
Instituto Nacional de Matemática Pura e Aplicada – IMPA

Stationary States of Exclusion Processes With
Complex Boundary Conditions and Metastability of

Markov Chains With Valleys of Different Depths

Tiecheng Xu

Advisor: Claudio Landim

Rio de Janeiro,March, 2019



Abstract

The thesis deals with two different topics about the scaling limit of Markov Processes. In

the first part of the thesis, we deduce the hydrostatic limit of three types of boundary

driven exclusion processes with non-reversible boundary dynamics. In the second part,

we study metastability of continuous time finite state Markov chains. For a sequence

of Markov chains with certain assumptions on the jump rates, we present a recursive

procedure which permits to determine all valleys with different depths from shallow to

deep, and the corresponding time scale.

Keywords: Hydrostatic Limit, Boundary Driven Exclusion Processes, Metastability

of Markov Processes. Slow Variables
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CHAPTER 1 INTRODUCTION

The thesis is composed of two research works[1][2]. The first one concerns with the

hydrostatic limit of boundary driven exclusion process, which is the content of Chapter

2. Chapter 3 is based on the second paper, which is devoted to study the metastability

of finite state Markov processes.

Hydrostatic Limit. The object that we study in Chapter 2 is the simple exclusion

process with complex open boundaries. Let us start with the model with simple boundary

condition. Let ΛN = {1, 2, · · · , N−1} and ΩN = {0, 1}ΛN . Consider the one-dimensional

symmetric simple exclusion process {ηN(t) : t ≥ 0} on a finite lattice ΛN with open

boundaries. Particles jumps to nearest neighbors performing simple symmetric random

walks with the exclusion rule: a jump is suppressed if site is already occupied. At the left

boundary, particles are created with rate α and annihilated with rate 1−α. On the right

boundary this is done with rates β and 1− β. The infinitesimal generator of this Markov

process acting on a function f : ΩN → R is given by:

(Lf)(η) : = (Tlf)(η) + (Trf)(η) +
N−2∑
j=1

[f(σj,j+1η)− f(η)] (1.0.1)

where

(Tlf)(η) = {α(1− η1) + (1− α)η1}[f(σ1η) − f(η)] (1.0.2)

(Trf)(η) = {β(1− ηN−1) + (1− β)ηN−1}[f(σN−1η) − f(η)] (1.0.3)

In the above equations, σj,j+1η is the the configuration obtained from η by exchanging

the occupation variables ηj, ηj+1, and σjη stands for the configuration obtained from η by

flipping the occupation variables ηj.

Our goal is to describe the stationary state of the Markov process with generator L

given in (1.0.1) for general boundary dynamics. For the simplest case where Tl and Tr are

given by (1.0.2) and (1.0.3), the stationary state is well understood. If α = β, the Markov

chain {ηN(t) : t ≥ 0} is reversible with respect to the product measure with marginal

density α. If α 6= β, even though the stationary measure µN cannot be written explicitly,

it is well approximated by a product measure in the following sense: for any continuous

function G : [0, 1]→ R,

lim
N→∞

EµN

[ ∣∣∣ 1

N

N−1∑
k=1

G(k/N) [ηk − ū(k/N)]
∣∣∣ ] = 0 ,
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where ū is the unique solution of the linear equation0 = ∆u ,

u(0) = α , u(1) = β .
(1.0.4)

This is the so-called hydrostatic limit of the particle system. The result above can be

proved either using the Derrida’s formula for the stationary state as a product of matrices,

or by first deriving the hydrodynamic limit though the entropy method introduced by Guo,

Papanicolaou and Varadhan[20] and then apply the technique adopted by Farfan, Landim

and Mourragui in [21].

A question raised by H.Spohn concerns exclusion processes with complex boundary

conditions. If creation and annihilation rates at the boundary depend locally on the

configuration, what is the hydrodynamic limit, or the hydrostatic limit? More precisely,

the generator of the boundary dynamics Tl is given by:

(Tlf)η = cl(η1, η2, · · · , ηp) [f(σ1η) − f(η)] (1.0.5)

where p ≥ 1 is a fixed integer, and c is non-negative function: c : Ωp+1 → R≥0 . A more

general setting is that particles can be created and annihilated at all p left most sites,

with rates being a local function defined as c1. Note that the entropy method is no more

available in the general case, since the stationary state cannot be well approximated by

a product measure. The matrix method of Derrida is also difficult to apply, because the

number of equations for matrix to satisfy is 2p+1 and hence it is almost impossible to find

a solution(matrix) in simple form even for p = 2.

We provide partial answers to this question. We investigate the hydrostatic limit of

three classes of boundary driven exclusion processes whose boundary dynamics do not

satisfy a detailed balance condition. The first one consists of all boundary dynamics

whose generator does not increase the degree of functions of degree 1 and 2. The second

class includes all dynamics whose interaction with the reservoirs depends weakly on the

configuration. Finally, the third class comprises all exclusion processes whose boundary

dynamics is speeded up. Using duality techniques, we prove a law of large numbers for

the empirical measure under the stationary state for these three types of interaction with

the reservoirs.

Chapter 2 is organized as follows. In section 2.1 we introduce three types of models

and state the main results. In sections 2.2 and 2.3 we prove the hydrostatic limit of the

first type, proofs of the hydrostatic limit for the second and third type are carried out in

section 2.4 and section 2.5 respectively.
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Metastability of Finite State Markov Chains. Metastability of continuous-time

Markov chains has attracted a lot of attention over the last several decades. Cassandro et

al. proposed in [17] the so called pathwise approach to derive the metastablility behavior

of continuous-time Markov chains. In [18][19], Bovier et al. introduced a new approach to

prove the metastable behavior of continuous-time Markov chains, known as the potential

theoretic approach.

Recently, Beltrán and Landim introduced a martingale approach to derive the metastable

behavior of continuous-time Markov chains, particularly convenient in the presence of sev-

eral valleys with the same depth [9, 11, 12]. In the context of finite state Markov chains

[10], it permits to identify the slow variables and to reduce the model and the state space.

More precisely, consider a sequence of continuous-time, irreducible Markov chains

{ηNt , t ≥ 0} with a finit-state space E. Given a partition E1, . . . ,En,∆ of the set E, let

E = ∪1≤x≤nEx and define a projection φE : E → {0, 1, . . . , n} by

φE (η) =
n∑

x=1

x1{η ∈ Ex} .

In general, XN(t) = φE (ηNt ) is not Markovian, except some trivial cases. We are interested

in finding a proper projection φE (η) such that in a certain time scale XN converges to

some Markov chain under a suitable topology. Therefore we give the following definition:

φE is a slow variable if there exists a time-scale θN for which the dynamics of XN(tθN) is

asymptotically Markovian and XN(tθN) spends a negligible period of time on the set ∆.

The sets E1, . . . ,En are called valleys and ∆ is called negligible set. In the time-scale

θN the chain remains a negligible amount of time in the set ∆ and performs transitions

between distinct valleys at a time which is asymptotically exponential. We say that the

chain ηNt exhibits a metastable behavior among the valleys E1, . . . ,En in the time-scale θN

whenever we prove the existence of a slow variable.

The procedure presented above allows to reduce a complicated Markov chain to a

simpler one with smaller state space, while keeping the essential features of the dynamics

at the same time. For the reduced Markov chain, we can perform the procedure again to

obtain an even simpler one. The procedure may continue until the number of sets in the

partition is reduced to 2. In this case, the reduced Markov chain has one absorbing point

and one transient point. In a certain time-scale, it remains for an exponential time on a

subset of the state space after which it jumps to another set where it remains forever.

In Chapter 3 we present a recursive procedure which permits to determine all slow

variables of the chain. It provides a sequence of time-scales θ1
N , . . . , θ

p
N and of partitions

{E j
1 , . . . ,E

j
nj
,∆j}, 1 ≤ j ≤ p, of the set E with the following properties.
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• The time-scales are increasing: limN→∞ θ
j
N/θ

j+1
N = 0 for 1 ≤ j < p. This relation is

represented as θjN � θj+1
N .

• The partitions are coarser. Each set of the (j + 1)-th partition is obtained as a

union of sets in the j-th partition. Thus nj+1 < nj and for each a in {1, . . . , nj+1},
E j+1
a = ∪x∈AE j

x for some subset A of {1, . . . , nj}.

• The sets ∆j, which separates the valleys, increase: ∆j ⊂ ∆j+1. Actually, ∆j+1 =

∆j ∪x∈B E j
x for some subset B of {1, . . . , nj}.

• The projection Ψj
N(η) =

∑
1≤x≤nj x1{η ∈ E j

x } + N 1{η ∈ ∆j} is a slow variable

which evolves in the time-scale θjN .

Our proof is based on a multiscale analysis. We only make a minimal assumption (see

assumption (3.1.6) ) on the jump rates, which can be easily checked to be satisfied or not.

We do not need the assumption of reversibility.

Chapter 3 is organized as follows. In section 3.1 we state the main results. In sec-

tions3.2−3.4 we introduce the tools needed to prove these results, which is carried out in

3.5−3.7.
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CHAPTER 2 STATIONARY STATES OF BOUNDARY DRIVEN EXCLU-

SION PROCESSES WITH NONREVERSIBLE BOUNDARY

DYNAMICS

2.1 Notation and Results

Consider the symmetric, simple exclusion process on ΛN = {1, . . . , N − 1} with reflecting

boundary conditions. This is the Markov process on ΩN = {0, 1}ΛN whose generator,

denoted by Lb,N , is given by

(Lb,Nf)(η) =
N−2∑
k=1

{f(σk,k+1η)− f(η)} . (2.1.1)

In this formula and below, the configurations of ΩN are represented by the Greek letters

η, ξ, so that ηk = 1 if site k ∈ ΛN is occupied for the configuration η and ηk = 0

otherwise. The symbol σk,k+1η represents the configuration obtained from η by exchanging

the occupation variables ηk, ηk+1:

(σk,k+1η)j =


ηk+1 if j = k

ηk if j = k + 1

ηj if j ∈ ΛN \ {k, k + 1} .

This dynamics is put in contact at both ends with non-conservative dynamics. On the

right, it is coupled to a reservoir at density β ∈ (0, 1). This interaction is represented by

the generator Lr,N given by

(Lr,Nf)(η) = {β(1− ηN−1) + (1− β)ηN−1} {f(σN−1η)− f(η)} , (2.1.2)

where σkη, k ∈ ΛN , is the configuration obtained from η by flipping the occupation

variable ηk,

(σkη)j =

1− ηk if j = k

ηj if j ∈ ΛN \ {k} .

On the left, the system is coupled with different non-conservative dynamics. The

purpose of this paper is to investigate the stationary state induced by these different

interactions.
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2.1.1 Boundary dynamics which do not increase degrees

The first left boundary dynamics we consider are those which keep the degree of functions

of degree 1 and 2: those whose generator, denoted by Ll,N , are such that for all j 6= k,

Ll,N ηj = aj +
∑
`

aj` η` ,

Ll,N ηj ηk = bj,k +
∑
`

bj,k` η` +
∑
`,m

bj,k`,m η` ηm
(2.1.3)

for some coefficients aj, aj`, b
j,k, bj,k` , bj,k`,m.

Fix p ≥ 0, and let Λ∗p = {−p, . . . , 0}, Ω∗p = {0, 1}Λ∗p . Consider the generators of Markov

chains on Ω∗p given by

(LRf)(η) =
∑
j∈Λ∗p

rj
[
αj (1− ηj) + ηj (1− αj)

]
{ f(σjη)− f(η) } ,

(LCf)(η) =
∑
j∈Λ∗p

∑
k∈Λ∗p

cj,k
[
ηk (1− ηj) + ηj (1− ηk)

]
{ f(σjη)− f(η) } ,

(LAf)(η) =
∑
j∈Λ∗p

∑
k∈Λ∗p

aj,k
[
ηk ηj + (1− ηj) (1− ηk)

]
{ f(σjη)− f(η) } .

In these formulae and below, rj, cj,k and aj,k are non-negative constants, 0 ≤ αj ≤ 1, and

cj,j = aj,j = 0 for j ∈ Λ∗p.

The generator LR models the contact of the system at site j with an infinite reservoir

at density αj. At rate rj ≥ 0, a particle, resp. a hole, is placed at site j with probability

αj, resp. 1− αj. The generator LC models a replication mechanism, at rate cj,k ≥ 0, site

j copies the value of site k. The generator LA acts in a similar way. At rate aj,k ≥ 0, site

j copies the inverse value of site k. We add to these dynamics a stirring evolution which

exchange the occupation variables at nearest-neighbor sites:

(LSf)(η) =
−1∑
j=−p

{f(σj,j+1η)− f(η)} .

The evolution at the left boundary we consider consists in the superposition of the

four dynamics introduced above. The generator, denoted by Ll, is thus given by

Ll = LS + LR + LC + LA .
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Denote by LG the generator of a general Glauber dynamics on Ω∗p:

(LGf)(η) =
0∑

k=−p

ck(η) {f(σkη)− f(η)} , (2.1.4)

where ck are non-negative jump rates which depend on the entire configuration (η−p, . . . , η0).

We prove in Lemma 2.2.2 that any Markov chain on Ω∗p whose generator LD is given by

LD = LS+LG and which fulfills conditions (2.1.3) can be written as LS+LR+LC+LA [we

show that there are non-negative parameters rj, cj,k, aj,k such that LG = LR +LC +LA].

Therefore, by examining the Markov chain whose left boundary condition is characterized

by the generator Ll we are considering the most general evolution in which a stirring

dynamics is superposed with a spin flip dynamics which fulfills condition (2.1.3).

We prove in Lemma 2.2.3 that the Markov chain induced by the generator Ll has a

unique stationary state if ∑
j∈Λ∗p

rj +
∑
j∈Λ∗p

∑
k∈Λ∗p

aj,k > 0 . (2.1.5)

Assume that this condition is in force. Denote by µ the unique stationary state, and let

ρ(k) = Eµ[ηk] , k ∈ Λ∗p , (2.1.6)

be the mean density at site k under the measure µ. Clearly, 0 ≤ ρ(k) ≤ 1 for all k ∈ Λ∗p.

Since Eµ[Llηj] = 0, a straightforward computation yields that

0 = rj [αj − ρ(j)] + (C ρ)(j) + (A ρ)(j) + (T ρ)(j) , j ∈ Λ∗p , (2.1.7)

where

(C ρ)(j) =
∑
k∈Λ∗p

cj,k [ρ(k)− ρ(j)] , (A ρ)(j) =
∑
k∈Λ∗p

aj,k [1− ρ(k)− ρ(j)] ,

(T ρ)(j) =


ρ(−p+ 1)− ρ(−p) if j = −p ,
ρ(−1)− ρ(0) if j = 0 ,

ρ(j + 1) + ρ(j − 1)− 2ρ(j) otherwise.

We prove in Lemma 2.2.4 that (2.1.7) has a unique solution if condition (2.1.5) is in force.

Let ΛN,p = {−p, . . . , N − 1}. Consider the boundary driven, symmetric, simple exclu-
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sion process on ΩN,p = {0, 1}ΛN,p whose generator, denoted by LN , is given by

LN = Ll + L0,1 + Lb,N + Lr,N , (2.1.8)

where L0,1 represent a stirring dynamics between sites 0 and 1:

(L0,1f)(η) = f(σ0,1η)− f(η) .

There is a little abuse of notation in the previous formulae because the generators are not

defined on the space ΩN,p but on smaller spaces. We believe, however, that the meaning

is clear.

Due to the right boundary reservoir and the stirring dynamics, the process is irre-

ducible. Denote by µN the unique stationary state, and let

ρN(k) = EµN [ηk] , k ∈ ΛN,p , (2.1.9)

be the mean density at site k under the stationary state. Of course, 0 ≤ ρN(k) ≤ 1 for

all k ∈ ΛN,p, N ≥ 1. We prove in Lemma 2.2.5 that under condition (2.1.5) there exists

a finite constant C0, independent of N , such that

∣∣ ρN(k) − ρ(k)
∣∣ ≤ C0/N , for all − p ≤ k ≤ 0 ,

where ρ is the unique solution of (2.1.7).

The first main result of this article establishes a law of large numbers for the empirical

measure under the stationary state µN .

Theorem 2.1.1. Assume that
∑

j∈Λ∗p
rj > 0. Then, for any continuous function G :

[0, 1]→ R,

lim
N→∞

EµN

[ ∣∣∣ 1

N

N−1∑
k=1

G(k/N) [ηk − ū(k/N)]
∣∣∣ ] = 0 ,

where ū is the unique solution of the linear equation0 = ∆u ,

u(0) = ρ(0) , u(1) = β .
(2.1.10)

We refer to Section 2.2 for the notation used in the next remark.

Remark 2.1.2. We believe that Theorem 2.1.1 remains in force if
∑

j∈Λ∗p
rj = 0 and∑

j,k∈Λ∗p
aj,k > 0. This assertion is further discussed in Remark 2.3.5.

11



Remark 2.1.3. The case
∑

j∈Λ∗p
rj +

∑
j,k∈Λ∗p

aj,k = 0 provides an example in which at the

left boundary sites behave as a voter model and acquire the value of one of their neighbors.

One can generalize this model and consider an exclusion process in which, at the left

boundary, the first site takes the value of the majority in a fixed interval {2, . . . , 2p}, the

left boundary generator being given by

(Llf)(η) = f(Mη)− f(η) ,

where (Mη)k = ηk for k ≥ 2, and (Mη)1 = 1{∑2≤j≤2p ηj ≥ p}. In this case it is

conceivable that the system alternates between two states, one in which the left density is

close to 1 and one in which it is close to 0.

The proof of Theorem 2.1.1 is presented in Sections 2.2 and 2.3. It relies on duality

computations. As the boundary conditions do not increase the degrees of a function, the

equations obtained from the identities EµN [LNηj] = 0, EµN [LNηjηk] = 0 can be expressed

in terms of the density and of the correlation functions.

2.1.2 Small perturbations of flipping dynamics

We examine in this subsection a model in which the rate at which the leftmost occupation

variable is flipped depends locally on the configuration. Consider the generator

LN = Ll + Lb,N + Lr,N , (2.1.11)

where Lb,N and Lr,N were defined in (2.1.1), (2.1.2). The left boundary generator is given

by

(Llf)(η) = c(η1, . . . , ηp) [f(σ1η)− f(η)] .

for some non-negative function c : {0, 1}p → R+.

Let

A = min
ξ∈Ωp

c(0, ξ) , B = min
ξ∈Ωp

c(1, ξ) (2.1.12)

be the minimal creation and annihilation rates, and denote by

λ(0, ξ) := c(0, ξ) − A , λ(1, η) := c(1, ξ) − B

the marginal rates. We allow ourselves below a little abuse of notation by considering λ

as a function defined on ΩN and which depends on the first p coordinates, instead of a

function defined on Ωp+1. With this notation the left boundary generator can be written

12



as

(Llf)(η) =
[
A+ (1− η1)λ(η)

]
[f(T 1η)− f(η)] +

[
B + η1 λ(η)

]
[f(T 0η)− f(η)] ,

where for a = 0, 1,

(T aη)k =

a if k = 1,

ηk otherwise.

The Markov chain with generator LN has a unique stationary state because it is irre-

ducible due to the stirring dynamics and the right boundary condition. Denote by µN the

unique stationary state of the generator LN , and by EµN the corresponding expectation.

Let ρN(k) = EµN [ηk], k ∈ ΛN .

Theorem 2.1.4. Suppose that

(p− 1)
∑
ξ∈Ωp

{λ(0, ξ) + λ(1, ξ)} < A + B . (2.1.13)

Then, the limit

α := lim
N→∞

ρN(1)

exists, and it does not depend on the boundary conditions at N − 1. Moreover, for any

continuous function G : [0, 1]→ R,

lim
N→∞

EµN

[ ∣∣∣ 1

N

N−1∑
k=1

G(k/N) [ηk − ū(k/N)]
∣∣∣ ] = 0 ,

where ū is the unique solution of the linear equation (2.1.10) with ρ(0) = α.

Remark 2.1.5. There is not a simple closed formula for the left density α. By coupling,

it is proven that the sequence ρN(1) is Cauchy and has therefore a limit. The density

ρN(1) can be expressed in terms of the dual process, a stirring dynamics with creation and

annihilation at the boundary.

Remark 2.1.6. A similar result holds for boundary driven exclusion processes in which

particles are created at sites 1 ≤ k ≤ q with rates depending on the configuration through

the first p sites, provided the rates depend weakly [in the sense (2.1.13)] on the configura-

tion.

Remark 2.1.7. One can weaken slightly condition (2.1.13). For ζ ∈ {0, 1}q, 0 ≤ q ≤
p − 1, let A(ζ) = minξ c(ζ, ξ), where the minimum is carried over all configurations

13



ξ ∈ {0, 1}p−q. For a = 0, 1, and ζ ∈ ∪0≤q≤p−1{0, 1}q, let R(ζ, a) = A(ζ, a)− A(ζ) ≥ 0 be

the marginal rate. The same proof shows that the assertion of Theorem 2.1.4 holds if

p∑
q=2

(q − 1)
∑

ζ∈{0,1}q
R(ζ) < A + B .

Remark 2.1.8. In [3], Erignoux proves that the empirical measure evolves in time as the

solution of the heat equation with the corresponding boundary conditions.

The proof of Theorem 2.1.4 is presented in Section 2.4. It is based on a duality

argument which consists in studying the process reversed in time. We show that under

the conditions of Theorem 2.1.4, to determine the value of the occupation variable η1

at time 0, we only need to know from the past the behavior of the process in a finite

space-time window.

