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Abstract

A notion of bending of an isometric immersion f : Mn → Rn+p is associated to smooth
variations of f by immersions that are isometric up to the first order. More precisely, an
infinitesimal bending of f is the variational vector field associated to such variation.

A very basic question in submanifold theory is whether a given isometric immersion
f : Mn → Rn+p with low codimension admits, locally or globally, a genuine infinitesimal
bending. That is, if f admits an infinitesimal bending that is not determined by an infinitesimal
bending of a submanifold of larger dimension that contains f (M). We show that a strong
necessary local condition to admit such a bending is the submanifold to be ruled and we give
a lower bound to the dimension of the rulings. In the global case, we describe the situation for
infinitesimal bendings of compact submanifolds with dimension at least five in codimension
two.

In the codimension one case, a local description of the non-flat infinitesimally bendable
Euclidean hyeprsurfaces was recently given by Dajczer and Vlachos. From their classification,
it follows that this class is much larger than the class of isometrically bendable ones. In this
work we also prove that a complete Euclidean hypersurface f : Mn → Rn+1, n ≥ 4, having
no open subset where f is totally geodesic or a cylinder over an unbounded hypersurface of
R4, is infinitesimally bendable only along ruled strips. In particular, if the hypersurface is
simply connected, this implies that any infinitesimal bending of f is the variational vector
field of an isometric bending, in contrast with the local case.
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Chapter 1

Introduction

Given an isometric immersion of a Riemannian manifold Mn into Euclidean space Rn+p,
a natural question is whether there exist, locally or globally, other isometric immersions,
apart from compositions with isometries of the ambient space. If such immersions exist
they are called isometric deformations of the given immersion. In the absence of isometric
deformations the submanifold is said to be rigid.

An isometric bending of an isometric immersion f : Mn → Rn+p is a smooth variation
F : I ×Mn → Rn+p of f for an interval 0 ∈ I ⊂ R such that ft = F(t, ·) : Mn → Rn+p is an
isometric immersion for any t ∈ I. In other words, the immersions ft induce the same metric
on Mn. An easy way to construct an isometric bending is to compose the immersion with a
one-parameter family of isometries of Rn+p. In this case we say that the isometric bending
is trivial. If an isometric immersion admits a non-trivial isometric bending we say it is
isometrically bendable.

The study of the isometric deformability of hypersurfaces f : Mn → Rn+1, n ≥ 3, goes
back to the first part of the last century. In the local case, the classical Beez-Killing theorem
[1, 19] states that a hypersurface having at least three nonzero principal curvatures at any
point is rigid. On the other hand, hypersurfaces whose second fundamental form has
rank at most one are flat, and hence locally highly deformable. In the case where the
second fundamental form has rank two, the local classification of isometrically bendable
hypersurfaces is due to Sbrana [23] in 1909 and Cartan [3] in 1916. A modern presentation
of their parametric classifications, as well as further results, can be found in [7] or [12]. In the
global case, Sacksteder [21] proved that any compact hypersurface in Rn+1 is isometrically
unbendable. Dajczer and Gromoll [8] extended Sacksteder’s result by showing that a
complete hypersurface in Rn+1 is isometrically bendable only along ruled strips, provided
that it does not contain an open subset that is a cylinder over an unbounded hypersurface in
R4. The precise definitions of cylinder and ruled strip are given in Chapter 2.



2 Introduction

When considering submanifolds in codimension larger that one, one has to take into
account deformations that are induced by deformations of submanifolds of larger dimension.
Dajczer and Florit [5] introduced the concept of genuine rigidity of submanifolds in order
to deal with that kind of deformations. In the global case, Dajczer and Gromoll [9] proved
that along connected components of an open dense subset an isometrically deformable
compact Euclidean submanifold of dimension at least five and codimension two is either
isometrically rigid or is contained in a deformable hypersurface with possible singularities
and any isometric deformation of the former is given by an isometric deformation of the
latter. This result was extended by Florit and Guimarães [17] to other low codimensions.
The necessity to admit singularities was justified in [16]. Also in [17] Florit and Guimarães
allowed singularities in the study of the genuine rigidity of submanifolds and some of their
techniques are essential in the present work.

This thesis deals with the classical concept of infinitesimal bending of a submanifold.
It can be seen as the infinitesimal analogue of an isometric bending and refers to smooth
variations that preserve lengths “up to the first order". Let F : I×Mn →Rn+p be an isometric
bending of f , and let gt denote the metric induced by ft , where ft is as above. In this case
we have that the induced metrics satisfy g′t = 0. An infinitesimal bending of an isometric
immersion f : Mn →Rn+p is the variational vector field associated to a variation of f = f0 by
immersions ft whose induced metrics satisfy g′t(0) = 0. Let X(M) denote the set of tangent
vector fields of Mn and Γ(E) the sections of a bundle E over Mn. Observe that the variational
vector field τ ∈ Γ( f ∗TRn+p) of a variation F as above satisfies

⟨ f∗X ,τ∗X⟩= 0

for any X ∈ X(M). On the other hand, given an isometric immersion f : Mn → Rn+p and
a vector field τ ∈ Γ( f ∗TRn+p) satisfying the previous equation, we have that the variation
F(t,x) = f (x)+ tτ(x) satisfies

∥ ft∗X∥2 = ∥ f∗X∥2 + t2∥τ∗X∥2

for all X ∈ X(M).
Clearly an isometric bending determines an infinitesimal bending. Hence, those infinites-

imal bendings given by trivial isometric bendings are also said to be trivial. The problem
of the existence of non-trivial infinitesimal bendings of an isometric immersion, gives rise
to another notion of rigidity. Namely, an isometric immersion is said to be infinitesimally
rigid if it only admits trivial infinitesimal bendings. Otherwise, we say that the submanifold
is infinitesimally bendable. Infinitesimal bendings of surfaces in R3 are treated, for instance,
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in the books by Bianchi [2] and Eisenhart [14] published in 1903 and 1909 respectively. A
modern account is presented by Spivak [25].

The “infinitesimal” analogue of the Beez-Killing theorem states that a hypersurface with
at least three nonzero principal curvatures at every point is infinitesimally rigid, this result
appears in the book by Cesàro [4] published in 1896. Dajczer and Rodríguez [11] proved
that well known algebraic conditions on the second fundamental form of the immersion that
give isometric rigidity also yield infinitesimal rigidity. In codimension larger than one these
conditions are given in terms of the type number or the s-nullities of the immersion.

At the beginning of the 20th century infinitesimal bendings of Euclidean hypersurfaces
were considered by Sbrana [22] in 1908, followed by Schouten [24] in 1928. After the
pioneering work of Sbrana, a complete parametric local classification of the non-flat infinites-
imally bendable hypersurfaces was given by Dajczer and Vlachos [13]. In particular, they
showed that this class is much larger than the class of isometrically bendable ones. In the
global case, infinitesimal bendings of compact hypersurfaces were considered in [11], where
it is shown that a compact hypersurface is infinitesimally rigid provided it does not contain
open totally geodesic subsets. In this work we study infinitesimal bendings of complete
hypersurfaces, which was a case still to be understood.

The following fact has to be taken in mind when trying to understand the geometry of
the infinitesimally bendable submanifolds in codimension greater than one. An infinitesimal
bending of an isometric immersion F : M̃n+l → Rn+p, 0 < l < p, induces an infinitesimal
bending of f = F |M where Mn ⊂ M̃n+l is an embedded submanifold. Roughly speaking, we
want to know what are the necessary conditions for a submanifold to admit an infinitesimal
bending that is not a restriction as above. We point out that, as in [17], we allow singularities
in our approach to genuine infinitesimal rigidity. We see that a strong necessary local
condition for a submanifold to admit such a genuine infinitesimal bending is to be ruled, and
we give a lower bound to the dimension of the rulings.

The outline of this thesis is as follows. In Chapter 2 we list some basic facts about
isometric immersions. We pay special attention to the relative nullity distribution and its
properties. We also state some results concerning the “splitting tensor” associated to the
relative nullity, which has an important role in the last chapter. Some results concerning
singular extensions of submanifolds are stated. We finish that chapter with results about flat
bilinear forms, introduced by Moore, that have shown to be useful in the study of rigidity of
isometric immersions. In the present work we show that they are also useful when dealing
with infinitesimal bendings.



4 Introduction

In Chapter 3 we give some basic facts about infinitesimal bendings. More specifically,
we are interested in the properties of a tensor associated to an infinitesimal bending. In the
case of surfaces in R3 this tensor corresponds to the associated rotation field; see [25].

Next in Chapter 4 we prove results of local nature. As stated above, we show that a
genuinely infinitesimally bendable submanifold has to be ruled. For that we use convenient
flat bilinear forms defined in terms of the associated tensor mentioned above. We also see
that similar results hold when we change the ambient space for space forms of non-zero
curvature.

The last chapter is devoted to results of global nature. First we deal with infinitesimal
bendings of compact submanifolds with dimension at least five in codimension two. Then,
inspired in the result by Dajczer and Gromoll [8], we describe the complete Euclidean
hypersurfaces that admit non-trivial infinitesimal bendings. We show that a complete hyper-
surface f : Mn → Rn+1, n ≥ 4, that has no open subset where f is either totally geodesic or a
cylinder over an unbounded hypersurface of R4, is infinitesimally bendable only along ruled
strips. The main idea for the proofs of the previous results is to transport information along
geodesics in the relative nullity. This technique has been widely used, for instance in [8], [9]
and [17].

The results of this thesis are contained in [10] and [18].



Chapter 2

Preliminaries

We begin by giving the background material that is needed in the following chapters. All
of this material is covered in full detail in [12], where the reader can find detailed proofs as
well as other results on these subjects. We assume that the reader is familiar with the basic
concepts of Riemannian geometry, some of which are listed below.

Let (Mn,g) be a Riemannian manifold and let ∇ be its Levi-Civita connection. Then, the
curvature tensor of (Mn,g) is defined in terms of the Levi-Civita connection as

R(X ,Y )Z = ∇X ∇Y Z −∇Y ∇X Z −∇[X ,Y ]Z,

where X ,Y,Z ∈ X(M) and X(M) denotes the set of smooth tangent vector fields of Mn. The
Ricci tensor Ric : T M×T M →C∞(M) is given by

Ric (X ,Y ) = tr(Z → R(Z,X)Y ),

and the Ricci curvature in the direction of the unit vector X ∈ T M is defined by

Ric (X) =
1

n−1
Ric (X ,X),

where X ,Y,Z ∈ X(M).
The Riemannian metric g determines a distance function on Mn. The distance between

two points x,y ∈ M is defined as the infimum of the arc lengths among the paths that join
x and y. A Riemannian manifold is said to be complete if it is complete as a metric space.
Equivalently, by the Hopf-Rinow theorem, Mn is complete if every geodesic γ(t) is defined
for any t ∈ R. Clearly any compact Riemannian manifold is complete.
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Given an immersion f : Mn → Rn+p, p ≥ 1, of a Riemannian manifold (Mn,g) we say
that f is an isometric immersion if

g(X ,Y ) = ⟨ f∗X , f∗Y ⟩

for any X ,Y ∈X(M), where ⟨,⟩ is the Euclidean metric in Rn+p. As stated in the introduction,
given a vector bundle E over Mn, the set of smooth sections of E is denoted by Γ(E). For an
isometric immersion f : Mn → Rn+p, the vector bundle f ∗TRn+p splits orthogonally as

f ∗TRn+p = f∗T M⊕N f M

where N f M is called the normal bundle of f . Hence, according to that decomposition any
section Z ∈ Γ( f ∗TRn+p) decomposes as the sum of its tangent and normal components,
Z = ZT M +ZN f M. The codimension of f is the dimension of N f M(x), which in this case is
denoted by “p”.

The Euclidean connection, denoted by ∇̃, induces a connection on f ∗TRn+p which we
also write as ∇̃. Let X ,Y ∈ X(M) be tangent vector fields, then the tangent component of
∇̃X f∗Y coincides with f∗∇XY and its normal component

α(X ,Y ) = (∇̃X f∗Y )N f M,

is called the second fundamental form of f . It follows that the second fundamental form of f
is a symmetric tensor with values in N f M. Hence, we can decompose ∇̃X f∗Y as

∇̃X f∗Y = f∗∇XY +α(X ,Y ),

which is known as the Gauss formula.
An isometric immersion is said to be totally geodesic if its second fundamental form

vanishes. We recall that the totally geodesic submanifolds of Rn+p are open subsets of affine
subspaces.

