = ids∗TM and σ|M = du.)

Proposition 2.2.2 (Prop. 6.3.2, [25]). If φ : G̃ → G is a Morita fibration

with kernel K and η̃ is a groupoid metric on G̃, then the cotangent average
metric η̃ is a groupoid metric equivalent to η that is projectable to G, making
φ Riemannian.

It follows that, up to equivalence, metrics can be pulled back and pushed
forward along Morita fibrations, and since every Morita equivalence can be
realized as a fraction of Morita fibrations (see [25]), metrics up to equivalence
are instrinsically associated with the underlying stack.

Theorem 2.2.3 (Thm. 6.3.3,[25]). A Morita equivalence yields a 1-1 corre-
spondence between equivalence classes of groupoid metrics. In particular, if
two Lie groupoids are Morita equivalent and one admits a groupoid metric,
then so does the other.

Riemannian stacks

A stacky metric [η] on [M/G] is defined as the equivalence class of a metric
on the groupoid G⇒M . This notion of metric generalizes the usual notions
of metrics for manifolds and orbifolds, and allows us to perform Riemannian
geometry on more general differentiable stacks.

Examples

Example 2.2.4. If M ×B M ⇒M is the submersion groupoid arising from
p : M → B, then a metric η on M ×B M ⇒ M induces metrics ηM , ηB on
M,B making p a Riemannian submersion, see Example 2.1.5. Two groupoid
metrics η, η′ on M ×B M ⇒ M are equivalent if and only if ηB = η′B.
Therefore, stacky metrics on [M/M ×B M ] are the same as Riemannian
metrics on B.

Example 2.2.5. Let (M, ηM) be a Riemannian manifold, and G y M a
proper isometric action. We can proceed as in the Example 2.1.6 and build
a groupoid metric η making sense of the orbit space M/G as Riemannian
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stack. The quotient M/G has a natural distance induced by the distance in
M (see 2.4), because the orbits are closed we have

dM/G(x̄, ȳ) = inf{d(x, gy) : g ∈ G}.

Assuming that ηM is complete the distance can be also recovered as the
infimum of the lengths of all curves connecting the orbits x̄ to ȳ (cf. [41, Sec.
3]), we recover this in Theorem 2.3.10 by improving the notion of length.
Modifications of the metric ηM to equivalent metrics shrinking the metric
in the orbits directions and unchanging in the perpendicular directions have
been used as approximations (in the Gromov-Hausdorff sense) for the metric
space M/G, see [2, Sec. 6.1]. Hence, Riemannian stacks offer a “differential
geometry” approach to the quotient space.

Example 2.2.6. If G⇒ M is an étale groupoid, the normal spaces are the
same as the tangent spaces. Then two metrics are equivalent if and only if
they are equal. If G ⇒ M is proper and étale, then [M/G] is an orbifold,
and (equivalence classes of) groupoid metrics agree with the orbifold metrics
as classically defined (see e.g. [31])

Example 2.2.7. The leaf space of a Riemannian foliation (M, η,F) is in
many cases an orbifold, for instance, if M is compact and the leaves are
closed. This has guided the efforts to approach the transversal geometry
of Riemannian foliations via pseudo-groups of local isometries [3]. Pseudo-
groups of local isometries give rise to étale Riemannian groupoids, and two
pseudo-groups of local isometries are equivalent if they have étale Riemannian
groupoids representing the same Riemannian stack (cf. [43, Appendix D]).

2.3 Lenght of stacky curves

We will see now that the distance on the coarse orbit space of a Riemannian
groupoid (see Sec. 2.1) can be obtained by measuring distances in the orbit
space M/G by the length of stacky curves. From now on, let us fix a Rie-
mannian groupoid (G⇒M, η), and consider its stack ([M/G], [η]).

Curves

Let I be a real interval, viewed as a stack represented by the unit groupoid
I ⇒ I. A stacky curve is defined as a stacky map α : I → [M/G].
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Since stacky curves are particular cases of stacky maps, they also admit a
cocycle description. Namely, a stacky curve α : I → [M/G] can be presented
by a covering U = {Ui} of I, and maps ai : Ui →M , aji : Uj ∩ Ui → G with

aj(x)
aji(x)←−−− ai(x) for all x in Ui ∩ Uj, and akj(x)aji(x) = aki(x) for all x in

Uk ∩ Uj ∩ Ui. This gives rise to fraction

(I ⇒ I)
φU←−
∼

(
∐

Uji ⇒
∐

Ui)
a−→ (G⇒M).

We call a/φU a good fraction if U = {Ui} is indexed by a subset of Z in
such way that Ui ∩ Uj 6= ∅ if and only if |i− j| 6= 1. Since the interval I has
topological dimension 1, we can use refinement arguments to show that any
curve can be presented by a good fraction. Two good fractions define the
same curve if, after restricting to a common refinement, they are isomorphic.

A good fraction a/φU for a stacky curve should be compared with the
notion of G-path (Hafliger paths) [31, 2.3], [42, 3.3]. They are defined as a

sequence alternating continuous paths xk
γk yk on M and arrows yk

gk−→ xk+1

in G. Given a good fraction a/φU for a stacky curve we can build a G-path
by splitting the interval, choosing tk ∈ Uk+1,k, and setting γk = ak|[tk,tk+1] and
gk = ak+1,k(tk). Conversely, a G-path on which every γk is smooth gives rise
to a good cocycle by first extending gk to a smooth curve g̃k : (tk−ε, tk+ε)→
G, g̃k(tk) = gk, and then modifying γk and γk+1 near tk so as to agree with
s(g̃k) and t(g̃k). Even though these operations depend on choices, they are
well-defined up to equivalence classes of fractions and small deformations of
G-paths. The advantages of our fractions is that they fit the general theory
of stacky maps, without the need of an ad-hoc definition, and they allow us
to make sense of smoothness.

Examples

Example 2.3.1. If M ×B M ⇒ M is the submersion groupoid associated
to the submersion p : M → B. A good fraction a/φU for a stacky curve is
the same as a curve on B with local lifts ai to M . In this case the maps
aji : I → M ×B M are given by (aj(t), ai(t)). Two good fractions are
equivalent if they induce the same curve on B.

Example 2.3.2. Let G ⇒ M be a proper étale groupoid and O = [M/G]
its underlying orbit orbifold. A smooth curve α : I → O is classicaly defined
as a continuous curve a : I → |O| = M/G on the coarse orbit space that can
locally be lifted to a smooth curve ai : Ii → Ui on an orbifold chart, see [42,
2.4]. A stacky curve α : I → [M/G] induces a curve in this classic sense,
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for if a/φU is a cocycle representing it, then the segments ai serve as local
lifts into an orbifold chart. But the classic notion of curve has not a clear
interpretation in terms of stacks. For instance, the smooth curves

a± : R→ R2, a±(t) =

{
(t, e 1/t) t ≤ 0

(t,±e−1/t) t ≥ 0

define the same curve on the quotient R2/Z2, where Z2 acts by reflections
around x-axis. But since they are not related by the action of the group, a+

and a− present different stacky curves.

Example 2.3.3. If G y M is an action and G nM ⇒ M the resulting
action groupoid, we can represent a stacky curve α : I → [M/G] as good
fraction given by curves ai : Ui → M and gi+1,i : Ui+1,i → G such that
gi+1,i(t)ai(t) = ai+1(t) for t ∈ Ui+1,i. The collection {gji} defines a G-cocycle
over the covering {Ui} of the interval, and since every principal G-bundle
over I is trivial, we can integrate the cocycle, gaining a global representative
a : I →M for any stacky curve α.

Example 2.3.4. Recall that a codimension q regular foliation F on a mani-
fold M can be described by a family of submersions fi : Vi → Rq, where {Vi}
is an open covering for M , such that for every x ∈ Vji there exists a germ
of diffeomorphism hji(x) ∈ Diff0(Rq) satisfying fj = hjifi on some neighbor-
hood of x (see e.g. [9]). If we use the holonomy groupoid Hol(F) ⇒ M to
make sense of the leaf space M/F as a differentiable stack, and we fix the
defining submersions fi : Vi → Rq, then a stacky curve α : I → [M/F ] always
admits a good fraction with ai : Ui → Vi and aji = hji. The relevant infor-
mation of each segment ai is that of the composition bi = fiai : Ui → Rq.
Thus a stacky curve on the leaf space is the same as a family of curves
bi : Ui → Rq that are connected by the defining cocycle hji, compare this
with the definition of curves for pseudo-groups [43, App. D, Def. 1.9].

Velocity and speed

Given α : I → [M/G] a stacky curve and t0 ∈ I, the velocity α′(t0) is
defined in terms of the coarse differential as [dt0α(∂t)] ∈ TO[M/G], where
O = α(t0) (see Sec. 1.2). If a/φU is a fraction presenting α, and t0 in Uk,
then we can present α′(t0) as [a′k(t0)] in [Nak(t0)O/Gak(t0)] ∼= TO[M/G].

Since the normal representations are by isometries, the speed of α at
time t0 can be defined as ‖α′(t0)‖ := ‖a′k(t0)N‖, where a′k(t0)N is the normal
component of a′k(t0) in the decomposition TxM = TxO⊥TxO⊥ (x = ak(t0)).
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Because equivalent metrics yield the same speed, this only depends on the
stacky metric [η] on [M/G]. In the next subsection we will prove the following
technical fact:

Proposition 2.3.5. The speed ‖α′(t)‖ of a stacky curve α : I → [M/G]
varies continuously on t ∈ I.

Knowing that the speed of a stacky curve varies continuously, it makes
sense to define the normal length of a curve.

Definition 2.3.6. Let α : I → ([M/G], [η]) be a stacky curve into a Rie-
mannian stack. The length of α with respect to [η] is defined as

`N(α) =

∫
I

‖α′(t)‖ dt.

In general, for a good fraction α = a/φU , we have

`N(α) =
∑
i

∫
Ui

‖α′(t)‖ dt−
∫
Ui∩Ui−1

‖α′(t)‖ dt

=
∑
i

∫
Ui

‖a′i(t)N‖ dt−
∫
Ui∩Ui−1

∥∥a′i−1(t)N
∥∥ dt.

Continuity of speed and technical results

In this subsection we will show Proposition 2.3.5. Working locally, we can
assume that α = a/1 : (I ⇒ I) → (G ⇒ M) is given by a groupoid mor-
phism, and moreover, that a(I) is completely included within a foliated chart
for the corresponding singular Riemannian foliation.