2.1.3 Speeded-up boundary condition

Recall the notation introduced in Subsection 2.1.1. Fix p > 1 and consider an irreducible

continuous-time Markov chain on Ω∗p, p > 0. Denote by Ll the generator of this process,

and by µ the unique stationary state. Let

ρ(k) = Eµ[ηk] , k ∈ Λ∗p , (2.1.14)

be the mean density at site k under the measure µ. Clearly, 0 < ρ(k) < 1 for all k ∈ Λ∗p.

The density cannot be 0 or 1 because every configuration has a strictly positive weight

under the stationary measure.

Fix a sequence `N →∞, and consider the boundary driven, symmetric, simple exclu-

sion process on ΩN,p whose generator, denoted by LN , is given by

LN = `N Ll + L0,1 + Lb,N + Lr,N ,

where L0,1 represent a stirring dynamics between sites 0 and 1, introduced below (2.1.8).

Note that the left boundary dynamics has been speeded-up by `N .

Due to the right boundary reservoir and the stirring dynamics, the process is irre-

ducible. Denote by µN the unique stationary state, and let

ρN(k) = EµN [ηk] , k ∈ ΛN,p ,

be the mean density at site k under the stationary state.
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Theorem 2.1.9. There exists a finite constant C0, independent of N , such that |ρN(0)−
ρ(0)| ≤ C0/

√
`N . Moreover, for any continuous function G : [0, 1]→ R,

lim
N→∞

EµN

[ ∣∣∣ 1

N

N−1∑
k=1

G(k/N) [ηk − ū(k/N)]
∣∣∣ ] = 0 ,

where ū is the unique solution of the linear equation (2.1.10).

Remark 2.1.10. The proof of this theorem is based on duality computations, and does not

requires one and two-blocks estimates. There is an alternative proof relying on an estimate

of the entropy production along the lines presented in [4, Proposition 2], [7, Proposition

3.3]. This proof applies to gradient and non-gradient models [6], but it requires `N to grow

at least as N .

The proof of Theorem 2.1.9 is presented in Section 2.5. As the boundary condition has

been speeded-up, each time the occupation variables η0, η1 are exchanged, the distribution

of the variable η0 is close to its stationary distribution with respect to the left-boundary

dynamics.

2.2 Proof of Theorem 2.1.1: one point functions

We prove in this section that the density of particles under the stationary state µN is

close to the solution of the linear parabolic equation (2.1.10). We first show that the left

boundary dynamics we consider is indeed the most general one which does not increase

the degree of functions of degree 1 and 2.

For A ⊂ Λ∗p, let ΨA : Ω∗p → R be given by ΨA(η) =
∏

k∈A ηk. Clearly, any function

f : Ω∗p → R can be written as a linear combination of the functions ΨA. A function f is

said to be a monomial of order n if it can be written as a linear combination of functions

ΨA where |A| = n for all A. It is said to be a polynomial of order n if it can be written

as a sum of monomials of order m ≤ n.

Recall the definition of the generator LG given in (2.1.4). Fix −p ≤ k ≤ 0, and write

the jump rate ck as

ck =
∑
A⊂Λ∗p

Rk,A ΨA ,

where the sum is carried over all subsets A of Λ∗p.

Lemma 2.2.1. The functions LGΨ{j}, resp. LGΨ{j,k}, −p ≤ j 6= k ≤ 0, are polynomials

of order 1, resp. of order 2, if and only if there exists constants Rl,∅, Rl,{m}, l, m ∈ Λ∗p
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such that

cj(η) = Rj,∅ + Rj,{j} ηj +
∑
k:k 6=j

Rj,{k} ηk (1− 2ηj) . (2.2.1)

Proof. Fix j ∈ Λ∗p. A straightforward computation shows that

LGΨ{j} =
∑
A 63j

Rj,A ΨA −
∑
A 63j

(2Rj,A +Rj,A∪{j}) ΨA∪{j} .

Hence, LGΨ{j} is a polynomial of order 1 if and only if Rj,B = Rj,B∪{j} = 0 for all B ⊂ Λ∗p

such that |B| ≥ 2, j 6∈ B. This proves that LGΨ{j} is a polynomial of order 1 if and only

if condition (2.2.1) holds.

If the rates are given by (2.2.1), for all j 6= k ∈ Λ∗p,

(LGΨ{j})(η) = Rj,∅ (1− 2ηj) − Rj,{j} ηj +
∑
`:`6=j

Rj,{`} η` ,

and

(LGΨ{j,k})(η) = Rj,∅ (1− 2ηj) ηk + Rk,∅ (1− 2ηk) ηj −
(
Rj,{j} +Rk,{k}

)
ηjηk

+
∑
`: 6̀=j,k

Rj,{`} ηk η` +
∑
`:`6=j,k

Rk,{`} ηj η` ,

which is a polynomial of degree 2. This proves the lemma.

Note: Observe that at this point we do not make any assertion about the sign of the

constants Rj,∅, Rj,{k}.

The next result states that a generator LG whose rates satisfy condition (2.2.1) can

be written as LR + LC + LA. Denote by Pj, resp. Nj, −p ≤ j ≤ 0, the subset of points

k ∈ Λ∗p \ {j}, such that Rj,{k} ≥ 0, resp. Rj,{k} < 0.

Lemma 2.2.2. The rates cj(η) given by (2.2.1) are non-negative if and only if

pj := Rj,∅ + Rj,{j} −
∑
k∈Pj

Rj,{k} ≥ 0 ,

qj := Rj,∅ +
∑
k∈Nj

Rj,{k} ≥ 0 .

In this case, there exist non-negative rates rj, cj,k, aj,k and densities αj ∈ [0, 1], k 6= j ∈

16



Λ∗p, such that for all j ∈ Λ∗p, η ∈ Ω∗p,

cj(η) = rj
[
αj (1− ηj) + (1− αj) ηj

]
+
∑
k∈Λ∗p

cj,k
[
ηj (1− ηk) + ηk (1− ηj)

]
,

+
∑
k∈Λ∗p

aj,k
[
ηj ηk + (1− ηk) (1− ηj)

]
.

Proof. The first assertion of the lemma is elementary and left to the reader. For j 6= k ∈
Λ∗p, define

cj,k = Rj,{k} 1{k ∈ Pj} ≥ 0, aj,k = −Rj,{k} 1{k ∈ Nj} ≥ 0 ,

rj := pj + qj ≥ 0 , αj :=
qj

pj + qj
1{rj 6= 0} ∈ [0, 1] .

It is elementary to check that the second assertion of the lemma holds with these defini-

tions.

Lemma 2.2.3. The Markov chain induced by the generator Ll has a unique stationary

state if
∑

j∈Λ∗p
rj +

∑
j,k∈Λ∗p

aj,k > 0. In contrast, if
∑

j∈Λ∗p
rj +

∑
j,k∈Λ∗p

aj,k = 0 and∑
j,k∈Λ∗p

cj,k > 0, then the Markov chain induced by the generator Ll has exactly two

stationary states which are the Dirac measures concentrated on the configurations with all

sites occupied or all sites empty.

Proof. Assume first that
∑

j∈Λ∗p
rj > 0. Let j ∈ Λ∗p such that rj > 0. If αj > 0, the

configuration in which all sites are occupied can be reached from any configuration by

moving with the stirring dynamics each empty site to j, and then filling it up with the

reservoir. This proves that under this condition there exists a unique stationary state

concentrated on the configurations which can be attained from the configuration in which

all sites are occupied. Analogously, if αj = 0, the configuration in which all sites are

empty can be reached from any configuration.

Suppose that
∑

j∈Λ∗p
rj = 0 and

∑
j,k∈Λ∗p

aj,k > 0. We claim that from any configuration

we can reach any configuration whose total number of occupied sites is comprised between

1 and |Λ∗p| − 1 = p. Since the stirring dynamics can move particles and holes around, we

have only to show that it is possible to increase, resp. decrease, the number of particles

up to |Λ∗p| − 1, resp. 1.

Let k 6= j ∈ Λ∗p such that aj,k > 0. To increase the number of particles up to |Λ∗p| − 1,

move the two empty sites to j and k, and create a particle at site j. Similarly one can

decrease the number of particles up to 1. This proves that under the previous assumptions

there exists a unique stationary state concentrated on the set of configurations whose total
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number of particles is comprised between 1 and |Λ∗p| − 1.

Assume that
∑

j∈Λ∗p
rj = 0,

∑
j,k∈Λ∗p

aj,k = 0 and
∑

j,k∈Λ∗p
cj,k > 0. In this case, the

configuration with all sites occupied and the one with all sites empty are absorbing states.

Let k 6= j ∈ Λ∗p such that cj,k > 0. If there is at least one particle, to increase the number

of particles, move the empty site to j, the occupied site to k, and create a particle at

site j. Similarly, we can decrease the number of particle if there is at least one empty

site. This proves that in this case the set of stationary states is a pair formed by the

configurations with all sites occupied and the one with all sites empty.

Lemma 2.2.4. Suppose that
∑

j∈Λ∗p
rj +

∑
j,k∈Λ∗p

aj,k > 0. Then, there exists a unique

solution to (2.1.7).

Proof. Equation (2.1.6) provides a solution and guarantees existence. We turn to unique-

ness. Suppose first that
∑

j∈Λ∗p
rj > 0 and

∑
j,k∈Λ∗p

aj,k = 0. In this case, the operator A

vanishes. Consider two solution ρ(1), ρ(2), and denote their difference by γ. The difference

satisfies the linear equation

0 = − rj γ(j) + (C γ)(j) + (T γ)(j) , j ∈ Λ∗p .

Let π be the unique stationary state of the random walk on Λ∗p whose generator is C +T .

Multiply both sides of the equation by γ(j) π(j) and sum over j to obtain that

0 = −
∑
j∈Λ∗p

rj γ(j)2π(j) + 〈(C + T )γ , γ〉 ,

where 〈f, g〉 represents the scalar product in L2(π). As all terms on the right-hand side are

negative, the identity 〈(C + T )γ , γ〉 = 0 yields that γ is constant. Since, by hypothesis,∑
j rj > 0, γ ≡ 0, which proves the lemma.

Suppose next that
∑

j∈Λ∗p
rj > 0 and

∑
j,k∈Λ∗p

aj,k > 0. Define the rates tj,k ≥ 0,

j 6= k ∈ Λ∗p, so that

(T f)(j) =
∑
k:k 6=j

tj,k [f(k)− f(j)] , j ∈ Λ∗p .

Let Λext
p = {−1, 1} ×Λ∗p. Points in Λext

p are represented by the symbol (σ, k), σ = ±1,

−p ≤ k ≤ 0. We extend the definition of a function f : Λ∗p → R to Λext
p by setting

f(1, k) = f(k), f(−1, k) = 1 − f(k), k ∈ Λ∗p. This new function is represented by

f̂ : Λext
p → R.
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With this notation we may rewrite equation (2.1.7) as

0 = r(1,j) [α(1,j)− ρ̂(1, j)] + (Ĉ ρ̂) (1, j) + (Â ρ̂) (1, j) + (T̂ ρ̂) (1, j) , j ∈ Λ∗p , (2.2.2)

where, r(1,j) = rj, α(1,j) = αj,

(Â ρ̂) (1, j) =
∑
k∈Λ∗p

aj,k [ ρ̂(−1, k)− ρ̂(1, j) ] ,

and Ĉ , T̂ are the generators of the Markov chains on Λext
p characterized by the rates ĉ, t̂

given by

ĉ [ (±1, j) , (±1, k) ] = cj,k , ĉ [ (±1, j) , (∓1, k) ] = 0 ,

t̂ [ (±1, j) , (±1, k) ] = tj,k , t̂ [ (±1, j) , (∓1, k) ] = 0 .

Multiply equation (2.1.7) by −1 to rewrite it as

0 = r(−1,j) [α(−1,j) − ρ̂(−1, j)] + (Ĉ ρ̂)(−1, j) + (Â ρ̂)(−1, j) + (T̂ ρ̂)(−1, j) (2.2.3)

for any j ∈ Λ∗p, where r(−1,j) = rj, α(−1,j) = 1− αj, and

(Â ρ̂)(−1, j) =
∑
k∈Λ∗p

aj,k [ ρ̂(1, k)− ρ̂(−1, j) ] .

Since the operator Ĉ + Â + T̂ defines an irreducible random walk on Λext
p , we may

proceed as in the first part of the proof to conclude that there exists a unique solution of

(2.1.7).

Finally, suppose that
∑

j∈Λ∗p
rj = 0 and

∑
j,k∈Λ∗p

aj,k > 0. Let ρ be a solution to

(2.1.7). Then, its extension ρ̂ is a solution to (2.2.2), (2.2.3). The argument presented in

the first part of the proof yields that any solution of these equations is constant. Since

ρ̂(1, k) = ρ(k) = 1 − ρ̂(−1, k), we conclude that this constant must be 1/2. This proves

that in the case where
∑

j∈Λ∗p
rj = 0,

∑
j,k∈Λ∗p

aj,k > 0, the unique solution to (2.1.7) is

constant equal to 1/2.

Recall from (2.1.9) the definition of ρN .

Lemma 2.2.5. Suppose that
∑

j∈Λ∗p
rj +

∑
j,k∈Λ∗p

aj,k > 0. Then, for 0 ≤ k < N ,

ρN(k) =
k

N
β +

N − k
N

ρN(0) . (2.2.4)
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Moreover, there exists a finite constant C0, independent of N , such that

∣∣ ρN(k) − ρ(k)
∣∣ ≤ C0/N , −p ≤ k ≤ 0 ,

where ρ is the unique solution of (2.1.7).

Proof. Fix 1 ≤ k < N . As µN is the stationary state, EµN [LN ηk] = 0. Recall that

ρN(k) = EµN [ηk]. Note that ρN(N) = β, (∆NρN)(k) := ρN(k−1)+ρN(k+1)−2ρN(k) = 0.

In particular, ρN solves the discrete difference equation

(∆NρN)(k) = 0 , 1 ≤ k < N , ρN(N) = β , ρN(0) = ρN(0) ,

whose unique solution is given by (2.2.4). This proves the first assertion of the lemma.

We turn to the second statement. It is clear that ρN(j) fulfills (2.1.7) for −p ≤ j < 0.

For j = 0 the equation is different due to the stirring dynamics between 0 and 1 induced

by the generator L0,1. We have that

0 = r0 [α0 − ρN(0)] + (C ρN)(0) + (A ρN)(0) + (∆NρN)(0) .

By (2.2.4), we may replace ρN(1) by [1−(1/N)] ρN(0)+(1/N)β, and the previous equation

becomes

0 = r0 [α0−ρN(0)] + (C ρN)(0) + (A ρN)(0) + (T ρN)(0) +
1

N

[
β−ρN(0)

]
. (2.2.5)

This equation corresponds to (2.1.7) with r′0 = r0 + (1/N) and α′0 = (α0 r0 + β/N)/[r0 +

(1/N)].

By Lemma 2.2.4, equation (2.1.7) for j 6= 0 and (2.2.5) for j = 0 has a unique solution.

Let γN = ρN − ρ, where ρ is the solution of (2.1.7). γN satisfies

0 =
1

N
[β − ρN(0)] δ0,j − rj γN(j) + (C γN)(j) + (A γN)(j) + (T γN)(j) ,

where δ0,j is equal to 1 if j = 0 and is equal to 0 otherwise.

We complete the proof in the case A = 0. The other cases can be handled by

increasing the space, as in the proof of Lemma 2.2.4. Denote by π the stationary state

of the generator C + T . Multiply both sides of the previous equation by π(j)γN(j) and

sum over j to obtain that∑
j∈Λ∗p

rj γN(j)2π(j) + 〈− (C + T ) γN , γN〉 = θN γN(0)π(0) ,
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where θN = (1/N) [β−ρN(0)]. Let k ∈ Λ∗p such that rk > 0. Such k exists by assumption.

Rewrite γN(0) as
∑

k<j≤0[γN(j)−γN(j−1)]+γN(k) and use Young’s inequality to obtain

that there exists a finite constant C0, depending only on p, π and on the rates cj,k, rj such

that

θN γN(0)π(0) ≤ (1/2) rk γN(k)2 π(k) + (1/2) 〈− (C + T ) γN , γN〉 + C0 θ
2
N .

Here and throughout the article, the value of the constant C0 may change from line to

line. The two previous displayed equations and the fact that |β − ρN(0)| ≤ 1 yield that

∑
j∈Λ∗p

rj γN(j)2π(j) + 〈− (C + T ) γN , γN〉 ≤
C0

N2
·

In particular, γN(k)2 ≤ C0/N
2 and [γN(j + 1) − γN(j)]2 ≤ C0/N

2 for −p ≤ j < 0. This

completes the proof of the lemma.

2.3 Proof of Theorem 2.1.1: two point functions.

We examine in this section the two-point correlation function under the stationary state

µN . Denote by DN the discrete simplex defined by

DN = {(j, k) : −p ≤ j < k ≤ N − 1} and set ΞN = {−1, 1} × DN .

Let

η̄m = 1− ηm , ρ̄N(m) = 1− ρN(m) , m ∈ ΛN,p ,

and define the two-point correlation function ϕN(σ, j, k), (σ, j, k) ∈ ΞN , by

ϕN(1, j, k) = EµN
[
{ηj − ρN(j)} {ηk − ρN(k)}

]
,

ϕN(−1, j, k) = EµN
[
{η̄j − ρ̄N(j)} {ηk − ρN(k)}

]
.

(2.3.1)

Note that ϕN(−1, j, k) = −ϕN(1, j, k). The identity EµN [LN{ηj−ρN(j)} {ηk−ρN(k)}] =

0 provides a set of equations for ϕN . Their exact form requires some notation.

Denote by L rw
N the generator of the symmetric, nearest-neighbor random walk on DN .
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This generator is defined by the next two sets of equations. If k − j > 1,

(L rw
N φ)(j, k) =



(∆φ)(j, k) if j > −p, k < N − 1,

(∇+
1 φ)(−p, k) + (∆2φ)(−p, k) if j = −p, k < N − 1,

(∆1φ)(j,N − 1) + (∇−2 φ)(j,N − 1) if j > −p, k = N − 1,

(∇+
1 φ)(−p,N − 1) + (∇−2 φ)(−p,N − 1) if j = −p, k = N − 1,

while for −p < k < N − 2,

(L rw
N φ)(k, k + 1) = (∇−1 φ)(k, k + 1) + (∇+

2 φ)(k, k + 1) ,

(L rw
N φ)(−p,−p+ 1) = (∇+

2 φ)(−p,−p+ 1) ,

(L rw
N φ)(N − 2, N − 1) = (∇−1 φ)(N − 2, N − 1) .

In these formulae, ∇±i , resp. ∆i, represents the discrete gradients, resp. Laplacians, given

by

(∇±1 φ)(j, k) = φ(j ± 1, k)− φ(j, k) , (∇±2 φ)(j, k) = φ(j, k ± 1)− φ(j, k) ,

(∆1φ)(j, k) = φ(j − 1, k) + φ(j + 1, k)− 2φ(j, k) ,

(∆2φ)(j, k) = φ(j, k − 1) + φ(j, k + 1)− 2φ(j, k) ,

(∆φ)(j, k) = (∆1φ)(j, k) + (∆2φ)(j, k) .

Let Lex
N be the generator given by Lex

N = LS + L0,1 + Lb,N . A straightforward compu-

tation yields that for (j, k) ∈ DN ,

EµN
[
Lex
N {ηj − ρN(j)} {ηk − ρN(k)}

]
= (L rw

N ϕN)(1, j, k) + FN(1, j, k) ,

where it is understood that the generator L rw
N acts on the last two coordinates keeping

the first one fixed, and

FN(σ, j, k) = −σ [ρN(j + 1)− ρN(j)]2 1{k = j + 1} . (2.3.2)

Similarly,

EµN
[
Lex
N {η̄j − ρ̄N(j)} {ηk − ρN(k)}

]
= (L rw

N ϕN)(−1, j, k) + FN(−1, j, k) .

For the next generators, we do not repeat the computation of the action of the generator

on the product {η̄j − ρ̄N(j)} {ηk − ρN(k)} because it can be inferred from the action on

{ηj − ρN(j)} {ηk − ρN(k)}.
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We turn to the remaining generators. Extend the definition of the rates rj, cj,k and

aj,k to ΛN,p by setting

rj = cj,k = aj,k = 0 if j 6∈ Λ∗p or k 6∈ Λ∗p .

To present simple expressions for the equations satisfied by the two-point correlation

function, we add cemetery points to the state space ΞN . Let ΞN = ΞN ∪ ∂ ΞN , where

∂ ΞN =
{

(σ, k) : σ = ±1 , −p ≤ k < N
}
∪
{

(σ, k, k) : σ = ±1 , −p ≤ k ≤ 0
}

∪
{

(σ, k,N) : σ = ±1 , −p ≤ k < N − 1
}

(2.3.3)

is the set of absorbing points.

