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Abstract

We study the physical diffusive effect caused by capillary pressure between phases in three-phase flow in
porous media, disregarding gravitational effects. The problem is modeled by a system of two nonlinear
conservation laws. We solve a class of Riemann problems for this model where one of the viscosities
is higher than the other two. To this end, we first developed a methodology using artificial diffusion
and identified the transitional surfaces and associated shocks, which appear as a result of loss of strict
hyperbolicity at an isolated point in the space of saturations. We identify the surfaces that characterize
solutions which require transitional shocks as part of the solution to Riemann problems. We use the wave
curve method to determine the solutions for arbitrary Riemann data (i.e., left and right states), except
for a small set of right states that utilize transitional rarefactions for the corresponding solutions. This
methodology combines theoretical analysis with numerical experiments to furnish scientific evidence for
the existence (and uniqueness) of solutions with continuity under variation of data. Finally, we present
the transitional surface for the general case where diffusion arises from capillary effects.

Key words: Flows in porous media, Riemann problem, capillary pressure effects, viscous profiles;
conservation laws.

Resumo

Estudamos o efeito difusivo causado por pressão capilar entre fases em escoamento trifásico em meios
porosos, desconsiderando efeitos gravitacionais. O problema é modelado por um sistema de duas leis de
conservação não lineares. Resolvemos uma classe de problemas de Riemann em que a viscosidade do
óleo é maior que aquelas da água e do gás. Para isso, desenvolvemos uma metodologia utilizando, inicial-
mente, difusão artificial e identificamos as superfícies de choques trasicionais associados, que aparecem
como resultado da perda de hiperbolicidade estrita em um ponto isolado do espaç de saturações. Iden-
tifcamos as superficies que caracterizam as soluções que requerem choques transicionais como parte da
solução do problema de Riemann. Usamos o metodo da curva de onda para determinar as soluçoes para
dados de Riemann (i.e., estados a esquerda e a direita) arbitrarios, exceto para um pequeno conjunto de
estados a direita que exigem o uso de rarefações transicionais para as soluções correspondentes. Essa
metodologia combina análise teórica e experimentos numéricos para fornecer evidência científica da ex-
istência (e unicidade) de soluções com continuidade sob variação dos dados. Finalmente, apresentamos
a superfície transicional para o caso real onde a difusão surge de efeitos capilares.

Palavras chave : Escoamentos em meios porosos, Problema de Riemann, efeitos de pressão capilar,

iv



perfis viscosos; leis de conservação

v



Contents

Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction 1

2 Preliminaries 4
2.1 Riemann solutions for a system of conservation laws . . . . . . . . . . . . . . . . . . . 4

2.1.1 Rarefactions waves, rarefaction curves and inflection locus . . . . . . . . . . . . 5
2.1.2 Shock waves, Rankine-Hugoniot condition/locus and shock curves . . . . . . . . 7

2.2 Entropy condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Viscosity admissibility criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Nomenclature for discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Bifurcation manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Wave groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Wave Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Construction of wave curves: Succession Algorithm . . . . . . . . . . . . . . . . . . . . 16

2.7.1 Shock wave groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7.2 Rarefaction wave groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7.3 Composite components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7.4 General wave groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7.5 Succession algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7.6 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 The model 21
3.1 Derivation of the system of conservations laws . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Equations in dimensionless form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 The Corey model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 The Saturation Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Properties of fractional flow functions in Corey Quad model . . . . . . . . . . . 28

3.4 Properties of the Viscosity Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Properties of Corey Quad model 32
4.1 Rarefaction Foliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vi



4.2 Hugoniot curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Secondary Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Double contact Locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.1 Mixed double contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.2 Fast double contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Inflection locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.1 Slow inflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.1.1 Umbilic point of type I . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.1.2 Umbilic point of type II . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.2 Fast inflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.2.1 Umbilic point of type I . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.2.2 Umbilic point of type II . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Boundary Extension sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 The role of reduced two-phase flow 45
5.1 Parameters and coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Analytic expressions for certain states over invariant lines . . . . . . . . . . . . . . . . . 47
5.3 Dependence of distinguished two-phase states on fluid viscosities . . . . . . . . . . . . . 50
5.4 Transitional shocks in reduced two-phase flow model . . . . . . . . . . . . . . . . . . . 58
5.5 Transitional Rarefaction waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Wave curves 64
6.1 Division of saturation triangle in SRi and FRi regions . . . . . . . . . . . . . . . . . 64
6.2 Subdivision of SRG in forward L -regions . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Compatibility and admissibility boundaries . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Boundary for loss of compatibility between transitional and fast shocks . . . . . 69
6.3.2 Boundary for loss of admissibility of nonlocal shocks . . . . . . . . . . . . . . . 70
6.3.3 Boundary for loss of compatibility of sonic shocks . . . . . . . . . . . . . . . . 71

6.4 Subdivision of FRi for i ∈ {D,E,B} in backward R -regions: umbilic point type II 72
6.4.1 Subregions R1,R2 and R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4.2 Subregions R4,R5 and R6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.3 Subregions R4′,R5′ and R6′ . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4.4 Behavior of subregions R for νG > 8 . . . . . . . . . . . . . . . . . . . . . . 102
6.4.5 Behavior of subregions R for νG ≤ 1 and U ∈ IIG . . . . . . . . . . . . . . 104

6.4.5.1 Subregions Ri with i ∈ {1, 2, 3, 4, 4′} . . . . . . . . . . . . . . . . 105
6.4.5.2 Delta wing region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.6 Influence of mixed double contact in subregions Ri of macro regions FRD for
U of type II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Final considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

vii



7 The surface of transitional shocks: case B(U) = I 109
7.1 Transitional boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Relations between macro regions, R-regions and transitional boundaries for umbilic

points of type II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3 Description of transitional Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3.1 (M2, σ
f
int) intersecting the region T3 or the curveA . . . . . . . . . . . . . . 127

7.3.2 (M2, σ
f
int) intersecting the curveB . . . . . . . . . . . . . . . . . . . . . . . 129

7.3.3 (M2, σ
f
int) intersecting the Region T2 . . . . . . . . . . . . . . . . . . . . . . 129

7.4 Solving Riemann problems that involve transitional shocks . . . . . . . . . . . . . . . . 130

8 Riemann solutions and LR-regions 134
8.1 Backward slow wave curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.2 Right s-extension curves ofW−f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.3 Compatibility boundaries for LR-regions . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.4 Construction of LR-regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.4.1 LR-regions forR ∈ R1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.4.2 LR-regions forR ∈ R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.4.2.1 W−f (R) with a single nonlocal component of fast shocks . . . . . . . 140
8.4.2.2 W−f (R) with two nonlocal components of fast shocks . . . . . . . . 143

8.4.3 LR-regions forR ∈ R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.4.4 LR-regions forR ∈ R4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.4.5 LR-regions forR ∈ R5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.4.6 LR-regions forR ∈ R6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.4.7 LR-regions forR ∈ Ri with i ∈ {4′, 5′, 6′} . . . . . . . . . . . . . . . . . . 162

8.5 Diagrams of comparison between regions . . . . . . . . . . . . . . . . . . . . . . . . . 162

9 Nonlinear effects of capillarity induced diffusion in conservation laws 166
9.1 Saddle-saddle connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.2 Saddle node-saddle connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.3 Transitional boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

10 Conclusions 176

viii



Chapter 1

Introduction

In the present thesis, we solve a now longstanding unresolved problem in shock wave theory, namely,
to characterize the nonlinear wave structure that emerges from discontinuous (Riemann) initial data for
the problem of three phase flow in a porous medium. The wave structure is described for most pairs
of constant states, and a precise notion of uniqueness and continuous dependence on initial states is
formulated and demonstrated to apply.

The equations of three-phase flow in porous media are now a classical system of nonlinear conser-
vations laws. The Riemann problem is interesting from several points of view. It is one of the simplest
models that follows entirely from the constraints of conservation in oil-reservoir simulation, and hence
plays a fundamental role in that subject. In PDE’s, it is an easy to express system of equations describing
extreme nonlinear wave motion, and since it is derivable from principles of conservation alone, it has
taken on the status of a basic model in shock wave theory.

The simplicity of the equations disguise the extreme nonlinearities present, and these place three
phase flow far from the classical setting of gas dynamics. As such, the analysis of these equations
has long remained beyond the applicability of current mathematical theories. It has remained a long-
standing unsolved problem for decades to characterize the nonlinear wave phenomena encoded in the
Riemann problem for three phase flow. The attempt to solve this problem has generated significant
research, including warm-up problems whose solutions have isolated new nonlinear wave phenomena
in more tractable settings and stimulated new mathematical techniques tailored to their solution, each
representing pieces of the full nonlinear problem considered here.

The main obstacle to a characterization of nonlinear waves in three-phase flow is the presence of
umbilic points where wave speeds coincide. This leads to the presence of complicated waves that ob-
scure the recognition of stable wave structures from unstable ones. We have given the solution to the
Riemann problem for the equations of three-phase flow. This includes formulating and demonstrating a
successful entropy condition for choosing the stable family of solutions, and providing strong evidence
of the compelling result that such a family exists having the property of continuous dependence on left
and right states.

We now describe briefly previous work related to our study. We refer the reader to [29] for a detailed
review of the three phase flow theory.
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In [19, 21], Isaacson et. al. identified transitional waves in the Riemann solution of systems of two
conservation laws with general diffusion matrices. Transitional shocks are special in the sense that, unlike
classical shocks, the Rankine-Hugoniot constraints linking the shock speed and the states on either side
of the shock interface are insufficient to exactly determine the shock speed and the amplitude of waves
emerging along outgoing characteristics, when the shock wave is perturbed. It was shown in [22, 27, 28]
that the requirement of existence of viscous profiles provides exactly the number of additional equations
to resolve this indeterminacy.

In [22, 27, 28], the authors introduce explicitly the additional equations resulting from the viscous
profile requirement. They also develop a constructive method for sensitivity analysis, under perturbations
of problem parameters, of such shocks in which relations between the states on opposite sides of the
shock and the shock speed are derived.

In [8, 9], Azevedo et. al. established existence, uniqueness and L1
loc-continuity under change of data

of Riemann solutions for green reservoirs, in which a mixture of water, gas ans oil is injected into a
reservoir initial saturated with oil. In [3] Andrade et. al. exhibited Riemann solutions for right states
near to vertex O and left states along of [G,W ]. Then, in [4] the authors extended the results for right
states in a quadrilateral near to vertex O.

In [7] Azevedo, Marchesin, Plohr, and Zumbrun showed that, in the presence of nontrivial diffusion
terms, such as those resulting from capillary pressure, it is not the elliptic region that plays the role of
an instability region; rather, it is the region defined by Majda-Pego [26], which depends on the diffusion
terms too and contains the elliptic region. In [1, 2], Abreu et. al., performed two dimensional numerical
simulations of Riemann solutions taking into account diffusive capillary effects and heterogeneities in
the porous medium.

We now explain briefly how this work is organized. In Chapter 2, we recall some basic facts of
the theory for systems of conservation laws, bifurcation theory of Riemann solutions and the wave curve
method, to provide a terse background on these topics. Section 2.7 includes a discussion of the succession
algorithm, which we employ for the construction of wave curves. This algorithm was developed at the
Laboratory of Fluid Dynamics, IMPA, in collaboration with Professor B. Plohr, and implemented in
"ELI," our specialized software for the solution of Riemann problems.

In Chapter 3, we derive the system of conservation laws that models three-phase flow in porous
media, under a few physical simplifications. We also introduce the Corey model with quadratic per-
meabilities for the fluid phases which is adopted in this work. We conclude this chapter by presenting
relevant properties of capillarity induced diffusive effects and find the physically correct form of the
associated viscosity matrix.

In Chapter 4, we describe the main bifurcation manifolds associated to the Corey quadratic per-
meability model. These manifolds play a crucial role in the investigation of the structural stability of
Riemann solutions and their L1

loc-continuity.
We study in Chapter 5 the reduction of the three-phase flow system (3.36) to the scalar Buckley-

Leverett conservation law for two-phase flow in porous media. This reduction occurs along certain
invariant lines in state space, which play a prominent role in the construction of Riemann solutions. We
then present properties of a few exceptional points at the intersection of some of the bifurcation manifolds
with the invariant lines. We also present a subdivision of the saturation triangle in terms of the location
of the umbilic point. Finally, we define and compute the transitional map along the invariant lines.

2



In Chapter 6, we discuss the procedure for the construction of backward fast wave curves and the
so-called R-regions associated with them. We also study the behavior of these regions under variation
of the fluid viscosities µw, µo and µg.

We construct the surface of transitional shocks in Chapter 7, for a viscosity matrix which is a multiple
of the identity matrix. We introduce and use the three dimensional phase space in saturations and speeds
to investigate the speed compatibility between transitional waves and the fast wave groups constructed
in Chapter 6. We also describe the dependence of the transitional surface on the fluid viscosities. This
dependence was first studied by Marchesin and Mailybaev in [28] for a general system of n equations
and for more general sets of dual-family shocks which include transitional shocks.

In Chapter 8, we determine the L -regions associated to each R-region described in Chapter 6. With
this procedure, we detail the solutions of Riemann problems defined by any left state L and right state R
belonging to the regions previously defined.

We construct the surface of transitional shocks for a physically correct viscosity matrix in Chapter
9. Surprisingly, this surface displays, essentially, the same topological structure found in the case of an
identity viscosity matrix.

The numerical experiments conducted in this work used the specialized softwares "RPN" and "ELI,"
developed in close collaboration with Professor Bradley Plohr by the Laboratory of Fluid Dynamics,
headed by Professor Dan Marchesin. These software packages allowed us to obtain and explore: integral
curves, Hugoniot curves, the main bifurcation loci and phase portraits of dynamical systems and wave
curves, which are all fundamental for the construction of Riemann solutions. Numerical calculations in
MATLAB were also performed.

3



Chapter 2

Preliminaries

This chapter contains a brief introduction to the theory of Riemann solutions. We refer the reader to
[11, 15, 16, 38, 40] for a detailed account on the general theory of conservation laws and Riemann
problems.

2.1 Riemann solutions for a system of conservation laws

Consider a system of conservation laws of the form

∂tU + ∂xF (U) = 0, x ∈ R, t ∈ R+, (2.1)

which governs the evolution of a 2-dimensional state vector varying in one spacial dimensional and time

U(x, t) = (u(x, t), v(x, t))T .

The function F : Ω ⊆ R2 → R2, F = F (u, v) = (F1(u, v), F2(u, v))T is called the flux function and
is usually considered of class C2(Ω). The characteristic speeds for (2.1) (i.e., the eigenvalues λ−, λ+ of
the Jacobian matrix DF (U)) are given by the formulae

λ±(U) = (1/2)
(

tr(DF (U))±
√

[tr(DF (U))]2 − 4 det(DF (U))
)
. (2.2)

Definition 2.1.1. System (2.1) is called hyperbolic if λ±(U) ∈ R, ∀U ∈ Ω ⊂ R2. In the region of
hyperbolicity (where the characteristic speeds are real), we have the natural ordering

λ−(U) 6 λ+(U). (2.3)

We call λs = λ− the slow-family characteristic speed and λf = λ+ the fast-family characteristic speed.
We say that the system is strictly hyperbolic if λs 6= λf , ∀U ∈ Ω. The non-linearity of F implies that
the characteristic speeds depends on U , which in general leads to focusing of waves and the formation
of discontinuous solutions. Therefore, (2.1) must be interpreted in the sense of distributions.

4



Definition 2.1.2. A Riemann problem for the conservation law (2.1) is a special Cauchy problem with
initial data

U(x, 0) =

{
UL, if x < 0

UR, if x > 0
, (2.4)

where UL and UR are constant.

The general solutions of (2.1) consists of weak solutions that respect the invariance of equation
(2.1) under the scaling transformation (x, t) → (cx, ct) with c > 0. Such scale-invariant solutions
satisfy the initial conditions of the Riemann problem as well as the PDE (2.1). Conversely, solutions
of a Riemann problem are expected to be scale-invariant, i.e., they depend on t and x only through the
combination ξ = x/t. Although Riemann problems are only special initial value problem may be viewed
as a nonlinear superposition of scale invariants solutions [18].

A scale-invariant solution can be partitioned into several groups of waves; the waves in each group
move together as a single entity. More precisely, we define a wave group to be a scale-invariant solu-
tion that contains no intermediate constant states. Thus a solution of a Riemann problem comprises a
sequence of a wave groups moving apart from each other. Waves groups consist of two kinds of funda-
mental solutions: (almost everywhere smooth) rarefactions and (discontinuous) shocks (see Figure 2.1).

x

t

UL

UM

Wave Group

UR

(a)

x

t

Ul

Ur

Shock
Rarefaction

(b)

Figure 2.1: Scale-invariant solutions (a) Example of solution for a Riemann problem, comprising a sequence of
two wave groups. (b) A centered rarefaction wave and centered discontinuous wave .

2.1.1 Rarefactions waves, rarefaction curves and inflection locus

Assuming U to be a differentiable function of ξ = x/t, system (2.1) becomes

(DF (U(ξ))− ξI)U ′(ξ) = 0, (2.5)

where I is the identity matrix. As U ′(ξ) 6= 0, there is a (right) eigenvector of DF (U)) associated to
each eigenvalue ξ = λi(U) for i = s or f . Therefore, smooth solutions of system (2.1) lie on an integral
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curves of a (right) characteristic field of DF (U) in state space Ω. That is, they satisfy the system of
ordinary differential equations,

U ′(ξ) = ri(U), i = s, f, (2.6)

where ri is a right eigenvector of DF (U) corresponding to λi(U) in (2.2).

Definition 2.1.3. For i = s, f , the i-inflection locus Ii is the subset of the strictly hyperbolic region
formed by all points U such that ∇λi(U) · ri(U) = 0 and the inflection locus is I = Is ∪ If . The
i-inflections are subdivided into I+

i and I−i according to whether λi is a maximum or a minimum along
the integral curves of ri.

Throughout this work, we loosely use the same notation for Ii and its closure; it turns out that the
closure of Ii contains the umbilic point.

Remark 2.1.4. In the strictly hyperbolic region, consider integral curves of the eigendirection fields
rs and rf and the respective eigenvalues along them. Any closed part of s-integral curve (or f -integral
curve) where the s-eigenvalue (or f -eigenvalue) is monotonic forms a s-rarefaction curve (or f -rarefaction
curve). The rarefaction curves are extended to include umbilic points, preserving the monotonicity of the
eigenvalue.

Generically, an integral curve crosses I transversely and the corresponding eigenvalue on the integral
curve reaches an extremum at I. Therefore, rarefaction curves usually end (or start) on I. However, if
an integral curve is tangent to I, generically, the eigenvalue is still monotonic, so the corresponding
rarefaction curve does not end at I, see [6].

Since an eigenvalue is monotonic on a rarefaction curve, the latter is parametrized by the eigenvalue,
i.e., any i-rarefaction curve is the image of a map γ : J ⊆ R −→ Ω, λi 7−→ γ(λi) where J is a closed
interval. Renaming ξ = λi and γ(ξ) = U(ξ), we have γ : J ⊆ R −→ Ω, ξ 7−→ U(ξ).

Definition 2.1.5. Let the map γ : J ⊆ R −→ Ω, ξ 7−→ U(ξ), in a closed interval J , be an i-rarefaction
curve. The function U(ξ), ξ = x/t, is a solution of (2.5) out side the inflection locus (where U ′(ξ) is
unbounded) and umbilic points (where usually U ′(ξ) is not defined). This solution is called i-rarefaction
wave and is denoted by Rs or Rf , depending on the family of the vector field used.

A solution of Riemann problem (2.1),(2.4) for an i-rarefaction wave is given by

U(x, t) =


UL, if x ≤ λi(UL)t,

λ−1
i (x/t), if λi(UL)t ≤ x ≤ λi(UR)t,

UR, if x ≥ λi(UR)t.

(2.7)

Definition 2.1.6. The i-th characteristic field of DF (U) is said to be genuinely nonlinear in a subset
Ω′ ⊂ Ω if ∇λi(U) · ri(U) 6= 0, ∀U ∈ Ω′. In other words, if the i-th characteristic velocity is a strictly
monotonous function on the integral curve of the associated line field in subset Ω′. On the other hand, if
∇λi(U) · ri(U) ≡ 0, it is said that the field is linearly degenerate.
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2.1.2 Shock waves, Rankine-Hugoniot condition/locus and shock curves

Consider a function U(ξ), ξ = x/t, with a jump discontinuity from left state Ul to right state Ur propa-
gating with speed σ, i.e., limξ↗σ U(ξ) = Ul, limξ↘σ U(ξ) = Ur. Such a function is a discontinuous
(shock wave) or weak solution of the initial problem (2.1),(2.4) if and only if Rankine-Hugoniot condition
holds (see [40]):

F (Ur)− F (Ul)− σ (Ur − Ul) = 0. (2.8)

These solutions have the form

U(x, t) =

{
Ul, if x < σt,

Ur, if x > σt.
(2.9)

The speed σ in (2.8) may be written as σ(Ul;Ur). By convention, Ul is on the left side of the discontinuity
andUr is on the right side. In general, these states are different from the statesUL andUR of the Riemann
problem initial data. For a fixed Ul, the set of states U such that the pair (Ul;U) satisfies the Rankine-
Hugoniot condition (2.8) for some σ are called the Hugoniot locus for the state Ul and is denoted by
H(Ul). In order to construct the Hugoniot locus for a state Ul, we need to solve the follow system

HUl
(U, σ) ≡ F (Ur)− F (Ul)− σ (Ur − Ul) = 0, (2.10)

whereHUl
: R2×R −→ R2, is called the Hugoniot function. The projection of the zero-setHUl

(U, σ) =
0 onto state space gives H(Ul), which is typically one dimensional; we often call it a curve despite
having self-intersections and singularities [17, 21]. Notice thatH(Ur) can be defined similarly by fixing
Ur instead of Ul in (2.10).

2.2 Entropy condition

Discontinuous waves give rise to no unique solutions of the Riemann problem. Therefore, the relation
(2.8) must be supplemented by additional criteria that aim at identifying the unique and physically rel-
evant solutions. These criteria are known as admissibility criteria or entropy criteria, referring to gas
dynamics. For conservation laws that are genuinely nonlinear and strictly hyperbolic, Lax [23] intro-
duced an eligibility criterion that associates centered discontinuous waves with family characteristics,
so that the characteristic of a family affect both sides of the discontinuity, while features other families
cross the discontinuity experiencing a deviation. For more general conservation laws, characteristics can
afford to be tangent to the discontinuity, so we have the following definitions for admissibility.

Definition 2.2.1. [Slow-family and fast-family shock wave] We define a centered discontinuous wave
to be a Lax discontinuity of the slow-family (also called a Lax slow-shock or Lax s-shock) provided that
the characteristic speeds are related to the propagation speeds as follows:

λs(Ur) < σ < λs(Ul) and σ < λf (Ur). (2.11)

Similarly, we defined a centered discontinuous wave to be a Lax discontinuity of the fast-family (Lax
fast-shock or Lax f -shock) provided that the characteristic speeds are related to the propagation speed
as follows:

λf (Ur) < σ < λf (Ul) and λs(Ul) < σ. (2.12)
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Lax used the nomenclature 1- and 2-shock for slow and fast shocks while we adopt the more rep-
resentative s- and f -shocks or notation. In certain cases we allow some equalities in (2.11) or (2.12),
giving way to a generalized Lax criterion, which will be discussed latter in grater detail.

However, both the original and generalized Lax criteria can restrict the analysis too much or not
enough, and we might be left with no solutions or too many. We are led to impose that discontinu-
ous waves possess viscous profiles, as described in more detail in Section 2.2.1. This is the viscosity
admissibility criterion. In general, it is distinct from the characteristic criterion, since there exist Lax dis-
continuities that do not have viscous profiles, while some discontinuities with viscous profiles are not of
Lax type, see [41]. The viscous criterion, too, can fail to guarantee existence and uniqueness of solutions
of Riemann problems. In this work we construct solutions that have viscous profile and can also satisfy
Lax criterion.

Definition 2.2.2 (Under-compressive and over-compressive shock waves). We define a centered dis-
continuous wave to be a crossing (also called transitional) discontinuity provided that the characteristic
speeds are related to the propagation speeds as follows:

λs(Ul) < σ < λf (Ul) and λs(Ur) < σ < λf (Ur). (2.13)

Similarly we defined a centered discontinuous wave to be a compressive (also called over-compressive)
discontinuity provided that the characteristic speeds are related to the propagation speed as follows:

λf (Ur) < σ < λs(Ul). (2.14)

If the crossing discontinuity is admissible by viscous profile we call it a transitional shock (or t-shock).
Similarly, an over-compressive discontinuity that has viscous profile is called and over-compressive
shock (or o-shock).

2.2.1 Viscosity admissibility criterion

We consider system (2.1) with parabolic regularization by adding a viscous term , i.e.

∂tU + ∂xF (U) = ε∂x (B(U)∂xU) , ε > 0. (2.15)

Typically, system (2.1) is an approximation to equation (2.15) in the limit of ε → 0+. Here B(U) is a
2× 2 viscosity matrix determined by small scale physical effects. This matrix is assumed to be positive
definite. Considering the travelling wave solution

U(x, t) = U(η) with η =
x− σt
ε

,

we find that U(η) = (u(η), v(η))T should satisfy the system of ordinary differential equations

− σU(η)′ + (F (U(η)))′ =
(
B(U(η))U(η)′

)′
. (2.16)

Here prime, denotes differentiation with respect to η. Integrating (2.16) with respect to η we obtain

B(U(η))U(η)′ = F (U(η))− σU(η) + C, (2.17)
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where C is the constant of integration. We are interested in finding solutions to the Riemann problem
(2.1), (2.4) of the form (2.9), where σ satisfies the Rankine-Hugoniot condition (2.8) and U(η) satisfies
the following boundary condition

lim
η→−∞

U(η) = UL and lim
η→+∞

U(η) = UR. (2.18)

From (2.18), UL is a singularity of (2.17) and

C = σUL − F (UL). (2.19)

From (2.17) and (2.19) we obtain the associated ODE system

B(U(η))U ′(η) = −σ (U(η)− UL) + F (U(η))− F (UL). (2.20)

If we multiply both sides of (2.20) by the adjugate matrix Adj(B(U)) we obtain

det(B(U(η)))U ′ = Adj(B(U(η))) [F (U(η))− F (UL)− σ (U(η)− UL)] . (2.21)

Now we introduce a new rescaled variable ζ , defined by

∂η

∂ζ
= det(B(U)). (2.22)

Using (2.22) in (2.21) we obtain the ODE system:

U̇ = Adj(B(U)) [F (U)− F (UL)− σ (U − UL)] , (2.23)

where the dot represents the derivative with respect to ζ. Now let Xσ(U,UL) be the vector field defined
by

Xσ(U,UL) = Adj(B(U)) [F (U)− F (UL)− σ (U − UL)] . (2.24)

Notice that UL and UR are singularities of this vector field and that all singularities of Xσ lie on the
Hugoniot locus. The singularities ofXσ depend on σ (as well as on UL and UR). We recall the following
definition.

Definition 2.2.3. Let γ be the orbit of a C2 vector field X on the plane that passes through a point p.
The ω-limit of p is the set

ω(p) =
{
q ∈ R2 : ∃ τ −→∞ with γ(τ) −→ q

}
. (2.25)

We note that ω(p) = ω(p̃) if p̃ belongs to the orbit of p. We define the ω-limit set of an orbit as
the set of ω(p) for any p ∈ γ. Similarly, we define the α−limit set for τ −→ −∞. Therefore, for the
existence of a shock wave solution of Ut + (F (U))x = 0, which is a limit of traveling wave solutions of
the associated parabolic equation (2.15), there must be an orbit γ of the vector fieldXσ(U,UL) satisfying

α(γ) = UL and ω(γ) = UR. (2.26)
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Definition 2.2.4. We say that the shock (2.9) is admissible or that it has a viscous profile if there exists
an orbit of the vector field Xσ(U,UL) connecting UL to UR.

We stress the importance of studying the critical points of the ODE system (2.24) for understanding
traveling wave solutions of (2.15). For (2.24), a critical point is a state Uc that satisfies the Rankine-
Hugoniot condition for given state UL and the shock speed σ. The behavior of solutions in the neighbor-
hood of a critical point Uc is reflected in the qualitative features of solutions of the linearization of (2.20)
about Uc:

B(Uc)U
′ = [−σ +DF (Uc)] (U − Uc). (2.27)

Such solutions are determined by the eigenvalues µ and corresponding eigenvectors Ûµ that satisfy

µB(Uc) Ûµ = [−σ +DF (Uc)] Ûµ. (2.28)

For example, U = Uc +
∑

µ cµ exp(µη)Ûµ when the eigenvalues are distinct. Therefore, the character
of the critical point can be determined by the eigenvalues µ.

Definition 2.2.5. Let p be a critical point of a vector fieldX . We say that p is hyperbolic if the linearized
field dX has two eigenvalues with nonzero real part at p.

Following [37], we classify discontinuities in terms of the nature of the equilibrium points UL and
UR of the system of ODEs (2.20). In [37], the following types of equilibria were studied: repeller,
repeller-saddle, saddle, saddle-attractor and attractor.

Definition 2.2.6. We have the following combinations between the type of orbit connecting UL and UR
and the type of these equilibria:

• Lax s-shock, Ss , UL is a repeller and UR is a saddle.

• Lax f -shock, Sf , UL is a saddle and UR is a attractor.

• Transitional shock, ST , UL and UR are saddles.

• Over-compressive shock, SO , UL is a repeller and UR is a attractor.

Remark 2.2.7. If we consider B(U) = I2×2, the eigenvalues of dXσ are µk = −σ + λk(U), k = s, f.
Thus the singularities of Xσ fail to be hyperbolic (in sense of Definition 2.2.5) when µk = 0, i.e.,
σ = λk(U), k = s, f. Then the sign of µk determines the character of the critical point U .

Remark 2.2.8. In the general case where B(U) is not a multiple of the identity matrix, the signs of
λi(U) − σ do not always determine the character of a critical point U . Indeed, a critical point that is a
repeller when B(U) = I2×2 can become a focus when B(U) is changed. However, saddles are preserved
provided that the determinant of B(U) is positive; this can be demonstrated as follows. Because µf
and µs are the eigenvalues of B(U)−1[−σ + DF (U)], their product µfµs has the same sign as that of
(λf − σ)× (λs − σ) , which is negative. Therefore µf and µs must be real and have opposite sign.
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Name Relations
′Ss Left-char. s-shock λs(Ur) < σ = λs(Ul) and σ < λf (Ur)

S′s Right-char. s-shock λs(Ur) = σ < λs(Ul) and σ < λf (Ur)
′S′s Doubly-char. s-shock λs(Ur) = σ = λs(Ul) and σ < λf (Ur)
′Sf Left-char. f-shock λf (Ur) < σ = λf (Ul) and λs(Ul) < σ

S′f Right-char. f-shock λf (Ur) = σ < λf (Ul) and λs(Ul) < σ
′S′f Doubly-char. f-shock λf (Ur) < σ = λf (Ul) and λs(Ul) < σ
′So Left-char. over-compressive λf (Ur) < σ = λs(Ul)

S′o Right-char. over-compressive λf (Ur) = σ < λs(Ul)
′S′o Doubly-char. over-compressive λs(Ul) < σ = λf (Ul), λs(Ur) < σ < λf (Ur)
′ST Left-char. transitional λs(Ul) < σ = λf (Ul), λs(Ur) < σ < λf (Ur)

S′T Right-char. transitional λs(Ul) < σ < λf (Ul), λs(Ur) = σ < λf (Ur)
′S′T Doubly-char. transitional λs(Ul) < σ = λf (Ul), λs(Ur) = σ < λf (Ur)

Table 2.1: Nomenclature of characteristic and doubly characteristic discontinuities

2.3 Nomenclature for discontinuities

In order to describe the Riemann solution we will use the notation found in [31]. Discontinuities with or
without viscous profiles are classified in Definition 2.2.1 and 2.2.2.

Definition 2.3.1. There are eight characteristic discontinuities (i.e., with propagation velocity equal to a
characteristic speed):

• Left-characteristic discontinuities:

1. for slow Lax discontinuities and over-compressive discontinuities with λs(Ul) = σ;

2. for fast Lax discontinuities and transitional discontinuities with λf (Ul) = σ.

• Right-characteristic discontinuities:

1. for slow Lax discontinuities and transitional discontinuities with λs(Ur) = σ;

2. for fast Lax discontinuities and over-compressive discontinuities with λf (Ur) = σ.

Table 2.1 presents the inequalities for each characteristic or doubly characteristic discontinuity. Now,
we extended the characterization of critical pointUL andUR of the ODE’s (2.20) for characteristic shocks
following [37].

Definition 2.3.2. Characteristic shocks are limit cases of i-shock i ∈ {s, f}, when the nodes become
saddle-nodes.

1. Left-char. s-shock (or slow sonic shocks): UL is a repeller-saddle and UR is a saddle;
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2. Right-char. f -shock (or fast sonic shocks): UL is a saddle and UR is a saddle-attractor.

A shock of type X ∈ {s, f,O, T} from states A to B is written as A SX−−→ B. A prime on the left or

on the right of S indicates left- or right-characteristic shocks, respectively. For instance, A
S′s−→ B means

that there exists a s-shock from A to B with speed equal to λs(B), while C
′SO−−→ D means that there

exists an over-compressive shock from C to D with speed equal to λs(C).

2.4 Bifurcation manifolds

Away from certain bifurcation points (primary and secondary bifurcation points), a Hugoniot locus is a
curve and it may be parametrized by a single variable. By taking a fixed left state L and varying right
state U alongH(L), we may consider the speed σ(L;U) as a function onH(L). The following theorem
gives an analytic description of the qualitative behavior of shock speed σ.

Theorem 2.4.1 (Bethe-Wendroff, see [42]). Consider the Hugoniot locus through a state L. Let U0 be
a point on H(L) such that li(U0)(U0 − L) 6= 0, where li(U) is the left eigenvector of DF associated
to λi(U). Then, the speed σ(L;U), regarded as a function along H(L), is critical at the state U0 if and
only if σ(L;U0) = λi(U0), i ∈ {s, f}.

The Bethe-Wendroff theorem states that the speed on the Hugoniot curve is monotonic if the shock
speed is never characteristic. Hence, the speed monotonicity on shock curves.

Now we define certain 1-dimensional manifolds which play a fundamental role in the wave curve
construction in our problems of two unknowns. They are not genuine manifolds since they may have self
intersections or other singularities.

The secondary bifurcation manifold is composed by the states which do not satisfy the hypothesis of
the implicit function theorem; generically the Hugoniot locus changes topology at this locus. In general,
we know that through each state UL there exist locally two Hugoniot branches (each branch transversal
to the other), so each UL is a primary bifurcation.

Definition 2.4.1. A state U belongs to the secondary bifurcation manifold for the family i if there exists
a state U ′ 6= U such that

U ′ ∈ H(U) with λi(U ′) = σ(U ;U ′) and li(U ′)(U ′ − U) = 0, (2.29)

where li(U ′) is the left eigenvector of the Jacobian matrix DF (U ′) associated to λi(U ′).

From Definition 2.4.1 and Theorem 2.4.1, we have the following statement :

Lemma 2.4.2. Consider the Hugoniot locus through a state U0 to be tangent at U ′ to an integral curve
of family i. Suppose that U0 does not belong to the secondary bifurcation manifold. Then σ(U0, U

′) =
λi(U

′) and σ′ = 0.
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Definition 2.4.2. A state U lies on the Hysteresis manifold for the family i if there is a state U ′ 6= U
such that

U ∈ H(U ′) with λi(U ′) = σ(U ;U ′) and ∇λi(U ′)· ri(U ′) = 0, (2.30)

where ri(U ′) is a right eigenvector of the Jacobian matrix DF (U ′).

Remark 2.4.3. Notice that a state U ′ describe in the definition of the Hysteresis must belong to the
inflection manifold.

Definition 2.4.4. A state U belongs to the (i, j)−Double Contact manifold if there is a state U ′ such that

U ′ ∈ H(U) with λi(U) = σ(U ;U ′) = λj(U
′), (2.31)

where the families i and j may be the same or different.

Remark 2.4.5. States on the Double Contact manifold can be junctions of composite and rarefaction
segments in waves curves. This is analogous to the scalar case, where a shock is embedded between two
rarefaction waves, see Oleı̆nik [33].

Definition 2.4.6. Let C be a set in state space. For i ∈ {s, f}, we define the sets:

E−i {C} = {U+ ∈ Ω : ∃U− ∈ C such that U+ ∈ H(U−), and σ(U−;U+) = λi(U−)}; (2.32)

E+
i {C} = {U+ ∈ Ω : ∃U− ∈ C such that U+ ∈ H(U−), and σ(U−;U+) = λi(U+)}. (2.33)

E−i {C} is the i-left-extension and E+
i {C} is the i-right-extension of set C.

Definition 2.4.7. The state U belongs to the boundary contact manifold for the family i (or the boundary
extension), if there exists a state U ′ such that

U ∈ H(U ′) with U ′ on the boundary and λi(U) = σ(U ;U ′). (2.34)

Notice that it can be defined as E±i (∂Ω).

Remark 2.4.8. A boundary contact wave occurs when a junction between wave segments coincides with
the boundary.

Remark 2.4.9. Notice that the hysteresis manifold is the (suitable) extension of the inflection manifold.

We conclude this section with the statement of a theorem that is very useful in this work:

Theorem 2.4.3 (The Triple Shock Rule, see [14]). Consider three states U , V , W ∈ Ω. We have:

1. If V,W ∈ H(U) and σ(U ;V ) = σ(U ;W ), then W ∈ H(V ) and σ(U ;W ) = σ(V ;W );

2. If U, V,W are not collinear, V ∈ H(U) and W ∈ H(U) ∪ H(V ), then σ(U ;V ) = σ(V ;W ) =
σ(U,W ).
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2.5 Wave groups

Usually solutions are constructed from the left state to the right state; thus, the speed of the waves must
increase in the construction from left to right.

Definition 2.5.1 (Speed compatibility criterion). A sequence of two waves is compatible if the head of
the first wave is not faster than the take of the second. (Otherwise, the sequence is incompatible.)

Our models are not strictly hyperbolic and allow the following wave.

Definition 2.5.2. A transitional rarefaction wave is a s-rarefaction which follows a f -rarefaction without
any regions with an intermediate constant state between them.

Shocks, rarefactions and sequences of shocks and rarefaction waves without any intermediate con-
stant states form wave groups. In the following definitions, we use the convention from [37], where the
terms in parentheses are optional (i.e., they may be absent); recall Definitions 2.1.5 and 2.2.6:

• A s-wave group is either a single Ss or a sequence containing (at least) an Rs:

Ss or (S′s) Rs (′S′s Rs) ... (′S′s Rs)(
′Ss). (2.35)

• A f -wave group is either a single Sf or a sequence containing (at least) an Rf :

Sf or (S′f ) (Rf
′S′f ) ... (Rf

′S′f ) Rf (′Sf ). (2.36)

• A transitional wave group is (i) either a single ST or a sequence containing an Rf ′ST ,

ST or (S′f )(Rf
′S′f )...(Rf

′S′f )Rf
′ST ; (2.37)

or (ii) a sequence containing a S′TRs,

S′TRs (′S′s Rs) ... (′S′sRs)(
′Ss); (2.38)

or (iii) containing even a transitional rarefaction, RfRs,

RfRs (′S′sRs) ... (′S′s Rs)(
′Ss). (2.39)

• An over-compressive wave-group is (i) either a single SO or a sequence containing an Rs ′SO,

SO or (S′s)(Rs
′S′s) ... (Rs

′S′s) Rs
′SO. (2.40)

or (ii) a sequence containing a S′O Rf ,

S′O Rf (′Sf Rf ) ... (′S′f Rf )(′Sf ). (2.41)
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• A doubly sonic (or doubly characteristic) transitional wave is a single shock

′S′T . (2.42)

The wave structure of a structurally stable solution for a strictly hyperbolic Riemann problem is necessar-
ily formed by sequences of wave groups as stated in Theorem 2.3 of [37]. Since doubly sonic transitional
waves ′S′T (2.42) do nor appear in our examples, we adopt the version of theorem Theorem 2.3 of [37],
presented in [31] for wave structures.

Theorem 2.5.1 ([31, 37]). For strictly hyperbolic Riemann problems whose solutions do not contain
′S′T waves (2.42), structurally stable solutions consist of a s-wave group (2.35) followed by an arbitrary
number of transitional wave groups (2.37) or (2.38) (in any order), followed by a f -wave group (2.36).

Given that in our work we have an umbilic point inside of our domain, we can have loss of strict
hiperbolicity. Then, the Theorem 2.5.1 motivates the existence of new structures and transitional rarefac-
tions R2 R1. In this work we have two wave structures: (i) the standard case of a s-wave group (2.35),
followed by a f -wave group; (ii) a s-wave group (2.35) followed by a transitional wave group (2.37) or
(2.39), followed by a f -wave group (2.36).

Remark 2.5.3. In our work, there are neither S′T waves (2.38) nor ′S′T (2.42).

A solution is represented by state names separated by arrows with the name of wave group involved
above them, e.g., the Riemann solution for left state L and right state R consisting of a s-rarefaction
joining a left-characteristic s-shock Rs ′Ss followed by a f -shock S2 is represented as:

L pRs−→M1

′Ss−−→M2 p
Sf−→ R, (2.43)

where constant states occupying regions of physical space are followed by p−→ while states that occur at a
single point are followed by −→. Note that in (2.43) M1 does not represent a constant state, whereas M2

does. L and R are always constant states in any Riemann solution .
We define below the composite wave curves, which are fundamental to the construction of Riemann

solutions.

Definition 2.5.4. A composite wave of type rarefaction/shock (or shock/rarefaction) is a solution of the
Riemann problem (2.1), (2.4) consisting of a sequence of a rarefaction (or shock) wave followed by a
shock wave (or rarefaction), with no segment of constant states separating them. We have an i-composite
when the two waves are associated with the same ith-family; otherwise, we have a transitional composite.

Definition 2.5.5. A composite curve by a state L of type rarefaction/shock (or shock/rarefaction) is the
set of states U ∈ Ω which can be connected to L by a composite wave of that type.

It follows from Definition 2.5.5 and the definitions of wave groups given by (2.35)-(2.42), we con-
sider four composite curves, which parametrized successions of waves pairs Ri ′Sj , where (i, j) ∈
{(s, s), (s,O), (f, f), (f, T )}.
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2.6 Wave Curves

A backward wave curve of the family i, starting at the state R is a parametrization of the states U in state
space that can be connected to R, on the left, by an i-wave group. Since the states U are connected to
R on the left, we name it the backward i-wave curve,W−i (R), associated to state R. In a similar way ,
we name the forward i-wave curve,W+

i (L) starting at the state L, the parametrization of states U in the
phase space that can be connected on the right to the state L.

Wave curves in this type of problems, where strict hyperbolicity and genuine nonlinearity fail, use
three types of elementary waves: shocks, rarefactions and composite waves, unlike classic wave curves
which comprise only shock and rarefaction segment. Since Hugoniot curves typically posses nonlocal
(i.e., detached) branches, wave curves also have complicated geometry, e.g., the may have disconnected
branches.

Now, we define a graphical representation of shock, rarefaction and composite curves, which are the
fundamental wave curves, that form the wave curves that we consider:

• The s/f -shock curves are represented by blue/red dashed curves.

• The s/f -rarefaction curves are represented by blue/red solid curves. There is an arrow indicating
increasing speed direction.

• The s/f -composite curves are represented by blue/red crossed curves.

• When a fundamental wave curve is not admissible it is represented by a black curve.

2.7 Construction of wave curves: Succession Algorithm

In this section, we describe the succession algorithm for construction of wave curves. The theoretical
basis for this algorithm is the list of compatible wave groups presented in Section 2.5, as restricted by
the viscous profile admissibility criterion. The central feature of this algorithm is that it finds all wave
groups satisfying the admissibility criterion.

Implementation of the succession algorithm presupposes the ability to calculate (1) the Hugoniot
locus of a state, (2) the integral curve through a state, and (3) the sonic extension of an integral curve.
Calculations (1) and (3) can be performed by a contour plotter (specifically, a method for solving n− 1
equations in n unknowns for n = 2 and 3, respectively), whereas calculation (2) amounts to solving an
ODE. Additionally, the implementation requires verifying whether a shock wave has a viscous profile,
which likewise entails solving an ODE.

A wave curve is determined by its initial state, family, and its sense (forward or backward). To be
concrete, we focus attention on the case of a backward f -wave curve with initial state R. For simplicity,
we assume that R is a point of strict hyperbolicity and genuine nonlinearity. (The succession algorithm
is easily extended to apply when these simplifying assumptions fail to hold.)

In the following, we first explain how to find all admissible wave groups, and then we describe a
constructive algorithm based on this explanation.
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2.7.1 Shock wave groups

The simplest admissible wave group consists of a single shock wave, Sf , that has a viscous profile.
As the state Ur = R on the right side of the shock wave is known, such a solution is determined by
the state Ul = U on the left side along with the shock speed σ, which together satisfy the Rankine-
Hugoniot condition (2.8). Therefore the complete set of such wave groups can be obtained by first
solving the Rankine-Hugoniot condition for U and σ and second eliminating the shock waves that fail to
be admissible. (By eliminating σ between the two components of the Rankine-Hugoniot condition, the
first step can be reduced to solving one equation in two unknowns, viz., the two components of U .)

Generically, this solution set, which is called the shock segment for R, consists of several connected
curves, one (the local component) having R as an endpoint, and the others being called detached com-
ponents. By the Bethe-Wendroff theorem, we may orient these components so that the shock speed is
nondecreasing along them. (For a forward wave curve, we orient the components so that the speed de-
creases.) A shock component can end at a state U e in four ways: (i) the shock speed attains a maximum
because λf (U e) = σ(U e;R) (i.e., the shock wave (U e, R) is left-sonic in the fast family); (ii) the speed
attains a maximum because λs(U e) = σ(U e;R) (i.e., the shock wave (U e, R) is left-sonic in the slow
family); (iii) the shock wave (U e, R) is not admissible, or all shock waves (U,R) for U on the Hugoniot
locus of R beyond and in a small neighborhood of U e are not admissible; or (iv) U e lies on the boundary
of Ω.

2.7.2 Rarefaction wave groups

The next simplest wave group consists of a single rarefaction wave, Rf . Again because the state on
the right edge of this wave is known to be R, such a rarefaction wave is defined by a portion of the
fast-family integral curve through R that connects the left edge state U to R; along this portion, the
fast-family characteristic speed must be nonincreasing from R to U . Therefore the complete set of
such wave groups is parametrized by the maximal portion of the integral curve along which the speed
is non-decreasing, which is called the rarefaction segment through R. (Thus a rarefaction segment
consists of a single connected component.) This component can end at a state U e for two reasons: (i) the
characteristic speed attains a minimum because U e lies on the fast-family inflection locus; or (ii) U e lies
on the boundary of Ω.

2.7.3 Composite components

Now consider a wave group that is a composite wave of the form S′f Rf . Such a wave group involves a
fast-family shock wave (U,U ′) that is adjoined on the right by a rarefaction wave from U ′ toR; crucially,
the sonic condition σ(U ;U ′) = λf (U ′) must hold. In other words, the shock wave (U,U ′) is right-sonic
in the fast family. For a specific wave group, U lies on the Hugoniot locus of U ′ and satisfies the sonic
condition. For a given U ′, the U is generically one of several isolated points. The complete set of such
wave groups is obtained by allowing U ′ to vary over the rarefaction component through R and finding
corresponding states U . This set, the composite segment for the rarefaction component through R, is the
sonic extension of this rarefaction component. Generically, it consists of several connected curves called
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composite components. We orient the composite components so that the shock speed is nondecreasing
along them, like for shock components (and opposite to rarefaction components).

A composite component can end at a state U e, with correspond state (U e)′, in five ways: (i) the shock
speed attains a maximum because λf (U e) = σ(U e; (U e)′) (so that (U e, (U e)′) is a fast/fast double con-
tact shock wave); (ii) the speed attains a maximum because λs(U e) = σ(U e; (U e)′) (so that (U e, (U e)′)
is a slow/fast double contact shock wave); (iii) the shock wave (U e, (U e)′) is not admissible, or all shock
waves (U,U ′) for U on the Hugoniot locus of U ′ beyond and in a small neighborhood of U e are not
admissible; (iv) U e reaches R; or (v) U e lies on the boundary of Ω.

2.7.4 General wave groups

A wave group of the form Rf
′Sf is similar to a one with a single rarefaction wave. Indeed, such a wave

group involves a fast-family shock wave (R′, R), satisfying the sonic condition λf (R′) = σ(R′;R), that
is adjoined on the left by a rarefaction wave with left edge state U and right edge state R′. Thus R′ is
an ending point of type (i) of a shock component, and U lies on the rarefaction component starting at R′

(instead of at R); this component likewise can end for two reasons, reaching the fast-family inflection
locus or the boundary.

A wave group of the form Rf
′S′f Rf (′Sf ) is also similar to a single rarefaction wave, this time with

a rarefaction component starting at the ending point of type (i) (a fast/fast double contact wave) of a
composite component. By induction, the more general case Rf ′S′f Rf . . .

′S′f Rf (′Sf ) is also similar.
A wave group of the form S′f Rf

′Sf is similar to a wave group with a single composite wave S′f Rf ,
except that the right edge state of the rarefaction wave is the left side of a shock wave that is left-sonic in
the fast family. Finally, a wave group of the form S′f Rf

′S′f Rf (′Sf ) or S′f Rf
′S′f Rf . . .

′S′f Rf (′Sf )
is also similar to a wave group with a single composite wave S′f Rf ,

2.7.5 Succession algorithm

The foregoing analysis leads to the following succession algorithm that finds the complete set of admis-
sible wave groups with right state R.

For convenience, we regard the initial state R as an initial-state segment comprising a single initial-
state component. Also, we employ a queue of components, i.e., a first-in/first-out (FIFO) ordered list,
which implements two operations: placing a component onto the back of the queue and removing the
component at the front of the queue.

We initialize the algorithm by placing the initial-state component onto the back of the queue. Then
we repeat the following steps indefinitely.

(I) Remove the component at the front of the queue.

(a) If this component is the initial-state component, then construct the shock and rarefaction
segments through R and place all of their components onto the back of the queue.

(b) If this component is a shock or composite component with ending point that is a shock wave
that is left-sonic in the fast family, then construct the rarefaction segment starting at this
ending point and place its components onto the back of the queue.
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(c) If this component is a rarefaction component, then construct the composite segment based on
it and place all of the composite components onto the back of the queue.

(II) If the queue is empty, terminate the algorithm. Otherwise, go to step (I).

2.7.6 Completeness

As we now argue, algorithm finds all admissible wave groups for the right stateR. The argument is based
on induction on the length ` of the wave group (i.e., the number of non-trivial rarefaction and shock waves
in it, with the initial-state wave group assigned length zero). Notice that because the component queue
used in the succession algorithm is first-in/first-out, wave groups of length ` are constructed only after
all wave groups of shorter length are constructed.