Given F a singular foliation on M and x ∈ M . If F is regular around x
then we can find a chart for which φ−1(Rp × y) are plaques of F , and if η is
a metric on M that makes F a Riemannian foliation, the projection U → Rq

becomes a Riemannian submersion. For a singular Riemannian foliation, we
have seen that they have foliated charts (Sec.1.1), now the dimensions of the
leaves may vary. So, it is rather unclear the existence of foliated charts for
which the second projection is a Riemannian submersion.

As seen in Sec. 2.1: if π : M → B is a submersion, for x, x′ in M there
is an isomorphism τx′,x : NxM → N ′xM . Where NxM = TxM/ kerx dπ and
we identify it with ker dxπ

⊥. We refer to the isomorphism τx,x′ as normal
transportation.
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Lemma 2.3.7. Given (M, η) a Riemannian manifold, π : M → B a surjec-
tive submersion, x0 ∈M , and ε > 0, there exists an open U ⊂M around x0

such that ∣∣ |〈τx′,xv, τx′,xw〉| − |〈v, w〉| ∣∣ ≤ ε ‖v‖ ‖w‖

for all x, x′ ∈ U , π(x) = π(x′) and v, w ∈ NxM .

Proof. If either v = 0 or w = 0 then the inequality clearly holds. Then we
may assume that v, w 6= 0. We will assume ‖v‖ = ‖w‖ = 1. Denote by
π1 : M ×B M → M the first projection and let S(NM)→ M be the sphere
bundle of the normal bundle to the fibers. Consider the bundle S(NM)×M
S(NM)→M and its pullback π∗1(S(NM)×M S(NM)). The function

f : π∗1(S(NM)×MS(NM))→ R, f(v, w, (x, x′)) = |〈τx,x′v, τx,x′w〉|−|〈v, w〉|

is continuous and equal to 0 on the fiber over (x0, x0). ThenW = f−1 ((−ε, ε))
is an open containing the fiber over (x0, x0). Since the projection

π∗1(S(NM)×M S(NM))→M ×B M

is proper, there must exist a basic open U × U around (x0, x0) such that its
preimage is contained in W . The result follows.

In the statement of the previous lemma, if π were a Riemannian submer-
sion, then the left-hand side of the inequality would vanish. We will use the
previous lemma to compare the speed of our curve a : I → U ⊂ M with
that of the orthogonal lift of its projection along the chart second projection
π : U → Rq. The next lemma will deal with the orthogonal lift, which we
know that at time t0 is orthogonal to the foliation.

Lemma 2.3.8. Let (M, η,F) be a singular Riemannian foliated manifold.
Let a : I → M be a smooth curve, such that a′(0) 6= 0 is orthogonal to F
and ε > 0. Then the angle between a′(t) and F is greater than π/2− ε near
0.

Proof. Denote x0 = a(0). Let P be a compact neighborhood of x0 on the
leaf, such that the normal bundle NF|P can be trivialized, namely NF|P ∼=
P×Rq. Denote byBδ the set of vectors inNF|P whose norm is smaller than δ.
For δ sufficiently small the map exp : P ×Bδ →M is a foliated chart around
x0 (see [43, p.192]). We denote by R the vector field in V = exp(P × Bδ)
given by the radial vector field (0, ∂

∂r
) in P ×Bδ.

The radial vector field R is always orthogonal to F . In order to show
that the angle between a′(t) and F is close to π/2, it is enough to show
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that the angle between R and a is close to 0, or equivalently, that its cosine
is close to 1. We will proceed by looking at the product P × Bδ with the
pullback metric and pullback foliation from M . If we call v = a′(0) and write
a(t) = tv +O(t2) in the foliated chart, then a′(t) = v +O(t). For the metric
we have the following expansion around (x0, 0): for all X, Y ∈ X(P ×Bδ),

η (X(x, v), Y (x, v))(x,v) = 〈X(x, v), Y (x, v)〉+O(|x− x0|2 + |v|2).

We can conclude that

lim
t→0

(
η
(
a′(t), Ra(t)

)
‖a′(t)‖a(t)

∥∥Rα(t)

∥∥
a(t)

)2

= lim
t→0

〈
a′(t), Ra(t)

〉2
+O(t3)

‖a′(t)‖2
∥∥Ra(t)

∥∥2
+O(t4)

= lim
t→0

〈a′(t), a(t)〉2 +O(t3)

‖a′(t)‖2 ‖a(t)‖2 +O(t4)

= lim
t→0

t2 〈v, v〉2 +O(t3)

t2 〈v, v〉2 +O(t4)
= 1.

Proposition 2.3.5 immediately follows from the next result on singular
Riemannian foliations. Given v ∈ TxM , we denote by vN the normal com-
ponent of v in the orthogonal decomposition TxM = TxF ⊕ TxF⊥.

Proposition 2.3.9. Let (M, η,F) be a singular Riemannian foliated mani-
fold. If a : I →M is a smooth curve, then ‖a′(t)N‖ is continuous on t.

Proof. Fix t0 ∈ I. We can suppose without loss of generality that t0 = 0 and
denote x0 = a(0). We assume that we are within a foliated chart π : U×V →
V around x0. On each point x ∈ U × V we have TxU ⊂ TxF ⊂ TxM . Let
Sx be the orthogonal complement of TxU inside the foliation. Then we have
the orthogonal decomposition

TxM = TxU ⊕ Sx ⊕ TxF⊥.

For a vector v ∈ TxM we write v = v1+v2+v3, relative to this decomposition.
Given x, x′ on the same fiber of π, the transportation τx′,x : Sx ⊕ NxF →
Sx′ ⊕Nx′F preserves the foliation, i.e. τx′,x(Sx) = Sx′ .

Observe that ‖a′(t)T‖2 = ‖a′(t)1‖2 +‖a′(t)2‖2, and the first term is clearly
smooth, so we need to show that the second one is also continuous. This is
enough to show that near 0 the contribution of the second term is arbitrarily
small.

Let b be the horizontal lift through x0 of the projection of π ◦ a and
write x = a(t) and x′ = b(t). Note that a′(t)2 is the orthogonal projection
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of τx,x′b
′(t) over Sx. Fix {wi} an orthonormal basis of NxF . From Lemma

2.3.7, for every ε > 0 there is a neighborhood of 0 where the following estimate
holds:

‖a′(t)2‖ =

∥∥∥∥∥∑
i

〈τx,x′b′(t), wi〉wi

∥∥∥∥∥
≤
∑
i

|〈τx,x′b′(t), wi〉|

≤
∑
i

|〈’
¯
(t), τx′,xwi〉|+ ε ‖b′(t)‖ ‖τx′,xwi‖

=
∑
i

|〈b′(t)2, τx′,xwi〉|+ ε ‖b′(t)‖ ‖τx′,xwi‖

≤
∑
i

‖b′(t)2‖ ‖τx′,xwi‖+ ε ‖b′(t)‖ ‖τx′,xwi‖

≤ (‖b′(t)2‖+ ε ‖b′(t)‖)
∑
i

‖τx′,xwi‖

≤ (‖b′(t)2‖+ ε ‖b′(t)‖)(1 + ε)
1
2 dimSx

≤
(
‖b′(t)2‖
‖b′(t)‖

+ ε

)
‖b′(t)‖ (1 + ε) dimM.

Consequently,

‖a′(t)2‖2 ≤
(
‖b′(t)2‖
‖b′(t)‖

+ ε

)2

(‖b′(t)‖ (1 + ε) dimM)
2
.

This leads us to

0 ≤ lim
t→0
‖a′(t)2‖2 ≤ c(1 + ε)2 lim

t→0

(
‖b′(t)2‖
‖b′(t)‖

+ ε

)2

,

where c = (‖b′(0)‖ dimM)2. By Lemma 2.3.8 we have

0 ≤ lim
t→0

‖b′(t)2‖2

‖b′(t)‖2

= lim
t→0

1− ‖b
′(t)‖2 − ‖b′(t)2‖2

‖b′(t)‖2

= 1− lim
t→0

‖b′(t)3‖2

‖b′(t)‖2

≤ 1− lim
t→0

(
η
(
b′(t), Rb(t)

)
t

‖b′(t)‖t
∥∥Rb(t)

∥∥
t

)2

= 0.
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It implies that for all ε > 0 the following holds:

0 ≤ lim
t→0
‖a′(t)2‖2 ≤ ε(1 + ε)2c.

We conclude that
lim
t→0
‖a′(t)2‖2

= 0.

Normal pseudo-distance

We have seen that a groupoid metric η on a groupoid G ⇒ M induce a
pseudo-distance on M/G defined by

d̄N(x̄, ȳ) = inf

{
n∑
i=1

d(xi, yi) : y
gn+1←−− yn, · · · , xi+1

gi+1←−− yi, · · · , x1
g1←− x, n ∈ N

}
.

Our first main theorem shows the quotient pseudo-distance dN can be mea-
sured with stacky curves.

Theorem 2.3.10. Given (G ⇒ M, η) a Riemannian groupoid, and given
x, y ∈M , the quotient pseudo-distance dN(x̄, ȳ) is the infimum of lengths of
generalized curves connecting the points:

dN(x̄, ȳ) = inf{`N(α) : x̄, ȳ ∈ im(ᾱ)}.

Proof. Fix x, y in M . We will show that for any ε > 0 there is a stacky
curve α : I → [M/G] connecting x̄, ȳ ∈M/G such that `N(α) < dN(x, y)+ ε.
By the definition of dN , we know there are points x1, y1, . . . , xn, yn such that

y
gn+1←−− yn, · · · , xi+1

gi+1←−− yi, · · · , x1
g1←− x, and

n∑
i=1

d(xi, yi) < d(x̄, ȳ) + ε/2.

For each i we will choose a curve ai : I → M connecting xi and yi and use
the curves ai to define a fraction

(
∐
i

Ui+1,i ⇒
∐
i

Ui)→ (G⇒M).