A straightforward computation yields that for (j, k) ∈ DN ,

EµN
[
LR {ηj − ρN(j)} {ηk − ρN(k)}

]
= (L †

R ϕN)(1, j, k) ,

where

(L †
R φ)(σ, j, k) = rj [ϕN(σ, k)− ϕN(σ, j, k)] + rk [ϕN(σ, j)− ϕN(σ, j, k)]

provided we set

ϕN(σ,m) = bN(σ,m) := 0 , −p ≤ m < N , σ = ±1 . (2.3.4)

Similarly, an elementary computation yields that for (j, k) ∈ DN ,

EµN
[
Lr,N {ηj − ρN(j)} {ηk − ρN(k)}

]
= (L †

r,N ϕN)(1, j, k) ,

where

(L †
r,N ϕN)(σ, j, k) = 1{k = N − 1} [ϕN(σ, j,N)− ϕN(σ, j, k)] ,

provided we set

ϕN(σ,m,N) = bN(σ,m,N) := 0 , −p ≤ m ≤ N − 2 , σ = ±1 . (2.3.5)

We turn to the generator LC . An elementary computation yields that for (j, k) ∈ DN ,

EµN
[
LC {ηj − ρN(j)} {ηk − ρN(k)}

]
= (L †

C ϕN)(1, j, k) ,
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where

(L †
Cφ)(σ, j, k) =

∑
m:m 6=j

cj,m{φ(σ,m, k)− φ(σ, j, k)} +
∑

m:m 6=k

ck,m{φ(σ, j,m)− φ(σ, j, k)} ,

provided we set

ϕN(σ,m,m) = bN(σ,m,m) := σ ρN(m) [1− ρN(m)] , −p ≤ m ≤ 0 . (2.3.6)

Finally, we claim that for (j, k) ∈ DN ,

EµN
[
LA {ηj − ρN(j)} {ηk − ρN(k)}

]
= (L †

A ϕN)(1, j, k) ,

where

(L †
Aφ)(σ, j, k) =

∑
m:m 6=j

aj,m{φ(−σ,m, k)−φ(σ, j, k)} +
∑

m:m 6=k

ak,m{φ(−σ, j,m)−φ(σ, j, k)} ,

and ϕN(σ, k, k) is given by (2.3.6). Hence, the generator L †
A acts exactly as L †

C , but it

flips the value of the first coordinate. Note that it is the only generator which changes

the value of the first coordinate.

Let L †
N be the generator on ΞN given by

L †
N = L rw

N + L †
R + L †

r,N + L †
C + L †

A .

If
∑

j

∑
j,k aj,k = 0, the generator L †

A vanishes, the first coordinate is kept constant by

the dynamics and we do not need to introduce the variable σ. Note that the points in

∂ ΞN are absorbing points.

As EµN [LN{ηj − ρN(j)} {ηk − ρN(k)}] = 0, the previous computations yield that the

two-point correlation function ϕN introduced in (2.3.1) solves(L †
NψN)(σ, j, k) + FN(σ, j, k) = 0 , (σ, j, k) ∈ ΞN ,

ψN(σ, j, k) = bN(σ, j, k) , (σ, j, k) ∈ ∂ ΞN ,
(2.3.7)

where FN and bN are the functions defined in (2.3.2), (2.3.4), (2.3.5), (2.3.6).

As L †
N is a generator, (2.3.7) admits a unique solution [on the set {(1, j, k) : (j, k) ∈

DN} if L †
A vanishes]. This solution can be represented in terms of the Markov chain

induced by the generator L †
N .

Denote by ϕ
(1)
N , resp. ϕ

(2)
N , the solution of (2.3.7) with bN = 0, resp. FN = 0. It is
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clear that ϕN = ϕ
(1)
N + ϕ

(2)
N . Denote by XN(t) the continuous-time Markov chain on ΞN

associated to the generator L †
N . Let P (σ,j,k) be the distribution of the chain XN starting

from (σ, j, k). Expectation with respect to P (σ,j,k) is represented by E(σ,j,k).

Let HN be the hitting time of the boundary ∂ ΞN :

HN = inf
{
t ≥ 0 : XN(t) ∈ ∂ ΞN

}
.

It is well known (cf. [5, Theorem 6.5.1] in the continuous case) that

ϕ
(1)
N (σ, j, k) = E(σ,j,k)

[ ∫ HN

0

FN(XN(s)) ds
]
.

It is also well known that

ϕ
(2)
N (σ, j, k) = E(σ,j,k)

[
bN(XN(HN))

]
.

To estimate ϕ
(1)
N and ϕ

(2)
N we need to show that the process XN(t) attains the boundary

∂ ΞN at the set {(σ, k, k) : σ = ±1 , −p ≤ k ≤ 0} with small probability. This is the

content of the next two lemmata.

For a subset A of ΞN , denote by H(A), resp. H+(A), the hitting time of the set A,

resp. the return time to the set A:

H(A) = inf
{
t ≥ 0 : XN(t) ∈ A

}
, H+(A) = inf

{
t ≥ τ1 : XN(t) ∈ A

}
,

where τ1 represents the time of the first jump: τ1 = inf{s > 0 : XN(s) 6= XN(0)}.
The next lemma, illustrated in Figure 1, translates to the present model the fact that

starting from (1, 0) the two-dimensional, nearest-neighbor, symmetric random walk hits

the line {(0, k) : k ∈ Z} at a distance n or more from the origin with a probability less

than C/n.

Let Q̂(l,m) be the law of such a random walk evolving on Z2 starting from (l,m). Denote

by Br(l,m) the ball of radius r > 0 and center (l,m) ∈ Z2, and by L the segment {(σ, 0, a) :

σ = ±1 , 1 ≤ a < N}. Represent the coordinates of XN(t) by (σN(t), X1
N(t), X2

N(t)).

Lemma 2.3.1. Let p′ = p+ 1. There exists a finite constant C0 such that for all n,

max
σ=±1

max
l,m

P (σ,l,m)

[
H(L) =∞ or X2

N(H(L)) ≤ m− p′n
]
≤ C0

n
,

where the maximum is carried over all pairs (l,m) such that 1 ≤ l ≤ p′, {(a, b) ∈
Bp′n(0,m) : a ≥ 0} ⊂ D0

N = {(a, b) ∈ DN : a ≥ 0}.
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p′

L

m− p′n

DN

m

Π+

Figure 1: Lemma 2.3.1 states that a random walk (red trajectory) started from the green
segment has a probability at most of order 1/n of hitting L in the red half-line.

Proof. Let Lr = {(0, l) : −r ≤ l ≤ r}. By [8, Proposition 2.4.5], there exists a finite

constant C0 such that for all n ≥ 1,

Q̂(1,0)

[
H(Bn(0, 0){) < H(Ln)

]
≤ C0

n
·

Let Lr(l,m) = {(σ, l, a) : σ = ±1 , m − r ≤ a ≤ m + r}. By the previous displayed

equation, if Ln(l,m) is contained in D0
N ,

P (σ,l+1,m)

[
H(Bn(l,m){) < H(Ln(l,m))

]
≤ C0

n
·

Iterating this estimate i times yields that

P (σ,l+i,m)

[
H(Bin(l,m){) < H(Lin(l,m))

]
≤ C0 i

n

provided all sets appearing in this formula are contained in D0
N . The assertion of the

lemma follows from this estimate and the following observation:

{H(L) =∞ or X2
N(H(L)) ≤ m− p′n } ⊆ {H(Bp′n(0,m){) < H(Lp′n(0,m)) }.

The next lemma presents the main estimate needed in the proof of the bounds of the

two-point correlation functions. Recall from (2.3.3) that we denote by (σ, k), (σ, k,N)

some cemetery points. Let

Σ = {(σ, l, 0) : σ = ±1 , −p ≤ l < 0} ,
∂N =

{
(σ, k) : σ = ±1 , −p ≤ k < N

}
∪
{

(σ, k,N) : σ = ±1 , −p ≤ k < N − 1
}
.
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Lemma 2.3.2. For all δ > 0,

lim
N→∞

max
(j,k)∈DN
j>δN

P (1,j,k)

[
H(Σ) < H(∂N)

]
= 0 .

Proof. Fix δ > 0 and (j, k) ∈ DN such that j > δN . Let

∂0
N = {(σ, 0,m) : σ = ±1 , 0 < m < N} ∪

{
(σ, k,N) : σ = ±1 , −p ≤ k < N − 1

}
,

and set τ = H(∂0
N). Clearly, τ < H(Σ). Hence, by the strong Markov property, the

probability appearing in the statement of the lemma is equal to

E(1,j,k)

[
PXN (τ)

[
H(Σ) < H(∂N)

] ]
. (2.3.8)

Up to time τ , the process XN evolves as a symmetric random walk on DN

Let `N be a sequence such that `N � N . We claim that for all δ > 0,

lim
N→∞

max
(l,m)

P (1,l,m)

[
X2
N(τ) ≤ `N

]
= 0 , (2.3.9)

where the maximum is carried out over all pairs (l,m) ∈ DN such that l > δN . The proof

of this statement relies on the explicit form of the harmonic function for a 2-dimensional

Brownian motion.

Up to time τ , the process YN(t) = (X1
N(t), X2

N(t)) evolves on the set4N = {(a, b) : 0 ≤
a < b ≤ N}. Let 2N = {0, . . . , N − 1} × {1, . . . , N}. Denote by ZN(t) = (Z1

N(t), Z2
N(t))

the random walk on 2N which jumps from a point to any of its neighbors at rate 1.

Let ΦN : 2N → 4N the projection defined by ΦN(a, b) = (a, b) if (a, b) ∈ 4N , and

ΦN(a, b) = (b − 1, a + 1) otherwise. The process ΦN(ZN(t)) does not evolve as YN(t)

because the jumps of ΦN(ZN(t)) on the diagonal {(d, d+ 1) : 0 ≤ d < N} are speeded-up

by 2, but the sequence of sites visited by both processes has the same law. Therefore,

P (1,l,m)

[
X2
N(τ) ≤ `N

]
= Q(l,m)

[
ZN(τ̂) ∈ ∠N

]
,

where Q(l,m) represents the law of the process ZN starting from (l,m), τ̂ the hitting time

of the boundary of 2N and ∠N the set {(0, a) : 1 ≤ a ≤ `N} ∪ {(b, 1) : 0 ≤ b ≤ `N − 1}.
Denote by B(r) ⊂ R2, r > 0, the ball of radius r centered at the origin. In the event

{ZN(τ̂) ∈ ∠N}, the process ZN hits the ball of radius `N centered at the origin before

reaching the ball of radius 2N centered at the origin: {ZN(τ̂) ∈ ∠N} ⊂ {H(B(`N)) <
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H(B(2N))}, so that

Q(l,m)

[
ZN(τ̂) ∈ ∠N

]
≤ Q̂(l,m)

[
H(B(`N)) < H(B(2N))

]
.

By [8, Exercice 1.6.8], this later quantity is bounded by

log 2N − log |(l,m)|+ C`−1
N

log 2N − log `N

for some finite constant independent of N . This proves (2.3.9) because |(l,m)| ≥ δN and

`N � N .

We return to (2.3.8). If XN(τ) ∈ ∂N , the probability vanishes. We may therefore

insert inside the expectation the indicator of the set XN(τ) 6∈ ∂N It is also clear that

σN(t) does not change before time τ . Hence, by (2.3.9), (2.3.8) is bounded by

E(1,j,k)

[
1{XN(τ) ∈ L+(`N)}PXN (τ)

[
H(Σ) < H(∂N)

] ]
+ oN(1)

≤ max
m≥`N

P (1,0,m)

[
H(Σ) < H(∂N)

]
+ oN(1) ,

where L+(r) = {(σ, 0, l) : σ = ±1 , l ≥ r}, oN(1) converges to 0 as N → ∞, uniformly

over all (j, k) ∈ DN , j > δN , and `N is a sequence such that `N � N . Hence, up to this

point, we proved that

max
(j,k)∈DN
j>δN

P (1,j,k)

[
H(Σ) < H(∂N)

]
≤ max

m≥`N
P (1,0,m)

[
H(Σ) < H(∂N)

]
+ oN(1) , (2.3.10)

where oN(1) converges to 0 as N →∞, and `N is a sequence such that `N � N .

It remains to estimate the probability appearing in the previous formula. If m > p′,

starting from (1, 0,m), in p′ jumps the process XN(t) can not hit Σ. Hence, if τ(k) stands

for the time of the k-th jump, by the strong Markov property,

P (1,0,m)

[
H(Σ) < H(∂N)

]
= P (1,0,m)

[
H(∂N) > τ(p′) , H(Σ) < H(∂N)

]
= E(1,0,m)

[
1{H(∂N) > τ(p′)}PXN (τ(p′))

[
H(Σ) < H(∂N)

] ]
.

Let % = P (1,0,m)[H(∂N) > τ(p′)] = P (−1,0,m)[H(∂N) > τ(p′)]. Note that this quantity does

not depend on m in the set {(σ, 0, b) : σ = ±1 , b > p′}. Moreover, as
∑

j rj > 0, % < 1.

With this notation, the previous expression is less than or equal to

% max
σ=±1

max
a,b

P (σ,a,b)

[
H(Σ) < H(∂N)

]
,
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where the maximum is carried over all (a, b) which can be attained in p′ jumps from

(0,m). This set is contained in the set {(c, d) : −p ≤ c ≤ p′ , m− p′ ≤ d ≤ m+ p′}.
Recall the definition of the set L introduced just before the statement of Lemma 2.3.1.

If a ≥ 1, the process XN(t) hits the set L before the set Σ. Hence, by Lemma 2.3.1,

if qN is an increasing sequence to be defined later, by the strong Markov property, for

1 ≤ a ≤ p′, b� qN ,

P (σ,a,b)

[
H(Σ) < H(∂N)

]
≤ C0

qN
+ P (σ,a,b)

[
X2
N(H(L)) ≥ b− p′qN , H(Σ) < H(∂N)

]
≤ C0

qN
+ max

b′≥b−p′qN
P (σ,0,b′)

[
H(Σ) < H(∂N)

]
.

On the other hand, if a ≤ −1, let Cd = {(σ, c, d) : σ = ±1 , −p ≤ c < 0}. In this

case, starting from (a, b), in p′ jumps the process XN(t) may hit the set L. Hence, by the

strong Markov property, for a < 0, b > np′, P (σ,a,b)

[
H(Cb−np′) < H(L)∧H(∂N)

]
≤ %n1 for

some %1 < 1. Therefore, by the strong Markov property, for a < 0 and b� qN ,

P (σ,a,b)

[
H(Σ) < H(∂N)

]
≤ P (σ,a,b)

[
H(L) ∧H(∂N) < H(Cb−p′qN ) , H(Σ) < H(∂N)

]
+ %qN1

≤ max
σ′=±1

max
b′≥b−p′qN

P (σ′,0,b′)

[
H(Σ) < H(∂N)

]
+ %qN1 .

Let

TN(b) = max
σ=±1

max
c≥b

P (σ,0,c)

[
H(Σ) < H(∂N)

]
.

Note that the first term appearing on the right-hand side of (2.3.10) is TN(`N) because

the probability does not depend on the value of σ. By the previous arguments, there

exists a finite constant C0 such that for all b� qN ,

TN(b) ≤ %
{
TN(b− p′qN) +

C0

qN

}
because %q1 ≤ 1/q for all q large enough. Iterating this inequality rN times, we get that

for all b� qNrN ,

TN(b) ≤ C0

qN
{% + · · · + %rN} + %rN ≤ %

1− %
C0

qN
+ %rN .

In view of (2.3.10) and of the previous estimate, to complete the proof of the lemma, it

remains to choose sequences qN , rN such that qN →∞, rN →∞, rN qN � `N .
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Lemma 2.3.3. Assume that
∑

j rj > 0. Then, for every δ > 0,

lim
N→∞

max
(j,k)∈DN
j>δN

∣∣ϕ(1)
N (1, j, k)

∣∣ = 0 .

Proof. Fix (j, k) ∈ DN such that 0 < j < k. Denote by DN the diagonal, DN =

{(σ, l, l + 1) : σ = ±1 , −p ≤ l < N − 1}, and by DN,p its restriction to Λ∗p, DN,p =

{(σ, l, l + 1) : σ = ±1 , −p ≤ l ≤ 0}. By Lemma 2.2.5, there exists a finite constant C0

such that for all (l,m) ∈ DN ,

|FN(σ, l.m)| ≤ C0

N2
1{DN \DN,p}(σ, l,m) + C0 1{DN,p}(σ, l,m) .

Therefore, recalling that HN was defined as the hitting time of the boundary ∂ΞN ,

∣∣ϕ(1)
N (1, j, k)

∣∣ ≤ C0

N2
E(1,j,k)

[ ∫ HN

0

1{DN \DN,p}(XN(s)) ds
]

+ C0 E(1,j,k)

[ ∫ HN

0

1{DN,p}(XN(s)) ds
]
.

(2.3.11)

We claim that there exists a finite constant C0 such that

max
σ=±1

max
(j,k)∈DN
0<j<k

E(σ,j,k)

[ ∫ HN

0

1{DN \DN,p}(XN(s)) ds
]
≤ C0N . (2.3.12)

To bound this expectation, let RN = {(σ, 0,m) : σ = ±1 , 2 ≤ m ≤ N−1}, and denote by

GN the hitting time of the set RN ∪ ∂ ΞN . Note that starting from (j, k), 0 < j < k, only

the component
{

(σ, l, N) : −p ≤ l < N − 1
}

of the set ∂ ΞN can be attained before the

set RN . Moreover, before GN the process XN(t) behaves as a symmetric random walk.

Rewrite the expectation in (2.3.12) as

E(σ,j,k)

[ ∫ GN

0

1{DN \DN,p}(XN(s)) ds
]

+ E(σ,j,k)

[ ∫ HN

GN

1{DN \DN,p}(XN(s)) ds
]
.

(2.3.13)

Since before time GN the process XN(t) evolves as a symmetric random walk, the first

expectation can be computed. It is equal to j(N − k)/(N − 1) ≤ C0N . By the strong

Markov property, the second expectation is bounded above by

max
2≤m<N

E(σ,0,m)

[ ∫ HN

0

1{DN \DN,p}(XN(s)) ds
]
.

Denote by ΥN the previous expression and by G+
N the return time to RN ∪ ∂ ΞN . By
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the strong Markov property, the previous expectation is bounded above by

E(σ,0,m)

[ ∫ G+
N

0

1{DN \DN,p}(XN(s)) ds
]

+ ΥN max
0≤m′<N−1

P (σ,0,m′)

[
G+
N < HN

]
.

The first term vanishes unless the first jump of XN(s) is to (σ, 1,m). Suppose that this

happens. Starting from (σ, 1,m), up to time G+
N , XN(s) behaves as a symmetric random

walk. Hence, by explicit formula for the first term in (2.3.13), the expectation is equal to

(N −m)/(N − 1) ≤ 1. Hence,

ΥN ≤ max
0≤m′<N−1

1

P (σ,0,m′)

[
HN < G+

N

] ·
As
∑

j rj > 0, P(σ,0,m′)[HN < G+
N ] is bounded below by the probability that the process

jumps to a site (σ, l,m′) such that rl > 0 and then hits the set ∂ ΞN . Hence, there exists

a positive constant c0 such that P(σ,0,m′)[HN < G+
N ] ≥ c0 for all 2 ≤ m′ ≤ N − 1. This

proves that ΥN ≤ C0. Assertion (2.3.12) follows from this bound and the estimate for the

first term in (2.3.13).

We turn to the second term in (2.3.11). Recall the notation introduced just before

Lemma 2.3.2. Since the integrand vanishes before hitting the set DN,p and since the set

Σ is attained before DN,p, for j > δN

E(1,j,k)

[ ∫ HN

0

1{DN,p}(XN(s)) ds
]

= E(1,j,k)

[
1{H(Σ) < H(∂N)}

∫ HN

H(DN,p)

1{DN,p}(XN(s)) ds
]
.

Applying the strong Markov property twice, we bound this expression by

P (1,j,k)

[
H(Σ) < H(∂N)

]
max

(σ,a,b)∈DN,p

E(σ,a,b)

[ ∫ HN

0

1{DN,p}(XN(s)) ds
]
.

By Lemma 2.3.2 the first term vanishes as N →∞, uniformly over (j, k) ∈ DN , j > δN .

It remains to show that there exists a finite constant C0 such that

max
(σ,j,k)∈DN,p

E(σ,j,k)

[ ∫ HN

0

1{DN,p}(XN(s)) ds
]
≤ C0 . (2.3.14)

Denote this expression by ΥN , and by J+
N the return time to DN,p. For (σ, j, k) ∈ DN,p,
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the previous expectation is less than or equal to

C0 + ΥN P (σ,j,k)

[
J+
N < HN

]
.

As in the first part of the proof, since
∑

j rj > 0, the process hits ∂ ΞN before returning

to DN,p with a probability bounded below by a strictly positive constant independent of

N : min(σ,j,k)∈DN,p
P (σ,j,k)[HN < J+

N ] ≥ c0 > 0. Therefore, ΥN ≤ C0. This completes the

proof of assertion (2.3.14) and the one of the lemma.

Lemma 2.3.4. Assume that
∑

j rj > 0. Then, for every δ > 0,

lim
N→∞

max
(j,k)∈DN
j>δN

∣∣ϕ(2)
N (1, j, k)

∣∣ = 0 .

Proof. Fix δ > 0 and (j, k) ∈ DN such that j > δN . Recall the notation introduced just

before Lemma 2.3.2. In view of the definition of bN , given in (2.3.4), (2.3.5), (2.3.6),

|ϕ(2)
N (1, j, k)| ≤ P (1,j,k)

[
H(Σ) < H(∂N)

]
.

The assertion of the lemma follows from Lemma 2.3.2.

Proof of Theorem 2.1.1. The proof is straightforward. It is enough to prove the result

for continuous functions with compact support in (0, 1). Fix such a function G and let

δ > 0 such that the support of G is contained in [δ, 1 − δ]. By Schwarz inequality and

by (2.3.1), the square of the expectation appearing in the statement of the theorem is

bounded above by

C(G)
( 1

N

N−1∑
k=1

∣∣ ρN(k)− ū(k/N)
∣∣)2

+
C(G)

N2

N−1∑
j,k=1

G(j/N)G(k/N)ϕN(1, j, k) ,

where ϕN has been introduced in (2.3.1) and C(G) a finite constant which depends only

on G. By Lemmata 2.2.5, 2.3.3 and 2.3.4 this expression vanishes as N →∞.