First consider the case ` = 1. If a wave group consists of a single rarefaction or shock wave, it is
constructed in step I(a) prior to constructing any wave groups with ` > 1.

Next consider a wave group with length ` > 1 and assume, as the induction hypothesis, that any
wave group with shorter length has previously been constructed by the succession algorithm.

Suppose that the left-most wave is a rarefaction wave. The left edge state of this wave group lies on a
certain rarefaction component. Because ` > 1, the starting point of this component must be the left state
of the left-most shock wave in the wave group, which is necessarily left-sonic in the fast family. Consider
the shorter wave group obtained by omitting the left-most wave (the rarefaction wave). By the induc-
tion assumption, this shorter wave group has previously been constructed by the succession algorithm.
Therefore the rarefaction component, and hence the full wave group, is constructed in step I(b).

Otherwise, the left-most wave is a shock wave, and because ` > 1, it is right-sonic in the fast family
and adjoined on the right by a rarefaction wave. In other words, The left side of this shock wave lies
on the composite component associated with a rarefaction component. Again consider the wave group
obtained by omitting the left-most wave (the shock wave). By the induction assumption, this shorter wave
group has previously been constructed by the succession algorithm. Therefore the composite component,
and hence the full wave group, is constructed in step I(c).

Remark 2.7.1. In the literature, usually the algorithm used to construct wave curves is the continuation
algorithm, which was developed in [25], as a generalization of the Oleı̆nik construction for the Riemann
solution of scalar equations, [33]. We have performed exhaustive comparisons between the continuation
and succession algorithm and we have not found differences when the viscosity matrix identity.

Definition 2.7.2. Consider a state R ∈ Ω. We say that a segment C of discontinuities is a local shock
for R if for any M ∈ C the state M lies on the i-family primary branch of H(R) and the shock speed
varies monotonically along the segment C.

Notice that this definition coincides with Liu’s admissibility criterion [24], originating from Oleı̆nik’s
envelope construction [33]. Then, we establish the follow criterion for admissibility.

Claim 2.7.1. Local shocks for slow and fast families are admissible.

Based on the triple shock rule and exhaustive numerical experiments, we present the following result
about the admissibility of discontinuities
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Claim 2.7.2. Let R be a state in Ω and M be a state in H(R). If the discontinuity between R and M is
admissible thenR andM are in the same region of the saturation triangle with respect to an appropriate
secondary bifurcation line (Identity Case).
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Chapter 3

The model

In this chapter, we describe the mathematical model for one dimensional three-phase flow in a porous
medium [34], under the physical assumptions listed in Section 3.1. In Section 3.2, we obtain the cor-
responding dimensionless equations. In Section 3.3, we introduce the Corey model with quadratic per-
meabilities, define the triangle where the fluid saturations are defined and exhibit proprieties of the flux
functions. In the last section , we discuss properties of the diffusion terms appearing in the equations

3.1 Derivation of the system of conservations laws

We will study a simplified model for flow in a porous medium of three phases that do not mix assuming
the follows facts:

F1. The fluids fill the entire pore rock space.

F2. The porosity φ is constant.

F3. The permeability of the rock K is constant.

F4. The temperature is constant and there is no mass interchange between phases.

F5. The compressibility effects of the phases and the rock are negligible.

F6. There are neither sources nor sinks.

Let consider the conservation of mass for each phase

φ
∂ si
∂t

+
∂ ui
∂x

= 0, i = w, o, g, (3.1)

where si denote saturation and ui is the seepage velocity of each phase that it is defined as the volume
of a phase i, Qi which traverses a straight cross section of rock, of area, per unit of time, i.e., ui = Qi/t.
We assume that Darcy’s Law [10, 34] satisfied for each phase i:

ui = −Kλi
(
∂

∂x
pi − ρig

)
, i = w, o, g, (3.2)
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λi ≥ 0 is the mobility of phase i, ρi is the volumetric density of each phase i and pi is the pressure of
phase i. The mobility is usually expressed as λi = ki/µi , the ratio of the relative permeability ki and
the viscosity µi of phase i. The facts F4, F5 mean that ρw, ρo and ρg are constants, the fact F4 means
that µw, µo and µg are constants and the fact F1 means sw + so + sg = 1. Now we define

fi ≡
λi
λT
, i = w, o, g, λT ≡ λw + λo + λg. (3.3)

pij ≡ pi − pj , i, j = w, o, g, and i 6= j. (3.4)

uT ≡ uw + uo + ug. (3.5)

The function fi is the fractional flow function corresponding to each phase i, λT is the total mobility and
uT is the total seepage velocity. The difference of pressures between phases, defined in (3.4), is called
the capillary pressure. We can assume that capillary pressure between the phases is a know function
depending of the saturations. Notice that pij = −pji , pik = pij + pjk and only two of the possible six
capillary pressure differences are independent. From (3.3)(a) and (3.4), fw + fo + fg = 1. Using the
definition of uT (3.5), Darcy’s Law (3.2) and using algebraic manipulation, we can write

uT fi = −Kλi
∑
j

fj

(
∂pj
∂x
− ρjg

)
, i = w, o, g. (3.6)

Subtracting ui in (3.6) and noting that
(
∂
∂xpi − ρig

)
=
(∑

j fj

) (
∂
∂xpi − ρig

)
we see that

uT fi − ui = −Kλi
∑

j fj

(
∂pj
∂x − ρjg

)
−Kλi

(
∂pi
∂x − ρig

)
, (3.7)

= −Kλi
∑
j 6=i

fj

(
∂pji
∂x
− ρjig

)
, (3.8)

where
ρij = ρi − ρj , ρji = −ρij , i = w, o, g. (3.9)

From (3.8) we obtain

ui = uT fi +Kfi
∑
j 6=i

λj

(
ρijg −

∂pij
∂x

)
, i = w, o, g. (3.10)

Substituting (3.10) into the system (3.1), we obtain

φ
∂si
∂t

+
∂Fi
∂x

= Di, i = w, o, g, (3.11)

where
Fi = uT fi +Gi, with Gi = Kfi

∑
j 6=i

λjρijg, i = w, o, g. (3.12)
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and the diffusion terms in (3.11) are expressed in

Di =
∂

∂x

Kfi∑
j 6=i

λj
∂pij
∂x

 , i = w, o, g. (3.13)

Using again that
∑

j fj = 1 and that
∑

j Gj = 0, we obtain, on the one hand

Fo + Fw + Fg = uT (fo + fw + fg) + (Go +Gw +Gg) = uT , (3.14)

and on the other hand, adding the three equations in (3.13),

fw

(
λo
∂pwo
∂x

+ λg
∂pwg
∂x

)
+ fo

(
λw

∂pow
∂x

+ λg
∂pog
∂x

)
+ fg

(
λw

∂pgw
∂x

+ λo
∂pgo
∂x

)
= 0. (3.15)

Then by adding the equations of the system (3.11) we obtain

φ
∂

∂t
(so + sw + sg) +

∂

∂x
(Fo + Fw + Fg) = 0. (3.16)

∂

∂x
uT = 0. (3.17)

The equation (3.17) reflects the incompressibility of the fluids. We conclude that the total velocity uT is
not a function of the space variable, thus we shall assume that the total velocity uT is constant. Taking
into account the incompressibility property of the fluids and the fact F1 the system (3.11) has a redundant
equation, i.e., any of these equations can be derived from the other two.

3.2 Equations in dimensionless form

It is convenient to express the system (3.11) in dimensionless form, in order to identify the most important
non-dimensional parameter groups for the evolution problem. To this end, we define the following
changes variables:

x̃ =
x

L
, t̃ =

t uT ref
Lφ

, ũT =
uT
uT ref

, K̃ =
K

Kref
, (3.18)

λ̃i = λiµref , µ̃i =
µi
µref

, ρ̃i =
ρi
ρref

, p̃i =
pi
pref

, i = w, o, g. (3.19)

We denote L[m] the reference length of the system, ρref [kg/m3] the reference density, uT ref [m/s] the
reference velocity of the problem, Kref [m2] the reference absolute permeability, pref [kg/m/s2] the ref-
erence pressure and µref [kg/m/s] the reference viscosity. Substituting the dimensionless variables into
the system (3.11), we obtain

∂si

∂t̃
+

∂

∂x̃

(
ũT f̃i + CgG̃i

)
= CvD̃i, i = w, o, g, (3.20)
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where f̃i = λ̃i
λ̃T

, Cg =
Kref g ρref
uT ref µref

, Cv =
Krefpref

uT ref L µref
and

G̃i = K̃f̃i
∑
j 6=i

λ̃j ρ̃ij , i = w, o, g, (3.21)

and the diffusion terms

D̃i =
∂

∂x

K̃f̃i∑
j 6=i

λ̃j
∂p̃ij
∂x

 , i = w, o, g. (3.22)

The constants Cg and Cv are the dimensionless parameters reflecting the gravitational and capillary
effects. As we are interested to study the gravity effects maintaining the first term of the flux we choose
uT ref such that ũT = 1 and defined

ϑ = K̃Cg and ε = K̃Cv. (3.23)

Omitting the ‘tilde’ and defining the dimensionless gravitational vector G = (Gw, Go, Gg)
T and the

dimensionless diffusion vector D = (Dw, Do, Dg)
T , we obtain the system

∂si
∂t

+
∂

∂x
(fi(sw, so, sg) + ϑGi(sw, so, sg)) = εDi(sw, so, sg), i = w, o, g. (3.24)

By recalling that one of these equations is redundant, we notice that for any choices of the two saturations,
the system (3.24) reduces to a 2× 2 parabolic system of form

∂U

∂t
+
∂F (U)

∂x
= ε

∂

∂x

(
B(U)

∂U

∂x

)
, (3.25)

where U , F (U) and the matrix B(U) are given in terms of two saturations and the two selected corre-
sponding flow functions. Although it requires only two saturations to represent a state, often going to
use the three components to represent it, so it is clear the values of the three saturations in this state.

3.3 The Corey model

In Petroleum Engineering a frequently used relative permeability model is due to Corey, [28]. In such
model the mobilities λi(si) are non-decreasing continuous functions of their own saturations si exclu-
sively, i = w, o, g. For simplicity in our analysis we neglect the effect of residual saturations.

Based on experimental data, the Corey model consider the following relationships of dependency
for relative permeabilities: kw = sαw , ko = sβo and kg = sγg , where α, β and γ are called the Corey
exponents. To take advantage of previous work, see [39], we will consider a quadratic model i.e.,
α = β = γ = 2, which we refer as Corey Quad model. Therefore the mobility and the fractional flow
functions for each phase i = w, o, g, defined in (3.3) and (3.4) become

λi(si) =
s2
i

µi
, i = w, o, g; λT =

s2
w

µw
+
s2
o

µo
+
s2
g

µg
; (3.26)
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and fi =
s2
i /µi
λT

, i = w, o, g. (3.27)

From (3.26) and (3.27) we obtain the flux functions (3.12) for the Corey Quad model as

Fi =
s2
i

µi

1 + ϑ
∑
j 6=i

ρij
s2
j

µj

 /λT , i = w, o, g, (3.28)

and the diffusion terms

Di =
∂

∂x

s2
i

µi

∑
i 6=j

s2
j

µj

∂pij
∂x

 /λT
 . (3.29)

We will find it convenient later to be flexible in our choice of the two saturations entering in the system
of two equations. If we use (sw, so)

T the other saturation sg is replaced by 1− sw − so. Also it is useful
to replace pwo by pwg + pgo. Thus we obtain the following system of two equations, for three-phase flow

∂

∂t

(
sw

so

)
+

∂

∂x

(
Fw(sw, so)

Fo(sw, so)

)
=

∂

∂x

 λw[−fo
∂pog
∂x

+ (1− fw)
∂pwg
∂x

]

λo[−fw
∂pwg
∂x

+ (1− fo)
∂pog
∂x

]

 , (3.30)

where

Fw(sw, so) =
s2
w

µw

[
1 + ϑ

(
ρwo

s2
o

µo
+ ρwg

(1− so − sw)2

µg

)]
/λT (sw, so), (3.31)

Fo(sw, so) =
s2
o

µo

[
1 + ϑ

(
ρow

s2
w

µw
+ ρog

(1− so − sw)2

µg

)]
/λT (sw, so), (3.32)

with

λT (sw, so) =
s2
w

µw
+
s2
o

µo
+

(1− so − sw)2

µg
. (3.33)

The system (3.30) can be written in form of a system of Conservation Laws (3.25) defining U =
(sw, so)

T , F (U) = (Fw(sw, so), Fo(sw, so))
T and B(U) = Q(U)P ′(U) where

Q(U) =

(
λw(1− fw) −λwfo
−λofw λo(1− fo)

)
and P ′(U) =

(
∂pwg

∂sw

∂pwg

∂so
∂pog
∂sw

∂pog
∂so

)
. (3.34)

We refer to Q(U) and P ′(U) as balance matrix and capillary pressure Jacobian, [7].

Remark 3.3.1. Note that the matrix B(U) does not depend on the gravity term.

To conclude this section we will rewrite the flux functions Fw, Fo given by (3.31)-(3.32) defining the
vectors F(U) = (fw(sw, so), fo(sw, so))

T and G(U) = (Gw(sw, so), Go(sw, so))
T such that

F (U) = F(U) + ϑG(U), (3.35)
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where F(U) is given by the fractional flow functions in two saturations (3.27)

F(U) =

(
fw(sw, so)

fo(sw, so)

)
=


s2
w/µw

λT (sw, so)
s2
o/µo

λT (sw, so)

 , (3.36)

and G(U) is the gravitational vector given by

G(U) =

(
Gw(sw, so)

Go(sw, so)

)
=


s2
w

µw

(
ρwo

s2
o

µo
+ ρwg

(1− so − sw)2

µg

)
/λT (sw, so)

s2
o

µo

(
ρow

s2
w

µw
+ ρog

(1− so − sw)2

µg

)
/λT (sw, so)

 . (3.37)

In (3.36) and (3.37) λT (sw, so) is given by (3.33). Then the system (3.30) can be written in its final form:

∂

∂t
U +

∂

∂x
(F(U) + ϑG(U)) =

∂

∂x

(
Q(U)P ′(U)

∂

∂x
U

)
. (3.38)

Remark 3.3.2. In this work we do not consider gravity effects, i.e., only consider the case ϑ = 0.

3.3.1 The Saturation Triangle

In order to study the Riemann problem for the three-phase flow without gravity (ϑ = 0), we need to
perform all the calculations in the space of saturations. We define the saturation triangle as follow

T =
{

(sw, so) ∈ R2 : 0 ≤ sw ≤ 1, 0 ≤ so ≤ 1, sw + so ≤ 1
}

; (3.39)

and useful alternative definition would be

T =
{

(sw, so, sg) ∈ R3 : 0 ≤ si ≤ 1, i = w, o, g. sg = 1− sw − so
}
, (3.40)

as well as the interior of the saturation triangle

T̃ =
{

(sw, so) ∈ R2 : 0 < sw < 1, 0 < so < 1, sw + so < 1
}
. (3.41)

A natural choice for the state space for our model is the saturation triangle T (3.39) in barycentric
coordinates such that the vertices represent the states with maximum saturation (si = 1 ,i = w, o, g. )
with coordinates W = (1, 0, 0)T , O = (0, 1, 0)T and G = (0, 0, 1)T , representing total water, oil and
gas, respectively, see Figure 3.1(a).

Remark 3.3.3. In [36] was proven that there are four umbilic points for the Corey Quad model: the three
vertices G,W,O and U , which is inside saturation triangle. Moreover, the state U is the intersection of
the three secondary bifurcation lines (see Figure 3.1). The coordinates of the umbilic point are

U =

(
µw

µw + µo + µg
,

µo
µw + µo + µg

,
µg

µw + µo + µg

)
. (3.42)
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We have three relevant points in the boundary of saturation triangle, as we will see in Chapter 5 the
straight lines for these points represent invariant lines for our model and are determined by the viscosity
of each phase. The coordinates are

B =

(
µw

µw + µg
, 0,

µg
µw + µg

)
, D =

(
µw

µw + µo
,

µo
µw + µo

, 0

)
, E =

(
0,

µo
µo + µg

,
µg

µo + µg

)
. (3.43)

Remark 3.3.4. The examples and figures of this work use the values µw = 1, µg = 0.75 and µo = 2,
which are from hereon implied unless other values are explicitly stated.

sg+so=1
sw+so=1

sw+sg=1

U = (sw , so)

WG  

O

(a)

WG  

O

E
D

B

U                  

(b)

Figure 3.1: (a) In barycentric coordinates a state U = (sw, so, sg) ∈ T. (b) Points over the boundary B,D
and E

.

Remark 3.3.5. Consider the straight line segments [G,D] [O,B] and [E,W ] shown in Figure 3.1. These
lines satisfy the following equations:

[O,B] = {(sw, so, sg) ∈ T | sw/µw = sg/µg , so = 1− sw − sg}; (3.44)

[E,W ] = {(sw, so, sg) ∈ T | sg/µg = so/µo , sw = 1− so − sg}; (3.45)

[G,D] = {(sw, so, sg) ∈ T | so/µo = sw/µw , sg = 1− sw − so}; (3.46)

We recall the classification of the umbilic point given in [36], as type I or II . In [5] and [30], the
position of the umbilic point was characterized for a general family of models, of which the Corey Quad
model is a particular case.

Definition 3.3.6. For the Corey Quad model, we define the triangle TU with vertices (0, 1/2, 1/2),
(1/2, 0, 1/2), and (1/2, 1/2, 0), see shaded triangle in Figure 3.2(a).
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Figure 3.2: Regions where U is type I and II .

Theorem 3.3.1 ([30, 36]). For the Corey Quad model the umbilic point is classified as:

1. type I if U lies inside TU ;

2. type II if U lies outside TU ;

3. border-type I/II if U lies on the edges of TU .

Definition 3.3.7. Taking into account Theorem 3.3.1, we subdivide the saturation triangle in four regions
as follows: the inner triangle TU given in Definition 3.3.6 and the outer triangles IIW , IIO and IIG that
are characterized as containing one of the vertices of the saturation triangle (see Figure 3.2(a)). We say
that the umbilic point is type II if it is in any outer triangle.

3.3.2 Properties of fractional flow functions in Corey Quad model

In this section we use the formulation (3.38) with ϑ = 0, i.e., F (U) = F(U) given by (3.36), in the
space of saturations (sw, so)

T . We have according to (3.26) and (3.27) that

∂fi
∂sj

=
1

λT

∂λi
∂sj
− λi
λ2
T

∂λT
∂sj

. (3.47)

Now we follow [7] for study the fractional flow functions properties.

Lemma 3.3.2. The Corey Quad model satisfies the following assumptions:

i) fw and fo are continuously differentiable functions on the closed saturation triangle.

ii) fo ≥ 0 in T with fo = 0 if and only if so = 0.
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iii) ∂fw
∂sw

> ∂fo
∂so

= 0 on the open edge {(sw, so) : so = 0, 0 < sw < 1}.

iv) ∂fw
∂so

> 0 and ∂fo
∂sw

> 0 in T̃ near the corner sw = 0, so = 0.

Proof. i) and ii) follow from the definitions (3.26) and (3.27).

iii) Since
∂λw
∂sw

=
2sw
µw

,
∂λw
∂so

=
∂λo
∂sw

= 0,
∂λo
∂so

=
2so
µo

, (3.48)

∂λT
∂sw

=
∂λw
∂sw

− 2(1− sw − so)
µg

,
∂λT
∂so

=
∂λo
∂so
− 2(1− sw − so)

µg
. (3.49)

From (3.47) we have on the one hand

∂fw
∂sw

=
1

λT

∂λw
∂sw

− λw
λ2
T

∂λT
∂sw

=
1

λT

2sw
µw
− λw
λ2
T

(
2sw
µw
− 2 (1− sw − so)

µg

)
, (3.50)

then

λ2
T

∂fw
∂sw

=
2sw
µw

(
so

2

µo
+

(1− sw − so)2

µg

)
+

2sw
2

µw

(
1− sw − so

µg

)
. (3.51)

is nonnegative everywhere and reduces to

λ2
T

∂fw
∂sw


so=0

=
2sw(1− sw)

µwµg
. (3.52)

On the other hand

λ2
T

∂fo
∂so

=
2so
µo

(
sw

2

µw
+

(1− sw − so)2

µg

)
+

2so
2

µo

(
1− sw − so

µg

)
, (3.53)

and

λ2
T

∂fo
∂so


so=0

= 0. (3.54)

In particular ∂fw
∂sw

= 0 at the corner sw = 0, so = 0. Moreover ∂fw
∂sw

> ∂fo
∂so

on the open edge and
so = 0, 0 < sw < 1 .

iv) From (3.47) and (3.48) we have

∂fo
∂sw

= − λo
λ2
T

(
2sw
µw
− 2 (1− sw − so)

µg

)
, (3.55)

and
∂fw
∂so

= −λw
λ2
T

(
2so
µo
− 2 (1− sw − so)

µg

)
, (3.56)

so that ∂fw∂so
> 0 and ∂fo

∂sw
> 0 in T̃ a neighborhood of (0, 0).
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Remark 3.3.8. Notice that from Lemma 3.3.2(ii) and by (3.55), that ∂fo∂sw
= 0 on the edge so = 0, so that

the Jacobian DF is upper triangular and its eigenvalues are ∂fw
∂sw

and ∂fo
∂so

associated to the eigenvectors

(1, 0)T and
(
∂fw
∂sw

,
∂fw
∂sw

− ∂fo
∂so

)
, (3.57)

respectively. Hence assumption (iii) of Lemma 3.3.2 states that the eigenvalues are distinct on each open
edge, and that the fast eigenvector (3.57)(a) is parallel to the edge.

Remark 3.3.9. Consider the closed edge {(sw, so) : so = 0, 0 ≤ sw ≤ 1}. From (ii) this border is
invariant for system (3.25). Indeed, system (3.30) reduces to the scalar conservation law

∂sw
∂x

+
∂

∂x

(
s2
w/µw

s2
w/µw + (1− sw)2/µg

)
+ ε

∂

∂x

(
λw(1− fw)

∂pwg
∂x

)
= 0. (3.58)

Notice that a similar reduction occurs on the other edges. Thus three-phase flow reduces to the Buckley-
Leverett equation for two-phase flow along each edge, [12]. In particular, ∂fw∂sw

= 0 and ∂fo
∂so

= 0 at the
corner sw = 0, so = 0, reflecting the immiscibility of two-phase flow.

Remark 3.3.10. Assumption (iv) of Lemma 3.3.2 implies that the eigenvalues are distinct in the interior
of T near each corner. Thus, the model is strictly hyperbolic near the boundary except at the corners
where the eigenvalues coincide.

Remark 3.3.11. The Lemma 3.3.2 should be proof is you choose any phase space state for example
(sw, sg)

T ou (so, sg)
T , thus the conclusions of this section can be applied to any combination of flux

functions (fi, fj) for (i, j) = {(w, o), (w, g), (o, g)}.

3.4 Properties of the Viscosity Matrix

In principle the capillary pressures are experimentally measured functions of all saturations. In this work
we adopt the same model that [7, 29] for the capillary pressure differences that can be taken to have the
form pwo = −Pow(sw) and pgo = −Pog(sg) , where Pow and Pog are monotone decreasing functions
defined by:

Pow = cow

(
1− sw√
sw

)
and Pog = cog

(
1− sg√
sg

)
. (3.59)

Here cow and cog are positive constants. From (3.4) we have pwg = pwo + pog, then P ′(U) defined in
(3.34)(b) is

P ′ =

(
ς + τ τ

τ τ

)
, (3.60)

where

ς =
cow
2

(1 + sw)

s
3/2
w

and τ =
cog
2

(2− sw − so)
(1− sw − so)3/2

. (3.61)

Now we show some properties of the matrix B(U) follow [7].
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Lemma 3.4.1. From (3.60) we have

P ′ is positive definite and diagonally dominant in T, (3.62)

∂pwg
∂sw

> 0 on the edge without vertex G {(sw, so)T : so = 0, 0 < sw ≤ 1}. (3.63)

Proof. From (3.60), ∂pwg

∂sw
= ς + τ > 0, ∀U ∈ T . P ′ is symmetric and we have

det(P ′(U)) = ςτ > 0 and tr(P ′(U)) = ς + 2τ > 0. (3.64)

Lemma 3.4.2. Under the hypothesis of Lemma 3.3.2, the balance matrixQ(U) is symmetric and positive
definite in the interior of the saturation triangle T , and detQ(U) = 0 on ∂T .

Proof. Notice that from (3.34)(a) that

Q(U) =

(
λw(1− fw) −λwfo
−λofw λo(1− fo)

)
=

1

λT

(
λw(λo + λg) −λwλo
−λoλw λo(λw + λo)

)
. (3.65)

Then
det(Q(U)) =

1

λ2
T

(
λwλo(λo + λg)(λw + λg)− λ2

wλ
2
o

)
=
λwλoλg
λT

. (3.66)

Therefore det(Q(U)) = 0, for U ∈ ∂T . Of course from right side of (3.65) Q is symmetric and
diagonal dominant.

Lemma 3.4.3. If P ′ satisfies the hypothesis of Lemma 3.4.1, then the eigenvalues of the viscosity matrix
B(U) have positive part in the interior of T , whereas on the boundary of T , one eigenvalue of B(U) is
zero and the other is positive.

Proof. The eigenvalues µ(U) of B(U) are

µ±(U) = (1/2)
(
tr(B(U))±

√
[tr(B(U))]2 − 4 det(B(U)))

)
. (3.67)

Thus, B(U) has eigenvalues with positive real part provided that its trace and determinant are posi-
tive. From (3.64) and (3.66) the determinants of both Q and P ′ are nonnegative, so that det(B) =
det(Q) det(P ′) ≥ 0 as well, with strict inequality in the interior of T . From (3.60) and (3.65), we find
that

tr(B) = (τλgλw + τλ2
o + ςλgλw + ςλoλw)/λT > 0. (3.68)

Then by (3.67) when U ∈ ∂T , µ−(U) = 0 and µ+(U) = tr(B(U)).
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Chapter 4

Properties of Corey Quad model

In this chapter, we present basic facts about the system of conservation laws (3.38) (ϑ = 0). In Section
4.1, we describe the integral field defined by each characteristic family. In Section 4.2, we discuss
Hugoniot curves, which play a fundamental role in this work. In Section 4.3, we present a method to
obtain the secondary bifurcation locus. In Section 4.4, we describe the mixed double contact and the
fast double contact loci, when the umbilic point U is of type II . These bifurcation loci are relevant
for the identification of regions of states with the same structure of Riemann solutions. In Section 4.5,
we describe the inflection locus for each characteristic family, including their dependence on viscosity
values µw, µo and µg. Finally, in Section 4.6, we describe the boundary extension locus.

4.1 Rarefaction Foliation

In this section we study the rarefaction foliation for the slow and fast characteristic fields. In Figures
4.1(a) and (b) we depict integral curves of slow- and fast-families for Corey Quad model with U ∈ IIO.
As seen in [9], these curves form two foliations with singularities at the umbilic point and vertices. To
study these foliations, Azevedo et al. [9] calculate eigenvectors along edges and secondary bifurcation
lines of the triangle.

Claim 4.1.1. Consider the Corey Quad model and fixed, arbitrary values for µw, µo and µg . Then we
have:

1. Along each edge of the saturation triangle:

(a) the fast family eigenvector is parallel to the edge;

(b) the slow-family eigenvector is parallel at each point to a line connecting this point and the
vertex opposite to the edge.

2. The directions change between slow and fast eigenvector when passing through U , i.e., over
any secondary bifurcation line, along the segment between the vertex and the umbilic point U ,
the slow-family eigenvector is parallel to the edge opposite to the vertex, while the fast-family is
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parallel to the secondary bifurcation line. On the other hand, along the segment between U and
the opposite side of the vertex, the slow-family is parallel to the secondary bifurcation line, while
the fast-family is parallel to edge opposite to the vertex.

(a) Slow-family integral curves. (b) Fast-family integral curves.

Figure 4.1: Integral curves for (a) slow family and (b) fast family. The arrow indicates the direction on
which characteristic speeds increase. The inflection curves for each family are represented by dashed
lines. In this figures the umbilic point is of type IIO.

As far as the slow-family rarefaction foliation is concerned, segments [E,U ], [D,U ] and [B,U ] split
the saturation triangle in three quadrilaterals in which the rarefaction foliation is invariant and can be
regarded as a vector field. Similarly for the fast-family rarefaction foliation, the segments [O,U ], [W,U ]
and [G,U ] split the saturation triangle in three sub-triangles in which the rarefaction foliation is invariant
and can be regarded as a vector field.

Remark 4.1.1. The description made in Claim 4.1.1 does not take into account the analysis near singu-
laritiesG,W,O and U . However, a complete analysis and justification can be found in [35] in the context
of the wave curve manifold, [20].

4.2 Hugoniot curves

The Hugoniot curve based on a stateR consists of two primary branches which intersect at R and possibly
a nonlocal branch (detached branch). For R varying along an edge of the saturation triangle, the explicit
formula was compute in [9]. It consist of such edge together with a hyperbola. For R varying along any
straight line [G,D], [W,E] and [O,B] defined in Remark 3.3.5, was compute in [3]. It consist of such
straining line together also with a hyperbola: its attached branch contains the state R. In particular, its
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topological structure with two primary (attached) branches and one detached is preserved along invariant
lines.

On the other hand, to obtain an expression for the Hugoniot curve for arbitrary states, we consider the
system of conservation laws (3.25) with the flow function F (U) = F(U) given by (3.36) and a constant
state Ul = (s−w , s

−
o )T ∈ T̃ . Then,we want to find solutions U = (sw, so)

T of the system (2.10), i.e.,

fw(sw, so)− fw(s−w , s
−
o ) = σ(sw − s−w), (4.1)

fo(sw, so)− fo(s−w , s−o ) = σ(so − s−o ). (4.2)

By eliminating σ from (4.1)-(4.2) and using the flux expressions (3.36), we obtain

(so − s−o )

(
s2
w/µw

λT (sw, so)
− s2

w
−
/µw

λT (s−w , s
−
o )

)
− (sw − s−w)

(
s2
o/µo

λT (sw, so)
− s2

o
−
/µo

λT (s−w , s
−
o )

)
= 0. (4.3)

In order to solve equation (4.3), we follow the construction introduced by Isaacson, Marchesin, Palmeira
and Plohr in [20]. We want to find a function R : [0, π]→ R such that

sw = s−w +R(θ) cos(θ), (4.4)

so = s−o +R(θ) sin(θ). (4.5)

Substituting expressions (4.4),(4.5) in (4.3), we obtain after some simplifications

R(θ)
[
B1 sin3(θ) +B2 cos(θ) sin2(θ) +B3 cos2(θ) sin(θ) +B4 cos3(θ)

]
(4.6)

+B5 sin2(θ) +B6 cos(θ) sin(θ) +B7 cos2(θ) = 0.

Dividing (4.6) by cos3(θ) and solving for R(θ), we find

R(θ) = −
sec (θ)

(
B5 tan2 (θ) +B6 tan (θ) +B7

)
B1 tan3 (θ) +B2 tan2 (θ) +B3 tan (θ) +B4

. (4.7)

Here, the coefficients B1, B2, . . . , B7 depend only on constant state Ul = (s−w , s
−
o )T and on the constant

values µw, µo and µg. Therefore we conclude that for any point Ul in the interior of the saturation
triangle, the Rankine-Hugoniot locus is the set

H̃(Ul) =
{

(sw, so)
T ∈ T̃ |sw and so are given for (4.4) and (4.5) for R(θ) expressed in (4.7)

}
. (4.8)

4.3 Secondary Bifurcation

The secondary bifurcation manifold consists of the states which do not satisfy the hypothesis of the
implicit function theorem; generically, the Hugoniot locus changes topology at such a locus. We follow
the ideas set forth by [13] for the calculation of states belonging to a secondary bifurcation lines and
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their corresponding such that Definition 2.4.1 satisfied. Given a steady state Ul = (s−w , s
−
o )T , we use the

equation (4.3), and define

E(sw, so, s
−
w , s

−
o ) =

sw2

λT (sw,so) −
s−w

2

λT (s−w ,s
−
o )

µw(sw − s−w)
−

so2

λT (sw,so) −
s−o

2

λT (s−w ,s
−
o )

µo(so − s−o )
. (4.9)

We want to find all the points Ur = (sw, so)
T such that the following system is solvable:

E
(
sw, so, s

−
w , s

−
o

)
= 0,

∂E

∂sw

(
sw, so, s

−
w , s

−
o

)
= 0, (4.10)

∂E

∂so

(
sw, so, s

−
w , s

−
o

)
= 0.

Now observe that the initial stateUl that we give to solve system (4.10) must belong to Rankine-Hugoniot
locus. We want to study the states of corresponding secondary bifurcation that are on the straights lines
[G,D], [E,W ] and [O,B]. Without loss of generality we consider the states that are on the line [G,D]
as the others are obtained by the symmetry of the problem by making a change of variables. To begin,
we will use a parametrization of the line [G,D]. First we define the function

p(α, β, t) =
α t

α+ β
. (4.11)

where α, β ∈ {µw, µo, µg} α 6= β and t ∈ [0, 1]. Then any state over [G,D] can be written the form

(sw, so)
T = (p(µw, µo, t), p(µo, µw, t))

T t ∈ [0, 1]. (4.12)

Remember that by definition sg = 1− sw − so = 1− p(µw, µo, t)− p(µo, µw, t) = 1− t. Now taking
initial state Ul as (4.12), we solve the system

E (sw, so, p(µw, µo, t), p(µo, µw, t)) = 0,

∂E

∂sw
(sw, so, p(µw, µo, t), p(µo, µw, t)) = 0, (4.13)

∂E

∂so
(sw, so, p(µw, µo, t), p(µo, µw, t)) = 0.

If we defined the function

K(α, β, γ, t) =
α t

2(α+ β + γ)t2 − 2(α+ β)t+ α+ β
, (4.14)

where α, β, γ ∈ {µw, µo, µg} and t ∈ [0, 1], the solution of the system (4.13) is

sw = K(µw, µo, µg, t) and so = K(µo, µw, µg, t). (4.15)
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We can to conclude that for any state Ul (primary bifurcation) over [G,D] there is a state Ur of secondary
bifurcation corresponding to Ul over [G,D] such that ∀t ∈ [0, 1],

Ul = (p(µw, µo, t), p(µo, µw, t))
T and Ur = (K(µw, µo, µg, t),K(µo, µw, µg, t))

T . (4.16)

For the symmetry of the problem we can to find the secondary bifurcation states corresponding to the
lines [O,B] and [W,E] from the solution of the before case. Only need to make a change of coordinates
as follows

• For any state Ul over [O,B] we obtain for t ∈ [0, 1],

Ul = (p(µw, µg, t), 1− t)T , (4.17)

Ur = (K(µw, µg, µo, t), 1−K(µw, µg, µo, t)−K(µg, µw, µo, t))
T . (4.18)

• For any state Ul over [W,E] we obtain for t ∈ [0, 1],

Ul = (1− t, p(µo, µg, t))T , (4.19)

Ur = (1−K(µg, µo, µw, t)−K(µo, µg, µw, t),K(µo, µg, µw, t))
T . (4.20)

Remark 4.3.1. It is possible that for Ul inside the saturation triangle his corresponding Ur state is
outside. We only consider the states Ur that is in the saturation triangle.

Remark 4.3.2. In the Corey Quad models this procedure to find the secondary bifurcation locus is
correct, because do not have elliptic and coincident regions. But, for other models this procedure would
be obtain solutions that satisfies the system (4.10) but do not satisfies Definition 2.4.1, e.g., curves with
cusp points.

4.4 Double contact Locus

In this section we describe the mixed and fast double contact locus. These bifurcation loci were given in
Definition 2.4.4 and are represent at by pairs of states that remain inside the saturation triangle, such that
there are unique pairs of corresponding states. The existence of these bifurcation curves and their shape
depends on the choice of viscosity values; these curves do not exist for some combinations of values.
Only certain parts of these manifolds are relevant, namely, those that involve shock waves that admit
viscous profiles or those that limits regions where we have bifurcation of some backward fast wave
curves. In this work we call fast double contact the (2, 2)-double contact manifold and mixed double
contact the (1, 2) (or (2, 1))-double contact manifold.

In this section it is not our intention to make an exhaustive analysis of these manifolds, but it is
important to understand their behavior and the admissibility of discontinuities between segments of the
corresponding states of these locus to define the wave curves, as well as the L and R regions (see
Chapter 6). All the analysis in this section was done using specialized software.
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(a) Behavior of mixed contact locus with U ∈ IIO .
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Figure 4.2: Mixed double contact for distinct umbilic points Ui for i ∈ {1, .., 9} of type II; two viscosities values
are fixed and we vary µg . In both figure, Y1 and Y1 are the corresponding pair of mixed double contact states,
where Y1 intersects [G,D]. The corresponds points to dashed curve (Y1, P ′) are outside of the saturation triangle,
therefore (Y1, P ′) does not belong to a mixed contact locus.

4.4.1 Mixed double contact

Mixed double contacts are shown in Figure 4.2(a) and (b). We see that this locus does not exist if U ∈ TU .
When U is near to straight line sw = 1/2, so = 1/2 or sw + so = 1/2, the locus is small and it increases
as U approaches the edges of the saturation triangle. The black curves in Figure 4.2 correspond to the
states Y that satisfy λs(Y) = σ, while the green curve corresponds to the states that satisfy λf (Y ) = σ,
where σ = σ(Y;Y ). Strong numerical evidence indicates that discontinuities of mixed contact are not
admissible in our model.

4.4.2 Fast double contact

In this section we describe the behavior of the fast double contact locus when we vary µw, µo and µg.
This locus was defined in Definition 2.4.4 as the set of pairs of states in the saturation triangle such that
the speed of a shock between them is equal to the fast characteristic speed at each state. This bifurcation
is relevant in the construction of fast wave curves (both forward and backward) because when the shock
between a pair of states in this set is admissible we automatically have Bethe-Wendroff points and we can
concatenate a f - rarefaction curve to these states. Notice that this locus consists of multiple disconnected
curves (normally three pair curves) such that there is a unique correspondence between states of different
curves.

In [21] was studied the completely symmetric case (see Figure 4.3(a)). In [17], it was studied when
one of the viscosities increases by a small amount (see Figure 4.4). In [31], the case of two equal
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(a) Completely symmetric. (b) Zoom of a neighborhood of U .

Figure 4.3: Fast double contact for the case µw = µo = µg . In both figure, YG2 and Y G2 are the corresponding
pair of fast double contact states, where both states intersect [G,D].

viscosities was studied (see Figure 4.5 (b)).
We describe the case in that the umbilic point is of type IIO and the viscosities µw and µo are

different. With out loss of generality assume that µg ≤ µw < µo. We have two cases:

1. Symmetric case: Refer to Figure 4.5(b). In this case we observe that there are three pair of
curves that can be described with respect to the influence of the secondary bifurcation lines. For
each pair of curve we have the next correspondence: the curve [HΓ

1 , Y
Γ

2 , H
Γ
4 , P ] corresponds to

[H ′Γ1 ,YΓ
2 , H

′Γ
4 , P ] with Γ ∈ {G,W} and [P, JW2 , HG

2 ] corresponds to [P,J G2 , H ′G2 ]. The state P
lies [O,B] and it corresponds to itself. When we consider B(U) = I only the pair of segments
[Y Γ

2 , H
Γ
4 ], [YΓ

2 , H
′Γ
4 ] are admissible by viscous profile for Γ ∈ {G,W}.

2. µg < µw: Refer to Figure 4.5(a). In this case we observe that there are three curves that can
be described with respect to the influence of the secondary bifurcation lines. The points of one
of the curves correspond to points on the same curve. For each pair of curve we have the next
correspondence: the curve [HG

1 , Y
G

2 , Ŷ G
2 , JW2 , HG

2 ] corresponds to [H ′G1 ,YG2 , ŷG2 ,J G2 , H ′G2 ] and
[HW

1 , Y W
2 , HW

4 , P ] corresponds to [H ′W1 ,YW2 , H ′W4 , P ]. The fast double contact and the fast-
inflection locus are tangents at point P . When we consider B(U) = I only the pair of segments

[Y G
2 , Ŷ2

G
] corresponds to [YG2 , ŷ2

G] and [Y W
2 , HW

4 ] corresponds to [YW2 , H ′W4 ] are admissible by
viscous profile.
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(a) Behavior of double contact locus with U ∈ TU . (b) Zoom of a neighborhood of U .

Figure 4.4: Fast double contact for the case µw = µo = η, and µg > η. In both figure, YG2 and Y G2 are the
corresponding pair of fast double contact states, where both states intersect [G,D].

WG

O

D

B

E

Y2

Y2
U 

G

G

Y2

W

Y2
W

H4

Y2

G

y2
G

H2

H1

H'1

H'2

H1

H'1

H'4

G

G

J2
G

W

W

W

W

P J2
W

G

G

(a) Behavior of fast double contact locus with U ∈ IIO with
µg < µw.

WG

O

Y
2

U                  

G

G

Y
2

W

W

H
1

H'
1

H
2

H'
1

H
1

H'
2

H
4 H

4

GW

H'
4

W

G

G

G P
H'

4

W

W

W
G

G G

J
2

Y
2

J
2

Y
2

(b) Behavior of fast double contact locus with U ∈ IIO sim-
metric case (µw = µg).

Figure 4.5: Fast double contact for the case U ∈ IIO. In both figure, YG2 and Y G2 are the corresponding pair of
fast double contact states, where both states intersect [G,D].
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4.5 Inflection locus

In this section we describe the behavior of the inflection locus when we vary µw, µo and µg. This locus
was defined in Definition 2.1.3 as the set of critical points of the characteristic speed for each family.
Work [21] studied the completely symmetric case (see Figure 4.6(a)). In [17], it was studied how the
inflection locus bifurcates when one of the viscosities increases by a small amount. In [31], the case of
two equal viscosities was studied.

Let α, β and γ represent each of phases {w, o, g} while A,B and Γ stand for any of the vertices
{G,W,O}, such that (α,A), (β,B), (γ,Γ) ∈ {(w,W ), (g,G), (o,O)} . We describe the behavior of
inflection locus for any combination of values µα, µβ and µγ . The choice of values for µα, µβ and µγ
depends on choice of vertices A,B and Γ. The description of the inflection locus depends on the type of
umbilic point and on the family of characteristic speeds studied, so we will make the analysis for each
case separately.

(a) Completely symmetric. (b) µw = µg = η and µo > η.

Figure 4.6: Slow and fast inflection locus. Dashed curve is the slow inflection and red continuous curve is the
fast inflection. (a) Case µw = µo = µg . (b) Case 2.a) for U of type I , with the associations between vertices and
viscosities (α,A) = (w,W ), (β,B) = (o,O) and (γ,Γ) = (g,G). In this case µw = µg = 1 and µo = 1.2

4.5.1 Slow inflection

We classify the slow inflection (s-inflection) in the following cases, according to the type of the umbilic
point and the relationships between viscosities:

4.5.1.1 Umbilic point of type I

Assuming that U ∈ TU , we have the following cases:
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1. Three equal viscosities (completely symmetric case, see blue curve Figure 4.6(a)): The s-inflection
consists of three line segments that coincide with part of the secondary bifurcation. They come
from the umbilic point to each of the vertices A,B and Γ.

2. Two equal viscosities: Let η = µα = µγ be a fixed real value with η ∈ [0, 1]. We have two sub
cases depending on µβ:

a) µβ > η (see Figure 4.6(b), blue curve): The s-inflection consists of one line segment from
vertex B to U (along symmetry axes) and two curves which begin at the umbilic point and
finish in the other two vertices. These curves remains in the triangle Â U Γ.

b) µβ < η (see Figure 4.7(a), blue curve): This case differs from the previous one in that the
curves lie outside the triangle Â U Γ.

3. No equal viscosities (see Figure 4.7(b), blue curve): Assume that µβ < µα < µγ . The s-inflection
consists of three curves which begin at the umbilic point and finish in each one of the verticesA,B
and Γ. The curves with vertex Γ and A lie outside triangle Â U Γ , while the other curve remains
inside the triangle B̂ UA.

(a) µw = µg = η and µo < η (b) µg < µw < µo.

Figure 4.7: Slow and fast inflection locus. Dashed curve is the slow inflection and red continuous curve is the
fast inflection. (a) Consists of the cases 2.b) for U of type I , with the associations between vertices and viscosities
(α,A) = (w,W ), (β,B) = (o,O) and (γ,Γ) = (g,G). The figure was made with µw = µg = 1 and µo = 0.8.
(b) Consists of the case 3 for U of type I , with the associations between vertices and viscosities (γ,Γ) = (o,O),
(α,A) = (w,W ), (β,B) = (g,G) and B = D. The figure was made with µw = 1, µg = 0.9 and µo = 1.1.
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4.5.1.2 Umbilic point of type II

Without loss of generality, assume that U ∈ IIB, the other cases are analogous via a rotation. We have
two cases:

1. µα = µγ : The s-inflection consists of a line segment that connects the umbilic point with the
vertex B. It also consists of two curves that begin in vertices A and Γ and intersect the secondary
bifurcation given by B at state I. This state does not lie in segment [B,U ]. These curves remain
inside of triangle Â I Γ. Notice that there is a "gap" between the states U and I (see Figure 4.8(a),
blue curve).

2. µα > µγ : This case differs from previous one in that we have a curve from vertex B to the umbilic
point. This curve lies inside triangle B̂ U Γ (see Figure 4.8(b), blue curve).

4.5.2 Fast inflection

We classify the fast inflection (f -inflection) in the following cases, according to the type of the umbilic
point and the relationships between viscosities:

4.5.2.1 Umbilic point of type I

(a) µw = µg and U ∈ IIO . (b) µw > µg and U ∈ IIO .

Figure 4.8: Slow and fast inflection locus. Dashed curve is the slow inflection and red continuous curve is the fast
inflection; the state I is the intersection between the slow inflection and invariant line [O,B]. (a) Consists of the
case 1. for U ∈ IIO, with the associations between vertices and viscosities (α,A) = (w,W ), (β,B) = (o,O) and
(γ,Γ) = (g,G). The figure was made with µw = µg = 0.25 and µo = 2. (b) Consists of the case 2. for U ∈ IIO,
with the associations between vertices and viscosities (α,A) = (w,W ), (β,B) = (o,O), (γ,Γ) = (g,G) and
G = D. The figure was made with µw = 1, µg = 0.5 and µo = 2.
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Assuming that U ∈ TU , we have the following cases:

1. Three equal viscosities (completely symmetric case, see Figure 4.6(a) red curve): The f -inflection
consists of simply connected closed curve that surrounds U and three line segments that coincide
with part of the secondary bifurcation, coming from U to the sides of the triangle opposite each
of the vertices A,B and Γ.

2. Two equal viscosities: Let η = µα = µγ be a fixed real value with η in [0, 1]. We have two sub
cases depending of µβ:

a) µβ > η (see Figure 4.6(b), red curve): The f -inflection consists of a simply connected closed
curve passes through U and intersects only the segment [U ,B]. It includes a line segment
that connects U and the side opposite of vertex B and a curve that intersects it, connecting
adjacent sides of vertex B.

b) µβ < η (see Figure 4.7(a), red curve): The f -inflection consists of a non-simply connected
curve that closes at U and intersects another part of the f -inflection, a segment that connects
U and the side opposite of vertex B. It includes a curve that connects the sides adjacent to
vertex B and intersects the segment [ U ,B].

3. No equal viscosities (see Figure 4.7(b), red curve): Assume that µβ < µα < µγ . The f -inflection
consists of a curve that connects the sides that form vertex B while intersecting segment [U ,B].
It includes a curve that comes from the side opposite to vertex B and ends at U . This curve is
totally contained in the triangle B̂ B A, where B is the intersection point between the secondary
bifurcation that leaves vertex B with the side opposite to it. We also have a simply connected
closed curve that passes through U and is completely contained in the triangle B̂ B Γ.

4.5.2.2 Umbilic point of type II

Without loss of generality, assume that U ∈ IIB. We have two cases:

1. µα = µγ (see Figure 4.8(a), red curve): The f -inflection consists of a segment that connects U and
the side opposite to vertex B. It also consists of a curve that joins both sides that form the vertex
B and intersects the secondary bifurcation that leaves the vertex B in the segment [U ,B].

2. µα > µγ (see Figure 4.8(b), red curve): The f -inflection consists of the curve that joins both
sides that form the vertex Γ and intersects the line segment [Γ,U ]. It also consists of a curve that
connects U and the side opposite to Γ. This curve is completely contained in the triangle ÂΓG
where G is the intersection point between the secondary bifurcation that leaves the vertex Γ and
the side opposite to Γ.

4.6 Boundary Extension sets

These sets are extremely relevant in the construction of wave curves, since they are also borders where
the wave curves change of structure and are also associated to composites curves. As the name suggests,
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Figure 4.9: Slow and fast boundary extension

a boundary extension set is the setE+
i (with i = s, f ) in phase space that satisfies Definition 2.4.6 for the

boundaries [W,O], [W,G] or [G,O] of the saturation triangle. The border extension sets useful to this
work are illustrated in Figure 4.9 and were obtained computationally. An analytic expression for these
curve may be found in [14] in convex permeabilities Corey models. The blue curve (G,B∗, E1, D

∗, O)
represents the s-right-extension boundary of [G,O]: for any state M in this curve, there is a state L ∈
[G,O] such that σ(M ;L) = λs(M). The blue curves (G,E∗, B1, D

∗,W ) and (W,B∗, D1, E
∗, O)

represent the s-right-extension boundaries of [G,W ] and [W,O], respectively. In the same way, the red
curve that contains state D2 and intersects the sides that form vertex G represents the f -right-extension
boundary of [W,O]: for any state M in this curve, there is a state R ∈ [W,O] such that σ(M ;R) =
λf (M). The f -right-extension boundaries of [G,W ] and [G,O] are the red curves that intersect the sides
that form vertices O and W , respectively.

The boundary of saturation triangle can be associated to secondary bifurcation lines such that each
edge is corresponding to the straight line that start in the vertex opposite and ends to the side. Hence, the
s- and f -right-extension boundaries of edge opposite to vertex Γ and with state B intersect the straight
line [Γ,B] in states B1 and B2, respectively. Therefore D1 and D2 are the intersection of s- and f -left-
extension boundaries of edge [W,O]. Similarly E1 and E2, and B1 and B2 corresponding to s- and
f -extension boundaries of edges [G,O] and [G,W ], respectively. On the other hand, state B∗ ∈ [Γ,B]
is the intersection of two s-extension boundaries associated to the edges than form the vertex Γ; i.g.,
E∗ ∈ [W,E] is the intersection between the sides [W,G] and [W,O].
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Chapter 5

The role of reduced two-phase flow

In this chapter we study the reduction of our system given in (3.36) to the scalar Buckley-Leverett con-
servation law for two-phase flow in porous media. As we see in [9] and the Remark 3.3.8, this reduction
follows straightforwardly along each of the edges of the saturation triangle. However for Corey Quad
model without gravity and B = I , it also occurs along the straight lines [G,D], [W,E] and [O,B] as
well, turning them into invariant lines of our PDE (3.38) (with ϑ = 0). Note that these invariant lines
coincide with the secondary bifurcation manifolds. According to [17] and [21], for the viscosity matrix
equal to identity, the only admissible non-Lax shocks arise in the associated traveling wave ODE (2.23)
as heteroclinic orbits lying on the invariant lines. These transitional shocks have an important role in
solving the general Riemann problem under the viscous profile criterion. Because of this reason, we are
interested in characterizing these invariant lines and studying their properties.

