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Abstract

In this work we continue our study of the Cauchy problem associated
to the Brinkman equations (see (2)-(3) below) which model �uid �ow in
certain types of porous media. Here we will consider the �ow in the upper
half-space

R3+ =
�
(x; y; z) 2 R3 jz > 0

	
; (1)

under the assumption that the plane z = 0 is impenetrable to the �uid.
This means that we will have to introduce boundary conditions that must
be attached to the Brinkman equations. We study local and global well-
posedness in appropriate Sobolev spaces introduced below, using Kato�s
theory for quasilinear equations, parabolic regularization and a compari-
son principle for the solutions of the problem.

1 Introduction.
In this article we continue our study of the Brinkman equations (see ([I-IA]),
([I-IAM]) and the references therein). This time we will consider the system

@t�+ div (�v) = F (t; �) ;

(1��) v = �rP (�) ; (2)

(� (0) ; v (0)) = (�0; v0) ;

� = � (t; x; y; z) ; v = v (t; x; y; z) ; (3)

in R3+:We assume that the horizontal plane, that is, z = 0, to be impenetrable to
the �uid. Thus, we must impose a boundary condition at z = 0, compatible with
this assumption. This means that the �uid �ow must be zero in the (downwards)
z direction at z = 0 for all (x; y; 0) ; (x; y) 2 R2.
Now, if S is a C1 surface (say), and n a continuous unit normal to S . This

orients the surface and determines the sign of the �uid �ow, which is de�ned by
the component of the velocity in the the direction of n, that is, v � n: where �

1



denotes the usual inner product in Euclidian spaces. Since we expect (1��)
to be invertible1 , we must have

v = � (1��)�1rP (�) : (4)

Let S be the plane z = 0: We choose

n = (0; 0;�1): (5)

In view of the condition at z = 0;we have

v � n = � (1��)�1rP (�) � n = 0: (6)

So,
@

@z
P (�) = P 0 (�)

@�

@z
= 0: (7)

If P 0 (�) 6= 0 for all � 6= 0 (as we will assume later) it follows that we must have

@�

@z
= 0 at z = 0: (8)

Thus � must satisfy a Neumann boundary condition at z = 0.
This paper is organized as follows. In Section 2 we de�ne the operator ��;

mentioned above, and the Sobolev spaces associated to it. In Section 3 we
establish local well-posedness for the Cauchy problem in question. Section 4
deals with the comparison principle for the solutions of the problem, which in
turn is used in Section 5 to establish global results.

2 Distributions and Sobolev Spaces.

Let S
�
R3+
�
= S

�
R2 � [0;1)

�
2 denote the set of all C1 functions f : R3+ �! C

such that
kfk�;� = sup

R3+

��w�D�f (w)
�� <1: (9)

where �; �, are (tridimensional) multi-indexes, w = (x; y; z) 2 R3+; D = 1
ir

(see [C-C1] Chapter 1 page 8, [1] Chapter 7 page 323 and [S] Chapter One page
2). Moreover the derivatives with respect to z at z = 0; are taken from above.
This de�nes a countable collection of seminorms in S

�
R3+
�
; which turns

this vector space into a Frèchet space (see [R-R1]). Let S0
�
R3+
�
denote the

topological dual of S
�
R3+
�
that is f 2 S0

�
R3+
�
if and only if f : S

�
R3+
�
�! C

1Whatever � means. This will be explained along the article. See also the remark at the
end of Section 2.

2See [S] Chapter Two page 33.
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is linear and is continuous in the following sense3 , for any convergent net f� 2 �
we have

f�
��! f () f� (')

C�! f (') 8 ' 2 S
�
R3+
�
: (10)

Now, let L2
�
R3+
�
= L2

�
R2 � [0;1)

�
: It is not di¢ cult to show that

S
�
R3+
�
,! L2

�
R3+
�
,! S0

�
R3+
�
; (11)

where the symbol ,!, in the remainder of this article, will always mean that the
inclusion is continuous and dense with respect to the relevant topologies involved.
Next consider the following operator

D
�e�� = n' 2 S �R3+� ���e@z' (x; y; 0) = 0o ; (12)

�e�' (x; y; z) = �@2x + @2y + e@2z�' (x; y; z) :
However it is necessary to explain what the z derivative means. De�ne ed2z by
the equations,

D
�ed2z� = f(f 2 S([0;1)) jf 0 (0) = 0g (13)

�ed2zf = d2f

dz2
; f 2 D

�ed2z� ;
where the derivative at zero is taken from above. Using the Fourier Cosine
transform and its Inversion formula (see [CH], Section 54) ;

