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Abstract

This thesis has three parts. In the first part we consider a one-dimensional, weakly asym-
metric, boundary driven exclusion process on a one-dimensional discrete interval, in a
super-diffusive time scale. In this part we derive an equation which describes the evolu-
tion of the density of the particles until certain point. In the second part we consider a
process associated to the simple random walk in a discrete torus. We place a particle at
each site of the torus and let them evolve as independent, nearest-neighbor, symmetric,
continuous-time random walks. Each time two particles meet, they coalesce into one. We
prove that, in a convenient scale of time, the sequence of total number of particles of these
processes, when the size of the torus grows, converges to the total number of partitions
in Kingman’s coalescent. Finally, in the third part of this thesis, we consider a process
similar to the previous one. We consider a finite number of i.i.d. irreducible and tran-
sitive Markov chains in continuous time, over a finite state space. Each time two chains
meet, they stay together. This mechanism induces a process in the set of partitions of
the first natural numbers. Starting from the invariant measure, we find conditions under
which a sequence of these processes, in an appropriate scale of time, converges to the
Kingman’s coalescent that starts with finite equivalence classes. In particular, we prove
this convergence in the reversible case under a condition that involves the relaxation time.

Key words: Super-diffusive limit, Kingman’s coalescent, martingale approach, statistical
mechanics.
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Chapter 1

Introduction

This PhD thesis is divided in three parts, each of them contained in one of the following
chapters, namely Chapters 2, 3 and 4. Though the last two chapters are related, each part
of this thesis can be read independently.

1.1 Super-diffusive Limit of Exclusion Processes

In Chapter 2 we consider a weakly asymmetric, boundary driven exclusion process in
{0, 1, . . . , N}, in a superdiffusive time scale N2ε−1

N , with a fix density at the boundaries.
We describe the evolution of the density of the particles up to order εN . Here εN → 0 as
N goes to infinity.

More specifically, we examine the correction to the hydrodynamic equation of this
process. Assume that ε4

N N → ∞, and that the exclusion process starts from a local equi-
librium state associated to the density profile ρ̄λ(0),E(0) + εNv0. Then, for all t > 0, the
system remains close, in the scale ε−1

N , to a local equilibrium state whose density profile
is given by ρ̄λ(t),E(t) + εNvt, where vt is the solution of the following elliptic equation{

∂tρ̄λ(t),E(t) = ∂2
x
(

D(ρ̄λ(t),E(t))v
)
− ∂x

(
χ′(ρ̄λ(t),E(t))E(t)v

)
,

v(0) = v(1) = 0 .
(1.1.1)

More precisely, for every cylinder function Ψ, and every continuous function H : [0, 1] →
R, if ηN

t represents the state at time t of the speeded-up exclusion process,

1
εN N

N−1

∑
j=1

H(j/N)
{

τjΨ(ηN
t )− Eρ̄λ(t),E(t)+εN vt [Ψ]

}
→ 0 .

In this formula, {τj : j ∈ Z} represents the group of translations and Eγ the expectation
with respect to the local equilibrium state associated to the density profile γ.

The proof of the main results, Theorems 2.1.4 and 2.2.1, follows the strategy proposed
by [14,31], which consists in estimating the relative entropy of the state of the process with
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4 1. INTRODUCTION

respect to the local equilibrium state whose density profile solves equation
∂tρ = ε−1{∂x(D(ρ)∂xρ)− ∂x(χ(ρ)E(t))

}
,

f ′(ρ(t, 0)) = λ0(t) , f ′(ρ(t, 1)) = λ1(t) ,

ρ(0, ·) = ρ̄λ(0),E(0)(·) + εv0(·) ,

(1.1.2)

with ε = εN .
If HN(t) represents this latter relative entropy, the main result asserts that for all t > 0,

1
Nε2

N
HN(t) → 0 .

1.1.1 Context and Related Work

A theory of thermodynamic transformations for nonequilibrium stationary states has been
proposed recently [4, 5] in the framework of the Macroscopic Fluctuation Theory [6, 7]. It
defined the renormalized work performed by a transformation between two nonequilib-
rium stationary states in driven diffusive systems, and it proved a Clausius inequality
which postulates that the renormalized work is always larger than the variation of the
equilibrium free energy between the final and the initial nonequilibrium states.