5.1 Parameters and coordinates

Points of the phase space along the line [G,D] (see Figure 3.1) satisfy the identity

sw
µw

=
so
µo

=
sw + so
µw + µo

. (5.1)

Let us define along [G,D] the "effective" saturation and "effective" viscosity respectively as

s = sw + so, and µwo = µw + µo. (5.2)

Then, the line segment [G,D] is parametrized in s as

sw =
µw
µwo

s and so =
µo
µwo

s, (5.3)

where 0 ≤ s ≤ 1. Now consider the formulation (3.38) with ϑ = 0, i.e., F (U) = F(U) given by (3.36)
in the space of saturations (sw, so)

T . The system of PDEs is

∂

∂t

(
sw

so

)
+

∂

∂x

(
Fw(sw, so)

Fo(sw, so)

)
=

∂2

∂x2

(
sw

so

)
. (5.4)
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We define D(s) = s2

µwo
+ (1−s)2

µg
. Substituting (5.3) in (5.4) we obtain

∂

∂t

(
µw
µwo

s

)
+

∂

∂x

(
µws

2

µ2
woD(s)

)
=

∂2

∂x2

(
µw
µwo

s

)
, (5.5)

∂

∂t

(
µo
µwo

s

)
+

∂

∂x

(
µos

2

µ2
woD(s)

)
=

∂2

∂x2

(
µo
µwo

s

)
, (5.6)

which are two copies of the equation

∂s

∂t
+

∂

∂x

(
s2

s2 + ν(1− s)2

)
=
∂2s

∂x2
. (5.7)

Thus, we see that system (5.4) reduces to the scalar Buckley-Leverett equation

∂s

∂t
+

∂

∂x
f(s, ν) =

∂2s

∂x2
, (5.8)

where the flux function f and the viscosity ratio ν are

f(s, ν) =
s2

s2 + ν(1− s)2
, ν =

µw + µo
µg

. (5.9)

The Rankine-Hugoniot condition (2.8) for a shock with speed σ between M and N reduces to

− σ(sN − sM )− f(sN , ν)− f(sM , ν) = 0. (5.10)

Remark 5.1.1. The relationships (5.8), (5.9) are valid over any invariant line [G,D], [O,B] and [W,E],
which are identified by the vertex where it begins, Γ ∈ {G,W,O}. Sometimes it is useful to express
the final point of the invariant line, B ∈ {D,E,B}. The choice of vertex specifies a relation between
phase saturations: γ ∈ {g, w, o} corresponds to the phase at the vertex Γ and α, β represent the two in-
terchangeable phases. Then, the quantity s, the viscosity ratio and the effective viscosity are respectively

s = sα + sβ, νΓ = µαβ/µγ , with µαβ = µα + µβ. (5.11)

Notice that with this parametrization the vertices G,W and O have always value s equal to zero and
states D,E and B on the opposite edge have value s equal to one.

Remark 5.1.2. We introduce further notation for states over any invariant line in "effective" quantity.
For example, let A = (Aw, Ao) be a state in the saturation triangle belonging to [G,D]. Then, we write
sA ∈ (0, 1) to indicate that the state is specified by one effective saturation parameter.

Finally, we provide an identity for effective shocks. Given a speed and a left (or right) state in an
invariant line, it returns the right (or left) state of an admissible shock. Let M and N be two states on an
invariant line. Then substituting (5.9) into (5.10) we obtain

σ

ν

[
s2
M + ν(1− sM )2

] [
s2
N + ν(1− sN )2

]
= sN + sM − 2 sNsM . (5.12)
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Figure 5.1: Graphs for expressions λa (black curve) and λb (purple curve) above the white region. The dashed
(resp. solid) line above the shaded region is the slow (resp. fast) characteristic speed λs (resp. λf ) defined in
(5.14). The horizontal axis corresponds to a parametrization of an invariant line in terms of effective saturation s,
and the vertical axis is characteristic speed. The states sU , sY2 and sY2 are given in (5.15), 5.21(a) and (b). The
definition of sI is given in Remark 5.3.1.

5.2 Analytic expressions for certain states over invariant lines

Taking into account the fact that over the invariant lines the flux function reduces to (5.8), we derive a few
expressions for states over these lines that turn out to help in characterizing the Riemann solutions for
states in the saturation triangle. First, we fix the parameters µw, µo and µg, choose an invariant line by a
specific Γ and compute the value for νΓ using (5.11). We write f(s, ν) = f(s) to represent the effective
flux on this line. Then we calculate the characteristic speeds λa and λb for states over the invariant line.
In this model the eigenvalues were obtained using (2.2), but in this context we substitute the quantity
(5.11)(a) into (2.2). Hence the expressions:

λa(s) =
2s

µαβD(s)
, λb(s) =

2s(1− s)
µαβµγD(s)2

, with D(s) =
s2

µαβ
+

(1− s)2

µγ
. (5.13)

Remark 5.2.1. Of course λb can be obtained as f ′(s), the derivative of flux function (5.9). Moreover, if
the reduced state s lies between the vertex and the umbilic point U , we have λa(s) < λb(s). Conversely,
if the state s lies between the umbilic point and the edge opposite to vertex, then λb(s) < λa(s). We
have

λs(s) = min{λa(s), λb(s)} and λf (s) = max{λa(s), λb(s)}, (5.14)

the slow and fast characteristic speeds for a state s along any invariant line (Figure 5.1).
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From the definition of the umbilic point we have λa(sU ) = λb(sU ). Then from the expressions (5.13)
we obtain sU ((1 + ν)sU − ν) = 0. Thus, the reduced saturation of the umbilic point in each invariant
line associated to νΓ can be calculated as

sU =
νΓ

1 + νΓ
. (5.15)

Remark 5.2.2. Over each invariant line, it is possible to derive the expressions for two distinguished
states. These states are denoted by Y2 and Y2 and belong to the fast double contact locus (see Definition
2.4.4 and Figure 5.2). We take the assumption when the umbilic point lies between Y2 and Y2 (sY2 ∈
(0, sU ), sY2 ∈ (sU , 1)), such that satisfy

Y2 ∈ H(Y2) and σ(Y2;Y2) = λf (Y2) = λf (Y2), (5.16)

the value σ(Y2;Y2) is the speed of the shock between Y2 and Y2. From the expressions (5.13) and
definitions (5.14) and (5.16) we have

λb(sY2) = σ(sY2 ; sY2) = λa(sY2). (5.17)

Substituting (5.17) into (5.12) we obtain the equations related to the first and second equalities in:

2sY2(1− sY2)(s2
Y2

+ ν(1− sY2)2)

s2
Y2

+ (1− sY2)2
= sY2 + sY2 − 2sY2sY2 =

2sY2

(
s2
Y2

+ ν(1− sY2)2
)

ν
. (5.18)

Equating the second and the last expression of (5.18) we obtain

sY2 =
sY2ν

2s2
Y2

(ν + 1)− 2νsY2 + ν
. (5.19)

Notice that 2s2
Y2

(ν + 1) − 2sY2ν + ν 6= 0, then substituting (5.19) in the first and second equation of
(5.18) and equating the results we obtain

2 (sY2(ν + 1)− ν)
(
2s2
Y2

(ν + 1)− ν
)
s2
Y2

= 0. (5.20)

Because we seek a solution different from umbilic point, we arrive at the expressions in increasing order

sY2 =
1

2

√
2ν

ν + 1
, sY2 = −1

2

√
2ν(ν + 1)√

2ν(ν + 1)− 2(ν + 1)
=

1

2

ν +
√

2ν(ν + 1)

ν + 2
. (5.21)

Now, consider the intersection point between the invariant line and the triangle edge transversal to
that line. The value of s in this state is one (see Remark 5.1.1). Let us compute B1 and B2, the slow
and fast left-extensions of this intersection point, respectively that were given in Definition 2.4.6. These
states lie on the invariant line [Γ,U ] with Γ ∈ {G,W,O} and satisfy

λs(sB1) = σ(sB1 ; 1), (5.22)

λf (sB2) = σ(sB2 ; 1). (5.23)
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Figure 5.2: Bifurcation curves in phase space that contain the states D2 = B2 and D1 = B1 defined respectively
in (5.25)(a) and (b) for [G,D]; the states Y2 and Y2 defined respectively in (5.21) (a) and (b); and the states Y2
and Y2 defined respectively in (5.21) (a) and (b); and the pair of states of mixed double contact Y1 and Y1 with
Y1 ∈ [G,D] (see Section 4.4). The blue (resp. red) curve is the left slow (fast) boundary extension of edge [O,W ]
(see Definition 2.4.6). The orange curves are the double fast contact and the gray ones are the invariant lines [G,D]
, [O,B] and [W,E].
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Substituting equations (5.22) and (5.23) in (5.12), we obtain respectively

2sB1

ν
+ sB1 − 1 = 0 and (ν + 1)s2

B2
− 2(ν + 1)sB2 + ν = 0. (5.24)

Thus we have the expressions in increasing order

sB2 =

√
ν + 1− 1√
ν + 1

, sB1 =
ν

2 + ν
. (5.25)

Finally, we define the extension for the umbilic point, i.e., the state B0 on the invariant line [Γ,B]such
that

λs(sU ) = λf (sU ) = σ(sB0 ; sU ). (5.26)

Substituting (5.15) into (5.13) we obtain λs(sU ) = λf (sU ) = 2. Then using (5.12) and (5.26) we have

(2sB0 − 1)(sB0ν + sB0 − ν) = 0, therefore sB0 = 1/2. (5.27)

Remark 5.2.3. We denoted E0 and B0 to the extensions of the umbilic point, that satisfy (5.26) along
the invariant lines [W,E] and [O,B] respectively. As in case of sD0 , sE0 = 1/2 and sB0 = 1/2.

Remark 5.2.4. The analysis in this section can be done for any invariant line, by changing only the value
of ν according to the chosen line following Remark 5.1.1.

5.3 Dependence of distinguished two-phase states on fluid viscosities

In this section we study the location of certain important points, such as the umbilic point, the fast
double and mixed contact points, when we vary the parameters µw, µo and µg. Moreover, it is possible
to characterize the position of contact points in terms of the position of the umbilic point in the saturation
triangle. All of these states lie on an invariant line, so it suffices to explain the variation of these states
along a single invariant line, the other cases are similar.

The following result characterizes the viscosity ratios in terms of the location of the umbilic point
and it follows from Theorem 3.3.1.

Corollary 5.3.1. For the Corey Quad model, if the umbilic point U is type II then two of the ratios νO,
νG and νW are greater than one while the other is less than one. Conversely, if the umbilic point U is
type I, all ratios νO, νG and νW defined in 5.11)(b), are greater than one. To be more precise:

1. U ∈ IIO ⇔ νO < 1 , νG > 1 and νW > 1;

2. U ∈ IIW ⇔ νW < 1 , νG > 1 and νO > 1;

3. U ∈ IIG ⇔ νG < 1 , νO > 1 and νW > 1;

4. U ∈ TU ⇔ νO , νG and νW are greater than one.
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(a) Regions where U is type I and II . (b) Region for U such that made Y2 relevant for the
invariant lines associated to vertex G.

Figure 5.3: Position of the umbilic point U . (a) Classification of U as type I or II given in Corollary 5.3.1. (b)
Region associated to vertex G where the location of U imply the existence of the reduced states sY2

and sY2
.

Proof. Consider the umbilic point U = (Uw,Uo)T inside the Region IIO. This means that 0 < Uw <
1/2 and 1/2 < Uo < 1, by (3.42) we have

1

2
<

µo
µw + µo + µg

< 1, and 0 <
µw

µw + µo + µg
<

1

2
; (5.28)

if and only if,
µo > µw + µg, µo + µg > µw, and µw + µo > µg. (5.29)

Thus from (5.11) and (5.29) we obtain the condition 1 of this corollary. Similar inequalities are obtained
for U ∈ IIW . On the other hand, let us consider the umbilic point satisfying Uw < 1/2 and Uo < 1/2,
i.e.,

µw
µw + µo + µg

<
1

2
and

µo
µw + µo + µg

<
1

2
. (5.30)

We have two possibilities: (i) U ∈ IIG or (ii) U ∈ TU .

(i) If U ∈ IIG, from Theorem 3.3.1 we have Uw + Uo =
µw + µo

µw + µo + µg
<

1

2
. Thus

µw < µo + µg , µo < µw + µg and µg > µw + µo. (5.31)

(ii) If U ∈ TU , from Theorem 3.3.1 we have Uw + Uo =
µw + µo

µw + µo + µg
>

1

2
. Thus

µw < µo + µg , µo < µw + µg and µg < µw + µo. (5.32)
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Figure 5.4: Plot of the relation between U and the fast inflection point sI along any of the invariant lines, see
(5.34) and (5.35)

Therefore, from (5.11), (5.31) and (5.32) we obtain the other conditions.

Remark 5.3.1. Notice that the derivative of the effective flux function (5.9) with ν = νG along [G,D]
is continuous and has a maximum at sI (see Section 4.5). This state represents the inflection point of the
effective flux function. The meaning of sI over any invariant line depends on its position with respect to
the umbilic point. If sI is to the left of sU , it is a fast inflection point, otherwise it is a slow inflection
point (see equations (5.13) and Figure 5.1). Let us study the inflection point sI. If we differentiate f(s)
twice and we equate the result to zero, we obtain

2sI
3 − 3sI

2 +
νG

νG + 1
= 2sI

3 − 3sI
2 + sU = 0. (5.33)

Therefore, the discriminant of the cubic equation (5.33) is 108sU (1 − sU ). Then 4 ≥ 0 if and only if
0 ≤ sU ≤ 1. Therefore, when sU = 0 or sU = 1 there is only the trivial solution sI = sU for sI ∈ [0, 1].
Now, let PsU (sI) = 2sI

3 − 3sI
2 + sU be the function associated to (5.33). Notice that PsU (0) = sU ≥ 0

and PsU (1) = sU − 1 ≤ 0 for all sU ∈ [0, 1]. Additionally P ′sU (sI) = 6sI(sI − 1) ≤ 0 for all sI ∈ [0, 1]
and sU ∈ [0, 1]. Therefore, there is only one solution of (5.33) in [0, 1] for all sU ∈ [0, 1]. In Figure 5.4,
we plot the implicit relation between sU and sI given by (5.33). From Figure 5.4 we see that

if νG ≤ 1 ⇔ sU = νG
νG+1 ≤

1
2 ⇔ sU ≤ sI ≤ 1

2 ; (5.34)

if νG > 1 ⇔ sU = νG
νG+1 >

1
2 ⇔

1
2 < sI < sU . (5.35)

The following result, which was stated in [4], shows the relationship between the viscosity ratio νΓ

and the existence of states Y2 and Y2 along [G,D] of fast double contact.

Lemma 5.3.2. Consider the invariant line [G,D]. There are two states of fast double contact over [G,D]
if and only if 1 < νG ≤ 8.
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Remark 5.3.2. Notice that in terms of position of the umbilic point in the saturation triangle, the two
states of fast double contact over [G,D] exist and are relevant if and only if the umbilic point, U =
(Uw,Uo) is in the region bounded by the straight lines Uw + Uo = 1/2 and Uw + Uo = 8/9. (See shaded
region in Figure 5.3 (b)).

Proof of Lemma 5.3.2. First, we rewrite sY2 as

sY 2 = −1

2

√
2νG(νG + 1)√

2νG(νG + 1)− 2(νG + 1)
= −1

2

A

A− 2
, (5.36)

where A =
√

2νG
νG+1 . Then, for νG > 0 we have A > 0 and

A (A− 1)2 > 0 ⇔ A3 − 2A2 +A > 0, (5.37)

⇔ A > 2A2 −A3 = A2 (2−A) . (5.38)

As 2 − A > 0, from (5.38) we obtain sY2 = 1
2

A
2−A > sU . Notice that when νG = 1 we have sY2 =

sY2 = sU = 1/2 by (5.21). Otherwise, 2νG
νG+1 > 1⇔ νG > 1. Thus

νG > 1⇔ νG
νG + 1

>
1

2

√
2νG
νG + 1

. (5.39)

Therefore, we have that sU > sY2 , if νG > 1. On the other hand, consider the case in which νG < 1. It

implies that 2νG
νG+1 < 1. Thus νG

νG+1 > 1
2

√
2νG
νG+1 . Therefore sU < sY2 . This contradicts our assumption

given in Remark 5.2.2 that the umbilic point lies between sY2 and sY2 . Thus we conclude that when
νG < 1, the expressions given in (5.25) for sY2 and sY2 do not represent a pair of states of fast double
contact along the invariant line [G,D].

Let us prove that over any invariant line, there cannot be states of fast double contact on the same
side of the umbilic point. Assume that there are two states sM , sN in (sU , 1], sM 6= sN , such that
σ(sM ; sN ) = λf (sM ) = λf (sN ). Substituting the expressions (5.17) in (5.12) we obtain

2sM (sN
2 + νG(1− sN )2)

νG
= sM + sN − 2sMsN =

2sN
(
sM

2 + νG(1− sM )2
)

νG
. (5.40)

Equating the left and right expressions of (5.40) we have

(sM − sN )(sMsN (νG + 1)− νG) = 0 ⇔ sM =
νG

sN (νG + 1)
. (5.41)

Substituting (5.41)(b) in the equality between the left and center expressions of (5.40) we obtain

s2
NνG + s2

N − 2sNνG + νG = 0. (5.42)

The discriminant of (5.42) is 4ν2
G − 4(1 + νG)νG = −4νG < 0. Therefore we have a contradiction.

When considering the case sM , sN in (0, sU ) we obtain another contradiction. Thus we conclude that
νG > 0 implies sU < sY2 .
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(a) Region for U in which Y1 is relevant for the invari-
ant line associated to vertex G.

(b) Example of two of the 32 regions for U .

Figure 5.5: Diagrams for the position of the umbilic point U . (a) Region associated to vertexG where the location
of U implies the existence of the reduced state sY1

. (b) All 32 regions for U determined by different conditions on
νW , νO and νG.

Let us assume that Y2 coincides with D (E or B depending on which invariant line). Then sY2 =
sD = 1. Substituting in expression (5.21) we obtain

− 1

2

√
2νG(νG + 1)√

2νG(νG + 1)− 2(νG + 1)
= 1 ⇔ − 7ν2

G + 48νG + 64 = 0. (5.43)

As νG ≥ 0, then νG = 8. Now assume that the umbilic point lies inside the shaded region of Figure
3.2(b). This means that

1

2
< Uw + Uo ≤

8

9
⇔ 1

2
<

µw + µo
µw + µo + µg

≤ 8

9
⇔ 1

2
<

νG
νG + 1

≤ 8

9
. (5.44)

Then, the last expression of (5.44) implies 1 < νG ≤ 8.

Remark 5.3.3. Assume that νG > 1. Then from (5.35) we have 1
2 < sI < sU . Following Remark 5.3.1,

notice that by (5.33) and (5.21)(a) PsU (sY2) = 2s3
Y2
− 3s2

Y2
+ sU = sU/2

(√
2 sU − 1

)
> 0. Therefore

we have
νG > 1 ⇔ sU =

νG
νG + 1

>
1

2
⇔ sY2 < sI < sU . (5.45)

Let us discuss the mixed double contact points above. We are interested in the state Y1 that is
the intersection between the mixed double contact locus and the invariant line [G,D], see Section 4.4.
Unlike fast double contact states Y2 and Y2, the state Y1 and its correspondent state Y1 are not in the same
invariant line [G,D] (see Fig 5.2). Moreover, Y1 is not part of any invariant line. Because of this reason,
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Figure 5.6: Typical example of a Hugoniot locus from Ul = D. In this case µw, µo and µg satisfies
(µw−µo)

2

µg(µw+µo)
= 8. The states D2 and D1 were defined in (5.25)(a) and (b), respectively; the state D3 satisfy

σ(Y1;D3) = σ(Y1,Y1), where Y1 and Y1 are states of mixed double contact.

we cannot characterize them using the reduced saturation parameter (additionally, the shock between Y1

and Y1 is not admissible). But the location of Y1, like that of Y2, has an important role in our analysis as
they define regions where certain wave curves bifurcate (see chapter 6).

Strong numerical evidence shows that the mixed double contact locus exists only when the umbilic
point lies in one of the regions of type II (see Section 4.4). Even so, from the knowledge that Y1 is in
[G,D] (for example when Y1 lies on the boundary of the saturation triangle) we can extract important
information about conditions for Y1 to lie inside of saturation triangle (See Figure 5.6).

Now, we present a result that shows the relationship between the viscosity ratio νΓ and the existence
of mixed double contact state Y1 along the invariant segment [G,D]. This result was first shown in [4].

Definition 5.3.4. Following Remark 5.1.1 we define

ν−Γ = µ−αβ/µγ , with µ−αβ = µα − µβ. (5.46)

Lemma 5.3.3. Consider the invariant line [G,D] and the umbilic point in region IIO or IIW . Then the

state Y1 of mixed double contact over [G,D] lies inside the saturation triangle if and only if ν
−
G

2

νG
≤ 8.

Remark 5.3.5. Notice that in terms of position of the umbilic point in the saturation triangle, the state
Y1 is inside the saturation triangle if and only if the umbilic point U = (Uw,Uo) is in the region bounded
by the straight lines Uw+Uo = 1/2, Uo = 1/2 and the ellipse 9U2

w+14Uw Uo+9U2
o −8Uw−8Uo = 0

(see shaded region in Figure 5.5 (a)).
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Proof. Assume that U is in region IIO or IIW and Y1 coincide with D. Then we have that

Y1 = D = (Dw, Do)
T =

(
µw

µw + µo
,

µo
µw + µo

)T
and sD = 1 = sY1 . (5.47)

Using (5.21) we have that 2 = λf (sD) = λf (sY1). Consider the Hugoniot curve forD. From Lemma 4.8
of [9] theH(D) consisting the three straight lines [O,W ], [G,D] and [E,B], see Figure 5.6. Since for all
states M over the branch [O,W ], the slow characteristic speed is zero, the state Y1 corresponding to Y1

is not in this branch. In Figure 5.7 the branches [E,B] and [G,D] are is plotted. Let Y1 = (Y1w,Y1o)
T

be the corresponding state to Y1; from Definition 2.4.4 we have

σ(Y1;Y1) = λs(Y1) = λf (Y1) = 2. (5.48)

From the Rankine-Hugoniot condition (2.8) we have

Fw(Y1w,Y1o)− Fw(Dw, Do) = 2 (Y1w −Dw) , (5.49)

Fo(Y1w,Y1o)− Fo(Dw, Do) = 2 (Y1o −Do) . (5.50)

From (3.36) we have

Fw(Dw, Do) =
µw

µw + µo
and Fo(Dw, Do) =

µo
µw + µo

. (5.51)

Hence, substituting (5.51) into (5.49) and (5.50) we obtain

Y2
1w/µw

Y2
1w/µw + Y2

1o/µo + (1− Y1w − Y1o)2/µg
= 2Y1w − µw

µw+µo
, (5.52)

Y2
1o/µo

Y2
1w/µw + Y2

1o/µo + (1− Y1w − Y1o)2/µg
= 2Y1o − µo

µw+µo
. (5.53)

Therefore, dividing (5.52) by (5.53) and simplifying we obtain

Y2
1w

µw

(
2Y1o −

µo
µw + µo

)
− Y

2
1o

µo

(
2Y1w −

µw
µw + µo

)
= 0. (5.54)

On the other hand, taking into account Lemma 4.8 of [9] where the analytic expression of the Rankine-
Hugoniot locus is displayed, the nonlocal branch of H(D) that joins the states E and O is given by the
equation in variables Y1w, Y1o(

1 +
µg
µw

)
Y1w +

(
1 +

µg
µo

)
Y1o − 1 = 0. (5.55)

Since (5.55) is a straight line we can parametrize it by

Y1o = (1−M)
µo

µo + µg
, M ∈ [0, 1]. (5.56)
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(a) Speed diagram : branch [G,D] ofH(D). (b) Speed diagram : branch [E,B] ofH(D).

Figure 5.7: Speed diagram forH(D) in Figure 5.6. λs(M) (resp. λf (M) ) is the blue curve (resp. red curve) and
σ(M ;Y1) is the black curve with (a) varying the reduced saturation and (b) varying M defined in (5.55). The pink
curve is λf (Y1) in both diagrams.

Substituting (5.56) into (5.55) we obtain

Y1w = M
µw

µw + µg
, M ∈ [0, 1]. (5.57)

Therefore, substituting (5.56), (5.57) into (5.54) we obtain

µwµo [(2µg + µo + µw)M − µg − µw]
[
2(µw + µo)M

2 − (3µw + µo)M + µw + µg
]

= 0. (5.58)

Then

(2µg + µo + µw)M − µg − µw = 0 or (5.59)

2(µw + µo)M
2 − (3µw + µo)M + µw + µg = 0. (5.60)

Notice that if (5.59) is true, then Y1w = µw/(2µg + µo + µw) and Y1o = µo/(2µg + µo + µw).
Notice that Y1w/µw = Y1o/µo; thus the state Y1 would be on invariant line [G,D]. Then sY1 =
(µw+µo)/(2µg+µo+µw) = νG/(2+νG). But σ(sY1 ; sY1) = 2(2+νG)/(νG+4) 6= 2, ∀ νG ∈ (0, 1).
This contradicts (5.48). Therefore (5.60) holds. Let us analyzed the discriminant of (5.60). Notice that

4 = (3µw + µo)
2 − 8(µw + µo)(µw + µg) = (µw − µo)2 − 8µg(µw + µo). (5.61)

Given that we seek a unique solution of (5.60), we need that4 = 0. Therefore Y1 = D if and only if

(µw − µo)2

µg(µw + µo)
=

(ν−G)2

νG
= 8. (5.62)
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Figure 5.8: Transitional interval [X2(M2), X1(M2)] of all states M1 that has a transitional shock with
M2

In Figure 5.5(b) it is shown two regions for U where the choice of the distinguish invariant line
imply that it satisfies different properties. For example in the shaded region we have that U is type IIG,

νW > 8, νG < 1, 1 < νO < 8, (ν−W )
2

νW
< 8 and (ν−O )

2

νO
< 8. But in the pink region we have that U is type

IIO, νG > 8, νO < 1, 1 < νW < 8, (ν−G )
2

νG
> 8 and (ν−W )

2

νW
< 8.

Remark 5.3.6. Lemmas 5.3.2 and 5.3.3 still hold if we replace the invariant line [G,D] by [W,E] or
[O,B] using (5.11). Over all there are 32 different regions where the umbilic point could be; they are
shown in Figure 5.5(b).

5.4 Transitional shocks in reduced two-phase flow model

Transitional waves were introduced in [19, 21] to solve Riemann problems for non-strictly hyperbolic
systems of conservation laws. Transitional shock waves for generic flux functions are characterized by a
transitional map T : R3 −→ R3 defined on an open set A ∈ R3, the transitional region. The transitional
map carries each point (U, σ) inA to a unique point (U ′, σ) inA′ with U ′ = T (U), A′ = T (A) and such
that U and U ′ are connected by an admissible crossing discontinuity with shock speed σ = σ(U ;U ′).
For viscous matrix B = I , transitional shocks arise only along the invariant lines and, regions A and A′

are projected over the phase space as line segments on both sides of U . These regions lie over suitable
planes perpendicular to phase space and cross them along the invariant lines, as described in more detail
in chapter 7.

Taking advantage of the formulation of the reduced model, we can study the transitional map between
states along the same invariant line in an explicit way. That is, for each state M2 on the segment [U ,B],
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B ∈ {E,D,B}, there are states X1, X2 along the segment [Γ,U ] with Γ ∈ {G,W,O} such that any
state M1 between [X2, X1] has an admissible transitional shock to M2. This map can be characterized
by means of the reduced saturation on the invariant line studied in previous sections. In order to facilitate
the explanation, we use the inverse transitional map T−1(M2) with respect to the direction of orbits
along points in these invariant lines. This procedure is analogous to choosing a stateM1 along [Γ,U ] and
calculating the forward transitional map T (M1) and the interval defined by X1 and X2 along [U ,B].

Notice that for M2 = B we have a straightforward limit for transitional shocks given by the reduced
states sB2 and sB1 calculated in (5.25), such that all points between B1 and B2 satisfy Definition 2.4.6.

The limits of transitional shocks are clear extrema of the transitional map T , i.e., these states are
characteristic shocks of the suitable families. For this reason, we use expressions (5.12) and (5.13) (a)-
(b) for reduced states to find explicitly the map that determines the extrema of the transitional interval
associated with M2.

Theorem 5.4.1. Let M2 be a state along the secondary bifurcation line associated to the vertex Γ ∈
{G,W,O} on the invariant segment (U ,B], B ∈ {D,E,B} with 1 < νΓ ≤ 8. Then, there are two
states X1, X2 along the segment [Γ,U) such that for any state M1, with sM1 ∈ (sX2 , sX1), we have a
transitional shock between M1 and M2 with transitional speed σT (M1;M2). The state X1 satisfy

σ(X1;M2) = λs(X1). (5.63)

For the state X2 we have two cases depending on Y2 (Remark 5.2.2):

a. If sM2 ∈ (sU , sY2 ]
σ(X2;M2) = λf (M2). (5.64)

b. If sM2 ∈ (sY2 , 1]
σ(X2;M2) = λf (X2). (5.65)

Proof. We first compute X1. Substituting (5.63) in (5.14)(a) and using (5.12) we obtain

sX1 =
νΓsM2

2(1 + νΓ)s2
M2

+ νΓ(1− 2sM2)
. (5.66)

Notice that the denominator of (5.66) is nonzero and for M2 in the edge opposite to the vertex Γ (sX1 =
νΓ/(2 + νΓ) = sB1 and sM2 = 1), coinciding with (5.25)(b). Given that νΓ ≥ 1 then sM2 > sU ≥ 1/2
then 1− 2sM2 < 0. Thus

sM2(1− 2sM2) < sU (1− 2sM2) ⇔ sM2 < 2s2
M2

+ sU (1− 2sM2), (5.67)

⇔ sM2sU
2s2
M2

+ sU (1− 2sM2)
< sU . (5.68)

Hence, substituting (5.15) in (5.68) we obtain sX1 =
sM2νΓ

2(1 + νΓ)s2
M2

+ νΓ(1− 2sM2)
< sU . Therefore,

we conclude that for sM2 ∈ (sU , 1], sD1 ≤ sX1 < sU . Now, from Lemma 5.3.2 there are Y2 and Y2

along the invariant line defined by vertex Γ, with sY2 ∈ (0, sU ] and sY2 ∈ [sU , 1]. Notice that these
points naturally define a bifurcation over their corresponds segments, because they are the only points
along the invariant line that satisfy (5.16). Next, we study the cases for X2:
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a. Case sM2 ∈ (sU , sY2 ]. We seek a state X2 that satisfies (5.64). Then from (5.12) and (5.14)(b) we
obtain the quadratic equation

As2
X2

+BsX2 + C = 0, (5.69)

where
A = 2sM2(1 + νΓ), B = −(2sM2 + 1)νΓ, and C = νΓsM2 . (5.70)

Notice that the discriminant of quadratic equation (5.69) is

B2 − 4AC = −r
[
(4νΓ + 8)s2

M2
− 4νΓsM2 − νΓ

]
, (5.71)

the sign of which is nonnegative if and only if

(4νΓ + 8)s2
M2
− 4νΓsM2 − νΓ ≤ 0. (5.72)

B2 − 4AC ≥ 0⇔ 1

2

νΓ −
√

2νΓ(νΓ + 1)

νΓ + 2
<

νΓ

νΓ + 1
< sM2 ≤

1

2

νΓ +
√

2νΓ(νΓ + 1)

νΓ + 2
= sY2 .

(5.73)
Moreover, when M2 = Y2, we have B2 − 4AC = 0. Then,

sX2 =
−(sY2 + 1)νΓ

4sY2(1 + νΓ)
=

1

2

√
2νΓ

νΓ + 1
= sY2 . (5.74)

Therefore, sX2 is in [sY2 , sU ). Otherwise, since that sM2 < sY2 , then sX2 is chosen such that the
biggest root of quadratic equation (5.69), because the other one implies that sX2 < sY2 which
contradicts the given assumptions.

b. Case sM2 ∈ (sY2 , 1]. We seek a state X2 that satisfies (5.65). From (5.12) and (5.14)(b), we obtain
the quadratic equation

As2
X2

+BsX2 + C = 0, (5.75)

where
A = (2sM2 − 1) (νΓ + 1) , B = −2sM2(νΓ + 1) and C = νΓ. (5.76)

Notice that the discriminant of equation (5.75) is

B2 − 4AC = (νΓ + 1)
[
(νΓ + 1)s2

M2
− 2νΓsM2 + νΓ

]
, (5.77)

which is positive for all sM2 ∈ (sY2 , 1]. Additionally, if we consider sM2 = 1, we obtain sX2 =√
νΓ+1±1√
νΓ+1

. Notice that the largest of these two values for sX2 is greater than one, which is not valid.

Then for sM2 = 1, we obtain sX2 =
√
νΓ+1−1√
νΓ+1

which coincides with sD2 , see equation (5.25)(a).
On the other hand, as the pair of states sY2 and sY2 also satisfies (5.65), the solution of quadratic
equation (5.75) for sM2 = sY2 is sX2 = sY2 , hence sX2 ∈ [sB2 , sY2). We conclude that sX2 is the
lowest solution of the quadratic equation defined by the coefficients (5.76), because if we choose
the other one sX2 > 1 which contradicts the given assumptions.
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Corollary 5.4.2. For νΓ > 8 (or (ν−Γ )
2
/νΓ > 8) in the context of Theorem 5.4.1, the state X1

satisfies (5.63). The case a) holds for X2 with sM2 ∈ (sU , 1] and sX2 ∈ [sB̂2
, sU ), where B̂2 satisfy

σ(B̂2;B) = λf (B), for B ∈ {D,E,B}.

Proof. As seen in Lemma 5.3.2 (or Lemma 5.3.3), when νΓ > 8 (or (ν−Γ )
2
/νΓ > 8)

sY2 =
1

2

νΓ +
√

2νΓ(νΓ + 1)

νΓ + 2
> 1. (5.78)

Then, state Y2 is not inside of the saturation triangle and M2 must be chosen in (U ,B] (i.e., sM2 ∈
(sU , 1]). State X1, which is the lower extreme of transitional segment, is calculate as in (5.66) and
satisfies sX1 ∈ [sB1 , sU ). The upper extreme X2 is found as in the proof of Theorem 5.4.1 with sM2

satisfying quadratic equation (5.69) with coefficients (5.70). Notice that for sM2 = 1, we obtain from
the equation (5.69)

sX2 =
1

4

3νΓ ±
√
νΓ(νΓ − 8)

νΓ + 1
<

νΓ

νΓ + 1
= sU . (5.79)

We name B̂2 ∈ [G,U ] the state associate to B, with B ∈ {D,E,B} such that σ(B, B̂2) = λf (B) and

sB̂2
= 1

4

3νΓ+
√
νΓ(νΓ−8)

νΓ+1 . Now, consider sM2 ∈ (sU , 1). Dividing the coefficients (5.70) by νΓ + 1, the
solutions of (5.68) are

sX2 =
sU (2sM2 + 1)±

√
s2
U (2sM2 + 1)2 − 8s2

M2
sU

4sM2

, (5.80)

among which we consider the largest value of sX2 that satisfy sB̂2
< sX2 < sU .

Theorem 5.4.3. For νΓ ≤ 1 in the setting of Theorem 5.4.1, but M2 ∈ [B0, 1], with B0 defined in (5.26).
Then X1 satisfies (5.63) and case b) holds for X2.

Proof. Notice that the state B0 defined in (5.27), B0 and U satisfies both equations (5.63) and (5.65).
Furthermore sU ≤ 1/2 = sB0 . We have two options for the choice of M2: (i) M2 ∈ [B0,B] i.e.,
1/2 ≤ sM2 ≤ 1; or (ii) M2 ∈ (U ,B0), i.e., sU < sM2 < 1/2.

In the first possibility, the equation (5.66) for sX1 is computed as in proof of Theorem 5.4.1 and
satisfies sX1 ∈ [sB1 , sU ]. For the upper extreme X2, we have the part b) of Theorem 5.4.1 with sX2

satisfying the quadratic equation 5.75 with coefficients (5.76) and sM2 ∈ [1/2, 1]. Notice that when
sM2 = 1/2 we obtain sX2 = sU while when sM2 = 1, sX2 = sB2 . Then, we have that for sM2 ∈ (sB0 , 1]
the upper extreme X2 satisfy sB2 < sX2 ≤ sU .

In the second possibility, the equation (5.66) for sX1 is also computed as in proof of Theorem 5.4.1
and satisfies sX1 ∈ [sU , 1/2], i.e., in this case both statesM2 andX1 lie in the same side of U , which con-
tradicts our assumption of the transitional interval must be lie in [Γ,U ]. Therefore, there are transitional
shocks joining states M2 ∈ [B0,B] and M1 ∈ [X2, X1] ⊂ [Γ,U ].
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Remark 5.4.1. Notice that for νΓ ≥ 1 the Theorem 5.4.1 and Corollary 5.4.2 guarantee that any state
sM2 ∈ [sU , 1] has an inverse transitional map. In Theorem 5.4.3 when νΓ < 1 we have that the inverse
transitional map only exists for sM2 ∈ [sB0 , 1]. If sU < sM2 < 1/2 then by (5.67) and (5.68) sX1 > sU ,
therefore we do not have an inverse transitional map for these states.

5.5 Transitional Rarefaction waves

Transitional rarefactions were described in [19] for models of two conservation laws. Such waves arise
when an integral curve of the fast family is followed by an integral curve of the slow family (in the
direction of increasing characteristic speed). It is necessary that the two characteristic speeds coincide
at the point where these curves join. In our model, these waves arise when the umbilic point is type IIΓ

with Γ ∈ {G,W,O}, and when considering solutions of Riemann problems that involve states along the
invariant line with viscosity ratio νΓ < 1. As seen in Remark 5.3.1, when νΓ < 1, the parameter sI
represents the intersection between the slow inflection locus and the invariant line defined by vertex Γ
and satisfy sU < sI < sB0 = 1/2. We follow the same procedure presented for transitional shocks in the
previous section. We consider a state M2 along [sU , sB0 ] and show how to build transitional rarefaction
waves.

Theorem 5.5.1. Consider νΓ < 1 in the setting of Theorem 5.4.1, but for sM2 ∈ [sU , sB0 ] with B0 defined
in (5.26). Let M1 be a state along [0, sU ], then there is a transitional rarefaction wave between M1 and
M2 with transition state between the fast and slow rarefaction at the umbilic point. We have two cases
for this transitional rarefaction :

a. If sM2 ∈ (sU , sI], then the transitional rarefaction consists of the follows sequence of waves

M1
R2−−→ U R1−−→M2. (5.81)

b. If sM2 ∈ (sI, sB0 ], then there is a state M3, sM3 ∈ [sU , sI) with σ(M3;M2) = λs(M3), such that
the transitional rarefaction consists of the follows sequence of waves

M1
R2−−→ U R1−−→M3

′S1−−→M2. (5.82)

Proof. As we see in Remark 5.2.1 λb(s) = f ′(s) and satisfy λb(s) = λf (s) for s ∈ [0, sU ] and λb(s) =
λs(s) for s ∈ [sU , 1]. Moreover

λ′b(s) =
2νG[2(νG + 1)s3 − 3(νG + 1)s2 + νG]

((νG + 1)s2 − 2νGs+ νG)3
=

2sU (2s3 − 3s2 + sU )

(νG + 1)(s2 − 2sUs+ sU )3
. (5.83)

From Remark 5.3.1 λ′b(sI) = 0 and sU < sI < 1/2. By (5.83) we see that λb(s) is an increasing
function in (0, sI). Then, we can put in sU a slow rarefaction preceded by a fast rarefaction satisfying
the speed compatibility criteria. Therefore, if sM2 ∈ (sU , sI] we have the sequence given in (5.81) for
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any state sM1 ∈ [0, sU ). Now, consider sM2 ∈ (sI, 1/2] and we seek a state M3, sM3 ∈ [sU , sI) such that
satisfy σ(M3;M2) = λs(M3) . Therefore from (5.12) and (5.14)(a) we obtain the quadratic equation

As2
M3

+BsM3 + C = 0, (5.84)

where
A = (2sM2 − 1)(νΓ + 1), B = −2sM2(νΓ + 1) and C = νΓ. (5.85)

Notice that the discriminant of (5.84) is positive for all sM2 with sM2 < 1/2. Thus, one solution of the
quadratic equation is negative and the other one is positive. If M2 is equal to B0, A is null in (5.85) then
we have a linear equation −(νΓ + 1)sM3 + νΓ = 0. Hence sM3 = sU . Moreover, notice that

sU (sU − 1)(2sM2 − 1)2 ≤ 0 ⇔ (−2sM2sU + sM2 + sU )2 ≤ s2
M2
− 2sM2sU + sU (5.86)

⇔ −2sM2sU + sM2 + sU ≤
√
s2
M2
− 2sM2sU + sU (5.87)

⇔ sU ≤
sM2 −

√
s2
M2
− 2sM2sU + sU

2sM2 − 1
= sM3 . (5.88)

We next prove that sM3 < sI. Let PsU (s) = 2s3 − 3s2 + sU be the function associated to (5.33). From
Remark 5.3.1 PsU (sI) = 0, PsU (s) > 0 for s ∈ [0, sI) and PsU (s) < 0 for s ∈ (sI, 1] for all 0 ≤ sU ≤ 1.
On the other hand, dividing the equation (5.85) by (νΓ + 1), we obtain

(2sM2 − 1)sM3
2 − 2sM2sM3 + sU = 0. (5.89)

From (5.89) we have sU = 2sM2sM3 − (2sM2 − 1)s2
M3

. Notice that

PsU (sM3) = 2s3
M3
− 3s2

M3
+ sU = 2s3

M3
− 3s2

M3
+
(
2sM2sM3 − (2sM2 − 1)s2

M3

)
(5.90)

= 2sM3(1− sM3)(sM2 − sM3) > 0. (5.91)

Hence, sU ≤ sM3 < sI. Therefore, if sM2 ∈ (sI, sB0 ] there is a state M3, with sM3 ∈ [sU , sI), such that
the transitional rarefaction is given by the sequence (5.82) for any state sM1 ∈ [0, sU ).
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Chapter 6

Wave curves

In this chapter, we characterize the wave curves that appear in the Corey Quad model with B(U) = I.
These wave curves are constructed using the succession algorithm defined in Section 2.7. Since we
want to use the wave curves to solve the Riemann problem in the whole saturation triangle for U of
type II , we first identify the regions where the wave curves have the same number and types of waves
groups. Then, we study how these regions change when µw, µo and µg vary. The results in this chapter
provide scientific evidence for the existence of Riemann solutions, based on a combination of analytical
an computational techniques

6.1 Division of saturation triangle in SRi and FRi regions

(a) Slow macro regions. (b) Fast macro regions.

Figure 6.1: Division of saturation triangle in macro regions for slow and fast characteristic families for U ∈ IIO.

For each characteristic family, we divide the saturation triangle into three macro regions. This divi-
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sion is induced by the geometry of the characteristic fields defined in Section 4.1, where we discussed
the importance of the features of eigenvectors for both families along the boundaries of the saturation
triangle and the secondary bifurcation locus (see Figure 4.1). Actually, that this division is not influenced
by the choice of viscosity matrix in the study of admissibility criteria, but it is more straightforward when
we adopt B2×2 = I because in this case secondary bifurcations are invariant lines and transitional shocks
lie along them (see Chapter 5).

Before proceeding, let us introduce some notation. We use the notation (A,B), [C,D] and their
combinations to denote segments in the saturation triangle joining A to B (with endpoints excluded),
and segments joining C and D including the end points. We write [A,B,C] for a curve between A and
C which passes through a relevant pointB. The notation ÂBC represents the triangle with verticesA,B
and C.

Definition 6.1.1. Three quadrilateral slow macro regions are defined between the triangle’s sides and the
Y-shaped curve formed by the segments of the secondary bifurcation joining at U (see Figure 6.1 (a)).
We identify each region SRΓ by the vertex Γ ∈ {G,W,O} within it.
Three triangular fast macro regions are defined between the -shaped curve formed by the segments
of secondary bifurcation joining U with the triangle’s vertex (see Figure 6.1 (b)). We identify each
region FRB by the intersection point between the invariant line and the boundary of saturation triangle
B ∈ {E,D,B}.

Notice that each invariant line passes through a slow quadrilateral region and a fast triangular region.
In our description, it is useful to refer to this correspondence, e.g., SRO and FRB are the regions
associated with invariant line [O,B].

Definition 6.1.2. Let T be an open set of states in the saturation triangle. We say that T is a backward
(alternatively, a forward) R-region if for every right state R ∈ T , the backward (forward) fast wave
curveW−f (R) (W+

f (R)), has the same structure, i.e, it has exactly the same wave sequence. In the same
way we define forward (backward) L -regions.

For each macro region, it is convenient to construct the L -regions and R-regions in a particular way:
that it is SRΓ with Γ ∈ {G,W,O} is subdivided into forward L -regions and FRB with B ∈ {D,E,B}
is subdivided in backward R-regions. Though in principle L - and R-regions are constructed indepen-
dently, their relationship is usually studied in order to prove existence (and uniqueness) of solutions to
Riemann problems.

Let Ri be a backward R-region. For each R ∈ Ri the saturation triangle is subdivided into several
backward L -regions (actually a family of regions depending on R) where the solutions of the Riemann
problems have the same structure (not just the same wave curves). That is, let Lj(R) be an LRi

-region
depending of R, then the solutions that connect the left state L ∈ Li(R) to R have the same structure,
i.e., they have exactly the same wave sequences.

The solution of the Riemann problem (2.1),(2.4) is parametrized by a sequence of wave curves, which
necessarily go from UL to UR. However, in the description of our work we construct the backward R-
regions and from these regions we build the associated backward LR-regions, see for example [4, 3].
But it is possible to proceed in the opposite direction: first we construct the forward L -regions and later
build the associated forward RL -regions, see for example [17, 21, 31]
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6.2 Subdivision of SRG in forward L -regions

In this section we describe the subdivisions of SRG in forward L -regions. Since we adopt the de-
scription of Riemann solutions in terms of backward R-regions and LR-regions, as an illustration we
only show the subdivision and the methodology used for their construction. For a detailed description of
L -regions and the construction of the slow forward wave curves see [17, 31].

The forward L -regions and their boundaries for slow forward wave curves are shown in Figure
6.2. They are formed by portions of the bifurcation manifold and by backward rarefactions from certain
exceptional points computed numerically.

In Figure 6.2(a), we have the following portions of the bifurcation manifolds: the slow inflection
Is; the curves [B∗, Q3] and [D1, E

∗] which are part of the s-right-extension boundary of edge [W,O];
curve [B∗, G] that is part of s-right-extension boundary of edge [G,O] while [E∗, G] that is part of the
s-right-extension boundary of edge [G,W ]; the segment [D1,U ] that is part of the invariant line [G,D]
and curve [U∗, Q3] is the s-right-extension of segment [D1,U ]; the Lax s-shock segment [D1, Q3] is part
of the nonlocal branch ofH(D).

The slow inflection has some relevant points which intersect the follow segments: I1
s is in segment

[U , B] and I2
s is the intersection with the Lax s-shock segment [D1, Q3].

(a) L -Boundaries. (b) Forward L -regions.

Figure 6.2: Subdivision of SRG in six distinct forward L -regions.

We can classify the L -regions into two groups, see Figure 6.2(b): those regions where the slow wave
curve only has a local branch and those where it also has nonlocal branches. For a state L in regions
L1 or L2, the slow forward wave curve W+

s (L) only has a local branch. For a state L in regions Li
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with i ∈ {3, 4, 5, 6}, the slow forward wave curve W+
s (L) has a local branch and a nonlocal branch.

The local branches ofW+
s (L) for L in L1 or L3 are similar and so are the local branches for L in Li

with i ∈ {2, 4, 5, 6}. The construction of these forward slow wave curves can be found in [21] for the
completely symmetric case or in [17] for the case of two equal viscosities. In general, these L -regions
do not change greatly when the viscosities vary.

6.3 Compatibility and admissibility boundaries

In this section we define the compatibility and admissibility boundaries. These boundaries are important
in the definition of the R regions that divide the saturation triangle in areas where the same solution
properties are preserved. They are also important in the construction of boundaries by the surface of
transitional shocks that will be studied in Chapter 7. In the case of the velocity compatibility criterion,
for example, the triple shock rule 2.4.3 can be used together with the fact that the speed between different
wave groups is increasing to determine the compatibility boundary to be where the speeds of slow and
fast waves are the same. The nonlocal admissibility boundary separates regions where the Hugoniot
locus has a nonlocal branch from those where it does not.

(a) Relevants states associated to Hugoniot curve for D. (b) Boundaries for loss of compatibility of transitional and
fast shocks inside FRD .

Figure 6.3: (a) States D1, D2, D3 and X∗3 associated to H(D), they are invoked in Remarks 6.3.1-6.3.3 in order
to illustrate the procedure used to build the compatibility and admissibility boundaries. They satisfy: σ(D1;D) =
λs(D1), σ(D2;D) = λf (D2) and σ(D3;D) = σ(X3;D) = λs(X

∗
3 ). The curve [X∗3 ,U∗] is the right s-extension

of segment [D3,U ]. (b) Boundaries of the lower and upper region R1 which is defined in Section 6.4.1.

Remark 6.3.1. Consider a state M along the invariant line [G,D] (see Figure 6.3(a)). In the case
M = D, the Hugoniot curve H(M) is formed by three straight lines: [O,W ], [G,D] and [E,B] .
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From Theorem 5.4.1, it is possible to compute the secondary bifurcation point of H(D) named X1 (in
this case X1 = D1) with σ(X1, D) = λs(X1), using the reduced parameter s (see Chapter 5). The
speed diagram in Figure 6.5 compares the local branches [O,W ] and [G,D] ofH(D). We see that there
are two states V0 and V ∗0 along [O,W ] that satisfy σ(X1;D) = σ(V0;D) = σ(V ∗0 ;D). Notice that
for any state S ∈ [O, V0) ∪ (V ∗0 ,W ], we have σ(S;D) < σ(X1;D) and for S ∈ [V0, V

∗
0 ] we have

σ(S;D) ≥ σ(X1;D).