Remark 2.3.5. Assume that
∑

j∈Λ∗p
rj = 0 and

∑
j,k∈Λ∗p

aj,k > 0. The proof that the

correlations vanish, presented in Lemmata 2.3.3 and 2.3.4, requires a new argument based

on the following observation. Under the conditions of this remark, the boundary ∂ ΞN of

the set ΞN is reduced to the set

{
(σ, k, k) : σ = ±1 , −p ≤ k ≤ 0

}
∪
{

(σ, k,N) : σ = ±1 , −p ≤ k < N − 1
}
.
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To prove that the correlations vanish, one has to show that by the time the process XN(t)

hits the set {(σ, k, k) : σ = ±1 , −p ≤ k ≤ 0} its coordinate σ has equilibrated and takes

the value ±1 with probability close to 1/2.

2.4 Proof of Theorem 2.1.4

The proof of Theorem 2.1.4 is based on a graphical construction of the dynamics through

independent Poisson point processes.

Recall the definition of the rates A, B introduced in (2.1.12), that Ωp = {0, 1}{1,...,p−1},

and that λ(0, ξ) = c(0, ξ)−A, λ(1, ξ) = c(1, ξ)−B, ξ ∈ Ωp. Further, recall that we assume

(p− 1)
∑
ξ∈Ωp

{λ(0, ξ) + λ(1, ξ) } < A + B .

The left boundary generator can be rewritten as

(Llf)(η) = A [f(T 1η)− f(η)] + B [f(T 0η)− f(η)]

+
1∑

a=0

∑
ξ∈Ωp

λ(a, ξ) 1{Πpη = (a, ξ)} [f(T 1−aη)− f(η)] ,

provided Πp : ΩN → Ω?
p := {0, 1}{1,...,p} represents the projection on the first p coordinates:

(Πpη)k = ηk, 1 ≤ k ≤ p. Similarly, the right boundary generator can be expressed as

(Lr,Nf)(η) = β [f(S1η)− f(η)] + (1− β) [f(S0η)− f(η)] ,

where

(Saη)k =

a if k = N − 1,

ηk otherwise.

2.4.1 Graphical construction

Let P := 2p−1 = |Ωp|. We present in this subsection a graphical construction of the

dynamics based on N + 2P + 2 independent Poisson point processes defined on R+.

– (N − 2) processes Ni,i+1(t), 1 ≤ i ≤ N − 2, with rate 1.

– 2 processes N+,l(t), N−,l(t) with rates A, B, respectively, representing creation and

annihilation of particles at site 1, regardless of the boundary condition.
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– 2P processes N(a,ξ)(t), a = 0, 1, ξ ∈ Ωp, with rates λ(a, ξ) to take into account the

influence of the boundary in the creation and annihilation of particles at site 1.

– 2 processes N+,r(t), N−,r(t), with respective rates β and 1 − β, to trigger creation

and annihilation of particles at site N − 1.

Place arrows and daggers on {1, . . . , N − 1} × R as follows. Whenever the process

Ni,i+1(t) jumps, place a two-sided arrow over the edge (i, i+ 1) at the time of the jump to

indicate that at this time the occupation variables ηi, ηi+1 are exchanged. Analogously,

each time the process N(a,ξ)(t) jumps, place a dagger labeled (a, ξ) over the vertex 1. Each

time N±,l(t) jumps, place a dagger labeled ± over the vertex 1. Finally, each time N±,r(t)

jumps, place a dagger labeled ± over the vertex N − 1.

Fix a configuration ζ ∈ ΩN and a time t0 ∈ R. Define a path η(t), t ≥ t0, based

on the configuration ζ and on the arrows and daggers as follows. By independence, we

may exclude the event that two of those processes jump simultaneously. Let τ1 > t0

be the first time a mark (arrow or dagger) is found after time t0. Set η(t) = ζ for any

t ∈ [t0, τ1). If the first mark is an arrow labeled (i, i+ 1), set η(τ1) = σi,i+1η(τ1−). If the

mark is a dagger labeled (a, ξ), set η(τ1) = T aη(τ1−) if Πpη(τ1−) = (a, ξ). Otherwise, let

η(τ1) = η(τ1−). Finally, if the mark is a dagger on site 1, resp. N − 1, labeled ±, set

η(τ1) = T [1±1]/2η(τ1−), resp. η(τ1) = S[1±1]/2η(τ1−).

At this point, the path η is defined on the segment [t0, τ1]. By repeating the previous

construction on each time-interval between two consecutive jumps of the Poisson point

processes, we produce a trajectory (η(t) : t ≥ t0). We leave the reader to check that

η(t) evolves as a continuous-time Markov chain, started from ζ, whose generator is the

operator LN introduced in (2.1.11).

2.4.2 Dual Process

To determine whether site 1 is occupied or not at time t = 0 we have to examine the

evolution backward in time. This investigation, called the revealment process, evolves as

follows.

Let mark mean an arrow or a dagger. To know the value of η1(0) we have to examine

the past evolution. Denote by τ1 < 0 the time of the last mark involving site 1 before

t = 0. By the graphical construction, the value of η1 does not change in the time interval

[τ1, 0].

Suppose that the mark at time τ1 is an arrow between 1 and 2. In order to determine

if site 1 is occupied at time 0 we need to know if site 2 is occupied at time τ1−. The
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arrows are thus acting as a stirring dynamics in the revealment process. Each time an

arrow is found, the site whose value has to be determined changes.

If the mark at time τ1 is a dagger labeled + at site 1, η1(0) = η1(τ1) = 1, and we do

not need to proceed further. Analogously, daggers labeled − or + at sites 1, N − 1 reveal

the value of the occupation variables at these sites at the time the mark appears. Hence,

these marks act an annihilation mechanism.

Suppose that the mark at time τ1 is a dagger labeled (a, ξ). To determine whether

site 1 is occupied at time 0 we need to know the values of η1(τ1−), . . . , ηp(τ1−). Indeed,

if Πpη(τ1−) = (a, ξ), η1(0) = η1(τ1) = 1− a, otherwise, η1(0) = η1(τ1) = η1(τ1−). Hence,

marks labeled (a, ξ) act as branching events in the revealment process.

It follows from this informal description that to determine the value at time 0 of site

1, we may be forced to find the values of the occupation variables of a larger subset A of

ΛN at a certain time t < 0.

Suppose that we need to determine the values of the occupation variables of the set

A ⊂ ΛN at time t < 0. Let τ < t be the first [backward in time] mark of one of the

Poisson processes: there is a mark at time τ and there are no marks in the time interval

(τ, t]. Suppose that the mark at time τ is

(a) an arrow between i and i+ 1;

(b) a dagger labeled ± at site 1;

(c) a dagger labeled ± at site N − 1;

(d) a dagger labeled (a, ξ) at site 1.

Then, to determine the values of the occupation variables in the set A at time τ (and

thus at time t), we need to find the values of the occupation variables in the set

(a) σi,i+1A , defined below in (2.4.1);

(b) A \ {1};

(c) A \ {N − 1};

(d) A ∪ {1, . . . , p} if 1 ∈ A , and A otherwise

at time τ−. Since independent Poisson processes run backward in time are still indepen-

dent Poisson processes, this evolution corresponds to a Markov process taking values in

ΞN , the set of subsets of ΛN , whose generator LN is given by

LN = Ll + L0,N + Lr,N ,
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where

(L0,Nf)(A ) =
N−2∑
i=1

[f(σi,i+1A )− f(A )] ;

(Llf)(A ) = (A+B) 1{1 ∈ A } (f(A \ {1})− f(A ))

+
∑
ξ∈Ωp

λ(ξ) 1{1 ∈ A } (f(A ∪ {1, . . . , p})− f(A )) ;

(Lr,Nf)(A ) = f(A \ {N − 1})− f(A ) .

In these formulae, λ(ξ) = λ(0, ξ) + λ(1, ξ), and

σi,i+1A =


A ∪ {i+ 1} \ {i} if i ∈ A , i+ 1 /∈ A

A ∪ {i} \ {i+ 1} if i /∈ A , i+ 1 ∈ A

A otherwise .

(2.4.1)

Denote by A (s) the ΞN -valued process whose generator is LN and which starts from

{1}. If A (s) hits the empty set at some time T > 0 due to the annihilations, this means

that we can reconstruct the value of site 1 at time 0 only from the Poisson point processes

in the time interval [−T, 0], and with no information on the configuration at time −T ,

η(−T ).

On the other hand, it should be verisimilar that if the number of daggers labeled ±
is much larger that the number of daggers labeled (a, ξ), that is, if the rates λ(a, ξ) are

much smaller than A+B, the process A (s) should attain the empty set. The next lemma

shows that this is indeed the case.

Let

T = inf{s > 0 : A (s) = ∅} .

It is clear that for any s > 0, the value of η1(0) can be recovered from the configuration

η(−s) and from the Poisson marks in the interval [−s, 0]. The next lemma asserts that

η1(0) can be obtained only from the Poisson marks in the interval [−T, 0].

Lemma 2.4.1. Assume that T <∞. The value of η1(0) can be recovered from the marks

in the time interval [−T, 0] of the N + 2(P + 1) Poisson point processes N introduced in

the beginning of this section.

Proof. Let Ξ′N = {0, 1, u}ΛN , where u stands for unknown. Denote by ζ the configurations

of Ξ′N . We first construct, from the marks of the Poisson point processes N(t) on [−T, 0],

a Ξ′N -valued evolution ζ(s) on the time interval [(−T )−, 0] in which the set B(s) = {k ∈
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ΛN : ζk(s) 6= u} represents the sites whose occupation variables can be determined by the

Poisson point processes only.

Let ζk([−T ]−) = u for all k ∈ ΛN . By definition of the evolution of A (s), T corre-

sponds to a mark of one of the Poisson point processes N±,l, N±,r. We define ζ(−T ) as

follows. If it is a mark from N±,l we set ζ1(−T ) = [1 ± 1]/2 and ζk(−T ) = u for k 6= 1.

Analogously, if it is a mark from N±,r we set ζN−1(−T ) = [1 ± 1]/2 and ζk(−T ) = u for

k 6= N − 1.

Denote by −T = τ0 < τ1 < · · · < τM < 0 < τM+1 the successive times at which a

dagger of type ± occurs at site 1 or N − 1. If τj corresponds to a mark from N±,l we set

ζ1(τj) = [1 ± 1]/2 and we leave the other values unchanged. We proceed analogously if

τj corresponds to a mark from N±,r. There are (almost surely) a finite number of such

times because T <∞ by assumption.

In the intervals (τj, τj+1), holes, particles and unknowns exchange their positions ac-

cording to the marks of Ni,i+1(t). Each time σ a dagger of type λ(a, ξ) is found, if

(ζ1(σ−), . . . , ζp(σ−)) = (a, ξ), we update the configuration accordingly. Otherwise, we

leave the configuration unchanged. This completes the description of the evolution of the

process ζ(s).

We claim that

B(s) ⊃ A ([−s]−) for all − T ≤ s ≤ 0 . (2.4.2)

The left limit (−s)− in A ([−s]−) appears because by convention the processes ζ(s) and

A (s) are both right-continuous and the latter one is run backwards in time.

We prove this claim by recurrence. By construction, B([−T ]−) = A (T ) = ∅ and

B(−T ) = A (T−) = {1} or {N − 1}, depending on the mark occurring for A at time

T . It is clear that if B(τ−) ⊃ A (−τ), where τ ∈ [−T, 0) is an arrow of type Ni,i+1 or

a mark of type N±,l, N±,r, then B(τ) ⊃ A ([−τ ]−). Observe that the inclusion may be

strict. For example, if τ ∈ [−T, 0) is a mark of type N+,l and A ([−τ ]−) does not contain

1. This mark permits to determine the value of site 1 at time τ , so that B(τ) 3 1 but

A ([−τ ]−) 63 1.

Similarly, suppose that B(τ−) ⊃ A (−τ) and that τ ∈ (−T, 0) is a mark of type N(a,ξ).

If 1 belongs to A ([−τ ]−), then A (−τ) contains {1, . . . , p} and so does B(τ−) because

B(τ−) ⊃ A (−τ). Hence, all information to update site 1 is available at time τ− and

1 ∈ B(τ) = B(τ−). Since A ([−τ ]−) is contained in A (−τ) [it can be strictly contained

because some points m ∈ {2, . . . , p} may not belong to A ([−τ ]−)], B(τ) ⊃ A ([−τ ]−).

On the other hand, if 1 does not belong to A ([−τ ]−), then A ([−τ ]−) = A (−τ), while
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B(τ) ⊃ B(τ−). [This relation may be strict because it might happen that 1 6∈ B(τ−)

and there might be enough information to determine the value of site 1 at time τ .] Thus

B(τ) ⊃ B(τ−) ⊃ A (−τ) = A ([−τ ]−). This proves claim (2.4.2).

Since A (0) = A (0−) = {1}, by (2.4.2), B(0) 3 1, which proves the lemma.

Denote by QN the probability measure on D(R+,ΞN) induced by the process A (s)

starting from {1}. Expectation with respect to QN is represented by QN as well.

Denote by C(s) the total number of particles created up to time s. The next lemma

provides a bound for the total number of particles created up to the absorbing time T .

Lemma 2.4.2. Let λ =
∑

ξ∈Ωp
{λ(0, ξ) + λ(1, ξ)}. Then,

QN [C(T )] ≤ (p− 1)λ

A+B − (p− 1)λ
·

Proof. Let X(t) be a continuous-time random walk on Z which jumps from k to k − 1,

resp. k + p − 1, at rate A + B, resp. λ. Suppose that X(0) = 1, and let T0 be the first

time the random walk hits the origin. As X(t ∧ T0) + [A + B − (p − 1)λ] (t ∧ T0) is an

integrable, mean-1 martingale,

[A+B − (p− 1)λ]E
[
t ∧ T0

]
= 1 − E

[
X(t ∧ T0)

]
≤ 1 .

Letting t→∞ we conclude that E[T0] ≤ 1/(A+B − (p− 1)λ).

Let R(s) be the total number of jumps to the right of the random walk X up to

time s. R is a Poisson process of rate λ so that R(s) − λ s is a martingale. Hence,

E[R(s ∧ T0)] = λE[s ∧ T0]. Letting s→∞, we obtain that

E[R(T0)] = λE[T0] ≤ λ

A+B − (p− 1)λ
·

Consider the process A (s) associated to the generator LN . Denote the cardinality

of a set B ∈ ΞN by |B|. |A (s)| only changes when the set A (s) contains 1 or N − 1.

The Poisson daggers at N − 1 may only decrease the cardinality of the set. When A (s)

contains 1, Poisson daggers of type ± appear at site 1 at rate A + B and they decrease

the cardinality of A (s) by 1. Analogously, the other daggers appear at site 1 at rate λ

and increase the cardinality by at most p−1. This shows that we may couple |A (s)| with

the random walk X(s) in such a way that |A (s)| ≤ X(s) and that C(s) ≤ (p − 1)R(s)

for all 0 ≤ s ≤ T0. The assertion of the lemma follows from the bound obtained in the

first part of the proof.
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As the total number of particles created in the process A (s) has finite expectation,

and since these particles are killed at rate A+B when they reach site 1, the life-span T0

of A (s) can not be large and the set of sites ever visited by a particle in A (s) can not

be large. This is the content of the next two lemmata.

Lemma 2.4.3. For any sequence `N →∞,

lim
N→∞

QN

[
T > N `N

]
= 0 .

Proof. Fix a sequence `N →∞, let mN =
√
`N , and write

QN

[
T > N `N

]
≤ QN

[
T > N `N , C(T ) ≤ mN

]
+ QN

[
C(T ) > mN

]
.

By the Markov inequality and Lemma 2.4.2, the second term at the right-hand side

vanishes as N →∞.

Denote by T1 the lifespan of the particle initially at 1, and by Tk, 2 ≤ k ≤ C(T ),

the lifespan of the k-th particle created in the process A (s). By lifespan, we mean the

difference τk − σk, where σk, resp. τk, represents the time the k-th particle has been

created, resp. annihilated. Clearly,

T ≤
C(T )∑
k=1

Tk .

Set Tk = 0 for k > C(T ). The first term on the right-hand side of the penultimate formula

is bounded above by

QN

[ mN∑
k=1

Tk > N `N

]
≤ mN

N `N
sup
k≥1

QN [Tk ] .

It remains to show that there exists a finite constant C0 such that for all k ≥ 1,

QN [Tk ] ≤ C0N . (2.4.3)

Particles are created at one of the first p sites. After being created, they perform a

symmetric random walk at rate 1 on ΛN . Each time a particle hits site 1, resp. N − 1,

it is destroyed at rate A + B, resp. 1. We overestimate the lifespan by ignoring the

annihilation at the right boundary.

Consider a particle performing a rate 1 random walk on ΛN with reflection at the

boundary N − 1 and annihilated at rate A+ B at site 1. Denote by P k the distribution
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of this random walk started from site k, and by Ek the corresponding expectation. Let

TY be the time this particle is killed at site 1, and Yt, t ≤ T its position at time t. By the

strong Markov property, Ek[TY ] increases with k. Hence,

QN [Tk ] ≤ Ep[TY ] .

Divide the lifespan TY in excursions away from 1. To keep notation simple, assume

that the random walk Y keeps evolving after being killed. Denote by {tj : j ≥ 1} the

successive hitting times of site 1: t0 = 0, and for i ≥ 1,

ti = inf
{
t > ti−1 : Y (t) = 1 and Y (t−) 6= 1

}
.

Denote by ui, i ≥ 1, the time the random walk Y (t) leaves site 1 after ti:

ui = inf
{
t > ti : Y (t) 6= 1

}
,

and set u0 = 0. Let σi = ui− ti, resp. si = ti− ui−1, be duration of the i-th sojourn at 1,

resp. the duration of the i-th excursion away from 1.

Denote by Ak the event “the particle is annihilated during its k-th sojourn at site 1”.

With this notation we have that

TY ≤ (s1 + σ1) +
∑
i≥2

1{Ac1 ∩ · · · ∩ Aci−1} (si + σi) .

By the strong Markov property at time ui−1,

Ep

[
1{Ac1 ∩ · · · ∩ Aci−1} (si + σi)

]
= P p

[
Ac1 ∩ · · · ∩ Aci−1

]
E2

[
s1 + σ1

]
.

Since the particle is annihilated at rate A + B and leaves site 1 at rate 1, each time it

hits site 1 it is killed during its sojourn at 1 with probability (A+B)/(A+B+ 1). Thus,

by the strong Markov property, the probability on the right hand side of the previous

displayed equation is equal to αi−1, where α = 1/(A+B + 1), so that

Ep

[
TY
]
≤ Ep

[
s1 + σ1

]
+

1

A+B
E2

[
s1 + σ1

]
.

On the one hand, for any k ∈ ΛN , Ek[σ1 ] = 1, On the other hand, E2[ s1 ] ≤ Ep[ s1 ].

Since the random walk is reflected at N − 1, by solving the elliptic difference equation

satisfied by f(k) = Ek[ s1 ], we obtain that Ep[ s1 ] ≤ C0N for some finite constant C0

independent of N . This completes the proof (2.4.3) and the one of the lemma.

40



The proof of the previous lemma shows that each new particle performs only a finite

number of excursions, where by excursion we mean the trajectory between the time the

particle leaves site 1 and the time it returns to 1. In each excursion the particle visits

only a finite number of sites. This arguments yields that during its lifespan the process

A (s) does not visit many sites. This is the content of the next result.

Lemma 2.4.4. For any sequence `N such that `N →∞, `N ≤ N − 1,

lim
N→∞

QN

[
A (s) 3 `N for some s ≥ 0

]
= 0 .

Proof. Fix a sequence `N satisfying the assumptions of the lemma. Denote by Xk(s) the

position at time s of the k-th particle created. Before its creation and after its annihilation

we set the position of the particle to be 0. The probability appearing in the statement of

the lemma can be rewritten as

QN

[ C(T )⋃
l=1

{
Xl(s) = `N for some s ≥ 0

}]
.

Let mN =
√
`N . The previous expression is bounded by

QN

[ C(T )⋃
l=1

{
Xl(s) = `N for some s ≥ 0

}
, C(T ) ≤ mN

]
+

1

mN

QN [C(T )] .

By Lemma 2.4.2, the second term vanishes as N →∞. Set Xl(s) = 0 for any l > C(T ),

s ≥ 0. With this notation, we can replace C(T ) by mN in the union, to bound the first

term in the previous equation by

mN∑
l=1

QN

[
Xl(s) = `N for some s ≥ 0

]
.

It remains to show that there exists a finite constant C0 such that for all l ≥ 1,

QN

[
Xl(s) = `N for some s ≥ 0

]
≤ C0

`N
· (2.4.4)

To derive (2.4.4), recall the notation introduced in the proof of the previous lemma.

Clearly, for any l ≥ 1,

QN

[
Xl(s) = `N for some s ≥ 0

]
≤ P p

[
Y (s) = `N for some s ≤ TY

]
.

Note that this is not an identity because the l-th particle may have been created at a site
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k < p.

Denote by Uk the event that the particle Y visits the site `N in the time interval

[uk−1, tk]. Hence,

{
Y j(s) = `N for some s ≥ 0

}
⊂ U1 ∪

⋃
i≥2

(
Ac1 ∩ · · · ∩ Aci−1 ∩ Ui

)
.