(Fcf) (�) =

Z 1

0

f (x) cos (�x) dx; x; � 2 [0;1) ; (14)

�
F�1c g

�
(x) =

2

�

Z 1

0

g (�) cos (�x) d�;

and the fact that

(Fcf
00) (�) = ��2 (Fcf) (�)� f 0 (0) ; (15)

it is easy to see that ed2z is essentially self- adjoint. Let d2z denote its unique
self adjoint extension. Next, if (x; y) 2 R2 is �xed and ' 2 S

�
R3+
�
then

 (z) = ' (x; y; z) 2 S ([0;1)) so we may de�ne

e@2z' (x; y; z) = ed2z' (x; y; z) = d2z' (x; y; z) : (16)

Once again, it is easy to show that
�
�e�� is essentially self adjoint. We will

denote its unique self adjoint extension by (��) : Now, it is necessary to intro-
duce a Fourier transform associated to the operator (��). This can be done
noting that

�(x; y; z) = exp (ix�) exp (iy�) cos (�z) ; (17)

3Which is general, because nets de�ne the topology of a space. See([R-R1]) :
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satis�es,
(��)� (x; y; z) =

�
�2 + �2 + �2

�
�(x; y; z) : (18)

So if ' 2 L1
�
R3+
�
, we de�ne

b' (�; �; �) = (F') (�; �; �) (19)

=

�
1

2�

�Z
R3+
' (x; y; z)� (x; y; z)dxdydz:

Employing the usual methods, ([R-R2], [I-I1] , [1]), we can extend this op-
erator as an unitary map from L2

�
R3+
�
into itself. Its inverse is given by

_
! (x; y; z) =

�
F�1!

�
(x; y; z) (20)

=

�
1

�

�2 Z
R3+
! (�; �; �)� (x; y; z) d�d�d�:

The usual methods employed to extend the transform Fourier in Rn can be used
in this case to de�ne F in L2

�
R3+
�
and S0

�
R3+
�
: Note that

��f = F�1�Ff (21)

where � denotes (with a little abuse of notation) the maximal operator of mul-
tiplication by

� (�; �; �) =
�
�2 + �2 + �2

�
(22)

in L2
�
R3+
�
. It deserves remark that the Fourier transform F is a topological

isomorphism from S
�
R3+
�
into itself, so that by the usual duality argument,

it has the same property in S0
�
R3+
�
: Moreover, it is a unitary operator in

L2
�
R3+
�
4 We are now in position to introduce the resolvent z �! R (z) of

(��) and the Sobolev spaces associated to it. To begin with, it is not di¢ cult
to see that X

(��) = [0;1) ; (23)

and that the function z �! R (z) de�ned by,�

R (z) f = (��� z)�1 f; (24)

= F�1
�
�2 + �2 + �2 � z

��1
Ff;

z 2 Cn [0;1) ; f 2 L
�
R3+
�
;

satis�es,

R (z) (��� z) f = f 8 f 2 D (��) ; (25)

(��� z)R (z) g = g 8 g 2 L2
�
R3+
�
:

4Note that Fc; the Fourier cossine transfor is an unitary operator in L2 (R+) ; R+ = [0;1).
See ([C-C2]).
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Next, let s 2 R and denote by Hs
�
R3+
�
the Sobolev space of order s, that is,

Hs
�
R3+
�
=
n
f 2 S0

�
R3+
� ���(1��) s2 f 2 L2 �R3+�o : (26)

These spaces have the same properties as the Sobolev spaces in Rn; that is,
SB1 Hs

�
R3+
�
are Hilbert spaces when endowed with the inner product

(f jg )s =
�
(1��)

s
2 f
���(1��) s2 g� ; 8f; g 2 Hs �R3+� : (27)

SB2 If s > ` then Hs
�
R3+
�
,! H`

�
R3+
�
for all s; ` 2 R:

SB3 (Sobolev´s Lemma.) Let s > 3
2 . Then H

s
�
R3+
�
,! C0

�
R3+
�
where

C0
�
R3+
�
denotes the set of all continuous functions that tend to zero at in�nity.

SB4 Let f; g 2 Hs
�
R3+
�
; s > 3

2 : Then the pointwise product
5fg 2 Hs

�
R3+
�

and
kfgks � C kfks kgks (28)

where C > 0 is a constant. Note that this turns Hs
�
R3+
�
into a Banach algebra.

The proofs of these properties are exactly the same as the corresponding
ones in the case of Rn; and will be omitted. The interested reader can consult
([C-C1]) ; ([R-R2]) ; ([1]) ; for example.