Given ξ ∈ Γ(N f M), the shape operator Aξ : T M → T M with respect to ξ is defined by

⟨Aξ X ,Y ⟩= ⟨α(X ,Y ),ξ ⟩,

and it follows that Aξ is a symmetric endomorphism of T M. Also induced by the Eu-
clidean connection we have the normal connection in the normal bundle. It is given by
∇⊥

X ξ = (∇̃X ξ )N f M, where X ∈ X(M) and ξ ∈ Γ(N f M). Then, from the relation between the
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Euclidean connection and the Levi-Civita connection of M we have the Weingarten formula:

∇̃X ξ =− f∗Aξ X +∇
⊥
X ξ .

Comparing the curvature tensors of Rn+p and Mn we obtain the fundamental equations
of an isometric immersion. These are the Gauss, Codazzi and Ricci equations, exposed next
in that order:

⟨R(X ,Y )Z,W ⟩=⟨α(X ,W ),α(Y,Z)⟩−⟨α(X ,Z),α(Y,W )⟩,
(∇⊥

X α)(Y,Z) =(∇⊥
Y α)(X ,Z),

⟨R⊥(X ,Y )ξ ,η⟩=⟨[Aξ ,Aη ]X ,Y ⟩,

where X ,Y,Z,W ∈ X(M), R⊥ denotes the normal curvature tensor and ξ ,η ∈ Γ(N f M). The
Codazzi equation can also be written in terms of the shape operators as follows:

(∇X Aξ )−A
∇⊥

X ξ
Y = (∇Y Aξ )X −A

∇⊥
Y ξ

X .

The first normal space of f : Mn → Rn+p at x ∈ Mn is

N1(x) = span{α(X ,Y ) : X ,Y ∈ TxM}.

An isometric immersion f : Mn → Rn+p is called 1-regular if the first normal spaces N1(x)
have constant dimension k ≤ p on Mn and thus form a subbundle N1 of rank k of the normal
bundle.

2.1 The relative nullity distribution

An important distribution associated to an isometric immersion is the relative nullity distribu-
tion. Given an isometric immersion f : Mn → Rn+p, the relative nullity subspace ∆(x) of f
at x ∈ Mn is the kernel of the second fundamental form α : TxM×TxM → N f M(x), that is,

∆(x) = {X ∈ TxM : α(X ,Y ) = 0 for all Y ∈ TxM}.

The dimension ν(x) of ∆(x) is called the index of relative nullity at x ∈ Mn. We have that
the index of relative nullity is upper semicontinuous, in particular, the subset of Mn where
ν attains its minimum value is open. Moreover, on open subsets where ν is constant ∆ is a
smooth distribution.
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A distribution D ⊂ T M is totally geodesic if for any X ,Y ∈ Γ(D) we have ∇XY ∈ Γ(D).
It follows from the Codazzi equation that, on open subsets where ν is constant, ∆ is totally
geodesic and hence integrable. Thus, ∆ determines a foliation whose leaves are mapped by f
to open subsets of totally geodesic submanifolds of Rn+p.

Let D ⊂ T M be a totally geodesic distribution of Mn. Decompose the tangent bundle
orthogonally by T M = D⊕D⊥, according to this decomposition we write

X = XD +XD⊥

for any X ∈ X(M).
The splitting tensor C : Γ(D)×Γ(D⊥)→ Γ(D⊥) of D is defined by

C(S,X) =CSX =−(∇X S)D⊥

where S∈Γ(D) and X ∈Γ(D⊥). Observe that if T ∈D(x) then it determines an endomorphim
CT : D⊥(x)→ D⊥(x). Also notice that the distribution D⊥ is integrable if and only if CT is
self-adjoint for every T ∈ Γ(D). Moreover, D⊥ is totally geodesic if and only if C vanishes.

Next we state some of the properties of the splitting tensor of ∆, in fact, we state them for
a slightly more general case. Let D be a totally geodesic distribution such that D(x)⊂ ∆(x)
for any x ∈ Mn and call C its splitting tensor. Since D is totally geodesic, then the Gauss
equation gives

∇TCS =CSCT +C∇T S.

for any S,T ∈ Γ(D). In particular, if γ is a unit speed geodesic contained in a leaf of D then

D
dt

Cγ ′ =C2
γ ′. (2.1)

Let ∇h denote the connection induced on D⊥, then the Gauss equation also implies the
following:

Lemma 1. We have that

(∇h
XCT )Y − (∇h

YCT )X =C(∇X T )DY −C(∇Y T )DX

for any X ,Y ∈ Γ(D⊥) and T ∈ Γ(D).

Proof. Since
(∇h

XCT )Y = ∇
h
XCTY −CT ∇

h
XY,

the proof follows from the Gauss equation and the fact that D is totally geodesic.
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The Codazzi equation gives that

∇T Aξ = AξCT +A
∇⊥

T ξ

for any T ∈ Γ(D) and ξ ∈ Γ(N f M). In particular the tensor AξCT is symmetric and therefore

∇T Aξ =C′
T Aξ +A

∇⊥
T ξ

, (2.2)

where C′
T denotes the transpose of CT .

The following proposition provides a way to transport information along geodesics
contained in leaves of the relative nullity.

Proposition 2. Let f : Mn → Rn+p be an isometric immersion such that ν > 0 is constant
on an open subset U ⊂ Mn. If γ : [0,b]→ Mn is a unit speed geodesic such that γ([0,b)) is
contained in a leaf of ∆ in U, then ∆(γ(b)) = Pb

0(∆(γ(0))) where Pt
0 is the parallel transport

along γ from γ(0) to γ(t). In particular, we have ν(γ(b)) = ν(γ(0)). Moreover, the tensor
Cγ ′ extends smoothly to γ(b) and (2.2) holds on [0,b].

The proof of the previous proposition is similar to that of Proposition 33 in Chapter 5.
For more details on these facts we refer to the first section of Chapter 7 in [12].

An isometric immersion G : Mn ×Rk → Rn+p ×Rk of the Riemannian product Mn ×Rk

is called a k-cylinder (cylinder) over the isometric immersion g : Mn → Rn+p, if it factors as

G = g× Id : Mn ×Rk → Rn+p ×Rk

where Id : Rk →Rk is the identity. Observe that if G is as above, at any point (x,y)∈Mn×Rk,
we have that {x}×Rk lies in the leaf of the relative nullity foliation passing through (x,y).

For an isometric immersion f as above, if D ⊂ ∆ is a smooth totally geodesic distribution,
of rank 0 < d ≤ ν , such that its splitting tensor C is identically zero, then we have that the
manifold is locally a Riemannian product and the immersion is locally a piece of a k-cylinder
(see for instance Proposition 7.4 in [12]).

When the leaves of the relative nullity of an isometric immersion are complete we have
the following.

Lemma 3. Let f : Mn → Rn+p be an isometric immersion. Assume that U ⊂ Mn is an open
subset where ν(x) = ν0 is constant and the relative nullity leaves are complete. Then, for
any x0 ∈U and T0 ∈ ∆(x0) the only possible real eigenvalue of CT0 is zero. Moreover, if γ(s)
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is a geodesic through x0 tangent to T0 then

Cγ ′(s) = Ps
0CT0(Id − sCT0)

−1(Ps
0)

−1 (2.3)

where Ps
0 is the parallel transport along γ from x0. In particular, kerCγ ′ is parallel along the

geodesic γ .

Proof. See Lemma 1.8 in [8] or Proposition 13.8 in [12].

The following result is useful when characterizing hypersurfaces of constant rank 2
whose relative nullity leaves are complete. Here the rank of a hypersurface f : Mn → Rn+1

is the dimension of the orthogonal complement of ∆, that is dim∆⊥ = n−ν .

Lemma 4. Let f : Mn → Rn+1 be an isometric immersion. If U ⊂ Mn is an open subset
where f has constant rank 2 and the leaves of the relative nullity are complete, then the
codimension of

C0 = {T ∈ ∆ : CT = 0}

is at most one. Moreover, if dimC⊥
0 = 1 and CT is invertible for T ∈ Γ(C⊥

0 ), then f |U is
a cylinder over a hypersurface g : L3 → R4 that carries a one-dimensional relative nullity
distribution with complete leaves.

Proof. See Lemmas 1.9 and 1.10 in [8] or Corollaries 13.9 and 13.10 in [12].

2.2 Ruled hypersurfaces

An isometric immersion f : Mn → Rn+p is said to be r-ruled if there exists an r-dimensional
smooth totally geodesic tangent distribution whose leaves (rulings) are mapped diffeomor-
phically by f to open subsets of affine subspaces of Rn+p. Notice that a special class of ruled
submanifolds are the ones with a relative nullity foliation.

In the case of codimension p = 1, we say that a hypersurface f : Mn → Rn+1 is ruled if
it is (n−1)-ruled. For a hypersurface with boundary we say it is ruled if, in addition to the
previous condition, the rulings are tangent to the boundary. A connected component of the
subset of Mn where the rulings are all complete is called a ruled strip.

It follows that a ruled hypersurface has rank at most two, and if it is not totally geodesic
the leaves of relative nullity are contained in the rulings.

Next we give a local parametrization for a ruled hypersurface in terms of a curve orthogo-
nal to the rulings.
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Let f : Mn → Rn+1 be a ruled hypersurface and let c : I → Mn be a unit speed curve
orthogonal to the rulings. The rulings form an affine vector bundle over c̃ = f ◦ c in Rn+1.
Then let Ti(s), 1 ≤ i ≤ n− 1, be orthonormal tangent fields on the corresponding bundle
along c which are parallel with respect to the induced connection. Set f∗c′ = T̃0, T̃i = f∗Ti

and let N be a unit vector field along c normal to f . We have∇̃∂/∂ sT̃0 =−∑
n−1
i=1 ϕiT̃i +θN

∇̃∂/∂ sT̃i = ϕiT̃0 +βiN,

where θ = ⟨AT0,T0⟩, ϕi = ⟨∇T0Ti,T0⟩ and βi = ⟨ATi,T0⟩.
We parametrize a neighborhood of c̃ in f (M) by means of f̃ : W ⊂ I ×Rn−1 → Rn+1

given by

f̃ (s,u1, . . . ,un−1) = c̃(s)+
n−1

∑
i=1

uiT̃i(s). (2.4)

We have at (s,u1, . . . ,un−1) that

f̃∗∂/∂ s = (1+∑
i

uiϕi)T̃0 +∑
i

uiβiN.

Therefore, the map f̃ has maximal rank if and only if

| f̃∗∂/∂ s|2 = (1+∑
i

uiϕi)
2 +(∑

i
uiβi)

2 ̸= 0.

Note that the directions for which ∑i uiβi = 0 are in the relative nullity of f at c(s).

The following result can be found in [8] for submanifolds of arbitrary codimension. But
for the convenience of the reader we give a proof in the hypersurface case.

Lemma 5. Let f : Mn →Rn+1 be an isometric immersion and let U ⊂ Mn be an open subset
where f has constant rank 2. Assume that f |U is ruled and has complete relative nullity
leaves. Suppose that δ : [0,a] → Mn is a unit speed geodesic orthogonal to ∆ such that
δ ([0,a)) ⊂ U is contained on a ruling. Then the rank of f at δ (a) is 2. Moreover, every
point in U has a neighborhood V such that f |V extends to a ruled strip of constant rank 2.

Proof. Let W ⊂ I ×Rn−1 be an open subset where the parametrization (2.4) is defined
and write Ws = W ∩ ({s}×Rn−1). Assume that the geodesic δ is contained on the ruling
determined by f̃ |Ws and has Tn−1 as its tangent vector field. Notice that f̃ (s,0, . . . ,0,r) is a
parametrization of δ . Since βn−1(s) ̸= 0 the map f̃ has maximal rank along δ and at δ (r)
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we have
f̃∗(∂/∂ s) = (1+ rϕn−1)T̃0 + rβn−1N.

Let Ñ(δ (r)) = α(r)T̃0 +N be a vector field normal to f along δ (not necessarily unitary).
Then

0 = ⟨ f̃∗(∂/∂ s),αT̃0 +N⟩= α(1+ rϕn−1)+ rβn−1.