In order to get a well-defined stacky map, we pick the ai inductively. After
picking ai, let ti be the point in Ui ∩ Ui+1 such that ai(ti) = yi. Consider a
ai+1,i : Ji → G a local lift of ai along s such that ai+1,i(ti) = gi+1. We can
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pick the next curve ai+1 to agree with t ◦ ai+1,i in a small neighborhood of
ti. Since the size of the small neighborhood is arbitrary, we can pick the ai’s
satisfying `(ai) ≤ d(xi, yi) + ε

2n
. The resulting sequences ai, ai+1,i give rise to

a stacky curve α : I → [M/G] of length smaller than dN(x̄, ȳ) + ε:

`N(α) ≤
n∑
i=1

`N(ai) ≤
n∑
i=1

`(ai) ≤
n∑
i=1

(
d(xi, yi) + ε/2n

)
≤ dN(x̄, ȳ) + ε.

Let us now show that, given α : I → [M/G] a stacky curve connecting
x̄ and ȳ, its normal length must be greater or equal than dN(x̄, ȳ). By
the additivity of the integral, and by the triangle inequality for dN , we can
subdivide I into small intervals and show the inequality for each little curve.
This allows us to work locally. Thus, without loss of generality, we can
assume that the original α is defined by single curve a : [0, 1]→M .

Given t0 ∈ I, write x0 = a(t0). We will work locally, modifying the curve
a around t0. Let π : U × V → V be a foliated chart around x0. Then we
build a new curve a, which is just the horizontal lift along π of the projection
of a. We claim that:

‖b′(t)‖ ≤ (1 + ε) ‖b′3(t)‖ ≤ (1 + ε) ‖τ(a′3(t))‖ ≤ (1 + ε)2 ‖a′3(t)‖ ,

in small neighborhood of t0. The first inequality holds because of Lemma
2.3.8, the second one is because the transportation preserves the foliation
and therefore a′2(t) does not contribute to b′3(t), the third one is because of
Lemma 2.3.7. It follows that for every s ∈ [0, 1], there is an open interval
(s− δs, s+ δs) ⊂ [0, 1] such that:

dN(ā(s− δs), ā(s+ δs)) ≤ d(b(s− δs), b(s+ δs)) ≤
∫ s+δs

s−δs
‖b′(t)‖ dt ≤

≤ (1 + ε)2

∫ s+δs

s−δs
‖a′3(t)‖ dt = (1 + ε)2`N(a |[s−δs,s+δs]).

By compactness we can subdivide the interval [0, 1] into finitely many inter-
vals [si, si+1], and get

dN(x̄, ȳ) ≤
n∑
i=1

dN(ā(si), ā(si+1)) ≤ (1 + ε)2

n∑
i=1

`N(a |[si,si+1]) = (1 + ε)2`N(a).

Since ε is arbitrary, we have shown that dN(x̄, ȳ) ≤ `N(a), and the proof is
complete.

We close this section with some immediate corollaries of our characteri-
zation of dN by using stacky curves.
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Corollary 2.3.11. Equivalent metrics on the same Lie groupoid G ⇒ M
yield the same pseudo-distance on the coarse orbit space M/G.

Proof. It follows from the previous theorem and the fact that, with respect
to equivalent metrics, normal vectors have the same norm and consequently
generalized curves have the same normal length.

Corollary 2.3.12. If φ : G̃→ G is a Riemannian Morita map, then the map
φ̄ : M̃/G̃→M/G between the orbit spaces preserves distances.

Proof. We have a 1-1 correspondence between curves in both stacks. Since
the distance can be measured by curves, and since a curve α on [M̃/G̃] has
the same speed as φ ◦ α, we conclude that they have the same length and
that φ̄ is distance-preserving.

Corollary 2.3.13. The pseudo-distance dN on M/G is a Riemannian Morita
invariant; it depends only on the underlying Riemannian stack ([M/G], [η]).

Remark 2.3.14. Theorem 2.3.10 says that the quotient length structure
can be recovered by the normal length structure on the generalized curves
on [M/G]. If dN is a distance, then (M/G, dN) clearly inherits a quotient
length structure from (M, ηM) (see [11, pp.63]).



Chapter 3

Geodesics on Riemannian
stacks

In this chapter, we introduce the definition of geodesic for metrics on stacks.
We establish several foundational results, such as the existence and unique-
ness of geodesics, and a stacky Gauss Lemma. Our main result is a stacky
version of the classical Hopf-Rinow theorem. This chapter will proceed as
follows:

• In Section 3.1 we introduce the preliminary notion of geodesic fractions
and provide a uniqueness result for them.

• In Section 3.2 we discuss how Riemannian metrics can be used to pro-
vide local models for stacks, and we show a stacky version of the Gauss
lemma.

• In Section 3.3 we review the classic notion of distance minimizer curve
and how our geodesic fractions minimize distances. We recall what
are rays, then we show that “local rays” are equivalent to geodesic
fractions.

• In Section 3.4 we introduce our definition of geodesics on stacks from
our preliminary notion of geodesic fractions. We check that this is
well-defined using the equialence between “local rays” and geodesic
fractions.

• In Section 3.5 we state and prove our extension of the Hopf-Rinow
theorem to Riemannian stacks, and present some consequences.

40
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3.1 Geodesic fractions

In order to define geodesics on stacks, we need a preliminary notion. We will
introduce the notion of geodesic fractions and discuss existence and unique-
ness for them. In the remainder of this section, we will fix a Riemannian
groupoid (G⇒M, η).

Definition 3.1.1. A geodesic fraction is a fraction a/φU : IU 99K G, such
that the maps aij : Ui ∩ Uj → G are orthogonal geodesics to FG.

Since s and t are Riemannian submersions, the curves ai : Ui → M are
geodesics orthogonal to FM . We will use the term “geodesic” instead of
“geodesic fraction” when there is no risk of confusion.

The same argument based on refinement applied to curves (see Sec.2.3)
shows that a geodesic fraction is always equivalent to a good geodesic frac-
tion. From now on we make the assumption that all geodesic fractions are
good fractions.

The local existence of geodesics through a point with a given velocity
is a consequence of the local existence for geodesics on manifolds. For each
point x̄ ∈M/G and each coarse vector [v] ∈ Tx̄[M/G], there exists a geodesic
a on M which satisfies a(0) = x̄ and [a′(0)] = [v]. This induces a geodesic
fraction a/1 : (I ⇒ I) 99K (G⇒M) with the desired initial data.

Lemma 3.1.2. A curve fraction a/ψU : I 99K G is equivalent to a geodesic
fraction if and only if for every t ∈ I there is a smaller interval t ∈ J ⊂ I
such that (a/ψU)|J is equivalent to a geodesic fraction.

Proof. A restriction of a geodesic is clearly a geodesic. Conversely, let α :
I → [M/G] be a curve that is locally a geodesic. Then we can split I
into a sequence of intervals [tr, tr+1] in such a way that α|Ir is a stacky
geodesic, [tr, tr+1] ⊂ Ir. By definition, we can represent α|Ir by a finite
good fraction of orthogonal geodesics (arji, U

r
i ). The goal is to cook up a

good fraction for the whole a out of this local ones. Clearly we can assume
that U r−1

j ∩ U r
i = ∅ except for j = jmax maximal and i = imin minimal,

by shrinking the overlapping around tr. Choose gr connecting ar−1
jmax

(tr−1)
and arimin

(tr), and let γr : Jr → G be the orthogonal geodesic satisfying
γr(tr) = gr and projecting onto ar−1

imax
via the source map. Then we get a

good geodesic fraction for α by merging those of the local restrictions α|Ir
and connecting them with the γr’s.
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Remark 3.1.3. A geodesic fraction a/φU should be compared with the no-
tion of G-geodesic defined for étale groupoids present in [31, 2.3]. They

are defined as a sequence alternating geodesics xk
γk yk on M and arrows

yk
gk−→ xk+1 in G satisfying gkγ

′
k(tk+1) = γ′k+1(tk+1). We can address non-

étale groupoids just requiring that the geodesics γk being orthogonal. Given
a good geodesic fraction a/φU we can build a G-geodesic by splitting the in-
terval, choosing tk ∈ Uk+1,k, and setting γk = ak|[tk,tk+1] and gk = ak+1,k(tk).
Conversely, a G-geodesic gives rise to a good geodesic fraction by first ex-
tending gk to a geodesic ak+1,k : (tk− ε, tk + ε)→ G, with ak+1,k(tk) = gk and
s∗a
′
k+1,k(tk) = γ′k(tk), and setting ak = γk.

Examples

Example 3.1.4. In Riemannian submersions, the geodesics on the base are
recovered from the horizontal geodesics in the total space. Let p : M → B
be a Riemannian submersion. Given a curve a : I → B, it is a geodesic if
only if it lifts locally to horizontal geodesics on M . We can re-write all these
local lifts as a groupoid map ã :

∐
j,i Ui ∩ Uj → M ×B M . Therefore, a is a

geodesic on B if only if ã/φU : I 99KM ×B M is a geodesic.

Example 3.1.5. If G y (M, ηM) is an isometric action, we have seen in
the Examples 2.1.6, 2.2.5 how it is fit in the theory of Riemannian stacks.
The groupoid metric η built from ηM induces a metric η(1) on G ×M . By
construction, η(1) is such that the following are Riemannian submersions:

(G×G×M, ηG × ηG × ηM)
π2 //

(h,g,x)7→(hg−1,gx)
��

(G×M, ηG × ηM)

(g,x) 7→gx
��

(G×M, η(1)) s // (M, ηM).

A geodesic on (G×M, η(1)) which is orthogonal to the submanifolds G×Ox
has the form (k, a(t)), with k in G constant and a(t) a geodesic of (M, ηM)
which is orthogonal to the orbits. Thus, a geodesic fraction on (G nM ⇒
M, η) is a collection of geodesics {ai : Ui → (M, ηM)} orthogonal to the orbits
and elements {gji} of G, such that gjiai(t) = aj(t). But, choosing a good
covering for I, and using that the elements gi+1,i induce global isometries on
(M, ηM), we show that the geodesic fraction is equivalent to single geodesic
a : I →M orthogonal to the orbits (cf. [41]).

Example 3.1.6. Let (G⇒M, η) be a proper étale Riemannian groupoid and
O = [M/G] its orbit Riemannian orbifold. An orbifold geodesic α : I → O
is classicaly defined as a continuous curve α : I →M/G having the property
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that for any t ∈ I there exists a subinterval Ii ⊂ I containing t and an
orbifold chart (Ui, Gi, φ) around α(t) such that the restriction α|Ii lifts to
a smooth geodesic ai : Ii → Ui. This definition for orbifolds matches our
approach, the local lifts define geodesics ai : Ii → M , and it can always be
extended at the level of arrows, in a unique way up to equivalence of geodesic
fractions. The definition of geodesics for orbifolds on [31] are covered by the
equivalence discussed in the Remark 3.1.3.