Remark 6.3.2. Let us consider the local branch [G,D] of H(D) (see Figure 6.3(a)). Using Theorem
5.4.1, we compute the state of X2 = D2 on the secondary bifurcation such that σ(X2, D) = λf (X2)
using the reduced parameter s (see Chapter 5). In Figure 6.5, the speed diagram compares the local
branches [O,W ] and [G,D] of H(D). We see that there are two states V2 and V ∗2 along [O,W ] that
satisfy σ(X2;D) = σ(V2;D) = σ(V ∗2 ;D). Notice that for any state S ∈ [O, V2) ∪ (V ∗2 ,W ] we have
σ(S;D) < σ(X2;D), and for S ∈ [V2, V

∗
2 ] we have σ(S;D) ≥ σ(X2;D).

(a) Boundaries for loss of compatibility of sonic shocks. (b) Boundaries for loss of admissibility of nonlocal shocks.

Figure 6.4: (a) States D1, D2, D3 and X∗3 associated to H(D). Curve [X∗3 ,Y1,U∗] is the right s-extension of
segment [X3, Ŷ1,U ]. The curve [V1, Y1] and [V ∗1 , Y

∗
1 ] are the double extension of segment [X∗3 , Ŷ1], see Remark

6.3.4. (b) The pairs states (Y2, Y2) and (J2, J2) belong to the fast double contact; Boundaries [V2, Y2] and [V ∗2 , Y
∗
2 ]

are the right f -extension of the segment [D2,Y2]. The curve (dashed) [Y2, Y
∗
2 ] is the right f -extension of the

segment [Y2,J2].

Remark 6.3.3. Let us consider the nonlocal branch [E,B] of H(D) (see Figure 6.3(a)). Since this
branch is a straight line that connects E to B, it is possible to compute explicitly the state X∗3 ∈ [E,B]
that satisfies σ(D;X∗3 ) = λs(X

∗
3 ). In Figure 6.5, the speed diagram compares the local and nonlocal

branches of H(D), [O,W ] and [E,B]. We see that there are two states V1 and V ∗1 along [O,W ] that
satisfy σ(X∗3 ;D) = σ(V1;D) = σ(V ∗1 ;D). Moreover, there is a state X3 = D3 ∈ [G,D] such that

68



σ(X3;D) = σ(X∗3 ;D). Notice that, for any state S ∈ (V0, V1]∪(V ∗1 , V
∗

0 ], we have σ(S;D) > σ(X1;D)
and σ(S;D) < σ(X3;D).

0

0.5

1

1.5

2

2.5

R=D

V0 V0

X3

Figure 6.5: Schematic speed diagrams comparing speed along the three branches of H(D). Black curves are the
shock speed σ(M,R) withM varying along the Hugoniot branches [E,B], [O,W ] and [G,D]. States on the same
horizontal dashed line satisfy the triple shock rule. The blue curves (red curves) are the slow characteristic speed,
λs (fast characteristic speed λf ).

6.3.1 Boundary for loss of compatibility between transitional and fast shocks

Consider a state M2 along [U , D] (or [D0, D], if νΓ < 1 in the regime of Theorem 5.4.3. See Figure
6.34(a)). As seen in Section 5.4, there is a segment (X2, X1) ⊂ [G,D] such that, for allM1 ∈ (X2, X1),
we have a transitional shock between M1 and M2 with shock speed σT = σ(M1;M2) satisfying
σ(X2;M2) > σT > σ(X1;M2). But in the context of Riemann problems, when a solution involves
one of these transitional shocks they must satisfy the criterion of compatible speeds between the slow,
transitional and fast wave groups which constitute the solution of the desired Riemann problem. As X1

and X2 depend on M2 we also write X1(M2) and X2(M2).
Since the speed σX1 = σ(X1;M2) for all M2 along [U , D] (or [D0, D]) is the smallest speed that a

transitional shock can have between M2 and M1 ∈ (X2, X1), we can use the triple shock rule 2.4.3, the
speed σX1 and the fact that we know the explicit form of the H(M2), to find the boundary with shock
speeds equal to σT , which separates regions that admit transitional shocks from those that do not.

We proceed by constructing the boundary for loss of compatibility between transitional and fast
shocks. First, consider Remark 6.3.1 where we found the states V0 and V ∗0 associated toD andX1 = D1

such that λs(X1) = σ(X1;D) = σ(V0;D) = σ(V ∗0 ;D). Since H(M2), X1(M2) and σ(X1(M2);M2)
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are known explicitly for M2 varying on the segment (D,U), and using that such a variation is con-
tinuous, we can build the upper and lower boundaries of all states V0(M2) and V ∗0 (M2) such that
σ(X1(M2);M2) = σ(V0(M2);M2) = σ(V ∗0 (M2);M2) (see Figures 6.6(b) and 6.9(a)). Notice that
when M2 approaches U , X1(M2) and V0(M2) approach U and V ∗0 (M2) approaches E0 (see Remark
5.2.3). Therefore, we have two (upper and lower) boundaries for loss of compatibility between transi-
tional and fast shocks inside FRD, given by the curves [V0,U ] and [V ∗0 , E0]; see Figure 6.3(b).

6.3.2 Boundary for loss of admissibility of nonlocal shocks

(a) Upper regions Ri, i ∈ {1, 2, 3} for fast macro
region FRD.

(b) Hugoniot curve for M2 in [U , D].

Figure 6.6: Construction of regions Ri for i ∈ {1, 2, 3}. (a) Dashed line represents the boundary for loss of com-
patibility of sonic shocks. (b) Hugoniot curve for M2 ∈ [Y2, D] with states V0(M2) ∈ [V0,U ], P ∈ H(M2) and
V1(M2) ∈ [V1, Y1]. The transitional shocks that reach M2 from the transitional segment [P ′, X1(M2)] ⊂ [G,U ]
are compatible with the state P , where σ(P ′;M2) = σ(P ;M2) > σ(Q;M2), for any Q ∈ [P ′, X1(M2)].

From Claim 2.7.2, if a discontinuity between two states is admissible, then these states are on the
same side with respect to a suitable invariant line. Using this "geometric" requirement for the character-
ization of admissible shocks, we can identify when discontinuities in nonlocal branches of a Hugoniot
curve need to be used in the construction of Riemann solutions. Let R be a right state in region FRD
(with R /∈ [U , D]) such that there is a state X2 in a nonlocal branch of H(R) tangent to [G,U ] and
such that the intersection state M2 betweenH(R) and [U , D] belongs to segment [Y2, D]. From Lemma
2.4.2 and from the triple shock rule 2.4.3, X2 and M2 satisfy σ(R;M2) = σ(R;X2) = λf (X2). Then,
using H(M2) instead of H(R), we can find the states R and X2 associated to M2 ∈ [Y2, D] such that
σ(R;M2) = σ(R;X2) = λf (X2) and that the nonlocal branch ofH(R) is tangent to [G,U ] at X2.
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We proceed by constructing a boundary for loss of admissibility of nonlocal shocks. First, consider
Remark 6.3.2 where we found the states V2 and V ∗2 associated to D and X2 = D2 such that λf (X2) =
σ(X2;D) = σ(V2;D) = σ(V ∗2 ;D). Since H(M2), X2(M2) and σ(X2(M2);M2) are known explicitly
for M2 varying on the segment (D,Y2) and that such a variation is continuous, we can build the upper
and lower boundaries of all states V2(M2) and V ∗2 (M2) such that σ(X2(M2);M2) = σ(V2(M2);M2) =
σ(V ∗2 (M2);M2) (see Figure 6.4(b)). Notice that, when M2 approaches Y2, X2 approaches Y2 and the
pair M2, V2(M2) contracts to a point Y2 = M2 = V2(M2) so that the shock between Y2 and V2(M2)
has zero strength and the shock speed σ(M2;V2(M2)) tends to λf (Y2). Therefore, when M2 = Y2 and
X2 = Y2, the discontinuity joining X2 to M2 is a double contact discontinuity. On the other hand, when
M2 approaches Y2, V ∗2 (M2) approaches Y ∗2 with σ(Y ∗2 ;Y2) approaching λf (Y2). Therefore, we have
two (upper and lower) boundaries for loss of admissibility of nonlocal shocks inside of FRD, given by
the curves [V2, Y2] and [V ∗2 , Y

∗
2 ]; see Figure 6.4(b).

6.3.3 Boundary for loss of compatibility of sonic shocks

As seen in Section 4.5, when the umbilic point is of type II , the slow inflection does not coincide with
the secondary bifurcation. Recall that if we want to use transitional shocks in Riemann solutions we
first need to reach a secondary bifurcation line with a forward slow wave curve. Because of this, there is
always a region of the saturation triangle from which the appropriate invariant line can only be reached by
a slow sonic shock. This observation hints at the existence of a boundary in the saturation triangle which
defines a region of right states R for which such slow sonic shocks do not arise in Riemann solutions
with transitional waves. The construction of this boundary is based on computation of states X3(M2)
for M2 varying along [U , D].

The procedure is similar to the one used to construct the boundary for loss of admissibility of nonlocal
shocks: first, consider Remark 6.3.3 where we found the states V1 and V ∗1 associated to D and X3 = D3

(actually X∗3 ) such that λs(X∗3 ) = σ(X∗3 ;D) = σ(X3;D) = σ(V1;D) = σ(V ∗1 ;D), see Figure 6.4(a).
We build the boundary for loss of compatibility of sonic shocks by varying M2 along (Y1, D] to obtain
all states V1(M2) and V ∗1 (M2) such that σ(X3(M2);M2) = σ(V1(M2);M2) = σ(V ∗1 (M2);M2) (see
Figure 6.4(a)). Notice that when M2 approaches Y1, X3 approaches Ŷ1 and X∗3 approaches Y1, and
that the pair (M2, V1(M2)) contracts to a point Y1 = M2 = V1(M2), so that the shock between Y1 and
V1(M2) has zero strength and the shock speed σ(M2;V1(M2)) tends to λf (M2). Then, when M2 = Y1

and X∗3 = Y1, the discontinuity joining X∗3 to M2 is a mixed double contact discontinuity. On the other
hand, whenM2 approaches Y1, V ∗1 (M2) approaches Y ∗1 with σ(Y ∗1 ;Y1) approaching λf (Y1). Therefore,
we have two (upper and lower) boundaries for loss of compatibility of sonic shocks inside of FRD,
given by the curves [V1, Y1] and [V ∗1 , Y

∗
1 ]; see Figure 6.4(a).

Remark 6.3.4. Notice that in the construction of boundaries of Sections 6.3.1- 6.3.3, givenM on a curve
in the saturation triangle, we find all discontinuities that have speed equal to one of the characteristic
speeds atM . Then, using Definition 2.4.6 we can compute the compatibility and admissibility boundaries
as extensions or the double extension of suitable segments of the invariant line [G,D].

• Consider the segment [D1,U ]. The boundary for loss of compatibility between transitional and
fast shocks ([V0,U ] and [V ∗0 , E0] given in Figure 6.3(b)) is calculated as the s-left-extension of
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segment [D1,U ], i.e., E−s ([D1,U ]).

• Consider the segment [D2,Y2]. A boundary for loss of admissibility of nonlocal shocks ([V2, Y2]
and [V ∗2 , Y

∗
2 ] given in Figure 6.4(b)) is calculated as the f -left-extension of segment [D2,Y2],

i.e., E−f ([D2,Y2]). If we consider the segment [Y2,J2] with J2 corresponding to J2 being an
intersection of the fast double contact with [G,U ], then [Y2, Y

′
2 ] = E−f ([Y2,J2]) is part of the

boundary for loss of admissibility of nonlocal shocks joining the upper and lower boundaries
constructed in Section 6.3.2 (see Figure 6.4(b)).

• Consider the segment [X3, Ŷ1]. The boundary for loss of compatibility of sonic shocks ([V1, Y1]

and [V ∗1 , Y
∗

1 ] given in Figure 6.4(a)) is a double extension curve of the segment [X3, Ŷ1] in the
following sense: first, we compute the segment [X∗3 ,Y1] = E+

s ([X3, Ŷ1]) and then, we compute
its s-left-extension (see Figure 6.4).

6.4 Subdivision of FRi for i ∈ {D,E,B} in backward R -regions:
umbilic point type II

In this section, we study the subdivision of the macro region FRi for i ∈ {D,E,B} into backward
R-regions when the umbilic point is of type II . Recall that this subdivision is given by regions where
the structure ofW−f is the same. The methodology for the construction of the R-regions is as follows:
first, we find the bifurcation manifolds studied in Chapter 4 and the boundaries for compatibility and
admissibility loss studied in Section 6.3. We also consider the extensions of segments of the invariant
line associated the macro region FRi for i ∈ {D,E,B}. Then, we build the backward fast wave
curves in FRi using the succession algorithm described in Section 2.7, studying the behavior of each
wave group with respect to the bifurcation manifolds and the compatibility boundaries, and verifying
numerically if each Lax f -shock (or characteristic shock) has viscous profile.

In order to study the admissibility of these discontinuities, we analyze the behavior of the Hugoniot
curve and use speed diagrams to classify shocks and to identify the equilibria associated to the same
speed. Whenever possible, we use the explicit formula for the Hugoniot locus to characterize the behavior
of discontinuities in some regions.

Without loss of generality, we restrict this presentation to the fast macro region FRD. We first study
the case with umbilic point U ∈ IIO, where νW > 1, νO < 1 and 1 < νG ≤ 8, and then the case with
umbilic point U ∈ IIG where νW > 1, νO > 1 and νG < 1. The other cases can be derived from these
two, considering the behavior of some special points that were studied in Section 5.3.

6.4.1 Subregions R1,R2 and R3

Regions R1,R2 and R3 were studied in [4, 3] for the construction of Riemann solutions in our regime
(U of type IIO) for left states along [G,W ] and right states in the quadrilateral of sides [E,U ], [U , D],
[D,O] and [O,E]. In [4, 3], Andrade et al. defined R1 as a region close to the vertex O such that, for all
right statesR ∈ R1, the solutions of Riemann problems for L restricted to [G,W ] do not use transitional
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shocks. Unlike R1, regions R2 and R3 can use transitional shocks to solve Riemann problems for certain
left states L and they are characterized as follows:

i) If R belongs to region R2, the transitional wave is always a single shock.

ii) If R belongs to region R3, the transitional wave is either a single shock or a composite transitional
wave, depending on state L.

We adopt the same characterization of the regions R1, R2 and R3 as in [4, 3], but we do not restrict the
left state L to [G,W ]. This leads to different definitions for the boundaries that separate regions R1 and
R2. For the bottom boundary of R1, we consider the curve [V0,U ] (see Figure 6.6(a)) defined in Section
6.3.1 while in [3] that boundary is the curve [V1, Y1].

(a) Typical Hugoniot curve for a state R in R1. (b) W−f (R), for R ∈ R1.

Figure 6.7: Hugoniot curve and backward f -wave curve for a state R ∈ R1. (a) The states A∗1, A
∗
2, T

∗, A4 and
A∗4 satisfy σ(R;A∗1) = σ(R;T ∗) = σ(R;A∗2) and σ(R;A4) = σ(R;A∗4). (b) Continuous lines are f -rarefaction
segments and dashed lines are Lax f -shock segments.

Consider a Hugoniot curve from a state M2 ∈ [U , D] (see Figure 6.6(b)). We compute the states
X1(M2), X2(M2) and X3(M2) on [G,D] associated to M2 (see Theorem 5.4.1). We also take states
V0(M2) and V1(M2) in boundaries [V0,U ] and [V1, Y1], respectively (see Remarks 6.3.1 and 6.3.3). Let
P be a state in H(M2) between V0(M2) and V1(M2) such that σ(P ;M2) = σ(P ′;M2) with P ′ ∈
(X3(M2), X1(M2)) ⊂ H(M2). Since

σ(X2(M2);M2) > σ(X3(M2);M2) > σ(X1(M2);M2),

we have σ(X3(M2);M2) > σ(P ′;M2) > σ(X1(M2);M2). Then, for any M1 in the transitional seg-
ment [P ′, X1), the transitional shock joining M1 and M2 satisfies σ(X1(M2);M2) < σT (M1;M2) ≤
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σ(P ′;M2). Moreover, the transitional segment [P ′, X1) can be reached using a slow forward wave curve
(see Chapter 7). Therefore, the region of FRD between the curves [V0,U ] and [V1, Y1] belongs to the
region R2 (see Figure 6.6(b)).

Now, we describe the Hugoniot curves and the backward f -wave curves for regions R1, R2 and R3.
The propositions stated bellow are verified in [4, 3].

Claim 6.4.1. Let R be a state in region R1. The Hugoniot curve of R possesses segments [A2, A4],
[A4, T

∗], [T ∗, B1] and [A1, R] (see Figure 6.7(a)) with the following properties :

(i) For M in either (A2, A4), (B1, T
∗) or (A1, R), the discontinuity from M to R is a Lax f -shock;

for M in (T ∗, A4) it is an over-compressive shock.

(ii) The states A1, A2, A4 and T ∗ are Bethe-Wendroff points. They satisfy σ(Aj ;R) = λf (Aj), for
j = 1, 2; σ(A4;R) = λs(A4); and σ(T ∗;R) = λs(T

∗).

(iii) For M in either [A2, A4], [A4, T
∗] or [A1, R), the discontinuity from M to R satisfies the viscous

profile admissibility criterion; for M in (T ∗, B1] it does not.

(iv) The states A∗1 ∈ [R,A1] and A∗2 ∈ [A2, A4] satisfy the triple shock rule 2.4.3, with σ(T ∗;A∗j ) =
σ(A∗j ;R) = σ(A∗j ;A

∗
k) = σ(T ∗;R), j 6= k assuming values 1 or 2; the state A∗4 ∈ [R,A1]

satisfies the triple shock rule 2.4.3 with σ(A4;R) = σ(A∗4;R) = σ(A4;A∗4).

Claim 6.4.2. The fast backward wave curve for a state R ∈ R1 has a local branch with the following
wave structure:

(i) Lax f -shock segment (R,A1] with σ(R;A1) = λf (A1);

(ii) backward f -rarefaction segment [R,O];

(iii) backward f -rarefaction segment (A1,W ].

It also has a nonlocal branch with the following wave structure:

(iv) Lax f -shock segment [A4, A2] with σ(R;A2) = λf (A2);

(v) backward f -rarefaction segment (A2, G].

Remark 6.4.1. In [3], the construction of W−f (R) for R ∈ R1 was proved only for those parts of
W−f (R) that must be reached by an s-wave curve leaving from L ∈ [G,W ]. For example, they did
not take into account the segments of admissible Lax f -shocks (R,A∗1] and [A∗2, A4] and the backward
f -rarefaction [R,O] (here, they were considered in Claim 6.4.1 and Figure 6.7). The proof for these
segments follows by straightforward adaptation of the procedure in [3].

Remark 6.4.2. Recall that in Section 6.3.1 we constructed two boundaries [V0,U ] and [V ∗0 , E0] which
separate regions of the same type inside FRD. Now, we define the lower R1 region as the region
bounded by [W,E0], [W,V ∗0 ] and [V ∗0 , E0] for which all right states R belonging to this region satisfy
Claims 6.4.1 and 6.4.2 (see Figure 6.9(a)).
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(a) Typical Hugoniot curve for a state R in upper region R2. (b) W−f (R), for R ∈ R2.

Figure 6.8: Hugoniot curve and backward f -wave curve for a state R ∈ R2. (a) The states Z1, Z2 and Z3 satisfy
σ(R;Z1) = σ(R;Z2) = σ(R;Z3). (b) Continuous lines are f -rarefaction segments and dashed lines are Lax
f -shock segments. For any R ∈ R2 the nonlocal branch ofW−f (R) begins at state Z2 on [G,D].

Following the conclusions given at the beginning of this section, the region R2 has as top boundary
the curve [V0,U ] and as bottom boundary the curve [V2, Y2]. Although the curve [V1, Y1] (see Section
6.3.3) passes through this R-region, the wave curve W−f (R) does not change its structure as the right
state R crosses this boundary.

Claim 6.4.3. Let R be a state in region R2. In addition to states Z1, Z2 and Z3 on [G,D], the Hugoniot
curveH(R) possesses states A1, A2 and A3 with the following properties:

(i) States A1, A2 and A3 are Bethe-Wendroff points. They satisfy σ(A1;R) = λf (A1), σ(A2;R) =
λf (A2) and σ(A3;R) = λf (R).

(ii) If M is a state on one of the branches [O1,W1] or [G1, B1] of H(R), the discontinuity joining M
to R is a Lax f -shock if M is in (A1, R) or in (A2, A3).

(iii) Moreover, this discontinuity is admissible if M is in [A1, R) or in [A2, Z2); it is inadmissible if M
belongs to [A3, Z2).

Claim 6.4.4. The fast backward wave curve for a state R ∈ R2 has a local branch with the following
wave structure:

(i) Lax f -shock segment (R,A1] with σ(R;A1) = λf (A1);

(ii) backward f -rarefaction segment [R,O];
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(iii) backward f -rarefaction segment (A1,W ].

It also has a nonlocal branch with the following wave structure:

(iv) Lax f -shock segment (Z2, A2] with σ(R;A2) = λf (A2) and Z2 ∈ [G,U ];

(v) backward f -rarefaction segment (A2, G];

Now we describe the lower R2 region:

Remark 6.4.3. In Section 6.3.3 we constructed two curves [V1, Y1] and [V ∗1 , Y
∗

1 ] which separate the
same type of region inside of FRD. Just as for the upper region R2, the lower region R2 is not affected
by the boundary [V ∗1 , Y

∗
1 ] since we do not restrict the left states L to [G,W ]; actually, it is the s-left-

extension of the s-inflection (or slow hysteresis) which causes a bifurcation in the lower R2 region. More
precisely, whenR crosses the s-hysteresis, the nonlocal Lax f -shocks segment [Z2, A2] (Claim 6.4.4(iv))
splits into two segments of Lax f -shocks separated by a segment of over-compressive shock. But, we do
not regard this bifurcation as defining two distinct regions because the type of wave and the location do
not change. However, when we build the L -regions associated to the lower region R2, this bifurcation
subdivides the lower R2 region into two distinct L -regions.

(a) Lower regions Ri, i ∈ {1, 2, 3} for fast
macro region FRD.

WG  

O

U                  

D
E

B

A1

A2

B1

G1

O1

W1

D1

A4

Z1

Z2

R
Z3

T*

W2

(b) Hugoniot curve for R in lower region R2.

Figure 6.9: (a) Boundaries that define the lower regions Ri, i ∈ {1, 2, 3}. Curve [V ∗1 , Y
∗
1 ] is the boundary for

loss of compatibility of sonic shocks (see Remark 6.3.3) and [N1,N2,N3] is the left s-hysteresis, see Definition
2.4.2. (b) Hugoniot curve for R inside of area bounded by the curves [E0,N2], [N2,N1], [N1, V

∗
0 ] and [V ∗0 , E0];

we call this area RH
2 ⊂ R2. The over-compressive admissible shock segment [T ∗, A4] separates two admissible

segments of Lax f -shocks, [Z2, T
∗) and (A4, A2].
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Consider a right state R in the lower region R1, close to V ∗0 ∈ [W,O], see Figure 6.9(a). From
Claim 6.4.1 (i) and (iii), the segment of over-compressive shocks (A4, T

∗) belonging toH(R) intersects
the invariant line [G,D] with T ∗ in the opposite side as R and A4 in the same side as R; the segment
(T ∗, B1] is not admissible from Claim 2.7.2. WhenRmoves toward to vertexO and crosses the boundary
[V ∗0 , E0], T ∗ crosses [G,D] toward the edge [G,W ], such that the segment [B1, T

∗) of Lax f -shocks
intersects [G,D] in Z2, see Figure 6.9(b). Therefore, in the nonlocal branch of H(R) we have two
segments of Lax f -shocks, [A2, A4] and [T ∗, Z2), separated by the segment of over-compressive shocks
(A4, T

∗) (with every segment of interest in the same side as R), and the segment of Lax f -shocks
[Z2, B1] in the side opposite to R with respect to [G,D] (see Figure 6.9(b)).

Figure 6.10: Backward f -wave curve forR in RH
2 ⊂ R2. The nonlocal branch ofW−f (R) contains two segments

of Lax f -shocks, [Z2, T
∗] and [A2, A4].

IfR continues to move towards vertex O, the size of the over-compressive segment [T ∗, A4] decreases
until T ∗ and A4 collapse when R reaches the s-hysteresis [N1,N3], where N1 ∈ [O,W ] and N3 ∈
[W,U ], see Figure 6.9(a) . Notice that if R crosses over the curve [V ∗2 , Y

∗
2 ] into R3, the nonlocal branch

[G1, B1] of H(R) crosses [G,D], leaving the triangle ĜWD, and causing any nonlocal shock to be
inadmissible. On the other hand, there is another boundary for the lower R2 region (given by curve
[E0, Y

∗
2 ]), whose description will be completed when we discuss regions R4′-R6′ in Section 6.4.3; see

Figure 6.9(a).

Claim 6.4.5. If R is in the region limited by [V ∗2 , Y
∗

2 ], [Y ∗2 ,N2] and [N1,N2] in Figure 6.9(a), the
backward f -wave curveW−f (R) satisfies Claim 6.4.4. If R is in the region limited by [V ∗0 , E0], [E0,N2]

and [N1,N2] (which we call RH
2 ), the local branch ofW−f (R) also satisfies Claim 6.4.4, but it is formed

by a nonlocal branch that has the following wave groups (refer to Figure 6.10):

(i) two Lax f -shock segments (Z2, T
∗] and [A4, A2], with σ(R;A2) = λf (A2) and Z2 ∈ [G,U ];
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(ii) backward f -rarefaction segment (A2, G].

Moreover,H(R) possesses an admissible over-compressive shock segment [T ∗, A4].

Finally, we describe the regions R3. The upper region R3 has [V2, Y2] as its top boundary, [V2, D]
as its right boundary and the segment [Y2, D] as its bottom boundary (see Figure 6.6(a)). As seen in the
construction of the lower region R2, when state R crosses the boundary [V ∗2 , Y

∗
2 ], the nonlocal branch

of H(R) crosses the invariant line [G,D], making this curve be the bottom boundary of lower region
R3 (see Figure 6.9(a)). The top boundary for lower region R3 is directly related to right-characteristic
f -shocks leaving the secondary bifurcation [G,D]. This boundary is given by the curve [Y ∗2 , D

∗] which
separates the lower regions R3 and R4′ and whose description will be completed when we discuss
regions R4′-R6′ in Section 6.4.3; see Figure 6.9(a).

Claim 6.4.6. LetR be a state in region R3. The Hugoniot curve forR has only one segment [R,A1] such
that, for all M ∈ [R,A1], the discontinuity from M to R is a Lax f -shock and A1 is a Bethe-Wendroff
point that satisfies σ(A1;R) = λf (A1). Moreover, this discontinuity is admissible (i.e., has viscous
profile). Refer to Figure 6.11(a).

(a) Typical Hugoniot curve for R ∈ R3. (b) W−f (R), for R in upper region R3.

Figure 6.11: Hugoniot curve and wave curve for a state R ∈ R3. Notice thatW−f (R) does not have a nonlocal
branch.

Claim 6.4.7. The backward fast-family wave curve of a stateR ∈ R3 consists of states along the segment
(R,A1] of admissible fast shocks in the Hugoniot curveH(R), joined by states along the fast rarefaction
segments [O,R] and [W,A1). Refer to Figure 6.11(b).
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Remark 6.4.4. As seen for R ∈ R1 (Remark 6.4.1), the construction in [4] of W−f (R) for R ∈ R2

or R ∈ R3 only considered those parts of W−f (R) that can be reached by s-wave curves leaving from
L ∈ [G,W ]. The complete proof follows by straightforward adaptation of the procedure given by
Andrade et al. in [4].

6.4.2 Subregions R4,R5 and R6

(a) Hugoniot curve for R = D. (b) Typical Hugoniot curve for R ∈ R4.

Figure 6.12: Hugoniot curve for states R = D and R ∈ R4. (a) Primary branches coincide with the edge [W,O]
and the invariant line [G,D]. The nonlocal branch is a straight line segment [E,B].

The construction of Riemann solutions for states R ≈ D within region R3 was described in [4]
and was summarized in Section 6.4.1. Here, we move the state R across the invariant line [G,D] while
staying close to state D inside the saturation triangle. A typical Hugoniot curve for a state R in this
region is shown in Figure 6.12(b). It can be considered as a perturbation of the Hugoniot curve for D
that was obtained explicitly in [9] (see Figure 6.12(a)). The Hugoniot curve for R possesses two primary
branches, [O1,W1] and [O2,W2] (which intersect at R), and a nonlocal branch [G1, G2]. Notice that this
nonlocal branch lies inside triangle ĜDO, therefore it is inadmissible by Claim 2.7.2.

Claim 6.4.8. Let R ≈ D lie below the secondary bifurcation [G,D]. The Hugoniot curve for R has only
one segment [R,A1] such that, for all M ∈ [R,A1], the discontinuity from M to R is a Lax f -shock
and A1 is a Bethe-Wendroff point that satisfies σ(A1;R) = λf (A1). Moreover, this discontinuity is
admissible (i.e., has viscous profile).

Proof. To justify this claim we refer to Figures 6.12 and 6.13. We compare the characteristic speeds
λs(R), λf (R), λs(M) and λf (M) with the shock speed σ(M,R) as M varies along the branches
[O1,W1], [O2,W2] and [G1, G2]. We identify the (local) segment [R,A1] as the single segment formed
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by Lax f -shocks (see Definition 2.2.1 and rectangular cut of Figure 6.13(a), zoomed in Figure 6.13(b)).
Moreover, the black and red curves in Figure 6.13(b) intersect at A1, meaning that σ(A1;R) = λf (A1).
The admissibility of this segment is guaranteed by Claim 2.7.1 because [R,A1] is a local shock segment
from R.

(a) Speed diagram: Primary branch [O1,W1], of H(R) with R ∈
R4.

(b) Speed diagram: Zoom of segment [R,A1], ofH(R)
with R ∈ R4.

(c) Speed diagram: Primary branch [O2,W2], ofH(R) with
R ∈ R4.

(d) Speed diagram: Nonlocal branch [G1, G2], of H(R) with
R ∈ R4.

Figure 6.13: Speed diagram for H(R) in Figure 6.12(b). The horizontal axis corresponds to a parametrization
given in terms of arc length, and the vertical axis is speed. The blue (resp. red) line is the characteristic speed λs
(resp. λf ) while the black line is the shock speed σ. Horizontal cyan and magenta lines correspond to the constant
values λs(R) and λf (R), respectively. (a) Segment (A1, R) of Lax f -shocks in the primary branch [O1,W1]. (b)
Zoomed in picture of squared region in (a). (c) Segment (A2, R) of Lax s-shocks in the primary branch [O2,W2].
(d) Segment (G2, A3) of transitional shocks in the nonlocal branch [G2, G1].

From Claim 6.4.8, we observe thatW−f (R) does not have nonlocal f -shocks. Now, we move state
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R parallel to edge [O,W ] toward of vertex W . By the description given in Section 4.5.2, there is a fast
inflection curve If that causes the bifurcation of the f -shock curve [R,A1]; the f -inflection consists of
the segment [I1

f , I2
f ], with I1

f ∈ [W,U ] and I2
f ∈ [W,D], see Figure 6.32(a). Indeed, as R approaches

If , [R,A1] becomes smaller until it contracts to a single state R ∈ If . Hence, the bottom boundary of
region R4 is If .

Next, we move state R toward U parallel to the invariant segment [U , D] and consider the forward
f -rarefaction that begins at Y2 ∈ [U , D], with Y2 belonging to the fast double contact, see Remark 5.2.2.
This rarefaction ends at state Y ′2 ∈ If (see Figure 6.32). The f -rarefaction curve [Y2, Y

′
2 ] represents

a bifurcation for the backward fast wave curve because if R belongs to or crosses [Y2, Y
′

2 ], then the
backward f -rarefaction inW−f (R) intersects the double fast locus [Y2, Ŷ2] producing a nonlocal branch
(see Figure 6.32 and Section 4.4.2, Figure 4.5(a)).

Claim 6.4.9. Region R4 has the invariant segment [Y2, D] for its top boundary, [Y ′2 , I2
f ] (which is part

of If ) for its bottom boundary and the f -rarefaction segment [Y2, Y
′

2 ] as its left boundary. Moreover, the
fast backward wave curve for a state R ∈ R4 consists of only a local branch that has the following wave
structure (refer to Figure 6.14(a)):

1. Lax f -shock segment (R,A1] with σ(A1;R) = λf (A1);

2. backward f -rarefaction segment [R,O];

3. backward f -rarefaction segment (A1,W ].

Proof. Refer to Figure 6.14(a). Consider any state in region R4. From Claim 6.4.8, we have the Lax
f -shock curve [R,A1] where A1 is a Bethe-Wendroff state. Following the succession algorithm (Section
2.7) for building W−f (R), we concatenate a backward f -rarefaction curve from state R to O and from
A1 to W . In Figure 6.14(a), we see the f -rarefaction curves [R,O] and [A1,W ], which intersect the
fast double contact locus at states P1 and P3, respectively. Moreover, [R,O] intersects the fast boundary
extension of [G,W ] at state P2, and [A1,W ] intersects the fast boundary extension of [O,G] at state
P4. The fast extensions of rarefaction curves [R,O] and [A1,W ] are the curves [P ′1, P

′
2] and [P ′3, P

′
4],

respectively, and correspond to segments [P1, P2] and [P3, P4]. Notice that the segments [P1, P2] and
[P ′1, P

′
2] are in opposite sides of the invariant line [G,D], which means that the f -composite segment

[P ′1, P
′
2] is inadmissible due to Claim 2.7.2. The same justification proves the inadmissibility of the

f -composite segment [P ′3, P
′
4] (see Figure 6.14(a)).

We now define R5 by moving the state R across the forward f -rarefaction segment [Y2, Y
′

2 ] (coming
from R4, see Figure 6.32(b)). We have two other natural boundaries: the fast double contact [Y2, Ŷ2]
as the left boundary and I2 as the bottom boundary. We call R5 the region defined by these three
boundaries. For some combinations of µw, µo and µg, it is possible for another boundary to appear in
this region, as described in Remark 6.4.5.

Moreover, as seen in the Remark 6.3.4, the f -left extension E−f ([Y2,J2]) given by segment [Y2, Y
∗

2 ]
passes through this region, producing two possibilities for the Hugoniot curveH(R): the nonlocal branch
crosses the invariant line [G,D] (or not, see Figure 6.32(d)), depending on which side of [Y2, Y

∗
2 ] the
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(a) W−f (R) for R ∈ R4. (b) Typical Hugoniot curve for R ∈ R5.

Figure 6.14: (a) Backward f -wave curve W−f (R) for R ∈ R4. Continuous lines are f -rarefaction segments
and dashed lines are Lax f -shock segments. The black crossed curves [P ′1, P

′
2] and [P ′3, P

′
4] are inadmissible

f -composite waves corresponding to the f -rarefaction segments [P1, P2] and [P3, P4], respectively. Notice that
W−f (R) does not have a nonlocal branch. (b) Hugoniot curve for R ∈ R5. Notice that the segment [Z2, A3, Z1] in
the nonlocal branch [G1, G2] crosses the invariant segment [G,D].

state R lies. In Figure 6.14(b), a Hugoniot curve is shown for a state R inside R5 it possesses two
primary branches [O1,W1] and [O2,W2] (which intersect at R), and a nonlocal branch [G1, G2]. Notice
that in this case the nonlocal branch intersects the invariant line [G,D] at states Z1 and Z2, so segment
[Z1, Z2] is on the same side of [G,D] as R.

Claim 6.4.10. The Hugoniot curve of a state R ∈ R5 has only one segment [R,A1] such that for all
states M ∈ [R,A1] the discontinuity from M to R is a Lax f -shock and A1 is a Bethe-Wendroff point
that satisfies σ(A1;R) = λf (A1). Moreover, this discontinuity is admissible (i.e., has viscous profile).

Proof. The justification of this claim is similar to the proof of Claim 6.4.8, but it is based on Figures
6.14(b) and 6.15. Notice that segments [G2, Z1] and [G1, Z2] lie inside triangle ĜDO, so states on this
curve are not admissible. From Figure 6.15(d) we see that for M ∈ [Z1, A3], λf (M) − σ > 0, which
implies that it does not comprise a Lax f -shock. Similarly there is no Lax f -shock for M ∈ [A3, Z2],
since λf (R)− σ > 0. For the case where the nonlocal branch [G1, G2] of H(R) does not cross [G,D],
the segment [G1, G2] is discarded by Claim 2.7.2.

Claim 6.4.11. The fast backward wave curve for a state R ∈ R5 possesses a local branch with the
following wave structure (refer Figure 6.16):

(i) Lax f -shock segment (R,A1] with σ(A1;R) = λf (A1);
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(a) Speed diagram: Primary branch [O1,W1] of H(R) with
R ∈ R5.

(b) Speed diagram: Zoom of segment [R,A1] of H(R)
with R ∈ R5.

(c) Speed diagram: Primary branch [O2,W2], forH(R)
with R ∈ R5.

(d) Speed diagram: Nonlocal branch [G1, G2], for H(R) with
R ∈ R5.

Figure 6.15: Speed diagram for H(R) in Figure 6.14(b). The horizontal axis corresponds to a parametrization
given in terms of arc length, and the vertical axis is speed. The blue (resp. red) line is the characteristic speed λs
(resp. λf ) while the black line is the shock speed σ. Horizontal cyan and magenta lines correspond to the constant
values λs(R) and λf (R), respectively. (a) Segment (A1, R) of Lax f -shocks in the primary branch [O1,W1]. (b)
Zoomed in picture of squared region in (a). (c) Segment (A2, R) of Lax s-shocks in the primary branch [O2,W2].
(d) Segment (Z1, A3, Z2) in the nonlocal branch [G2, G1]. Notice that for any M ∈ [G2, G1], λf (R)− σ > 0.

(ii) backward f -rarefaction segment [R,O];

(iii) backward f -rarefaction segment (A1,W ].

It also possesses a nonlocal branch with the following wave structure:

(iv) backward f -composite segment [M ′2, P
′
1) corresponding to [M2, P1);
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(v) backward f -rarefaction segment [P ′1, G], with σ(P1;P ′1) = λf (P1) = λf (P ′1).

(a) W−f (R) for R ∈ R5. (b) Orbits between states on the f -composite
segment [P ′1,M

′
2] and the corresponding

states on the backward f -rarefaction segment
[P1,M2] belonging toW−f (R) for R ∈ R5 .

Figure 6.16: (a) Backward f -wave curve for R ∈ R5, W−f (R). Continuous lines are f -rarefaction segments,
dashed lines are Lax f -shock segments and crossed lines are f -composite segments . The black crossed curves
(M ′2, P

′
2], [P ′3, P

′
4] and [P ′5, P

′
6] are inadmissible f -composite waves corresponding to f -rarefaction segments

(M2, P2], [P3, P4] and [P5, P6] respectively. Notice that the local branch of W−f (R) intersects the invariant line
[G,D] with a f -rarefaction wave at state M2; the nonlocal branch starts in the corresponding state M ′2 ∈ [G,U ]
with an admissible f -composite wave [M ′2, P

′
1] corresponding to f -rarefaction segment [M2, P1], where the pair

(P1, P
′
1) belongs to the fast double contact. (b) Orbits of the dynamical systems (2.24) for UL = M ′a ∈ [M ′2, P

′
1],

U = Ma ∈ [M2, P1] and σ = σ(Ma,M
′
a). Notice that the equilibria Ma ∈ [M2, P1] are saddle-attractors and

M ′a ∈ [M ′2, P
′
1) are saddles.

Proof. The justification of (i), (ii) and (iii) is similar to the one in Claim 6.4.9. Let P3 and P4 be
the intersection points of the backward f -rarefaction [A1,W ] with the fast double contact and the fast
boundary extension of [G,O], respectively (see Figure 6.16(a)). The fast extension [P ′3, P

′
4] of [P3, P4]

is not admissible by Claim 2.7.2. On the other hand, let P1, P2 and M2 be the intersection points of the
backward f -rarefaction [R,O] with the fast double contact, the fast boundary extension of [G,W ] and
the invariant line [G,D], respectively. The fast extension of [P2,M2] is the curve [P ′2,M

′
2] that lies in

the triangle ĜDW . This curve is not admissible by Claim 2.7.2.
Now, notice that M2 lies on [G,D], so we have an explicit Hugoniot curve H(M2) and we can

find the corresponding state M ′2 ∈ [G,D] using Theorem 5.4.1(a) with M ′2 = X2. In Figure 6.17(a)
we present the phase portraits of the dynamical system (2.24) for states UL = M ′2 and U = M2 with
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σ = σ(M2;M ′2). We see that there is an orbit from the saddle M ′2 to the saddle-attractor M2. Therefore,
the characteristic f -shock between M ′2 and M2 is admissible. Moreover, this connection is structurally
stable under small perturbations of M2, M ′2 and σ ([37]). Then, if we consider a state Ma ≈ M2 as
a perturbation of M2, in the direction of the eigenvector ~rf (M2), we see that: a) the state M ′a ≈ M ′2
lies on the nonlocal branch of H(Ma); b) M ′a moves in the same direction as Ma so that both lie in
the triangle ĜDW ; and c) the connection between the saddle M ′a and the saddle-attractor Ma persists
(see Figure 6.17(b)). Therefore, for any M ′a ∈ (P ′1,M

′
2] there is an orbit joining one of the unstable

directions of the saddle M ′a to the saddle-attractor Ma ∈ (P1,M2). Hence, the f -composite curve
(P ′1,M

′
2] corresponding to (P1,M2] is admissible (see Figure 6.16(b)).

Finally, since P ′1 is a Bethe-Wendroff admissible point, the succession algorithm (Section 2.7) allows
the concatenation of the backward f -rarefaction segment [P ′1, G]. Notice in Figure 6.16(a) that this curve
intersects the fast double contact and the fast boundary extension in states P5 and P6, respectively. Their
fast extension is the curve [P ′5, P

′
6], which lies in the opposite side of [P5, P6] relative to [G,D]; hence

by virtue of Claim 2.7.2 this curve is inadmissible.

(a) Flow of the dynamical system (2.24) for UL = M ′2, U =
M2 and σ = σ(M2;M

′
2). H(M2) with M2 ∈ [U , D].

(b) Flow of the dynamical system (2.24) for a perturbation
of M ′a and Ma near M2 where UL = M ′a, U = Ma and
σ = σ(Ma;M

′
a). H(Ma) with Ma ∈ [P1,M2] and M ′a ∈

[P ′1,M
′
2].

Figure 6.17: Numerical analysis of admissibility of the f -composite curve [M ′2, P
′
1) of W−f (R) for R ∈

R5. (a) Hugoniot curve for M2 ∈ [G,D], with M ′2 = X2(M2) an extremum of the transitional segment
[X2(M2), X1(M2)] computed from Theorem 5.4.1. The equilibria M ′2 and M22 are saddles, M21 is an attrac-
tor and M2 is a saddle-attractor of the dynamical system (2.24) where UL = M ′2, U = M2 and σ = σ(M2;M ′2).
(b) Hugoniot curve for Ma ∈ [M2, P1], with Ma a perturbation of M2. The type and number of equilibria is main-
tained with respect to the case (a), i.e., M ′a and Ma1 are saddles, Ma2 is an attractor and Ma is a saddle-attractor
of the dynamical system (2.24) where UL = M ′a, U = Ma and σ = σ(Ma;M ′a).
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Remark 6.4.5. As seen in Section 4.4.2, the fast double contact has three possible configurations when
limited to a fast macro region FRi for i ∈ {D,E,B} with umbilic point of type II: if the state Y2

is inside the saturation triangle, the admissible part of the double contact inside FRi starts at Y2 and
ends when it intersects either the fast inflection I2 or one of the secondary bifurcation segments that
are boundaries of FRi. Conversely, if Y2 is outside the saturation triangle, the admissible part that we
consider in this locus begins at the edge of the saturation triangle boundary and ends at I2.

In Figures 6.32 (b) and (c), we see two of the three fast double contact configurations for region
R5. In the first one, shown in Figure 6.32 (b), region R5 has the fast double contact [Y2, Ŷ2] as its left
boundary, I2 as its bottom boundary and the fast forward rarefaction [Y2, Y

′
2 ] as its right boundary. In the

second configuration (Figure 6.32 (c)), region R5 has for its top boundary the curve [Y2, H4], with H4

on the invariant line [W,E] (see Figure 4.4), for its left boundary [H4, I1
f ] (where I1

f is the intersection
of [W,E] and the fast inflection locus If , and is computed using Remark 5.3.1), and segments [Y2, Y

′
2 ]

and [I1
f , Y

′
2 ] for its right and bottom boundaries, respectively.

Let us define region R6. We move state R across the fast double contact [Y2, Ŷ2] (or [Y2, H4], con-
sidering Remark 6.4.5) such that for its top boundary we have the segment (U , Y2], for its left boundary
we have (U , I1

f ] (or [U , H4] if we are considering Remark 6.4.5), and for its right and bottom boundaries

we have, respectively, [Y2, Ŷ2] and [I1
f , Ŷ2] (in the regime of Remark 6.4.5 we have [H4, Y2]), see Figure

6.32(b)-(c).
A typical Hugoniot curve for a state R in R6 is shown in Figure 6.18(a). Since the top boundary of

R6 is part of the segment (U , D), the Hugoniot curve H(R) can be considered as a perturbation of the
Hugoniot curve for a generic state along (U , Y2] which was obtained explicitly in [3] (see Figure 6.17(a)).
The Hugoniot curve H(R) possesses two primary branches, [O1,W1] and [O2,W2] (which intersect at
R), and a nonlocal branch [G1, G2]. Notice that this nonlocal branch intersects the invariant line [G,D]
at states Z1 and Z2 and that segment the [Z1, Z2] is on the same side of [G,D] as R, see Figure 6.18(a).

Remark 6.4.6. Observe that region R6 contains a neighborhood of the umbilic point U . Because of this,
it is better to study the expansion of Corey flux functions for states in a neighborhood of U in terms of
homogeneous quadratic polynomials. This was studied by many authors, among others [Dan,matos,brad,
etc Azevedo].

Claim 6.4.12. Let R be a state in region R6. In addition to states Z1 and Z2 on [G,D], the Hugoniot
curveH(R) possesses states A1 , A

′
1, A

∗
1, A3 and A4 with the following properties :

(i) States A1, A3 and A4 are Bethe-Wendroff points. They satisfy σ(A1;R) = λf (A1), σ(A4;R) =
λf (A4) and σ(A3;R) = λf (R).

(ii) If M is a state on either of the branches [O1,W1] and [G1, G2] ofH(R), the discontinuity joining
M to R is a Lax f -shock if M is either on [A1, R) or on [A3, A4]. Moreover, this discontinuity is
admissible.

(iii) States A′1 ∈ [A3, A4] and A∗1 ∈ [A4, Z2] satisfy σ(A1;A′1) = σ(A′1;R) = σ(A∗1;R). Moreover,
λf (A1) = σ(A1;A′1), but there is no orbit joiningA1 andA′1 for the dynamical system (2.24) with
UL = A′1, U = A1 and σ = σ(A1;A′1).
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(a) Typical Hugoniot curve for R ∈ R6 (b) Speed diagram: Primary branch [O1,W1] for H(R)
with R ∈ R6

Figure 6.18: (a) Hugoniot curve for R ∈ R6. Segments [R,A1] ⊂ [O1,W1] and [A3, A4] ⊂ [G1, G2]. The
states A1, A

′
1 and A∗1 are equilibria of the same dynamical system with UL = A1, U = R and σ = σ(A1, R). (b)

Speed diagram for H(R) in Figure (a). The horizontal axis corresponds to a parametrization is given in terms of
arc length, and the vertical axis is speed. The blue (resp. red) line is the characteristic speed λs (resp. λf ) while
the black line is the shock speed σ. Horizontal cyan and magenta lines correspond to the constant values λs(R)
and λf (R), respectively. Segment (A1, R) of Lax f -shocks in the primary branch [O1,W1].

Proof. The justification of this claim is similar to the proof of Claim 6.4.8 but it is based on Figures 6.18-
6.21. From Figures 6.19(a),(b) and (c), observe that states M along [R,A1] or [A3, A4] corresponds to
Lax f -shocks and states A1, A3 and A4 are Bethe-Wendroff points. This follows by comparing the
characteristic speeds λs(R), λf (R), λs(M) and λf (M) with the shock speed σ(M,R) as M varies
along the branches [O1,W1], [O2,W2] and [G1, G2]. The admissibility of segment [R,A1] is guaranteed
by Claim 2.7.1 since [R,A1] is a local shock segment from R.

Now we consider the admissibility of segment [A3, A4]; it was verified numerically in Figures 6.20
and 6.21(a). Figure 6.21(b) depicts a schematic representation of the speed diagram for a given Hugo-
niot curve H(R), in order to compare speeds between branches. We begin by defining some auxiliary
states, each one of which satisfies the triple shock rule 2.4.3 with respect to the previously defined states
A1 , A

′
1, A

∗
1, A3, A4, Z1 and Z2 inH(R).

Let A′1and A∗1 in Figure 6.21(b) be the states on the branch [G1, G2] satisfying the triple shock rule
with A1 and R. That is, the discontinuity between A′1 and R or A∗1 and R propagates at the speed of
the discontinuity between A1 and R. In other words, states A′1and A∗1 are equilibria of the ODE system
(2.20) for σ = σ(A1;R). In a similar way, Z22, Z23 andA31,A32 on the segments [A1, O1] and [A1,W1]
of H(R), respectively, are defined in terms of Z1 and R for the first pair and A3 and R for the second
one. With these auxiliary states in mind, we now describe phase portraits of the ODE system (2.20) with
speed σ(M ;R) as M varies along the Hugoniot branches [O1,W1] and [G2, G1] in Figures 6.18(b), 6.19
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(a) Speed diagram: Zoom of segment [R,A1] for H(R)
with R ∈ R6.

(b) Speed diagram: Nonlocal branch [G1, G2], R ∈ R6.

(c) Speed diagram: Zoomed segment [Z1.Z2] for
H(R) with R ∈ R6.

(d) Speed diagram: Primary branch [O2,W2] for H(R) with R ∈
R6.

Figure 6.19: Speed diagram for H(R) in Figure 6.18(a). The horizontal axis corresponds to a parametrization
given in terms of arc length, and the vertical axis is speed. The blue (resp. red) line is the characteristic speed λs
(resp. λf ) while the black line is the shock speed σ. Horizontal cyan and magenta lines correspond to the constant
values λs(R) and λf (R), respectively. (a) Zoom of squared region in Figure 6.18(b). (b) Segment (Z1, A3, A4, Z2)
in the nonlocal branch [G2, G1]. (c) Zoom of squared region in (b). The horizontal dashed lines represent states
satisfying the triple shock rule; for instance, A′1 and A∗1 with R or states Z1 and Z2 with R. (d) Segment (A2, R)
of Lax s-shocks in the primary branch [O2,W2].

and 6.21(b).
ForM on [W1, A1), the speed diagrams in Figure 6.18(b) and Figure 6.19(a) show that λj(M)−σ <

0 for j = s and f , which means that equilibrium M is an attractor. Therefore, there cannot be an orbit
connecting M to R; hence the inadmissibility of the discontinuity joining left state M to right state R.
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(a) Flow for the dynamical system (2.24) for UR = R, U =
A3 and σ = σ(R;A3).