Taking r ∈ (0,a] we see that 1+ rϕn−1 ̸= 0, then

α(r) =− rβn−1

(1+ rϕn−1)
·

Therefore, we have that

⟨∇̃δ ′(r) f̃∗(∂/∂ s), Ñ(δ (r))⟩= ⟨ϕn−1T̃0 +βn−1N,α(r)T̃0 +N⟩

= βn−1

(
1

1+ rϕn−1

)
which does not vanish. Thus the rank of f̃ at δ (a) is 2 and hence the same holds for f .

It remains to prove that f |U extends locally to a ruled strip. Fix x ∈U and let V ⊂U be a
neighborhood of x parametrized by (2.4). Extend f̃ to I ×Rn−1 with the same expression.
We claim that this extension defines a ruled strip of constant rank 2. We first prove that f̃ has
no singular points. As seen previously, f̃ is singular at points where

(1+∑
i

uiϕi)
2 +(∑

i
uiβi)

2 = 0.

Then, it suffices to prove that ∑i uiϕi = 0 for any T = ∑i uiTi(s) ∈ ∆(c(s)).
Given T ∈ ∆(c(s)), we have that

∑
i

uiϕi = ⟨∇T0T,T0⟩=−⟨CT T0,T0⟩.

If the splitting tensor vanishes there is nothing to prove. Otherwise, if X is a unit vector
field on V tangent to a ruling and orthogonal to the relative nullity, it follows from the
completeness of the relative nullity leaves of f that CT X = 0 for any T ∈ Γ(∆). Finally, since
the only real eigenvalue of CT is zero by Lemma 3, then ⟨CT T0,T0⟩= 0, and thus f̃ has no
singular points.

It follows from Proposition 2 that the open subset where f̃ has rank two is a union of
complete relative nullity leaves. From the previous discussion we have that the rank of f̃
along any ruling is two, and the claim follows.
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2.3 Extensions

When dealing with an isometric immersion f : Mn → Rn+p in codimension greater that one,
we are interested in the genuine aspects of the submanifold, by this we mean the aspects that
are not inherited from another submanifold M̃n+l ⊂Rn+p, 0 < l < p, such that f (M)⊂ M̃n+l .
By this reason we discuss next some results about extensions of submanifolds.

A smooth map F : M̃n+ℓ → Rn+p, 0 < ℓ < p, from a differentiable manifold into Eu-
clidean space is said to be a singular extension of a given isometric immersion f : Mn →Rn+p

if there exists an embedding j : Mn → M̃n+ℓ, 0 < ℓ < p, such that F is an immersion along
M̃n+ℓ \ j(M) and f = F ◦ j. Observe that we allow the map F to have singularities along
j(M). The necessity to admit the existence of such singularities in the above definition was
already well established in the study of genuine isometric deformations in both the local and
global situation in [9] and [17].

An easy way to build a singular extension of an isometric immersion f : Mn → Rn+p,
p ≥ 2, is to extend it along lines, more precisely we can define F : I ×Mn → Rn+p by

F(t,x) = f (x)+ tλ (x),

where λ (x) ∈ Γ( f ∗TRn+p) is a suitable nowhere vanishing vector field. Notice that F is not
an immersion at t = 0 whenever λ is tangent to f .

Next we recall a result due to Florit and Guimarães [17] that is a key ingredient in the
proofs of the results presented in this work.

Proposition 6. Let f : Mn →Rn+p be an isometric immersion and let D be a smooth tangent
distribution of dimension d > 0. Assume that there is no open subset U ⊂ Mn and Z ∈ Γ(D|U)
such that the map F : U × I → Rn+p given by

F(x, t) = f (x)+ t f∗Z(x)

is a singular extension of f on some open neighborhood of U ×{0}. Then f is d-ruled along
every connected component of an open dense subset of Mn.

Proof. See Proposition 12.42 in [12] or Proposition 13 in [17].

Remark 7. Notice that the distribution D above is not assumed to be totally geodesic. From
the proof of the result it follows that the rulings are determined as follows: At any x ∈ Mn

there is an open neighborhood U of the origin in D(x) such that f∗(x)U ⊂ f (M).
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If λ ∈ Γ( f ∗TRn+p) is nowhere tangent to f , then the map F(t,x) = f (x)+ tλ is always
an extension. Next we sketch a way to find such a section λ such that the lines defined by
the parameter t lie in the relative nullity of F .

Let f : Mn → Rn+2 be an isometric immersion. Suppose that there is a smooth line
normal subbundle R ⊂ N f M, such that the tangent subspaces

D(x) =N(αR)(x) = {Y ∈ T M(x) : ⟨α(Y,X),η⟩= 0 ∀X ∈ T M(x),η ∈ R(x)}

have constant dimension n− k and therefore form a smooth tangent subbubdle D. Assume
further that R is parallel along D with respect to the normal connection (hence in Rn+2).

Consider the orthogonal splittings

T M = D⊕E, N f M = P⊕R

and define at each x ∈ Mn

Γ(x) = span{(∇̃X η) f∗E⊕P : X ∈ E(x),η ∈ R(x)}.

It follows from our assumptions that Γ is a smooth rank k subbundle of f∗E ⊕P. Define Λ

by the orthogonal decomposition f∗E ⊕P = Γ⊕Λ and let λ ∈ Γ(Λ) be a nowhere vanishing
section of Λ. Then we have the following:

Proposition 8. The map F(t,x) = f (x)+ tλ (x), where t ∈ (−ε,ε) for some fixed ε > 0, is a
hypersurface whose second fundamental form has rank k. Moreover ∂t lies in the relative
nullity distribution of F.

Proof. See Proposition 4 in [9] or Proposition 12.4 in [12] for a more general result.

2.4 Flat bilinear forms

Flat bilinear forms were introduced by Moore [20] after the pioneering work of E. Cartan to
deal with rigidity questions on isometric immersions in space forms. As this work shows,
they are also useful when studying infinitesimal bendings of submanifolds.

Let V and U be finite dimensional real vector spaces and let W p,q be a real vector space
of dimension p+q endowed with an indefinite inner product of type (p,q). A bilinear form
B : V ×U →W p,q is said to be flat if

⟨B(X ,Z),B(Y,W )⟩−⟨B(X ,W ),B(Y,Z)⟩= 0
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for all X ,Y ∈V and W,Z ∈U . An element X ∈V is called a (left) regular element of B if

dimBX(U) = max{dimBY (U) : Y ∈V}

where BX(Y ) = B(X ,Y ) for any Y ∈ U . The set RE(B) of regular elements of B is open
dense in V (see Proposition 4.4 in [12]).

The following basic fact was given in [20].

Lemma 9. Let B : V ×U →W be a flat bilinear form. If Y ∈ RE(B) then

B(X ,kerBY )⊂BY (U)∩BY (U)⊥

for any X ∈V .

The next is a fundamental result in the theory of symmetric flat bilinear forms. It turns
out to be false for p ≥ 6 as shown in [6].

Lemma 10. Let B : V n×V n →W p,q, p ≤ 5 and p+q < n, be a symmetric flat bilinear form
and set

N(B) = {X ∈V : B(X ,Y ) = 0 for all Y ∈V}.

If dimN(B)≤ n− p−q−1 then there is an orthogonal decomposition

W p,q =W ℓ,ℓ
1 ⊕W p−ℓ,q−ℓ

2 , 1 ≤ ℓ≤ p,

such that the Wj-components B j of B satisfy:

(i) B1 is nonzero and satisfies

⟨B1(X ,Y ),B1(Z,W )⟩= 0

for all X ,Y,Z,W ∈V .

(ii) B2 is flat and dimN(B2)≥ n− p−q+2ℓ.

Proof. See Lemma 4.22 in [12] or [5].





Chapter 3

Infinitesimal bendings

Let f : Mn → Rn+p be an isometric immersion, an isometric bending of f is a one-parameter
variation of f by isometric immersions, this is, a smooth map

F : (−ε,ε)×Mn → Rn+p

such that F(0, ·) = f (·) and F(t, ·) is an isometric immersion for each t ∈ (−ε,ε). In
other words, the metrics gt induced by the immersions ft = F(t, ·) satisfy gt = g0 for any
t ∈ (−ε,ε).

A way to construct an isometric bending is to compose f with a smooth one-parameter
family of rigid motions in Rn+p, that is,

F(t,x) =C(t) f (x)+ v(t)

where C(t) is an orthogonal transformation of Rn+p and v(t) ∈ Rn+p for each t ∈ (−ε,ε).
An isometric bending of f given by the expression above is said to be trivial. If f admits a
non-trivial isometric bending then it is called isometrically bendable. Otherwise, f is said to
be isometrically unbendable.

Let F be an isometric bending of f and let τ(x) = F∗∂/∂ t|t=0(x) ∈ Γ( f ∗TRn+p) be the
associated variational field. Then τ satisfies

⟨∇̃X τ, f∗Y ⟩+ ⟨∇̃Y τ, f∗X⟩= 0 (3.1)

for any tangent vector fields X ,Y ∈ X(M), where ∇̃ denotes the Euclidean connection. The
classical concept of an infinitesimal bending of a submanifold is the infinitesimal analogue
of an isometric bending and refers to smooth variations that preserve lengths “up to the first
order", that is, the metrics gt induced by ft satisfy g′t(0) = 0. Hence, we say that a section
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τ of f ∗TRn+p is an infinitesimal bending of f : Mn → Rn+p if (3.1) holds. Given a smooth
variation whose variation vector field τ is an infinitesimal bending, by keeping only the
terms of first order of the variation we obtain the smooth variation F : R×Mn → Rn+p with
variational vector field τ defined as ft = f + tτ . Then (3.1) gives

∥ ft∗X∥2 = ∥ f∗X∥2 + t2∥∇̃X τ∥2

for any X ∈ T M.
Of course, we always have the trivial infinitesimal bendings obtained as variational vector

fields of trivial isometric bendings. In other words, they are locally the restriction to the
submanifold of a Killing vector field of Rn+p. More precisely, a trivial infinitesimal bending
τ has the form

τ(x) =D f (x)+w

where D is a skew-symmetric linear endomorphism of Rn+p and w ∈ Rn+p.
An isometric immersion is said to be infinitesimally rigid if it only admits trivial infinites-

imal bendings. Otherwise, we say that the submanifold is infinitesimally bendable. Next we
state the infinitesimal analogue of the Beez-Killing theorem, for a more general result we
refer to Theorem 2 in [11] or Theorem 14.4 in [12].

Proposition 11. A hypersurface f : Mn → Rn+1 whose second fundamental form has rank
at least 3 at every point is infinitesimally rigid.

Hence, for a hypersurface to infinitesimally bendable it is a necessary condition to have at
most two nonzero principal curvatures at any point. After the work of Sbrana [22] in 1908 a
complete parametric local classification of the non-flat infinitesimally bendable hypersurfaces
was given by Dajczer and Vlachos [13]. In particular, they showed that this class is much
larger than the class of isometrically bendable ones.

When trying to understand the geometry of the infinitesimally bendable submanifolds in
codimension larger than one the following fact has to be taken into consideration. If τ̃ is an
infinitesimal bending of an isometric immersion F : M̃n+ℓ →Rn+p, 0 < ℓ < p, and j : Mn →
M̃n+ℓ is an embedding, then τ = τ̃| j(M) is an infinitesimal bending of f = F ◦ j : Mn →Rn+p.
This basic observation motivates the following definition.

We say that an infinitesimal bending τ of an isometric immersion f : Mn →Rn+p extends
in the singular sense if there is a singular extension F : M̃n+ℓ → Rn+p of f and a smooth
map τ̃ : M̃n+ℓ → Rn+p such that τ̃ is an infinitesimal bending of FM̃\ j(M) and τ = τ̃| j(M).

An infinitesimal bending τ of an isometric immersion f : Mn → Rn+p, p ≥ 2, is called a
genuine infinitesimal bending if τ does not extend in the singular sense when restricted to
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any open subset of Mn. If f admits such a bending we say that it is genuinely infinitesimally
bendable. On the other hand, we say that f : Mn → Rn+p is genuinely infinitesimally rigid
if given any infinitesimal bending τ of f there is an open dense subset of Mn such that τ

restricted to any connected component extends in the singular sense. As one expects, trivial
infinitesimal bendings are never genuine (see example 16 (1) below). If f (M)⊂Rn+ℓ⊂Rn+p,
ℓ < p, and e ∈ Rn+p is orthogonal to Rn+ℓ then τ = φe for φ ∈C∞(M) is another example
of an infinitesimal bending that is not genuine.