Example 3.1.7. Recall that a Riemannian foliated manifold (M,F , η) can
be described by a family of Riemannian submersions fi : (Vi, η̃i) → (Rq, ηi),
where {Vi} is an open covering for M , such that for every x ∈ Vji there
exists a germ of isometry hji(x) ∈ Diff0(Rq) satisfying fj = hjifi on some
neighborhood of x. Using the holonomy groupoid (Hol(F)⇒M, η) to make
sense of the leaf space M/F as a Riemannian stack, and fixing the defining
Riemannian submersions fi : (Vi, η̃i → (Rq, ηi), then we can always assume
that a geodesic fraction satisfies ai : Ui → Vi and aj = hjiai. The relevant
information of each segment ai is that of the composition bi = fiai : Ui → Rq.
Thus a geodesic fraction on the leaf space is the same as a family of geodesics
bi : Ui → (Rq, ηi) that are connected by the defining cocycle hji, compare
this with the definition of geodesics in [5].

Uniqueness

The uniqueness here is understood as the uniqueness of the class of fractions.
Let a/ψU : I 99K G and b/φV : I 99K G be geodesic fractions. If there is
t0 ∈ I such that a/ψU(t0) = b/φV(t0) and (a/φU)′(t0) = (b/ψV)′(t0), we plan
to show that a/ψU and b/φV are equivalent fractions.

As we will now see, geodesic fractions satisfy local uniqueness for given
initial data. Given two orthogonal geodesics a, b : I → M and b(0)

g←− a(0)
an arrow with g · a′(0) = b′(0), then there is locally a natural isomorphism
γ : J → G between a and b. Take γ : J → G as the geodesic of G with
initial conditions γ(0) = g and γ′(0) = v, where v is the horizontal lift of
a′(0) along ds. The geodesic γ is orthogonal to s-fibers and t-fibers, and this
implies that s ◦ γ and t ◦ γ are geodesics. From the uniqueness of geodesics
on M we have s ◦ γ = a and t ◦ γ = b in their intervals of definition. The
first point to get the global uniqueness is extend to the natural isomorphism
γ to the whole interval I.

Lemma 3.1.8. (cf. [25, Lem. 4.1.2]) Let G ⇒ M be a proper Riemannian

groupoid. Take a, b : I → M orthogonal geodesics on M , and b(0)
g←− a(0)
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an arrow with g · a′(0) = b′(0). Then the orthogonal geodesic γ : J ⊂ I → G
is extended to I.

Proof. Let (p, q) ⊂ I be the maximal interval where γ is defined, and without
loss of generality suppose that γ′(t) is unitary. Consider a sequence tn ↗
b. Then the sequence {(γ(tn), γ′(tn))} is contained in the sphere bundle
of TG over G(a([p, q]), b([p, q])), that we will denote by K. By properness
of G the set K is compact. Hence, there exists a convergent subsequence
(γ(tn), γ′(tn)) → (g0, v0). There are ε > 0 and W a neighborhood of (g0, v0)
in TG, such that every geodesic flow line starting in W is defined at least in
the interval (−ε, ε). For n sufficiently large, we have (γ(tn), γ′(tn)) ∈ W and
q − tn < ε. Thus, we can extend γ to the interval (p, tn + ε). But q < tn + ε,
which leads to a contradiction.

Example 3.1.9. If F is the foliation in R2 \ {0} given by the vertical lines,
then its holonomy groupoid Hol(F)⇒ R2 \ {0} is not proper. Consider the
orthogonal geodesics a(t) = (t, 1) and b(t) = (t,−1) in R2 \ {0}. There is a
natural isomorphism γ : (0,+∞)→ Hol(F) between a and b in (0,+∞), but
it can not be extended to 0 once a(0) and b(0) are not in the same leaf. The
lack of uniqueness in this example can be thought of a consequence that the
orbit space of a non-proper groupoid might not be Hausdorff.

The following proposition is about global uniqueness of geodesics with
given initial conditions in proper groupoids.

Proposition 3.1.10. Let G ⇒ M be a proper Riemannian Lie groupoid.
Suppose that a/ψU and b/φV are geodesic fractions. If there is t0 ∈ I such
that a(t0) = b(t0) and a′(t0) = b′(t0), then a/ψU and b/φV are equivalent
fractions.

Proof. Choosing a good refinement W of U and V , then a/ψU and b/φV are
equivalent to a/ψW and b/φW respectively.

For simplicity, we assume t0 ∈ W0. Lemma 3.1.8 says that there is a
natural isomorphism γ0 : W0 → G between a0 and b0. As next step, choose
a point t1 in W0 ∩W1. So, we can compose the arrows

b1(t1) a1(t1)oo

a01(t1)

��
b0(t1)

b10(t1)

OO

a0(t1)
γ0(t1)
oo
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to obtain an arrow b1(x0)
g1←− a1(x0) which satisfies g1 · a′1(x0) = beta′1(x0).

Applying the lemma again, we get a natural isomorphism γ1 : W1 → G
between a1 and b1. The equation b10(t) = γ1(t)a10(t)γ0(t)−1 holds for all
y ∈ W0 ∩ W1, because the product and inverse of orthogonal geodesics is
again a orthogonal geodesic (see Sec. 2.1) and both sides have the same
initial conditions at t1.

We inductively construct natural isomorphisms γi between ai and bi sat-
isfying bi+1,i(t) = γi+1(t)ai+1,i(t)γi(t)

−1 for all t ∈ Wi ∩ Wi+1. The map
γ : tWi → G induced by the γi’s is a natural isomorphism between a and
b. Clearly, the equations s ◦ γ = a and t ◦ γ = b hold, because they hold for
each γi. We shall check that bij(t) = γi(t)aij(t)γj(t)

−1. Since Ui ∩ Uj = ∅ if
|j − i| 6= 1, we only need check that bi+1,i(x) = γi+1(x)ai+1,i(x)γi(x)−1, which
is true by construction.

Corollary 3.1.11. Let G⇒M be a Riemannian proper groupoid. If a/ψU :
I 99K G and b/φV : J 99K G are geodesic fractions such there exists t0 ∈ I∩J
satisfying a(t0) = β(t0) and a′(t0) = b′(t0), then there exists a geodesic
fraction c/φW : I ∪ J 99K G that extends a/ψU and b/φV .

Remark 3.1.12. If the metric on G is complete then the hypothesis about
properness can be dropped in all the results above, i.e., global uniqueness
holds when the metric on G is complete.

3.2 Normal neighbourhoods

The linear model of G around O is the groupoid formed by the normal bun-
dle NGO ⇒ NO, whose objects and arrows are given by NO = TM |O/TO
andNGO = TG|GO/TGO, and structure maps are induced by differentiating
those of G. The action groupoid from the normal representation GO y NO
is isomorphic to the linear model NGO ⇒ NO (see [20, Sec 3.4]), so we also
refer to it as normal representation.

Denote by DO ⊂ NO the domain of the exponential map in the normal
directions to O in M , the same for DGO ⊂ NGO. If G is a proper groupoid
Lemma 3.1.8 shows that DGO = ds−1(DO) ∩ dt−1(DO). By the multiplicity
property of the orthogonal geodesics (see Eq. 2.3) the exponential map

exp : (DGO ⇒ DO)→ (G⇒M) (3.1)
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is a groupoid map. This is a crucial fact in the proof of the following theorem.

Theorem 3.2.1 ([24]). Let (G⇒ M, η) be a proper Riemannian groupoid.
Given O ⊂M an orbit, there is a neighborhood V ⊂ DO of O such that the
map

exp : (NGOV ⇒ V )→ (G⇒M)

is an isomorphism onto its image.

The above theorem is just a re-statement of the linearization result pre-
sented in [24], we will review linearizations in Sec. 4.1. From this statement,
and thinking of NGO ⇒ NO as a model for TO[M/G] (see Ex. 1.2.5), we
realize that the theorem shows the existence of “normal neighborhoods” for
Riemannian stacks. This leads us to formulate a version of the normal neigh-
borhood theorem in terms of the normal representations. This will illustrate
the fact that separated stacks are modeled in terms of the normal represen-
tations.

By the uniqueness of geodesic fractions, given [v] ∈ TO[M/G] there is a
unique class of geodesic fraction α, with α[v](0) = O and α′[v](0) = [v]. The

set DO/DGO ⊂ TO[M/G] is precisely the set of directions [v] ∈ TO[M/G] such
that α[v] is defined at least in the interval [0, 1]. The coarse exponential
map

expO : DO/DGO →M/G

is defined by
expO([v]) = α[v](1).

The coarse exponential map is the induced map by the exponential map on
the normal directions (Eq. 3.1).

Let us introduce some notations and definitions. For a S ⊂M , we call by
its saturation the set t(s−1(S)). Denote by BN

ε the set of vectors in NxM
with norm smaller than ε. The normal representations locally model [M/G]
in the following sense:

Corollary 3.2.2. Let G⇒M be a proper Riemannian groupoid and x ∈M .
Then there exists ε > 0 such that the saturation U of exp(BN

ε ) is open and

exp : (Gx nBN
ε ⇒ BN

ε )→ (GU ⇒ U)

is a Morita map.
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Gauss lemma

In Riemannian geometry, the Gauss’s lemma asserts that any sufficiently
small geodesic sphere centered at a point is perpendicular to every geodesic
through the point, and moreover, in radial directions, the exponential map
is an isometry. Next, we present a version of this second property for stacks.

Proposition 3.2.3 (Gauss Lemma). Let G ⇒ M be a proper Riemannian
groupoid and x ∈M . Then there exists ε > 0 such that

dN(x̄, expx̄([v])) = ‖v‖ , ∀ v ∈ BN
ε ⊂ NxM.

Proof. From Corollary 3.2.2, there is ε sufficiently small such that exp :
Gx nBN

ε (x)→ G is a Morita map onto the saturation of its image, denoted
by GU ⇒ U . We can transport the groupoid metric class on GU ⇒ U
to Gx n BN

ε (x) ⇒ BN
ε (x), since they are Morita equivalent. The spaces

(BN
ε (x)/Gx, dN) and (U/GU , dN) are isometric by Corollary 2.3.13. We have

reduced the problem to the case where x is a fixed point.
Consider an orbit O ⊂ Bε(x). Since O is closed, the distance as subsets

of M between x and O is realized, i.e., there exists y ∈ O such that d(x,O) =
d(x, y). Let v ∈ Bε(x) be a vector such that y = exp(v). By the classic Gauss
lemma, we have that d(x, y) = ‖v‖.