(b) Flow for the dynamical system (2.24) for UR = R, U =
A4 and σ = σ(R;A4).

Figure 6.20: Numerical analysis of admissibility of the Lax f -shock segment [A3, A4] ⊂ H(R) for R ∈ R6. (a)
The equilibriaA31 andA32 are attractors, A3 is a saddle andR is a saddle-attractor of the dynamical system (2.24)
(fixing UR instead UL) where UR = R, U = A3 and σ = σ(R;A3). (b) The equilibrium A4 is a saddle-node and
R is an attractor of the dynamical system (2.24) where UR = R, U = A4 and σ = σ(R;A4).

The same argument is used to prove the inadmissibility of [R,O1].
Consider now M on segment (A4, A

′
1] of H(R), Figure 6.19(c). In this case, there are two equilib-

rium states on H(R) besides R: M ∈ (A4, A
′
1] and M1 ∈ (A4, A

∗
1]. When M = A′1, there is another

equilibrium A1 which is a saddle-node. According to the speed diagrams in Figures 6.19(b) and (c),
M is a saddle while M1 and R are attractors. Moreover, one of the unstable orbits emanating from M
connects to the attractor R while the other connects to M1, see Figure 6.21(a) and (b). Then, there is no
orbit joining A1 and A′1, which together with the previous arguments justifies item (iii) of Claim 6.4.12.

ForM on (A′1, A3) there are five equilibrium states onH(R): M ,M1 ∈ (A∗1, A32),M2 ∈ (A1, A31),
M3 ∈ (A1, R) and R (see Figure 6.21(b)). This is similar to the case M ∈ (A4, A

′
1], where M and

M3 are saddles and M1,M2 and R are attractors. Moreover, both M and M3 have one unstable orbit
connecting to the attractor R while the other orbits connect M with M1 and M3 with M2. If M = A3,
the saddleM3 and the attractorR coalesce into a saddle-node equilibrium but the connection betweenM
(i.e., A3) and R persists by an unstable orbit emanating from M . In conclusion, the discontinuity joining
M to R is an admissible shock for all M ∈ [A3, A4], which justifies item (ii) (see Figure 6.20(a)).

Finally, when M moves along (A3, Z1) toward Z1 (see Figures, 6.19(a),(c) and 6.21(b)), the equi-
libria M and R are saddles and M1 ∈ (A32, Z2), M2 ∈ (A31, Z23) and M3 ∈ (R,Z22) are attractors.
When M reaches Z1, states M1,M2 and M3 reach Z2, Z23 and Z22, respectively (recall that Z1, Z2 and
Z23 are the intersection points of H(R) with the invariant line [G,D]). For the saddle R, one of its un-
stable orbits connects to the attractor M3 (or Z22) and the other connects to attractor M2 (or Z23). These
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(a) Orbits of ODE’s system (2.24) for UR = R
and U = M varying along [A3, A4] ⊂ H(R)
forR ∈ R6. Notice that there is no orbit joining
A′1 and A1.

(b) Schematic comparison of speed diagram: Nonlocal branch
[G1, G2] and primary branch [O1,W1] ofH(R), R ∈ R6.

Figure 6.21: Numerical analysis of admissibility of the Lax f -shock segment [A3, A4] ⊂ H(R) for R ∈ R6.
(a) Orbits of the dynamical systems (2.24) fixing UR = R and U = M , with M varying along [A3, A4]. When
M ∈ (A3, A4), M is a saddle and R is an attractor. (b) Schematic speed diagrams comparing the branches
[O1,W1] and [G2, G1] of H(R) given in Figure 6.18(a). Black curves are the shock speed σ(M,R) with M
varying along the Hugoniot branches [O1,W1] and [G2, G1]. States on the same horizontal dashed line satisfy the
triple shock rule. The magenta line is the fast characteristic speed, λf (R).

connections are not admissible because they are incorrectly oriented. For the saddle M (or Z1), one of
the unstable orbits connects to the attractor M1 (or Z1) while the other connects to the attractor M2 (or
Z23). Therefore, the segments (A3, Z1) and (A32, Z2) are not admissible.

Claim 6.4.13. The fast backward wave curve for a state R ∈ R6 has a local branch with the following
wave structure (refer Figure 6.22(a)):

(i) Lax f -shock segment (R,A1] with σ(R;A1) = λf (A1);

(ii) backward f -rarefaction segment [R,O];

(iii) backward f -rarefaction segment (A1,W ].

It also has a nonlocal branch with the following wave structure:

(iv) backward f -composite segment [M ′2, A3) corresponding to [M2, R], with σ(A3;R) = λf (R);

(v) Lax f -shock segment [A3, A4);

(vi) backward f -rarefaction segment [A4, G], with σ(A4;R) = λf (A4).
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(a) W−f (R) for R ∈ R6. (b) Zoom of area close to segment of Lax f -
shocks [A3, A4].

Figure 6.22: (a) Backward f -wave curve for R ∈ R6, W−f (R). Continuous lines are f -rarefaction segments,
dashes lines are Lax f -shock segments and crossed lines are f -composite segments. The black crossed curves
(M ′2, P

′
2], [P ′1, A

′
1) and [P ′3, P

′
4] are inadmissible f -composite waves corresponding to f -rarefaction segments

[M2, P2], [P1, A1] and [P3, P4] respectively. Notice that the local branch of W−f (R) intersects the invariant line
[G,D] with a f -rarefaction wave at state M2; the nonlocal branch starts in the corresponding state M ′2 ∈ [G,U ]
with the admissible f -composite segment [M ′2, A3] corresponding to the f -rarefaction segment [M2, R]. Then, the
nonlocal branch ofW−f (R) has the admissible segment [A3, A4] of Lax f -shocks and the backward f -rarefaction
segment [A4, G]. (b) Blow-up of region near segment [A3, A4] in (a).

Proof. The justification of (i), (ii) and (iii) is similar to the proof of Claim 6.4.9. Let P1 be the inter-
section point of the backward f -rarefaction [A1,W ] with the fast boundary extension of [G,O] and let
M2 and P2 be the intersection points of the backward f -rarefaction [R,O] with the invariant line [G,D]
and with the fast boundary extension of [G,W ], respectively (see Figure 6.22 (a)). The fast extension of
the backward f -rarefaction curve [R,O] is the curve [A3, P

′
2]. This rarefaction and its extension curve

can be divided in two parts (see Figure 6.22 (a)): [P ′2,M
′
2) which corresponds to [P2,M2) and [M ′2, A3]

which corresponds to [M2, R). The f -composite curve [P ′2,M
′
2) is not admissible by Claim 2.7.2.

An argument similar to the proof that the f -composite [M ′2, P
′
1) is admissible in Claim 6.4.11 is

used to prove that the f -composite [A3,M
′
2] corresponding to the f -rarefaction [M2, R) is admissible.

Assumption (ii) of Claim 6.4.12 shows that the nonlocal Lax f -shock segment [A3, A4] is admissible.
This justifies (iv) and (v).

Now, we analyze the fast extension of the f -rarefaction segment [A1,W ]. This rarefaction curve
and its extension can be divided in two parts: [P ′1,M

′
a) which corresponds to [P1,Ma) and [M ′a, A

′
1]

which corresponds to [Ma, A1], where M ′a is the intersection of f -composite curve [P ′1, A
′
1] with [G,U ]

and Ma ∈ [A1, P1] is the corresponding state which satisfies σ(Ma;M
′
a) = λf (M ′a). The f -composite

curve [P ′1,M
′
a) is not admissible by Claim 2.7.2 because it is opposite to [P1,Ma] relative to [G,D]
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(see Figure 6.22 (a)). From statement (iii) of Claim 6.4.12, there are saddles A′1, A1 and the attractor
R belonging to the same dynamical system; moreover, the unstable orbit of each saddle connects to
R. Notice that these connections are structurally stable. Moreover, by the triple shock rule 2.4.3 we
conclude that for each M ∈ (A1,Ma], there is a corresponding saddle M ′ ∈ [A′1,M

′
a] and an attractor

R′ ∈ H(M), which are part of the same dynamical system, and such that the unstable orbit of the saddle
connects to R′. Therefore, there is no connection between M ∈ [A1,Ma] and M ′ ∈ [A′1,M

′
a].

Finally, sinceA3 is a Bethe-Wendroff admissible point, the succession algorithm (Section 2.7) allows
the concatenation of the backward f -rarefaction segment [A3, G] (see Figure 6.22). This curve intersects
the fast double contact and the fast boundary extension of edge [W,O] at states P3 and P4, respectively.
Their fast extension is the curve [P ′3, P

′
4] which lies opposite to [P3, P4] relative to [G,D]; hence this

curve inadmissible in virtue of Claim 2.7.2.

Remark 6.4.7. Assuming that R lies on the bottom boundary of regions R4, R5 and R6 i.e., R ∈
[I1
f , I2

f ] (see Figure 6.32(b)), then W−f (R) cannot possess a nonlocal f -shock. Then, we trace the fast
integral curve from R to W and O and the local branch of W−f (R) consists only of this fast integral
curve. Notice that for R on the bottom boundary for R4 and R5, the nonlocal branch of W−f (R) is
similar to the one described in Claims 6.4.9 and 6.4.11. For R ∈ R6, we see that the nonlocal branch of
W−f (R) uses the f -hysteresis curve given in Definition 2.4.2 i.e., the fast composite curve [M ′2, A3] with
A3 on the fast hysteresis for I2

f , which was obtained in 6.4.13 for R in the interior of R6.

6.4.3 Subregions R4′,R5′ and R6′

In this section, we study three additional regions that are very similar to the regions R4,R5 and R6 stud-
ied in Section 6.4.2. These new regions appear when we consider states R across the bottom boundary
If for the regions Ri for i ∈ {4, 5, 6}. As seen in Remark 6.4.7, this boundary produces a bifurcation
in the backward fast wave curves rendering it necessary to define new regions, which we call R4′ , R5′

and R6′ in association to the corresponding regions across from If . Later on we will see that these
new regions only differ from the ones studied in Section 6.4.2 in the description of the local branch of
W−f (R). Let us define region R4′ . First, we let a state R in R4 cross the fast inflection close to state
I2
f (see Figure 6.32). The Hugoniot curve H(R) in this region is shown in Figure 6.24(a); it can be

considered as a perturbation of the Hugoniot curve for a state that lies on [W,O], which was obtained
explicitly in [9] (see Figure 6.23). The Hugoniot curve for R possesses two primary branches, [O1,W1]
and [O2,W2] (which intersect at R), and a nonlocal branch [G1, G2]. Notice that this nonlocal branch
lies inside triangle ĜDO, therefore it is inadmissible by Claim 2.7.2.

Unlike the case of state R ∈ R4, in this case the segment of fast shock (R,A1] starts on R and
continues toward vertex O until A1, while the backward f -rarefaction starts at R and ends at vertex
W . As R ∈ R4, A1 is a Bethe-Wendroff point and we can concatenate a backward f -rarefaction
segment from A1 to vertex O. This rarefaction intersects the invariant line [G,D] at state M2. This fact
characterizes the regions Ri, with i ∈ {4, 5, 6, 4′, 5′, 6′}.

When R moves toward vertex W , (R,A1] becomes bigger until state A1 reaches the invariant seg-
ment [U , D]. Therefore, we have a characteristic f -shock with σ(R;A1) = λf (A1) with A1 ∈ [G,D].
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Figure 6.23: Typical Hugoniot curve for R ∈ [D,W ], R close to I2f .

Hence, we obtain a bottom boundary for this region because if R moves beyond this position, the in-
tersection M2 with [U , D] occurs with a Lax f -shock. The set of all states R that have a characteristic
f -shock with a state on [U , D] is E−f ([U , D]) (see Definition 2.4.6).

Finally, there is a left boundary for this region formed by the left f -extension of the f -rarefaction
segment [Y2, Y

′
2 ]. This segment begins at Y ′2 and ends at Y ∗2 ∈ E−f ([U , D]) (see Figure 6.32). The

forward f -composite curve [Y ′2 , Y
∗

2 ] represents a bifurcation for W−f (R) because if R belongs to or

crosses [Y ′2 , Y
∗

2 ], then W−f (R) intersects the double fast locus [Y2, Ŷ2] with a fast rarefaction (the state

A1 lies inside region R5, hence the f -rarefaction from A1 intersects [Y2, Ŷ2] before [U , D]) producing a
nonlocal branch (see Figure 6.32 and Section 4.4.2).

Claim 6.4.14. Region R4′ has the segment [Y ′2 , I2
f ] (which is part of If ) for its top boundary, [Y ∗2 , D

∗]

(which is part of E−f ([U , D])) for its bottom boundary, the f -composite segment [Y ′2 , Y
∗

2 ] as its left
boundary and the segment [D∗, I2

f ] as its right boundary (see Figure 6.32(b)). Moreover, the fast back-
ward wave curve for a state R ∈ R4′ consists of only a local branch with the following wave structure
(refer to Figure 6.24(b)):

1. Lax f -shock segment [R,A1] with σ(A1;R) = λf (A1);

2. backward f -rarefaction segment [R,W ];

3. backward f -rarefaction segment [A1, O].

Proof. Similar to the proof of Claim 6.4.9 (see Figure 6.24).
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(a) Typical Hugoniot curve for R ∈ R4′ . (b) W−f (R) for R ∈ R4′ .

Figure 6.24: (a) Hugoniot curve for R ∈ R4′ . (b) Backward f -wave curve W−f (R) for R ∈ R4. Continuous
lines are f -rarefaction segments and dashed lines are Lax f -shock segments. The black crossed curves [P ′1, P

′
2]

and [P ′3, P
′
4] are inadmissible f -composite waves corresponding to f -rarefaction segments [P1, P2] and [P3, P4],

respectively. Notice thatW−f (R) does not have a nonlocal branch.

Remark 6.4.8. Note that a branch of the fast double contact passes through region R4′ . When state R
crosses this curve, a new segment [Â3, Â4] of nonlocal Lax f -shocks is generated in the nonlocal branch
[G1, G2] of H(R) (see Figure 6.25(a)). This nonlocal f -shock curve is not admissible by Claim 2.7.2,
which implies that the region R′4 is completely determined by Claim 6.4.14 .

We define the region R5′ as the region adjacent to region R4′ and under region R5. For this, we move
the state R across the forward f -composite [Y ′2 , Y

∗
2 ] (coming from R4′), see Figure 6.32(b). Consider R

inside this region, close to state Y ′2 . If we move R parallel to boundary [O,W ] toward the edge [G,W ],
the segment (R,A1] of Lax f -shock becomes bigger until stateA1 coincides with the fast double contact
[Y2, Ŷ2] (or [Y2, H4] if we consider the Remark 6.4.5 ). If the state A1 crosses the segment of fast double
contact [Y2, Ŷ2] (or [Y2, H4]), R crosses E−f ([Y2, Ŷ2]) (or E−f ([Y2, H4])).

As in the description of region R5 in Section 6.4.2, the fact that A1 crosses [Y2, Ŷ2] (or [Y2, H4])
implies the appearance of a new wave group inW−f (R). Therefore, the left boundary for region R5′ is

given by the segment [Ŷ2, Y
∗

2 ] which is E−f ([Y2, Ŷ2]) (or [H∗4 , Y
∗

2 ] as the bottom boundary of R5′ which
is E−f ([Y2, H4])), see Figure 6.32(b). If we consider Remark 6.4.5, we have segment [I1

f , H
∗
4 ] as the left

boundary of R′5 .
The Hugoniot curve for R ∈ R5′ possesses two primary branches, [O1,W1] and [O2,W2] (which

intersect at R), and a nonlocal branch [G1, G2] (see Figure 6.25(b)). Notice that the f -left extension
[J1, Y

∗
2 ] and a part of the fast double contact pass through region R5′ , see Figure 6.32(d). This subdivides
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(a) Hugoniot curves for R and R̂ inside regions R4′ . (b) Typical Hugoniot curve for R ∈ R5′ .

Figure 6.25: (a) Hugoniot curves for states R and R̂ in R4′ . These two states are in opposite sides of curve
[Ŷ2, H2] which is a part of the fast double contact locus. The nonlocal branches [G1, G2] and [Ĝ1, Ĝ2] do not cross
the invariant line [G,D]. (b) Hugoniot curve for state R in R4 case (c) of Figure 6.26.

this region, since the nonlocal branch of Hugoniot curve changes behavior. In Figure 6.32(d), the region
A is given by Y ′2J1J2J3, where J1 is the intersection point between the segment [Y2, Y

∗
2 ] and If , J2 is

the intersection between the fast double contact with the segment [Y2, Y
∗

2 ] and J3 is the intersection of
the fast double contact with the f -composite [Y ′2 , Y

∗
2 ]. Regions B, C and D are given by J1Ŷ2J2, Ŷ2J2Y

∗
2

and J2J3Y
∗

2 , respectively. When R is in A or D, the nonlocal branch of H(R) remains opposite to R
with respect to [G,D], thus the discontinuities of [G1, G2] are not admissible by Claim 2.7.2.

On the other hand if R is in B or C, the non-local branch of H(R) crosses the invariant line [G,D]
intersecting it at Z1 and Z2, but R must cross the left f -extension [J1, Y

∗
2 ] for new segments with dis-

continuities of Lax type to appear inH(R). Therefore, if R is inside C, the nonlocal branch ofH(R) has
a segment whose discontinuities are Lax f -shocks but, as we will see in the following Claim, they are
not admissible, see Figure 6.32(d).

Claim 6.4.15. Let R be a state in region R5′ . The Hugoniot curve H(R) possesses a segment (A1, R)
of admissible discontinuities of local Lax f -shocks with state A1 being a Bethe-Wendroff point that
satisfies σ(A1;R) = λf (A1). Moreover, there are no admissible nonlocal segments of Lax f -shock
discontinuities (see Figure 6.25(b)).

Proof. The justification of the first statement is analogous to the proof of Claim 6.4.8. For the other
one, assume R inside C ⊂ R5′ (see Figure 6.32(d)). As seen in the description of R5′ , when R is in
the subdivision C, the nonlocal branch [G1, G2] of H(R) crosses the invariant line [G,D] intersecting
it at states Z1 and Z2, see Figure 6.26. Moreover, [G1, G2] has the segment (A3, A4) such that for all
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(a) (b) (c)

Figure 6.26: Behavior of the nonlocal branch [G1, G2] for R in region C ⊂ R5′ (see Figure 6.32(d)). (a) R in
region C between the f -inflection If and the right f -extensionE+

f ([U , D]) given by the segment [J4, J5]. (b)R in
region C at the right f -extension E+

f ([U , D]), i.e., R ∈ [J4, J5]. (c) R in region C between the right f -extension
E+
f ([U , D]) given by the segment [J4, J5] and the curve [E0, D

∗].

M ∈ (A3, A4) the discontinuity between M and R is a Lax f -shock and states A3 and A4 are Bethe-
Wendroff points satisfying σ(R;A3) = λf (R) and σ(R;A4) = λf (A4) ( analogous to proof of Claim
6.4.12). As shown in Figure 6.26, there are three possibilities for the location of [A3, A4] on [G1, G2]
and they depend on the location of R inside of C. Observe in Figure 6.32(d) that the curve [J4, J5],
which is the right f -extension of [U , D], divides C in two regions. By the triple shock rule 2.4.3 there
is a segment on [G,U ] such that for all M ∈ [J4, J5] there are states N ∈ [U , D] and V ∈ [D2,U ]
that satisfy N,V ∈ H(M) and σ(M ;N) = σ(M ;V ) = σ(V ;N). Hence, the curve [J4, J5] indicates
exactly when the state A3 crosses [G,D] which implies the following cases for the segment [A3, A4]: (a)
if R is between the fast inflection If and [J4, J5] the segment [A3, A4] is on same side of [G,D] as R
(see Figure 6.26(a)); (b) if R ∈ [J4, J5], A3 coincide with Z1 and A4 remains in the triangle ĜWD (see
Figure 6.26(b)); and c) if R crosses [J4, J5], the state Z1 is part of [A3, A4] and A3 is on the opposite
side of R with respect to [G,D], see Figure 6.26(c).

First, we study the case (b). Assume that R is on [J4, J5, ], and let N be on [U , Y2] such that
σ(N ;R) = λf (R). It is clear thatA3 ∈ H(N) and by the triple shock rule 2.4.3,A3 ∈ H(R). Moreover,
we can compute the state A3 using Theorem 5.4.1 with X2 = A3. In Figure 6.27, we compare the speed
diagrams of branches [G2, G1] and [O1,W1] of the Hugoniot curve H(R). Then, states N,R,Z2 and
A3 = Z1 are equilibria of the ODE system 2.24 with UR = R and σ = σ(N ;R). Notice that A3 is a
saddle, N and Z2 are attractors and R is a saddle-repeller such that one of the unstable orbits emanating
from A3 connect to the attractor N and the other with Z2, while the unstable orbits emanating from R
connect to N . Therefore, the discontinuity between R and A3 is inadmissible. Next, if we consider a
state M ∈ (A3, A4) and increase the speed σ along the shock curve until M = A4, we have five equi-
libria M1 ∈ (A4, Z2), M2 ∈ (N,A41) and M3 ∈ (R,A42), M and R, such that M and M3 are saddles
and M1,M2 and R are attractors (see Figure 6.27). Since (R,A42) ⊂ [R,A1] and for M ∈ [R,A1] the
discontinuity connecting M to R is an admissible Lax f -shock, we conclude that segment [A3, A4] is
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Figure 6.27: Schematic speed diagrams comparing the branches [O1,W1] and [G2, G1] of H(R) given in Figure
6.25(b). The state N in the intersection of [O1,W1] with [G,D]. Black curves are the shock speed σ(M,R) with
M varying along the Hugoniot branches [O1,W1] and [G2, G1]. States on the same horizontal dashed line satisfy
the triple shock rule. The magenta line is the fast characteristic speed, λf (R). The curve that represent λs(.) does
not appear because its speeds are small.

inadmissible.
Second, we study case (c). It is clear that the segment [Z1, A3] is not admissible by Claim 2.7.2 (see

Figure 6.26)(c)). On the other hand, the speed diagram comparing the branches [G1, G2] and [O1,W1]
of H(R) in this case is similar to the one in Figure 6.27 and only differs of case (b) in that Z1 and Z2

do not coincide with A3 and A5 which implies that the horizontal line that represents their shock speed
intersects the black curves above the pink line and under the line that represents the speed of shock
between R and A4, see Figure 6.27. Therefore, we have the same situation of five equilbria as in case
(c): M ∈ [Z1, A4], M1 ∈ [A4, Z2], M2 ∈ [N,A41], M3 ∈ [A42, R] and R such that the attractor M2 and
the saddle M3 make it impossible for the discontinuities on [Z1, A4] to be admissible. The proof of case
(a) is similar to cases (b) and (c).

Claim 6.4.16. The fast backward wave curve for a state R ∈ R5′ possesses a local branch with the
following wave structure (refer to Figure 6.28):

(i) Lax f -shock segment (R,A1] with σ(A1;R) = λf (A1);

(ii) backward f -rarefaction segment [R,W ];
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(iii) backward f -rarefaction segment (A1, O].

It also possesses a nonlocal branch with the following wave structure:

(iv) backward f -composite segment [M ′2, P
′
1) corresponding to [M2, P1);

(v) backward f -rarefaction segment [P ′1, G], with σ(P1;P ′1) = λf (P1) = λf (P ′1).

(a) W−f (R) for R ∈ R5′ (b) Zoom of area close to segment of Lax f -shocks [A3, A4].

Figure 6.28: (a) Backward f -wave curve W−f (R) for R ∈ R5′ . Continuous lines are f -rarefaction segments,
dashed lines are Lax f -shock segments and crossed lines are f -composite segments . The black crossed curves
(M ′2, P

′
3], [P ′2, A3] and [P ′4, P

′
5] are inadmissible f -composite waves corresponding to f -rarefaction segments

[M2, P3], [P2, A1] and [P4, P5] respectively. The black dashed segment [A3, A4] of Lax f -shocks is inadmissi-
ble. Notice that the local branch ofW−f (R) intersects the invariant line [G,D] with a f -rarefaction wave at state
M2; the nonlocal branch starts at the corresponding state M ′2 ∈ [G,U ] with an admissible f -composite wave
[M ′2, P

′
1] corresponding to f -rarefaction segment [M2, P1]. (b) Zoom of region close to segment [A3, A4] in (a).

Proof. Similar to the proof of Claim 6.4.11 (see Figure 6.28).

Let us define the region R6′ . We move state R across the f -left extension [Ŷ2, Y
∗

2 ] of the double
contact segment [Y2, Ŷ2] (or [H∗4 , Y

∗
2 ], considering Remark 6.4.5) without crossing the fast inflection If

(see Figure 6.32(b)). Then, we have a top boundary given by the segment [I1
f , Ŷ2] (considering Remark

6.4.5, the top-right boundary is the segment [H∗4 , Y
∗

2 ]), see Figures 6.32(b)-(c). We see that if we move
R in the direction of segment [W,U ] following the top boundary (or top-right boundary), then H(R)
does not bifurcate until it reaches the invariant segment [U ,W ]. Hence, this bifurcation line contains the
left boundary of R6′ . Notice that the Hugoniot curve H(R) can be considered as a perturbation of the
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(a) Typical Hugoniot curve for R ∈ [E,W ]
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(b) Hugoniot curve for R ∈ R6′

Figure 6.29: (b) Hugoniot curve for R in the region R6′ in area between the right f -extension E+
f ([U , D]) given

by the segment [J4, J5] and the curve [E0, D
∗], see Figure 6.32(d).

Hugoniot curve for a generic state along the invariant line [W,E] that was obtained explicitly in [3]. It
possesses two primary branches, [O1,W1] and [O2,W2] (which intersect at R), and a nonlocal branch
[G1, G2] (see Figures 6.29(a)-(b)).

Now, we move R towards vertex W while following the invariant line [W,E]. Notice that this non-
local branch always contains the segment of Lax f -discontinuities [A3, A4], and intersects the invariant
line [G,D] at states Z1 and Z2 such that segment [Z1, Z2] is on the same side of [G,D] as R; see Figures
6.29(b) and 6.31(a)-(b). As in the construction of R4′ , the bottom boundary of this region is given by
segment [E0, Y

∗
2 ] that is the f -left extension E−f [U , D], with E0 ∈ [W,U ] satisfying σ(U ;E0) = λf (U);

see Remark 5.2.3. Therefore, the left boundary of R6′ is the segment [I1
f , E0] (or [H∗4 , E0], considering

Remark 6.4.5) (See Figures 6.32(b)-(c)).

Remark 6.4.9. Observe that before reaching the bottom boundary, we intersect the s-hysteresis [N2,N3]
at which the nonlocal segment of Lax f -discontinuities splits into two segments of f -discontinuities
separated by a segment of over-compressive discontinuities. This type of bifurcation was also studied in
the construction of the lower R2 region, see Remark 6.4.3 and Claim 6.4.5. Therefore, we can define a
subregion inside of R6′ called RH

6′ , limited by the curves [N2,N3], [N3, E0] and [E0,N2] (see Figure
6.32(b)-(c)).

As seen in the proof of Claim 6.4.15, the right f -extension [J4, J5] (see Figure 6.32(d)) of segment
[U , D] crosses the region R6′ producing three possible locations with respect to [G,D] for the nonlocal
segment (A3, A4) in [G1, G2], see Figure 6.26. However, we will see in the next claim that unlike in
region R5′ , in R6′ a part of (A3, A4) is always admissible causing W−f (R) to have a nonlocal Lax
f -shock. .
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Figure 6.30: Schematic speed diagrams comparing the branches [O1,W1] and [G2, G1] of H(R) given in Figure
6.29(b). The state N in the intersection of [O1,W1] with [G,D]. Black curves are the shock speed σ(M,R) with
M varying along the Hugoniot branches [O1,W1] and [G2, G1]. States on the same horizontal dashed line satisfy
the triple shock rule. The magenta line is the fast characteristic speed, λf (R). The curve that represent λs(.) does
not appear because its speeds are small.

Claim 6.4.17. Let R be a state in region R′6 (see Figure 6.29(b)). In addition to states Z1 and Z2 on
[G,D], the Hugoniot curveH(R) possesses statesA1 , A

′
1, A

∗
1,A3 andA4 with the following properties:

(i) States A1, A3 and A4 are Bethe-Wendroff points. They satisfy σ(A1;R) = λf (A1), σ(A4;R) =
λf (A4) and σ(A3;R) = λf (R).

(ii) If M is a state on either of the branches [O1,W1] and [G1, G2] ofH(R), the discontinuity joining
M to R is a Lax f -shock if M is either on [A1, R) or on [A3, A4]. Moreover, this discontinuity is
admissible only if M ∈ [A1, R) or if M ∈ (A′1, A4] with A′1 ∈ (A3, A4).

(iii) States A′1 and A∗1 ∈ [A4, Z2] satisfy σ(A1;A′1) = σ(A′1;R) = σ(A∗1;R). Moreover, λf (A1) =
σ(A1;A′1) and there is an orbit joining A1 and A′1.

Proof. Analogous to the proof of Claims 6.4.12 and 6.4.15 but using Figure 6.30. Notice that for states
M ∈ (A′1, A4] in Figure 6.30, there are no states M ′ in the local branch [O1,W1] ofH(R) with velocity
equal to the shock speed σ(R;A1). As M is a saddle and R is an attractor, for all M ∈ (A′1, A4] there is
an orbit joining M and R.

Claim 6.4.18. The fast backward wave curve for a state R ∈ R6′ possesses a local branch with the
following wave structure (refer to Figure 6.31):
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(a) W−f (R) for R ∈ R6′ (b) Zoom of area close to segment of Lax f -
shocks [A′1, A4].

Figure 6.31: (a) Backward f -wave curve W−f (R) for R ∈ R6′ . Continuous lines are f -rarefaction segments,
dashed lines are Lax f -shock segments and crossed lines are f -composite segments . The black crossed curves
(M ′2, P

′
2], [P ′1, A3] and [P ′3, P

′
4] are not admissible f -composite waves corresponding to f -rarefaction segments

[M2, P2], [P1, R] and [P3, P4] respectively. The black dashes segment [A3,Ma, A
′
1) of Lax f -shock is inadmis-

sible. Notice that the local branch of W−f (R) intersects the invariant line [G,D] with a f -rarefaction wave at
state M2; the nonlocal branch starts in the corresponding state M ′2 ∈ [G,U ] with an admissible f -composite wave
[M ′2, P

′
1] corresponding to f -rarefaction segment [M2, P1]. (b) Zoom of region close to segment [A3, A

′
1, A4] in

(a).

(i) Lax f -shock segment (R,A1] with σ(R;A1) = λf (A1);

(ii) backward f -rarefaction segment [R,W ];

(iii) backward f -rarefaction segment (A1, O].

It also has a nonlocal branch with the following wave structure:

(iv) backward f -composite segment [M ′2, A
′
1] corresponding to [M2, A1], with σ(A1;A′1) = σ(A1;R);

(v) Lax f -shock segment (A′1, A4];

(vi) backward f -rarefaction segment [A4, G], with σ(A4;R) = λf (A4).

Proof. Similar to the proof of Claim 6.4.13 (see Figure 6.31(b)).
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(a) Subdivisions of FRD into lower and upper regions R1,R2

and R3.
(b) Highlight of regions Ri for i ∈ {4, 4′, 5, 5′, 6, 6′}.

(c) Highlight of regions Ri for i ∈ {4, 4′, 5, 5′, 6, 6′}
in the case of Remark 6.4.5.

(d) Highlight of regions Ri for i ∈ {5, 5′, 6′} associated
to Claim 6.4.15.

Figure 6.32: Subdivisions of FRD in R-regions for 1 < νG < 8 and U ∈ IIO.

6.4.4 Behavior of subregions R for νG > 8

As seen in Section 5.3, the existence of some points inside the saturation triangle with umbilic point
U of type II depends on the values of νΓ. Without loss of generality, we consider only the macro
region FRD. In Section 6.4.1, Figures 6.6(a) and 6.9(a), we built region R1 by taking states along the
invariant segment [U , D] and obtained two regions: an upper region R1 with boundaries [O,U ], [U , V0]
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Figure 6.33: Subdivisions of FRD in R-regions for (ν−G)
2
/νG > 8 and U ∈ IIO. Notice that remain the regions

Ri for i ∈ {1, 2, 6, 6′}.

and [V0, O], and a lower region R1 with boundaries [W,E0], [E0, V
∗

0 ] and [V ∗0 ,W ]. When U approaches
the edge [O,W ], the region R1 vanishes. This occurs in the limit cases of µg → 0 or µo → ∞, which
corresponds respectively to U → D or U → O. Moreover, these limits also cause region FRD to
disappear. In other words, the existence of regions R1 is strongly connected to the existence of FRD,
so R1 exists whenever FRD exists.

In Sections 6.4.2 and 6.4.3, we saw that the existence of regions R3 (upper and lower), R4 and R4′

inside of FRD depends on the fast double contact states Y2 and Y2 (see Figure 6.32). We conclude from
Lemma 5.3.2 that these regions do not exist when νG ≥ 8. As seen in Remark 5.2.2, even if Y2 leaves
the saturation triangle, it is still possible that regions R5 and R5′ exist. For these regions to disappear,
it is necessary that state Ŷ2 be outside of the saturation triangle, see Figure 6.33(b). Another interesting
scenario occurs when νG ≤ 1, and it is associated with the disappearance of the admissible branch of the
fast double contact [Y2, Ŷ2] (or [Y2, H4]). Indeed, as νG tends to one, Y2 tends to Y2 and U tends to the
boundary of TU (straight line sw + so = 1/2); these three states collapse to U at νG = 1 (see Definition
3.3.6 and Lemma 5.3.2). Hence, regions Ri for i ∈ {5, 5′, 6, 6′} become smaller as νG tends to one, and
collapse to the invariant line [W,E] when νG = 1. The case νG < 1 will be studied in Sections 6.4.5.

Notice that, when two viscosities are equal, the fast inflection I2 coincides with segment [U , D].
Therefore regions Ri with i ∈ {4, 5, 6, 4′, 5,′ 6′} disappear and, by symmetry, the upper and lower parts
of fast macro region FRD are equal. These situations correspond to cases when νG < 1 or when U is
of type I .
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6.4.5 Behavior of subregions R for νG ≤ 1 and U ∈ IIG
As seen in Corollary 5.3.1, νΓ < 1 if and only if U is type IIΓ. In this work, we study the fast macro
region FRD with U of type IIG. In this regime, there are regions where the backward fast wave
curves behave in the same way as those in case νG > 1. Therefore, these wave curves W−f (R) and
their associated R-regions are constructed in the same way as in Sections 6.4.2 and 6.4.3 with small
modifications to some boundaries. Specifically, this is done for regions R1,R2 and R3, and also for
regions R4 and R4′ when µw 6= µo. The main differences with respect to the case νG > 1 are:

1. The fast inflection locus has two components (branches) inside this macro region (FRD) (three
in the case of µw = µo), causing the analysis of f -rarefactions to grow in complexity. One of
the components of the fast inflection is an oval section that passes through the umbilic point and
intersects the segment [U , O] (see Section 4.5 and Figure 6.34(b)).

2. We know from [20] that the hysteresis locus, the inflection locus and an eigendirection field are
all tangent to each other at certain points. The fast inflection has two separate branches: the oval
part [U , I3

f ] and the curve [I1
f , I2

f ], where I3
f is the intersection between segment [U , O] and the

fast inflection locus. The f -eigendirection field is tangent to I2 at IT , which belongs to the fast
inflection [U , I3

f ] (see Figure 6.34(b)).

3. The f -hysteresis locus (or f -left-extension of [U , I3
f ] ) plays an important role in the division of

segments of Lax f -shocks. But it may also lead to complex combinations of shock, rarefaction
and composite segments in the local branch ofW−f at some regions.

4. As seen in Lemma 5.3.2, states Y2 and Y2 no longer exist along the invariant line [G,D], hence
regions Ri with i ∈ {5, 5′6, 6′} disappear. But other parts of the fast double contact locus are
involved in this region. Moreover, for some combinations of µw, µo and µg, it is possible to have
more than one branch (and its corresponding branch) of the fast double contact locus in this region.

5. The state IT belongs to the fast double contact locus (corresponding to itself).

There are other special points that define some boundaries in this regime. Consider the fast integral
curve that passes through IT ∈ [U , If3 ] and intersects the invariant line [G,D], we call this intersection
K0. The backward f -rarefaction segment [K0, IT ] and the forward f -rarefaction segment [K0,K

′
0],

with K ′0 in fast inflection [I1
f , I2

f ], are the boundaries that limit backward f -rarefaction segment for
states upon the fast inflection [I1

f , I2
f ] (see Figure 6.34(b)).

From Theorem 5.4.3 and Remark 5.4.1 of Section 5.4, we conclude that transitional shocks connect-
ing states M1 and M2 are only possible in this regime when M1 ∈ [G,U ] and M2 ∈ [D0, D]. The state
D0 was defined in (5.26), and it always lies on the boundary of TU that separates regions of type I and
II . Moreover, when νG = 1, we see that U = D0 = 1/2. Figure 6.34(a) shows the Hugoniot curve
from D0; the importance of this state is that D0 defines the boundary that separates regions that use
transitional shocks from those that use transitional rarefactions. This boundary is the forward f -wave
curve from D0, (W+

f (D0)) which is the last wave curve that we can use after a transitional wave.
The difficulty in describingW+

f (D0) is that it can change due to the relative position of K0 and D0

with respect to U . When νG is close but less than one, U is close to D0 and D0 ∈ (U ,K0) ⊂ (U , D); but
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as we decrease νG, U moves away from D0 (which is fixed on [G,D]), until D0 and K0 change position,
with K0 ∈ (U , D0) ⊂ (U , D). In this work we consider only the case when K0 is not close to D0 and
we describe only the R-regions that use transitional waves. In next section we describe these regions.

6.4.5.1 Subregions Ri with i ∈ {1, 2, 3, 4, 4′}

The construction of the boundary for the region R1 in this case (νG < 1) is similar to the case νG > 1.
These cases differ in where the curve which separates R1 from R2 end: for νG > 1 it ends at U , whereas
when νG ≤ 1 it ends at B0. In both cases, this boundary begins at V0 ∈ [W,O]. This follows from the
fact that in the construction of this boundary (see Section 6.3.1), the last state along [U , D] to which we
can apply the triple shock rule 2.4.3 with a state on [G,U ] is the state D0.

Recall that states D0 ∈ [G,D] and U satisfy σ(U ;D0) = λs(U) = λf (U) and that the Hugoniot
curve H(D0) (found explicitly) intersects segments [O,U ] and [W,U ] at states B0 and E0 (see Figure
6.34(a)). Then, by the triple shock rule 2.4.3 we have σ(D0;U) = σ(E0;U) = σ(B0;U) and conclude
that the boundary which separates the upper regions R1 and R2 is the curve [V0, B0] (for lower regions,
the boundary is [V ∗0 , E0]). Using the same argument, we see that the upper boundary that separate the
regions R2 and R3 is the curve [V2, B0] (for lower region, the boundary is [V ∗2 , B0]) and that the upper
boundary for loss of admissibility of nonlocal shocks inside of R2 is the curve [V1, E0] (for lower regions,
it is [V ∗1 , B0])(see Figure 6.34(b)).

For the upper region R3 the left and bottom boundaries are the f -shock segment [D0, B0] ofH(D0)
and the segment [D0, D]. For the lower region R3 the left boundary is the f -shock segment [Y0, E0] of
H(D0) and the top boundary is the same boundary as in case νG > 1, namely the right f -extension of
[D0, D](E+

f ([D0, D])) given by the curve [Y ′0 , D
∗] (see Figure 6.34(b)).

The construction of the regions R4 and R4′ is similar to when νG > 1. They lie below segment
[U , D] and exist when one of the fast inflection loci does not coincide with this segment. As seen in
Sections 6.4.2 and 6.4.3, the top and bottom boundaries for these regions are: segment [U , D] and the
fast inflection I2 for R4; the fast inflection I2 and E+

f ([U , D]) for R4′ . Since D0 is the last state in
[U , D] that can join a transitional wave to a fast shock, the left boundaries for R4 and R′4 must be the
f -rarefaction curve [D0, Y0] and f -composite curve from [Y0, Y

′
0 ], see Figure 6.34(b).

Remark 6.4.10. In conclusion, backward fast wave curvesW−f (R), for right statesR in regions Ri with
i ∈ {1, 2, 3, 4, 4′} of FRD, with umbilic point being of type IIG and νG < 1 satisfy Claims 6.4.2, 6.4.4,
6.4.7 6.4.9 and 6.4.14.

Remark 6.4.11. As in the case when νG > 1 and U is of type II , for 0 < νG < 1, there is a curve of
s-hysteresis inside regions R2 that defines the region RH

2 as in Claim 6.4.5, but in this case the curve
ends at E0 and it is given by the segment [E0,N1] (see Figure 6.34). This is because the slow inflection
locus ends in U (see Section 4.5).

Remark 6.4.12. In the case of two equal viscosities, Matos et al. show in [31] Riemann solutions for
left states in a neighborhood of the umbilic point and right states in almost the whole saturation triangle.
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(a) Hugoniot curve for D0 ∈ [G,D]. The states B0 and E0

also are extension of U , see Remark 5.2.3.
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(b) Subdivisions of FRD into lower and upper regions
R1,R2, R3, R4 and R′4. The curve (blue) is part of the
slow inflection locus and the curve (violet) [IT , B0] is the
E−f ([U , IT ]), with [U , IT ] is part of the fast inflection locus.

Figure 6.34: Subdivision of FRD for νG < 1 and U ∈ IIG. Delta wing region limited by
[U , E0], [E0, D0], [D0, B0] and [B0,U ]. The dashed curve [G,U ] is part of the slow inflection loci.

6.4.5.2 Delta wing region

We name "delta wing" the region enclosed by (B0, D0, E0, U) in Figure 6.34. When K0 (defined
in Section 6.4.5) and D0 are not close, [D0, B0] is a Lax f -shock segment, [D0, Y0] is a forward f -
rarefaction segment, [Y0, Y

′
0 ] is a forward f -composite segment associated to [D0, Y0] and [Y ′0 , E0] is a

Lax f -shock segment along H(D0), see Section 6.4.5.1. Notice that in the presence of the f -inflection
segment [U , I3

f ], new bifurcation appears that were not present when νG > 1. The interaction between
the two f -inflection curves, the fast double contact and the f -hysteresis loci was studied in [31] in the
case of two equal viscosities and umbilic point varying between TU and IIO. Since our present focus is
on U of type II and this interaction between bifurcation manifolds also appears in cases where U is of
type I , we leave the study of these delta R-regions to future work.

6.4.6 Influence of mixed double contact in subregions Ri of macro regions FRD for U
of type II

As seen in Section 4.4 the mixed double contact only exists when the umbilic point is of type II . Though
in this model we do not have admissible discontinuities between pairs of states belonging to the mixed
double contact locus, this bifurcation locus plays a relevant role when we want to describe solutions of
the Riemann problem; specifically, when characterizing the LR-regions that depend on the R-regions.
This procedure will be explained in Chapter 8.
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Inside Ri, with i ∈ {6, 6′}, the mixed double contact locus subdivides some regions where the
backward fast wave curves do not change but the way to reach the state R by slow or transitional wave
curves changes (see Figure 6.35). This subdivision is based on the presence of a portion of mixed double
contact locus and the state Y1 that lies on invariant line [G,D]. In Lemma 5.3.3 of Section 5.3 it was

shown that Y1 remains inside the saturation triangle when (ν−G )2

νG
≤ 8. In case of Remark 6.4.5, the

regions R5 and R5′ are also influenced by this mixed double contact locus. From state Y1 we generate
the following boundaries (see Figure 6.35):

a) the segment [Y1,K1] that is part of the mixed double contact locus;

b) the forward f -rarefaction [Y1, Y
′

1 ] and its associated f -composite segment [Y ′1 , Y
∗

1 ];

c) the left f -extension of [Y1,K1] , E−f ([Y1,K1]) = [Y ∗1 ,K
∗
1 ]

(a) Highlight of regions Ri for i ∈ {6, 6′} affected by the
presence of the mixed double contact locus.
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(b) Highlight of regions Ri for i ∈ {5, 5′, 6, 6′} affected
by the presence of the mixed double contact locus, in the
case of Remark 6.4.5.

Figure 6.35: Subdivisions of regions R6 and R6′ in presence of the mixed double contact locus. Notice that in
(b) the f -rarefaction segment [Y1, Y

′
1 ] and the f -composite segment [Y ′1 , Y

∗
1 ] also cross the regions R5 and R5′

then they are affected by the mixed double contact, see Remark 8.4.10.

Notice that the left s-extension of the slow inflection locus [N2,N3] that defined the region RH
6′ (see

Remark 6.4.9) intersects the f -composite curve [Y ′1 , Y
∗

1 ] at stateN4, producing an area of RH
6′ that is not

affected by the mixed double contact locus.

6.5 Final considerations

Following the discussion in this chapter, we present some conclusions about the backward f -wave curves
for R in FRD and umbilic point of type II . We verified numerically that the local branch ofW−f (R)
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for R ∈ FRD crosses the invariant segment [U , D] at a single point and satisfies the following result:

Claim 6.5.1. The local branch of any fast backward wave curveW−f (R) for states R inside region FRi
with i ∈ {E,B,D} remains totally contained within the same region.

We conclude that for any R in regions Ri for i ∈ {1, 2, 3} the intersection between the invariant
segment [U , D] and the local branch of W−f (R) happens at a state corresponding to a fast shock with
R. However, for any R in regions Ri for i ∈ {4, 4′, 5, 5′6, 6′}, the intersection between the invariant
segment [U , D] and the local branch ofW−f (R) occurs on a rarefaction segment.

On the other hand, notice thatW−f (R) has the same structure forR in region R3 and R4, even though
regions R3 and R4 (or lower region R3 and R4′) are separated by the invariant segment [U , D] (or by
the segment [Y ∗2 , D

∗]). However, considering the solution of Riemann problems it is better to consider
them as distinct regions (see Chapter 8). Finally, we have an analogous result for the local branch of
forward s-wave curves:

Claim 6.5.2. The local branch of any slow forward wave curveW+
s (L) for states L inside region SRi

with i ∈ {G,W,O} remains totally contained within the same region.
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Chapter 7

The surface of transitional shocks: case
B(U) = I

In this chapter, we present the solutions of Riemann problems which involve transitional shocks con-
structed in a three dimensional phase space: besides two coordinates in the saturation triangle, we add
as a third coordinate the shock speed (or characteristic speed, depending on the elementary wave). In
this setting, we define the surface of transitional shocks when B(U) is a multiple of the identity matrix
and study its construction. For each invariant line, we have a pair of planes (domain and codomain)
orthogonal to the saturation triangle, which contain all transitional shocks that involve this secondary
bifurcation. In this three dimensional phase space, we also construct the wave curves associated to each
family and show solutions to Riemann problems for umbilic points of type II and arbitrary left and right
states.

7.1 Transitional boundaries

We begin by presenting the nomenclature for our study of wave curves in the three dimensional phase
space. We write a point in the three dimensional phase space as (sw, so, v) ∈ T × R+, with (sw, so)
in the saturation triangle T (see Definition 3.39) and v a speed; see Figure 7.1(a). In principle, a state
M ∈ T (M = (Mw,Mo)) has two associated characteristic speeds λs(M) and λf (M) which are
equal only at U , but when a state M belongs to an i-rarefaction, v represents the characteristic speed
associated to the i-th family and the coordinates in the new phase space are (Mw,Mo, λi(M)), or simply
(M,λi(M)). When there is a discontinuity between two states M and N , the speed associated to both
states is the shock speed σ = σ(M ;N); then their coordinates are (Mw,Mo, σ) and (Nw, No, σ). In the
case of a Hugoniot locus H(R), the center state R does not have an associated shock speed. We denote
{(M1, σ1), (M2, σ2)} ⊂ T × R+ the segment of curve that joins the points (M1, σ1) and (M2, σ2)
belonging to T × R+.

Recall that a shock wave between states Ul and Ur with σT = σ(Ul;Ur) is classified as being
transitional (for the assumed viscosity matrix B(U)) provided that:
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(a) Three dimensional phase space T × R+ and orthonormal plane
associated to invariant line [G,D].

(b) Boundaries of the transitional plane (surface of
transitional shocks) for the case 1 < νG ≤ 8.

Figure 7.1: The surface of transitional shocks for the case B(U) = I . (a) Representation of the invariant planes
[G,U ] × R+ and [U , D] × R+, see Definition 7.1.2. (b) Representation of the inverse transitional map for M2 ∈
[U , D] and transitional segment [X2(M2), X1(M2)] as objects in the three dimensional phase space. The horizontal
axis corresponds to a parametrization of [G,D] in terms of the effective saturation s and the vertical axis is the
shock speed, see Remark 5.1.1.

(a) both Ul and Ur are saddle points for the associated traveling wave solution of the ODE system
(2.24);

(b) there is an orbit connecting Ul to Ur (see Definition 2.2.4).

In Section 5.4, we presented the construction of a transitional map in terms of the effective saturation
on each invariant line. Given a state M2 along an invariant line associated to vertex Γ ∈ {G,D,W},
we compute the transitional segment (X2(M2), X1(M2)) which contains all states M1 that have a tran-
sitional shock with M2 such that σ(X1(M2);M2) ≤ σT (M1;M2) ≤ σ(X2(M2);M2) (see X1 and X2

constructed in Theorem 5.4.1). Notice that, in the context of our three dimensional phase space, the tran-
sitional map constructs two pairs of curves in T×R+: one given by {(M2, σ(X1;M2)), (M2, σ(X2;M2))},
and the other by {(X1, σ(X1;M2)), (X2, σ(X2;M2))}, see Figure 7.1(b).

Actually, these segments associated to M2 can be understood as an image/pre-image pair of the tran-
sitional map T−1(M2). The pre-image and image are each contained in a plane (domain and codomain)
on which, by varying M2 and successively computing these images and pre-images using Theorems
5.4.1, 5.4.2 and 5.4.3, we construct the surface of transitional shocks for each invariant line. Moreover,
due to the triple shock rule 2.4.3, we construct the boundaries of the surface of transitional shocks, using
the same procedure as the one used to construct the boundaries of admissibility and compatibility in
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Sections 6.3.1-6.3.3. Because of this, we can use the surface of transitional shocks as an organization
center to construct solutions of Riemann problems, verifying which left and right states are compatible
with transitional shocks.

Now, we define the different types of boundaries for a surface of transitional shocks (transitional
boundaries), associated to the boundaries of admissibility and compatibility constructed in Sections
6.3.1-6.3.3. Notice that each boundary is associated to one of the end points of the transitional seg-
ment [X2, X1] constructed from a state M2 in an invariant segment [U ,B] with B ∈ {E,D,B} (see
Section 5.4). Then, while varying M2 ∈ [U ,B], we compute the points (M2, σX2) and (M2, σX1) on
the domain of transitional boundary, and the points (X2, σX2) and (X1, σX1) on the codomain where
σXi = σ(M2;Xi), i ∈ {1, 2} (see Figure 7.1).