Remark 1 Let 
 � Rn be an open set. The Dirichlet Laplacian and the Neu-
mann Laplacian, denoted �
D and �
N are the unique self-adjoint operators as-
sociated with the quadratic form

q (f; g) =

Z



rf � rgdx (29)

with domains C10 (
) and H1 (
) where r denotes the distributional gradient.
(See [R-R3].) This is a very elegant, but rather abstract de�nition. In many
applications one must �nd the self- adjoint operator in order to deal with actual
computations. The Laplacian de�ned above is the Neumann Laplacian corre-
sponding to 
 = R3+n f(x; y; z) jz = 0g ; that is, the interior of R3+:

3 Local Well-posedness

We begin reminding the reader of our de�nition of well-posedness. The Cauchy
problem

@tu = G (t; u) 2 X; (30)

u (0) = u0 2 Y;
5The product is well de�ned in view of SB3.
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Y ,! X; t 2 [0; T0], G : [0; T0] � Y �! X is (at least continuous6) is said to
be locally well posed if there exists a T 2 (0; T0] and a function u : [0; T ] �! Y
such that u (0) = u0 and satis�es the di¤erential equation with respect to the
norm of X,

lim
h�!0





u (t+ h)� u (t)h
�G (t; u (t))






X

= 0 (31)

Moreover, the solution must depend continuously on the initial data (and on any
other relevant parameters occurring in the equation), in appropriate topologies.
In what follows we will consider only the initial data. In that case what we
mean is: assume that u(j)0 2 Y ; j = 1; 2; 3; :::;1 ; let u(j) be the corresponding
solutions. Suppose that

lim
j!1




u(j)0 � u(1)
0





Y
= 0: (32)

Then, for all T 0 2 (0; T ) we have,

lim
j!1

sup
t2[0;T 0]




u(j) (t)� u(1) (t)




Y
= 0: (33)

If any of these properties fail, we say that the problem is ill-posed7 . In case G
is de�ned for all t 2 R and the preceding properties are valid for all T > 0, we
say that the problem is globally well-posed.
Using the de�nitions and notations of the previous section we can solve for

v as indicated in (4) and inserting this formula into the �rst equation of (2), we
obtain the Cauchy problem

@t� = div
�
� (1��)�1�P (�)

�
+ F (t; �) (34)

� (0) = �0:

Moreover the compatibility condition

v0 = � (1��)P (�0) (35)

must be satis�ed. Note also that the boundary conditions are inserted in the
de�nition of the operators appearing in (34).
Now, there are several ways to solve (34). We mention our favorites, namely

� Kato´s Theory of Quasilinear Equations

� Parabolic Regularization.

6 In fact some kind of Lipichtz condition must be introduced since Peano�s Theorem for
ODE�s does not hold in in�nite dimensions.

7 It deserves mention that there are examples that show that any of these properties may
fail. Morever note that the de�nition we adopted above includes the notion of permanence,
that is, the solution "lives" in the same space to which the initial condition belongs. There
are strinking examples where this does not hold (see [I-I4] and the references therein).
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3.1 Application of Kato´s Theory

A very large class of relevant evolution equations can be written in quasilinear
form, that is, �

@tu+A (t; u)u = F (t; u) 2 X;
u (0) = � 2 Y: (36)

Here X and Y are Banach spaces, as before with Y ,! X and A (t; u) is bounded
from Y into X (for �xed t) and is the (negative) generator of a C0 semigroup
for each (t; u) 2 [0:T ] � W; W open in Y . In its most general formulation,
X and Y may be non-re�exive ([K-K1])8 . Since we will deal exclusively with
re�exive spaces, we restrict ourselves to a simpler version, which can be found
in ([K-K2]). (See also ([I-I1].) The essential assumption of the theory is the
existence of an isomorphism S from Y onto X such that

SA (t; u)S�1 = A (t; u) +B (t; u) (37)

where B (t; u) 2 B (X) ; with the strict domain relation implied by the equation.
This is, in fact, a condition on the commutator [S;A (t; u)] because (37)9 can
be rewritten as

[S;A (t; u)]S�1 = B (t; u) : (38)

There are also lesser requirements, involving Lipschtz conditions on the opera-
tors in question. For example, A (t; u) must satisfy

kA (t; w)�A (t; ew)kB(Y;X) � � kw � ewkX ; � > 0; constant (39)

for all pairs (t; w) ; (t; ew) in [0:T ] �W: Both B (t; u) and F (t; u) must satisfy
similar conditions. Once these assumptions are satis�ed, Kato tells you that
(36) is locally well-posed.
Now we must write the integrodi¤erential equation (34) in quasilinear form.