We want to show that dN(x̄,O) = d(x,O). Given y′ = exp(v′) another
point in the same orbit O, we have that d(x, y′) = ‖v‖, and that there exists

an arrow y′
g←− y. There is (g0, v0) ∈ Gx n Bε(x) such that exp(g0, v0) = g.

Since exp commutes with source and target, we have exp(v) = s(g) =
s(exp((g0, v0))) = exp(s(g0, v0)) = exp(v0), thus v = v0, and the same argu-
ment shows that v′ = g0 ·v. We conclude that d(x,O) = ‖v‖ = ‖v′‖ = d(x, y′)
for all y ∈ O. Hence, the orbits are contained in the geodesic spheres around
x.

From the definitions we have dN(x̄, ȳ) ≤ d(x,Oy). Suppose that there
is a chain c = {a1, b1, . . . , an, bn} connecting x̄ to ȳ with

∑n
i=1 d(ai, bi) <

d(x,Oy). Because the orbit Oy is equidistant to x and by triangle inequality,
the following inequality holds:

d(x,Oy) = d(a1, bn) ≤
n∑
i=1

d(ai, bi) < d(x,Oy).

Changing y by expx̄([v]), we conclude that

dN(x̄, expx̄([v]) = d(x,Oexpx(v)) = ‖v‖ .
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For x in M and ε > 0 as in the lemma above, we call the set Bε(x̄) =
exp

(
BN
ε /Gx

)
by the normal ball and the set Sε(x̄) = exp

(
SNε /Gx

)
by the

geodesic sphere. From their definitions both are compact sets.

3.3 Distance-minimizing curves

In Riemannian geometry, geodesics are locally distance-minimizing curves,
but geodesics fractions may not minimize distances, see Example 3.3.1. We
will explain in this section how our geodesic fractions are related to the nor-
mal distance, i.e., that geodesic fractions minimize distances in special way.

A curve fraction a/φU : I 99K G is a distance minimizer if

dN(a(s), a(t)) = `N
(
a/φU |[s,t]

)
for all s, t ∈ I. We say that a/φU is a local distance minimizer if for
all t ∈ I there is an open interval containing t such that a/φU |J minimizes
distances.

Example 3.3.1. Let Z2 n R2 ⇒ R2 be the action groupoid given by the
reflection around the x-axis, with the Euclidean metric as groupoid met-
ric. Consider the straight line a : R → R2, a(t) = (t,−t); so, a/1 is a
geodesic fraction. The normal length `N(a/1) is equal to the length `(a),
thus `N(a/1|[s,t]) = |t− s|. Therefore, there is no open interval J containing
0 such that a/1|J is distance minimizer.

We say that a curve fraction a/φU : I 99K G is a local ray, if for any
t0 ∈ I, there is an open interval J ⊂ I containing t0 such that

dN(a(t0), a(t)) = `N(a/φU |[t0,t])

for all t ∈ J . Since this is defined by the normal length, being a local ray is a
property of the fraction class. From the Gauss lemma, geodesics are clearly
local rays, and the converse is covered by the next proposition.

Theorem 3.3.2. Let (G ⇒ M, η) be a proper Riemannian groupoid. If a
curve fraction a/φU : I 99K G is a local ray, then it is equivalent to a geodesic
fraction.
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Proof. Suppose that a is a local ray around every t ∈ I. Fix t0 in I. By
restricting to a neighborhood of t0 we can assume that a is a groupoid curve
a : I → G. Call x = a(t0). We will restrict to the local model around x in a
similar fashion as done in the proof of Gauss lemma 3.2.3. For ε sufficiently
small Corollary 3.2.2 says that

exp : (Gx nBN
ε ⇒ BN

ε )→ (GU ⇒ U)

is a Morita map, where U is the saturation of exp(BN
ε ). We pullback the

metric η to Gx n BN
ε ⇒ BN

ε along the exponential map. So, we can locally
lift the curve a to an isomorphic one ã : J → BN

ε through the origin in BN
ε .

Then for t near t0 we have that

`N(a|[t0,t]) = dN(a(t0), a(t)) = dN(ã(t0), ã(t)) = d(x, ã(t))

here the first identity is because a is a local ray at t0, the second because a
Riemannian Morita map preserves distances (Cor. 2.3.13) and the last one
is because of Gauss lemma (3.2.3). It follows that ã is a local ray at t0 in the
manifold sense, and therefore ã is an orthogonal geodesic. This proves that
the stacky curve a is locally a geodesic, and therefore a geodesic by Lemma
3.1.2.

3.4 Stacky geodesics

In Riemannian geometry, the concept of geodesic is the generalization of
straight lines in Euclidian space. We will define geodesics for Riemannian
stacks and present basic properties. Our definition extends previous defini-
tions of geodesics on orbifolds and orbit spaces of isometric actions [41, 31].

Definition 3.4.1. A geodesic on a Riemannian stack ([M/G], [η]) is a curve
α : I → [M/G] that can be represented by a geodesic fraction.

We need to check that the above definition is, in fact, a Riemannian stack
object. We will show that this definition is invariant by the equivalence of
metrics and Riemannian Morita fibrations. The fact that geodesic fractions
do not depend on the metric in the class comes from the characterization of
the geodesic fractions as minimizing distances curves in the Theorem 3.3.2.
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Proposition 3.4.2. Let G ⇒ M be a proper groupoid. Consider η1, η2

equivalent groupoid metrics on G. A fraction a/φU : I 99K G is equivalent to
a geodesic fraction of η1 if and only if it is equivalent to a geodesic fraction
of η2.

Proof. A curve being a local ray depends only on the normal distance dN
and the normal length. We have seen that dN and `N are invariant in the
metric classes. So, if a/φU is equivalent to a geodesic fraction of η1, then it is
a local ray for both η1 and η2. By Proposition 3.3.2 we conclude that a/φU
is equivalent to a geodesic fraction of η2.

Since φ is a Morita map, if ã/φŨ : I 99K G̃ and b̃/φṼ : I 99K G̃ are
equivalent fractions, then (φ◦ ã)/φŨ and (φ◦ b)/φṼ are equivalent. The same

holds for lifts, i.e., if ã/φŨ and b̃/φṼ are lifts of equivalent curve fractions
a/φU and b/φV in G, then they are equivalent. Note that we only need to
show that φ sends geodesic fractions to geodesic fractions, and it is possible
to lift geodesic fractions (up to equivalence class) to geodesic fractions along
Riemannian Morita fibrations. The next proposition states precisely what
we need.

Proposition 3.4.3. Let φ : (G̃, η̃) → (G, η) be a Riemannian Morita fibra-
tion. The following holds:

i) φ projects geodesic fractions to geodesic fractions;

ii) for each geodesic fraction a/φU in G, there is an equivalent geodesic
fraction a/φW in G, which admits a lift to a geodesic fraction ã/φW in

G̃.

Proof. i) Let ã/φŨ : I 99K G̃ be a geodesic fraction. The maps ãij : Ui∩Uj →
G̃ are orthogonal geodesics, so the maps φ ◦ ãij : Ui ∩ Uj → G are also
orthogonal geodesics by the observation that Riemannian Morita maps send
the normal spaces of G̃ isometrically into the normal spaces of G.

ii) Because φ(1) : G̃ → G is a Riemannian submersion which sends the

normal spaces in G̃ to the normal spaces in G, we can locally lift orthogonal
geodesics on G to orthogonal geodesics on G̃. Let α/φU be a geodesic fraction
in G. Consider W = {Wk} a refinement of U which is a good covering, and

such that the geodesics αkl : Wk∩Wl → G have global lifts ãkl : Wk∩Wl → G̃.
Then the geodesic fraction ã/φW is a lift of the geodesic fraction a/φW , which
is equivalent to a/φU .
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3.5 Hopf-Rinow theorem

One of the foundational results of Riemannian geometry is the Hopf-Rinow
theorem. This theorem states that completeness as metric space for a Rie-
mannian manifold is equivalent to the geodesic completeness condition (i.e.
all geodesics are defined for all time). We present here a stacky version of
this theorem, whose statement is basically the same, but the proof contains
significant differences. For instance, the geodesics on stacks are not local
distance minimizers (see 3.3.1).

We start with an elementary comment and lemma about concatenation
of stacky curves, which we will use in the proof of the Hopf-Rinow’s theorem.
So far, we have avoided the use of ”piecewise smooth” stacky curves, but we
will briefly cover the cases of interest.

Given two stacky curves α, β : I → [M/G] through the same point, i.e.
α(0) = β(0) = x̄, it is possible to combine them into a continuous stacky
curve ξ, called concatenation, defined by

ξ(t) =

{
α(t) t ≤ 0

β(t) t ≥ 0.

The resulting curve is not necessarily a smooth stacky curve. But the velocity
ξ′(t) is defined everywhere except for t = 0, so it still makes sense to compute
its normal length `N(ξ).

If a stacky curve α is presented by a fraction α̃ij/φU where the pieces α̃i
are curves orthogonal to the characteristic foliation FM , then we say that α
is an orthogonal curve.

Lemma 3.5.1. If α, β : (−ε, ε)→ [M/G] are orthogonal curves through the
same point such that their concatenation ξ = α ∗ β is a distance minimizer,
then ξ is actually a stacky curve, which is moreover geodesic.

Proof. Because of the local nature of the problem, we can suppose that both
are curves in M . Orthogonal curves are preserved by horizontal lifts and
projections along s and t. We can suppose that α and β are orthogonal curves
on M which start at the same point x in M . Since ξ′(t) is orthogonal where
it is defined, the following equality holds: `N(ξ|[a,b]) = `(ξ|[a,b]). Therefore

d(ξ(a), ξ(b)) ≥ dN
(
ξ(a), ξ(b)

)
= `(ξ|[a,b]).

Thus ξ is a curve in M that minimizes distance, and by classic differential
geometry, ξ has to be a geodesic on M .
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We say that a Riemannian stack ([M/G], [η]) is geodesically complete
if any geodesic α : I 99K G can be extended to a geodesic α : R 99K G.