3.1 The associated tensor

Let τ be an infinitesimal bending of a isometric immersion f : Mn → Rn+p and let L ∈
Γ(Hom(T M, f ∗TRn+p)) be the tensor defined by

LX = ∇̃X τ,

where ∇̃ is the Levi-Civita connection in Rn+p. Hence (3.1) can be written as

⟨LX , f∗Y ⟩+ ⟨LY, f∗X⟩= 0 (3.2)

for any X ,Y ∈ X(M).
Let B : T M×T M → f ∗TRn+p the symmetric tensor defined as

B(X ,Y ) = (∇̃X L)Y

for any X ,Y ∈ X(M). Taking tangent and normal components we have

B(X ,Y ) = f∗Y(X ,Y )+β (X ,Y ) (3.3)

where Y : T M×T M → T M and β : T M×T M → N f M are also symmetric tensors.

Proposition 12. The tensor L satisfies

(∇̃2L)(X ,Y )(Z)− (∇̃2L)(Y,X)(Z) =−LR(X ,Y )Z (3.4)

for any X ,Y,Z ∈ X(M).

Proof. Since

(∇̃2L)(X ,Y )(Z) = ∇̃X(∇̃Y L)Z − (∇̃∇XY L)Z − (∇̃Y L)∇X Z, (3.5)
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the proof follows from the definition of the curvature tensor.

Let ft : I ×Mn → Rn+p be a smooth variation of f having τ as variational vector field .
Then the metrics gt induced by ft satisfy

∂/∂ t|t=0gt(X ,Y ) = 0 (3.6)

for any X ,Y ∈ X(M). Hence, the Levi-Civita connections and curvature tensors of gt verify

∂/∂ t|t=0∇
t
XY = 0 (3.7)

and
∂/∂ t|t=0gt(Rt(X ,Y )Z,W ) = 0 (3.8)

for any X ,Y,Z,W ∈ X(M). Taking the derivative with respect to t at t = 0 of the Gauss
formula for ft , namely, of

∇̃X ft∗Y = ft∗∇
t
XY +α

t(X ,Y ),

where every term is seen as a vector in Rn+p, we obtain

B(X ,Y ) = ∂/∂ t|t=0α
t(X ,Y ). (3.9)

Proposition 13. The tensor Y : T M×T M → T M satisfies

⟨α(X ,Y ),LZ⟩+ ⟨Y(X ,Y ),Z⟩= 0 (3.10)

for any X ,Y,Z ∈ X(M).

Proof. Given η(t) ∈ Γ(N ft M), let Yη be the tangent vector field given by

f∗Yη = (∂/∂ t|t=0η(t)) f∗T M.

The derivative of ⟨ ft∗Z,η(t)⟩= 0 with respect to t at t = 0 yields

⟨η ,LZ⟩+ ⟨Yη ,Z⟩= 0

where Z ∈ X(M) and η = η(0). In particular,

⟨α(X ,Y ),LZ⟩+ ⟨Yα(X ,Y ),Z⟩= 0
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for any X ,Y,Z ∈ X(M). On the other hand, we obtain from (3.9) that

Yα(X ,Y ) = Y(X ,Y )

for any X ,Y ∈ X(M).

Proposition 14. The tensor β : T M×T M → N f M satisfies

⟨β (X ,W ),α(Y,Z)⟩+⟨α(X ,W ),β (Y,Z)⟩
= ⟨β (X ,Z),α(Y,W )⟩+ ⟨α(X ,Z),β (Y,W )⟩ (3.11)

for any X ,Y,Z,W ∈ X(M).

Proof. Take the derivative with respect to t at t = 0 of the Gauss equations for f t , that is,

gt(Rt(X ,Y )Z,W ) = gt(α
t(X ,W ),α t(Y,Z))−gt(α

t(X ,Z),α t(Y,W ))

and use (3.6), (3.8) and (3.9).

Lemma 15. The tensor β satisfies

(∇⊥
X β )(Y,Z)−(∇⊥

Y β )(X ,Z) (3.12)

= α(Y,Y(X ,Z))−α(X ,Y(Y,Z))− (LR(X ,Y )Z)N f M

for any X ,Y,Z ∈ X(M).

Proof. We have from the definition of β that

∇
⊥
X β (Y,Z) = (∇̃X(∇̃Y L)Z − ∇̃XY(Y,Z))N f M.

Moreover,
(∇⊥

X β )(Y,Z) = (∇̃2L)(X ,Y )(Z)N f M −α(X ,Y(Y,Z))

and
(∇⊥

Y β )(X ,Z) = (∇̃2L)(Y,X)(Z)N f M −α(Y,Y(X ,Z)),

and (3.12) follows from (3.4).

We discuss next the simplest examples of infinitesimal bendings.
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Examples 16. (1) Let τ be a trivial infinitesimal bending of f : Mn → Rn+p, p ≥ 2, then

τ =D f (x)+w

where D is a skew-symmetric linear transformation of Rn+p and w ∈ Rn+p. Take λ ∈
Γ( f ∗TRn+p) such that F : M̃n+1 = Mn × (−ε,ε)→ Rn+p, given by

F(x, t) = f (x)+ tλ (x),

is a singular extension of f . Then τ extends in the singular sense since τ̃(x, t) = τ + tDλ is a
(trivial) infinitesimal bending of F on the open subset where F is an immersion.

(2) Given an isometric immersion f : Mn → Rn+p. If Z ∈ X(M) is a Killing field and
δ ∈ Γ(N⊥

1 ) is a smooth normal vector field, then τ = f∗Z +δ is an infinitesimal bending of
f .

3.1.1 The hypersurface case

Let f : Mn → Rn+1 be an isometric immersion, N a unitary vector field normal to f and YN

be the tangent vector field such that ⟨LX ,N⟩+ ⟨YN ,X⟩= 0 for any X ∈ X(M). Hence, we
can write (3.3) as

(∇̃X L)Y = ⟨BX ,Y ⟩N + ⟨AX ,Y ⟩ f∗YN , (3.13)

where B : T M → T M is given by ⟨BX ,Y ⟩= ⟨β (X ,Y ),N⟩, and A is the second fundamental
form of f . In this case (3.11) becomes

BX ∧AY −BY ∧AX = 0, (3.14)

where X ,Y ∈ X(M) and (X ∧Y )Z = ⟨Y,Z⟩X −⟨X ,Z⟩Y .

Proposition 17. The tensor B is a Codazzi tensor, that is

(∇X B)Y = (∇Y B)X , (3.15)

for any X ,Y ∈ X(M).

Proof. Since in this case the codimension is p = 1, we have from the Gauss equation that
the right side term on (3.12) vanishes, and hence equation (3.15) follows.
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The following result is essential in the last part of the final chapter, it follows from
Theorem 13 in [13] where existence and uniqueness of infinitesimal bendings is discussed in
terms of the tensor B. However, for the convenience of the reader, we include a proof.

Proposition 18. An infinitesimal bending τ of an isometric immersion f : Mn → Rn+1 is
trivial if and only if B ≡ 0.

Proof. If τ is a trivial infinitesimal bending, it follows from (3.13) that

⟨BX ,Y ⟩= ⟨(∇̃X L)Y,N⟩= ⟨D(∇̃X f∗)Y,N⟩= ⟨AX ,Y ⟩⟨DN,N⟩= 0

for all X ,Y ∈ X(M). Hence we have that B is identically 0.
Conversely, assume that τ is an infinitesimal bending of f for which B vanishes. For each

point x ∈ M define the skew-symmetric endomorphisms D(x) : Rn+1 → Rn+1 by

D(x) f∗X = L(x)X

for X ∈ TxM and
D(x)N(x) = f∗YN(x).

Since B vanishes, it follows from (3.13) that

∇̃XDY −D∇̃XY =(∇̃X L)Y −⟨AX ,Y ⟩ f∗YN

=0.

Taking the derivative of ⟨ f∗YN ,N⟩ = 0 and ⟨LY,N⟩+ ⟨YN ,Y ⟩ = 0 in the direction of X ∈
X(M), we obtain that

∇̃X f∗YN + f∗BX +LAX = 0

for any X ∈ X(M). Hence, we have that

∇̃XDN −D∇̃X N =∇̃X f∗YN +D f∗AX

=0.

Therefore, the family of endomorphisms D(x) is in fact constant D(x) =D. That and the
definition of L imply that τ(x)−D f (x) is a constant map and thus τ is trivial.

For more details on infinitesimal bendings of hypersurfaces and the properties of the
tensor B we refer to [13].





Chapter 4

Local results

In this chapter, it is shown that a strong necessary local condition for a submanifold to be
genuinely infinitesimally bendable is that the submanifold has to be ruled. Our first local
result is the following:

Theorem 19. Let f : Mn → Rn+p, n > 2p ≥ 4, be a genuinely infinitesimally bendable
isometric immersion. Then f is r-ruled with r ≥ n−2p along connected components of an
open dense subset of Mn.

The following is an immediate consequence of the above result.

Corollary 20. Let f : Mn → Rn+p, n > 2p ≥ 4, be an isometric immersion. If Mn has
positive Ricci curvature then f is genuinely infinitesimally rigid.

In the case of low codimension and with a substantial additional effort, we obtain our
second local result:

Theorem 21. Let f : Mn → Rn+p, n > 2p, be a genuinely infinitesimally bendable isometric
immersion. If 2 ≤ p ≤ 5, then one of the following holds along any connected component,
say U, of an open dense subset of Mn:

(i) f |U is ν-ruled by leaves of relative nullity with ν ≥ n−2p.

(ii) f |U has ν < n−2p at any point and is r-ruled with r ≥ n−2p+3.

In the above result if p = 2 we are always in case (i) since a (n−1)-ruled submanifold
in that codimension has ν ≥ n−3 at any point.
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4.1 The first local result

Theorem 19 is a corollary of the following result.

Theorem 22. Let f : Mn → Rn+p, n > 2p, be an isometric immersion and let τ be an
infinitesimal bending of f . Then along each connected component of an open and dense
subset either τ extends in the singular sense or f is r-ruled with r ≥ n−2p.

We first show that associated to any infinitesimal bending there is a flat bilinear form.

Lemma 23. Let τ be an infinitesimal bending of an isometric immersion f : Mn → Rn+p.
Then the bilinear form θ : T M×T M → N f M⊕N f M defined at any point of Mn by

θ(X ,Y ) = (α(X ,Y )+β (X ,Y ),α(X ,Y )−β (X ,Y )) (4.1)

is flat with respect to the inner product in N f M⊕N f M given by

⟨⟨(ξ1,η1),(ξ2,η2)⟩⟩N f M⊕N f M = ⟨ξ1,ξ2⟩N f M −⟨η1,η2⟩N f M.

Proof. A straightforward computation shows that

1
2
(⟨⟨θ(X ,Z),θ(Y,W )⟩⟩−⟨⟨θ(X ,W ),θ(Y,Z)⟩⟩) = ⟨β (X ,Z),α(Y,W )⟩

+ ⟨α(X ,Z),β (Y,W )⟩−⟨β (X ,W ),α(Y,Z)⟩−⟨α(X ,W ),β (Y,Z)⟩,

and the proof follows from (3.11).

Under the assumption of regularity of the first normal bundle we have the following
statement equivalent to Lemma 23.

Lemma 24. Assume that f is 1-regular and let β1 : T M×T M → N1 be the N1-component
of β . Then the bilinear form θ̂ : T M×T M → N1 ⊕N1 defined at any point by

θ̂(X ,Y ) = (α(X ,Y )+β1(X ,Y ),α(X ,Y )−β1(X ,Y )) (4.2)

is flat with respect to the inner product induced on N1 ⊕N1.

Proof of Theorem 22: Let τ be an infinitesimal bending of f . With the use of (3.2) and (3.10)
we easily obtain

⟨ f∗X + ∇̃XY,LX + ∇̃X LY ⟩= ⟨α(X ,Y ),β (X ,Y )⟩ (4.3)

for any X ,Y ∈ X(M).



4.1 The first local result 27

By Lemma 23, we have at any point of Mn that the symmetric tensor θ is flat. Given
Y ∈ RE(θ), denote D = kerθY where θY (X) = θ(Y,X). Notice that Z ∈ D just means that
α(Y,Z) = 0 = β (Y,Z).