By the strong Markov property applied at time ui−1,

P p

[
Y j(s) = `N for some s ≥ 0

]
≤ P p

[
U1

]
+
∑
i≥2

P p

[
Ac1 ∩ · · · ∩ Aci−1

]
P 2

[
U1

]
.

If Y (0) = k, the event U1 corresponds to the event that a symmetric random walk starting

from k hits `N before it attains 1, so that P k[U1] = [k − 1]/[`N − 1]. Since the particle is

annihilated with probability (A+B)/(1 +A+B) in each of its sojourn at site 1, by the

strong Markov property, the previous sum is equal to

p− 1

`N − 1
+

1

A+B

1

`N − 1
·

This proves assertion (2.4.4).

We have now all elements to show that the sequence ρN(1) converges.

Proposition 2.4.5. Suppose that conditions (2.1.13) are in force. The limit

α := lim
N→∞

ρN(1)

exists, and it does not depend on the boundary conditions at N − 1.

Proof. The proof of this proposition is based on coupling a system evolving on ΛN with

a system evolving on ΛM , 1 < N < M by using the same Poisson point processes to

construct both evolutions.

Let {N±,r,b(t) : t ∈ R}, b = 1, 2, be independent Poisson point processes, where N+,r,b

has rate β and N−,r,b rate 1−β. Use the Poisson point processes Ni,i+1(t), 1 ≤ i < N −1,

N±,l(t), N(a,ξ)(t), N
±,r,1(t), t ∈ R, to construct trajectories of a Markov chain ηN(t) whose

generator is LN introduced in (2.1.11). Similarly, use the Poisson point processes Ni,i+1(t),

1 ≤ i < M − 1, N±,l(t), N(a,ξ)(t), N
±,r,2(t) to construct trajectories of a Markov chain

ηM(t) whose generator is LM . Note that on the left boundary and on ΛN the same Poisson

processes are used to construct both chains.
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Denote by AN(t), AM(t), t ≥ 0, the dual processes evolving according to the Poisson

marks described at the beginning of subsection 2.4.2 with initial condition AN(0) =

AM(0) = {1}. By construction, AN(t) = AM(t) for all t ≥ 0 if N−1 6∈ AN(t) for all t ≥ 0.

Hence, since the value of ηN(0) can be recovered from the trajectory {AN(t) : t ≥ 0},

{ηN(0) 6= ηM(0)} ⊂ {AN(t) 3 N − 1 for some t ≥ 0} . (2.4.5)

Denote by P̂N,M the probability measure associated to the Poisson processes Ni,i+1(t),

1 ≤ i < M − 1, N±,l(t), N(a,ξ)(t), N
±,r,a(t). Expectation with respect to P̂N,M is repre-

sented by ÊN,M . With this notation, ρN(1) = EµN [η1] = ÊN,M [ηN1 (0)]. Hence,

∣∣ ρN(1)− ρM(1)
∣∣ ≤ ÊN,M

[ ∣∣ ηN1 (0)− ηM1 (0)
∣∣ ] .

By (2.4.5), this expression is less than or equal to

P̂N,M
[
AN(t) 3 N − 1 for some t ≥ 0

]
= QN

[
A (t) 3 N − 1 for some t ≥ 0

]
.

By Lemma 2.4.4 the right-hand side vanishes as N → ∞. This shows that the sequence

ρN(1) is Cauchy and therefore converges.

Since the argument relies on the fact that the dual process AN(t) reaches N−1 with a

vanishing probability, the same proof works if the process ηM(t) is defined with any other

dynamics at the right boundary, e.g., reflecting boundary condition.

In the next result we derive an explicit expression for the density ρN(k) in terms of β

and ρN(1).

Lemma 2.4.6. For all k ∈ ΛN ,

ρN(k) =
N − k
N − 1

ρN(1) +
k − 1

N − 1
β .

Proof. Recall that we denote by ∆N the discrete Laplacian: (∆Nf)(k) = f(k−1)+f(k+

1)− 2f(k). Since µN is the stationary state, EµN [LNf ] = 0 for all function f : ΩN → R.

Replacing f by ηk, 2 ≤ k ≤ N − 1, we obtain that

(∆NρN)(k) = 0 for 2 ≤ k ≤ N − 1 ,

provided we define ρN(N) as β. The assertion of the lemma follows from these equations.
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Fix k ∈ ΛN \ {1}, and place a second particle at site k at time 0. This particle moves

according to the stirring dynamics in ΛN until it reaches site 1, when it is annihilated.

This later specification is not very important in the argument below, any other convention

for the evolution of the particle after the time it hits 1 is fine. Denote by Zk(s) the position

of the extra particle at time s and by d(A, j), A ⊂ ΛN , j ∈ ΛN , the distance between {j}
and A. The next lemma asserts that the process A (s) is extincted before the random

walk Zk(s) gets near to A (s) if k ≥
√
N .

Lemma 2.4.7. Let `N be a sequence such that `N →∞, `N
√
N ≤ N − 1. Then,

lim
N→∞

max
`N
√
N≤k<N

QN

[
d(A (s), Zk(s)) = 1 for some s ≥ 0

]
= 0 .

Proof. Recall that we denote by T the extinction time of the process A (s). The proba-

bility appearing in the lemma is bounded above by

QN

[
A (s) 3 `N

√
N/3 for some s ≥ 0

]
+ QN

[
sup
s≤T
|Zk(s)− Zk(0)| ≥ `N

√
N/3

]
.

By Lemma 2.4.4, the first term vanishes as N → ∞. Let mN be a sequence such that

mN →∞, mN/`
2
N → 0. By Lemma 2.4.3, the second term is bounded by

QN

[
sup

s≤NmN

|Zk(s)− Zk(0)| ≥ `N
√
N/3

]
+ oN(1) ,

where oN(1)→ 0 as N →∞. Since Zk evolves as a symmetric, nearest-neighbor random

walk and mN/`
2
N → 0, the first term vanishes as N →∞.

To prove a law of large numbers for the empirical measure under the stationary state,

we examine the correlations under the stationary state. For j, k ∈ ΛN , j < k, let

ρN(k) = EµN [ ηk ] , ϕN(j, k) = EµN [ ηj ηk ] − ρN(j) ρN(k) . (2.4.6)

Lemma 2.4.8. Let `N be a sequence such that `N →∞, `N
√
N ≤ N − 1. Then,

lim
N→∞

max
`N
√
N≤k<N

∣∣ϕN(1, k)
∣∣ = 0 .

Proof. The probability ρN(k) = µN(ηk = 1), k ∈ ΛN , can be computed by running the

process A (s) starting from A (0) = {k} until it is extincted, exactly as we estimated

ρN(1). Similarly, to compute EµN [η1 ηk], we run a process A (s) starting from A (0) =

{1, k}. In this case, denote by A1(s), A2(s) the sets at time s formed by all descendants

of 1, k, respectively. Note that A1(s) and A2(s) may have a non-empty intersection. For
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instance, if a particle in A1(s) branches and a site k ≤ p is occupied by a particle in

A2(s).

To compare EµN [η1 ηk] with EµN [η1]EµN [ηk], we couple a process A (s) starting from

{1, k} with two independent processes Â1(s), Â2(s), starting from {1}, {k}, respectively.

We say that the coupling is successful if Ai(s) = Âi(s), i = 1, 2, for all s ≥ 0. In this

case, the value of the occupation variables η1, ηk coincide for both processes.

Until d(A1(s),A2(s)) = 1, it is possible to couple A (s) and Â (s) in such a way that

Ai(s) = Âi(s), i = 1, 2. Hence, by Lemma 2.4.7, since k ≥ `N
√
N , the coupling is

successful with a probability which converges to 1 as N →∞.

Lemma 2.4.9. For every δ > 0,

lim
N→∞

max
δN≤j<k<N

∣∣ϕN(j, k)
∣∣ = 0 .

The proof of this lemma is similar to the one Lemmata 2.3.3, 2.3.4. As the arguments

are exactly the same, we just present the main steps. Denote by D̂N the discrete simplex

defined by

D̂N = {(j, k) : 2 ≤ j < k ≤ N − 1} ,

and by ∂ D̂N its boundary: ∂ D̂N = {(1, k) : 3 ≤ k ≤ N − 1} ∪ {(j,N) : 2 ≤ j ≤ N − 2}.
Note that the points (1, k) belong to the boundary and not to the set.

Denote by LN the generator of the symmetric, nearest-neighbor random walk on D̂N

with absorption at the boundary: For (j, k) ∈ D̂N ,

(LNφ)(j, k) = (∆φ)(j, k) , for k − j > 1 ,

(LNφ)(k, k + 1) = (∇−1 φ)(k, k + 1) + (∇+
2 φ)(k, k + 1) for 1 < k < N − 2 .

In these formulae, ∇±i , resp. ∆, represent the discrete gradients, resp. Laplacians,

introduced below equation (2.3.1).

As EµN [LN{ηj − ρN(j)} {ηk − ρN(k)}] = 0, straightforward computations yield that

the two-point correlation function ϕN introduced in (2.4.6) is the unique solution of(LNψN)(j, k) + FN(j, k) = 0 , (j, k) ∈ D̂N ,

ψN(j, k) = bN(j, k) , (j, k) ∈ ∂ D̂N ,
(2.4.7)

where FN : D̂N → R and bN : ∂ D̂N → R are given by

FN(j, k) = − [ρN(j + 1)− ρN(j)]2 1{k = j + 1} , bN(j, k) = ϕN(j, k) 1{j = 1} .
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Denote by ϕ
(1)
N , resp. ϕ

(2)
N , the solution of (2.4.7) with bN = 0, resp. FN = 0. It is

clear that ϕN = ϕ
(1)
N + ϕ

(2)
N . Let XN(t) = (X1

N(t), X2
N(t)) be the continuous-time Markov

chain on D̂N ∪ ∂ D̂N associated to the generator LN . Let P (j,k) be the distribution of the

chain XN starting from (j, k). Expectation with respect to P (j,k) is represented by E(j,k).

Proof of Lemma 2.4.9. The piece ϕ
(1)
N of the covariance has an explicit expression. In

view of Lemma 2.4.6, for 1 ≤ j < k ≤ N ,

ϕ
(1)
N (j, k) = − [β − ρN(1)]2

(N − 1)2

(j − 1) (N − k)

N − 2
≤ C0

N

for some finite constant C0, independent of N . The piece ϕ
(2)
N requires a more careful

analysis.

Let HN be the hitting time of the boundary ∂ D̂N :

HN = inf
{
t ≥ 0 : XN(t) ∈ ∂ D̂N

}
.

We have that

ϕ
(2)
N (j, k) = E(j,k)

[
bN(XN(HN))

]
= E(j,k)

[
ϕN(XN(HN)) 1{X1

N(HN) = 1}
]
.

Let kN be a sequence such that kN � N . By (2.3.9), for all δ > 0,

lim
N→∞

max
δN≤l<m<N

P (l,m)

[
X2
N(HN) ≤ kN

]
= 0 .

Therefore, setting kN = `N
√
N , where 1� `N �

√
N , by Lemma 2.4.8,

lim
N→∞

max
(j,k)∈D̂N
j>δN

∣∣ϕ(2)
N (j, k)

∣∣ ≤ lim
N→∞

max
`N
√
N≤k<N

∣∣ϕN(1, k)
∣∣ = 0 .

This proves the lemma.

Proof of Theorem 2.1.4. The first assertion of the theorem has been proved in Lemma

2.4.6. The proof of the second one is identical to the proof of Theorem 2.1.1.

2.5 Speeded-up boundary conditions

Recall that we denote by µ, resp. µN , the stationary state of the Markov chain on Ω∗p,

resp. ΩN,p. Fix a smooth profile u : [0, 1] → (0, 1) such that u(0) = ρ(0), u(1) = β, and
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let νN,p be the product measure defined by

νN,p(ξ, η) = µ(ξ) νNu (η) , ξ ∈ Ω∗p , η ∈ ΩN ,

where νNu is the product measure on ΩN with marginals given by νNu {ηk = 1} = u(k/N).

Denote by fN the density of µN with respect to νN,p, and by FN : Ω∗p → R+ the density

given by

FN(ξ) =

∫
ΩN

fN(ξ, η) νNu (dη) .

Lemma 2.5.1. There exists a finite constant C0 such that

∣∣ ρN(0)− ρ(0)
∣∣ ≤ C0/

√
`N

for all N ≥ 1.

Proof. Fix a function g : Ω∗p → R. As µN is the stationary state, and since LNg =

`NLlg + L0,1g

0 = EµN
[
LNg

]
= EµN

[
`N Llg + L0,1g

]
,

so that |EµN [Llg] | ≤ 2‖g‖∞/`N . Since

EµN [Llg] =

∫
ΩN,p

(Llg)(ξ) fN(ξ, η) νN,p(dξ, dη) =

∫
Ω∗p

(Llg)(ξ)FN(ξ)µ(dξ) ,

for every g : Ω∗p → R,

∣∣ ∫
Ω∗p

g(ξ) (L∗lFN)(ξ)µ(dξ)
∣∣ ≤ 2‖g‖∞/`N ,

where L∗l represents the adjoint of Ll in L2(µ). Since µ is the stationary state, L∗l is the

generator of a irreducible Markov chain on Ω∗p. It follows from the previous identity that∫
Ω∗p

∣∣ (L∗lFN)(ξ)
∣∣µ(dξ) ≤ C0/`N

for some finite constant C0. Hence, since µ(ξ) > 0 for all ξ ∈ Ω∗p, ‖L∗lFN‖∞ ≤ C0/`N . In

particular,

−
∫

Ω∗p

FN(ξ) (L∗lFN)(ξ)µ(dξ) ≤ (C0/`N)

∫
Ω∗p

FN(ξ)µ(dξ) ≤ C0/`N .

Note that the expression on the left hand side is the Dirichlet form. Hence, by its explicit
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expression, maxξ,ξ′ [FN(ξ′) − FN(ξ)]2 ≤ C0/`N , where the maximum is carried over all

configuration pairs ξ, ξ′ such that R(ξ, ξ′) + R(ξ′, ξ) > 0, R being the jump rate. In

particular, as the chain is irreducible,

∥∥FN − 1
∥∥
∞ =

∥∥FN − ∫
Ω∗p

FN(ξ)µ(dξ)
∥∥
∞ ≤ C0/

√
`N .

We are now in a position to prove the lemma. One just needs to observe that

∣∣ ρN(0)− ρ(0)
∣∣ =

∣∣∣EµN [η0]− Eµ[η0]
∣∣∣ =

∣∣∣ ∫
Ω∗p

ξ0FN(ξ)µ(dξ)−
∫

Ω∗p

ξ0 µ(dξ)
∣∣∣ ,

and that this expression is bounded by ‖FN − 1 ‖∞.

Let

ϕN(j, k) = EµN [ ηj ηk ] − ρN(j) ρN(k) , j , k ∈ ΛN,p , j < k .

Lemma 2.5.2. There exists a finite constant C0 such that |ϕN(0, k)| ≤ C0/
√
`N for all

2 ≤ k < N .

Proof. The argument is similar to the one of the previous lemma. Fix 0 < k < N , and

denote by GN = G
(k)
N : Ω∗p → R+ the non-negative function given by

GN(ξ) =

∫
ΩN

ηk fN(ξ, η) νNu (dη) .

With this notation,

EµN [ η0 ηk ] =

∫
Ω∗p

ξ0GN(ξ)µ(dξ) . (2.5.1)

Fix g : Ω∗p → R and k ≥ 2. As k ≥ 2, LN(g ηk) = ηk LNg + gLNηk. Thus, since µN is

the stationary state,

0 = EµN
[
LN(g ηk)

]
=

∫
ΩN,p

(`N Ll + L0,1) g ηk fN dνN,p + EµN
[
g LNηk

]
.

By definition of GN and since |LNηk| ≤ 2, |L0,1 g| ≤ 2‖g‖∞,∣∣∣ ∫
Ω∗p

(Ll g)(ξ)GN(ξ)µ(dξ)
∣∣∣ ≤ (4/`N) ‖g‖∞ .

The argument presented in the proof of the previous lemma yields that

∥∥GN −
∫

Ω∗p

GN(ξ)µ(dξ)
∥∥
∞ ≤ C0/

√
`N .
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Therefore, ∣∣∣ ∫
Ω∗p

ξ0

{
GN(ξ)−

∫
Ω∗p

GN(ξ′)µ(dξ′)
}
µ(dξ)

∣∣∣ ≤ C0/
√
`N .

By definition of GN and by (2.5.1), the expression inside the absolute value is equal to

EµN [ η0 ηk ] − ρ(0) ρN(k) .

The assertion of the lemma follows from the penultimate displayed equation and from

Lemma 2.5.1.

Proof of Theorem 2.1.9. The first assertion of the theorem is the content of Lemma 2.5.1.

The proof of Lemma 2.4.9 [with D̂N defined as D̂N = {(j, k) : 1 ≤ j < k ≤ N − 1}]
yields that for every δ > 0,

lim
N→∞

max
δN≤j<k<N

∣∣ϕN(j, k)
∣∣ = 0 .

A Schwarz inequality, as in the proof of Theorem 2.1.1, completes the argument because

ρN(k) = (k/N) β + [1− (k/N)] ρN(0), 1 ≤ k ≤ N .
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CHAPTER 3 METASTABILITY OF FINITE STATE MARKOV CHAIN

3.1 Notation and main results

Consider a finite set E. The elements of E are called configurations and are denoted by

the Greek letters η, ξ, ζ. Consider a sequence of continuous-time, E-valued, irreducible

Markov chains {ηNt : t ≥ 0}. Denote the jump rates of ηNt by RN(η, ξ), and by µN the

unique invariant probability measure.

Denote by D(R+, E) the space of right-continuous functions x : R+ → E with left-

limits endowed with the Skorohod topology, and by Pη = PNη , η ∈ E, the probability

measure on the path space D(R+, E) induced by the Markov chain ηNt starting from η.

Expectation with respect to Pη is represented by Eη.

Denote by HA , H+
A , A ⊂ E, the hitting time and the time of the first return to A :

HA = inf
{
t > 0 : ηNt ∈ A

}
, H+

A = inf
{
t > τ1 : ηNt ∈ A

}
, (3.1.1)

where τ1 represents the time of the first jump of the chain ηNt : τ1 = inf{t > 0 : ηNt 6= ηN0 }.
Denote by λN(η), η ∈ E, the holding rates of the Markov chain ηNt and by pN(η, ξ), η,

ξ ∈ E, the jump probabilities, so that RN(η, ξ) = λN(η)pN(η, ξ). For two disjoint subsets

A , B of E, denote by capN(A ,B) the capacity between A and B:

capN(A ,B) =
∑
η∈A

µN(η)λN(η)Pη[HB < H+
A ] . (3.1.2)

Consider a partition E1, . . . ,En, ∆ of the set E, which does not depend on the param-

eter N and such that n ≥ 2. Fix two sequences of positive real numbers αN , θN such that

αN � θN , where this notation stands for limN→∞ αN/θN = 0.

Now let us briefly recall the trace processs of a continuous-time Markov chain. Given

a continuous-time Markov chain {ηt}t≥0 with state space E and jump rate R(·, ·). Fix a

subset F ⊂ E. The trace process of {ηt}t≥0 on F can be thought as the stochastic process

whose trajectory is obtained from the trajectory of {ηt}t≥0, by deleting the part of the on

E \ F and gluing the rest following the time order. Denote by {ηFt }t≥0 the trace process.

It can be proved that the process {ηFt }t≥0 is actually a Markov process, with jump rate

RF (·, ·) given by: for any η 6= ξ, η, ξ ∈ F ,

RF (η, ξ) = R(η, ξ) +
∑
ζ∈F c

R(η, ζ)Pζ [TF = Tξ].
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where TA is the first hitting time of set A:

TA := inf{t ≥ 0 : ηt ∈ A}.

For the rigorous definition and more properties of the trace process, we refer to Section 6

of [9].

Let E = ∪x∈SEx, where S = {1, . . . , n}. Denote by {ηE
t : t ≥ 0} the trace of {ηNt : t ≥

0} on E , and by RE
N : E × E → R+ the jump rates of the trace process ηE

t . Denote by

rE
N(Ex,Ey) the mean rate at which the trace process jumps from Ex to Ey:

rE
N(Ex,Ey) =

1

µN(Ex)

∑
η∈Ex

µN(η)
∑
ξ∈Ey

RE
N(η, ξ) . (3.1.3)

Assume that for every x 6= y ∈ S,

rE (x, y) := lim
N→∞

θN r
E
N(Ex,Ey) ∈ R+ ,

and that
∑
x∈S

∑
y 6=x

rE (x, y) > 0 .
(H1)

The symbol := in the first line of the previous displayed equation means that the limit

exists, that it is denoted by rE (x, y), and that it belongs to R+. This convention is used

throughout the article.

Assume that for every x ∈ S for which Ex is not a singleton and for all η 6= ξ ∈ Ex,

lim inf
N→∞

αN
capN(η, ξ)

µN(Ex)
> 0 . (H2)

Note that the liminf in the above equation is not necessary to be finite.

Finally, assume that in the time scale θN the chain remains a negligible amount of

time outside the set E : For every t > 0,

lim
N→∞

max
η∈E

Eη
[ ∫ t

0

1{ηNsθN ∈ ∆} ds
]

= 0 . (H3)

Denote by ΨN : E → {1, . . . , n, N} the projection defined by ΨN(η) = x if η ∈ Ex,

ΨN(η) = N , otherwise:

ΨN(η) =
∑
x∈S

x1{η ∈ Ex} + N 1{η ∈ ∆} .