Definition 7.1.1. Consider the surface of transitional shocks associated to the invariant line [Γ,B] with
Γ ∈ {G,W,O} and B ∈ {D,E,B} respectively. We define

1. the slow sonic boundary (SSB) as the set of pairs (X1(M2), σX1), (M2, σX1) in T × R+ such
that there is a slow sonic shock between X1 and M2 with σX1 = λs(X1), where X1 ∈ (Γ, U),
M2 ∈ (U ,B] and σX1 = σ(X1;M2).

2. the fast sonic boundary (FSB) as the set of pairs (X2(M2), σX2), (M2, σX2) in T × R+ such
that there is a fast sonic shock between X2 and M2, where σX2 = λf (M2) with X2 ∈ (Γ, U),
M2 ∈ (U ,B] and σX2 = σ(X2;M2).

3. the transitional sonic boundary (TSB) as the set of pairs (X2(M2), σX2), (M2, σX2) in T × R+

such that there is a transitional sonic shock between X2 and M2, where σX2 = λf (X2)with
X2 ∈ (Γ, U), M2 ∈ (U ,B) and σX2 = σ(X2;M2).

4. the genuine transitional boundary (GTB) as the set of points (M1, σ(M1;B)) and (B, σ(M1;B))
in T×R+ such that there is a transitional shock betweenM1 and B, whereM1 ∈ (X2(B), X1(B)).

Definition 7.1.2. The transitional map takes a state M ∈ [G,U ] and maps it to another state T (M) ∈
[U , D], such that there is a transitional shock between them with σT = σ(M ;T (M)). We define the
invariant plane [G,U ]×R+ as the domain and [U , D]×R+ as the codomain of the surface of transitional
shocks. These invariant planes contain the transitional boundaries defined in Definition 7.1.1.

Remark 7.1.3. Notice that SSB is associated to the boundary for loss of compatibility between tran-
sitional and fast shocks given in Section 6.3.1, while TSB is associated to the boundary for loss of
admissibility of nonlocal shocks given in Section 6.3.3.

In the next lemmas we show the different types of transitional boundaries, which depend on the
values of the viscosity ratio νG defined in (5.11). We describe the procedure for the invariant line [G,D],
since the procedure for the other invariant lines is analogous.

Lemma 7.1.1. Consider the invariant line [G,D] with viscosity ratio satisfying 1 < νG ≤ 8. Then, the
surface of transitional shocks (domain and codomain) associated to the invariant plane corresponding
to [G,D] comprises the region bounded by the following curves (refer to Figure 7.2(a)):
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(a) Surface of transitional shocks (domain and codomain) for
[G,D], when 1 < νG < 8.

(b) Surface of transitional shocks (domain and codomain) for
[G,D], when νG > 8 and (ν−G )

2
/νG ≤ 8.

Figure 7.2: Transitional boundaries given in Definition 7.1.1: The blue curves are SSB, red curves are FSB,
magenta curves are TSB and green curves are GTB. The horizontal axis corresponds to a parametrization of
[G,D] in terms of the effective saturation s and the vertical axis is the shock speed, see Remark 5.1.1. The dashed
curve is associated to the boundary for loss of compatibility of sonic shocks, see Section 6.3 and Remark 7.1.5.

1. Slow sonic boundary (SSB): with domain defined by the curve {(D1, σ(D;D1)), (U , 2)}, and
codomain defined by the curve {(D,σ(D;D1)), (U , 2)}.

2. Fast sonic boundary (FSB): with domain defined by the curve {(Y2, σ(Y2;Y2)), (U , 2)}, and
codomain defined by the curve {(Y2, σ(Y2;Y2)), (U , 2)}.

3. Transitional sonic boundary (TSB): with domain defined by the curve {(Y2, σ(Y2;Y2)),
(D2, σ(D;D2))} and codomain defined by the curve {(Y2, σ(Y2;Y2)), (D,σ(D;D2))}.

4. Genuine transitional boundary (GTB): with domain defined by the curve {(D2, σ(D;D2)),
(D1, σ(D;D1))}, and codomain define the curve {(D,σ(D;D2)), (D,σ(D;D1))}.

Proof. This characterization of the transitional boundaries follows directly from Definition 7.1.1 and
from Theorem 5.4.1. When M2 varies along segment (U , D], we compute explicitly the transitional
segment [X2(M2), X1(M2)] that depends on M2, such that σ(X1(M2;M2)) ≤ σT ≤ σ(X1(M2;M2)),
which defines the four types of boundaries.

Lemma 7.1.2. For νG > 8, let D̂2 be the right f -extension ofD on [G,D] such that σ(D̂2, D) = λf (D),
see Corollary 5.4.2. Then the surface of transitional shocks (domain and codomain) associated to the
invariant plane corresponding to [G,D] comprises the region bounded by the following curves (refer to
Figure 7.2(b)):

1. SSB, as in Lemma 7.1.1 (1).
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(a) Surface of transitional shocks (domain and codomain) for
[G,D], when 0 < νG ≤ 1.

(b) Surface of transitional shocks (domain and codomain) for
[G,D], when (ν−Γ )

2
/νΓ > 8.

Figure 7.3: Transitional boundaries given in Definition 7.1.1: The blue curves are SSB, red curves are FSB,
magenta curves are TSB and green curves are GTB. The horizontal axis corresponds to a parametrization of
[G,D] in terms of the effective saturation s and the vertical axis is the shock speed, see Remark 5.1.1. The dashed
curve is associated to the boundary for loss of compatibility of sonic shocks, see Section 6.3 and Remark 7.1.5.

2. FSB with domain defined by the curve {(D̂2, σ(D̂2;D)), (U , 2)}, and codomain defined by the
curve {(D,σ(D̂2;D)), (U , 2)}.

3. GTB with domain defined by the curve {(D̂2, σ(D; D̂2)), (D1, σ(D;D1))}, and codomain de-
fined by the curve {(D,σ(D; D̂2)), (D,σ(D;D1))}.

Proof. The justification follows directly from Definition 7.1.1 and from Corollary 5.4.2. Notice that
there is no boundary of type TSB.

Lemma 7.1.3. For 0 < νG ≤ 1, let D0 be the left f -extension of U as in the Theorem 5.4.3. Then the
surface of transitional shocks (domain and codomain) associated to the invariant plane corresponding
to [G,D] comprises the region bounded by the following curves (refer to Figure 7.3(a)):

1. SSB with domain defined by the curve {(D1, σ(D;D1)), (U , 2)}, and codomain defined by the
curve {(D,σ(D;D1)), (D0, 2)} (blue curves in Figure 7.3(a)).

2. TSB with domain defined by the curve {(D2, σ(D;D2)), (U , 2)}, and codomain defined by the
curve {(D,σ(D;D2)), (D0, 2)} (magenta curves in Figure 7.3(a)).

3. GTB as in Lemma 7.1.1 (4).

Proof. The justification follows directly from Definition 7.1.1 and from Theorem 5.4.3. Notice that there
is no boundary of type FSB.

113



Remark 7.1.4. Notice in Lemma 7.1.3, that there is a gap between states U and D0; see Figure 7.3(a).
This mean that, in this case, the amplitude of transitional shocks is bounded away from zero. This fact
had been noted before, see [28]. The solutions that involve the segment between states U and D0 use
transitional rarefactions, see Sections 5.5 and 6.4.5.

Claim 7.1.1. For 0 < νG ≤ 1, let D0 be the left f -extension of U as in Theorem 5.4.3. Then, for any
right state R in the segment (U , D0] there is no left state L along the invariant line [G,D) such that L
and R can be joined by a transitional shock (see Figure 7.4).

G

D

(a) Speed diagram: Primary branch [G,D], forH(R) with
R ∈ (U , D0], when 0 < νG < 1.

(b) Speed diagram: Zoomed segment [X2, X1] for H(R)
with R ∈ (U , D0].

Figure 7.4: Speed diagram for H(R), R ∈ (U , D0]. The horizontal axis corresponds to a parametrization given
in terms effective saturation, and the vertical axis shows speeds. The blue (resp. red) line is the characteristic
speed λs (resp. λf ) while the black line is the shock speed σ. Horizontal cyan and magenta lines correspond to the
constant values λs(R) and λf (R), respectively. States in the same dashed black line satisfy the tripe shock rule.
Notice that X1 is a Bethe-Wendroff state and for each state M ∈ [X2, X1] there is a state in M ′ ∈ [X1, X

′
2] that

satisfy σ(M ;R) = σ(M ′;R).

Proof. Consider the Hugoniot curve H(R) for a right state R in the segment (U , D0) ⊂ [G,D]. The
Hugoniot curve for states along invariant line is computed explicitly in [3]. Since the only possibility
for the existence of a transitional shock between states L and R is that both lie in [G,D], we only need
to consider the primary branch [G,D] of H(R). In Figure 7.4, we compare the characteristic speeds
λs(R),λf (R), λs(s), λf (s) with the shock speed σ(R; s), as s varies along the Hugoniot branch [G,D],
and identify the Bethe-Wendroff point X1 and the transitional segment [X2, X1]. According to Figure
7.4 there is a state X ′2 ∈ [X1, R] such that σ(X2;R) = σ(X ′2;R) and X ′2 is a repeller. Notice that for
any state M ∈ [X2, X1] there is a state M1 ∈ [X1, X

′
2] such that σ(M ;R) = σ(M1;R). Since M1 is

between M and R there is no orbit connecting M to R along the invariant line [G,D]. Therefore, there
is no admissible transitional shock from M to R when R ∈ (U , D0].
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Remark 7.1.5. The transitional boundary associated to the boundary for loss of compatibility of sonic
shocks given in Section 6.3 (shown in Figures 7.2-7.3 as black dashed lines) is computed by vary-
ing M2 ∈ [Y1, D] and finding the states X3(M2) ∈ [X2(M2), X1(M2)] with σ(X1(M2);M2) ≤
σ(X3(M2);M2) ≤ σ(X2(M2);M2). In Figure 7.3(b), we show the surface of transitional shocks for the
case (ν−G)2/νG > 8 in which this boundary does not appear because the state Y1 ceases to exist within
the saturation triangle, see Lemma 5.3.3.

7.2 Relations between macro regions, R-regions and transitional bound-
aries for umbilic points of type II

As seen in Definition 7.1.1 and Lemmas 7.1.1-7.1.3, there is a straightforward connection between the
transitional boundaries, the R-regions defined in Chapter 6 and the boundaries of compatibility and
admissibility given in Sections 6.3. We can use these relationships to establish the compatibility between
transitional waves and fast waves.

Claim 7.2.1. For 1 < νG ≤ 8 and umbilic point of type II , given any right state R ∈ FRD, the
local branch of the backward f -wave curve W−f (R) on space FRD ×R+ intersects the invariant plane
[U , D]× R+ in one of the following regions (see Figure 7.5(b)):

1. Region T1, bounded by the curves {(U , 2), (D,σD1)}, {(D,σD1), (D, 1)} and {(D, 1), (U , 2)};

2. Region T2, bounded by the curves {(U , 2), (Y2, σY2)}, {(Y2, σY2), (D,σD2)}, {(D,σD2), (D,σD1)}
and {(D,σD1), (U , 2)};

3. Region T3, bounded by the curves {(Y2, σY2), (D,λf (D))}, {(D,λf (D)) , (D,σD2)} and {(D,σD2),
(Y2, σY2)};

4. Curve A (cyan) given by {(Y2, σY2), (D,λf (D))};

5. Curve B (red) given by {(U , 2), (Y2, σY2)}.

Moreover, for the upper and lower regions Ri, with i ∈ {1, 2, 3}, the correspondence with the regions
T1, T2 and T3 in the invariant plane is one-to-one. (Regions A, B in the saturation triangle are mapped
to curves A, B on the invariant plane).

Proof. The justification of this Claim follows directly from the procedure to construct the boundaries for
regions Ri, i = {1, ..., 6}∪{4′, 5′, 6′}, given in Sections 6.4.1-6.4.3. The local branch ofW−f (R) for any
state R in (lower or upper) Ri, i = {1, 2, 3}, intersects the invariant segment [U , D] at a state M2, such
that there is a Lax f -shock with σ = σ(M2;R). ForR ∈ A∪B, the stateM2 belongs to a fast rarefaction
segment. Then, we have that (M2, σ) is in the invariant plane [U , D]×R+, see Figure 7.5(b). Conversely,
if we consider the Hugoniot curves from states M2 along [U , D], the segments of Lax f -shocks in the
local branches (distinct from [G,D]) of H(M2) foliate regions Ri, i = {1, 2, 3}. Moreover, shock
speeds are monotonic along these segments and their extrema occur outside these regions. Therefore, we
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(a) R-regions for the fast macro region FRD . (b) Subdivision of the invariant plane
[U , D] × R+ into regions T1, T2 and T3

associated to R-regions.

Figure 7.5: Relations among R-regions, the invariant plane [U , D] × R+ and the transitional boundaries. (a)
Subdivision of the fast macro region FRD in R-regions, see Chapter 6. Notice that region A = R4 ∪ R4′ and
region B = R5 ∪R5′ ∪R6 ∪R6′ . (b) The horizontal axis corresponds to a parametrization of [G,D] in terms of
the effective saturation s and the vertical axis indicates values of shock speeds, see Remark 5.1.1.

can define a one-to-one correspondence between the points (M2, σ) in the invariant plane [U , D] × R+

and states R in these R-regions via the shock speed between them. Now we study the boundaries of
regions Ri with i ∈ {1, 2, 3} in this context of invariant plane.

First, we consider the Hugoniot curve for M2 varying along the segment [U , D] and compute the
states X1(M2) and X2(M2) associated to it (see Theorem 5.4.1). Recall that the curves [E0, V

∗
0 ] and

[U , V0] are the boundaries for the lower and upper regions R1, which separate R1 from region R2.
Their construction is associated to shock speeds σ(X1(M2);M2) for X1(M2) ∈ [G,D] which satisfy
λs(X1(M2)) = σ(X1(M2);M2) = σ(V0(M2);M2) = σ(V ∗0 (M2);M2), where V0(M2) ∈ [U , V0] and
V ∗0 (M2) ∈ [E0, V

∗
0 ] (see Remark 6.3.1 and Section 6.3.1).

Second, forM2 varying along the segment [Y2, D] the curves [Y ∗2 , V
∗

2 ] and [Y2, V2] are the boundaries
for the lower and upper regions R3, which separate R3 from region R2. Their construction is associ-
ated to shock speeds σ(X2(M2);M2) for X2(M2) ∈ [G,D] and satisfy λf (X2) = σ(X2(M2);M2)
= σ(V2(M2);M2) = σ(V ∗2 (M2);M2), where V2(M2) ∈ [Y2, V2] and V ∗2 (M2) ∈ [Y ∗2 , V

∗
2 ] (see Remark

6.3.2 and Section 6.3.2). Similarly, for M2 varying along the segment [U , Y2], the curve [E0, Y
∗

2 ] is
a boundary for the lower region R2, which separate R2 from region R6′ , see Figure 7.5(a). Its con-
struction is associated to shock speed σ(X2(M2);M2) with X2(M2) ∈ [G,D] satisfying λf (M2) =
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σ(X2(M2);M2) = σ(V3(M2);M2), where V3(M2) ∈ [E0, Y
∗

2 ] (see Section 6.4.3 for the construction
of R6′). Moreover, for all M2 ∈ [U , D], the states V0(M2), V ∗0 (M2), V2(M2), V ∗2 (M2) and V3(M2) are
left states of Lax f -shocks withM2. Additionally, M2 ∈ (Y2, D), these points satisfy σ(V0(M2);M2) <
σ(V2(M2);M2) < λf (M2) or σ(V ∗0 (M2);M2) < σ(V ∗2 (M2);M2) < σ(V3(M2);M2) = λf (M2).
From these considerations, we draw the following conclusions:

1. For R ∈ [E0, V
∗

0 ] ∪ [U , V0], there exists M2 ∈ [U , D] such that λs(X1) = σ(X1(M2);M2) =
σ(R;M2). Then, from Definition 7.1.1(1), the local branch ofW−f (R)×R+ intersects the invariant
plane [U , D]× R+ at (M2, σ(R;M2)), which belongs to the SSB (blue curve in Figure 7.5 (b)).

2. For R ∈ [Y ∗2 , V
∗

2 ] ∪ [Y2, V2], there exists M2 ∈ [U , D] such that λf (X2) = σ(X2(M2);M2) =
σ(R;M2). Then, from Definition 7.1.1(3), the local branch ofW−f (R)×R+ intersects the invariant
plane [U , D] × R+ at (M2, σ(R;M2)), which belongs to the TSB (magenta curve in Figure 7.5
(b)).

3. From the speed monotonicity along the segments of Lax f -shocks, we have that for any state
R ∈ R1, σ(R;M2) < λs(X1(M2)) (see Figure 7.5(a)) and that the local branch of W−f (R) ×
R+ intersects the invariant plane [U , D] × R+ at (M2, σ(R;M2)), which is below the curve
{(U , 2), (D,σD1)} and is bounded by the curves {(U , 2), (D, 1)} and {(D,σD1), (D, 1)} (region
T1 in Figure 7.5(b)).

4. From the speed monotonicity along the segments of the Lax f -shocks, we have that for any state
R ∈ R2, σ(R;M2) < λf (X2(M2)) (see Figure 7.5(a)) and that the local branch of W−f (R) ×
R+ intersects the invariant plane [U , D] × R+ at (M2, σ(R;M2)), which is above the curve
{(U , 2), (D,σD1)} and is bounded by the curves {(U , 2), (Y2, σY2)}, {(Y2, σY2), (D,σD2)} and
{(D,σD2), (D,σD1)} (region T2 in Figure 7.5(b)).

5. For R ∈ [E0, Y
∗

2 ], there exists M2 ∈ [U , D] such that λf (M2) = σ(R;M2). Then from Definition
7.1.1(2), the intersection between the local branch ofW−f (R)×R+ and the invariant plane [U , D]×
R+ happens at (M2, σ(R;M2)), which belongs to the FSB (red curve in Figure 7.5 (b)).

6. The curve [Y ∗2 , D
∗] is the left f -extension of [Y2, D]. From the construction of region R4′ (Section

6.4.3), this curve separates regions R3 and R4′ . Then, for any R ∈ [Y ∗2 , D
∗], there exists M2 ∈

[Y2, D] such that λf (M2) = σ(R;M2) and the intersection between the local branch ofW−f (R)×
R+ and the invariant plane [U , D] × R+ happens at (M2, σ(R;M2)), which belongs to the curve
{(Y2, σY2), (D,λf (D))} (cyan curve A in Figure 7.5 (b)). Since for any R ∈ R3 the intersection
between the local branch of W−f (R) and the invariant segment [U , D] corresponds to a Lax f -
shock, we have σ(R;M2) < λf (M2). Therefore, from the speed monotonicity along the segments
of Lax f -shocks, we have that for any stateR ∈ R3, the local branch ofW−f (R)×R+ intersects the
invariant plane [U , D]×R+ at (M2, σ(R;M2)), which is below the curve {(Y2, σY2), (D,λf (D))}
and is bounded by the curves {(Y2, σY2), (D,σD2)} and {(D,λf (D)), (D,σD2)} (shaded region
Figure 7.5 (b)).

117



On the other hand, let us consider the regions Ri, for i ∈ {4, 4′, 5, 5′, 6, 6′}, defined in Sections 6.4.2,
6.4.3 and Figures 6.32(b)-(c). We have seen that for any state R ∈ R4 ∪ R4′ , the local branch of
W−f (R) × R+ intersects the invariant segment with a f -rarefaction. Then, for any R ∈ A, A = R4 ∪
R4′ ⊂ FRD, the intersection of the local branch of W−f (R) with the invariant plane [U , D] × R+

happens at (M2, λf (M2)), which lies on the curve {(Y2, σY2), (D,λf (D))} (cyan curve A Figure 7.5
(b)). Similarly, for R ∈ B = R5 ∪R5′ ∪R6 ∪R6′ , the local branch ofW−f (R) intersects the invariant
segment along a f -rarefaction segment. Then, for any R ∈ B the intersection between the local branch
ofW−f (R) × R+ and the invariant plane [U , D] × R+ happens at (M2, λf (M2)), which belongs to the
curve {(U , 2), (Y2, σY2)} (red curve B in Figure 7.5 (b)). Notice that for regions A and B, we do not
have a bijective relationship with the invariant plane because the f -rarefaction reaches this plane with
the same characteristic speed for distinct states R.

Figure 7.6: Foliation surface of forward f -wave curves associated to the macro region FRD ×R+, see Remark
7.2.1. Properties of foliation surface on plane [U , D]× R+ can be viewed in Figure 7.5(b).
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Claim 7.2.2. For νG > 8 and umbilic point of type II , given any right state R ∈ FRD the backward
f -wave curve W−f (R)×R+ intersects the invariant plane [U , D]×R+ in one of the following regions:

1. Region T1, bounded by the curves {(U , 2), (D,σD1)}, {(D,σD1), (D, 1)} and {(D, 1), (U , 2)}.

2. Region T2, bounded by the curves {(U , 2), (D,σ
D̂2

)}, {(D,σ
D̂2

), (D,σD1)} and {(D,σD1), (U , 2)}.

3. Curve B (red) given by {(U , 2), (D,σ
D̂2

)}.

Moreover, the correspondence between the upper or lower regions R1 and R2 with T1 and T2 is one-to-
one.

Proof. Similar to the proof of Claim 7.2.1 and considering Section 6.4.4. The Figure is equivalent to
Figure 7.5 without regions R3, T3 and without the curve A.

Remark 7.2.1. Following the results of Claim 7.2.1, we construct the foliation surface of forward f -
wave curves associated to the macro region FRD × R+, see Figure 7.6. This surface is constructed
by gluing together local branches of forward f -wave curves for states M2 ∈ [U , D]. Each point in
this surface is of the form (R, v), where R ∈ FRD and v is the fastest speed associated to the wave
group connecting M2 to R. Moreover, points of the foliation surface can be associated with points in
the invariant plane [U , D] × R+ defined in terms of the slowest speed of the wave group connecting
M2 to R: this association is one-to-one, if the wave group is a Lax f -shock; if the wave group is either
a f -rarefaction or a f -composite the association is with a point in the curve {(U , 2), (D,λf (D))} that
represents the set {(M2, v) ∈ [U , D]× R+| v = λf (M2)} (see Figure 7.5(b)).

Analogous to the case of fast macro region FRD, there is a relation between the slow macro region
SRG and the invariant plane [G,U ]× R+.

Claim 7.2.3. For 1 < νG ≤ 8 and umbilic point of type II , given any left state L ∈ SRG, the local
branch of the forward s-wave curveW+

s (L)× R+ intersects the invariant plane [G,U ]× R+ in one of
the following regions (see Figure 7.7(b)):

1. Curve TS1 (blue) given by {(G, 0), (U , 2)}, which represents the set {(M1, v) ∈ [G,U ]×R+| v =
λs(M1)};

2. Region TS2 (checkered) bounded by curve {(G, 0), (Ŷ1, σŶ1
)}, the red curve {(Ŷ1, σŶ1

)}, (U , 2)}
and {(U , 2), (G, 0)};

3. Curve TS3 (orange) given by {(G, 0), (Ŷ1, σŶ1
)};

4. Curve TS4 (violet) given by {(Ŷ1, σŶ1
)}, (U , 2)}, just above the surface of transitional shocks.

Proof. Assume that the viscosities µi, i = w, o, g, are different. From Section 4.5, we see that the
slow inflection manifold Is inside SRG does not coincide with the segment [G,U ]; moreover, it belongs
to either the triangle Ĝ UE or Ĝ UB (see Figure 7.7(a)). Without loss of generality, we assume that
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(a) Subdivision of the slow macro region SRG. (b) Subdivision of the invariant plane [G,U ] × R+ associated to
subdivisions given in (a)

Figure 7.7: Correspondence between the invariant plane [G,U ] × R+ and the transitional boundaries in SRG.
(a) Subdivision of SRG according to the type of wave group at the intersection between the local branch of
W+
s (L) and the invariant plane [G,U ] × R+. For any L in region S4, there are no transitional shocks compatible

with the slow wave group from L. (b) The horizontal axis corresponds to a parametrization of [G,D] in terms
of the effective saturation s and the vertical axis is the shock speed, see Remark 5.1.1. Notice that the violet
curve {(Ŷ1, σY1

), (U , 2)} (TS4
) is above the red curve {(Ŷ1, σY1

), (U , 2)} which is associated to the transitional
boundary FSB.

Is ⊂ Ĝ UB. It follows from Section 4.1 that the s-rarefaction field foliates the slow macro region
SRG. Then, for any state L in Ĝ UE, i.e., region S1 in Figure 7.7(a), the forward s-rarefaction from L
intersects the invariant segment [G,U ] at a state M1(L) before it reaches the slow inflection Is, where it
must end by Definition 2.1.3. Hence, the intersection between the local branch ofW+

s (L)×R+ and the
invariant plane [G,U ] × R+ is along the curve TS1 (blue curve), given by {(G, 0), (U , 2)} (see Figure
7.7(b)) and which represents the set {(M1, v) ∈ [G,U ]× R+| v = λs(M1)}.

Since the slow inflection is contained in Ĝ UB, the right s-extension of [G,U ] (E+
s ([G,U ])), which

is given by the orange curve [G,Y1,U∗], also lies in the triangle Ĝ UB. Then, for all M ′1 ∈ E+
s ([G,U ]),

there is a state M1 ∈ [G,U ] with M ′1 ∈ H(M1) such that we have an admissible Lax s-shock between
M1 and M ′1 with σ(M1;M ′1) = λs(M

′
1). Recall from Section 6.3.3 that (refer to Figure 6.4(a)): (i)

the segment [D3, Ŷ1] ⊂ [G,U ] defines the boundary for loss of compatibility of sonic shocks which is
associated to segment [X∗3 (D),Y1] ⊂ [G,Y1,U∗] where σ(D3;D) = σ(X3(D);D) = λs(X

∗
3 (D)); (ii)

Y1 and Y1 with Y1 ∈ [U , D] is a mixed double contact pair; and (iii) σ(Y1;Y1) = σ(Ŷ1;Y1) = λs(Y1) =

λf (Y1), with Ŷ1 ∈ [G,U ] (see Figures 6.4(a) and 7.7). Then, if we consider a state M2 ∈ [U , Y1], the
corresponding states X3(M2) ∈ [Ŷ1,U ] and X∗3 (M2) ∈ [Y1,U∗] ⊂ [G,Y1,U∗] satisfy λs(X∗3 (M2)) =
σ(X∗3 (M2);M2) = σ(X3(M2);X∗3 (M2)) > σ(M2;X2(M2)) > σ(M2;X1(M2)). Therefore, the slow
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sonic shock joining X3(M2) to X∗3 (M2) is incompatible with any transitional shock leading to M2.
Taking these facts into account, we define the region S3 ∈ SRG bounded by the segment [G,Y1] ⊂

E+
s ([G,U ]), the backward s-rarefaction from Y1, [Y1, PY ], and the segment [G,PY ] ⊂ [G,W ]. For any

state L ∈ S3, the local branch of W+
s (L) intersects the invariant segment [G,U ] at state M1 such that

there is a s-composite wave group satisfying L Rs−→ M ′1
′Ss−−→ M1 with σ(M1;M ′1) = λs(M

′
1). Then,

(M1, σ(M1;M ′1)) is in {(G, 0), (Ŷ1, σY1)}, which represents the set {(M1, v) ∈ [G, Ŷ1] × R+| v =
λs(M

′
1) = σ(M1;M ′1), with M ′1 ∈ [G,Y1] ∈ SRG}.

On the other hand, we define the region S4 as the one bounded by the s-rarefaction [Y1, PY ], the seg-
ments [PY , B] and [B,U ], and the curve [Y1,U∗] ⊂ E+

s ([G,U ]). For any state L ∈ S4, the local branch
ofW+

s (L) intersects the invariant segment [G,U ] with a s-composite wave curve at M1 ∈ [Ŷ1,U ] which
has a corresponding stateM ′1 ∈ [Y1,U∗] such that σ(M1;M ′1) = λs(M

′
1). Notice that by the triple shock

rule 2.4.3, there is a state M2 ∈ H(M ′1) such that M2 ∈ [U , Y1] with σ(M1;M ′1) > σ(M2;X2(M2)),
where X2(M2) is an endpoint of the transitional segment ffor M2. Hence, (M1, σ(M1;M ′1)) intersects
the violet curve given by {(Ŷ1, σY1), (U , 2)} above the red transitional boundary {(Ŷ1, σY1), (U , 2)} (see
Figure 7.7(b)).

Finally, we define the region S2 ∈ SRG (checkered region in Figure 7.7(a)) as the one bounded
by the segments [G,U ], [U ,U∗] and the curve [G,Y1,U∗]. Notice that since the slow inflection Is is
inside this region, we have two cases for a given L: either it lie between the curves E+

s ([G,U ]) and
Is, or between Is and the invariant segment [G,U ]. In the first case, the forward s-rarefaction from L
has increasing velocity in the direction toward [G,U ] and ends at a state L′ ∈ Is, such that there is a
s-composite segment [L′, L′′] with σ(L;L′′) = λs(L) which L′′ does not cross the invariant segment
[G,U ]. This implies that the local branch ofW+

s (L) intersects [G,U ] along a segment of admissible Lax
s-shock at a state M1 and σ(M1;L) > λ(M1). In the second case, the forward s-rarefaction from L
increases in the direction toward Is, while in the opposite direction we have an admissible Lax s-shock
segment. Moreover, the local branch of W+

s (L) intersects [G,U ] along a segment of admissible Lax
s-shock at a state M1 and σ(M1;L) > λ(M1). Moreover, for all M1 ∈ [G,U ], the Hugoniot locus
H(M1) has an admissible Lax s-shock segment [M1, L] with L ∈ E+

s ([G,U ]) and σ(M1;L) = λs(L),
i.e., L is a Bethe-Wendroff state with the speed σ(M1;L) as a maximum. For each M in the segment
[M1, L] of Lax s-shocks λs(M1) < σ(M ;M1) < σ(M1;L) holds. Therefore, for any L ∈ S2, curve
(M1, σ(L,M1)) intersects the invariant plane [G,U ]×R+ in the checkered region bounded by the orange
curve {(G, 0), (Ŷ1, σŶ1

)}, the red curve {(Ŷ1, σŶ1
)}, (U , 2)} and the blue curve {(U , 2), (G, 0)}; see

Figure 7.7(b).

Remark 7.2.2. As in Remark 7.2.1, we use Claim 7.2.3 to construct the foliation surface of backward
s-wave curves associated to the macro region SRG, see Figure 7.7(a). This surface is constructed by
gluing together the local branches of backward s-wave curves for states M1 ∈ [G,U ]. Each point in this
surface is of the form (L, v), where L ∈ SRG and v is the slowest speed associated to each wave group.
Moreover, points of the foliation surface can be associated with points in the invariant plane [G,U ]×R+

defined in terms of the fastest speed of the wave group connecting L to M1: this association is one-to-
one, if the wave group is a Lax s-shock; if the wave group is either a s-rarefaction or a s-composite the
association is with a point in the curves TS1 and TS3 given by Claim 7.2.3, see Figure 7.7(b).
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Figure 7.8: Foliation surface of backward s-wave curve in slow macro region SRG, see Remark 7.2.2

7.3 Description of transitional Waves

In this section we describe the procedure to identify which transitional shocks are compatible with slow
or fast wave curves. To this end, we use the surface of transitional shocks which contains all pairs
of points of T × R+ that can be used to solve Riemann problems together with the Claims 7.2.1 and
7.2.3, where the surface of transitional shocks and the saturation triangle T are related. Without loss of
generality we consider the surface associated to the invariant plane [G,D] × R+ in this description; the
procedure in the other invariant planes follows in a similar manner.

Since there are four transitional boundaries when 1 < νG ≤ 8, we describe the procedure for this
range of νG using Lemma 7.1.1 and Claim 7.2.1. In this work, we construct solutions for the Riemann
problem by first building R-regions and then the associated LR-regions. This way, we begin with
the intersection point (M2, v) of the local branch of W−f (R) for R ∈ FRD and the invariant plane
[U , D] × R+, characterized in Claim 7.2.1 (see Figure 7.5); then, we use the inverse transitional map
T−1(M2) (defined in Section 5.4) and the surface of transitional shocks to find the curve of states that
can be joined to M2 by a transitional shock. Finally, we identify which states M1 along the straight line
[G,U ] can be used to solve the Riemann problem. For this, we use Claim 7.2.3 to identify the points
(M1, v), which belong to the intersection of invariant plane [G,U ] × R+ and the local branch of the
forward s-wave curveW+

s (L); see Figure 7.7(a) and (b).
Now we introduce some notation used in this section. Let σfint(M2) be the fast "speed of intersection"

associated to the state M2, which is the speed corresponding to state M2 whereW−f (R)×R+ intersects
the invariant plane [U , D] × R+. Therefore, if there is a Lax f -shock between R and M2, σ(R;M2) =
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σfint(M2) (or if M2 is on a f -composite, σ(M2;M ′2) = σfint(M2) with M2 ∈ W−f (R)); however, if M2

lies on a f -rarefaction, σfint(M2) = λf (M2). Hence, we use the notation (M2, σ
f
int(M2)) (or simply

(M2, σ
f
int)) to indicate the intersection point between the local branch ofW−f (R) and the invariant plane

[U , D]× R+.
SinceM2 ∈ [U , D], from Theorem 5.4.1 we conclude that it is always possible to compute the curves

representing the transitional map T−(M2) ({(M2, σX2), (M2, σX1)} in [U , D] × R+ and {(X2, σX2),
(X1, σX1)} in [G, U ]× R+), and the curve of compatibility among slow, transitional and fast wave
groups {(M2, σ

f
int), (M2,σX1)} in [U , D]×R+. In terms of shock speeds, [σX1 , σ

f
int] is the compatibility

interval of speeds and [σX1 , σX2 ] is the transitional interval of speeds. Notice that, as seen in Claim 7.2.1,
if R ∈ R3 then σfint ≥ σX2 and [σX1 , σX2 ] ⊆ [σX1 , σ

f
int]; however if R ∈ R2 then σfint < σX2 and

[σX1 , σ
f
int] ⊂ [σX1 , σX2 ].

Likewise, let M1 be the intersection state between the invariant segment [G,U ] and the local branch
of forward s-wave curve W+

s (L) for L ∈ SRG. We call σsint(M1) the slow "speed of intersection",
which would be equal to either the s-characteristic speed λs(M1) or the Lax s-shock speed σ(L;M1) (or
σ(M1,M

′
1) ifM1 is s-composite, see Claim 7.2.3), depending on which wave group ofW+

s (L) intersects
the invariant plane. Hence, we use the notation (M1, σ

s
int(M1)) (or simply (M1, σ

s
int)) to indicate the

intersection point between the local branch ofW+
s (L)× R+ and the invariant plane [G,U ]× R+.

From Theorem 5.4.1, when M2 ∈ [Y2, D] (or [D0, D]) we have that X2(M2) ∈ [G,U ] satisfies
σ(X2(M2);M2) = λf (X2(M2)). Then, it is possible to concatenate a backward f -rarefaction wave

fromX2 such that for allM1 in this f -rarefaction there is a transitional composite wave given byM1
Rf−−→

X2

′ST−−→M2 (see Section 2.5).

Definition 7.3.1. Refer to Figure 7.9(a)-(b). Consider a state M2 ∈ [U , D] and its corresponding states
X2(M2) and X1(M2) in [G,U ] computed as in Theorem 5.4.1, such that σfint ≥ σX2 . On one hand, we
construct the backward s-wave curve from X2,W−s (X2) given by the s-rarefaction curves [X2, E2] and
[M(X2), B2], and the Lax s-shock segment (X2,M(X2)], where M(X2) is the state associated to X2

such that there is a sonic shock betweenM(X2) andX2 with σ(M(X2);X2) = λs(M(X2)) (see Figure
7.9 (a)); on the other hand, we construct the backward s-rarefaction curves [X1, E1] and [X∗3 , B1], and
the Lax s-shock segment [X1, X

∗
3 ] ⊂ H(M2). We define the following sets in the slow macro region

SRG depending on the location of (M2, σ
f
int):

a) The region S1C(X2) bounded by the line segment [G,X2], the s-rarefaction [X2, E2] and the
segment [E2, G]. From Claim 7.2.3, for any L ∈ S1C(X2) the intersection betweenW+

s (L)×R+

and [G,U ]× R+ is in the curve TS1C
= {(G, 0), (X2, λs(X2))} ⊂ TS1 and S1C(X2) ⊂ S1.

b) The region S2C(X2) bounded by the line segment [G,X2], the Lax s-shock (X2,M(X2)] and the
right s-extension E+

s [G,X2] given by [G,M(X2)]. From Claim 7.2.3, for any L ∈ S2C(X2) the
intersection betweenW+

s (L)×R+ and [G,U ]×R+ is in region TS2C
⊂ TS2 bounded by {(G, 0),

(X2, λs(X2))}, {(X2, σM(X2)), (X2, λs(X2))} and {(X2, λs(X2)), (G, 0)}, and we have that
S2C(X2) ⊂ S2.

c) The region S3C(X2) bounded by the segment [G,B2], the s-rarefaction [M(X2), B2] and the right
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s-extension E+
s [G,X2] given by [G,M(X2)]. From Claim 7.2.3, for any L ∈ S3C(X2) the inter-

section betweenW+
s (L)×R+ and [G,U ]×R+ is in the curve TS3C

= {(G, 0), (X2, σM(X2))} ⊂
TS3 and S3C(X2) ⊂ S3.

d) The region S1T (X1) bounded by the line segment [E1, E2], the s-rarefactions [X2, E2] and [X1, E1],
and the segment [X2, X1]. From Claim 7.2.3, for any L ∈ S1T (X1) the intersection between
W+
s (L)×R+ and [G,U ]×R+ is in the curve TS1T

= {(X2, λs(X2)), (X1, λs(X1))} ⊂ TS1 and
S1T (X1) ⊂ S1.

e) The region S2T (X1) bounded by the line segment [X2, X1], the Lax s-shock segments (X2,M(X2)]
and (X1, X

∗
3 ] and the right s-extensionE+

s [X2, X3] given by [M(X2), X∗3 ]. From Claim 7.2.3, for
any L ∈ S2T (X1) the intersection betweenW+

s (L)×R+ and [G,U ]×R+ is in region TS2T
⊂ TS2

bounded by {(X2, λs(X2)), (X2, σM(X2))}, {(X2, σM(X2)), (X3, σX3)}, {(X3, σX3), (X1, σX1)}
and {(X1, σX1), (X2, λs(X2))}, and we have that S2T (X1) ⊂ S2.

f) The region S3T (X1) bounded by the segment [B2, B1], the s-rarefactions [M(X2), B2] and [X∗3 , B1],
and the right s-extension E+

s [X2, X3] given by [M(X2), X∗3 ]. From Claim 7.2.3, for any L ∈
S3T (X1) the intersection betweenW+

s (L)×R+ and [G,U ]×R+ is in the curve TS3T
= {(X2, σM(X2)),

(X3, σX3)} ⊂ TS3 and S3T (X1) ⊂ S3.

Remark 7.3.2. Assume that σfint = σX2 . When M2 ∈ (Y1, Y2) we only have the sets S1T , S2T and S3T

given in Definition 7.3.1 d), e) and f). On the other hand, when M2 ∈ (U , Y1) we only have the sets S1T

and S2T given in Definition 7.3.1 d) and e).

Definition 7.3.3. In the setting of Definition 7.3.1 with σX2 > σfint, let M ′2 be the state in [X2, X1] ⊂
[G,U ] such that σfint = σ(M2,M

′
2). This case differs from the case given in Definition 7.3.1 only in that

the boundaries of regions depend on M ′2, instead of X2. We have two sub-cases for the construction of
the regions SiT for i ∈ {1, 2, 3} (there are no regions SiC for i ∈ {1, 2, 3}).

(1) Case σfint ≥ σX3 :

Refer to Figure 7.10(a)-(b). We construct the backward s-wave curve from M ′2;W−s (M ′2) is given
by the s-rarefaction curves [M ′2, E2] and [N(M ′2), B2], and the Lax s-shock segment (M ′2, N(M ′2)],
where N(M ′2) is the state associated to M ′2 such that there is a sonic shock between N(M ′2) and
M ′2 with σN(M ′2) = σ(N(M ′2);M ′2) = λs(N(M ′2)) (see Figure 7.10 (a)); the boundaries that de-
pend on X1 are construct in the same way. We define the following sets depending on M2 in the
slow macro region SRG:

a) The region S1T (X1) bounded by the line segment [E1, E2], the s-rarefactions [M ′2, E2] and
[X1, E1], and the segment [M ′2, X1]. From Claim 7.2.3, for any L ∈ S1T (X1) the inter-
section between W+

s (L) × R+ and [G,U ] × R+ is in the curve TS1T
= {(M ′2, λs(M ′2)),

(X1, λs(X1))} ⊂ TS1 and S1T (X1) ⊂ S1.

b) The region S2T (X1) bounded by the line segment [M ′2, X1], the Lax s-shock segments (M ′2,
N(M ′2)] and (X1, X

∗
3 ] and the right s-extension E+

s [M ′2, X3] given by [N(M ′2), X∗3 ]. From
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(a) (b)

Figure 7.9: Regions associated to states M2 ∈ (U , D] with σfint ≥ σX2
. a) Subdivision of SRG in regions asso-

ciated to M2 where there is compatibility with transitional waves, see Definition 7.3.1. From Claim 7.2.3, regions
S1T and S1C are subsets of S1 and intersect the curve TS1

, regions S2T and S2C are subsets of S2 and intersect
the region TS2 and regions S3T and S3C are subsets of S3 and intersect the curve TS3 . b) Areas of intersection
between the invariant plane [G,D] × R+ andW+

s (L) × R+ for L ∈ SRG. Regions MC (gray) and MT (green)
defined in Definition 7.3.4 which admit transitional composite waves or single transitional shocks, respectively.
The curve {(G, 0), (X2, σX2

)} is a backward f -rarefaction from state X2, the horizontal axis corresponds to a
parametrization of the [G,D] in terms of the effective saturation s and the vertical axis indicates the values of
shock speeds.

Claim 7.2.3, for any L ∈ S2T (X1) the intersection between W+
s (L) × R+ and [G,U ] ×

R+ is in region TS2T
⊂ TS2 bounded by {(M ′2, λs(M ′2)), (M ′2, σN(M ′2))}, {(M ′2, σN(M ′2)),

(X3, σX3)}, {(X3, σX3), (X1, σX1)} and {(X1, σX1), (M ′2, λs(M
′
2))}, and we have that

S2T (X1) ⊂ S2.

c) The region S3T (X1) bounded by the segment [B2, B1], the s-rarefactions [N(M ′2), B2] and
[X∗3 , B1], and the right s-extension E+

s [M ′2, X3] given by [N(M ′2), X∗3 ]. From Claim 7.2.3,
for any L ∈ S3T (X1) the intersection betweenW+

s (L)×R+ and [G,U ]×R+ is in the curve
TS3T

= {(M ′2, σN(M ′2)), (X3, σX3)} ⊂ TS3 and S3T (X1) ⊂ S3.

(2) Case σX3 > σfint ≥ σX1 :

Refer to Figure 7.11(a)-(b). We construct the backward s-rarefaction curve [M ′2, E2] and the Lax
s-shock segment (M ′2 , N(M ′2)], where N(M ′2) is the state associated to M ′2 such that N(M ′2)
is in the shock segment [X1, X3] ⊂ H(M2) and σN(M ′2) = σ(M2;M ′2) = σ(M ′2;N(M ′2)) (see
Figure 7.11 (a)); the boundaries that depend on X1 are constructed in the same way. We define the
following sets depending on M2 in the slow macro region SRG:
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(a) (b)

Figure 7.10: Regions associated to states M2 ∈ (U , D] with σX2
> σfint. The state M ′2 ∈ [G,U ] satisfy

σ(M2;M ′2) = λf (M2), see Claim 6.4.4 with M ′2 = Z2. a) Subdivision of SRG in regions associated to M2

which there is compatibility with transitional waves, see Definition 7.3.3. From Claim 7.2.3, S1T ⊂ S1 and
intersect the curve TS1

, region S2T ⊂ S2 and intersect the region TS2
and region S3T ⊂ S3 intersect the curve

TS3
. b) Area of intersection between the invariant plane [G,D] × R+ andW+

s (L) × R+ for L ∈ SRG. Region
MT (green) defined in Definition 7.3.4 which admit single transitional shocks. The horizontal axis corresponds to
a parametrization of the [G,D] in terms of the effective saturation s and the vertical axis indicates the values of
shock speeds

a) The region S1T (X1) is defined as in the previous case 1.a).

b) The region S2T (X1) bounded by the line segment [M ′2, X1], the Lax s-shock segments (M ′2,
N(M ′2)] and (X1, N(M ′2)]. From Claim 7.2.3, for any L ∈ S2T (X1) the intersection be-
tweenW+

s (L)×R+ and [G,U ]×R+ is in region TS2T
⊂ TS2 bounded by {(M ′2, λs(M ′2)),

(M ′2, σ
f
int)}, {(M ′2, σ

f
int), (X1, σX1)} and {(X1, σX1), (M ′2, λs(M

′
2))}, and we have that

S2T (X1) ⊂ S2.

Definition 7.3.4. We name MC(M2) the region of the invariant plane [G,U ] × R+ associated to M2 ∈
[U , D] that admits transitional composite waves between states M1 ∈ [G,U ] and M2; see Figure 7.9(b).
This region corresponds to MC = TS1C

∪ TS2C
∪ TS3C

, with TSiC
, for i ∈ {1, 2, 3} given in Definition

7.3.1 (see gray area in Figure 7.9(b)).
Analogously, we name MT (M2) the region of [G,U ] × R+ associated to M2 that admits single

transitional shock waves between states M1 ∈ [G,U ] and M2, which corresponds to MT = TS1T
∪

TS2T
∪ TS3T

, with TSiT
for i ∈ {1, 2, 3} given in Definition 7.3.1 (either Remark 7.3.2 or in Definition

7.3.3 where MT = TS1T
∪ TS2T

); see green area in Figures 7.9(b), 7.10(b) and 7.11(b).
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(a) (b)

Figure 7.11: Regions associated to states M2 ∈ (U , D] with σX3
> σfint. The state M ′2 ∈ [G,U ] satisfy

σ(M2;M ′2) = λf (M2), see Claim 6.4.4 with M ′2 = Z2. a) Subdivision of SRG in regions associated to M2

which there is compatibility with transitional waves, see Definition 7.3.3. From Claim 7.2.3, S1T ⊂ S1 and
intersect the curve TS1 and region S2T ⊂ S2 intersect the curve TS2 . b) Area of intersection between the invariant
plane [G,D] × R+ and W+

s (L) × R+ for L ∈ SRG. Region MT (green) defined in Definition 7.3.4 which
admit single transitional shocks. The horizontal axis corresponds to a parametrization of the [G,D] in terms of the
effective saturation s and the vertical axis indicates the values of shock speeds.

Remark 7.3.5. In Definition 7.3.1 we assumed that for given M2 we have sets MC(M2) and MT (M2),
but it is possible that only the set MT (M2) exists (e.g., when νG > 8) or that none exist (e.g., when
νG < 1 and M2 ∈ [U , D0]).

We define the following methodology for the use of surface of transitional shocks: given a state
R ∈ FRD, we find (M2, σ

f
int) ∈ [ U , D] × R+ and compute the curves associated to the transitional

map and the curve of compatibility. Then, we identify the regions of the surface of transitional shocks
that can be reached by a forward s-wave curve. Given a point (M1, σ

s
int), we draw a vertical line in a

direction of increasing velocity until it intersects the curve {(X2, σX2), (X1, σX1)} defined from M2,
thus obtaining the speed σT = σ(M1;M2) which allows a transitional shock. Finally, we verify if this
transitional shock is compatible with the slow and fast wave groups.

7.3.1 (M2, σ
f
int) intersecting the region T3 or the curveA

As seen in Claim 7.2.1, given a state R ∈ FRD, the point (M2, σ
f
int) ∈ [U , D] × R+ belongs to the

region T3 if the right state R lies to the (upper or lower) region R3; otherwise, the point (M2, σ
f
int) ∈

[U , D] × R+ belongs to the curve A, when R lies on the region A = R4 ∪R4′ ⊂ FRD (see Sections
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Figure 7.12: Regions MC(M2) and MT (M2) given in Definition 7.3.4 when (M2, σ
f
int) intersects curve A, see

Claim 7.2.1. The horizontal axis corresponds to a parametrization of the [G,D] in terms of the effective saturation
s and the vertical axis indicates the values of shock speeds. Notice that in this case σfint > σX2 > σX1 (see
Definition 7.3.1). The curve {(G, 0), (X2, σX2)} (arrows) is a backward f -rarefaction from state X2.

6.4.2 and 6.4.3). In both cases we have σfint ≥ σX2 (σfint = σX2 whenR ∈ [V2, Y2]∪[V ∗2 , Y
∗

2 ], see Figure
7.5(a)). This mean that for any R in the region R3 ∪ A, depending on the left state L the transitional
wave is either a single shock (i.e., W+

s (L) intersecting MT (M2)) or a composite wave consisting of a
f -rarefaction wave adjacent to a transitional shock (i.e, W+

s (L)× R+ intersecting MC(M2)). In Figure
7.12, we plot the curves representing the transitional map T−(M2) and the curve of compatibility for the
case when (M2, σ

f
int) belongs to curve A. Then, we describe these two possibilities as follow:

(1) Case W+
s (L)× R+ intersects MC(M2):

As we seen in the Claim 7.2.3, and from Definitions 7.3.1 and 7.3.4, for any (M1, σ
s
int) we can

reach the curve of f -rarefactions {(G, 0), (X2, σX2)} with a vertical line from (M1, σ
s
int), in-

tersecting this curve at (M1, λf (M1)) with σsint < λf (M1) ≤ σX2 , see Figure 7.12. Notice
that this "vertical speed jump" implies that M1 represent a constant state in the solutions of
the Riemann problem. Then, the construction continues it by following the f -rarefaction from
(M1, λf (M1)) until the point (X2, σX2), where there is a transitional shock between X2 and M2

with σ(X2;M2) = λf (X2) = σX2 < σfint satisfying the compatibility criterion of speeds. There-

fore, we have the sequence of transitional wave M1
Rf−−→ X2

′ST−−→M2.