In quasi-static transformations, transformations in which the variations of the envi-
ronment are very slow, the renormalized work coincides asymptotically with the vari-
ation of the equilibrium free energy. More precisely, fix a transformation u(t), t ≥ 0,
between two nonequilibrium stationary states, and denote by Wren(u) the renormalized
work performed by u. Let uε be the transformation u slowed down by a parameter ε > 0,
uε(t) = u(tε). Then, limε→0 Wren(uε) = ∆F, where ∆F represents the variation of the
equilibrium free energy between the final and the initial nonequilibrium states. Note that
the asymptotic identity is attained independently of the transformation u chosen.

Let us mention that the theory of thermodynamic transformations between nonequi-
librium states, and the analysis of quasi-static transformations has been extended to the
framework of stochastic perturbations of microscopic Hamiltonian dynamics in contact
with heat baths in [27–29].

To select, among the slow transformations between two nonequilibrium stationary
states, the one which minimizes the renormalized work we have to examine the first order
term in the expansion in ε of the renormalized work. This question has been addressed
in [8], where it was shown that for slow transformations between two equilibrium states
the first order correction of the renormalized work is minimized by transformations whose
intermediate states are equilibrium states, and where a partial differential equation which
describes the evolution of the optimal transformation has been derived.

A time-change permits to convert a slow transformation in an ordinary transformation
whose differential operator is multiplied by ε−1. This observation brings us to the question
of the correction to the hydrodynamic equation of boundary driven interacting particle
systems.

Consider a symmetric, one-dimensional dynamics in contact with reservoirs and in the
presence of an external field. At the macroscopic level the system is described by a local
density ρ(t, x), x ∈ [0, 1], which evolves according to the driven diffusive equation{

∂tρ = ∂x(D(ρ)∂xρ)− ∂x(χ(ρ)E)

f ′(ρ(t, a)) = λa(t) for a = 0 , 1 ,
(1.1.3)

where D is the diffusivity, χ the mobility, E(t, x) an external field, λ0(t), λ1(t) time-
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dependent chemical potentials, which fix the density at the boundaries, and f the equilib-
rium free energy density.

For a fixed external field E(x) and a chemical potential λ = (λ0, λ1), denote by ρ̄λ,E
the solution of the elliptic equation{

∂x(D(ρ)∂xρ)− ∂x(χ(ρ)E) = 0 ,

f ′(ρ(a)) = λa for a = 0 , 1 .
(1.1.4)

Consider the driven diffusive equation (1.1.3) speeded up by ε−1. Fix a transformation
(λ(t), E(t)), ε > 0, and a bounded profile v0 : [0, 1] → R. Denote by ρε(t) the solution
of (1.1.2). A formal expansion in ε yields that, for t > 0, uε(t) = ε−1[ρε(t) − ρ̄λ(t),E(t)]
converges to v(t), the solution of the elliptic equation (1.1.1). Note that the limit vt does
not depend on the initial condition v0.

The main results of Chapter 2 state a similar result for a microscopic dynamics
speeded-up super-diffusively. Consider a one-dimensional, weakly asymmetric, exclu-
sion process evolving on {1, . . . , N − 1}, and in contact with reservoirs at the boundaries.
Assume that the density of each reservoir evolves smoothly in the macroscopic time-scale,
and that the dynamics is speeded-up by N2ε−1

N , where εN → 0 as N ↑ ∞. De Masi and
Olla [12] proved that starting from any initial distribution, at all macroscopic time t > 0
the system converges to a local equilibrium state whose density profile is given by the
solution of the elliptic equation (1.1.4) with chemical potential λ(t).

The results presented here have a similarity to the correction to the hydrodynamic
equation, examined in [14, 22] in the asymmetric case in dimension d ≥ 3 and in [15] in
the symmetric case.

1.2 From Coalescence to Kingman’s Coalescent

The main results of Chapters 3 and 4 are related to the Kingman’s coalescent, a process
that we present in the following subsection. Loosely speaking, we shall see that some
projections of this process emerge as the limit of certain sequences of processes, which in
turn are projections of some sequences of Markov processes. These last Markov processes
are coalescing process associated to a Markov chain.