Theorem 3.5.2 (Hopf-Rinow). The stack ([M/G], [η]) is geodesically com-
plete if and only if (M/G, dN) is a complete metric space.

Proof. Suppose first that (M/G, dN) is complete. Let α : I → [M/G] be a
geodesic with ‖α′(t)‖ = 1, and let I = (a, b) ⊂ R be the maximal interval
where α is defined. Suppose that b < ∞, and consider tn an increasing
sequence converging to b. Thus dN(α(tn), α(tm)) ≤ |tn − tm|, and therefore

lim
n→∞

α(tn) = x̄.

Fix x ∈ π−1(x̄). There exists ε > 0 and a neighborhood U ⊂ M of x where
every unitary geodesic is defined at least for time (−ε, ε). Since π(U) is an
open neighborhood of x̄, there is n0 sufficiently large such that α(tn0) is in
π(U) and b− tn0 < ε. Choosing z ∈ U such that π(z) = α(tn0), and choosing
v ∈ TzM a normal vector representing α′(tn0), we extend α to the interval
(a, tn0 + ε). This contradicts the maximality of (a, b).

We assume now that the stack [M/G] is geodesically complete. The
argument mimics the standard proof of Hopf-Rinow for manifolds. Given
x̄, ȳ points in M/G, we will show that there exists a minimizing-distance
geodesic α connecting them. Fix x in the orbit x̄, consider the normal Bε(x̄)
given by Gauss lemma 3.2.3 applied to x. Since Sε(x̄) is compact, there is a
direction [v] with ‖[v]‖ = 1 such that

dN(x̄, exp(ε[v])) = inf{dN(ȳ, exp([w])) : w ∈ Sε(x̄)}.

Denote by α the geodesic through x̄ with velocity [v]. We are going to show
that α(r) = ȳ, where r = dN(x̄, ȳ). Consider the times at which α minimizes
distances from x̄ to ȳ:

A := {s ∈ [0, r] | dN(ȳ, α(s)) = dN(x̄, ȳ)− s}.

Note that 0 ∈ A and that A is closed by continuity. Let b be the supremum
of A. Suppose that b < r, otherwise we are done. By applying the stacky
Gauss lemma 3.2.3, and reasoning as before, we know that there exists a
direction [w] in Tα(b)[M/G] defining a geodesic β starting at α(b) satisfying

dN(β(s), ȳ) = dN(α(b), ȳ)− s = r − b− s.
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By the triangle inequality,

dN
(
x̄, β(s)

)
≥ dN(x̄, ȳ)− dN(β(s), ȳ) = r − (r − b− s) = b+ s.

The concatenation ξ of α and β minimizes distances by Lemma 3.5.1. By the
global uniqueness of geodesics, we have ξ = α, thus α minimizes distances
even after r, contradicting the maximality.

Finally, since any limited set A of M/G is contained in a normal ball
BR(x̄) for some R ∈ R, its closure is compact, and in particular, any Cauchy
sequence must be convergent.

Corollary 3.5.3. If the coarse orbit spaceM/G is compact, then ([M/G], [η])
is geodesically complete.

Corollary 3.5.4. If (G ⇒ M, η) is a proper Riemannian groupoid, then
there is a smooth function on G(2) such that ([M/G], [fη]) is geodesically
complete.

Proof. For each point x̄ ∈M/G set the value

b(x̄) = sup{r : Br(x̄) is compact}.

If b reaches infinity at some point, the triangle inequality implies that every
bounded set in M/G is compact, and from Hopf-Rinow [η] is complete. We
assume that b(x̄) <∞ for all points in M . The function b satisfies

|b(x̄)− b(ȳ)| ≤ dN(x̄, ȳ).

The Gauss lemma shows that b(x̄) > 0 for all x̄ ∈ M/G. Hence, 1/b(x̄) is a
continuous function.

Using a partition of unity we can construct a smooth function f0 on M
such that h(x) ≥ 1/b(x̄) > 0. Choosing a normalized Haar system {µx}x∈M
we can take the average h which is an invariant smooth function (see [18,
p.51]), and satisfies h(x) ≥ 1/b(x̄). Define f to be the smooth function on
the composable arrows giving by f = π∗1s

∗h. Because h is constant along the
orbits, f is invariant under the S3 action on G(2) and consequently constant
along the fibers of π2 and m. Thus, η̃ = f 2η is a groupoid metric on G⇒M
by the properties of f .

The sets in M/G with diameter smaller than 1/3 with respect to [η̃]

are relatively compact. Fix x̄ ∈ M/G. Denote by B̃1/3(x̄) the ball for the
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distance of [η̃]. Let ȳ be a point in B̃1/3(x̄), and suppose that b(x̄) ≤ dN(x̄, ȳ).
Then b(x̄) ≤ `N(α) for any generalized curve α connecting x̄ to ȳ. We give a
lower bound for the [η̃]-length of α in terms of its [η]-length:

˜̀
N(α) =

∫
I

f ◦ α(t) ‖α′(t)‖ dt

= f(α(t0))`N(α)

>
`N(α)

b(α(t0))
,

where the second equality is ensured by the mean value theorem for definite
integrals of continuous functions, since f : M/G→ R and the speed ‖α′(t)‖
are continuous functions. Because b(α(t0)) ≤ b(x̄) + dN(x̄, α(t0)), we have
b(α(t0)) ≤ b(x̄) + `N(α). Hence,

˜̀
N(α) >

`N(α)

b(x̄) + `N(α)
≥ L

2L+ L
=

1

3
,

and we conclude that d̃N(x̄, ȳ) ≥ 1/3, a contradiction with the fact that

ȳ ∈ B̃1/3(x̄). Thus B̃1/3(x̄) ⊂ Bb(x̄)/2(x̄) which is compact.
Because closed sets with diameter smaller than 1/3 are compact, we can

ensure that any Cauchy sequence is convergent. Therefore, by the Hopf-
Rinow theorem [f 2η] is complete.



Chapter 4

Linearization versus
completeness

In this chapter, we deal with the relations between the linearization of groupoids
and the existence of complete metrics. This chapter will be organized as fol-
lows:

• In Section 4.1 we recall linearization and invariant linearization for
groupoids and some related results.

• In Section 4.2 we review the characterization of locally trivial fiber
bundles as the submersions that admit a complete and fibered met-
ric and relate this with a possible characterization of the invariantly
linearizable groupoids.

• In Section 4.3 we show that the existence of complete groupoid met-
rics implies the existence of invariant linearization. As a consequence,
we deduce the Tube theorem for proper Lie group actions from the
groupoid linearization perspective.

• In Section 4.4 we build a transversely invariant metric from the hypoth-
esis of the existence of invariant linearizations, and we discuss how we
expect to improve it into a characterization of the invariant linearizable
groupoids.

4.1 Review of linearization

The linearization of a Lie groupoid around an orbit consists of establishing
an isomorphism between the linear model (see Sec. 3.2) and the original

55
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groupoid in suitable neighborhoods. There are some possibilities in the choice
of these neighborhoods, as we will see. Let G ⇒ M be a Lie groupoid, and
let O ⊂M be an orbit. We say that:

• G is weakly linearizable around O if there is a groupoid isomorphism

(Ṽ ⇒ V )
φ∼= (Ũ ⇒ U),

where Ṽ ⇒ V and Ũ ⇒ U are neighborhoods ofGO ⇒ O inNGO ⇒ NO
and G⇒M , respectively, and φ is the identity on GO ⇒ O.

• G is linearizable around the orbit O if Ṽ = NGOV and Ũ = GU .

• G is invariantly linearizable at O if it is linearizable, and the neigh-
borhoods U and V can be taken saturated.

We call the pair (Ṽ ⇒ V, φ) a linearization around O; we will not mention φ
unless it is necessary. If G⇒M is invariantly linearizable around any orbit,
we call it an invariantly linearizable groupoid.

The multiplicative property of the geodesics on a Riemannian groupoid
(see Eq. 2.3) shows that the exponential map in the normal directions of an
orbit is a groupoid map. This provides the following linearization theorem:

Theorem 4.1.1 ([24], Thm.5.11). Let (G⇒M, η) be a Riemannian groupoid,
and let O ⊂ M be an orbit. Then the exponential map defines a weak lin-
earization of G around O.

Linearization results for proper groupoids are present in [19, 58, 62]. In
[24] the authors deduce from the above theorem the main result on lineariza-
tion of proper groupoids:

Corollary 4.1.2 (cf. Thm.3.2.1). If G ⇒ M is a proper groupoid and
O ⊂M is an orbit, then G is linearizable at O.

Invariant linearization of s-proper groupoids covers a large number of re-
lated classical results: Ehresmann’s fibration theorem [27], Reeb’s local sta-
bility theorem for foliations [48], and linearization of compact group actions
[44].

Corollary 4.1.3. If G ⇒ M is a Lie groupoid whose source map is proper
and O ⊂M is an orbit, then G has an invariant linearization around O.
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Recall that the existence of invariant linearizations for action groupoids
which come from proper Lie group actions is covered by the Tube theorem
for proper Lie group actions [46]. The above corollary does not cover this
case since the existence of invariant linearization holds without requiring s-
properness. We will see how Theorem 4.1.1 can be used to provide invariant
linearizations in this case (see Corollary 4.3.5).

4.2 Invariant linearization: from submersions

to groupoids

We state in this section how we plan to deal with a characterization of the
invariantly linearizable groupoids. A characterization of invariantly lineariz-
able groupoid has been discussed in many works [19, 20, 24]. There is a
particular case where this is well understood: locally trivial fiber bundles. In
this case, a submersion being a locally trivial fiber bundle is equivalent to its
submersion groupoid being invariantly linearizable.

The locally trivial fiber bundles are characterized by the existence of
complete fiber metrics. This result has been claimed by several authors
[29, 38, 60], but the proofs there always relied on the false assumption that
fibered metrics are closed under convex combinations [24, Ex. 2.3]. Then
[21] provides a correct proof of the existence of complete fibered metrics:

Theorem 4.2.1. Given p : M → B a submersion, then p is locally trivial if
only if there is a p-fibered and complete metric on M .