(2) Case W+
s (L)× R+ intersects MT (M2):
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As we seen in the Claim 7.2.3 and from Definitions 7.3.1 and 7.3.4, for any (M1, σ
s
int) we can reach

the curve {(X1, σX1), (X2, σX2)} that represents the transitional map T−(M2) with a vertical line
from (M1, σ

s
int), intersecting this curve at (M1, σ(M1;M2)) with σsint ≤ σ(M1;M2) ≤ σX2 , see

Figure 7.12. Notice that this "vertical speed jump" implies that M1 represents a constant state in
the solutions of the Riemann problem. Then, there is a transitional shock between M1 and M2

with σ(M1;M2) ≤ σfint satisfying the compatibility criterion of speeds. Therefore, we have the

transitional wave M1
ST−−→M2.

Remark 7.3.6. Notice that given a state M2 ∈ [Y2, D] (or M2 ∈ [D0, D], when 0 < νG < 1), for any
L ∈ SRG such thatW+

s (L)× R+intersects the invariant plane [G,U ]× R+, at (M1, σ
s
int) /∈MC(M2)

or at (M1, σ
s
int) /∈ MT (M2), then there is no transitional wave joining M1 and M2 after the slow wave

group from L to M1 (see Figure 7.9).

7.3.2 (M2, σ
f
int) intersecting the curveB

As seen in Claim 7.2.1 given a state R ∈ FRD, the point (M2, σ
f
int) ∈ [U , D] × R+ belongs to the

curve B when R lies on the region B = R5 ∪R5′ ∪R6 ∪R6′ ⊂ FRD (see Sections 6.4.2, 6.4.3 and
Figure 7.5(a)). In this case, we have σfint = σX2 and σX2 = σ(M2;X2) = λf (M2). This means that
for any R in the region B, the transitional wave can only be a single shock, i.e., W+

s (L)×R+ intersects
MT (M2). In Figure 7.13 we plot the curves representing the transitional map T−(M2) and the curve
of compatibility for the case of (M2, σ

f
int) on curve B (in this case these curves coincide). This case is

similar to the case (2) described in Section 7.3.1. Therefore, we have the transitional wave M1
ST−−→M2.

Remark 7.3.7. Follows Remark 7.3.2, given a state M2 ∈ (Y1, Y2) (or M2 ∈ (Y1, D], when νG > 8),
for any L ∈ SRG such the intersection point (M1, σ

s
int) betweenW+

s (L)× R+ and the invariant plane
[G,U ] × R+ does not belong to MT (M2) = TS1T

∪ TS2T
∪ TS3T

, there is no transitional wave joining
M1 and M2 after the slow wave group from L to M1. On the other hand, given a state M2 ∈ [U , Y1) (or
M2 ∈ [U , D], when (ν−G)2/(νG) > 8), for any L ∈ SRG such the intersection point (M1, σ

s
int) does not

belong to MT (M2) = TS1T
∪TS2T

, there is no transitional wave joining M1 and M2 after the slow wave
group from L to M1.

7.3.3 (M2, σ
f
int) intersecting the Region T2

As seen in Claim 7.2.1, given a state R ∈ FRD, the point (M2, σ
f
int) ∈ [U , D] × R+ belongs to

the region T2 when R lies on the (lower or upper) region R2 ⊂ FRD (see Section 6.4.1 and Figure
7.5(a)). In this case, we have σX2 > σfint and there is a state M ′2 ∈ [G,U ] such that M2 and M ′2 can be
joined by a transitional shock with σ(M2;M ′2) = σ(M2;R) = σfint. Therefore, there are points of the
transitional map T−(M2) that are incompatible with the Lax f -shock between M2 and R ∈ R2 because
the speed of the transitional shocks is larger that the intersection speed σfint. In Definition 7.3.3, it is
stated that the set MT (M2) is formed by compatible states when σX2 > σfint. Therefore, for any R in
the region T2, the transitional wave can only be a single shock, i.e., W+

s (L) × R+ intersects MT (M2).
We have two possibilities for (M2, σ

f
int) depending on σfint: (i) σfint ≥ σX3 , shown in Figure 7.14; or (ii)
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Figure 7.13: Region MT (M2) given in Definition 7.3.4 when (M2, σ
f
int) intersects curve B, see Claim 7.2.1.

The horizontal axis corresponds to a parametrization of the [G,D] in terms of the effective saturation s and the
vertical axis indicates the values of shock speeds. Notice that in this case σfint = σX2

> σX1
(see Definition

7.3.1).

σX3 > σfint ≥ σX1 , show in Figure 7.15. In both cases the description of transitional shock is similar to

the case (2) described in Section 7.3.1. Therefore, we have the transitional wave M1
ST−−→M2.

7.4 Solving Riemann problems that involve transitional shocks

In this section we describe the use of the geometric construction developed in the previous sections to find
the solutions that require a transitional shock to solve the Riemann problem. Without loss of generality,
we describe the procedure for the surface of transitional shocks associated to invariant line [G,D].

Consider a stateR ∈ FRD\R1 and constructW−f (R) following the procedure developed in Chapter

6. Using Claim 7.2.1, we can identify the intermediate state (M2, σ
f
int), and we use Section 7.3 to identify

setsMC(M2) orMT (M2). Then, we takeL in some region of SRG associate toMC(M2) orMT (M2) in
order to construct the forward s-wave curveW+

s (L). The Riemann solutions found using this procedure
are compatible and the L1

Loc-stability is verified for perturbations under change of problem parameters
and variation of data. Moreover, the stability of transitional shocks is guaranteed in [28], which has
shown the procedure for a general system of n equations and for more general sets of shocks that include
transitional shocks. In Figure 7.16, we show the solution of a Riemann problem for right state R in the
upper R3-region and left state L in S3 ⊂ SRG.

Finally, in Figure 7.17 we look at the case of 1 < νG ≤ 8 with umbilic point of type IIO and compare
the foliation surfaces of backward s- and forward f -wave curves, and show the surface of transitional
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Figure 7.14: Region MT (M2) given in Definition 7.3.4 when (M2, σ
f
int) intersects the region T2 with σX2

>

σfint > σX1 (see Claim 7.2.1 and Definition 7.3.3). The horizontal axis corresponds to a parametrization of
[G,D] in terms of the effective saturation s and the vertical axis indicates the values of shock speeds. The state
M ′2 ∈ [G,U ] satisfies σ(M2;M ′2) = λf (M2), see Claim 6.4.4 with M ′2 = Z2.

Figure 7.15: Region MT (M2) given in Definition 7.3.4 when (M2, σ
f
int) intersects the region T2 with σX3

>

σfint > σX1
(see Claim 7.2.1 and Definition 7.3.3 case (2)). The horizontal axis corresponds to a parametrization

of [G,D] in terms of the effective saturation s and the vertical axis indicates the values of shock speeds. The state
M ′2 ∈ [G,U ] satisfies σ(M2;M ′2) = λf (M2), see Claim 6.4.4 with M ′2 = Z2.
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(a) Projection of Riemann problem in the satura-
tion triangle.

(b) Transtional wave involve in the solution of Riemann problem in
plane [G,D]× R+.

(c) Slow and fast wave curves in the three dimensional phase space.

Figure 7.16: Solution of Riemann problem using the surface of transitional shocks.
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shocks associated to the invariant line [G,D]. Notice that any Riemann solution that involves transitional
waves is contained in this Figure and it is possible to verify the compatibility of shock speeds between
the slow, transitional and fast wave groups.
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Figure 7.17: Surfaces describing solutions of Riemann problems with transitional waves. The fast and slow
surfaces were defined in Remark 7.2.1 and 7.2.2, and Figures 7.6 and 7.8 respectively.
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Chapter 8

Riemann solutions and LR-regions

In this chapter, we construct the solution of the Riemann problem and find the backwardLR-regions
that depend on the backward R-regions defined in Chapter 6. For this purpose, we construct the right
s-extension of the backward f -wave curve from R in each R-region, which acts as a boundary for loss
of speed compatibility; also from each state where the local or nonlocal branches of W−f (R) have a
change of wave group type, we construct a backward s-wave curve, obtaining the boundaries of regions
with the same structure for their Riemann solutions. Finally, we combine this analysis with the regions
of transitional waves MC and MT studied in Chapter 7 to complete the subdivision of the saturation
triangle in LR-regions and find the Riemann solutions for any left state L and R ∈ R.

8.1 Backward slow wave curve

To construct the LR-regions for a given R-region, it is necessary to build backward s-wave curves from
certain points onW−f (R) and from a few other special points. These points are:

• The stateR which by definition connects a shock segment and a rarefaction segment (unlessR lies
on fast-inflection locus).

• States Ai ∈ W−f (R) that are Bethe-Wendroff points. These points represent states at which differ-
ent segments of wave groups start or end.

• States Ti which are intersection points between the s-inflection locus andW−f (R). At these points
theW−s (Ti) changes structure.

• States associated to regions MC and MT described in Definition 7.3.4.

• States on shock segments ofW−f that satisfy the triple shock rule.

In some situations we only require some components ofW−s because it is possible that other components
do not represent a true boundary of a L -region. In this situation we clarify which components are
constructed.
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8.2 Right s-extension curves ofW−f
Given a state R in a R-region, the backward f -wave curve from R parametrizes states in saturation
triangle that can be connected to R, on the left, by a f -wave group. Since waves along the local and
nonlocal branches of W−f (R) belong to the fast family, they can be preceded by a slow-family wave.
Such concatenation of waves obey respect the speed compatibility criterion 2.5.1. The methodology
to verify the speed compatibility of wave sequences in solutions consists of constructing the right s-
extension curves (or simply s-extension curve) of the pertinent fast-family wave curves [9, 4, 3].

Since the discontinuities defining the extension curves are local shocks, by Claim 2.7.1 they have
viscous profile. Moreover, states along these right s-extension curves are Bethe-Wendroff points.

8.3 Compatibility boundaries for LR-regions

We have three types of curves associated to loss of speed compatibility that depend on the R-regions,
namely, segments of Lax s-shocks, over-compressive shocks and over-compressive composite waves.
The first one occurs when Lax s-shocks and transitional shocks appearing in Riemann solutions have
equal speeds; the second, when Lax s-shocks and Lax f -shocks have equal speeds and the last one when
sonic s-shocks and Lax f -shocks have equal speeds. For more details, we refer the reader to [32].

8.4 Construction of LR-regions

In this section we present the construction of LR-regions for the R-regions defined in Chapter 6. The
procedure for their calculation as follows:

1. Compute the s-extension ofW−f (R);

2. Construct the backward s-wave curve (or slow family waves) from the exceptional points of
W−f (R) given in Section 8.1;

3. Construct the boundaries of compatibility defined in Section 8.3.

Remark 8.4.1. Consider a right state R in the saturation triangle. If a local or nonlocal f -rarefaction
segment of W−f (R) is reached by a Lax s-shock wave, then this shock wave is slower than the fast-
family rarefaction wave connecting to R. An analogous statement holds whenW−f (R) is reached by a
s-rarefaction wave.

Let us introduce some more notation. We use {A,B,C,D} to denote the interior area of the saturation
triangle bounded by the curves (or segments) [A,B], [B,C], [C,D] and [D,A]. If some segment bound-
ing {A,B,C,D} belongs to the boundary of the saturation triangle, then we consider this segment as
part of {A,B,C,D}.

Remark 8.4.2. If we consider a left state L in some boundary defined by backward s-wave curve (or
a slow-family wave), the Riemann solution corresponds to the wave sequences defined by W−s (L). In
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the case of L belonging to a s-extension curve, the Riemann solution starts with a s-shock between L
and a point M in the wave curve to which this extension corresponds, and then follows the same wave
structure as the solution for points in the interior of the region it defines.

8.4.1 LR-regions forR ∈ R1

Consider a state R in the lower or upper region R1, see Section 6.4.1. We want to construct the LR1-
regions that divide the saturation triangle in subregions where the solution of the Riemann problem has
the same structure for any left state L . In Figure 8.1(a) we show the right s-extension ofW−f (R) that
was obtained numerically. The segments [T1,W ], [T2, G] and [TR, O] are s-extensions of f -rarefaction
segments [A1,W ], [A2, G] and [R,O] ofW−f (R), respectively. The Lax f -shock segments ofW−f (R)
(R,A∗4), (A∗1, A1) and (A∗2, A2) have respectively s-extension segments (TR, A4), (T ∗, T1) and (T ∗, T2).
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(a) Right s-extension of W−f (R) for R in region R1. The
segment [A4, T

∗] is an over-compressive shock segment of
H(R).
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(b) L -regions for R in region R1. Black dashed curves are
segments of Lax s-shocks, see Claim 8.4.1.

Figure 8.1: Subdivision of saturation triangle according to the structure of Riemann solutions for R ∈ R1.

From Claim 6.4.1 we have that [A4, T
∗] is an over-compressive shock segment of H(R) and we

have that σ(T ∗;A∗1) = σ(A∗1;R) = σ(T ∗;A∗2) = σ(A∗2;R) as well as σ(A4;A∗4) = σ(A∗4;R). Then,
we conclude that for any state M ∈ [A4, T

∗], there are states N1 ∈ (A4, A
∗
2] and N2 ∈ (A∗4, A

∗
1] such

that the discontinuity joining M with N1 and N2 is a Lax s-shock and σ(M ;N1) = σ(N1;R), and
σ(M ;N2) = σ(N2;R) (see Figure 8.3).

Now, we construct the boundaries of LR1-regions taking into account the Claims 6.4.1 and 6.4.2.
We construct the backward s-wave curve for states R, A1 and A2 of W−f (R) that are shown in Figure
8.1(b). From A4 and T ∗ we trace the backward s-rarefaction segments [A4, E4] and [T ∗, B∗]. Notice
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Figure 8.2: Speed diagram comparing shocks speeds σ(T ;M) and σ(M ;R) as M and T vary along the Lax
f -shock segment [R,A∗4] ⊂ W−f (R) and its s-extension curve [TR, A4], respectively (see Claim 8.4.1 and Figure
8.1).

that [A4, E4] separates regions where the structure of Riemann solutions change; [T ∗, B∗] represents a
bifurcation where there is a coincidence of shocks speeds. In Figure 8.2, we present the shock/shock
compatibility between the Lax s-shock wave from T toM with the Lax f -shock wave fromM toR with
T ∈ [TR, A4] and M ∈ [R,A∗4].

Claim 8.4.1. Refer to Figure 8.1(b). Let R be a fixed state in R1 and W−f (R) its backward fast wave
curve. Let L be a state in the saturation triangle. Then:

(i) if L ∈ {G,A2, E2}, the Riemann solution corresponds to the sequence L pRs−→M p
Rf−−→ A2

′Sf−−→ R.
Here M is in the f -rarefaction segment [G,A2] ⊂ W−f (R). We have the same wave sequences for
L ∈ {W,A1, D1} by changing A2 to A1 with M in the f -rarefaction segment [W,A1] ⊂ W−f (R).

(ii) if L ∈ {E2, A2, A4, E4}, the Riemann solution corresponds to the sequence L pRs−→ M p
Sf−→ R.

Here M is in the Lax f -shock segment (A2, A4] ⊂ W−f (R). Again, we have the same wave
sequences for L ∈ {D1, A1, R,DR} with M in the Lax f -shock segment (A1, R) ⊂ W−f (R).

(iii) if L ∈ {DR, R,O}, the Riemann solution corresponds to the sequence L pRs−→M p
Rf−−→ R. Here M

is in the f -rarefaction segment [O,R] ⊂ W−f (R).

(iv) if L ∈ {G,B2, T2}, the Riemann solution corresponds to the sequence L pRs−→ T
′Ss−−→ M p

Rf−−→

A2

′Sf−−→ R. Here T is in the s-extension curve [G,T2] and M in the f -rarefaction segment
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Figure 8.3: Schematic speed diagrams comparing speeds along the branches [G1, B1] and [O1,W1] of H(R)
for R ∈ R1; see Figure 6.7(a). Black curves are the shock speed σ(M,R) with M varying along the Hugoniot
branches. States on the same horizontal dashed line satisfy the triple shock rule. The blue curves (resp. red
curves) are the slow characteristic speed, λs (resp. fast characteristic speed λf ). Horizontal cyan and magenta
lines correspond to the constant values λs(R) and λf (R), respectively (see Claim 8.4.1).

[G,A2] ⊂ W−f (R). We have the same wave sequences for L ∈ {W,B1, T1} by changingA2 toA1

with T in the s-extension curve [W,T1] and M in the f -rarefaction segment [W,A1] ⊂ W−f (R).

(v) if L ∈ {B2, B
∗, T ∗, T2}, the Riemann solution corresponds to the sequence L pRs−→ T

′Ss−−→M p
Sf−→

R. Here T is in the s-extension curve (T2, T
∗) and M is in the Lax f -shock segment (A2, A

∗
2) ⊂

W−f (R). We have the same wave sequences for L ∈ {B1, T1, T
∗, B∗} ∪ {ER, TR, A4, E4} with

T in the s-extension curves (T1, T
∗) ∪ (TR, A4) and M in the Lax f -shock segments (A1, A

∗
1) ∪

(R,A∗4) ⊂ W−f (R).

(vi) if L ∈ {G,T2, A2}, the Riemann solution corresponds to the sequence L pSs−→ M p
Rf−−→ A2

′Sf−−→ R.
Here M is in the f -rarefaction segment [G,A2] ⊂ W−f (R). We have the same wave sequences for
L ∈ {W,T1, A1} by changingA2 toA1 withM in the f -rarefaction segments [W,A1] ⊂ W−f (R).

(vii) if L ∈ {R, TR, O}, the Riemann solution corresponds to the sequence L pSs−→ M p
Rf−−→ R. Here M

is in the f -rarefaction segment [O,R] ⊂ W−f (R).

(viii) if L ∈ {TR, ER, O}, the Riemann solution corresponds to the sequence L pRs−→ T
′Ss−−→ M p

Rf−−→
R. Here T is in the s-extension curve [O, TR] and M is in the f -rarefaction segment [O,R] ⊂
W−f (R).
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(ix) if L ∈ {A2, A4, T
∗, T2}, the Riemann solution corresponds to the sequence L pSs−→ M p

Sf−→ R.
Here M is in the Lax f -shock segment (A2, A4] ⊂ W−f (R). We have the same wave sequences for
L ∈ {A1, R, TR, A4, T

∗, T1} with M in the Lax f -shock segment (A1, R) ⊂ W−f (R).

(x) if L is in the s-rarefaction segment [B∗, T ∗], then we have three possible wave sequences in the
state space corresponding to a unique solution in the xt-space, see [3, 9]. The Riemann solutions
are:

(a) L pRs−→ T ∗
′Ss−−→ A∗1

Sf−→ R;

(b) L pRs−→ T ∗
′Ss−−→ A∗2

Sf−→ R;

(c) L pRs−→ T ∗
′SO−−→ R.

(xi) if L is in the over-compressive shock segment (A4, T
∗), then we have three possible wave se-

quences in the state space corresponding to a unique solution in the xt-space, see [3, 9]. The
Riemann solutions are:

(a) L pSs−→ N1
Sf−→ R, with N1 ∈ (A4, A

∗
2);

(b) L pSs−→ N2
Sf−→ R, with N2 ∈ (A∗4, A

∗
1);

(c) L pSO−−→ R.

Proof. Refer to Figure 8.1. The compatibility of speeds is justified by Remark 8.4.1, Figure 8.2 and [3].
In [3], it was shown the compatibility between the s-extension curves [T1, T

∗] and [T2, T
∗] with the Lax

f -shock segments [A1, A
∗
1] and [A2, A

∗
2]. The statements (x) and (xi ) are justified by the triple shock

rule.

Remark 8.4.3. The solutions of the Riemann problem presented in Claim 8.4.1 with L ∈ [G,W ] coin-
cide with those given in [3].

Remark 8.4.4. In the case that the right state R ∈ R1 is in between the s-inflection and a invariant line,
W−f (R) intersects the s-inflection at state Ti generating a bifurcation in the form which the slow-family
waves reachW−f (R). In Figure 8.6(b) is shown a example of this bifurcation at state T3.

8.4.2 LR-regions forR ∈ R2

As seen in Remark 6.4.3 of Section 6.4.1, the lower R2 region can be subdivided into two regions; a
part similar to upper region R2, and the region RH

2 which appears because W−f (R) for R ∈ RH
2 has

a nonlocal f -shock breaking into two components separated by an over-compressive shock. We first
construct the LR2-regions for R in upper region R2, then we study the new LR2-regions that appear for
R ∈ RH

2 .
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Figure 8.4: Subdivision of saturation triangle according to the structure of Riemann solutions for R ∈ R2. In this
case is consider R ∈ R2 such thatW−f (R) has a single nonlocal component of fast shocks.

8.4.2.1 W−f (R) with a single nonlocal component of fast shocks

Consider a state R in the upper region R2. We want to construct the LR2-regions that divide the satu-
ration triangle in subregions where the solution of the Riemann problem have the same structure for any
left state L. Notice that in this case we have transitional waves associated to the intersection between
W−f (R) and [U , D] at state Z1 (see Section 7.3.3) with Z1 = M2 and Z2 = M ′2. In Figure 8.4(a)
we show the s-extensions of W−f (R) and the invariant segment [Z2, X1], obtained numerically. The
segments [T1,W ], [T2, G] and [TR, O] are s-extensions of f -rarefaction segments [A1,W ], [A2, G] and
[R,O] ofW−f (R), respectively. The Lax f -shock segments ofW−f (R), (R,Z1], [Z1, A1) and [Z2, A2)
have respectively s-extension segments (TR, X1), (T ∗, T1) and (TZ2 , T2). The segment [TZ2 , T

∗] is the
s-extension curve of the invariant segment [Z2, X1].

Now, we construct the boundaries of LR2-regions taking into account Claims 6.4.3 and 6.4.4, and
Section 7.3.3. We construct the backward s-wave curve for the states R, A1, A2 and Z2 ofW−f (R) that
are shown in Figure 8.4(b). Following Definition 7.3.3, we construct regions S1T , S2T and S3T which are
given by the areas {E1, X1, Z2, EZ2}, {X1, Z2, TZ2 , T

∗} and {T ∗, TZ2 , BZ2 , B
∗}, respectively. Recall

that it is possible that region S3T does not exist, which happens whenR lies in the region between curves
[U , V0] and [Y1, V1] inside of region R2 (see Definition 7.3.3(ii) and Figure 7.11).

In Figure 8.5, we present the shock/shock compatibility between the Lax s-shock wave from T to M
with the Lax f -shock wave from M to R with T ∈ [TR, X1] and M ∈ [R,Z1].
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Figure 8.5: Speed diagram comparing shocks speeds σ(T ;M) and σ(M ;R) as M and T vary along the Lax
f -shock segment [R,Z1] ⊂ W−f (R) and its s-extension curve [TR, X1], respectively (see Claim 8.4.2 and Figure
8.4).

Claim 8.4.2. Refer to Figure 8.4(b). Take a fixed state R in R2 and W−f (R) its backward fast wave
curve. Let L be a state in the saturation triangle. Then:

(i) if L ∈ {G,A2, E2}, the Riemann solution corresponds to the sequence L pRs−→M p
Rf−−→ A2

′Sf−−→ R.
Here M is in the f -rarefaction segment [G,A2] ⊂ W−f (R). We have the same wave sequences for
L ∈ {W,A1, D1} by changing A2 to A1 with M in the f -rarefaction segment [W,A1] ⊂ W−f (R).

(ii) if L ∈ {E2, A2, Z2, EZ2}, the Riemann solution corresponds to the sequence L pRs−→ M p
Sf−→ R.

Here M is in the Lax f -shock segment (A2, Z2) ⊂ W−f (R). Again, we have the same wave
sequences for L ∈ {D1, A1, R,DR} with M in the Lax f -shock segment (A1, R) ⊂ W−f (R).

(iii) if L ∈ {DR, R,O}, the Riemann solution corresponds to the sequence L pRs−→M p
Rf−−→ R. Here M

is in the f -rarefaction segment [O,R] ⊂ W−f (R).

(iv) if L ∈ {G,B2, T2}, the Riemann solution corresponds to the sequence L pRs−→ T
′Ss−−→ M p

Rf−−→

A2

′Sf−−→ R. Here T is in the s-extension curve [G,T2] and M in the f -rarefaction segment
[G,A2] ⊂ W−f (R). We have the same wave sequences for L ∈ {W,B1, T1} by changingA2 toA1

with T in the s-extension curve [W,T1] and M in the f -rarefaction segment [W,A1] ⊂ W−f (R).

(v) if L ∈ {B2, BZ2 , TZ2 , T2}, the Riemann solution corresponds to the sequence L pRs−→ T
′Ss−−→

M p
Sf−→ R. Here T is in the s-extension curve (T2, TZ2) and M is in the Lax f -shock seg-
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ment (A2, Z2) ⊂ W−f (R). We have the same wave sequences for L ∈ {B1, T1, T
∗, B∗} ∪

{ER, TR, X1, E1} with T in the s-extension curves (T1, T
∗]∪ (TR, X1) andM in the Lax f -shock

segments (A1, Z1] ∪ (R,Z1) ⊂ W−f (R).

(vi) if L ∈ {G,T2, A2}, the Riemann solution corresponds to the sequence L pSs−→ M p
Rf−−→ A2

′Sf−−→ R.
Here M is in the f -rarefaction segment [G,A2] ⊂ W−f (R). We have the same wave sequences for
L ∈ {W,T1, A1} by changingA2 toA1 withM in the f -rarefaction segments [W,A1] ⊂ W−f (R).

(vii) if L ∈ {R, TR, O}, the Riemann solution corresponds to the sequence L pSs−→ M p
Rf−−→ R. Here M

is in the f -rarefaction segment [O,R] ⊂ W−f (R).

(viii) if L ∈ {TR, ER, O}, the Riemann solution corresponds to the sequence L pRs−→ T
′Ss−−→ M p

Rf−−→
R. Here T is in the s-extension curve [O, TR] and M is in the f -rarefaction segment [O,R] ⊂
W−f (R).

(ix) if L ∈ {A2, Z2, TZ2 , T2}, the Riemann solution corresponds to the sequence L pSs−→ M p
Sf−→ R.

Here M is in the Lax f -shock segment (A2, Z2] ⊂ W−f (R). We have the same wave sequences for
L ∈ {A1, R, TR, X1, T

∗, T1} with M in the Lax f -shock segment (A1, R) ⊂ W−f (R).

(x) if L ∈ S1T = {E1, X1, Z2, EZ2}, the Riemann solution corresponds to the sequence L pRs−→ M

pST−−→ Z1 p
Sf−→ R. Here M is in the transitional segment (Z2, X1) associated to Z1.

(xi) if L ∈ S2T = {X1, Z2, TZ2 , T
∗}, the Riemann solution corresponds to the sequence L pSs−→ M

pST−−→ Z1 p
Sf−→ R. Here M is in the transitional segment (Z2, X1) associated to Z1.

(xii) if L ∈ S3T = {T ∗, TZ2 , BZ2 , B
∗}, the Riemann solution corresponds to the sequence L pRs−→

T
′Ss−−→M pST−−→ Z1 p

Sf−→ R. Here M is in the transitional segment (Z2, X3) associated to Z1.

(xiii) if L is in the s-rarefaction segment [B∗, T ∗], then the Riemann solution corresponds to the se-

quence L pRs−→ T ∗
′Ss−−→ X3

ST−−→ Z1 p
Sf−→ R. Here X3 ∈ (Z2, X1) and satisfy σ(T ∗;X3) =

σ(X3;Z1) = σ(T ∗;X3).

(xiv) if L is in the Lax s-shock segment [X1, T
∗) ⊂ H(Z1) then the Riemann solution corresponds to

the sequence L pSs−→M
ST−−→ Z1 p

Sf−→ R. Here M ∈ (X3, X1) and satisfy σ(L;M) = σ(M ;Z1) =
σ(L;Z1).

Proof. Refer to Figure 8.4. The compatibility of speeds is justified by Remark 8.4.1, Figure 8.5 and
[4]. In [4], it was shown the compatibility between the s-extension curve [T1, T

∗] with the Lax f -shock
segment [A1, Z1]. The compatibility with the transitional waves were shown in Section 7.3.3.
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Remark 8.4.5. Refer to Figure 8.4(b). For statements (xiii) and (xiv) of Claim 8.4.2 there are other
solutions given by the triple shock rule in which the Lax s-shock and the transitional shock collapse:

1. if L is in the s-rarefaction segment [B∗, T ∗], we have the sequence L pRs−→ T ∗
′Ss−−→ Z1 p

Sf−→ R;

2. if L is in the Lax s-shock segment [X1, T
∗) ⊂ H(Z1), we have the sequence L pSs−→ Z1 p

Sf−→ R.

But these solutions are inadmissible because the Lax s-shocks do not have viscous profile.

Remark 8.4.6. The solutions of the Riemann problem presented in Claim 8.4.2 with L ∈ [G,W ] coin-
cide with those given in [4].

8.4.2.2 W−f (R) with two nonlocal components of fast shocks

Consider a state R in the lower region R2 which is shows in Figure 8.6(a). If R belongs to {N1, V
∗

2 ,
Y ∗2 ,N2} we have the same subdivision of LR2-regions than Claim 8.4.2; if R belongs to RH

2 =
{N1, V

∗
0 , E0,N2} it appears two nonlocal components of fast shocks inW−f (R). Notice that the curve

[V ∗1 , Y
∗

1 ] (defined in Section 6.3.3) crosses the region RH
2 dividing it into two subregions: {N1, V

∗
1 ,

Y ∗1 ,N2} and {V ∗1 , V ∗0 E0, Y
∗

1 }. If R belongs {N1, V
∗

1 , Y
∗

1 ,N2} the S3T is one of the LRH
2

-regions,
otherwise it is not, see Definition 7.3.3.

We construct the LRH
2

-regions for R inside {V ∗1 , V ∗0 E0, Y
∗

1 }, the other case is similar. In Figure
8.6(b) we show the s-extensions of W−f (R), obtained numerically. The segments [T1, O] and [TR,W ]

are s-extensions of f -rarefaction segments [A1, O], [R,W ] ofW−f (R), respectively. The f -rarefaction
segment [A2, G] intersects the s-inflection locus at state T3. This produces a change in the slow-family
waves that is used to reach this segment. Then, the segments [T2, T3] and [T3, G] are s-extensions of
f -rarefaction segments [A2, T3], [T3, G] ofW−f (R), respectively.

The Lax f -shock segments ofW−f (R) (R,A∗4], [Z1, A1) and (A2, T̂ ∗] have respectively s-extension
segments (TR, A4], [X1, T1) and (T2, T

∗]. From Remark 6.4.3 and Claim 6.4.5 we have that [T ∗, A4]

is an admissible over-compressive shock segment of H(R) and satisfy σ(T ∗; T̂ ∗) = σ(T ∗;R) and
σ(A4;A∗4) = σ(A4;R). Moreover, there are states Z2, Z ′2 and Z∗2 associated to Z1 ∈ [U , D] ∩W−f (R)
such that σ(Z1;Z2) = σ(Z2;Z ′2) = σ(Z1;R) and σ(Z1;Z ′2) = σ(Z∗2 ;Z ′2) = σ(Z ′2;R), where Z2 is the
initial point of the nonlocal branch ofW−f (R), Z ′2 lies on the over-compressive shock segment [T ∗, A4]

and Z∗2 ∈ [T̂ ∗, A4]. Then, by the triple shock rule the shock speeds of these states with R are equal and
Z ′2 ∈ H(Z1) such that [X1, Z

′
2] ⊂ H(Z1) is a Lax s-shock segment. Therefore, we conclude that (refer

to Figure 8.7):

(1) for any state M on the over-compressive shock segment (T ∗, Z ′2] ⊂ H(R), there are states N1 ∈
(T ∗, Z2] ⊂ H(R) and N2 ∈ (T̂ ∗, Z∗2 ] ⊂ H(R) such that the discontinuity joining M to N1 and
N2 is a Lax s-shock and σ(M ;N1) = σ(N1;R), and σ(M ;N2) = σ(N2;R);

(2) for any state M on the over-compressive shock segment [Z ′2, A4) ⊂ H(R), there are states N1 ∈
[Z1, A

∗
4) ⊂ H(R) and N2 ∈ (Z∗2 , A4) ⊂ H(R) such that the discontinuity joining M to N1 and

N2 is a Lax s-shock and σ(M ;N1) = σ(N1;R), and σ(M ;N2) = σ(N2;R).
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(a) Lower regions Ri, i ∈ {1, 2, 3} for fast
macro region FRD.
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(b) Right s-extension ofW−f (R) for R in region RH
2 .

Figure 8.6: (a) Boundaries that define the lower regions Ri, i ∈ {1, 2, 3}. Curve [V ∗1 , Y
∗
1 ] is the boundary for loss

of compatibility of sonic shocks (see Remark 6.3.3) and [N1,N2,N3] is the left s-hysteresis, see Definition 2.4.2.
(b) Backward f -wave curve for R inside of RH

2 ⊂ R2. The over-compressive admissible shock segment [T ∗, A4]
separates two admissible segments of Lax f -shocks, [Z2, T

∗) and (A4, A2]. The segment [X1, T
∗] is a segment of

Lax s-shocks of H(Z1) and T3 is the intersection between the f -rarefaction segment [A2, G] and the s-inflection
locus.

Now, we construct the boundaries of LRH
2

-regions taking into account Remark 6.4.3, Claim 6.4.5
and Section 7.3.3. We construct the backward s-wave curve for the states R, A1 and A2 of W−f (R)
that are shown in Figure 8.7(a). Following Definition 7.3.3, we construct regions S1T and S2T which
are given by the areas {E1, X1, Z2, EZ2} and {X1, Z2, Z

′
2}. From T ∗ and A4 we trace the backward

s-rarefaction curves and form T3 we trace the s-integral curve.

Claim 8.4.3. Let R be a fixed state in RH
2 and constructW−f (R) (see Figure 8.7). Let L be a state in

the saturation triangle. Then:

(i) if L ∈ {W,DR, R}, the Riemann solution corresponds to the sequence L pRs−→ M p
Rf−−→ R. Here

M is in the f -rarefaction segment [W,R] ⊂ W−f (R).

(ii) if L ∈ {W,TR, R}, the Riemann solution corresponds to the sequence L pSs−→ M p
Rf−−→ R, with M

in [W,R] ⊂ W−f (R).
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(b) Zoom of area close to segment of over-
compressive shocks [T ∗, A4]. Black dashed curves
are segments of Lax s-shocks

Figure 8.7: Subdivision of saturation triangle according to the structure of Riemann solutions for R ∈ R2. In
this case is consider R ∈ RH

2 whichW−f (R) has two nonlocal components of fast shocks. T3 is the intersection
between the f -rarefaction segment [A2, G] and the s-inflection locus.

(iii) if L ∈ {W,WR, TR}, the Riemann solution corresponds to the sequence L pRs−→ T
′Ss−−→M p

Rf−−→ R,
with M in [W,R] ⊂ W−f (R).

(iv) if L ∈ {DR, D1, A1, R}, the Riemann solution corresponds to the sequence L pRs−→ M p
Sf−→ R.

Here M is in the Lax f -shock segment (R,A1) ⊂ W−f (R). We have the same wave sequences
for L ∈ {Z2, T

∗, E∗3 , EZ2} ∪ {B2, B
∗, A4, A2} with M in the Lax f -shock segments [Z2, T

∗) ∪
(A2, A4) ⊂ W−f (R).

(v) if L ∈ {WR, TR, A4, B
∗}, the Riemann solution corresponds to the sequence L pRs−→ T

′Ss−−→ M

p
Sf−→ R. Here T is in the s-extension curve [TR, A4] andM is in the Lax f -shock segment (R,A∗4] ⊂
W−f (R). We have the same wave sequences for L ∈ {E2, T2, T

∗, E∗3} ∪ {E1, X1, T1, O1} with
T in the s-extension curves (T2, T

∗) ∪ (X1, T1), and M in the Lax f -shock segments (A2, A4] ∪
[Z1, A1) ⊂ W−f (R).

(vi) if L ∈ {A2, T2, T
∗, A4}, the Riemann solution corresponds to the sequence L pSs−→ M p

Sf−→ R.
Here M is in the Lax f -shock segment (A2, A4] ⊂ W−f (R). We have the same wave sequences for
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L ∈ {T ∗, Z2, Z
′
2} ∪ {A1, T1, X1, Z

′
2, A4, TR, R} with M in the Lax f -shock segments [Z2, T

∗] ∪
(A1, R) ⊂ W−f (R).

(vii) if L ∈ {O,D1, A1}, the Riemann solution corresponds to the sequence L pRs−→M p
Rf−−→ A1

′Sf−−→ R.
Here M is in the f -rarefaction segment [O,A1] ⊂ W−f (R). We have the same wave sequences for
L ∈ {B2, A2, T3, B3} ∪ {E3, T3, G} by changing A1 to A2 with M in the f -rarefaction segment
[G,A2] ⊂ W−f (R).

(viii) if L ∈ {O,A1, T1}, the Riemann solution corresponds to the sequence L pSs−→ M p
Rf−−→ A1

′Sf−−→ R.
Here M is in the f -rarefaction segment [O,A1] ⊂ W−f (R). We have the same wave sequences
for L ∈ {T2, A2, T3} ∪ {T3, G} by changing A1 to A2 with M in the f -rarefaction segment
[G,A2] ⊂ W−f (R).

(ix) if L ∈ {O, T1, O1}, the Riemann solution corresponds to the sequence L pRs−→ T
′Ss−−→ M p

Rf−−→

A1

′Sf−−→ R. Here T is in the s-extension curve [T1, O] and M is in the f -rarefaction segment
[A1, O] ⊂ W−f (R). We have the same wave sequences for L ∈ {T2, E2, E3, T3}∪ {B3, T3, G} by
changing A1 to A2 with T in the s-extension curves [T2, T3] ∪ [T3, G] and M in the f -rarefaction
segment [G,A2] ⊂ W−f (R).

(x) if L ∈ S1T = {E1, X1, Z2, EZ2}, the Riemann solution corresponds to the sequence L pRs−→
M pST−−→ Z1 p

Sf−→ R. Here M is in the transitional segment (Z2, X1) associated to Z1.

(xi) if L ∈ S2T = {X1, Z2, Z
′
2}, the Riemann solution corresponds to the sequence L pSs−→ M pST−−→

Z1 p
Sf−→ R. Here M is in the transitional segment (Z2, X1) associated to Z1.

(xii) if L is in the Lax s-shock segment [X1, Z
′
2) ⊂ H(Z1) then the Riemann solution corresponds to the

sequence L pSs−→M
ST−−→ Z1 p

Sf−→ R. Here M ∈ [X1, Z2] such that satisfy σ(L;M) = σ(M ;Z1).

(xiii) ifL is in the over-compressive shock segment (T ∗, Z ′2], then we have three possible wave sequences
in the state space corresponding to a unique solution in the xt-space, see [3, 9]. The Riemann
solutions are:

(a) L pSs−→ N1
Sf−→ R, with N1 ∈ (T ∗, Z2] in the local branch ofH(R);

(b) L pSs−→ N2
Sf−→ R, with N2 ∈ (T̂ ∗, Z∗2 ] in the detached branch ofH(R);

(c) L pSO−−→ R.

(xiv) if L is in the over-compressive shock segment (Z ′2, A4), then we have three possible wave se-
quences in the state space corresponding to a unique solution in the xt-space, see [3, 9]. The
Riemann solutions are:
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(a) L pSs−→ N1
Sf−→ R, with N1 ∈ (Z1, A

∗
4);

(b) L pSs−→ N2
Sf−→ R, with N2 ∈ (Z∗2 , A4);

(c) L pSO−−→ R.

Proof. Similar to the proof of Claim 8.4.2 (see Figure 8.7).

Remark 8.4.7. Remark 8.4.5 also holds for statement (xii) of Claim 8.4.3.

8.4.3 LR-regions forR ∈ R3

Consider a state R in the region R3. Recall that W−f (R) has only a local branch and there are two
types of transitional waves associated to the intersection state between W−f (R) and [U , D] at Z1 (see
Section 7.3.1 with Z1 = M2). In Figure 8.8(a) we show the s-extensions of W−f (R) and of the in-
variant segment [G,X1], obtained numerically. The segments [T1,W ] and [TR, O] are s-extensions of
the f -rarefaction segments [A1,W ] and [R,O] ofW−f (R), respectively. The Lax f -shock segments of
W−f (R), (R,Z1] and [Z1, A1), and the invariant segment [G,X1] have respectively s-extension segments
(TR, X1), (T ∗, T1) and [T ∗, T2, G].
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(a) Right s-extension of [G,X1] andW−f (R) forR in region
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(b) L -regions for R in region R3, see Claim 8.4.4.

Figure 8.8: Subdivision of saturation triangle according to the structure of Riemann solutions for R ∈ R3.

Now, we construct the boundaries of LR3-regions taking into account the Claims 6.4.6 and 6.4.7 and
Section 7.3.1. We construct the backward s-wave curve for the states R and A1 ofW−f (R) and from X2

that are shown in Figure 8.8(b). Following Definition 7.3.1 we construct the regions S1C , S2C and S3C
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which are given by the areas {G,X2, E2}, {G,X2, T2} and {G,T2, B2}, respectively. We also construct
the regions S1T , S2T and S3T which are given by the areas {X2, X1, E1, E2}, {X2, X1, T

∗, T2} and
{T2, B2, B

∗, T ∗}, respectively.
The shock/shock compatibility between the Lax s-shock wave from T to M with the Lax f -shock

wave from M to R with T ∈ [TR, X1] and M ∈ [R,Z1] for this case is shown in Figure 8.5 which is
similar than the case for R ∈ R2.

Claim 8.4.4. Take a fixed state R in R3 and constructW−f (R) (see Figure 8.8(b)). Let L be a state in
the saturation triangle. Then:

(i) if L ∈ S1C = {G,X2, E2}, the Riemann solution corresponds to the sequence L pRs−→ M p
Rf−−→

X2

′ST−−→ Z1 p
Sf−→ R. Here M is in the invariant segment [G,X2].

(ii) if L ∈ S2C = {G,X2, T2}, the Riemann solution corresponds to the sequence L pSs−→ M p
Rf−−→

X2

′ST−−→ Z1 p
Sf−→ R. Here M is in the invariant segment [G,X2].

(iii) if L ∈ S3C = {G,T2, B2}, the Riemann solution corresponds to the sequence L pRs−→ T
′Ss−−→

M p
Rf−−→ X2

′ST−−→ Z1 p
Sf−→ R. Here T is in the s-extension curve [G,T2] and M is in the invariant

segment [G,X2].

(iv) if L ∈ S1T = {X2, X1, E1, E2}, the Riemann solution corresponds to the sequence L pRs−→ M p
ST−−→ Z1 p

Sf−→ R. Here M is in the transitional segment (X2, X1).

(v) if L ∈ S2T = {X2, X1, T
∗, T2} the Riemann solution corresponds to the sequence L pSs−→M pST−−→

Z1 p
Sf−→ R. Here M is in the transitional segment (X2, X1).

(vi) if L ∈ S3T = {T2, B2, B
∗, T ∗}, the Riemann solution corresponds to the sequence L pRs−→ T

′Ss−−→
M pST−−→ Z1 p

Sf−→ R. Here T is in the s-extension curve (T2, T
∗) and M is in the transitional

segment (X2, X1).

The other cases are similar to Claim 8.4.2.

Proof. Refer to Figure 8.8. The compatibility of speeds is justified by Remark 8.4.1, Figure 8.5 and [4].
In [4] was shown the compatibility between the s-extension curve [T1, T

∗] with the Lax f -shock segment
[A1, Z1]. The compatibility with the transitional waves were shown in Section 7.3.1.

Remark 8.4.8. The solutions of the Riemann problem presented in Claim 8.4.4 with L ∈ [G,W ] coin-
cide with those given in [4].
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(b) L -regions for R in region R4, see Claim 8.4.5.

Figure 8.9: Subdivision of saturation triangle according to the structure of Riemann solutions for R ∈ R4.

8.4.4 LR-regions forR ∈ R4

Consider a stateR in the region R4, see Figure 8.9. Recall thatW−f (R) has only a local branch and there
are two types of transitional waves associated to the intersection state betweenW−f (R) and [U , D] at Z1

(see Section 7.3.1 with Z1 = M2). From Section 6.5 and Claim 7.2.1, the state Z1 lies in a f -rarefaction
segment, then, the last wave group to used after a transitional wave is a f -rarefaction, indeed that the
case R ∈ R3 that is a Lax f -shock. Because of this, the subdivision in LR4-regions is similar to case
before.

In Figure 8.9(a) we show the s-extension of W−f (R) and of the invariant segment [G,X1] that
was obtained numerically. The segments [T1,W ], [TR, T

∗] and [X1, O] are s-extensions of the f -
rarefaction segments [A1,W ], [R,Z1] and [Z1, O] of W−f (R), respectively. The Lax f -shock segment
ofW−f (R), (R,A1), and the invariant segment [G,X1] have respectively s-extension segments (TR, T1)
and [T ∗, T2, G].

In Figure 8.10, we present the shock/shock compatibility between the Lax s-shock wave from T to
M with the Lax f -shock wave from M to R with T ∈ [TR, T1] and M ∈ [R,A1].

Now, we construct the boundaries of LR4-regions taking into account the Claims 6.4.8 and 6.4.9 and
Section 7.3.1. We construct the backward s-wave curve for the states R and A1 ofW−f (R) and from X2

that are shown in Figure 8.9(b). Following Definition 7.3.1 we construct the regions S1C , S2C and S3C

which are given by the areas {G,X2, E2}, {G,X2, T2} and {G,T2, B2}, respectively. We also construct
the regions S1T , S2T and S3T which are given by the areas {X2, X1, E1, E2}, {X2, X1, T

∗, T2} and
{T2, B2, B

∗, T ∗}, respectively.

149



0.33 0.355 0.38

1.55

1.75

1.95

2.15

  
 

(T
,M

),
  

(M
,R

) 
  

  
  

  
  

 

A1R

Figure 8.10: Speed diagram comparing shocks speeds σ(T ;M) and σ(M ;R) as M and T vary along the Lax
f -shock segment [R,A1] ⊂ W−f (R) and its s-extension curve [TR, T1], respectively (see Claim 8.4.5 and Figure
8.9).

Claim 8.4.5. Take a fixed state R in R4 and constructW−f (R) (see Figure 8.9(b)). Let L be a state in
the saturation triangle.

(i) if L ∈
⋃
SiC the Riemann solution corresponds to the same sequence as in Claim 8.4.4 that uses

a transitional composite, changing the last fast-family wave by a f -rarefaction, i.e.,

L · · · p
Rf−−→ X2

′ST−−→ Z1 p
Rf−−→ R;

(ii) if L ∈
⋃
SiT the Riemann solution corresponds to the same sequence as in Claim 8.4.4 that uses

a transitional shock, changing the last fast-family wave by a f -rarefaction, i.e.,

L · · · ST−−→ Z1 p
Rf−−→ R.

The other cases are similar to Claim 8.4.4.

Proof. Refer to Figure 8.9. The compatibility of speeds is justified by Remark 8.4.1 and Figure 8.10.
The compatibility with the transitional waves were shown in Section 7.3.1.

8.4.5 LR-regions forR ∈ R5

Consider a state R in the upper region R5, see Figure 8.11. Notice that in this case we have transi-
tional waves associated to the intersection between W−f (R) and [U , D] at state Z1, see Section 7.3.2
with Z1 = M2 and Z2 = M ′2. In Figure 8.11(a) we show the s-extension of W−f (R) and of the seg-
ment [Z2, X1] ⊂ [G,U ] that was obtained numerically. The segments [T1,W ], [TR, T

∗], [T2, G] and
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(b) L -regions for R in region R5, see Claim 8.4.6.

Figure 8.11: Subdivision of saturation triangle according to the structure of Riemann solutions for R ∈ R5.
Notice that A2 and A∗2 are a pair of fast double contact states.

[X1, O] are s-extensions of f -rarefaction segments [A1,W ], [R,Z1], [A2, G] and (Z1, O] of W−f (R),
respectively. The Lax f -shock segment ofW−f (R), (R,A1] and the f -composite segment [Z2, A2) have
respectively s-extension segments (TR, T1) and (TZ2 , T2), and [TZ2 , T

∗] is the s-extension curve of the
[Z2, X1].

Now, we construct the boundaries of LR5-regions taking into account the Claims 6.4.10 and 6.4.11,
and Section 7.3.2. We construct the backward s-wave curve for the states R, A1, A2 and Z2 ofW−f (R)
that are shown in Figure 8.11(b). Following Definition 7.3.3 we construct regions S1T , S2T and S3T

which are given by the areas {E1, X1, Z2, EZ2}, {X1, Z2, TZ2 , T
∗} and {T ∗, TZ2 , BZ2 , B

∗}, respec-
tively.

In Figure 8.12(a) and (b) are present the shock/shock and shock/composite compatibility. The first is
between the Lax s-shock wave from T to M with the Lax f -shock wave from M to R with T ∈ [TR, T1]
and M ∈ [R,A1]; the second is between the Lax s-shock wave from T to M with the sonic f -shock
wave from M to N with T ∈ [T2, TZ2 ], M ∈ [A2, Z2] and N ∈ [A∗2, R].

Claim 8.4.6. Take a fixed state R in R5 and constructW−f (R) (see Figure 8.11(b)). Let L be a state in
the saturation triangle. Then:

(i) if L ∈ {G,A2, E2}, the Riemann solution corresponds to the sequence L pRs−→ M p
Rf−−→ A2

′S′f−−→
A∗2

Rf−−→ R. Here M is in the f -rarefaction segment [G,A2] ⊂ W−f (R) and, A2 and A∗2 are a pair
of fast double contact states.
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(a) Slow shock/fast shock. (b) Slow shock/fast shock.

Figure 8.12: Speed diagrams alongW−f (R) and its extension curve. (a) Shocks speeds σ(T ;M) and σ(M ;R) as
M and T vary along the Lax f -shock segment [R,Z1] ⊂ W−f (R) and its s-extension curve [TR, X1], respectively.
(b) Shocks speeds σ(T ;M) and σ(M ;N) asM ,N and T vary along the f -composite segment [A2, Z2] ⊂ W−f (R),
the f -rarefaction segment [A∗2, R] ⊂ W−f (R) and its s-extension curve [T2, TZ2

], respectively (see Claim 8.4.6 and
Figure 8.11).

(ii) if L ∈ {G,A2, T2} the Riemann solution corresponds to the sequence L pSs−→ M p
Rf−−→ A2

′S′f−−→
A∗2

Rf−−→ R. Here M is in the f -rarefaction segment [G,A2] ⊂ W−f (R) and, A2 and A∗2 are a pair
of fast double contact states.

(iii) if L ∈ {G,T2, B2}, the Riemann solution corresponds to the sequence L pRs−→ T
′Ss−−→ M p

Rf−−→

A2

′S′f−−→ A∗2
Rf−−→ R. Here T is in the s-extension curve [G,T2], M is in the f -rarefaction segment

[G,A2] ⊂ W−f (R) and, A2 and A∗2 are a pair of fast double contact states.

(iv) if L ∈ {A2, E2, EZ2 , Z2} the Riemann solution corresponds to the sequence L pRs−→ M p
S′f−→

N
Rf−−→ R. Here M is in the f -composite curve (A2, Z2] ⊂ W−f (R) and N in the f -rarefaction

segment (A∗2, Z1] ⊂ W−f (R).