Let U ⊂ Mn be an open subset where Y ∈X(U) satisfies Y ∈ RE(θ) and D has dimension
d at any point. Lemma 9 gives

⟨⟨θ(X ,Z),θ(X ,Z)⟩⟩= 0

for any X ∈ X(U) and Z ∈ Γ(D). Equivalently, the right hand side of (4.3) vanishes and thus

⟨ f∗X + ∇̃X Z,LX + ∇̃X LZ⟩= 0 (4.4)

for any X ∈ X(U) and Z ∈ Γ(D).
Assume that there is a nowhere vanishing Z ∈ Γ(D) defined on an open subset V of U

such that F : V × (−ε,ε)→ Rn+p given by

F(x, t) = f (x)+ t f∗Z(x)

is a singular extension of f |V . Then the map τ̃ : V × (−ε,ε)→ Rn+p given by

τ̃(x, t) = τ(x)+ tLZ(x)

is an infinitesimal bending that extends τ|V in the singular sense. In fact, we have

⟨F∗∂t , ∇̃∂t τ̃⟩= ⟨ f∗Z,LZ⟩= 0,

⟨∇̃∂t τ̃,F∗X⟩+ ⟨∇̃X τ̃,F∗∂t⟩= ⟨LZ, f∗X + t∇̃X Z⟩+ ⟨LX + t∇̃X LZ, f∗Z⟩= 0

and
⟨F∗X , ∇̃X τ̃⟩= ⟨ f∗X + t∇̃X Z,LX + t∇̃X LZ⟩= 0

where the last equality follows from (4.4).
Let W ⊂U be an open subset such that a Z ∈ Γ(D) as above does not exist along any open

subset of W . By Proposition 6 the immersion is d-ruled along any connected component of
an open dense subset of W . Moreover, we have d = dimD = n−dim Im(θY )≥ n−2p.

Remark 25. In Theorem 19 if f is 1-regular with dimN1 = q < p we obtain the better
estimate r ≥ n−2q since the proof still works using Lemma 24 instead of Lemma 23.
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4.2 The second local result

Let F : M̃n+1 → Rn+p be an isometric immersion and let τ̃ be an infinitesimal bending of
F . Given an isometric embedding j : Mn → M̃n+1 consider the composition of isometric
immersions f = F ◦ j : Mn → Rn+p. Then τ = τ̃| j(M) is an infinitesimal bending of f . It is
easy to see that

B(X ,Y ) = B̃(X ,Y )+ ⟨∇̃XY,F∗η⟩L̃η

for η ∈ Γ(N jM) of unit length and X ,Y ∈ X(M). Then (3.10) gives

⟨β (X ,Y ),F∗η⟩+ ⟨α f (X ,Y ), L̃η⟩= 0

for any X ,Y ∈ X(M). We will see that satisfying a condition of this type may guarantee that
an infinitesimal bending is not genuine. In fact, this was already proved by Florit [15] in a
special case.

We say that an infinitesimal bending of a given isometric immersion f : Mn → Rn+p,
p ≥ 2, satisfies the condition (∗) if there is η ∈ Γ(N f M) nowhere vanishing and ξ ∈ Γ(R),
where R is determined by the orthogonal splitting N f M = P⊕R and P = span{η}, such that

Bη +Aξ = 0 (4.5)

where Bη = ⟨β ,η⟩. We choose η of unit length for simplicity. Thus, that (4.5) holds means

⟨β (X ,Y ),η⟩+ ⟨α(X ,Y ),ξ ⟩= 0 (4.6)

for any X ,Y ∈ X(M).

The following result is of independent interest since it does not require the codimension
to satisfy p ≤ 5 as is the case in Theorem 21.

Theorem 26. Let f : Mn → Rn+p, p ≥ 2, be an isometric immersion and let τ be a genuine
infinitesimal bending of f that satisfies the condition (∗). Then f is r-ruled with r ≥ n−2p+3
on connected components of an open dense subset of Mn.

We extend L to the tensor L̄ ∈ Γ(Hom(T M⊕P, f ∗TRn+p) defining

L̄η = f∗Y +ξ
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where Y ∈ X(M) is given by

⟨ f∗Y, f∗X⟩+ ⟨LX ,η⟩= 0

for any X ∈ X(M). Then L̄ satisfies

⟨L̄X ,η⟩+ ⟨ f∗X , L̄η⟩= 0

for any X ∈ X(M).
Given λ ∈ Γ( f∗TU ⊕P) nowhere vanishing where U is an open subset of Mn, we define

the map F : U × (−ε,ε)→ Rn+p by

F(x, t) = f (x)+ tλ (x). (4.7)

Notice that F is not an immersion at least for t = 0 at points where λ is tangent to U . Let
τ̃ : U × (−ε,ε)→ Rn+p be the map given by

τ̃(x, t) = τ(x)+ tL̄λ (x). (4.8)

We have
⟨F∗∂t , ∇̃∂t τ̃⟩= 0.

Moreover, since ⟨L̄λ ,λ ⟩= 0 we obtain

⟨∇̃∂t τ̃,F∗X⟩+ ⟨∇̃X τ̃,F∗∂t⟩= ⟨L̄λ , f∗X⟩+ ⟨LX ,λ ⟩+ tX⟨L̄λ ,λ ⟩= 0 (4.9)

for any X ∈ X(M) and t ∈ (−ε,ε). Thus τ̃ is an infinitesimal bending of F on the open
subset Ũ of U × (−ε,ε) where F is an immersion if and only if

⟨F∗X , ∇̃X τ̃⟩= 0,

or equivalently, if
⟨ f∗X + t∇̃X λ ,LX + t∇̃X L̄λ ⟩= 0

for any X ∈ X(M).
In the sequel we consider F restricted to Ũ . By the above, in order to have that τ̃ is an

infinitesimal bending of F the strategy is to make use of the condition (∗) to construct a
subbundle D ⊂ f∗T M⊕P such that

⟨ f∗X + ∇̃X λ ,LX + ∇̃X L̄λ ⟩= 0
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for any X ∈ X(M) and any λ ∈ Γ(D).

Lemma 27. Assume that the condition (∗) holds. Then

⟨ f∗X + ∇̃X λ ,LX + ∇̃X L̄λ ⟩= ⟨(∇̃X λ )R,(∇̃X L̄)λ ⟩, (4.10)

where X ∈ X(M), λ ∈ Γ( f∗T M⊕P) and

(∇̃X L̄)λ = ∇̃X L̄λ − L̄∇
′
X λ ,

being ∇′ the connection induced on f∗T M⊕P.

Proof. Set λ = f∗Z +φη where Z ∈ X(M) and φ ∈C∞(M). Then

⟨ f∗X + ∇̃X λ ,LX + ∇̃X L̄λ ⟩= ⟨ f∗(∇̃X λ )T M +(∇̃X λ )P +(∇̃X λ )R, ∇̃X L̄λ ⟩
+ ⟨∇̃X λ ,LX⟩+ ⟨ f∗X , ∇̃X L̄λ ⟩
= ⟨ f∗(∇̃X λ )T M,(∇̃X L)Z +L∇X Z +X(φ)L̄η +φ ∇̃X L̄η⟩
+(⟨AηX ,Z⟩+X(φ))⟨η ,(∇̃X L)Z +L∇X Z +X(φ)L̄η +φ ∇̃X L̄η⟩
+ ⟨(∇̃X λ )R, ∇̃X L̄λ ⟩+ ⟨∇̃X λ ,LX⟩+ ⟨ f∗X , ∇̃X L̄λ ⟩ (4.11)

for any X ∈ X(M). Using (3.10) and (4.6) we obtain

⟨ f∗(∇̃X λ )T M,(∇̃X L)Z +L∇X Z⟩
=−⟨L(∇̃X λ )T M,α(X ,Z)⟩−φ⟨ f∗AηX ,L∇X Z⟩ (4.12)

and

⟨ f∗(∇̃X λ )T M,X(φ)L̄η +φ ∇̃X L̄η⟩= φ⟨(∇̃X λ )T M,∇XY ⟩
−X(φ)⟨L(∇̃X λ )T M,η⟩−φ⟨α(X ,(∇̃X λ )T M),ξ ⟩ (4.13)

where for the first term in the right hand side of (4.13) we have

⟨(∇̃X λ )T M,∇XY ⟩=X⟨(∇̃X λ )T M,Y ⟩−⟨∇X(∇̃X λ )T M,Y ⟩
=−X⟨L(∇̃X λ )T M),η⟩+ ⟨L∇X(∇̃X λ )T M,η⟩
=−⟨(∇̃X L)(∇̃X λ )T M,η⟩−⟨L(∇̃X λ )T M, ∇̃X η⟩
=⟨α(X ,(∇̃X λ )T M),ξ ⟩−⟨L(∇̃X λ )T M, ∇̃X η⟩. (4.14)



4.2 The second local result 31

Moreover,

⟨η ,(∇̃X L)Z +L∇X Z⟩=−⟨α(X ,Z),ξ ⟩+ ⟨η ,L∇X Z⟩, (4.15)

⟨η ,X(φ)L̄η +φ ∇̃X L̄η⟩=−φ⟨∇̃X η , L̄η⟩
=−φ⟨LAηX ,η⟩−φ⟨∇⊥

X η ,ξ ⟩ (4.16)

and

⟨∇̃X λ ,LX⟩+ ⟨ f∗X , ∇̃X L̄λ ⟩=−⟨∇̃X X , L̄λ ⟩−⟨λ , ∇̃X LX⟩
=−⟨ f∗∇X X , L̄λ ⟩−⟨α(X ,X), L̄λ ⟩−⟨λ ,L∇X X⟩−⟨λ ,(∇̃X L)X⟩= 0. (4.17)

Now, a straightforward computation replacing (4.12) through (4.17) in (4.11) yields

⟨ f∗X + ∇̃X λ ,LX + ∇̃X L̄λ ⟩= ⟨(∇̃X λ )R, ∇̃X L̄λ ⟩−⟨L(∇̃X λ )T M,α(X ,Z)R⟩
−φ⟨L(∇̃X λ )T M,∇⊥

X η⟩−⟨α(X ,Z), L̄(∇̃X λ )P⟩−φ⟨∇⊥
X η , L̄(∇̃X λ )P⟩

= ⟨(∇̃X λ )R,(∇̃X L̄)λ ⟩,

which concludes the proof.

In view of (4.10) the next step is to construct a subbundle D ⊂ f∗T M⊕P such that

⟨(∇̃X λ )R,(∇̃X L̄)λ ⟩= 0 (4.18)

for any X ∈ X(M) and λ ∈ Γ(D).

Lemma 28. Assume that the condition (∗) holds. Then the bilinear form ϕ : T M× f∗T M⊕
P → R⊕R defined by

ϕ(X ,λ ) = ((∇̃X λ )R +((∇̃X L̄)λ )R,(∇̃X λ )R − ((∇̃X L̄)λ )R).

is flat with respect to the indefinite inner product given by

⟨⟨(ξ1,µ1),(ξ2,µ2)⟩⟩R⊕R = ⟨ξ1,ξ2⟩R −⟨µ1,µ2⟩R.

Proof. We need to show that

Θ = ⟨⟨ϕ(X ,λ ),ϕ(Y,δ )⟩⟩−⟨⟨ϕ(X ,δ ),ϕ(Y,λ )⟩⟩= 0
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for any X ,Y ∈ X(M) and λ ,δ ∈ f∗T M⊕P. We have

1
2

Θ =⟨(∇̃X λ )R,((∇̃Y L̄)δ )R⟩+ ⟨(∇̃Y δ )R,((∇̃X L̄)λ )R⟩

−⟨(∇̃X δ )R,((∇̃Y L̄)λ )R⟩−⟨(∇̃Y λ )R,((∇̃X L̄)δ )R⟩.

Clearly Θ = 0 if λ ,δ ∈ Γ(P). If λ ,δ ∈ X(M), we have

1
2

Θ =⟨α(X ,λ )R,((∇̃Y L̄)δ )R⟩+ ⟨α(Y,δ )R,((∇̃X L̄)λ )R⟩

−⟨α(X ,δ )R,((∇̃Y L̄)λ )R⟩−⟨α(Y,λ )R,((∇̃X L̄)δ )R⟩
=⟨α(X ,λ )R,((∇̃Y L)δ )R⟩−⟨AηY,δ ⟩⟨α(X ,λ )R, L̄η⟩
+ ⟨α(Y,δ )R,((∇̃X L)λ )R⟩−⟨AηX ,λ ⟩⟨α(Y,δ )R, L̄η⟩
−⟨α(X ,δ )R,((∇̃Y L)λ )R⟩+ ⟨AηY,λ ⟩⟨α(X ,δ )R, L̄η⟩
−⟨α(Y,λ )R,((∇̃X L)δ )R⟩+ ⟨AηX ,δ ⟩⟨α(Y,λ )R, L̄η⟩.