Consider the linear operator:

f 7�! A (�) f = �div
�
f (1��)�1rP (�)

�
: (40)

Thus the equation in (34) can be written in the form presented in (36). Next we
choose our function spaces. Due to certain technical estimates needed to control
the commutator mentioned above, we take Y = Hs

�
R3+
�
, s > 5=2, X = L2

�
R3+
�

and W an arbitrary open ball centered at zero in Y:
Now assume

� P maps Hs (R) into itself, P (0) = 0 and is Lipschitz in the following sense:

kP (�)� P (e�)ks � Ls (k�ks ; ke�ks) k�� e�ks (41)

8This result is very important because it can be used to show that, as in the linear case,
continous dependence follows from existence and uniqueness. See ([K-K1]).

9A condition on a commutator is to be expeted.is to be expected. See ([I-I1]).
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� F : [0; T0] � Hs (R) �! Hs (R) ; F (t; 0) = 0 and satis�es the following
Lipschitz condition:

kF (t; �)� F (t; e�)ks �Ms (k�ks ; ke�ks) k�� e�ks : (42)

where Ls;Ms : [0;1) � [0;1) ! [0;1) are continuous and monotone
non-decreasing functions with respect to each of its arguments.

If T is a linear operator and belongs to the class G(X; 1; 0), that is, if (�T )
generates a contraction semigroup, we say that T is maximally accretive (or
m-accretive). If T 2 G(X; 1; �), that is, T generates a semigroup U (t) such
that kU(t)kB(X) �Me�t� , T is said to be quasi- maximally accretive (or quasi
m-accretive). Since X is a Hilbert space, it su¢ ces to prove, in our case, that
T = A(�) is maximally accretive in X. (See [K-K3],[P] and [R-R1]).


A(�)f; f
�
� ��kfk2;8f 2 D(A(�)) = Y ; � 2W � Y (43)

Let
�(�) = (1��)�1rP (�); (44)

. Integrating by parts and applying Sobolev Lemma, we obtain

A(�)f; f

�
=


� div (f �(�)); f

�
= �

3X
i=1

Z
f@xi(f �i(�)) dx

=

3X
i=1

Z
f@xif �i(�) dx =

1

2

3X
i=1

Z
@xi(f

2)�i(�) dx

= �1
2

3X
i=1

Z
f2@xi�i(�) dx = �

1

2

Z
(div ~�(�))f2 dx (45)

� � kdiv �(�)kL
1

2| {z }
�

kfk2

R(A(�) + �) = X = L2(R3+);8� > �

The fact that A(�) is a closed operator combined with the inequality (45) shows
that (A(�) + �) has closed range for all � > �
Thus it su¢ ces to show that (A(�) + �) has dense range for � > �. For this, is
su¢ cient to prove that R(A(�) + �)? = f0g, because A(�) is a linear operator.
Let g 2 L2(R3+) satisfy,


(A(�) + �)f; g
�
= 0;8f 2 D(A(�)) = Hs(R3+): (46)

Integrating by parts, yields

(A(�) + �)f; g

�
= 0)



A(�)f; g

�
+


�f; g

�
= 0

)


f;rg�(�)

�
+


�f; g

�
= 0 (47)

)


f;rg�(�) + �g

�
= 0; 8f 2 D(A(�)) = Hs(Rn)

) rg�(�) + �g = 0
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Therefore, multiplying by g, integrating by parts, and using (45) we have:

grg�(�) + �g2 = 0) 1

2

Z
r(g2)�(�) dx+ �kgk2 = 0

) �1
2

Z
g2div �(�) dx| {z }

=


A(�)g;g

� +�kgk2 = 0

)


A(�)g; g

�
+ �kgk2 = 0 (48)

) 0 � ��kgk2 + �kgk2 = (�� �)kgk2

) g = 0

Finally, we choose the isomorphism S : D (S) = hs
�
R3+
�
�! L2

�
R3+
�
to be

S = (1��)s=2 : (49)

Then the proof of (37) is exactly the same of the corresponding fact in Rn (see
[I-IAM]).
In view of these remarks, Kato�s quasilinear theory implies the following

result.

Theorem 2 The Cauchy problem (34) is locally well posed in Hs
�
R3+
�
in the

sense described at the beginning of this section for all s > 5=2.