(v) if L ∈ {A2, T2, TZ2 , Z2} the Riemann solution corresponds to the sequence L pSs−→M p
S′f−→ N

Rf−−→
R. HereM is in the f -composite curve (A2, Z2] ⊂ W−f (R) andN is in the f -rarefaction segment
(A∗2, Z1] ⊂ W−f (R).

(vi) if L ∈ {B2, T2, TZ2 , BZ2} the Riemann solution corresponds to the sequence L pRs−→ T
′Ss−−→

M p
S′f−→ N

Rf−−→ R. Here T is in the s-extension curve (T2, TZ2), M is in the f -composite curve
(A2, Z2] ⊂ W−f (R) and N is in the f -rarefaction segment (A∗2, Z1] ⊂ W−f (R).
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(vii) if L ∈ S1T = {E1, X1, Z2, EZ2}, the Riemann solution corresponds to the sequence L pRs−→
M pST−−→ Z1 p

Rf−−→ R. Here M is in the invariant segment (Z2, X1).

(viii) if L ∈ S2T = {X1, Z2, TZ2 , T
∗}, the Riemann solution corresponds to the sequence L pSs−→

M pST−−→ Z1 p
Rf−−→ R. Here M is in the transitional segment (Z2, X1).

(ix) if L ∈ S3T = {T ∗, TZ2 , BZ2 , B
∗}, the Riemann solution corresponds to the sequence L pRs−→

T
′Ss−−→ M pST−−→ Z1 p

Rf−−→ R. Here T is in the s-extension curve (TZ2 , T
∗) and M is in the transi-

tional segment (Z2, X1).

(x) if L ∈ {O,E1, X1}, the Riemann solution corresponds to the sequence L pRs−→ T
′Ss−−→ M p

Rf−−→ R.
Here T is in the s-extension curve [X1, O] and M is in the f -rarefaction segment [Z1, O] ⊂
W−f (R). We have the same wave sequences for L ∈ {B∗, T ∗, TR, BR} with T in the s-extension
curve (T ∗, TR] and M in the f -rarefaction segment (Z1, R] ⊂ W−f (R).

(xi) if L ∈ {O,X1, T
∗, TR, R}, the Riemann solution corresponds to the sequence L pSs−→ M p

Rf−−→ R.
Here M is in the f -rarefaction segment [O,R] ⊂ W−f (R).

(xii) if L ∈ {O,R,DR}, the Riemann solution corresponds to the sequence L pRs−→M p
Rf−−→ R. Here M

is in the f -rarefaction segment [O,R] ⊂ W−f (R).

(xiii) if L ∈ {DR, R,A1, D1}, the Riemann solution corresponds to the sequence L pRs−→ M p
Sf−→ R.

Here M is in the Lax f -shock segment (R,A1) ⊂ W−f (R).

(xiv) if L ∈ {R,A1, T1, TR}, the Riemann solution corresponds to the sequence L pSs−→M p
Sf−→ R. Here

M is in the Lax f -shock segment (R,A1) ⊂ W−f (R).

(xv) if L ∈ {T1, B1, BR, TR}, the Riemann solution corresponds to the sequence L pSs−→ T
′Ss−−→M p

Sf−→
R. Here T is in the s-extension curve (TR, T1) and M is in the Lax f -shock segment (R,A1) ⊂
W−f (R).

(xvi) if L ∈ {W,A1, D1}, the Riemann solution corresponds to the sequence L pRs−→M p
Rf−−→ A1

′Sf−−→ R.
Here M is in the f -rarefaction segment [W,A1] ⊂ W−f (R).

(xvii) if L ∈ {W,A1, T1}, the Riemann solution corresponds to the sequence L pSs−→M p
Rf−−→ A1

′Sf−−→ R.
Here M is in the Lax f -shock segment (R,A1) ⊂ W−f (R).

(xviii) if L ∈ {W,T1, B1}, the Riemann solution corresponds to the sequence L pRs−→ T
′Ss−−→ M p

Rf−−→

A1

′Sf−−→ R. Here T is in the s-extension curve [W,T1] and M is in the f -rarefaction segment
[W,A1] ⊂ W−f (R).
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(xix) if L is in the s-rarefaction segment [B∗, T ∗], then the Riemann solution corresponds to the se-

quence L pRs−→ T ∗
′Ss−−→ X3

ST−−→ Z1 p
Sf−→ R. Here X3 ∈ (Z2, X1) and satisfy σ(T ∗;X3) =

σ(X3, Z1).

(xx) if L is in the Lax s-shock segment [X1, T
∗) ⊂ H(Z1) then the Riemann solution corresponds

to the sequence L pSs−→ M
ST−−→ Z1 p

Sf−→ R. Here M is in the segment [Z2, X1]. Notice that
σ(L;M) = σ(M,Z1).

Proof. Refer to Figure 8.11. The compatibility of speeds is justified by Remark 8.4.1 and Figure 8.12(a)-
(b). The compatibility of speeds with the transitional waves were established in Section 7.3.2.

Remark 8.4.9. Remark 8.4.5 also holds for statements (xix) and (xx) of Claim 8.4.6.

Remark 8.4.10. In case of Remark 6.4.5 we have that for R ∈ R5, it is possible that the f -rarefaction
segment [R,O] ⊂ W−f (R) intersects the segment [K1, Y1] of the mixed double contact (see Figures

8.13 and 8.14(b). This actually happens when R crosses the f -rarefaction segment [Ŷ1, Y
′

1 ] (see re-
gion {Ŷ1, Y

′
1 , I1

f , H4} in Figure 8.14(b)). In this case the f -rarefaction segment of W−f (R) intersects

first the segment [H4, Ŷ1] and then the segment [K1, Y1] before crossing [U , Y1]. Figure 8.13(b) is a
blow-up of the region close to the umbilic point in Figure 8.13(a), displaying the f -composite segment
[A2, Z2] ⊂ W−f (R) for R inside {H4, Ŷ1, Y

′
1 , I1

f} (see Figure 8.14(b)). The states A∗2 and A2 belong
to the fast double contact locus and the segment [A2, Z2] ⊂ W−f (R) is a f -composite segment asso-
ciate to the f -rarefaction segment [A∗2, Z1] ⊂ W−f (R). The f -rarefaction segment [P1, Z1] ⊂ [A∗2, Z1]
also generates the over-compressive composite [P1, T

∗] which is admissible and serves as a bound-
ary for loss of compatibility of speeds. The states P1 and P ′1 belong to the mixed double contact lo-
cus and satisfies σ(P1;P ′1) = λf (P1) = λs(P

′
1) as well as σ(P ′′1 ;P ′1) = σ(P ′′1 ;P1) = λf (P1) with

P ′′1 ∈ [A2, Z2] ⊂ W−f (R).

Notice that in this case, Z1 lies in [U , Y1], then we do not have the region S3T of transitional waves
(see Remark 7.3.2). Therefore, the segments [Z2, TZ2 ] of Lax s-shocks and [TZ2 , BZ2 ] of f -rarefaction
disappear, see Figures 8.11(b) and 8.13. The f -composite segment [A2, Z2] has two distinct boundaries
for loss of compatibility speeds: the s-extension [T2, P

′
1] associated to segment [A2, P

′′
1 ] and the over-

compressive composite segment [P ′1, T
∗] associated to segment [P ′′1 , Z2]. Moreover, for each M ∈

[P ′1, T
∗] there are states N1 ∈ [P ′′1 , Z2] and N2 ∈ [P1, Z1] such that the discontinuity joining M with N1

and N2 is a Lax s-shock and σ(M ;N1) = σ(M ;N2) = λf (N2), see Figure 8.14. Therefore, we have
the following result:

Claim 8.4.7. Take a fixed state R in R5 inside of region {H4, Ŷ1, Y
′

1 , I1
f} and construct W−f (R) (see

Figures 8.13(a),(b) and 8.14(b)). Let L be a state in the saturation triangle. Then:

(i) if L ∈ {A2, Z2, T
∗, P ′1, T2}, the Riemann solution corresponds to the sequence L pSs−→ M p

S′f−→ N
Rf−−→ R. Here M is in the f -composite segment [A2, Z2] ⊂ W−f (R) and N is in the f -rarefaction
segment [A∗2, Z1] ⊂ W−f (R).
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(a) L -regions for R in region R5, see Claim 8.4.7.

A
1

Z
1

A
2

Z
2

R

T
1

T
2 T

R

X
1

A
2
* D

1

D
R

E
2

E
Z

2 E
1

P
1

P''
1

P'
1

T*

(b) Zoom of area close to over-compressive shock seg-
ment [T ∗, P ′1].

Figure 8.13: (a) Subdivision of saturation triangle according to the structure of Riemann solutions for R ∈ R5

in the case of Remark 6.4.5. Notice that A2 and A∗2 are a pair of fast double contact states. (b) Zoom of region
close to the over-compressive composite segment [P ′1, T

∗] associated to f -rarefaction segment [P ′1, Z1] ⊂ W−f (R)

for R inside {H4, Ŷ1, Y
′
1 , I1f}. The region S3T collapse in the segment of f -rarefaction [P ′1, B

∗]. Notice that this
bifurcation in the LR5

-regions occurs only for Remark 6.4.5. Black dashed curves are segments of Lax s-shocks.

(ii) if L ∈ {T2, P
′
1, B

∗, B2} the Riemann solution corresponds to the sequence L pRs−→ T
′Ss−−→ M

p
S′f−→ N

Rf−−→ R. Here T is in the s-extension segment [T2, P
′
1], M is in the f -composite segment

[A2, Z2] ⊂ W−f (R) and N is in the f -rarefaction segment [A∗2, Z1] ⊂ W−f (R).

(iii) ifL ∈ {TR, BR, B∗, P ′1}, the Riemann solution corresponds to the sequenceL pRs−→ T
′Ss−−→M p

Rf−−→
R. Here T is in the s-extension curve [TR, P

′
1] and M is in the f -rarefaction segment [R,P1] ⊂

W−f (R).

(iv) if L ∈ {O,X1, T
∗, P ′1, TR, R}, the Riemann solution corresponds to the sequence L pSs−→ M p

Rf−−→
R. Here M is in the f -rarefaction segment [O,R] ⊂ W−f (R).

(v) if L ∈ S2T = {X1, T
∗, Z2} the Riemann solution corresponds to the sequence L pSs−→ M pST−−→ Z1

p
Rf−−→ R. Here M is in the transitional segment (Z2, X1).

(vi) if L is in the s-rarefaction segment [B∗, P ′1], then the Riemann solution corresponds to the se-

quence L pRs−→ P ′1
′Ss−−→ P ′′1

S′f−→ P1
Rf−−→ R. Here P1 and P ′1 are a pair of mixed double contact

states and P ′′1 ∈ [A2, Z2] ⊂ W−f (R).
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(vii) if L is in the Lax s-shock segment [X1, T
∗) ⊂ H(Z1) then the Riemann solution corresponds to

the sequence L pSs−→M
ST−−→ Z1 p

Sf−→ R. Notice that σ(L;M) = σ(M ;Z1).

(viii) if L is in the over-compressive composite segment (P ′1, T
∗), then we have two possible wave se-

quences in the state space corresponding to a unique solution in the xt-space. The Riemann
solutions are:

(a) L pSs−→ N1

S′f−→M
Rf−−→ R, with N1 ∈ (P ′′1 , Z2);

(b) L p
S′O−−→ N2

Rf−−→ R, with N2 ∈ (P1, Z1).

The other cases are similar to Claim 8.4.6.

Proof. Similar to the proof of Claim 8.4.6 (see Figure 8.13).

Remark 8.4.11. Remark 8.4.5 also holds for statement (vii) of Claim 8.4.7. Notice that for the statement
(vi) of Claim 8.4.7, there is other solution given by the triple shock rule in which the Lax s-shock and

f -shock collapse : L pRs−→ P ′1

′S′O−−→ P1
Rf−−→ R. But the discontinuity joining P1 and P ′1 do not have

viscous profile.

8.4.6 LR-regions forR ∈ R6

(a) Highlight of regions Ri for i ∈ {6, 6′} affected by the
presence of the mixed double contact locus.
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(b) Highlight of regions Ri for i ∈ {5, 5′, 6, 6′} affected
by the presence of the mixed double contact locus, in the
case of Remark 6.4.5.

Figure 8.14: Subdivisions of regions R5, R5′ ,R6 and R6′ in presence of the mixed double contact locus.

The subdivision of the saturation triangle in terms of LR-regions for R ∈ R6 is more complex that
others regions because the presence of mixed double contact locus makes that the LR-regions must be
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subdivide into three different regions: {Y2, Y1, Y
′

1 , Ŷ2}, {Y1, Y
′

1 , I1
f ,K1} and {Y1,K1,U}, see Figure

8.14(a) (in the case of Remark 6.4.5 changing I1
f by H4 and Figure 8.14(b)).
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(a) Right s-extension of [Z2, X1] andW−f (R) for R in re-
gion R6. The segment [X1, T
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(b) L -regions for R in region R6, see Claim 8.4.8.

Figure 8.15: Subdivision of saturation triangle according to the structure of Riemann solutions for R ∈ R6.

From Remark 8.4.10 we seen that the changes in LR-regions is due to the intersection of the local
branch ofW−f (R) and the segment [K1, Y1]. This causes that the boundaries for loss of compatibility of
speeds associate to components of the nonlocal branch ofW−f (R) change. According to Figure 8.15(a),
the nonlocal branch ofW−f (R) for R ∈ R6 has three components: a f -composite segment [A3, Z2], a
Lax f -shock segment (A4, A3) and a f -rarefaction segment [A4, G]. Because of this, we describe first
the case where the local branch of W−f (R) does not cross the segment [K1, Y1], then we describe the
case where R is inside {Y1,K1,U}. The wave sequences for R inside {Y1, Y

′
1 , I1

f ,K1} is similar to the
one given in Claim 8.4.7 for R ∈ R5.

Consider a state R in region R6, see Figure 8.15(a). Notice that in this case we have transitional
waves associated to the intersection between W−f (R) and [U , D] at state Z1, see Section 7.3.2 with
Z1 = M2 and Z2 = M ′2. In Figure 8.15(a) we show the s-extension of W−f (R) and of the invariant
segment [Z2, X1] that was obtained numerically. The segments [T1,W ], [TR, T

∗], [T4, G] and [X1, O] are
s-extensions of f -rarefaction segments [A1,W ], [R,Z1], [A4, G] and (Z1, O] of W−f (R), respectively.
The Lax f -shock segments of W−f (R), (R,A1] and (A4, A3) and, the f -composite segment [A3, Z2]
have respectively s-extension segments (TR, T1), (T4, T3) and [T3, TZ2 ]; the segment [TZ2 , T

∗] is the
s-extension curve of the [Z2, X1].

Now, we construct the boundaries of LR6-regions taking into account the Claims 6.4.12 and 6.4.13,
and Section 7.3.2 (see Figure 8.15(b)). First construct the backward s-wave curve for the statesR, A1, A3, A4
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(a) Slow shock/fast shock. Local Lax f -shock seg-
ment (R,A1) ⊂ W−f (R).

(b) Slow shock/fast shock. Nonlocal f -shock seg-
ment (A4, A3) ⊂ W−f (R).

(c) Slow shock/fast shock. f -composite segment
(A3, Z2) ⊂ W−f (R).

Figure 8.16: Speed diagrams alongW−f (R) and its extension curve. (a) Shocks speeds σ(T ;M) and σ(M ;R) as
M and T vary along the Lax f -shock segment [R,A1] ⊂ W−f (R) and its s-extension curve [TR, T1], respectively.
(b) Shocks speeds σ(T ;M) and σ(M ;R) as M and T vary along the Lax f -shock segment [A4, A3] ⊂ W−f (R)
and its s-extension curve [T4, T3], respectively. (c) Shocks speeds σ(T ;M) and σ(M ;N) as M ,N and T vary
along the f -composite segment [A3, Z2] ⊂ W−f (R), the f -rarefaction segment [R,Z1] ⊂ W−f (R) and its s-
extension curve [T ∗, TR], respectively (see Claim 8.4.8 and Figure 8.15).

andZ2 ofW−f (R) that are shown in Figure 8.15(b). Following Definition 7.3.3 we construct regions S1T ,
S2T and S3T which are given by the areas {E1, X1, Z2, EZ2}, {X1, Z2, TZ2 , T

∗} and {T ∗, TZ2 , BZ2 , B
∗},

respectively.
In Figure 8.16(a), (b) and (c) are present the speed diagrams that show shock/shock and shock/composite

compatibility. In (a) and (b) are presented the compatibility with local and nonlocal Lax f -shock seg-
ments is between the Lax s-shock wave from T to M with the Lax f -shock wave from M to R with
T ∈ [TR, T1] and M ∈ [R,A1]; the second between the Lax s-shock wave from T to M with the sonic
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f -shock wave from M to N with T ∈ [T2, TZ2 ], M ∈ [A2, Z2] and N ∈ [A∗2, R].

Claim 8.4.8. Take a fixed state R in R6 and constructW−f (R) (see Figure 8.15(b)). Let L be a state in
the saturation triangle. Then:

(i) if L ∈ {G,A4, E4}, the Riemann solution corresponds to the sequence L pRs−→M p
Rf−−→ A4

′Sf−−→ R.
Here M is in the f -rarefaction segment [G,A4] ⊂ W−f (R). We have the same wave sequences for
L ∈ {W,A1, D1} by changing A4 to A1 with M in the f -rarefaction segment [W,A1] ⊂ W−f (R).

(ii) if L ∈ {E4, A4, A3, E3}, the Riemann solution corresponds to the sequence L pRs−→ M p
Sf−→ R.

Here M is in the Lax f -shock segment (A4, A3) ⊂ W−f (R). Again, we have the same wave
sequences for L ∈ {D1, A1, R,DR} with M in the Lax f -shock segment (A1, R) ⊂ W−f (R).

(iii) if L ∈ {DR, R,O}, the Riemann solution corresponds to the sequence L pRs−→M p
Rf−−→ R. Here M

is in the f -rarefaction segment [O,R] ⊂ W−f (R).

(iv) if L ∈ {G,B4, T4}, the Riemann solution corresponds to the sequence L pRs−→ T
′Ss−−→ M p

Rf−−→

A4

′Sf−−→ R. Here T is in the s-extension curve [G,T4] and M in the f -rarefaction segment
[G,A4] ⊂ W−f (R). We have the same wave sequences for L ∈ {W,B1, T1} by changingA4 toA1

with T in the s-extension curve [W,T1] and M in the f -rarefaction segment [W,A1] ⊂ W−f (R).

(v) if L ∈ {B4, B3, T3, T4}, the Riemann solution corresponds to the sequence L pRs−→ T
′Ss−−→ M p

Sf−→
R. Here T is in the s-extension curve (T4, T3) and M is in the Lax f -shock segment (A4, A3) ⊂
W−f (R). We have the same wave sequences for L ∈ {B1, BR, TR, T1} with T in the s-extension
curve (T1, TR) and M in the Lax f -shock segment (A1, R) ⊂ W−f (R).

(vi) if L ∈ {G,T4, A4}, the Riemann solution corresponds to the sequence L pSs−→ M p
Rf−−→ A4

′Sf−−→ R.
Here M is in the f -rarefaction segment [G,A4] ⊂ W−f (R). We have the same wave sequences for
L ∈ {W,T1, A1} by changingA4 toA1 withM in the f -rarefaction segments [W,A1] ⊂ W−f (R).

(vii) if L ∈ {A4, A3, T3, T4}, the Riemann solution corresponds to the sequence L pSs−→ M p
Sf−→ R.

Here M is in the Lax f -shock segment (A4, A3) ⊂ W−f (R). We have the same wave sequences
for L ∈ {A1, R, TR, T1} with M in the Lax f -shock segment (A1, R) ⊂ W−f (R).

The other cases are similar to Claim 8.4.6.

Proof. Refer to Figure 8.15. The compatibility of speeds is justified by Remark 8.4.1 and Figure 8.16.
The compatibility of speeds with the transitional waves were established in Section 7.3.2
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Now we consider R ∈ {Y1,K1,U} in Figure 8.14. Figure 8.17(b) is a blow-up of the region close
to the umbilic point in Figure 8.17(a), displaying the f -composite segment [A3, Z2] ⊂ W−f (R) for
R ∈ {Y1,K1,U} (see Figure 8.14(a)). Notice that in this case, Z1 lies in [U , Y1] and the f -shock seg-
ment [R,A1] intersects [Y1,K1]. We have two boundaries for loss of compatibility of speeds: the over-
compressive shock segment [A5, T

∗] and the over-compressive composite segment [TR, A5]. When these
two boundaries appear, we loss two LR-regions: the region S3T = {TZ2 , T

∗, B∗, BZ2} (see Remark
7.3.2) and {T3, TZ2 , BZ2 , B3}, see Figures 8.15(b) and 8.17. The Lax f -shock segments [A4, A3] and
[R,A1] have distinct boundaries for loss of compatibility speeds: the s-extension segments [T4, T

∗] and
[T1, T

∗] associated to the segment [A4, A
∗
3] and [A1, A

∗
1], respectively, and the over-compressive shock

segment [A5, T
∗] associated to the Lax f -shock segments [A∗3, A3] and [A∗1, R]. The over-compressive

composite segment [TR, A5] is associated with the f -composite segment [A3, Z2] and the f -rarefaction
segment [R,Z1]. Notice that by the triple shock rule we conclude that (refer to Figure 8.17):

(a) L -regions forR in region R6 inside {Y1,K1,U}, see Claim
8.4.9.

(b) Zoom of area close to f -composte segment
[A3, Z2].

Figure 8.17: (a) Subdivision of saturation triangle according to the structure of Riemann solutions for R ∈ R6.
Notice that regions {T3, TZ2 , BZ2 , B3}, S3T = {TZ2 , T

∗, B∗, BZ2} and {BR, B∗, T ∗, TR}of the one shown in
Figure 8.15(b) collapsed on the segment [B∗, T ∗]. (b) Zoom of region close to the f -composite segment [A3, Z2]
associated to f -rarefaction segment [R,Z1] ⊂ W−f (R) for R inside {Y1,K1,U}. There are two boundaries for
loss of compatibility of speeds: the over-compressive composite segment [A5, TR] and the over-compressive shock
segment [A5, T

∗]. Black dashed curves are segments of Lax s-shocks

(1) for any state M ∈ (T ∗, A5], there are states N1 ∈ (A∗3, A3) and N2 ∈ (A∗1, R) such that the
discontinuity joining M with N1 and N2 is a Lax s-shock and σ(M ;N1) = σ(N1;R) as well as
σ(M ;N2) = σ(N2;R);

160



(2) for any state M ∈ [A5, TR] there are states N1 ∈ [A3, Z2] and N2 ∈ [R,Z1] such that the
discontinuity joiningM withN1 andN2 is a Lax s-shock and σ(M ;N1) = σ(M ;N2) = λf (N2).

Therefore, we have the following result

Claim 8.4.9. Take a fixed stateR in R6 inside of region {Y1,K1,U} and constructW−f (R) (see Figures
8.14(b) and 8.17). Let L be a state in the saturation triangle. Then:

(i) if L ∈ {A1, R,A5, T
∗, T1}, the Riemann solution corresponds to the sequence L pSs−→ M p

Sf−→ R.
Here M is in the Lax f -shock segment (A1, R) ⊂ W−f (R). We have the same wave sequences for
L ∈ {A4, T4, T

∗, A5, A3} with M in the Lax f -shock segment (A4, A3) ⊂ W−f (R).

(ii) if L ∈ {T4, B4, B
∗, T ∗} the Riemann solution corresponds to the sequence L pRs−→ T

′Ss−−→ M p
Sf−→

R. Here T is in the s-extension curve (T4, T
∗) and M is in the Lax f -shock segment (A4, A

∗
3) ⊂

W−f (R). We have the same wave sequences for L ∈ {T1, B1, B
∗, T ∗} with T in the s-extension

curve (T1, T
∗) and M in the Lax f -shock segment (A1, A

∗
1) ⊂ W−f (R).

(iii) if L ∈ {A3, A5, TR, Z2}, the Riemann solution corresponds to the sequence L pSs−→M p
S′f−→ N

Rf−−→
R. Here M is in the f -composite segment [A3, Z2] ⊂ W−f (R) and N is in the f -rarefaction
segment [R,Z1] ⊂ W−f (R).

(iv) if L ∈ {O,X1, TR, A5, R}, the Riemann solution corresponds to the sequence L pSs−→ M p
Rf−−→ R.

Here M is in the f -rarefaction segment [O,R] ⊂ W−f (R).

(v) if L ∈ S2T = {X1, TR, Z2} the Riemann solution corresponds to the sequence L pSs−→ M pST−−→
Z1 p

Rf−−→ R. Here M is in the transitional segment (Z2, X1).

(vi) if L is in the s-rarefaction segment [B∗, T ∗], then we have three possible wave sequences in the
state space corresponding to a unique solution in the xt-space, see [3, 9]. The Riemann solutions
are:

(a) L pRs−→ T ∗
′Ss−−→ A∗1

Sf−→ R;

(b) L pRs−→ T ∗
′Ss−−→ A∗3

Sf−→ R;

(c) L pRs−→ T ∗
′SO−−→ R.

(vii) if L is in the Lax s-shock segment [X1, TR) ⊂ H(Z1) then the Riemann solution corresponds to

the sequence L pSs−→M
ST−−→ Z1 p

Sf−→ R. Here M ∈ [Z2, X1] and satisfy σ(L;M) = σ(M ;Z1).

(viii) if L is in the over-compressive shock segment (T ∗, A5), then we have three possible wave se-
quences in the state space corresponding to a unique solution in the xt-space, see [3, 9]. The
Riemann solutions are:
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(a) L pSs−→ N1
Sf−→ R, with N1 ∈ (A∗3, A3);

(b) L pSs−→ N2
Sf−→ R, with N2 ∈ (A∗1, R);

(c) L pSO−−→ R.

(ix) if L is in the over-compressive composite segment (A5, TR), then we have two possible wave
sequences in the state space corresponding to a unique solution in the xt-space. The Riemann
solutions are:

(a) L pSs−→ N1

S′f−→M
Rf−−→ R, with N1 ∈ (A3, Z2);

(b) L p
S′O−−→ N2

Rf−−→ R, with N2 ∈ (R,Z1).

The other cases are similar to Claim 8.4.8.

Proof. Similar to the proof of Claim 8.4.8 (see Figure 8.17).

Remark 8.4.12. Remark 8.4.5 also holds for statement (vii) of Claim 8.4.9.

8.4.7 LR-regions forR ∈ Ri with i ∈ {4′, 5′, 6′}

The subdivision of the saturation triangle in terms of LR-regions for R ∈ R4′ or R ∈ R5′ is similar to
the one shown in Sections 8.4.4 and 8.4.5 for R in regions R4 and R5. The main difference, which is
induced by the fast inflection locus, is that the last wave reaching R is not a f -rarefaction but rather a
f -composite wave.

The R6′ has some additional particularities because both the s-hysteresis segment [N2,N3] and the
extension of the mixed double contact segment [Y ∗1 ,K

∗
1 ] cross this region (see Figure 8.14) and form the

subregion RH
6′ defined in Remark 6.4.9. Then, for this region we apply a combination of the procedures

performed for region RH
2 in Claim 8.4.3 and those performed for region R6 in Claim 8.4.9.

8.5 Diagrams of comparison between regions

In this section, we summarize the distinct Riemann solutions and study the behavior of these solutions
in two types of data variation. In the first setting, we fix the right state R and see how solutions change
continuously as L traverses the phase space continuously. Notice how the bifurcations and the compati-
bility boundaries take the role of transition bridges between regions. The triple shock rule is fundamental
to understand how transitions with states in different positions of the saturation triangle representing the
same solution in the xt-space. In the second variation scenario, by fixing L and varying R continuously,
we can see how L -regions arise or disappear continuously. There is a third possible variation study to
analyze the behavior of Riemann solutions: when we vary the viscosities (while keeping the umbilic
point of type II) the boundaries of the R-regions move. So, even with the right state R fixed, it changes
regions continuously in a similar manner to the first variation setting.
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A : Ss Sf B : SsRf C : Rs Sf

D : RsRf E : Rs
′Ss Sf F : Rs

′SsRf

G : SsRf
′Sf H : RsRf

′Sf I : Rs
′SsRf

′Sf

J1 : Rs
′Ss ST Sf J2 : Ss ST Sf J3 : Rs ST Sf

J4 : Rs
′Ss ST Rf J5 : Ss ST Rf J6 : Rs ST Rf

J7 : Rs
′Ss ST Rf

′Sf J8 : Ss ST Rf
′Sf J9 : Rs ST Rf

′Sf

K1 : Rs
′SsRf

′ST Sf K2 : SsRf
′ST Sf K3 : RsRf

′ST Sf

K4 : Rs
′SsRf

′ST Rf K4 : SsRf
′ST Rf K6 : RsRf

′ST Rf

K7 : Rs
′SsRf

′ST Rf
′Sf K8 : SsRf

′ST Rf
′Sf K9 : RsRf

′ST Rf
′Sf

L1 : Rs S
′
f Rf M1 : Ss S

′
f Rf N1 : Rs

′Ss S
′
f Rf

L2 : Rs S
′
f Rf

′Sf M2 : Ss S
′
f Rf

′Sf N2 : Rs
′Ss S

′
f Rf

′Sf

O1 : Rs
′SsRf

′S′fRf P1 : SsRf
′S′fRf Q1 : RsRf

′S′fRf

O2 : Rs
′SsRf

′S′fRf
′Sf P2 : SsRf

′S′fRf
′Sf Q2 : RsRf

′S′fRf
′Sf

Table 8.1: Nomenclature of distinct waves structures in L -regions.

In table 8.1 we summarizes the possible solutions that are involved in classical and transitional Rie-
mann solutions, not considering the delta wing (see Section 6.4.5.2) and transitional rarefactions. Notice
that the number of different structures varies as we change the R-region. For example, if considering
R ∈ R1, we have only nine distinct structures, see Figure 8.18(a). Notice that transitional waves are not
used in this case.

In the case of R in the region R2 we have two possibilities: if R is inside of {V0,U , Y1, V1} ∪
{V ∗0 , E0, Y

∗
1 , V

∗
1 }; we have 11 distinct structures; otherwise we have 12, see Figure 8.18(b). This is

due to the loss of set S3T represented in Table 8.1 for J1, see Remark 7.3.2. This happens because
J1 collapses on a s-rarefaction segment, while J2 and J3 remain, see Figure 8.18(b). Notice that, for
R ∈ RH

2 , no new structures are added but, more of the same Riemann solutions appear in different
positions on the saturation triangle.

In the case of R in the region R3 and R4 we always have 15 distinct structures. Notice in Figures
8.19 that when R crosses the invariant line [G,D], we have two changes: a) the last fast-family used
to reach R by transitional waves changes, i.e., the structures Ji and Ki for i ∈ {1, 2, 3} are changed to
those for i ∈ {4, 5, 6}, see Table 8.1; b) one of the regions E collapses and a additional F region appear.
In the same way, following Section 8.4.7, the number of distinct structures of Riemann solutions for R4′

is also 15. Using Table 8.1 and Figure 8.19(b), we can find the distinct structures of Riemann solutions
for R4′ : A, C and E , remain in the same location; D,B and F change to H,G and I, respectively; and
the structures Ji and Ki for i ∈ {4, 5, 6} change to i ∈ {7, 8, 9}.

If R belongs to region R5, we have two possibilities depending on whether W−f (R) crosses the
segment [Y1,K1], see Remark 8.4.10. Then, we have 18 distinct structures of Riemann solutions or 17
when J4 collapse, see Figure 8.20(a). Since the nonlocal branch ofW−f (R) has a f -composite segment
that is associated to a pair of states from the fast double contact locus, we have new structures of Riemann
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(a) L -regions for R in region R1.
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 J             1
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(b) L -regions for R in region R2.

Figure 8.18: Diagrams of changes between L -regions for R in region R1 and R2, see Figures 8.1(b) and 8.4(b).
Green region represents the left states L that use single transitional shocks in the Riemann solution. The nomen-
clature for structures A,B, . . . , I,J1,J2 and J3 are in Table 8.1.
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(a) L -regions for R in region R3.
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 J6

 J4

 J5

 K6

 K5

 K4

A                  
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(b) L -regions for R in region R4.

Figure 8.19: Diagrams of changes between L -regions for R in region R3 and R4, see Figures 8.8(b) and 8.9(b).
Blue and green regions represent the left states L that use composite or single transitional waves in the Riemann
solution, respectively. The nomenclature for structures A,B, . . . , I,Ji and Ki for i ∈ {1, 2, . . . , 6} are in Table
8.1.
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solutions that are used to reach R: L1,M1, N1, O1, P1 and Q1, see Claim 6.4.11 and Table 8.1. Notice
that regions with structures O1,P1 and Q1 depend on the admissibility of the fast double contact locus.
To identify the structures for R5′ , we can apply the same procedure as in R4′ . In Figures 8.20(a) and (b),
we see the transition between regions R5 and R6. Notice that the regionsO1,P1 andQ1 are replaced by
I,G andH, respectively. Since these structures are already part of R6, we can conclude that the maximal
number of different structures for R6 is 15.
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R
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H                  G                  

I                  
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 J6

 J4

 J5
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M1
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Q1
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O1

(a) L -regions for R in region R5.
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I                  

 J4

A                  

A                  

C                  
C                  

 J6

 J5

R

L1

M1

N1

(b) L -regions for R in region R6.

Figure 8.20: Diagrams of changes between L -regions for R in region R5 and R6, see Figures 8.11(b) and
8.15(b). Green region represents the left states L that use single transitional shocks in the Riemann solution. Light
red region is associated to solutions that depends of the admissible fast double contact locus. The nomenclature
for structures A,B, . . . , I,L1, . . . ,Q1 and Ji for i ∈ {4, 5, 6} are in Table 8.1

From Sections 6.4.6 and 8.4.6, when R enters regions influenced by the mixed double contact, the
LR-regions change. In the case of R6, we seen that some LR6-regions collapse. For example, when R
is inside {Y1, Y

′
1 , I1

f ,K1} the region J4 collapses, while ifR is inside {Y1,K1,U} them both J4 andN1

collapse, see Figures 8.14(a) and 8.20(b). Therefore, depending on the location of R inside R6, we have
14, 15 or 16 distinct structures in the Riemann solutions.
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Chapter 9

Nonlinear effects of capillarity induced
diffusion in conservation laws

In this chapter we construct numerically the surface of transitional shocks for the case B(U) 6= I . We
consider the general case with B(U) defined in Section 3.4. This matrix is associated directly with the
correct modelling of the physical diffusive effects caused by capillary pressures [1, 2, 7]. We show
that the surface of transitional shocks for this case has the same topological structure found in the case
of B(U) = I. In the last section we perform some numerical simulations comparing the solutions for
identity and non-identity matrices.

9.1 Saddle-saddle connections

When the viscosity matrix is not the identity, the secondary bifurcation manifold is no longer invariant
lines of the parabolic system (3.25) and the admissible transitional shocks occur in regions away from
these lines. The solutions described in Chapter 8 are not applicable to this regime. In [36] the approx-
imation of Corey flux function in terms of a quadratic homogeneous system for a neighborhood of the
umbilic point was studied. For this quadratic approximation, [19] exhibits transitional shocks away from
the bifurcation lines with the particularity that the left and right states lie within cones with vertices at the
umbilic point and that the orbits joining these states occur along straight lines. In [28], Marchesin and
Mailybaev showed that the transitional shocks are structurally stable under perturbations of the viscosity
matrix.

Recall that in this work we adopt the viscous profile criterion for shock admissibility. Then, admis-
sibility of Riemann solutions that involve shocks are affected by perturbations of the viscosity matrix.
As in the case of the identity matrix, we want to identify the surface of transitional shocks for a general
matrix, to use them as an organizing structure, and to study the Riemann solutions. To determine the
connections between saddles of Xσ (2.24), we follow the results mentioned above for quadratic systems
and look for connections near the umbilic point. For each U− fixed in a certain set, we computationally
verify the existence of a bifurcation value σ0, for which the dynamical system has a connection between
saddles. This bifurcation value σ0 is unique and allows for the construction of the surface of transitional
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shocks and regions for loss of compatibility of shock speeds, see Figure 9.1.

U                  

(σ)                  

(a) σ < σ0.

U                  

(σ)                  

(b) σ > σ0.

U                  

(σ)                  

(c) σ = σ0.

Figure 9.1: Procedure to find connections between saddles. U− is a fixed state close to the umbilic point and
U+(σ) ∈ H(U−). The violet orbit is the unstable manifold for U− and the yellow orbit is the stable manifold for
U+(σ) for the dynamical system associated to U−, σ0. Here, we consider U ∈ IIO.

We verify numerically that the set of states U− for which there is a connection between saddles com-
prises regions in the phase space. In Figure 9.1 we show the procedure to find the orbits between saddles:
let U− be a fixed state close to the umbilic point U . The Hugoniot curve H(U−) can be parametrized
by the shock speed σ in a neighborhood of U+. The method for locating heteroclinic orbits considers
hyperbolic equilibria and two orbits, one with initial condition in an unstable manifold and the other one
with initial condition in a stable manifold. Then it tries to annihilate the difference vector between the in-
tersection points of these orbits with a transversal line that is conveniently chosen. When this procedure
is successful, i.e., when we find (U−, σ0, U+) such that there is a connection between the saddles points
U− and U+, we take the perturbation state U∗− and repeat the procedure until we find the transitional
regions in phase space.
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9.2 Saddle node-saddle connection.

As seen in Chapter 7 in the case of an identity matrix, a saddle-node is a singularity (equilibrium)
where the eigenvalues of the dynamical system (2.20) satisfy µs µf = 0 and µs + µf 6= 0. In this case
the eigenvalues are characterized by a simple equation µi = −σ + λi, where λi is the ith characteristic
speed and σ is the shock speed, see Remark 2.2.7. When B(U) 6= I the eigenvalues are not characterized
by this formula. Then, to construct the map of sonic shocks we need to find the shock speed σ0 such
that there is an orbit connecting U− to a state U+ ∈ H(U−), such that U− is a saddle-repeller and U+

is a saddle (slow sonic shock) or U− is a saddle and U+ is a saddle-attractor (fast-sonic-shock), see
Definition 2.3.2. The procedure to find these sonic shocks is similar to the one described in Section 9.1
to find transitional shocks, see Figure 9.2.

U 

D1

D1

(σ)                  

(a) σ < σ0.

U                  

D1

D1

(σ)                  

(b) σ > σ0.

U 

D1

D1

(σ)                  

(c) σ = σ0.

Figure 9.2: Procedure to find connections between saddle and saddle-node. U− is a fixed state close to the
umbilic point and U+ ∈ H(U−). The blue curves [U ,D1] and [U , D̂1] are the slow sonic boundaries for B(U) 6= I .
The violet orbit is the unstable manifold for U− and the yellow orbit the stable manifold for U+ for the dynamical
system associated to U−, σ0.
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9.3 Transitional boundaries

Recall that for the case of an identity viscosity matrix, the boundaries of the surface of transitional shocks
are built by sonic shocks. These sonic shocks are connections between saddles and saddle-nodes, and
are limits of connections between saddles. In the general case, finding these boundaries is complex (see
Section 9.2). One way to find this boundary is to use a bisection method which starts with a saddle-saddle
shock (U−, σ0, U+) in the interior of the surface of transitional shocks. Then, we obtain the same type
of borders as in the case of identity matrix, with the difference that the transitional shocks comprise an
area of the saturation triangle. In Figure 9.3 we show the surface of transitional shocks for umbilic point
of type II .

D

WG  

O

E

B

U                  

(a) Projection of the surface of transitional shocks in the
saturation triangle.

W

 G  

(b) Surfaces of transitional shocks associated to segments
[G,D], [W,E] and [O,B] in the three dimensional phase space.

Figure 9.3: Surfaces of transitional shocks for umbilic point of type IIO and B(U) 6= I .

Now, we define the boundaries of the surface of transitional shocks. As in the case B(U) = I , we can
associate a surface to straight lines [G,D], [W,E] and [O,B]. The type and the number of boundaries
are the same as in the case of the identity matrix, but classifying them is more elaborated. We identify
the following cases for B(U) defined in Section 3.4:

1. if the umbilic point is of type I , the three surfaces of transitional shocks have the four boundaries
given in Definition 7.1.1;

2. if the umbilic point is in region IIΓ for Γ ∈ {G,W,O}, then the surface of transitional shocks
associated to the segment [Γ,B] with B ∈ {D,E,B} has three boundaries and a gap between
U and B0 ∈ {D0, E0, B0}, similar to the case described in Lemma 7.1.3 (recall that in this case
νΓ < 1);
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3. if the umbilic point is in region IIΓ with Γ ∈ {G,W,O}, the surface of transitional shocks associ-
ated to the segment from vertexA withA ∈ {G,W,O},A 6= Γ and νA > 8 has three boundaries,
similar to the case described in Lemma 7.1.2.

4. if the umbilic point is in region IIΓ with Γ ∈ {G,W,O}, the surface of transitional shocks asso-
ciated to the segment from vertex A with A ∈ {G,W,O}, A 6= Γ and νA ≤ 8 it can have three or
four boundaries depending on whether points Y2 and Ŷ2 exists, see Figure 9.4. Similar to cases
described in Lemmas 7.1.1 and 7.1.2.

In Figure 9.3, we present the three surfaces for a case where U ∈ IIO. In Figure 9.4 we show the
projection of the surface of transitional shocks, the transitional area associated to [G,D]. This area has
the following boundaries:

 

Y
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D

D
1

D
2

WG

O

E

B

U                  

Y
2

D1D2

Y2

D1

D2

Y2

Figure 9.4: Projection of the surface of transitional shocks on the saturation triangle (shaded area). The states
D1, D2,Y2 and Y2 lie on [G,D]. These states define the surface of transitional shocks whenB(U) = I , see Chapter
7. The curve [O,D1,D1,W ] is the s-extension of [O,W ], the curve that crosses [D2,D2] is the f -extension of
[O,W ] and the curve segments [Ŷ2, Y2] and [Y2,Y2] are part of the fast double contact manifold (orange curves).
The states D̂1 and D̂2 lie on [O,W ] and are associated to D1 and D2 such that σ(D1, D̂1) = λs(D1) and
σ(D2, D̂2) = λf (D2).
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• A slow sonic boundary (SSB), defined by the set of states U− ∈ [D1,U ] for which there is a
corresponding state U+ ∈ [D̂1,U ], such that there is an admissible sonic s-shock between U− and
U+, with σ(U−;U+) = λs(U−). The state D̂1 lies in [W,O] and its corresponding state D1 lies in
E+
s ([W,O]);

• A fast sonic boundary (FSB), defined by the set of states U− ∈ [D2,U ] for which there is a
corresponding state U+ ∈ [D̂2,U ], such that there is an admissible sonic f -shock between U− and
U+, with σ(U−;U+) = λf (U−). The state D̂2 lies in [W,O] and its corresponding state D2 lies
in E+

f ([W,O]);

• A transitional sonic boundary (TSB), defined by the set of states U− ∈ [Y2,D2) for which there
is a corresponding state U+ ∈ [Ŷ2, D̂2), such that there is an admissible sonic transitional shock
between U− and U+, with σ(U−;U+) = λf (U−). The pair of states Y2 and Ŷ2 belong to the
double fast contact manifold;

• A genuine transitional boundary (GTB) defined by the set of states U− ∈ (D1,D2) for which
there is a corresponding state U+ ∈ (D̂1, D̂2), such that there is an admissible transitional shock
between U− and U+.

In Figure 9.5 we compare the projection of the surface of transitional shocks on the plane [G,D]×R+

for the case B(U) 6= I with the case B(U) = I . Notice that the structure of these boundaries is the same
as of those boundaries defined for the identity matrix, see Definition 7.1.1.

σ

DY2
Y

2 D1D2

σ(Y2;Y2)

σ(D2;D)

σ(D1;D)

U                  

2

(a) Case B(U) = I .

2

U                  

σ(Y2;Y2)

σ(D2;D2)

σ(D1;D1)

D2 Y2 D1 D1Y2 D2

σ

(b) Case B(U) 6= I .

Figure 9.5: Projection of the surface of transitional shocks on the plane [G,D]×R+ for identity and non-identity
matrices. (a) The states D1, D2,Y2 and Y2 lie on [G,D]. These states define the surface of transitional shocks
when B(U) = I , see Chapter 7. (b) The states D1,D2, D̂1, D̂2,Y2 and Ŷ2 lie inside of the saturation triangle.
The blue curves are slow sonic boundaries (SSB), red curves are fast sonic boundaries (FSB), pink curves are
transitional sonic boundaries and green curves are genuine transitional boundaries (GTB).
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9.4 Simulations

In this section, we present numerical simulations illustrating the effect in the solution when the matrix
B(U) 6= I is used. We chose the nonlinear Crank-Nicolson implicit finite-difference scheme, using
Newton’s method to perform numerical simulations for system (3.30). This scheme is second-order
accurate in space and time. We consider umbilic point type IIO with µw = 1.0, µo = 2.0 and µg = 0.75,
and consider the viscosity matrix defined in (3.34) and (3.59) with cow = cog = 1.

R

Z1

G   W  

 O  

L

M1

M2

Z2

A2

A3

Figure 9.6: Solution of the Riemann problem for left state L = (0.475708, 0.02608)T and right state R =
(0.235578, 0.670876)T . For B(U) = I, R ∈ R2 -region and L ∈ LR2 -region named J1, see Claim 8.4.2 (xii)
and Table 8.1. We present the solution using the wave curve method [8] (analytic solution) and the numerical
solution (simulation using a finite-difference method). The red curves represent W−f (R) and the blue curves,
W+
s (L). The black dotted curve is the numerical simulation using the Crank-Nicholson scheme. Notice that the

dashed curve [A2, A3] is a nonlocal fast shock segment ofH(R), but for B(U) = I only the segment [A2, Z2] has
viscous profile.

We consider first the case B(U) = I with R ∈ R2 -region and L ∈ LR2 -region, see Figure 9.6.
From Claim 8.4.2 (xii) the solution for the Riemann problem consists in the sequence

L pRs−→M1

′Ss−−→M2 pST−−→ Z1 p
Sf−→ R.

Notice that this solution has three elementary waves which have a transitional shock between the states
M2 andZ1 that are on the invariant segment [G,D]. In Figure 9.6 the nonlocal shock segment [A2, A3] ⊂
H(R) is shown. This curve intersects the invariant segment [G,D] at Z2 such that the shock segment
[A2, Z2] ⊂ [A2, A3] is admissible, by Claim 2.7.2; which is not the case for segment (Z2, A3].
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In Figure 9.7 we show the profiles for saturation Sw and So obtained by the numerical simulation.
We consider ∆x = 0.01, ∆t = 0.01, final time Tf = 100 and a small amount of artificial diffusion,
ε = 0.005. Note that the three wave groups and the two constant states of these solutions are clearly
represented in this simulation.
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(b) Profile solution for So.

Figure 9.7: Solution of Riemann problem for left state L = (0.475708, 0.02608)T and right state R =
(0.235578, 0.670876)T . For B(U) = I, R ∈ R2 -region and L ∈ LR2 -region named J1, see Claim 8.4.2
(xii) and Table 8.1. The horizontal axis is given by v = x/t. The solution profiles are shown at t = 100.

Now we consider the viscosity matrix B 6= I . In Figure 9.8 the backward fast and the forward slow
wave curves from states R and L are shown. Notice that the admissible criterium given in Claim 2.7.2
does not apply in this case. Then the admissibility of the nonlocal fast shock segment [A2, A3] ⊂ H(R)
changes, i.e., the shock segment [A2, Z2, A4] ⊂ [A2, A3] is admissible in the case B(U) 6= I . Therefore,
there is an intersection betweenW+

s (L) andW−f (R) at point M∗2 , which satisfies

• the state M∗2 belongs to s-composite segment of W+
s (L), then there is a state M∗1 in the s-

rarefaction segment ofW+
s (L) such that σs = σ(M∗1 ;M∗2 ) = λs(M

∗
1 );

• the state M∗2 belongs to f -shock segment of W−f (R) with σf = σ(M∗2 ;R) such that this shock
has viscous profile and σs < σf .

Then the solution for the Riemann problem consists in the sequence

L pRs−→M∗1
′Ss−−→M∗2 p

Sf−→ R.

Therefore, when we change the viscous matrix, the solution only uses an intermediate state M∗2 and
the transitional shock that is used when B(U) = I disappears. In Figure 9.9 we show the profiles for
saturations Sw and So obtained in the numerical simulation. We consider ∆x = 0.01, ∆t = 0.01, final
time Tf = 100 and the real matrix of diffusion given by the capillary effects.
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Figure 9.8: Solution of the Riemann problem for left state L = (0.475708, 0.02608)T , right state R =
(0.235578, 0.670876)T and B(U) 6= I . We present the solution using the wave curve method [8] (analytic so-
lution) and the numerical solution (simulation using a finite-difference method). The red curves representW−f (R)

and the blue curves, W+
s (L). The black dotted curve is the numerical simulation using the Crank-Nicholson

scheme. Notice that the dashed curve [A2, A3] is a nonlocal fast shock segment of H(R), but for B(U) 6= I only
the segment [A2, A4] has viscous profile.
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Figure 9.9: Solution of the Riemann problem for left state L = (0.475708, 0.02608)T , right state R =
(0.235578, 0.670876)T and B(U) 6= I . The solution only comprises a slow wave group followed by a fast shock
wave. The horizontal axis is given by v = x/t. The solution profiles are shown at t = 100.
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Chapter 10

Conclusions

Here is a summary of our main contributions to the problem of three-phase flow in a porous medium.
Taking the viscosity matrix to be a multiple of the identity, and for arbitrary fluid viscosities placing the
umbilic point in case II of the Schaeffer-Shearer classification:

• We constructed the surface of transitional shocks in the enlarged three-dimensional phase space
of saturations and speeds. Using this surface, we characterized the set of Riemann problems
that display nonclassical transitional waves in their solutions. This characterization entails the
understanding of how speed compatibility between transitional and classical waves is lost, which
was facilated by our working in the enlarged phase space.

• We characterized the structurally stable Riemann solutions. Namely, we determined the sets of
Riemann problems whose solutions have the same wave structure, in terms of number, type and
sequence of elementary waves. In the process, we thoroughly studied the bifurcations of both
the backward-fast and forward-slow wave curves. This study led to the understanding of how the
saturation triangle is subdivided, depending on viscosity values, into R-regions of right Riemann
states for which the backward-fast wave curves are structurally stable. This subdivision, in turn,
induces a subsequent subdivision of the saturation triangle, for each R-region, into L -regions of
left Riemann states for which the corresponding Riemann solutions are structurally stable.

• We present the complete solution to the Riemann problem for the equations of three-phase flow.
This includes formulating and demonstrating a successful entropy condition for choosing the stable
family of solutions, and establishing the compelling result that such a family exists having the
property of continuous dependence on left and right states.

We have also constructed the surface of transitional shocks for the general case of nonlinear viscosity
matrices resulting from physically correct capillarity induced diffusive effects.
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