Recall from [16] the definition of the soft topology.
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Theorem 3.1.1. Assume that conditions (H1)–(H3) are in force. Fix x ∈ S and a

configuration η ∈ Ex. Starting from η, the speeded-up, hidden Markov chain XN(t) =

ΨN

(
ηN(θN t)

)
converges in the soft topology to the continuous-time Markov chain XE (t)

on {1, . . . , n} whose jump rates are given by rE (x, y) and which starts from x.

This theorem is a straightforward consequence of known results of [9],[11],[16]. We

state it here in sake of completeness and because all the analysis of the metastable behavior

of ηNt relies on it.

Remark 3.1.2. Theorem 3.1.1 states that in the time scale θN , if we just keep track of

the set Ex where ηNt is and not of the specific location of the chain, we observe an evolution

on the set S close to the one of a continuous-time Markov chain which jumps from x to

y at rate rE (x, y).

Remark 3.1.3. The function ΨN represents a slow variable of the chain. Indeed, we will

see below that the sequence α−1
N stands for the order of magnitude of the jump rates of the

chain. Theorem 3.1.1 states that on the time scale θN , which is much longer than αN , the

variable ΨN(ηNt ) evolves as a Markov chain. In other words, under conditions (H1)–(H3),

one still observes a Markovian dynamics after a contraction of the configuration space

through the projection ΨN . Theorem 3.1.1 provides therefore a mechanism of reducing the

degrees of freedom of the system, keeping the essential features of the dynamics, as the

ergodic properties.

Remark 3.1.4. It also follows from assumptions (H1)–(H3) that the exit time from a set

Ex is asymptotically exponential. More precisely, let Ĕx, x ∈ S, be the union of all set Ey

except Ex:

Ĕx =
⋃
y 6=x

Ey . (3.1.4)

For every x ∈ S and η ∈ Ex, under Pη the distribution of HĔx
/θN converges to an

exponential distribution.

Remark 3.1.5. Under the assumptions (H1)–(H3), the sets Ex are cycles in the sense

of [22]. More precisely, for every x ∈ S for which Ex is a not a singleton, and for all

η 6= ξ ∈ Ex,

lim
N→∞

Pη
[
Hξ < HĔx

]
= 1 .

This means that starting from η ∈ Ex, the chain visits all configurations in Ex before

hitting the set Ĕx.
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3.1.1 The main assumption

We present in this subsection the main and unique hypothesis made on the sequence of

Markov chains ηNt . Fix two configurations η 6= ξ ∈ E. We assume that the jump rate

from η to ξ is either constant equal to 0 or is always strictly positive:

RN(η, ξ) = 0 for all N ≥ 1 or RN(η, ξ) > 0 for all N ≥ 1 .

This assumption permits to define the set of ordered bonds of E, denoted by B, as the

set of ordered pairs (η, ξ) such that RN(η, ξ) > 0:

B =
{

(η, ξ) ∈ E × E : η 6= ξ , RN(η, ξ) > 0
}
.

Note that the set B does not depend on N .

Our analysis of the metastable behavior of the sequence of Markov chain ηNt relies on

the assumption that the set of ordered bonds can be divided into equivalent classes in

such a way that the all jump rates in the same equivalent class are of the same order,

while the ratio between two jump rates in different classes either vanish in the limit or

tend to +∞. Some terminology is necessary to make this notion precise.

Ordered sequences : Consider a set of sequences (arN : N ≥ 1) of nonnegative real numbers

indexed by some finite set r ∈ R. The set of sequences (arN : N ≥ 1) is said to be ordered

if for all r 6= s ∈ R the sequence arN/a
s
N converges to either some finite constant C ≥ 0

or ∞ as N ↑ ∞.

In the examples below the set R will be the set of configurations E or the set of bonds

B. Let Z+ = {0, 1, 2, . . . }, and let Am, m ≥ 1, be the set of functions k : B → Z+ such

that
∑

(η,ξ)∈B k(η, ξ) = m.

Assumption 3.1.6. We assume that for every m ≥ 1 the set of sequences{ ∏
(η,ξ)∈B

RN(η, ξ)k(η,ξ) : N ≥ 1
}
, k ∈ Am

is ordered.

We assume from now on that the sequence of Markov chains ηNt fulfills Assumption

3.1.6. In particular, the sequences {RN(η, ξ) : N ≥ 1}, (η, ξ) ∈ B, are ordered. The

example we have in mind are zero-temperature limits of non-reversible dynamics in a

finite state space.
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3.1.2 The shallowest valleys, the fastest slow variable

We identify in this subsection the shortest time-scale at which a metastable behavior is

observed, we introduce the shallowest valleys, and we prove that these valleys form a

partition which fulfills conditions (H1)–(H3).

We first identify the valleys. Let

1

αN
=
∑
η∈E

∑
ξ:ξ 6=η

RN(η, ξ) .

We could also have defined α−1
N as max{RN(η, ξ) : (η, ξ) ∈ B}. By Assumption 3.1.6, there

exists a function R(·, ·) such that, for every η 6= ξ ∈ E, αNRN(η, ξ) → R(η, ξ) ∈ [0, 1].

Let λ(η) =
∑

ξ 6=η R(η, ξ) ∈ R+, and denote by E0 the subset of points of E such that

λ(η) > 0. For all η ∈ E0 let p(η, ξ) = R(η, ξ)/λ(η). It is clear that for all η, ζ in E,

ξ ∈ E0,

lim
N→∞

αN λN(η) = λ(η) , lim
N→∞

pN(ξ, ζ) = p(ξ, ζ) . (3.1.5)

Denote by XR(t) the E-valued Markov chain whose jump rates are given by R(η, ξ).

Not that this Markov chain might not be irreducible. However, by definition of αN , there

is at least one bond (η, ξ) ∈ B such that R(η, ξ) > 0.

Denote by E1,E2, . . . ,En the recurrent classes of the Markov chain XR(t), and by ∆

the set of transient points, so that {E1, . . . ,En,∆} forms a partition of E:

E = E t∆ , E = E1 t · · · t En . (3.1.6)

Here and below we use the notation A tB to represent the union of two disjoint sets A ,

B: A tB = A ∪B, and A ∩B = ∅.

Note that the sets Ex, x ∈ S = {1, . . . , n}, do not depend on N . If n = 1, the

chain does not possess valleys. This is the case, for instance, if the rates RN(x, y) are

independent of N . Assume, therefore, and up to the end of this subsection, that n ≥ 2.

Let θN be defined by
1

θN
=
∑
x∈S

capN(Ex, Ĕx)

µN(Ex)
. (3.1.7)

Theorem 3.1.7. The partition E1, . . . ,En,∆ and the time scales αN , θN fulfill the condi-

tions (H1)–(H3). Moreover, For every x ∈ S and every η ∈ Ex, there exists mx(η) ∈ (0, 1]

such that

lim
N→∞

µN(η)

µN(Ex)
= mx(η) . (H0)
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Remark 3.1.8. The jump rates rE (x, y) which appear in condition (H1) are introduced

in Lemma 3.6.1. It follows from Theorems 3.1.1 and 3.1.7 that in the time-scale θN the

chain ηNt evolves among the sets Ex, x ∈ S, as a Markov chain which jumps from x to y

at rate rE (x, y).

In the next three remarks we present some outcomes of Theorem 3.1.1 and 3.1.7 on

the evolution of the chain ηNt in a time-scale longer than θN . These remarks anticipate

the recursive procedure of the next subsection.

Remark 3.1.9. The jump rates rE (x, y) define a Markov chain on S, represented by

XE (t). Denote by T the set of transient points of this chain and assume that T 6= ∅. It

follows from Theorem 3.1.1 that in the time-scale θN , starting from a set Ex, x ∈ T , the

chain ηNt leaves the set Ex at an asymptotically exponential time, and never returns to Ex

after a finite number of visits to this set. In particular, if we observe the chain ηNt in a

longer time-scale than θN , starting from Ex the chain remains only a negligible amount of

time at Ex.

Remark 3.1.10. Denote by A the set of absorbing points of XE (t), and assume that

A 6= ∅. In this case, in the time-scale θN , starting from a set Ex, x ∈ A, the chain ηNt

never leaves the set Ex. To observe a non-trivial behavior starting from this set one has

to consider longer-time scales.

Remark 3.1.11. Finally, denote by C1, . . . ,Cp the equivalent classes of XE (t). Suppose

that there is a class, say C1, of recurrent points which is not a singleton. In this case,

starting from a set Ex, x ∈ C1, in the time-scale θN , the chain ηNt leaves the set Ex at an

asymptotically exponential time, and returns to Ex infinitely many times.

Suppose now that there are at least two classes, say C1 and C2, of recurrent points.

This means that in the time-scale θN , starting from a set Ex, x ∈ C1, the process never

visits a set Ey for y ∈ C2. For this to occur one has to observe the chain ηNt in a longer

time-scale.

Denote by R1, . . . , Rm the recurrent classes of XE (t). In the next subsection, we derive

a new time-scale at which one observes jumps from sets of the form Fa = ∪x∈RaEx to sets

of the form Fb = ∪x∈Rb
Ex.

3.1.3 All deep valleys and slow variables

We obtained in the previous subsection two time-scales αN , θN , and a partition E1, . . . ,En,∆

of the state space E which satisfy conditions (H0)–(H3). We present in this subsection a re-

cursive procedure. Starting from two time-scales β−N , βN , and a partition F1, . . . ,Fp,∆F
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of the state space E satisfying the assumptions (H0)–(H3) and such that p ≥ 2, it pro-

vides a longer time-scale β+
N and a coarser partition G1, . . . ,Gq,∆G which fulfills conditions

(H0)–(H3) with respect to the sequences βN , β+
N .

Consider a partition F1, . . . ,Fp, ∆F of the set E and two sequences β−N , βN such that

β−N/βN → 0. Assume that p ≥ 2 and that the partition and the sequences β−N , βN satisfy

conditions (H0)–(H3). Denote by rF (x, y) the jump rates appearing in assumption (H1).

The coarser partition. Let P = {1, . . . , p} and let XF (t) be the P -valued Markov chain

whose jumps rates are given by rF (x, y).

Denote by G1, G2, . . . , Gq the recurrent classes of the chain XF (t), and by Gq+1 the

set of transient points. The sets G1, . . . , Gq+1 form a partition of P . We claim that q < p.

Fix x ∈ P such that
∑

y 6=x rF (x, y) > 0, whose existence is guaranteed by hypothesis

(H1). Suppose that the point x is transient. In this case the number of recurrent classes

must be smaller than p. If, on the other hand, x is recurrent, the recurrent class which

contains x must have at least two elements, and the number of recurrent classes must be

smaller than p.

Let Q = {1, . . . , q},

Ga =
⋃
x∈Ga

Fx , ∆∗ =
⋃

x∈Gq+1

Fx , ∆G = ∆F ∪∆∗ , a ∈ Q . (3.1.8)

Since, by (3.1.6), {F1, . . . ,Fp,∆F} forms a partition of E, {G1, . . . ,Gq,∆G } also forms a

partition of E:

E = G t∆G , G = G1 t · · · t Gq . (3.1.9)

The longer time-scale. For a ∈ Q = {1, . . . , q}, let Ğa be the union of all leaves except Ga:

Ğa =
⋃
b6=a

Gb .

Assume that q > 1, and let β+
N be given by

1

β+
N

=
∑
a∈Q

capN(Ga, Ğa)

µN(Ga)
. (3.1.10)

Theorem 3.1.12. The partition G1, . . . ,Gq, ∆G and the time scales (βN , β
+
N) satisfy con-

ditions (H0)–(H3).

Remark 3.1.13. It follows from Theorems 3.1.1 and 3.1.12 that the chain ηNt exhibits

a metastable behavior in the time-scale β+
N if q > 1. We refer to Remarks 3.1.2, 3.1.3,

3.1.4 and 3.1.5.

56



Remark 3.1.14. As q < p and as we need p to be greater than or equal to 2 to apply the

iterative procedure, this recursive algorithm ends after a finite number of steps.

If q = 1, βN is the longest time-scale at which a metastable behavior is observed. In

this time-scale, the chain ηNt jumps among the sets Fx as does the chain XF (t) until it

reaches the set G1 = ∪x∈G1Fx. Once in this set, it remains there forever jumping among

the sets Fx, x ∈ G1, as the Markov chain XF (t), which restricted to G1 is an irreducible

Markov chain.

The successive valleys: Observe that the valleys Ga were obtained as the recurrent

classes of the Markov chain XF (t): Ga = ∪x∈GaFx, where Ga is a recurrent class of

XF (t). In particular, at any time-scale the valleys are formed by unions of the valleys

obtained in the first step of the recursive argument, which were denoted by Ex in the

previous subsection. Moreover, by (H0), each configuration in Ga has measure of the

same order.

Conclusion: We presented an iterative method which provides a finite sequence of time-

scales and of partitions of the set E satisfying conditions (H0)-(H3). At each step, the

time scales become longer and the partitions coarser. By Theorem 3.1.1, to each pair

of time-scale and partition corresponds a metastable behavior of the chain ηNt . This

recursive algorithm provides all time-scales at which a metastable behavior of the chain

ηNt is observed, and all slow variables which keep a Markovian dynamics.

3.2 What do we learn from Assumption 3.1.6?

We prove in this section that the jump rates of the trace processes satisfy Assumption

3.1.6, and that some sequences, such as the one formed by the measures of the configura-

tions, are ordered.

Assertion 3.2.A. Let F be a proper subset of E and denote by RF
N(η, ξ), η 6= ξ ∈ F , the

jump rates of the trace of ηNt on F . The jump rates RF
N(η, ξ) satisfy Assumption 3.1.6.

Proof. We prove this assertion by removing one by one the elements of E \ F . Assume

that F = E \ {ζ} for some ζ ∈ E. By Corollary 6.2 in [9] and by the equation following

the proof of this corollary, for η 6= ξ ∈ F , RF
N(η, ξ) = RN(η, ξ) +RN(η, ζ)pN(ζ, ξ). Hence,

RF
N(η, ξ) =

∑
w∈E RN(η, ξ)RN(ζ, w) +RN(η, ζ)RN(ζ, ξ)∑

w∈E RN(ζ, w)
· (3.2.1)

It is easy to check from this identity that Assumption 3.1.6 holds for the jump rates RF
N .

It remains to proceed recursively to complete the proof.
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Lemma 3.2.1. The sequences {µN(η) : N ≥ 1}, η ∈ E, are ordered.

Proof. Fix η 6= ξ ∈ E and let F = {η, ξ}. By [9, Proposition 6.3], the stationary

state of the trace of ηNt on F , denoted by µFN , is given by µFN(η) = µN(η)/µN(F ). As

µFN is the invariant probability measure, µFN(η)RF
N(η, ξ) = µFN(ξ)RF

N(ξ, η). Therefore,

µN(η)/µN(ξ) = µFN(η)/µFN(ξ) = RF
N(ξ, η)/RF

N(η, ξ). By Assertion 3.2.A, the sequences

{RF
N(a, b) : N ≥ 1}, a 6= b ∈ {η, ξ} are ordered. This completes the proof of the lemma.

The previous lemma permits to divide the configurations of E into equivalent classes by

declaring η equivalent to η′, η ∼ η′, if µN(η)/µN(η′) converges to a real number belonging

to (0,∞).

Assertion 3.2.B. Let F be a proper subset of E. For every bond (η′, ξ′) ∈ B and every

m ≥ 1 the set of sequences{ ∏
(η,ξ)∈B

RF
N(η, ξ)k(η,ξ)RN(η′, ξ′) : N ≥ 1

}
, k ∈ Am

is ordered.

Proof. We proceed as in the proof of Assertion 3.2.A, by removing one by one the elements

of E \F . Fix ζ ∈ E \F . It follows from (3.2.1) and from Assumption 3.1.6 that the claim

of the assertion holds for F ′ = E \ {ζ}.
Fix ζ ′ ∈ E \F , ζ ′ 6= ζ. By using formula (3.2.1), to express the rates RE\{ζ,ζ′} in terms

of the rates RE\{ζ}, and the statement of this assertion for F ′ = E \ {ζ} we prove that

this assertion also holds for F ′ = E \ {ζ, ζ ′}. Iterating this algorithm we complete the

proof of the assertion.

Denote by cN(η, ξ) = µN(η)RN(η, ξ), (η, ξ) ∈ B, the (generally asymmetric) conduc-

tances.

Lemma 3.2.2. The conductances {cN(η, ξ) : N ≥ 1}, (η, ξ) ∈ B, are ordered.

Proof. Consider two bonds (η, ξ), (η′, ξ′) in B. As in the proof of Lemma 3.2.1, we may

express the ratio of the conductances as

cN(η, ξ)

cN(η′, ξ′)
=

µN(η)RN(η, ξ)

µN(η′)RN(η′, ξ′)
=

RF
N(η′, η)RN(η, ξ)

RF
N(η, η′)RN(η′, ξ′)

,

where F = {η, η′). It remains to recall the statement of assertion 3.2.B to complete the

proof of the lemma.
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Denote by Bs the symmetrization of the set B, that is, the set of bonds (η, ξ) such

that (η, ξ) or (ξ, η) belongs to B:

Bs =
{

(η, ξ) ∈ E × E : η 6= ξ , (η, ξ) ∈ B or (ξ, η) ∈ B
}
.

Denote by csN(η, ξ), (η, ξ) ∈ Bs, the symmetric part of the conductance:

csN(η, ξ) =
1

2

{
cN(η, ξ) + cN(ξ, η)

}
. (3.2.2)

Next result is a straightforward consequence of the previous lemma.

Corollary 3.2.3. The symmetric conductances {csN(η, ξ) : N ≥ 1}, (η, ξ) ∈ Bs, are

ordered.

As in Lemma 3.2.1, the previous corollary permits to divide the set Bs into equiva-

lent classes by declaring (η, ξ) equivalent to (η′, ξ′), (η, ξ) ∼ (η′, ξ′), if csN(η, ξ)/csN(η′, ξ′)

converges to a constant in (0,∞).

It is possible to deduce from Assumption 3.1.6 that many other sequences are ordered.

We do not present these results here as we do not use them below.

3.3 Cycles, sector condition and capacities

We prove in this section that the generator of a Markov chain on a finite set can be

decomposed as the sum of cycle generators and that it satisfies a sector condition. This

last bound permits to estimate the capacity between two sets by the capacity between

the same sets for the reversible process.

Throughout this section, E is a fixed finite set and L represents the generator of an

E-valued, continuous-time Markov chain. We adopt all notation introduced in Section

3.1, removing the index N since the chain is fixed. We start with some definitions.

In a finite set, the decomposition of a generator into cycle generators is very simple.

The problem for infinite sets is much more delicate. We refer to [13] for a discussion of

the question.

Cycle: A cycle is a sequence of distinct configurations (η0, η1, . . . , ηn−1, ηn = η0) whose

initial and final configuration coincide: ηi 6= ηj ∈ E, i 6= j ∈ {0, . . . , n− 1}. The number

n is called the length of the cycle.

Cycle generator : A generator L of an E-valued Markov chain, whose jump rates are de-

noted byR(η, ξ), is said to be a cycle generator associated to the cycle c = (η0, η1, . . . , ηn−1, ηn =
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η0) if there exists reals ri > 0, 0 ≤ i < n, such that

R(η, ξ) =

ri if η = ηi and ξ = ηi+1 for some 0 ≤ i < n ,

0 otherwise .

We denote this cycle generator by Lc. Note that

(Lcf)(η) =
n−1∑
i=0

1{η = ηi} ri [f(ηi+1)− f(ηi)] .

Sector condition: A generator L of an E-valued, irreducible Markov chain, whose unique

invariant probability measure is denoted by µ, is said to satisfy a sector condition if there

exists a constant C0 <∞ such that for all functions f , g : E → R,

〈Lf, g〉2µ ≤ C0〈(−Lf), f〉µ 〈(−Lg), g〉µ .

In this formula, 〈f, g〉µ represents the scalar product in L2(µ):

〈f, g〉µ =
∑
η∈E

f(η) g(η)µ(η) .

We claim that every cycle generator satisfies a sector condition and that every gener-

ator L of an E-valued Markov chain, stationary with respect to a probability measure µ,

can be decomposed as the sum of cycle generators which are stationary with respect to

µ.

Assertion 3.3.A. Consider a cycle c = (η0, η1, . . . , ηn−1, ηn = η0) of length n ≥ 2 and

let L be a cycle generator associated to c. Denote the jump rates of L by R(ηi, ηi+1). A

measure µ is stationary for L if and only if

µ(ηi)R(ηi, ηi+1) is constant . (3.3.1)

The proof of the previous assertion is elementary and left to the reader. The proof of

the next one can be found in [15, Lemma 5.5.8].

Assertion 3.3.B. Let L be a cycle generator associated to a cycle c of length n. Then,

L satisfies a sector condition with constant 2n: For all f , g : E → R,

〈Lf, g〉2µ ≤ 2n 〈(−Lf), f〉µ 〈(−Lg), g〉µ .
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Lemma 3.3.1. Let L be a generator of an E-valued, irreducible Markov chain. Denote

by µ the unique invariant probability measure. Then, there exists cycles c1, . . . , cp such

that

L =

p∑
j=1

Lcj ,

where Lcj are cycle generators associated to cj which are stationary with respect to µ.

Proof. The proof consists in eliminating successively all 2-cycles (cycles of length 2),

then all 3-cycles and so on up to the |E|-cycle if there is one left. Denote by R(η, ξ)

the jump rates of the generator L and by C2 the set of all 2-cycles (η, ξ, η) such that

R(η, ξ)R(ξ, η) > 0. Note that the cycle (η, ξ, η) coincide with the cycle (ξ, η, ξ).