The locally trivializations are obtained from the exponential map of the
complete metric, observing that the orthogonal bundle to fibers is trivial and
using the following proposition:

Proposition 4.2.2. ([24, Prop.5.9]) Let p : (M, ηM) → (B, ηB) be a Rie-
mannian submersion with ηM a complete metric. If S ⊂ B is an embedded
submanifold and S̃ = p−1(S), then for any open subsets S̃ ⊂ Ũ ⊂ NS̃ and
S ⊂ U ⊂ NS such that dp(Ũ) ⊂ U , the following square commutes:

Ũ
exp //

dp
��

M

p

��
U

exp // B

Moreover, if exp : U → B is an embedding then exp : Ũ → M is also an
embedding.
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The original statement in [24] does not require completeness on the metric
ηM , but this simplifies notations and covers our interests. This proposition
together with Theorem 4.1.1 reduce the invariantly linearization problem to
the problem of finding saturated tubular neighborhoods. We deduce the ex-
istence of saturated tubular neighborhoods from the existence of groupoid
metrics which are complete on the units, see Proposition 4.3.1.

The strategy used in [21] to show the existence of a complete fibered
metric has three fundamental steps:

1o choose a complete metric ηB on the base;

2o choose a complete metric ηF on the fiber;

3o gluing the product metric ηB×ηF on the local trivializations by a smart
partition of unit (“tube trick”).

This process produces a p-fibered and complete metric ηM on M . The
metric ηM can be extended to a groupoid metric on the submersion groupoid
M×B ⇒ M , see Example 2.1.5. We conclude that: if the submersion
groupoid M×BM ⇒M is invariantly linearizable, then it admits a groupoid
metric that is complete on the units.

Fibered metrics on submersions are the same as transversely invariant
metrics on their submersion groupoids. Recall that if G ⇒ M is a Lie
groupoid then a transversely invariant metric on M is a metric such that
the normal representation acts by isometries. We use the strategy of [21]
to build complete transversely invariant metrics on invariantly linearizable
groupoids, see 4.4.1. As in the case of submersions, we expect to extend our
result to

If G ⇒ M is an invariantly linearizable proper Lie groupoid, then there
exists a groupoid metric η such that the metric ηM is complete.

This statement together with Proposition 4.3.1 would lead to a charac-
terization for the invariantly linearizable groupoids:

A proper groupoid is invariantly linearizable if and only if it admits a
groupoid metric complete on the units.
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4.3 Completeness implies invariant lineariza-

tion

In Riemannian geometry the compactness of a Riemannian manifold can be
replaced by completeness in many circumstances. In this spirit, we will sub-
stitute the s-properness condition for the existence of invariant linearizations
by a completeness condition. We will show that the orbits have a positive
injective radius, i.e., the normal exponential is an embedding for vectors with
norm smaller than a fixed number. This combined with the proof of Theorem
4.1.1 provides the invariant linearizations.

Proposition 4.3.1. If (G ⇒ M, η) is a proper Riemannian groupoid such
that ηM is complete and O is an orbit, then G ⇒ M has an invariant lin-
earization around O.

Proof. Since G⇒M is proper and the metric ηM is complete the orthogonal
geodesics on G are defined for all time by Lemma 3.1.8. Let V ⊂ NO be
a neighborhood around O. Because η is a groupoid metric the exponential
map

exp : (NGOV ⇒ V )→ (G⇒M)

is a groupoid map. The fact that the source maps is a Riemannian submersion
and ds(NGOV ) ⊂ V says that: if the map exp : V → M is an embedding,
then exp : NGO → G is an embedding (see [24, Prop. 5.9]). We will
conclude the theorem if we provide a saturated neighborhood V ⊂ NO of O
such that exp : V →M is an embedding, and exp(V ) is saturated. The next
lemmas will cover these points.

Let S be a closed saturated manifold in G ⇒ M . We will denote
Vr := {v ∈ NS : ‖v‖ < r}. For a point x0 in M , we will see that the sat-

uration of Vr|x0 is Vr. Suppose (x0, gv)
(g,v)←−− (y, v) is an arrow in NGS with

(x0, gv) in Vr. The norm of normal vectors are preserved by the normal
representation, so (y, v) is in Vr. We conclude that Vr is saturated for all r.

Lemma 4.3.2. Let (G ⇒ M, ηM) be a proper Riemannian groupoid with
the metric ηM being complete. If S ⊂ M is a saturated submanifold, then
for all r > 0 the image of the map exp : Vr →M is a saturated set.

Proof. Suppose that O is an orbit that intersects exp(Vr). Let p be a point

in O. Take an arrow p
g←− q with q ∈ O∩ exp(Vr). So, there is an orthogonal
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geodesic β connecting S to q with ‖β′(0)‖ < r. The completeness on the
orthogonal geodesics in G allows us to lift β along s to a orthogonal geodesic
starting in g. This geodesic projects along t to an orthogonal geodesic con-
necting p to S with length smaller than r, so p is in exp(Vr).

Lemma 4.3.3. Let (G ⇒ M, ηM) be a proper Riemannian groupoid with
the metric ηM being complete. If O is an orbit of G, then there is ε > 0 such
that exp : Vε →M is regular.

Proof. Fix a point x0 ∈ O. Take U a relatively compact neighborhood of x0

in O. By the compactness of U there is ε > 0 such that exp : Vε|U → M is
an embedding.

To show that exp : Vε →M is regular, let (y, w) be a point in Vε. Take an

arrow (x0, w0)
(g,w̃)←−−− (y, w) in NGOVε . Since the target map is a Riemannian

submersion, we have the following map of short exact sequences:

0 // ker d(g,w̃)(dt) //

��

T(g,w̃)NGO
d(dt) //

d exp

��

T(x0,w0)NO

��

//

��

0

0 // ker dexp(g,w̃)t // Texp(g,w̃)G
dt // Texp(x0,w0)M // 0

The first arrow is a surjection between the tangent spaces of the fibers of
dp and p, and the last arrow is an isomorphism by hypothesis. This implies
that the middle arrow is an isomorphism. As before, we have the following
diagram for the source map:

T(g,w̃)NGO
d(ds) //

d exp

��

T(y,w)NO
d exp

��
Texp(g,w̃)G

ds // Texp(y,w)M.

We conclude that d(y,w) exp : T(y,w)NO → Texp(y,w) is an isomorphism.

Lemma 4.3.4. Let (G ⇒ M, ηM) be a proper Riemannian groupoid with
the metric ηM being complete. If O is an orbit, then there is ε > 0 such that
exp : Vε →M is injective.
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Proof. Fix a point x0 ∈ O. Take U a relatively compact neighborhood of x0

in O. By the compactness of U there is δ > 0 such that exp : Vr|U → M is
a diffeomorphism for all r < δ. Take ε < δ sufficiently small such that the
intersection of O with the normal neighborhood B2ε(x0) is inside of U . Thus,
exp : Vε|O∩B2ε(x0) →M is injective.

Let (x, v) and (y, w) be different points in Vε with exp(x, v) = exp(y, w).
Denote a(t) = exp(x, tv) and b(t) = exp(y, tw). So, a and b are orthogonal

geodesics. Let x0
g←− x be an arrow connecting x to x0. Denote by γ the lift

of a along s through g; the lift is global because the orthogonal geodesics in
G are complete. Denote by a1 the projection of γ along t. We also lift the

orthogonal geodesic β(1− t) along s through the arrow a0(1)
γ(1)←−− a(1) to a

orthogonal geodesic in ξ(t) in G. Consider b0(t) the geodesic (t ◦ ξ)(t).
Observe that a0(0) = x0 and a0(1) = b0(1). Denote by y′ = b0(0),

v′ = a′0(0), and w′ = b′0(0). We have exp(x0, v
′) = exp(y′, w′). By our

construction the following holds:

d(x0, y
′) ≤ d(x0, a0(1)) + d(b0(1), y′) < 2ε.

This implies that y′ is in B2ε(x0), which is a contradiction with the fact that
exp : Vε|O∩B2ε(x0) →M is injective. Therefore exp : Vε →M is injective.

Application to proper Lie group actions

We can use Proposition 4.3.1 to deduce the Tube theorem for proper Lie
groups actions (cf. [46]). We give a proof for the existence of complete
invariant metrics for proper actions (cf. [35]), then we construct a groupoid
metric as in Example 2.1.6 which is complete on the units.

Corollary 4.3.5. If GyM is a proper Lie group action, then GnM ⇒M
is invariantly linearizable.

Proof. By Example 2.1.6, we can build a groupoid metric on GnM from a
right-invariant metric on G and a G-invariant metric on M . The metric on
M induced by the groupoid metric on GnM is the quotient of the product
metric on G ×M by the diagonal action. Since right-invariant metrics are
complete because they are homogeneous (see [37, p. 175]), we conclude the
corollary if we show that there exist complete invariant metrics. This is the
content of the next lemma.

Lemma 4.3.6. If θ : GyM is a proper Lie group action, there is a complete
invariant metric on M .
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Proof. Fix µ a left-invariant volume form on G. There exists a cut-off func-
tion c for the action θ : G y M , i.e., a smooth function with the following
properties:

• the saturation of supp c is equal to M ;

• (G× supp c) ∩ θ−1(K) is compact if K is compact;

•
∫
G
c(gx)µ = 1 for all x in M .

See [18, Prop. 11.6] for the existence of cut-off functions. So, we can take
the average of a metric η on M :

η
x
(v, w) =

∫
G

ηgx(gv, gw) c(gx)µ.

Thus η is a G-invariant metric on M . The same argument used in Corollary
3.5.4 implies that there is a smooth and G-invariant function f : M → R
such that fη induces a complete distance on M/G. So, we can assume η
invariant and such that (M/G, dN) is complete.

We use the homogeneity along the orbits to conclude the proof. Suppose
a : (a, b) → M is an unitary geodesic in its maximal interval of definition.
Because dN is complete, and dN(a(t), a(s)) ≤ |t− s| the limit limt→b a(t)
exits. So, denote by O the orbit which is the limt→b a(t). Fix x in O. There
exists ε > 0 and a neighborhood U ⊂ M of x where every unitary geodesic
is defined at least for time (−ε, ε). The orbit is inside of the open G · U .
Thus there is t0 > b− ε such that a(t0) is in g · U for some g in G. Because
g : U → g · U is an isometry we can extend a to (a, t0 + ε), and we get a
contradiction.

Remark 4.3.7. The proof above is independent of the Tube theorem. The
only fact in the proof that could be dependent on Tube theorem relies on
the existence of cut-off functions, but it is an independent property of the
proper groupoids as we can see in [18, Prop. 11.6].