Using first (4.6) and then (3.11) we obtain

1
2

Θ =⟨α(X ,λ ),β (Y,δ )⟩+ ⟨α(Y,δ ),β (X ,λ )⟩

−⟨α(X ,δ ),β (Y,λ )⟩−⟨α(Y,λ ),β (X ,δ )⟩= 0.

Finally, we consider the case λ = η and δ = Z ∈ X(M). Then

1
2

Θ =⟨∇⊥
X η ,((∇̃Y L)Z)R⟩−⟨AηY,Z⟩⟨∇⊥

X η , L̄η⟩+ ⟨α(Y,Z)R,((∇̃X L̄)η)R⟩

−⟨∇⊥
Y η ,((∇̃X L)Z)R⟩+ ⟨AηX ,Z⟩⟨∇⊥

Y η , L̄η⟩−⟨α(X ,Z)R,((∇̃Y L̄)η)R⟩.

Since

⟨∇⊥
X η , L̄η⟩=⟨∇̃X η , L̄η⟩+ ⟨AηX , L̄η⟩=−⟨η , ∇̃X L̄η⟩−⟨LAηX ,η⟩

=−⟨η ,(∇̃X L̄)η⟩

we obtain

1
2

Θ =⟨∇⊥
X η ,(∇̃Y L)Z⟩−⟨∇⊥

Y η ,(∇̃X L)Z⟩

+ ⟨α(Y,Z),(∇̃X L̄)η⟩−⟨α(X ,Z),(∇̃Y L̄)η⟩.
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For the first term using (3.10) and (4.6) we obtain

⟨∇⊥
X η ,(∇̃Y L)Z⟩=X⟨η ,(∇̃Y L)Z⟩−⟨η , ∇̃X(∇̃Y L)Z⟩+ ⟨ f∗AηX ,(∇̃Y L)Z⟩

=−X⟨α(Y,Z), L̄η⟩−⟨α(Y,Z),LAηX⟩
−⟨η ,(∇̃2L)(X ,Y )(Z)+(∇̃∇XY L)Z +(∇̃Y L)∇X Z⟩

=−⟨(∇⊥
X α)(Y,Z)+α(∇XY,Z)+α(Y,∇X Z), L̄η⟩

−⟨η ,(∇̃2L)(X ,Y )(Z)+(∇̃∇XY L)Z +(∇̃Y L)∇X Z⟩
−⟨α(Y,Z), ∇̃X L̄η⟩−⟨α(Y,Z),LAηX⟩+ ⟨Aα(Y,Z)X , L̄η⟩

=−⟨(∇⊥
X α)(Y,Z), L̄η⟩−⟨η ,(∇̃2L)(X ,Y )(Z)⟩

−⟨α(Y,Z),(∇̃X L̄)η⟩−⟨LAα(Y,Z)X ,η⟩.

Likewise, we have

⟨∇⊥
Y η ,(∇̃X L)Z⟩=−⟨(∇⊥

Y α)(X ,Z), L̄η⟩−⟨η ,(∇̃2L)(Y,X)(Z)⟩
−⟨α(X ,Z),(∇̃Y L̄)η⟩−⟨LAα(X ,Z)Y,η⟩.

From (3.4) and the Codazzi equation

(∇⊥
X α)(Y,Z) = (∇⊥

Y α)(X ,Z)

we obtain

1
2

Θ = ⟨L(R(X ,Y )Z −Aα(Y,Z)X +Aα(X ,Z)Y ),η⟩.

Then Θ = 0 from the Gauss equation, as we wished.

Proof of Theorem 26: By Lemma 28 the bilinear form ϕ is flat. Let U ⊂ Mn be an open
subset where there is Y ∈X(U) such that Y ∈ RE(ϕ) and D = kerϕY has dimension d at any
point. Then Lemma 9 gives

⟨⟨ϕ(X ,λ ),ϕ(X ,λ )⟩⟩= 0

for any X ∈X(U) and λ ∈ Γ(D). Notice that this implies that (4.18) holds for any λ ∈ Γ(D).
Then D ⊂ f∗T M since otherwise there is λ ∈ Γ(D) but λ ̸∈ T M such that τ|U extends in the
singular sense via (4.7) and (4.8), and this is a contradiction. Hence D is a tangent distribution
and we conclude from Proposition 6 that f |U is d-ruled on connected components of an
open dense subset of Mn. Moreover, the dimension of the rulings is bounded from below by
n+1−dim Im(ϕY )≥ n−2p+3.
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Proof of Theorem 21: We work on the open dense subset of Mn where f is 1-regular on any
connected component. Consider an open subset of a connected component where the index
of relative nullity is ν ≤ n−2p−1 at any point. Lemma 10 applies and thus the flat bilinear
form θ̂ in (4.2) decomposes at any point as θ̂ = θ1 +θ2 where θ1 is as in part (i) of that
result. Hence, on any open subset where the dimension of S(θ1) = S(θ̂)∩S(θ̂)⊥ is constant
there are smooth local unit vector fields ζ1,ζ2 ∈ N1 such that (ζ1,ζ2) ∈ S(θ1). Equivalently,

⟨β (X ,Y ),ζ1 +ζ2⟩+ ⟨α(X ,Y ),ζ1 −ζ2⟩= 0 (4.19)

for any X ,Y ∈ X(M). We have ζ1 +ζ2 ̸= 0 since otherwise ζ1 −ζ2 ∈ N⊥
1 . Hence τ satisfies

the condition (∗) and the proof follows from Theorem 26.

4.3 Nonflat ambient spaces

Let f : Mn →Qn+p
c be an isometric immersion where Qn+p

c denotes either the sphere Sn+p
c or

the hyperbolic space Hn+p
c of sectional curvature c ̸= 0. Then we say that τ ∈ Γ( f ∗TQn+p

c ) is
an infinitesimal bending of f if it satisfies (3.1) with respect to the connection in Qn+p

c . And
that f is r-ruled means that there is an r-dimensional smooth totally geodesic distribution
whose leaves are mapped by f to open subsets of totally geodesic submanifolds of Qn+p

c .

In the sequel, we also denote by f the composition of the immersion with the umbilical
inclusion of Qn+p

c into On+p+1, where On+p+1 stands for either Euclidean or Lorentzian
space, depending on whether c > 0 or c < 0, respectively.

Let τ be an infinitesimal bending of f and let ft : Mn →Qn+p
c , t ∈ I, be a smooth variation

of f0 = f having τ as variational vector field. In this case we still have that (3.6), (3.7) and
(3.8) hold. And also as before, associated to τ we have the tensors

LX = ∇̃X τ.

and
B(X ,Y ) = (∇̃X L)Y

for any X ,Y ∈ X(M), where ∇̃ denotes the connection in Qn+p
c . Now

B(X ,Y ) = Y(X ,Y )+β (X ,Y )+ c⟨ f∗Y,τ⟩ f∗X − c⟨X ,Y ⟩τ
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where the tensors Y : T M ×T M → f∗T M and β : T M ×T M → N f M are the tangent and
normal component of ∂/∂ t|t=0α t respectively, and α t denotes the second fundamental form
of ft as a submanifold in Qn+p

c . In particular, we have that (3.11) holds.
In this case, an infinitesimal bending of f is said to satisfy the condition (∗) if there is

η ∈ Γ(N f M) of unit length and ξ ∈ Γ(R), where R is determined by the orthogonal splitting
N f M = P⊕R and P = span{η}, such that

Bη +Aξ + c⟨τ,η⟩I = 0

where Bη = ⟨β ,η⟩.
The cone over an isometric immersion f : Mn →Qn+p

c is defined by

f̂ : M̂n+1 = (0,∞)×Mn →On+p+1

(s,x) 7→ s f (x).

Notice that ∂s lies in the relative nullity of f̂ and that N f̂ M̂ is the parallel transport of N f M
along the lines parametrized by s. Observe that if c < 0, then the cone over f is a Lorentzian
submanifold of Ln+p+1 and hence N f̂ M̂ has positive definite metric.

If τ is an infinitesimal bending of f , it is easy to see that τ̂(s,x) = sτ(x) is an infinitesimal
bending of f̂ in On+p+1, that is, τ̂ is a vector field that satisfies (3.1) with respect to the
connection in On+p+1. Moreover, if τ satisfies the condition (∗) then τ̂ satisfies the condition
(∗) for a flat ambient space.

Let f̂ be the cone over an immersion f in Qn+p
c . Notice that the parameter s defines lines

parallel to the position vector. Thus, if the map f̂ + tλ , is a singular extension of f̂ for some
vector field λ then the intersection of its image with Qn+p

c determines a singular extension of
f .

Assume that τ is a genuine infinitesimal bending of f . We claim that f̂ and τ̂ cannot
admit extensions of the form

F̂(t,s,x) = f̂ (s,x)+ tλ (s,x) and τ̂
′(t,s,x) = τ̂(s,x)+ tL̄λ (s,x)

as in the proofs of Theorems 19 and 26. Notice that

⟨F̂(t,s,x), τ̂ ′(t,s,x)⟩= ⟨ f̂ (s,x)+ tλ (s,x), τ̂(s,x)+ tL̄λ (s,x)⟩
= st⟨ f (x), L̄λ ⟩+ st⟨λ ,τ⟩
= 0,
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where in the last step we used that L̂∂s = τ(x), that is, that τ̂ ′ is orthogonal to the position
vector. From that observation we have that if F̂ determines a singular extension of f then τ

extends in the singular sense. But that was ruled out by our assumption on τ and proves the
claim. In this sense, if τ is genuine we obtain that f̂ has to be ruled as in Theorems 19 and
26. Finally, observe that being f̂ the cone over f , then these rulings determine rulings of f .
Therefore we have the following:

Fact 29. Theorems 19, 21 and 26 hold if the ambient space is replaced by Qn+p
c .



Chapter 5

Global results

This chapter is devoted to results of global nature. In order to prove those results, we first
show some properties of the kernel ∆∗ of the tensor θ . As we see next, on open subsets
where ∆∗ has constant dimension it determines a totally geodesic distribution contained in
the relative nullity. Our strategy is to transport information along geodesics contained in
leaves of that distribution. This allows us to describe the situation for infinitesimal bendings
of compact submanifolds in codimension 2, more precisely we prove the following result:

Theorem 30. Let f : Mn →Rn+2, n≥ 5, be an isometric immersion of a compact Riemannian
manifold with no open flat subset and let τ be an infinitesimal bending of f . Then one of the
following holds along any connected component, say U, of an open dense subset of Mn:

(i) The infinitesimal bending τ|U extends in the singular sense.

(ii) There is an orthogonal splitting Rn+2 = Rn+1 ⊕ span{e} such that f (U)⊂ Rn+1 and
τ|U is a sum of infinitesimal bendings τ|U = τ1 + τ2 where τ1 ∈ Rn+1, τ2 = φe for
φ ∈C∞(U) and both extend in the singular sense.

Inspired by the classification of the isometrically bendable complete Euclidean hypersur-
faces by Dajczer and Gromoll in [8], we finish this chapter proving the following result:

Theorem 31. Let f : Mn → Rn+1, n ≥ 4, be an isometric immersion of a complete Rieman-
nian manifold. Assume that there is no open subset of Mn where f is either totally geodesic
or a cylinder over a hypersurface in R4 with complete one-dimensional leaves of relative
nullity. Then f admits non-trivial infinitesimal bendings only along ruled strips.

We point out that the existence of complete nonruled isometrically bendable hypersurfaces
of constant rank two in R4, that are not surface-like, is an open problem [8]. By surface-like
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we mean a hypersurface that is a cylinder over either a surface in R3 or a cone over a surface
in an umbilical submanifold of R4.

It follows from the proof of Theorem 30 that the assumption on the open flat subset can
be replaced by the weaker hypothesis that there is no open subset of Mn where the index of
relative nullity satisfies ν ≥ n−1. That and the hypothesis of the absence of open totally
geodesic subsets in Theorem 31 can be justified by the fact any section δ ∈ Γ(N⊥

1 ) is an
infinitesimal bending of f , as was observed in Examples 16 (2). Moreover, we will see that
cases (i) and (ii) in Theorem 30 are not disjoint.

The following two results, of independent interest, are essential in the proofs of the
theorems mentioned above. In the sequel τ is an infinitesimal bending of an isometric
immersion f : Mn → Rn+p.