Fix a cycle c = (η, ξ, η) ∈ C2. Let c̄(η, ξ) = min{µ(η)R(η, ξ), µ(ξ)R(ξ, η)} be the

minimal conductance of the edge (η, ξ), and let Rc(η, ξ) be the jump rates given by

Rc(η, ξ) = c̄(η, ξ)/µ(η), Rc(ξ, η) = c̄(η, ξ)/µ(ξ). Observe that Rc(ζ, ζ
′) ≤ R(ζ, ζ ′) for all

(ζ, ζ ′), and that Rc(ξ, η) = R(ξ, η) or Rc(η, ξ) = R(η, ξ).

Denote by Lc the generator associated the the jump rates Rc. Since µ(η)Rc(η, ξ) =

c̄(η, ξ) = µ(ξ)Rc(ξ, η), by (3.3.1), µ is a stationary state for Lc (actually, reversble). Let

L1 = L − Lc so that

L = L1 + Lc .

As Rc(ζ, ζ
′) ≤ R(ζ, ζ ′), L1 is the generator of a Markov chain. Since both L and Lc are

stationary for µ, so is L1. Finally, if we draw an arrow from ζ to ζ ′ if the jump rate

from ζ to ζ ′ is strictly positive, the number of arrows for the generator L1 is equal to the

number of arrows for the generator L minus 1 or 2. This procedure has therefore strictly

decreased the number of arrows of L.

We may repeat the previous algorithm to L1 to remove from L all 2-cycles (η, ξ, η) such

that R(η, ξ)R(ξ, η) > 0. Once this has been accomplished, we may remove all 3-cycles

(η0, η1, η2, η3 = η0) such that
∏

0≤i<3R(ηi, ηi+1) > 0. At each step at least one arrow is

removed from the generator which implies that after a finite number of steps all 3-cycles

are removed.

Once all k-cycles have been removed, 2 ≤ k < |E|, we have obtained a decomposition

of L as

L =

|E|−1∑
k=2

Lk + L̂ ,

where Lk is the sum of k-cycle generators and is stationary with respect to µ, and L̂ is a

generator, stationary with respect to µ, and with no k-cycles, 2 ≤ k < |E|. If L̂ has an

arrow, as it is stationary with respect to µ and has no k-cycles, L̂ must be an |E|-cycle
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generator, providing the decomposition stated in the lemma.

Remark 3.3.2. Observe that a generator L is reversible with respect to µ if and only if it

has a decomposition in 2-cycles. Given a measure µ on a finite state space, for example the

Gibbs measure associated to a Hamiltonian at a fixed temperature, by introducing k-cycles

satisfying (3.3.1) it is possible to define non-reversible dynamics which are stationary with

respect to µ. The previous lemma asserts that this is the only way to define such dynamics.

Corollary 3.3.3. The generator L satisfies a sector condition with constant bounded by

2|E|: For all f , g : E → R,

〈Lf, g〉2µ ≤ 2|E| 〈(−Lf), f〉µ 〈(−Lg), g〉µ .

Proof. Fix f and g : E → R. By Lemma 3.3.1,

〈Lf, g〉2µ =
( p∑
j=1

〈Lcjf, g〉µ
)2

,

where Lcj is a cycle generator, stationary with respect to µ, associated to the cycle cj. By

Assertion 3.3.B and by Schwarz inequality, since all cycles have length at most |E|, the

previous sum is bounded by

2|E|
p∑
j=1

〈(−Lcjf), f〉µ
p∑

k=1

〈(−Lckg), g〉µ = 2|E| 〈(−Lf), f〉µ 〈(−Lg), g〉µ ,

as claimed

Denote by Rs(η, ξ) the symmetric part of the jump rates Rs(η, ξ):

Rs(η, ξ) =
1

2

{
R(η, ξ) +

µ(ξ)

µ(η)
R(ξ, η)

}
. (3.3.2)

Denote by ηst the E-valued Markov chain whose jump rates are given by Rs. The chain

ηst is called the reversible chain.

For two disjoint subsets A, B of E, denote by cap(A,B) (resp. caps(A,B)) the capacity

between A and B (for the reversible chain). Next result follows from Corollary 3.3.3 and

Lemmas 2.5 and 2.6 in [14]

Corollary 3.3.4. Fix two disjoint subsets A, B of E. Then,

caps(A,B) ≤ cap(A,B) ≤ 2|E| caps(A,B) .
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We conclude the section with an identity and an inequality which will be used several

times in this article. Let A and B be two disjoint subsets of E. By definition of the

capacity

cap(A,B) =
∑
η∈A

µ(η)λ(η)Pη
[
HB < H+

A

]
=
∑
η∈A

µ(η)λ(η)
∑
ξ∈B

Pη
[
Hξ = H+

A∪B
]
.

Therefore, if we denote by RA∪B(η, ξ), η 6= ξ ∈ A ∪ B, the jump rates of the trace of the

chain ηt on the set A ∪B, by [9, Proposition 6.1],

cap(A,B) =
∑
η∈A

µ(η)
∑
ξ∈B

RA∪B(η, ξ) . (3.3.3)

Let A be a non-empty subset of E and denote by RA(η, ξ) the jump rates of the trace

of ηt on A. We claim that for all η 6= ξ ∈ A,

µ(η)RA(η, ξ) ≤ cap(η, ξ) . (3.3.4)

Denote by λA(ζ) the holding rates of the trace process on A and by pA(ζ, ζ ′) the jump

probabilities. By definition,

RA(η, ξ) = λA(η) pA(η, ξ) = λA(η)Pη[Hξ = H+
A ] ≤ λA(η)Pη[Hξ < H+

η ] .

Multiplying both sides of this inequality by µA(η) = µ(η)/µ(A), by definition of the

capacity we obtain that

µA(η)RA(η, ξ) ≤ capA(η, ξ) ,

where capA(η, ξ) stands for the capacity with respect to the trace process on A. To

complete the proof of (3.3.4), it remains to recall formula (A.10) in [11].

3.4 Reversible chains and capacities

We present in this section some estimates for the capacity of reversible, finite state Markov

chains obtained in in [10]. There are useful below since if proved in Corollary 3.3.4 that

the capacity between two disjoint subsets A , B of E is of the same order as the capacity

with respect to the reversible chain.

Recall from (3.2.2) that we denote by csN(η, ξ) the symmetric conductance of the bond

(η, ξ). Fix two disjoint subsets A , B of E. A self-avoiding path γ from A to B is a

sequence of configurations (η0, η1, . . . , ηn) such that η0 ∈ A , ηn ∈ B, ηi 6= ηj, i 6= j,

csN(ηi, ηi+1) > 0, 0 ≤ i < n. Denote by ΓA ,B the set of self-avoiding paths from A to B
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and let

csN(γ) = min
0≤i<n

csN(ηi, ηi+1) , csN(A ,B) = max
γ∈ΓA ,B

csN(γ) . (3.4.1)

For two configurations η, ξ, we represent csN({η}, {ξ}) by csN(η, ξ). Note that csN(η, ξ) ≤
csN(η, ξ), with possibly a strict inequality.

Fix two disjoint subsets A , B of E and a configuration η 6∈ A ∪B. We claim that

csN(A ,B) ≥ min{csN(A , η) , csN(η,B)} . (3.4.2)

Indeed, there exist a self-avoiding path γ1 from A to η, and a self-avoiding path γ2 from

η to B such that csN(A , η) = csN(γ1), csN(η,B) = csN(γ2). Juxtaposing the paths γ1 and

γ2, we obtain a path γ from A to B. Of course, the path γ may not be self-avoiding, may

return to A before reaching B, or may reach B before hitting η. In any case, we may

obtain from γ a subpath γ̂ which is self-avoiding and which connects A to B. Subpath

in the sense that all bonds (ηi, ηi+1) which appear in γ̂ also appear in γ. In particular,

csN(γ̂) ≥ csN(γ) = min{csN(γ1) , csN(γ2)} = min{csN(A , η) , csN(η,B)} .

To complete the proof of claim (3.4.2), it remains to observe that csN(A ,B) ≥ csN(γ̂).

Fix two disjoint subsets A , B of E and configurations ηi 6∈ A ∪B, 1 ≤ i ≤ n, such

that ηi 6= ηj, i 6= j. Iterating inequality (3.4.2) we obtain that

csN(A ,B) ≥ min{csN(A , η1) , csN(η1, η2) , . . . , csN(ηn−1, ηn) , csN(ηn,B)} . (3.4.3)

We conclude this section relating the symmetric capacity between two sets A , B of E

to the symmetric conductances csN(A ,B). By Corollary 3.2.3, the sequences of symmetric

conductances {csN(η, ξ) : N ≥ 1}, (η, ξ) ∈ Bs, are ordered. It follows from this fact and

from the proof of Lemmas 4.1 in [10] that there exists constants 0 < c0 < C0 < ∞ such

that

c0 < lim inf
N→∞

capsN(A ,B)

csN(A ,B)
≤ lim sup

N→∞

capsN(A ,B)

csN(A ,B)
≤ C0 . (3.4.4)

3.5 Proof of Theorem 3.1.1

In view of Theorem 5.1 in [16], Theorem 3.1.1 follows from from condition (H3) and

from Propositions 3.5.1 below. Denote by ψE : E → {1, . . . , n} the projection defined by

ψE (η) = x if η ∈ Ex:

ψE (η) =
∑
x∈S

x1{η ∈ Ex} .
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Proposition 3.5.1. Fix x ∈ S and a configuration η ∈ Ex. Starting from η, the speeded-

up, hidden Markov chain XN(t) = ψE

(
ηE (θN t)

)
converges in the Skorohod topology to the

continuous-time Markov chain XE (t), introduced in Theorem 3.1.1, which starts from x.

Lemma 3.5.2. For every x ∈ S for which Ex is not a singleton and for all η 6= ξ ∈ Ex,

lim
N→∞

capN(Ex, Ĕx)

capN(η, ξ)
= 0 .

Proof. Fix x ∈ S. By (3.3.3), applied to A = Ex, B = Ĕx, and by assumption (H1),

lim
N→∞

θN
capN(Ex, Ĕx)

µN(Ex)
=
∑
y 6=x

rE (x, y) ∈ R+ .

The claim of the lemma follows from this equation, from assumption (H2) and from the

fact that αN/θN → 0.

Proof of Proposition 3.5.1. In view of Theorem 2.1 in [11], the claim of the proposition

follows from condition (H1), and from Lemma 3.5.2.

3.6 Proof of Theorem 3.1.7

The proof of Theorem 3.1.7 is divided in several steps.

1. The measure of the metastable sets. We start proving that condition (H0) is in

force. Recall from Section 3.1 that we denote by XR(t) the E-valued chain which jumps

from η to ξ at rate R(η, ξ). Denote by C1, . . . ,Cm the equivalent classes of the chain

XR(t).

Assertion 3.6.A. For all 1 ≤ j ≤ m, and for all η 6= ξ ∈ Cj, there exists m(η, ξ) ∈ (0,∞)

such that

lim
N→∞

µN(η)

µN(ξ)
= m(η, ξ) .

Proof. Fix 1 ≤ j ≤ m and η 6= ξ ∈ Cj. By assumption, there exists a path (η =

η0, . . . , ηn = ξ) such that R(ηi, ηi+1) > 0 for 0 ≤ i < n. On the other hand, since µN is an

invariant probability measure,

λN(ξ)µN(ξ) =
∑

ζ0,ζ1,...,ζn−1∈E

µN(ζ0)λN(ζ0) pN(ζ0, ζ1) · · · pN(ζn−1, ξ)

≥ µN(η0)λN(η0) pN(η0, η1) · · · pN(ηn−1, ξ) .
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Therefore,
µN(ξ)

µN(η)
≥ λN(η)

λN(ξ)
pN(η, η1) · · · pN(ηn−1, ξ) .

Since R(ηi, ηi+1) > 0 for 0 ≤ i < n, by (3.1.5), pN(ηi, ηi+1) converges to p(ηi, ηi+1) > 0.

For the same reason, αNλN(η) converges to λ(η) ∈ (0,∞). Finally, as ξ and η belong to

the same equivalent class, there exists a path from ξ to η with similar properties to the

one from η to ξ, so that αNλN(ξ) converges to λ(ξ) ∈ (0,∞). In conclusion,

lim inf
N→∞

µN(ξ)

µN(η)
> 0 .

Replacing η by ξ we obtain that lim inf µN(η)/µN(ξ) > 0. Since by Lemma 3.2.1 the

sequences {µN(ζ) : N ≥ 1}, ζ ∈ E, are ordered, µN(η)/µN(ξ) must converge to some

value in (0,∞).

By the previous assertion for every x ∈ S and η ∈ Ex,

mx(η) := lim
N→∞

µN(η)

µN(Ex)
∈ (0, 1] , (3.6.1)

where we adopted the convention established in condition (H1) of Section 3.1.

2. The time-scale. In this subsection, we introduce a time-scale γN , we prove that it is

much longer than αN and that it is of the same order of θN . In particular the requirement

αN/θN → 0 is in force.

Denote by {ηE
t : t ≥ 0} the trace of ηNt on the set E , and by RE

N : E × E → R+ the

jump rates of ηE
t . Let

1

γN
=
∑
x∈S

∑
η∈Ex

∑
ξ∈Ĕx

RE
N(η, ξ) , (3.6.2)

where Ĕx has been introduced in (3.1.4). The sequence γN represents the time needed to

reach the set Ĕx starting from Ex for some x ∈ S. This time scale might be longer for

other sets Ey, y 6= x, but it is of the order γN at least for one x ∈ S. We could as well

have defined γN as maxx∈S maxη∈Ex maxξ∈Ĕx
RE
N(η, ξ).

Assertion 3.6.B. The time scale γN is much longer than the time-scale αN :

lim
N→∞

αN
γN

= 0 .

Proof. We have to show that αNR
E
N(η, ξ) converges to 0 as N ↑ ∞, for all η ∈ Ex, ξ ∈ Ey,

x 6= y ∈ S. Fix x 6= y ∈ S, η ∈ Ex, ξ ∈ Ey. Since Ex is a recurrent class, R(η, ζ) = 0 for all
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ζ 6∈ Ex. On the other hand, by [9, Proposition 6.1] and by the strong Markov property,

RE
N(η, ξ) = λN(η)Pη[Hξ = H+

E ] = RN(η, ξ) +
∑
ζ 6∈E

RN(η, ζ)Pζ [Hξ = HE ] .

Since R(η, ζ) = 0 for all ζ 6∈ Ex, it follows from the previous identity and from the

definition of R(η, ζ) that αNR
E
N(η, ξ)→ 0, as claimed.

By Assertion 3.2.A, for all x ∈ S, η ∈ Ex, ξ ∈ Ĕx, with the convention adopted in

condition (H1) of Section 3.1,

rE (η, ξ) := lim
N→∞

γN R
E
N(η, ξ) ∈ [0, 1] . (3.6.3)

Assertion 3.6.C. For all x ∈ S,

`x := lim
N→∞

γN
capN(Ex, Ĕx)

µN(Ex)
∈ R+ . Moreover , ` =

∑
x∈S

`x > 0 .

Proof. By (3.3.3), applied to A = Ex, B = Ĕx, by (3.6.1) and by (3.6.3),

lim
N→∞

γN
capN(Ex, Ĕx)

µN(Ex)
=
∑
η∈Ex

mx(η)
∑
ξ∈Ĕx

rE (η, ξ) ∈ R+ ,

which completes the proof of the first claim of the assertion.

By (3.6.2) and by definition of rE (η, ξ),∑
x∈S

∑
η∈Ex

∑
ξ∈Ĕx

rE (η, ξ) = 1 ,

so that

` =
∑
x∈S

`x =
∑
x∈S

∑
η∈Ex

mx(η)
∑
ξ∈Ĕx

rE (η, ξ) ≥ min
x∈S

min
η∈Ex

mx(η) > 0 ,

which is the second claim of the assertion.

It follows from Assertion 3.6.C that the time-scale γN is of the same order of θN in

the sense that γN/θN converges as N ↑ ∞:

lim
N→∞

γN
θN

= ` ∈ (0,∞) . (3.6.4)
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3. The average jump rate, condition (H1). Denote by rN(Ex,Ey) the mean rate at

which the trace process jumps from Ex to Ey:

rN(Ex,Ey) =
1

µN(Ex)

∑
η∈Ex

µN(η)
∑
ξ∈Ey

RE
N(η, ξ) . (3.6.5)

Next lemma follows from (3.6.1), (3.6.3) and (3.6.4).

Lemma 3.6.1. For every x 6= y ∈ S,

rE (x, y) := lim
N→∞

θN rN(Ex,Ey) =
1

`

∑
η∈Ex

mx(η)
∑
ξ∈Ey

rE (η, ξ) ∈ R+

4. Inside the metastable sets, condition (H2). Next assertion shows that condition

(H2) is in force.

Assertion 3.6.D. For every x ∈ S for which Ex is not a singleton and for all η 6= ξ ∈ Ex,

there exist constants 0 < c0 < C0 <∞ such that

c0 ≤ lim inf
N→∞

αN
capN(η, ξ)

µN(Ex)
≤ lim sup

N→∞
αN

capN(η, ξ)

µN(Ex)
≤ C0 .

Proof. Fix x ∈ S for which Ex is not a singleton, and η 6= ξ ∈ Ex. On the one hand, by

definition of the capacity

αN
capN(η, ξ)

µN(Ex)
≤ µN(η)

µN(Ex)
αN λN(η) .

By (3.1.5) and (3.6.1), the right hand side converges to λ(η)mx(η) < ∞, which proves

one of the inequalities.

On the other hand, as Ex is an equivalent class which is not a singleton, λ(ζ) > 0 for all

ζ ∈ Ex, or, in other words, Ex ⊂ E0. Since η ∼ ξ, there exists a path (η = η0, . . . , ηn = ξ)

such that R(ηi, ηi+1) > 0 for 0 ≤ i < n. Since,

Pη
[
Hξ < H+

η

]
≥ pN(η, η1) · · · pN(ηn−1, ξ) ,

in view of the formula (3.1.2) for the capacity, we have that

αN
capN(η, ξ)

µN(Ex)
≥ µN(η)

µN(Ex)
αN λN(η) pN(η, η1) · · · pN(ηn−1, ξ) .

The right hand side converges to mx(η)λ(η)p(η, η1) · · · p(ηn−1, ξ) > 0, which completes

the proof of the assertion.
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5. Condition (H3) holds. To complete the proof of Theorem 3.1.7 it remains to show

that the chain ηNt spends a negligible amount of time on the set ∆ in the time scale θN .

Lemma 3.6.2. For every t > 0,

lim
N→∞

max
η∈E

Eη
[ ∫ t

0

1{ηNsθN ∈ ∆} ds
]

= 0 .

Proof. Since αN/θN → 0, a change of variables in the time integral and the Markov

property show that for every η ∈ E, for every T > 0 and for every N large enough,

Eη
[ ∫ t

0

1{ηNsθN ∈ ∆} ds
]
≤ 2t

T
max
ξ∈E

Eξ
[ ∫ T

0

1{ηNsαN
∈ ∆} ds

]
.

Note that the process on the right hand side is speeded up by αN instead of θN .

We estimate the expression on the right hand side of the previous formula. We may,

of course, restrict the maximum to ∆. Let T1 be the first time the chain ηNt hits E and

let T2 be the time it takes for the process to return to ∆ after T1:

T1 = HE , T2 = inf
{
s > 0 : ηNT1+s ∈ ∆

}
.

Fix η ∈ ∆ and note that

Eη
[ 1

T

∫ T

0

1{ηNsαN
∈ ∆} ds

]
≤ Pη

[
T1 > t0αN

]
+ Pη

[
T2 < TαN

]
+

t0
T

(3.6.6)

for all t0 > 0 because the time average is bounded by 1 and because on the set {T1 ≤
t0αN}∩{T2 ≥ TαN} the time average is bounded by t0/T . By Assertion 3.6.E below, the

first term on the right hand side vanishes as N ↑ ∞ and then t0 ↑ ∞. On the other hand,

by the strong Markov property, the second term is bounded by maxξ∈E Pξ[H∆ ≤ TαN ].

By definition of the set E , for every η ∈ E and every ξ ∈ ∆, αNRN(η, ξ)→ 0 as N ↑ ∞.

This shows that for every T > 0 the second term on the right hand side of (3.6.6) vanishes

as N ↑ ∞, which completes the proof of the lemma.

Assertion 3.6.E. For every η ∈ ∆,

lim
t→∞

lim sup
N→∞

Pη
[
HE ≥ tαN

]
= 0 .

Proof. Recall that we denote by XR(t) the continuous-time Markov chain on E which

jumps from η to ξ at rate R(η, ξ) = limN αNRN(η, ξ). Note that the set E consists of
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recurrent points for the chain XR(t), while points in ∆ are transient. Since the jump rates

converge, the chain ηNtαN
converges in the Skorohod topology to XR(t). Therefore, for all

t > 0, η ∈ ∆,

lim sup
N→∞

Pη
[
HE ≥ t αN

]
≤ Pη

[
HE ≥ t

]
,

where Pη stands for the law of the chain XR(t) starting from η. Since the set of recurrent

points for XR(t) is equal to E = ∆c, the previous probability vanishes as t ↑ ∞.

We conclude this section with an observation concerning the capacities of the metastable

sets Ex.

Assertion 3.6.F. The sequences {capN(Ex, Ĕx)/µN(Ex) : N ≥ 1}, x ∈ S, are ordered.