4.4 Invariant linearization implies complete-

ness

We present in this section the groupoid versions of the three steps of the
strategy [21] to built complete fibered metrics, which lead us to the following
result:
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Proposition 4.4.1. IfG⇒M is an invariantly linearizable proper groupoid,
then there is a transversely invariant complete metric η̃ on M .

Remark 4.4.2. The submersion groupoids are ever proper, and we have seen
that the existence of complete transversely invariant metrics implies locally
triviality of the submersion. So, any submersion which is not locally trivial
is a counterexample for the completeness stated in the result [47, Prop 3.14].

Step 1: complete metric on the base

We will assume M to be connected. Let η be a groupoid metric on G⇒ M
such that ([M/G], [η]) is complete; the existence of such metric is ensured by
Corollary 3.5.4. We use the following lemma to split the proof between the
cases where all the orbits are compact or all the orbits are non-compact.

Lemma 4.4.3. If G ⇒ M is an invariantly linearizable proper groupoid
and M is a connected manifold, then all orbits of G are either compact or
non-compact.

Proof. It is enough to prove that being compact or being non-compact are
open conditions. Let O be an orbit of G ⇒ M . Take NGOV ⇒ V an
invariant linearization around O. Fix x ∈ O. The intersection O′ ∩NxO of
an orbit O′ wiht NxO is an orbit Ol of the normal representation Gx y Nx.
Since Gx is compact, the orbit Ol is compact. So, the orbit O′ is the quotient
Ol × Px/Gx. We conclude that O′ is a bundle over O with compact fibers.
Hence, O′ is compact if only if O is compact.

If the orbits are compact, then we apply the following lemma:

Lemma 4.4.4. Let (G ⇒ M, η) be a Riemannian groupoid with all orbits
being compact. If ([M/G], [η]) is complete, then ηM is complete.

Proof. Let a : (p, q) → M be a geodesic in its maximal definition interval.
The completeness of [M/G] implies the existence of the limit point limt→q π◦
a(t) = O. Because G⇒M is invariantly linearizable andO is compact, there
is an invariant neighborhood V of O with closure V compact. This implies
that the set a−1 ((q − δ, q)) is included in a compact. Thus a is extendable,
which is a contradiction. Hence, a is defined for all time.

If the orbits are non-compact we will locally modify the metric η to ob-
tain an equivalent metric which is complete in the orbits directions. Then
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we obtain a complete transversely invariant metric η̃ on M by gluing the
modified metrics with a “tube trick”.

Step 2: complete metric on the orbits

The next lemma re-interprets the conditions that we need in the tube trick
and provides an analog of the “choice of a complete metric on the fiber”.

Lemma 4.4.5. Let O ⊂ M be an orbit of G. Take V a saturated neigh-
borhood of O in NO such that π(V ) is relatively compact in M/G. Given
η a groupoid metric in NGOV , there exists a groupoid metric η̂ in NGOV
equivalent to η with the following property:

If C ( V is a closed and limited set with respect to η̂, then it is a compact.

Proof. Fix x in O. Denote N = NxO ∩ V , H = Gx and P = G(−, x). We
have the following pair of Morita fibrations:

(H nN ⇒ N)× (P × P ⇒ P )

ψrr φ ,,
H nN ⇒ N NGOV ⇒ NO.

We pullback the metric η along φ to a metric η̃ on (H n N) × (P × P )
(see Prop. 2.2.1). Denote by η̃ the cotangent average of η̃ with respect to
the kernel of ψ (see Prop. 2.2.2). So, there is a groupoid metric η̌ on H nN
giving by the projection of η̃ along ψ.

Observe that K = kerφ = {(h, v, ha−1, a) : (h, v, a) ∈ H ×N × P}, and
that the fiber product

K3 ×(N×P )3 (H2 ×N × P 3)

is isomorphic to H3×H2×N×P 3. So, the groupoid action K3 y H2×N×P 3

is reduced to a group action H3 y H2 ×N × P 3,

(k3, k2, k1)·(h2, h1, v, a3, a2, a1) = (k3h2k
−1
2 , k2h1k

−1
1 , k1v, a3k

−1
3 , a2k

−1
2 , a2k

−1
2 ).

Note that we can split the action above into two actions H3 y P 3 and
H3 y H2 ×N . Since H3 is compact we can take the cotangent average of η̌
with respect to the action H3 y H2 ×N , which is a H3-invariant groupoid
metric for HnN . Denote by η̌ the cotangent average. Consider on P 3 a met-

ric ηP
3

given by the product of a H-invariant complete metric ηP on P . The
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existence of such invariant complete metric is guaranteed by Lemma 4.3.6.
Thus, the product metric η̌ × ηP 3

is H3-invariant. This metric is projected
along φ to a groupoid metric η̂ in NGOV . We will see that η̂ satisfies the
desired properties.

We will use here the fact that pullback and pushforward along Morita
fibrations preserve the metric classes. The metrics η̌× ηP 3

and η̃ have equiv-
alent projections η̌ and η̌ on H n N , so they are equivalent. Recall that, η̃
is equivalent to its cotangent average η̃. The metrics η̂ and η are projections

of equivalent metrics η̌ × ηP 3
and η̃ respectively, so they are equivalent.

Let C ⊂ V be a closed and limited set with respect to η̂. To check that
C is compact, we will use the following facts:

• Denote by p : V → O the map induced by the projection NO → O.
We will see that η̂(0) is a p-fibered metric. The map

πP : (N × P, η̌(0) × ηP )→ (P, ηP )

is a Riemannian submersion. Because these metrics are H-invariant,
the quotient submersion p : (V, η̂(0)) → (O, ηO) is a Riemannian sub-
mersion. Observe that the completeness of ηP implies the completeness
of ηO.

• The map p : V → O is proper. Note that the set N = V ∩NxO is an
invariant set for the normal representation Gx y NxO. Because π(V )
is relatively compact in M/G we deduce that N is compact. So, p is
proper because it is the quotient of the proper map πP : N × P → P
by a compact group.

So, p(C) is closed and diam p(C) ≤ diamU < ∞. Since the metric ηO is
complete, we have that p(C) is compact. Therefore, C is a compact set.

Step 3: tube trick

Let G⇒M be an invariantly linearizable groupoid with a Riemannian met-
ric η. Take {NGOWi

⇒ Wi} a family of invariant linearizations for G⇒M ,
such that there are saturated opens Vi with Vi ⊂ Wi and {Vi} is a locally
finite covering for M , and π(Wi) are relatively compact in M/G. Consider
in each NGOWi

the metric ηi induced by the restriction of η. Apply Lemma
4.4.5 to each metric ηi obtaining an equivalent metric η̂i with the property
that limited closed sets in Wi are compact.
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Fix f : M → [0,+∞) a smooth proper function. We claim that, for each
pair (i, n) ∈ N there exists a value l(i, n) in N such that:

dη̂i
(
V i ∩ f−1(n), V i ∩ f−1(n+ l(i, n))

)
> 1.

If there is no such l(i, n), then in the following inclusion,

Vi ⊂ f−1([0, n]) ∪ f−1([n,+∞)),

the set on the right side is limited. Thus, Vi is limited. Hence, by Lemma
4.4.5 the set Vi is compact, which is a contradiction with the fact that all
orbits are non-compact.

We refer to the sets Ti(n) = Vi∩ f−1([n, n+ l(i, n)]) as tubes tubes. Next,
we will inductively build a family of tubes such that there are infinitely many
tubes over each Vi, and they are disjoint. Starting with the tube T1(1) over
V1, then by induction we build a tube Ti(n

1
i ) over Vi, where n1

i is greater than
n1
i−1 + l(i− 1, n1

i−1). After that, we will construct a second tube T1(n2
1) over

V1 with n1
1 + l(1, n1

1) < n2
1, and by induction a tube Ti(n

2
i ) over Vi with

max{n2
i−1 + l(i− 1, n2

i−1) , n1
i } < n2

i .

This process will end up providing a family of tubes {Ti(nji )} with infinitely
many tubes over each open set Vi. By construction the intersection of any
pair of tubes is empty. Denote

T̃i =
⋃
j

Ti(n
j
i ).

End of the proof

Proof Proposition 4.4.1. Let be η a groupoid metric on G ⇒ M such that
([M/G], [η]) is complete; the existence of such metric is ensured by Corollary
3.5.4. Suppose the orbits are all non-compact, otherwise use Lemma 4.4.4.
Let {NGOWi

⇒ Wi} be a family of invariant linearizations, and the sets {T̃i}
build in the previous subsection. Set {λi}i a partition of unity subordinated

to Ui = Wi \
⋃
i 6=k T̃k. Define the metric

η̃ =

(∑
i

λi

(
η̂

(0)
i

)∗)∗
.

We will check that η̃ is equivalent to η. Let α and β be covectors in the
annihilator TpO◦. We have the following equation:

η̃(α, β) =
∑
i

λi

(
η̂

(0)
i

)∗
(α, β) =

∑
i

λi
(
η(0)
)∗

(α, β) =
(
η(0)
)∗

(α, β).
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The second equality holds because η̂i and ηi are equivalent.
Let a : [p, q) → M be a unit-speed geodesic. The projection π ◦ a is a

Lipschitz map, and since (M/G, d) is a complete metric space, there exists
the limit Ox0 = limn π◦a(q− 1

n
) = limt→q π◦α(t). The orbit Ox0 is contained

in a open Vi, so α(q − δ, q) ⊂ Vi for δ closes to 0. If a(q − δ, q) is included
in some compact K ⊂ M then the geodesic can be extended. If there is no
such K, then a(q − δ, b) must cross infinitely many tubes over Vi on finite
time. Since η̃ and η̂i agree over the tubes, a will have at least length 1 to
cross each of them, which leads to a contradiction.



Bibliography

[1] A. Adem, J. Leida, and Y. Ruan. Orbifolds and stringy topology, volume
171 of Cambridge Tracts in Mathematics. Cambridge University Press,
Cambridge, 2007.

[2] M. M. Alexandrino and R. G. Bettiol. Lie groups and geometric aspects
of isometric actions. Springer, Cham, 2015.

[3] M. M. Alexandrino, R. Briquet, and D. Töben. Progress in the theory
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feuilles et fonctorialité en théorie de Kasparov (d’après une conjecture
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