Let β be the symmetric tensor defined by (3.3) and let θ be the flat bilinear form given
by (4.1). Calling ν∗(x) = dim∆∗(x) at x ∈ Mn where

∆
∗(x) =N(θ)(x) = ∆∩N(β )(x),

we have the following:

Proposition 32. On any open subset of Mn where ν∗ is constant the distribution ∆∗ is totally
geodesic and its leaves are mapped by f onto open subsets of affine subspaces of Rn+p.

Proof. From (3.10) we have ∆ ⊂N(Y). Then (3.12) and the Gauss equation give

(∇⊥
X β )(Z,Y ) = (∇⊥

Z β )(X ,Y ) = 0

for any X ,Y ∈ Γ(∆∗) and Z ∈ X(M). Let ∇∗ = (∇⊥,∇⊥) be the compatible connection in
N f M⊕N f M. Hence

0 = (∇∗
X θ)(Z,Y ) = θ(Z,∇XY )

for any X ,Y ∈ Γ(∆∗) and Z ∈ X(M). Thus ∆∗ ⊂ ∆ is totally geodesic.

On an open subset of Mn where ν∗ > 0 is constant consider the orthogonal splitting
T M = ∆∗⊕E and let C : Γ(∆∗)×Γ(E)→ Γ(E) be the corresponding splitting tensor.

The next result provides a way to transport information along geodesics contained in
leaves of ∆∗. This technique has been widely used, for instance in [8], [9] and [17].

Proposition 33. Let ν∗ > 0 be constant on an open subset U ⊂ Mn. If γ : [0,b]→ Mn is a
unit speed geodesic such that γ([0,b)) is contained in a leaf of ∆∗ in U, then ∆∗(γ(b)) =
Pb

0(∆
∗(γ(0))) where Pt

0 is the parallel transport along γ from γ(0) to γ(t). In particular, we
have ν∗(γ(b)) = ν∗(γ(0)) and the tensor Cγ ′ extends smoothly to [0,b].
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Proof. We mimic the proof of Lemma 27 in [17]. Let the tensor J : E → E be the solution in
[0,b) of

D
dt

J+Cγ ′ ◦ J = 0

with initial condition J(0) = Id. It follows from (2.1) that J satisfies D2

dt J = 0, and hence it
extends smoothly to Pb

0(E(0)) in γ(b). Let Y and Z be parallel vector fields along γ such that
Y (t) ∈ E(t) for each t ∈ [0,b). Since γ ′ is in ∆∗, it follows from (3.12) that

(∇∗
γ ′θ)(JY,Z) = (∇∗

JY θ)(γ ′,Z).

This and the definition of J imply that θ(JY,Z) is parallel along γ . In particular J is
invertible in [0,b]. By continuity Pb

0(∆
∗(γ(0)))⊂ ∆∗(γ(b)), and since Z(0) is arbitrary, then

Pb
0(∆

∗(γ(0))) = ∆∗(γ(b)). Finally we extend the splitting tensor Cγ ′ =−DJ/dt ◦ J−1.

The following basic result is used in the proofs of both theorems in this chapter. In the
following Mn(R) denotes the set of n×n real matrices.

Lemma 34. Let U : [0,b]→ Mn(R) be a solution of the ordinary differential equation

U ′(s) = T (s)U(s),

where T : [0,b]→ Mn(R) is continuous. Then the rank of U(s) is constant on [0,b].

Proof. Let v ∈ Rn and define v(s) as v(s) =U(s)v for s ∈ [0,b]. Observe that v(s) satisfies
the differential equation:

v′(s) =U ′(s)v = T (s)v(s)

on [0,b]. Therefore, if v(s0) = 0 for some s0 ∈ [0,b] we necessarily have that v(s) = 0 for
any s ∈ [0,b]. From that we conclude that the dimension of the kernel of U(s) is constant on
[0,b].

5.1 The compact case

Lemma 35. Let f : Mn → Rn+p, p ≤ 5 and n > 2p be an isometric immersion of a compact
Riemannian manifold and let τ be an infinitesimal bending of f . Then, at any x ∈ Mn there is
a pair of vectors ζ1,ζ2 ∈ N f M(x) of unit length such that (ζ1,ζ2) ∈ (S(θ))⊥(x) where

S(θ)(x) = span{θ(X ,Y ) : X ,Y ∈ TxM}.
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Moreover, on any connected component of an open dense subset of Mn the pair ζ1,ζ2 at
x ∈ Mn extend to smooth vector fields ζ1 and ζ2 parallel along ∆∗ that satisfy the same
conditions.

Proof. We claim that the subset of points U of Mn where there is no such a pair, that is, the
metric induced on (S(θ))⊥ is positive or negative definite, is empty. It is not difficult to see
that U is open. From Lemma 10 we have ν∗ > 0 in U . Let V ⊂U be the open subset where
ν∗ = ν∗

0 is minimal. Take x0 ∈V and a unit speed geodesic γ in Mn contained in a maximal
leaf of ∆∗ with γ(0) = x0. Since Mn is compact, there is b > 0 such that γ([0,b))⊂V and
γ(b) /∈V . Proposition 33 gives ν∗(γ(b)) = ν∗

0 which implies γ(b) /∈U . Hence, there are unit
vectors ζ1,ζ2 ∈ N f M(γ(b)) such that (ζ1,ζ2) ∈ (S(θ))⊥(γ(b)).

Let ζi(t) be the parallel transport along γ of ζi, i = 1,2. Then

⟨⟨θ(X ,Y ),(ζ1,ζ2)⟩⟩= ⟨(Aζ1−ζ2
+Bζ1+ζ2

)X ,Y ⟩.

It follows from (3.10) and (3.12) that

(∇∗
T θ)(X ,Y ) = (∇∗

X θ)(T,Y ) (5.1)

where T ∈ Γ(∆∗) extends γ ′ and X ,Y ∈ X(M). Along γ this gives

D
dt
Cζ1,ζ2

= Cζ1,ζ2
Cγ ′ =C′

γ ′Cζ1,ζ2

where Cζ1,ζ2
= Aζ1−ζ2

+Bζ1+ζ2
and C′

γ ′ denotes the transpose of Cγ ′ . Moreover, by Proposi-
tion 33 this ODE holds on [0,b]. Given that Cζ1,ζ2

(γ(b)) = 0, then it follows from Lemma 34
that Cζ1,ζ2

vanishes along γ . This is a contradiction and proves the claim.
We have from (5.1) that

(∇∗
T θ)(X ,Y ) =−θ(∇X T,Y ) ∈ Γ(S(θ))

for any T ∈ Γ(∆∗) and X ,Y ∈ X(M). Thus S(θ) is parallel along the leafs of ∆∗. Let U0

be a connected component of the open dense subset of Mn where the dimension of ∆∗,
S(θ),S(θ)∩S(θ)⊥ and the index of the metric induced on S(θ)⊥×S(θ)⊥ are all constant.
Hence on U0 the vector fields ζ1,ζ2 can be taken parallel along the leafs of ∆∗.

We are now in conditions to prove Theorem 30.

Proof of Theorem 30: We assume that there is no open subset of Mn where the index of
relative nullity satisfies ν ≥ n− 1. By Lemma 35, on connected components of an open
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dense subset of Mn there are ζ1,ζ2 ∈ Γ(N f M) with ∥ζ1∥= ∥ζ2∥= 1 parallel along the leaves
of ∆∗ and such that

⟨⟨θ(X ,Y ),(ζ1,ζ2)⟩⟩= 0

for any X ,Y ∈ X(M). It follows from (4.1) that (4.19) holds on connected components of
an open dense subset of Mn. Let U ⊂ Mn be an open subset where ζ1,ζ2 are smooth and
ζ1 +ζ2 ̸= 0. Thus τ|U satisfies the condition (∗). Let Ṽ ⊂U be an open subset where τ is
a genuine infinitesimal bending. By Theorem 26 we have that f is (n− 1)-ruled on each
connected component V of an open dense subset of Ṽ . Since our goal is to show that V is
empty we assume otherwise.

Proposition 6 and the proof of Theorem 26 yield that the rulings on V are determined by
the tangent subbundle D = kerϕY where ϕ was given in Lemma 28 and Y ∈ RE(ϕ). Also
from that proof dim Im(ϕY ) = 2 and therefore Im(ϕY ) = R⊕R where N f M = P⊕R as in
Lemma 28. Lemma 9 gives

ϕX(D)⊂ Im(ϕY )∩ Im(ϕY )
⊥ = {0}

for any X ∈ X(M), that is, D =N(ϕ). In particular, from the definition of ϕ it follows that
D ⊂ N(αR). Hence, by dimension reasons either N(αR) = T M or D = N(αR). Next we
contemplate both possibilities.

Let V1 ⊂ V be an open subset where N(αR) = T M holds, that is, N1 = P. Thus N1

is parallel relative to the normal connection since, otherwise, the Codazzi equation gives
ν = n−1, and that has been ruled out. Hence f |V1 reduces codimension, that is, f (V1) is
contained in an affine hyperplane Rn+1. Decompose τ = τ1 + τ2 where τ1 and τ2 are tangent
and normal to Rn+1, respectively. It follows that τ1 is an infinitesimal bending of f |V1 in
Rn+1. Since τ satisfies the condition (∗) then Proposition 18 gives that τ1 is trivial, that
is, the restriction of a Killing vector field of Rn+1 to f (V1). Extending τ2 as a vector field
normal to Rn+1 it follows that τ|V1 extends in the singular sense and this is a contradiction.

Let V2 ⊂V be an open subset where D =N(αR). By assumption D ̸= ∆. Let D̂ be the
distribution tangent to the rulings in a neighborhood V ′

2 of x0 ∈V2. From Proposition 6 we
have D(x0) = D̂(x0). Let W ⊂ V ′

2 be an open subset where D ̸= D̂, that is, where D is not
totally geodesic. Then there are two transversal (n−1)-dimensional rulings passing through
any point y ∈W . It follows easily that N1 = P on W . As above we obtain that τ|W extends in
the singular sense, leading to a contradiction. Let V3 ⊂V2 be the interior of the subset where
D is totally geodesic. On V3 the Codazzi equation gives

∇
⊥
X α(Z,Y ) ∈ Γ(P)
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for all X ,Y ∈ Γ(D) and Z ∈ X(M). Thus R is parallel along D relative to the normal
connection. We have from Proposition 8 that f admits a singular extension

F(x, t) = f (x)+ tλ (x)

for λ ∈ Γ( f∗T M ⊕P) as a flat hypersurface. Moreover, F has R as normal bundle and ∂t

belongs to the relative nullity distribution. Then (∇̃X λ )R = 0 for any X ∈ X(V3). Hence
(4.18) is satisfied and thus τ|V3 extends in the singular sense. This is a contradiction which
shows that V is empty, and hence also is Ṽ .

It remains to consider the existence of an open subset U ′ ⊂ Mn where ζ1,ζ2 are smooth
and ζ1 + ζ2 = 0. It follows from (4.19) that ζ1 − ζ2 ⊥ N1. Once more, we obtain that
f (U ′) ⊂ Rn+1. Thus, we have an orthogonal decomposition of τ|U ′ as in part (ii) of the
statement and τ1,τ2 extend in the singular sense as follows:

(i) τ̄1(x, t) = τ1(x) to F : U ×R→ Rn+2 where F(x, t) = f (x)+ te.

(ii) For instance locally as τ̄2(x, t) = τ2(x) to F : U × I →Rn+2 where F(x, t) = f (x)+ tN
being N is a unit normal field to f |U in Rn+1.

Remarks 36. In case (ii) of Theorem 30 if τ1 is trivial then τ1 and τ2 extend in the same
direction, and hence τ also does. Thus we are also in case (i).

Notice that for p = 2, as part of the proof we have shown that an infinitesimal bending of a
submanifold without flat points as in in part (ii) of Theorem 21 cannot be genuine.

5.2 The complete case

Let f : Mn → Rn+1 be an isometric immersion, and let τ be an infitesimal bending of f . If B
is the symmetric tensor associated to τ , we have in this case that ∆∗ = ∆∩kerB. Observe
that (3.15) implies that

∇T B = BCT =C′
T B (5.2)

for any T ∈ Γ(∆∗), where C is the splitting tensor of ∆∗.
If f is such that rank A ≥ 2, we have from (3.14) that rank B ≤ 2 and ∆ ⊂ kerB, in

particular ∆∗ = ∆. The following result allows us to transport information along geodesics in
rulings that are not necessarily relative nullity.