Proof. Fix x ∈ S. By (3.3.3) applied to A = Ex, B = Ĕx,

capN(Ex, Ĕx) =
∑
η∈Ex

µN(η)
∑
ξ∈Ĕx

RE
N(η, ξ) .

The claim of the assertion follows from this identity, from Assertion 3.2.A and from (3.6.1).

3.7 Proof of Theorem 3.1.12

Theorem 3.1.12 is proved in several steps.

1. The measure of configurations in Ga. We assumed in (H0) that all configurations

in a set Fx have measure of the same order. We prove below in Assertion 3.7.A that a

similar property holds for the sets Ga.

Let

λF
N (Fx) =

∑
y:y 6=x

rF
N (Fx,Fy) , pF

N (Fx,Fy) =
rF
N (Fx,Fy)

λF
N (Fx)

if λF
N (Fx) > 0 .

Denote by P0 the subset of points in P such that λF (x) =
∑

y 6=x rF (x, y) > 0. For all

x ∈ P0 let pF (x, y) = rF (x, y)/λF (x). It follows from assumption (H1) that for all x, z

in P , y ∈ P0,

lim
N→∞

βN λ
F
N (Fx) = λF (x) , lim

N→∞
pF
N (Fy,Fz) = pF (y, z) . (3.7.1)

Recall that XF (t) is the P -valued Markov chain which jumps from x to y at rate

rF (x, y). Denote by Ca, a ∈ P1 = {1, . . . , q1}, the equivalent classes of the Markov chain
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XF (t), and let Ca = ∪x∈CaFx. All configurations in a set Ca have probability of the same

order.

Assertion 3.7.A. For all equivalent classes Ca, a ∈ P1, and for all η 6= ξ ∈ Ca, there

exists m(η, ξ) ∈ (0,∞) such that

lim
N→∞

µN(η)

µN(ξ)
= m(η, ξ) .

Proof. The argument is very close to the one of Assertion 3.6.A Denote by X̄N(t) the

chain ηF (t) in which each set Fx has been collapsed to a point. We refer to the Section 3

of [14] for a precise definition of the collapsed chain and for the proof of the results used

below.

The chain X̄N(t) takes value in the set P , its jump rate from x to y, denoted by

r̄N(x, y), is equal to rF
N (Fx,Fy) introduced in (3.1.3), and its unique invariant probability

measure, denoted by µ̄N(x), is given by µ̄N(x) = µN(Fx)/µN(F ).

Fix an equivalent class Ca and η 6= ξ ∈ Ca. If η and ξ belong to the same set Fx, the

claim follows from Assumption (H0). Suppose that η ∈ Fx, ξ ∈ Fy for some x 6= y ∈ Ca.
By assumption, there exists a path (x = x0, . . . , xn = y) such that rF (xi, xi+1) > 0 for

0 ≤ i < n.

Denote by λ̄N(x), x ∈ P , the holding rates of the collapsed chain X̄N(t), and by

p̄N(x, y), x 6= y ∈ P , the jump probabilities. Since µ̄N is the invariant probability measure

for the collapsed chain,

λ̄N(y) µ̄N(y) =
∑

z0,z1,...,zn−1∈P

µ̄N(z0) λ̄N(z0) p̄N(z0, z1) · · · p̄N(zn−1, y)

≥ µ̄N(x0) λ̄N(x0) p̄N(x0, x1) · · · p̄N(xn−1, y) .

Therefore,
µ̄N(y)

µ̄N(x)
≥ λ̄N(x)

λ̄N(y)
p̄N(x, x1) · · · p̄N(xn−1, y) .

Since rF (xi, xi+1) > 0 for 0 ≤ i < n, by (3.7.1), p̄N(xi, xi+1) converges to pF (xi, xi+1) > 0.

For the same reason, βN λ̄N(x) = βNλ
F
N (Fx) converges to λF (x) ∈ (0,∞). As y and

x share the same properties, inverting their role we obtain that βN λ̄N(y) converges to

λF (y) ∈ (0,∞). In conclusion,

lim inf
N→∞

µ̄N(x)

µ̄N(y)
> 0 .

Replacing x by y we obtain that lim inf µ̄N(y)/µ̄N(x) > 0. By [14], µ̄N(z) = µN(Fz),
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z ∈ P . To complete the proof it remains to recall the statement of Lemma 3.2.1 and

Assumption (H0).

By the previous assertion for every a ∈ Q and η ∈ Ga,

m∗a(η) := lim
N→∞

µN(η)

µN(Ga)
∈ (0, 1] . (3.7.2)

Thus, assumption (H0) holds for the partition {G1, . . . ,Gq,∆G }.

2. The time scale. We prove in this subsection that the time-scale β+
N introduced in

(3.1.10) is much longer than βN .

Assertion 3.7.B. We have that

lim
N→∞

βN
β+
N

= 0 .

Proof. We have to show that

lim
N→∞

βN
capN(Ga, Ğa)

µN(Ga)
= 0

for each a ∈ Q. Fix a ∈ Q and recall from (3.1.8) the definition of the set Ga. Since Ga is

recurrent class for the chain XF (t), rF (x, y) = 0 for all x ∈ Ga, y ∈ P \Ga. By definition

of the capacity,

capN(Ga, Ğa)

µN(Ga)
=
∑
η∈Ga

µN(η)

µN(Ga)
λN(η)Pη

[
HĞa

< H+
Ga

]
≤
∑
η∈Ga

µN(η)

µN(Ga)
λN(η)Pη

[
HF\Ga < H+

Ga

]
.

By [9, Proposition 6.1], this sum is equal to

∑
η∈Ga

µN(η)

µN(Ga)

∑
ξ∈F\Ga

RF
N (η, ξ) =

∑
x∈Ga

µN(Fx)

µN(Ga)

∑
y∈P\Ga

rF
N (x, y) .

Since rF (x, y) = 0 for all x ∈ Ga, y ∈ P \ Ga, by assumption (H1) the previous sum

multiplied by βN converges to 0 as N ↑ ∞.

3. Condition (H1) is fulfilled by the partition {G1, . . . ,Gq,∆G }. We first obtain an

alternative formula for the time-scale β+
N . The arguments and the ideas are very similar
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to the ones presented in the previous section. Let

1

γN
=
∑
a∈Q

∑
η∈Ga

∑
ξ∈Ğa

RG
N(η, ξ) .

By Assertion 3.2.A, for all a ∈ Q, η ∈ Ga, ξ ∈ Ğa, with the convention adopted in condition

(H1) of Section 3.1,

rG (η, ξ) := lim
N→∞

γN R
G
N(η, ξ) ∈ [0, 1] . (3.7.3)

Assertion 3.7.C. For all a ∈ Q,

λ̂G (a) := lim
N→∞

γN
capN(Ga, Ğa)

µN(Ga)
∈ R+ . Moreover , λ̂G =

∑
a∈Q

λ̂G (a) > 0 .

Proof. Fix a ∈ Q. By (3.3.3), applied to A = Ga, B = Ğa, by (3.7.2) and by (3.7.3),

lim
N→∞

γN
capN(Ga, Ğa)

µN(Ga)
=
∑
η∈Ga

m∗a(η)
∑
ξ∈Ğa

rG (η, ξ) ∈ R+ ,

which completes the proof of the first claim of the assertion.

By definition of γN and by definition of rG (η, ξ),∑
a∈Q

∑
η∈Ga

∑
ξ∈Ğa

rG (η, ξ) = 1 ,

so that

λ̂G =
∑
a∈Q

λ̂G (a) =
∑
a∈Q

∑
η∈Ga

m∗a(η)
∑
ξ∈Ğa

rG (η, ξ) ≥ min
a∈Q

min
η∈Ga

m∗a(η) > 0 ,

which is the second claim of the assertion.

It follows from the previous assertion that the time-scale γN is of the same order of

β+
N :

lim
N→∞

γN
β+
N

= λ̂G ∈ (0,∞) . (3.7.4)

Denote by rG
N(Ga,Gb) the mean rate at which the trace process jumps from Ga to Gb:

rG
N(Ga,Gb) :=

1

µN(Ga)

∑
η∈Ga

µN(η)
∑
ξ∈Gb

RG
N(η, ξ) . (3.7.5)
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Lemma 3.7.1. For every a 6= b ∈ Q,

rG (a, b) := lim
N→∞

β+
N r

G
N(Ga,Gb) =

1

λ̂G

∑
η∈Ga

m∗a(η)
∑
ξ∈Gb

rG (η, ξ) ∈ R+

Moreover, ∑
a∈Q

∑
b:b6=a

rG (a, b) = 1 .

Proof. The first claim of this lemma follows from (3.7.2), (3.7.3) and (3.7.4). On the other

hand, by the explicit formula for rG (a, b) and by the formula for λ̂G (a) obtained in the

previous assertion,

∑
a∈Q

∑
b:b 6=a

rG (a, b) =
1

λ̂G

∑
a∈Q

∑
η∈Ga

m∗a(η)
∑
b:b6=a

∑
ξ∈Gb

rG (η, ξ) =
1

λ̂G

∑
a∈Q

λ̂G (a) .

This expression is equal to 1 by definition of λ̂G .

4. Condition (H2) is fulfilled by the partition {G1, . . . ,Gq,∆G }. The proof of

condition (H2) is based on the next assertion.

Assertion 3.7.D. For every a ∈ Q for which Ga is not a singleton and for all η 6= ξ ∈ Ga,

lim inf
N→∞

βN
capN(η, ξ)

µN(Ga)
> 0 .

Proof. Throughout this proof c0 represents a positive real number independent of N and

which may change from line to line. Fix a ∈ Q for which Ga is not a singleton, and

η 6= ξ ∈ Ga. By definition, Ga = ∪x∈GaFx. If η and ξ belongs to the same Fx, the result

follows from assumption (H2) and from Assertion 3.7.A.

Fix η ∈ Fx and ξ ∈ Fy for some x 6= y, Fx ∪Fy ⊂ Ga. Recall that we denote by

capsN(A ,B) the capacity between two disjoint subsets A , B of E with respect to the

reversible chain introduced in (3.3.2).

Since Ga is a recurrent class for the chain XF (t), there exists a sequence (x =

x0, x1, . . . , xn = y) such that rF (xi, xi+1) > 0 for 0 ≤ i < n. in view of assumptions

(H0) and (H1), there exist ξi ∈ Fxi , ηi+1 ∈ Fxi+1
such that βNR

F
N (ξi, ηi+1) ≥ c0. There-

fore, by Corollary 3.3.4 and (3.3.4),

βN capsN(ξi, ηi+1) ≥ βN
2|E| capN(ξi, ηi+1) ≥ c0 µN(ξi) , (3.7.6)

so that, by (3.4.4), βN csN(ξi, ηi+1) ≥ c0 µN(ξi).
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Since the configuration η and ξ0 belongs to the same set Fx, by assumption (H2),

β−NcapN(η, ξ0)/µN(Fx) ≥ c0. A similar assertion holds for the pair of configurations ηi,

ξi, 1 ≤ i < n, and for the pair ηn, ξ. Hence, if we set η0 = η, ξn = ξ, by Corollary 3.3.4

and (3.4.4), we have that

β−Nc
s
N(ηi, ξi) ≥ c0µN(Fxi) .

By (3.7.2), we may replace µN(Fxi) by µN(Ga) in the previous inequality, and µN(ξi)

by µN(Ga) in (3.7.6). By (3.4.3),

csN(η, ξ) ≥ min
0≤i<n

min
{
csN(ηi, ξi), c

s
N(ξi, ηi+1), csN(ηn, ξn)

}
.

Since β−N � βN , it follows from the previous estimates that βNc
s
N(η, ξ) ≥ c0µN(Ga). To

complete the proof, it remains to recall that, by Corollary 3.3.4 and (3.4.4), capN(η, ξ) ≥
capsN(η, ξ) ≥ c0c

s
N(η, ξ).

5. Condition (H3) is fulfilled by the partition {G1, . . . ,Gq,∆G }. Lemma 3.7.2 shows

that it is enough to prove condition (H3) for the trace process ηF (t).

Lemma 3.7.2. Assume that

lim
N→∞

max
η∈F

Eη
[ ∫ t

0

1{ηF
sβ+

N
∈ ∆∗} ds

]
= 0 ,

where ∆∗ = ∪x∈Gq+1Fx has been introduced in (3.1.8). Then,

lim
N→∞

max
η∈E

Eη
[ ∫ t

0

1{ηN
sβ+

N
∈ ∆G } ds

]
= 0 .

Proof. Fix η ∈ E. Since ∆G = ∆∗ ∪∆F ,

Eη
[ ∫ t

0

1{ηsβ+
N
∈ ∆F ∪∆∗} ds

]
≤ Eη

[ ∫ t

0

1{ηsβ+
N
∈ ∆F} ds

]
+ max

ξ∈F
Eξ
[ ∫ t

0

1{ηF
sβ+

N
∈ ∆∗} ds

]
.

The second term vanishes as N ↑ ∞ by assumption. The first one is bounded by

βN
β+
N

[β+
N/βN ]∑
n=0

Eη
[ ∫ (n+1)t

nt

1{ηsβN ∈ ∆F} ds
]
,

where [r] stands for the integer part of r. By the Markov property, this expression is
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bounded above by

2 max
ξ∈E

Eξ
[ ∫ t

0

1{ηsβN ∈ ∆F} ds
]
,

which vanishes as N ↑ ∞ by assumption (H3).

To prove that condition (H3) is fulfilled by the partition {G1, . . . ,Gq,∆G } it remains

to show that the assumption of the previous lemma is in force. The proof of this claim

relies on the next assertion. Denote by PF
η the probability measure on D(R+,F ) induced

by the trace chain ηF
t starting from η.

Assertion 3.7.E. For every η ∈ ∆∗,

lim
t→∞

lim sup
N→∞

PF
η

[
HG ≥ tβN

]
= 0 .

Proof. Fix η ∈ Fx ⊂ ∆∗. Since the partition F1, . . . ,Fp, ∆F satisfy the conditions

(H1)–(H3), by Proposition 3.5.1, starting from η the process XN(t) = ψF (ηF
tβN

) converges

in the Skorohod topology to the Markov chain XF (t) on P = {1, . . . , p} which starts from

x and which jumps from y to z at rate rF (y, z). Therefore,

lim sup
N→∞

PF
η

[
HG ≥ t βN

]
≤ Px

[
HR ≥ t

]
,

where Px represents the distribution of the chainXF (t) starting from x andR = ∪1≤a≤qGa.

Since R corresponds to the set of recurrent points of the chain XF (t), the previous ex-

pression vanishes as t ↑ ∞.

Lemma 3.7.3. For all t > 0,

lim
N→∞

max
η∈F

Eη
[ ∫ t

0

1{ηF
sβ+

N
∈ ∆∗} ds

]
= 0 .

Proof. Since βN/β
+
N → 0, a change of variables in the time integral, similar to the one

performed in the proof of Lemma 3.7.2, and the Markov property show that for every

η ∈ F , every T > 0 and every N large enough,

Eη
[ ∫ t

0

1{ηF
sβ+

N
∈ ∆∗} ds

]
≤ 2t

T
max
ξ∈F

Eξ
[ ∫ T

0

1{ηF
sβN
∈ ∆∗} ds

]
.

Note that the process on the right hand side is speeded up by βN instead of β+
N .

We estimate the expression on the right hand side of the previous formula. We may,

of course, restrict the maximum to ∆∗. Let T1 be the first time the trace process ηF
t hits
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G and let T2 be the time it takes for the process to return to ∆∗ after T1:

T1 = HG , T2 = inf
{
s > 0 : ηF

T1+s ∈ ∆∗
}
.

Fix η ∈ ∆∗ and note that

Eη
[ 1

T

∫ T

0

1{ηF
sβN
∈ ∆∗} ds

]
≤ PF

η

[
T1 > t0βN

]
+ PF

η

[
T2 ≤ TβN

]
+

t0
T

for all t0 > 0. By Assertion 3.7.E, the first term on the right hand side vanishes as N ↑ ∞
and then t0 ↑ ∞. On the other hand, by the strong Markov property, the second term is

bounded by maxξ∈G PF
ξ [H∆∗ ≤ TβN ]. Since, by Proposition 3.5.1, the process ψF (ηF

tβN
)

converges in the Skorohod topology to the Markov chain XF (t),

lim sup
N→∞

max
ξ∈G

PF
ξ [H∆∗ ≤ TβN ] ≤ max

1≤a≤q
max
x∈Ga

Px[HGq+1 ≤ T ] ,

where, as in the proof of the previous assertion, Px represents the distribution of the

chain XF (t) starting from x. Since the sets Ga are recurrent classes for the chain XF (t),

rF (x, y) = 0 for all x ∈ ∪1≤a≤qGa, y ∈ Gq+1. Therefore, the previous probability is equal

to 0 for all T > 0, which completes the proof of the lemma.

77



CHAPTER A SOFT TOPOLOGY

For any positive integer m ≥ 1 , let Sm = {1, · · · ,m} and Sδ = N ∪ δ, where δ = ∞.
Endow the space Sδ with the metric d given by d(k, j) = |k−1 − j−1|.

Definition A.0.1 (Soft left-limit). A measurable function x : [0, T ]→ Sδ is said to have

a soft left-limit at t ∈ (0, T ] if one of the following two alternatives holds:

1. The trajectory x has a left-limit at t, denoted by x(t);

2. The set of cluster points of x(s), s ↑ t, is a pair formed by δ and a point in N,

denoted by x(t	).

A soft right-limit at t ∈ [0, T ) is defined analogously. In this case, the right-limit,

when it exists, is denoted by x(t+), and the cluster point of the sequence x(s), s ↓ t,
which belongs to S when the second alternative is in force is denoted by x(t⊕).

Definition A.0.2 (Soft right-continuous). A trajectory x : [0, T ] → Sδ which has a

soft right-limit at t is said to be soft right-continuous at t if one of the following three

alternatives holds

1. x(t+) exists and is equal to δ;

2. x(t+) exists, belongs to S, and x(t+) = x(t);

3. x(t⊕) exists and x(t⊕) = x(t).

A trajectory x : [0, T ]→ Sδ which is soft right-continuous at every point t ∈ [0, T ] is

said to be soft right-continuous.

Definition A.0.3. Let E([0, T ], Sδ) be the space of soft right-continuous trajectories x :

[0, T ]→ Sδ with soft left-limits.

For a trajectory x ∈ E([0, T ], Sδ), let δx∞(t) be the time of the last visit to S:

σx∞(t) := sup{s ≤ t : x(s) ∈ N},

with the convention that σx∞(t) = 0 if x(s) = δ for 0 ≤ s ≤ t. When there is no ambiguity

and it is clear to which trajectory we refer to, we denote σx∞(t) by σ∞(t).

Let R∞ be the trajectory which records the last site visited in N : (R∞x)(t) = 1 if

x(s) = δ for all 0 ≤ s ≤ t, and

(R∞x)(t) =


x(σ∞(t)) if x(σ∞(t)) ∈ N,

x(σ∞(t)−) if x(σ∞(t)) /∈ N and if x(σ∞(t)) exists

x(σ∞(t)	) otherwise.
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if there exists 0 ≤ s ≤ t such that x(s) ∈ N. As for the operator Rm, the convention that

(R∞x)(0) = 1 if x(0) = δ corresponds in assuming that the trajectory is defined for t < 0

and that x(t) = 1 for t < 0.

Definition A.0.4. Denote by E([0, T ], Sδ) the set of trajectories in E([0, T ], Sδ) such that

x(0) ∈ N and which fulfill the following condition: If x(t) = δ for some t ∈ (0, T ], then

σ∞(t) > 0 and x(σ∞(t)) = x(σ∞(t)−) =∞.

Now we define a metric on the space E([0, T ], Sδ). For two trajectories x, y ∈ E([0, T ], S∞),

let

d(x, y) =
∑
m≥1

1

2m
dm(x, y),where dm(x, y) = dS(Rmx,Rmy).

In the last fomula, the metric dS(x, y) is the metric corresponding to the Skorohod topol-

ogy. To make sense of the metric dS(x, y) in the definition,we state here the following result

without giving a proof: For any trajectory x in E([0, T ], Sδ), and for each m ≥ 1, Rmx

is a trajectory in D([0, T ], Sm). It turns out that d(·, ·) is not a metric on E([0, T ], S∞).

However it can be proved that d(·, ·) is actually a metric on a smaller space E([0, T ], Sδ).

Moreover, The space E([0, T ], Sδ) endowed with the metric d(x, y) is complete and sepa-

rable. We call soft topology the topology in E([0, T ], Sδ) induced by the metric d.

The soft topology is a weaker topology compared to the Skorohod topology. In fact,

fix m ≥ 1 and consider a sequence xn in D([0, T ], Sm) converging to x in the Skorohod

topology. Then, xn converges to x in E([0, T ], S∞). Another interesting result about the

relation between the soft topology and Skorohod topology is as follows:

Theorem A.0.5. A sequence of probability measures Pn on E([0, T ], Sδ) converges weakly

in the soft topology to a measure P if and only if for each m ≥ 1 the sequence of probability

measures Pn ◦ R−1
m defined on D([0, T ], Sm) converges weakly to Pn ◦ R−1

m with respect to

the Skorohod topology.
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Poincaré, Prob. et Stat. 31, 191-221, 1995.

[7] C. Landim, S. Olla, S. Volchan: Driven tracer particle in one-dimensional symmetric

simple exclusion. Comm. Math. Phys. 192, 287–307, 1998.

[8] G. F. Lawler: Intersections of Random Walks. Modern Birkhäuser Classics,
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