3.2 Parabolic Regularization.

It is easy to see that if we integrate (34) with respect to time we obtain

� (t)|{z}
Hs(R3+)

= �|{z}
Hs(R3+)

+

Z t

0

div
�
� (1��)�1rP (�)

�
(t�) dt�| {z }

Hs�1(R3+)

: (50)

so we cannot apply Banach�s Fixed Point Theorem and Gronwall�s inequality to
establish local well posedness. However, we can introduce an arti�cial viscosity
� > 0 to obtain the regularized Cauchy Problem(

@t�� = div
�
�� (1��)�1rP (��)

�
+ ����

�� (0) = �0:
(51)

which is equivalent to the integral equation

�� (t) = U� (t) �0 +

Z t

0

U� (t� t0) [A (�� (t0)) �� (t0)] dt0; (52)
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where U� (t) is the in�nitely smoothing C0 semigroup

U� (t) f = exp (�t�) f = F
�1e��t(�

2+�2+�2)Ff: (53)

Then we can show that (see [I-IA] and [I-IAM])

Theorem 3 Assume that � > 0 and that P satisfy (41) for all (�xed) s > 3=2.
Then (52) is locally well-posed in Hs

�
R3+
�
. Moreover, if (0; T�] is an interval

of existence, then �� 2 C
�
(0; T�c ;H1

�
R3+
��
, where H1

�
R3+
�
= \

s2R3+
Hs
�
R3+
�

provided with its natural Frechet space topology.

It should be noted that the proof (even in R3) relies heavily on the inequality

kU� (t)�kr+� � K�

"
1 +

�
1

2�t

��#1=2
k�kr (54)

where K� > 0 depends only on � and holds for all � 2 Hr
�
R3+
�
; r 2 R,

� � 0; and �; t > 0:(See [1], [I-I3], [I-IA] and [I-IAM] for example.) An easy
bootstrapping argument combining (52) and (54), (with � �xed in the interval
(1; 2)) shows that the RHS of (52) is locally integrable near t = 0). This implies
the last statement of Theorem 2.
Next, the, usual limiting process involved in the method of parabolic regu-

larization (see [1] and [I-I3]) we are able to show existence and uniqueness of
solutions in AC

�
[0; T ] ;Hs�1

�
R3+
��
\ L1

�
[0; T ] ;Hs

�
R3+
��
. Due to technical

reasons (lack of invariance under certain changes of variables, see [I-I1], [I-I3]
and [K-K3]), so far we were unable to prove that the solution we obtained in this
way actually belongs to C

�
[0; T ] ;Hs

�
R3+
��
\ C1

�
[0; T ] ;Hs�1

�
R3+
��
, s > 3=2

as we would have liked. However, combining what we already have, with the
results in Theorem 2, proved using Kato´s theory when s > 5=2, we see that
the solutions must coincide, due to uniqueness, if s > 5=2.

4 Comparison principle

To simplify the notation we will write

Bf = R(�1)f = F�1
�
�2 + �2 + �2 + 1

��1
Ff; f 2 L2

�
R3+
�
:

In order to state our results, we de�ne of the fractional power spaces associ-
ated with Neumann Laplacian ��. Following the arguments found in [W] and
[KF]. For � > 0 and f 2 L2(R3+), de�ne10

10Of course we could also have used the Fourier transform de�ned above to introduce these
operators.
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R�(�1) f = (1��)�� f = 1

�(�)

Z +1

0

t��1e�t et�f dt:

Then (1��)�� is a bounded, one-to-one operator on L2(R3+). We let J� =
(1��)� be the inverse of (1��)��. For s > 0, the Hilbert space Hs(R3+) is
the range of (1��)�s=2 with the inner product

hf; giHs =
Z
L2(R3+)

Js=2f Js=2g dx: (55)

Consider the initial value problem (34) with F (t; �) = 011 ; P (�) = �2k; k =
1; 2; 3::::. 8><>:

@t�+ div (� v) = 0; x 2 R3+; t 2 (0; T0]
v = �Br�2k = �~�(�2k)

(�(0); v(0)) = (�0; v0)

(56)

Theorem 4 (Comparison Principle). Let (�; v) and (�; w) be solutions of
(34) with P (�) = �2k; P (�) = �2k; k = 1; 2; 3:::12 ; and initial values (�0; v0) and
(�0; w0) respectively. Then

0 � �0(x) � �0(x) in 
) 0 � �(x; t) � �(x; t) in 
� [0; T0] (57)

Proof. In this proof, we use the same idea employed by Alarcon, Iorio and Del
Sol in the study of Brinkman �ow in Rn ([I-IAM]). Let

R(t; y) = �(�(t; y); t);S(t; y) = �( (t; y); t) (58)

and
Q(t; y) = R(t; y)� S(t; y) (59)

where �(t; y) and  (t; y) satisfy the following ordinary di¤erential equations,8<:
@�

@t
(t; y) = v(�(t; y); t)

�(0; y) = y

�(t; y) =
�
�1(t; y); �2(t; y); �3(t; y)

�
vi = �@xiB(�2k)

; (60)

8<:
@ 

@t
(t; y) = w( (t; y); t)

 (0; y) = y

 (t; y) =
�
 1(t; y);  2(t; y);  3(t; y)

�
wi = �@xiB(�2k)

; (61)

11For simplicity�s sake. It is not very di¢ cult to include the external force in the result.
12A motivation for this choice can be found in [I-IA],
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Now, 8<:
dR

dt
= �R div v

R(0; y) = �0(y)

dS

dt
= �S div w

S(0; y) = �0(y)
(62)

Solving (62), we obtain:

R(t) = R(0) exp
�
�
Z t

0

div v(�(s; y); s) ds
� �0(y)�0z}|{) R(t) � 0 (63)

Analogously, we have that:

S(t) = S(0) exp
�
�
Z t

0

div w( (s; y); s)ds
� �0(y)�0z}|{) S(t) � 0 (64)

On the other hand, di¤erentiating Q(t):

dQ

dt
=
dR

dt
� dS

dt
= (�div v)R(t) + (div w)S(t) (65)

= �� div v + � div w
= �(�� �)div v + �(div w � div v)
= �Q(t)(div v) + S(t)(div w � div v)

where
div v = �2k � B(�2k); div w = �2k � B(�2k) (66)

Substituting (66) in (65), we obtain a new ordinary di¤erential equation for
Q(t), 8<:

dQ

dt
= �

�
div v + S(t)P (R(t); S(t))

�
Q(t) +B(t; Q(t))

Q(0) = �0(y)� �0(y)
(67)

with

P (R(t); S(t)) = P (�; �) =
2k�1X
i=0

�2k�1�i�i (68)

and
B(t;Q(t)) = S(t)(1��)�1

h
Q(t)P (R(t); S(t))

i
: (69)

Thus,

Q(t) = U(t; 0)Q(0) +

Z t

0

U(t; s)B(s;Q(s)) ds (70)

where

U(t; s) = exp
�
�
Z t

s

[div (v(�(�; y); �)) + S(�)P (R(�); S(�))]d�
�
: (71)

In view of conditions for �0 and �0, we have that R(t) � 0 and S(t) � 0.
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Consider the sequence

Qn(t) =

�
Qn(t) = U(t; 0)Q(0) +

R t
0
U(t; s)B(s;Qn�1(s))ds; se n = 1; 2; ::::;

�0(y)� �0(y); se n = 0.

If Q(0) � 0, then Qn(t) � 0, for all n. Therefore,

Q(t) = �
�
�(t; y); t

�
� �

�
 (t; y); t

�
= lim

n!1
Qn(t) � 0 (72)

To complete the proof we need to show the functions y 2 
 ! �(t; y) 2 

and y 2 
 !  (t; y) 2 
 are onto. To do this, we analyze in detail the map
y 2 
! �(t; y) 2 
.

The Neumann boundary condition �z = 0 for z = 0 and Brinkman�s condi-
tion v = �rB(�2k)13 , implies that

v3((x1; x2; 0); t) = 0; 8(x1; x2) 2 R2 and t 2 [0; T ]; (73)

then �3(t; (x1; x2; 0) = 0 for all (x1; x2) 2 R2 and t 2 [0; T ].
We will show that 
 it is invariant under the �ow �(t; y), that is,

� (
) � 
: (74)

By (73), the plane � =
�
(x1; x2; x3) 2 R3 : x3 = 0

	
is invariant under the �ow

�(t; y), i.e. �(�) � �. Next we show that (74) holds. To this end, it is enough
to verify that

�(t; x1; x2; x3) 2 
; 8(x1; x2) 2 R2; x3 > 0: (75)

If (75) does not hold, there is a w = (w1; w2; w3) with w3 > 0 and
0 < t1 < t2 � T such that �(t1; w) 2 � and �(t2; w) =2 
. But (73) implies
that

�(t2; w) = �(t1; w) +

Z t2

t1

v(�(s; w); s) ds; (76)

so that �3(t2; w) = 0. This contradiction proves (74). From (60), integrating
from de 0 to t, we get :

�i(t)� yi =
Z t

0

vi(�(�; y); �) d� ; i = 1; 2; 3; (77)

so that

j�i(t)� yij �
Z t

0

jvi(�(�; y); �)j d� � ai(k�0ks; t) ; i = 1; 2; 3; s >
5

2
; (78)

yi � ai(k�0ks; t) � �i(t; y) � yi + ai(k�0ks; t); 8y = (y1; y2; y3) 2 
: (79)