Lemma 37. Let f : Mn → Rn+1 be a ruled hypersurface of constant rank 2 with complete
relative nullity leaves. Assume that the splitting tensor of the relative nullity does not vanish
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on any open subset. If τ is an infinitesimal bending of f , then its associated symmetric tensor
B satisfies

B|
∆⊥ =

[
θ 0
0 0

]
(5.3)

with respect to a local orthonormal basis {Y,X} of ∆⊥ such that Y is orthogonal to the
rulings. Moreover, the smooth function θ verifies

X(θ) = ⟨∇YY,X⟩θ . (5.4)

Proof. On the open dense subset where C ̸= 0, let T ∈ Γ(C⊥
0 ) be unitary. Locally take

X ,Y ∈ Γ(∆⊥) orthonormal such that Y is orthogonal to the rulings. We have seen in the proof
of Lemma 5 that X ∈ Γ(kerCT ). Moreover, Lemma 3 implies that CT = µJ for some smooth
function µ , where J ∈ Γ(End(∆⊥)) is defined by JX = 0 and JY = X .

We denote the restrictions of A and B to ∆⊥ by the same letters and let D ∈ Γ(End(∆⊥))

be given by D = A−1B. From (2.2) and (5.2) we have

ADCT =C′
T AD = ACT D.

Hence A[D,CT ] = 0, and thus D commutes with J. This gives D = φ1Id +φ2J and

B = φ1A+φ2AJ.

Since the immersion is ruled, then A has the form

A =

[
λ ν

ν 0

]
.

We easily have from (3.14) that φ1 = 0, and therefore B has the form (5.3). Finally (5.4)
follows from (3.15).

Remark 38. From the above and Theorem 13 in [13], the set of infinitesimal bendings of
a ruled hypersurface satisfying the assumptions of the preceding result, is in one to one
correspondence with the set of smooth functions on an interval.

The following result is essential in the proof of Theorem 31.

Lemma 39. Let ν∗ > 0 be constant on an open subset U ⊂ Mn. If γ : [0,b]→ Mn is a unit
speed geodesic such that γ([0,b)) is contained in a leaf of ∆∗ in U, then (5.2) holds on [0,b].

Proof. It follows immediately from Lemma 33.
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Proof of Theorem 31: Let τ be a non-trivial infinitesimal bending of f and let B be its
associated symmetric tensor. We consider the subsets of Mn defined by

Mi = {x ∈ Mn : rank A(x)≥ i}.

Observe that M2 ̸= /0, because otherwise we would have from Lemma 3 that f would be
a cylinder over a curve which is ruled out by our assumptions (this also follows from a
well known result due to Hartman). It follows from Proposition 11 and Proposition 18 that
B|M3 = 0. Let V ⊂W2 = M2 \ M̄3 be the open subset of Mn defined by

V = {x ∈W2 : B(x) ̸= 0} .

We claim that the leaves of relative nullity in V are complete. Otherwise, there is a
geodesic γ : [0,b]→ Mn contained in a leaf of the relative nullity such that γ([0,b))⊂V and
γ(b) /∈V . From Lemma 39 we have that B satisfies

∇γ ′(s)B =C′
γ ′(s)B (5.5)

on [0,b] with B(b) = 0, where C′
γ ′ denotes the transpose of Cγ ′ . Take a parallel orthonormal

basis of ∆⊥ along γ and regard (5.5) as a differential equation of matrices. Since B(b) = 0,
Lemma 34 implies that B vanishes along γ . This is a contradiction, and proves the claim.

We show next that f |V is ruled using arguments from the proof of Proposition 2.1 in [8].
By Lemma 4 the codimension of C0 is at most one. The assumption that f (M) does not
contain a cylinder gives that the subset

V0 = {x ∈V : C(x) = 0}

has empty interior. Let T ∈ Γ(∆) be a local unit vector field on the open subset V1 =V \V0

spanning the orthogonal complement of C0. Using again Lemma 4 it follows that rank CT = 1.
Moreover, we have from (2.3) that V1 and V0 are both union of complete relative nullity
leaves.

We claim that the smooth distribution ∆⊕kerCT on V1 is totally geodesic. If kerCT is
locally spanned by a unit vector field X , then (∇X T )

∆⊥ = 0. From Lemma 3 we have that
∇T X = 0. Since ∆ is totally geodesic, then ∆⊕kerCT is integrable. It remains to show that
⟨∇X X ,Y ⟩ = 0 where Y ∈ Γ(∆⊥) is a unit vector field orthogonal to X . Since the only real
eigenvalue of CT is zero, then CTY = µX for a smooth non vanishing function µ . Lemma 1
yields

(∇h
XCT )Y = (∇h

YCT )X ,
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which is equivalent to
X(µ) = ⟨∇YY,X⟩µ (5.6)

and
µ⟨∇X X ,Y ⟩= 0.

The last equation proves the claim.
Since CT is nilpotent, we have that kerC′

T = ImC′
T . Since C′

T A = ACT we have C′
T AX = 0,

and then
⟨AX ,X⟩= 0.

Thus the leaves of ∆⊕kerCT are totally geodesic submanifolds of Rn+1, that is, f |V1 is ruled.
Next we prove that the rulings contained in V1 are complete. Recall that the leaves of

relative nullity in V1 are complete. Assume otherwise that there is an incomplete ruling in V1.
Thus, there is a geodesic δ : [0,a]→ Mn in the direction of X such that δ (a) /∈V1. We have
from Lemma 5 that the rank of f at δ (a) is 2. Moreover, from the second statement on that
lemma, it follows that (5.6) extends to δ (a) where Y ∈ Γ(∆⊥) is as before. Since µ is not
zero along δ we have that δ (a) /∈ V0, and hence δ (a) /∈ V . On the other hand, Lemma 37
yields that B has the form (5.3) with respect to {Y,X} and that θ ∈ C∞(M) verifies (5.4).
Using again Lemma 5 we see that (5.4) extends smoothly to [0,a] with X = δ ′. But then B
has to vanish along δ , and that is a contradiction.

Let S be a connected component of V1 and let x ∈ ∂ S̄ together with a sequence x j ∈ S be
such that x j → x. Let L j be the affine subspace of Rn+1 determined by the ruling through
f (x j). Since the rulings are complete, there is an affine subspace L through f (x) which is
the limit of the sequence determined by L j. In fact, suppose that there are two subsequences
L′

j and L′′
j converging to different subspaces L′ and L′′ that intersect at f (x). Then, in a

neighborhood of x different subspaces L′
j and L′′

j would intersect, and this is a contradiction.
Clearly L ⊂ f (∂ S̄), and thus f |S̄ is a ruled strip.

Notice that if two ruled strips have common boundary then their union is also a ruled
strip. Take x ∈ V0. Since V1 is dense in V , then f (x) ∈ L ⊂ f (M) where L is an affine
(n−1)-dimensional subspace of Rn+1 that is the limit of a sequence of rulings. Suppose that
there exist two sequences of rulings L′

j and L′′
j converging to affine subspaces L′ ̸= L′′ that

intersect at f (x). Then L′
j intersects L′′ in a hyperplane for large values of j. Fixing j large

enough, the same holds for any ruling in a neighborhood of rulings of L′
j.

Let Z′ and Z′′ be vector fields tangent to L′
j and L′′, respectively, and let R be a vector

field tangent to L′′∩L′
j. Since ∇̃RZ′ and ∇̃RZ′′ have no normal components, it follows that

L′′ ∩ L′
j is a complete relative nullity leaf. The same holds for the nearby rulings. In a

neighborhood of y ∈ L′′ ∩L′
j, as before take unit vector fields T ∈ Γ(C⊥

0 ), X ∈ Γ(kerCT )



46 Global results

and Y such that CTY = µX with µ ̸= 0. Let γ be the unit speed geodesic of Mn such that
f ◦ γ lies in L′′, f (γ(0)) = y and is orthogonal to ∆. Then γ ′ = aX +bY with b ̸= 0. Hence
⟨CT γ ′,γ ′⟩= 0 is equivalent to abµ = 0. This yields a = 0, and thus γ ′ = Y is orthogonal to
X . Since f∗∇γ ′T is tangent to L′′ and f∗X is orthogonal to L′′, then CTY = 0, and this is a
contradiction. Therefore, we have seen that any sequence of points in V1 converging to x,
determines the same affine subspace L as the limit of the correspondent rulings. Moreover,
we have shown that L does not intersect f (V1).

We have proved that there exists an open neighborhood U of x such that f |U is ruled and
has complete relative nullity leaves. Using Lemma 37 as above, we obtain that the affine
subspace L is contained in f (V0). Hence, every connected component of V defines a ruled
strip.

To conclude the proof of the theorem it remains to show that B = 0 on the open subset
W1 = M1 \ M̄2, that is, that B vanishes outside ruled strips. It follows from (3.14) that
B(∆)⊂ ImA, hence rank B ≤ 2 on W1. Let V ′ be the open subset of W1 defined as

V ′ = {x ∈W1 : B(x) ̸= 0} ,

then ∆∗ = kerB on V ′.
We claim that V ′ is empty. Suppose otherwise. Let V ′′ ⊂V ′ be the open subset where

ν∗ attains its minimum in V ′, say ν∗
0 . We see next that the leaves of ∆∗ are complete on

V ′′. On the contrary, suppose that there is a geodesic γ : [0,b]→ Mn such that γ([0,b))⊂V ′

is contained on a leaf of ∆∗ and that γ(B) /∈ V ′′. By lemmas 2 and 33, we know that
ν(γ(b)) = n−1 and ν∗(γ(b)) = ν∗

0 . Then γ(b) ∈ M̄2 and B(γ(b)) ̸= 0. Take a neighborhood
of γ(b) where B ̸= 0. Since γ(b)∈ M̄2, there is a sequence xk ∈V such that xk → γ(b). Recall
that each connected component of V defines a ruled strip. Let Lk be the affine subspace of
Rn+1 given by the ruling through f (xk). As before, there is an affine subspace L ⊂ f (M̄2) of
dimension n−1 which is the limit of the sequence Lk and contains f (γ(b)). Since Aγ ′(b) = 0
and the geodesic f ◦γ is transversal to L, we have that A(γ(b)) = 0, and that is a contradiction.
Hence ∆∗ has complete leaves in V ′′.

The leaves of the relative nullity foliation cannot be complete on any open subset of W1.
This follows easily from Lemma 3 and the assumptions on f . Hence we necessarily have
that ν∗

0 = n−2.
Take local orthonormal vector fields X and Y in V ′ orthogonal to kerB such that X is an

eigenfield of A. Then A and B have the expressions

A|kerB⊥ =

[
λ 0
0 0

]
, B|kerB⊥ =

[
µ ρ

ρ 0

]
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with respect to the frame {X ,Y} and λ ̸= 0 ̸= ρ .
Given T ∈ Γ(∆) let cT be defined by CT X = cT X . Since X is parallel along the relative

nullity leaves, we have

(∇X B)Y = (X(ρ)+ cY µ)X +2cY ρY +ρ(∇X X)kerB

and
(∇Y B)X = Y (µ)X +Y (ρ)Y +ρ∇YY.

In particular (3.15) yields
Y (ρ) = 2cY ρ. (5.7)

Let W ′
1 ⊂W1 be the dense subset where the the relative nullity leaves are not complete.

Take a point x ∈ V ′′ ∩W ′
1. Since the leaf of the relative nullity foliation through x is not

complete, there is a geodesic δ : [0,b]→ Mn contained in that leaf tangent to Y such that
δ ([0,b)) ⊂ V ′′ and δ (b) /∈ V ′′. By the same transversality argument as above we see that
ρ(δ (b)) = 0. It follows from (5.7) that ρ = 0 along δ , and that is a contradiction proving
the claim that V ′ is empty.

Corollary 40. Let f : Mn →Rn+1 be an isometric immersion of a simply connected Rieman-
nian manifold Mn satisfying the hypothesis of Theorem 10. If τ is a non-trivial infinitesimal
bending of f , then τ is the variational field of an isometric bending.

Proof. Let B be the symmetric tensor associated to the infinitesimal bending τ . It is easy
to see using (5.3) and (5.4) that the symmetric tensors A+ tB, t ∈ R, satisfy the Gauss
and Codazzi equations. Then, they give rise to an isometric bending of f having τ as its
variational field.
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