13See (4).
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Let (z1; z2; z3) 2 R3+. Taking y
(1)
i << 0 for i = 1; 2; y(2)i >> 0 for i = 1; 2; 3,

such that zi 2 (y(1)i ; y
(2)
i ) for i = 1; 2 and 0 < z3 < y

(2)
3 we have:

y
(1)
i + ai(k�0ks; t) < zi < y

(2)
i � ai(k�0ks; t) (80)

and
0 < z3 < �i(t; y

(2)
3 ): (81)

Therefore
�i(t; y

(1)
i ) < zi < �i(t; y

(2)
i ); for i = 1; 2; 3: (82)

Applying the Intermediate Value Theorem to �i implies that there exists yi 2
(y
(1)
i ; y

(2)
i ) satisfying �i(t; yi) = zi. For z3 = 0 the proof is analogous, since the

plane x3 = 0 is invariant by the �ow �(t; y), a consequence of (73).

5 Global results in Hs(R3+); s > 5=2

In this section we obtain the global Hs-estimate for the solution of the Brinkman
Flow equation. This will be a consequence of global-well posedness. of the regu-
larized problem.
First, we introduce the following estimates

Lemma 5 If s > 0, then


 nX
k=1

�
@xkJ

s(g@xkf)� @xkf(@xkJsg)
�



L2(R3+)

� c
�
kJ2fkL1(R3+)kJ

sgkL2(R3+)+

kJs+2fkL2(R3+)kgkL1(R3+)
�
(83)

Proof. The proof of this Lemma is similar to that of Lemma X1 in [K-K4],
is based on the following result due to R. R. Coifman and Y. Meyer (Lemma
A.1.2). See Lemma A.1.3 in ([M]).

Lemma 6 If s > 0, then Hs(R3+) \ L1(R3+) is a Banach Algebra. Moreover

kfgks � c(kfkL1(R3+)kgkL2(R3+) + kfkL2(R3+)kgkL1(R3+)) (84)

Proof. See [K-K4].

Lemma 7 Let f 2 Xs(R3+), s > 5
2 ; k = 1; 2; :::. Then

kf2kks . kfk2k�1L1(R3+)
kfks;

where A . B means that exist a constant c > 0 such that A � cB.

Now, we are ready to establish the following result.
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Theorem 8 (Global Solution). Let s > 5=2; P (�) = �2k; F � 0 and �0 2
Hs(R3+) with 0 � �0(x) � 1 in R3+. Then (56) is globally well-posed in the sense
described in Section 3 and satis�es 0 � �(x; t) � 1; 8t � 0.

Proof. The Comparison Principle implies that 0 � �(x; t) � 1. Using the regu-
larized initial value problem, with the simpli�ed notations ��(t) � ~�; v�(t) � v.8><>:

@t~�� ��N ~�+ div [~�v] = 0
v = �Br ~�2k

(~�(0);v(0)) = (~�0;v0)

: (85)

Applying Js to regularized equation:

d

dt
(Js~�)� �(Js�N ~�) + Jsdiv (~� v) = 0: (86)

Multiplying (86) by Js~� and integrating over R3+ we get,

1

2

d

dt

Z
(Js~�)2 dx = �

Z
(Js~�)Js(�N ~�) dx�

Z
(Js~�)(Jsdiv (~� v)) dx; (87)

so that

1

2

d

dt

Z
(Js~�)2 dx = �

Z
(Js~�)�N (J

s~�) dx| {z }
�0

�
3X
i=1

Z
(Js~�)@xiJ

s(~� vi) dx: (88)

Using the commutator [@xiJ
s; vi]~� = @xiJ

s(~� vi)� vi@xiJs~�, we obtain:

1

2

d

dt

Z
(Js~�)2 dx � �

3X
i=1

Z
(Js~�)[@xiJ

s; vi]~� dx�
3X
i=1

Z
(Js~�)vi@xiJ

s~� dx: (89)

Integration by parts in (89) yields,

1

2

d

dt

Z
(Js~�)2 dx � �

3X
i=1

Z
(Js~�)[@xiJ

s; vi]~� dx+
1

2

Z
(Js~�)2div v dx: (90)

Taking (66) into (90) we obtain,

1
2
d
dt

R
(Js~�)2 dx � �

3P
i=1

R
(Js~�)[@xiJ

s; vi]~� dx+
1
2

R
(Js~�)2~�2k dx

� 1
2

R
(Js~�)2J�1=2(~�2k) dx:

(91)

From the second equation in (85) we have vi = �@xiBi
�
~�2k
�
. Substituting it in

(91)

d
dt

R
(Js~�)2 dx �

R
(Js~�)2~�2k dx�

�0z }| {Z
(Js~�)2J�1=2~�2k dx

+2
R
(Js~�)

� 3P
i=1

[@xiJ
s; @xiBi

�
~�2k
�
]~�
�
dx:

(92)
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Noting that the third term in (92) is non negative, and applying Cauchy Schwartz
inequality in the fourth term we get,

d

dt

Z
(Js~�)2 dx � k~�2kkL1(R3+)

Z
(Js~�)2 dx

+ 2 kJs~�kL 2(R3+)




 3X
i=1

�
@xiJ

s; @xiJ
�1=2~�2k

�
~�




L 2(R3+)

(93)

Using Lemma 6.1 in (93), with f = J�1=2~�2k and g = ~�, we obtain:

d

dt
k~�k2s � k~�2kkL1(R3+)k~�k

2
s + 2ck~�ks

h
k~�2kkL1(R3+)k~�ks + k~�

2kksk~�kL1(R3+)
i
(94)

Applying Lemma 6.3 in (94):

d

dt
k~�k2s . k~�k2kL1(R3+)k~�k

2
s (95)

Now, we need to estimate k~�kL1(R3+). Applying the Comparison Principle for �
together with Sobolev�s Lemma we have

k~�kL1(R3+) � k~�� �kL1(R3+) + k�kL1(R3+) . 1 + k~�� �ks (96)

Since k~���ks = supk'ks=1 jh~���; 'isj we proceed as follows: in the analysis of
the weak convergence of sequence �� (see the proof of Theorem 4.2) we obtained

jh��(t)� ��(t); 'isj � k��(t)� ��(t)ksk'� '�ks + k��(t)� ��(t)kL2(R3+) k'�k2s

(97)

� 2M�+ k��(t)� ��(t)kL 2(R3+) k'�k2s

Taking the limit as � ! 0 in (97), it follows that,

jh��(t)� �(t); 'isj � 2M�+ k��(t)� �(t)kL2(R3+) k'�k2s (98)

Noting that k��(t)� ��(t)kL2(R3+) � 2M
q
n ~Tsj�� �je ~TsL0(M;M) (see Theo-

rem 4.2) and taking the limit as � ! 0;it follows that,

k��(t)� �(t)kL2(R3+) � 2M
q
n ~Ts � e

~TsL0(M;M) = eC(n;M; ~Ts)
p
� (99)

Substituting (99) in (98) and noting that k'�k2s � ��sk'ks with '� constructed
as in [I-I5, Lemma 2.6, pg 900], yields

jh��(t)� �(t); 'isj � 2M�+ eC(n;M; ~Ts)
p
� ��sk'ks (100)

Then

k~�� �ks = sup
k'ks=1

jh~�� �; 'isj � 2M�+ eC(n;M; ~Ts)
p
� ��s (101)
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and
k~�kL1(R3+) . 1 + 2M�+ eC(n;M; ~Ts)

p
� ��s;8� > 0 (102)

Since r(�) = �2k is a non-decreasing function, it follows that:

d

dt
k~�k2s . r(1 + 2M�+ eC(n;M; ~Ts)

p
� ��s)k~�k2s (103)

Integrating from 0 to t in (103)

k~�k2s . k�0k2s + r(1 + 2M�+ eC(n;M; ~Ts)
p
� ��s)

Z t

0

k~�(�)k2s d� (104)

Applying Gronwall �s inequality to (104), we obtain a priori-estimate in Hs(R3+); s >
5=2

k~�k2s . k�0k2s er
�
1+2M�+ eC(n;M; ~Ts)

p
� ��s

�
~Ts ; 8 ~Ts > 0; 8� > 0 (105)

Finally, applying [Y, Theo. 1, pg 120] in (105) we obtain the �nal estimate

k�(t)k2s � lim inf
�!0

k��(t)k2s

� lim inf
�!0

k�0k2s er
�
1+2M�+ eC(n;M; ~Ts)

p
� ��s

�
~Ts (106)

= lim
�!0

k�0k2s er
�
1+2M�+ eC(n;M; ~Ts)

p
� ��s

�
~Ts

= k�0k2s er(1+2M�) ~Ts 8� > 0

Therefore, taking the limit as � tends to zero, follows the �nal estimate

k�(t)k2s � k�0k2s e
~Ts ; 8t 2 [0; ~Ts]; (107)

and the proof is complete.
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