1.2.1 The Kingman’s Coalescent

In the early eighties, Kingman [17] presented a Markov process over the set of partitions
or equivalence classes, of N := {1, 2, . . . }. The dynamic of this process can be described
as follows. No matter in which partition we start, at any time t > 0 we are in a state with
finite number of equivalence classes. Now, assume that we are in a partition π compound
of the equivalence classes A1, . . . , An. Staying here, we chose uniformly at random a pair
of different equivalence classes, say Ai and Aj, and in an exponential time of mean (n

2)
−1

we move to the partition obtained from π by coalescing Ai with Aj. We call this partition
(i, j)[π]. Then we repeat the process with (i, j)[π]; and continue in this way until we get
the partition made by the entire set of naturals numbers. We stay in this last state forever.

1.2.2 Coalescence in the Discrete Torus

In Chapter 3 we focus our attention into the coalescence in the discrete torus. Fix d ≥ 2,
and denote by Td

N = {0, . . . , N − 1}d the discrete, d-dimensional torus with Nd points.
Consider independent, nearest-neighbor, symmetric, continuous-time coalescing random
walks evolving on Td

N . This dynamics can be informally described as follows. Place a
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particle at each point of Td
N . Each particle evolves, independently from the others, as a

continuous-time random walk which jumps from x to x± ej with probability 1/2d, where
the summation is taken modulo N and {e1, . . . , ed} stands for the canonical basis of Rd.
Whenever a particle jumps to a site occupied by another particle, the two particles coalesce
into one.

Let CN be the first time the set of particles is reduced to a singleton, and let sN = Nd in
dimension d ≥ 3, sN = N2 log N in dimension 2. Cox [11] proved that CN/sN converges
in distribution to a random variable τ which can be expressed as

τ = ∑
k≥2

Tk , (1.2.1)

where (Tk)k≥2 is a sequence of independent, exponential random variables whose expec-
tations are given by

E[Tn] =
2

n (n− 1)
, for n ≥ 2 .

This is related with the Kingman’s coalescent. Consider (Nt)t≥0, the process that records
the number of equivalence classes in the Kingman’s coalescent that starts from a partition
with infinite equivalence classes. This process is a pure death process on N∪{∞}, starting
at ∞, finite at any positive time, and jumping from k to k− 1 at rate k(k− 1)/2. A path of
(Nt)t≥0 can be sampled as follows. Recall the definition of the random variables (Tn)n≥2,
and set T1 = ∞. Note that, since E[τ] < ∞, with probability one ∑∞

n=2 Tn < ∞ and so[ ∞

∑
n=k+1

Tn,
∞

∑
n=k

Tn

)
, k ∈N ,

turns to be a partition of (0, ∞). Set N0 = ∞ and, for every t > 0 and k ≥ 1, define

Nt = k ⇐⇒
∞

∑
n=k+1

Tn ≤ t <
∞

∑
n=k

Tn . (1.2.2)

Notice that this process is not continuous at t = 0 unless every neighborhood of ∞ ∈
N∪ {∞} has finite complement.

We shall use an alternative description of this process, more suitable to our purposes.
Consider the bijection

{1, 2, . . . , ∞} → S := {1, 1/2, 1/3, . . . , 0}
x 7→ 1/x ,

taking ∞ to 0, and endow S with the standard differential structure inherited by the real
line. The first result of Chapter 3 characterizes the law of

Xt = 1/Nt , t ≥ 0 , (where 1/∞ = 0) (1.2.3)

as the unique solution of a martingale problem.

The second main result of that chapter asserts that in an appropriate time-scale the
process which records the [inverse of the] total number of particles on the torus at a given
time converges in the Skorokhod topology to Xt.
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1.2.3 Coalescence Associated to a Markov Chain

In Chapter 4 we study the coalescence of a fixed number of particles, associated to a
Markov chain. To describe our approach, suppose that ξ is an irreducible and transitive
Markov chain. Fix n ≥ 2, take ξ := (ξ1, . . . , ξn), a vector of i.i.d. copies of ξ, and consider
the following dynamic. We start with η := (η1, . . . , ηn) being a copy of ξ and let the
time pass. When two coordinates meet, they stay together and follow the motion of
the one with the smaller label. This dynamic induces a process in the set of partitions
of {1, 2, . . . , n}. To make it clearer, suppose that at some point the particles with labels
{2, 8, 9} are evolving together, as well as the particles corresponding to {7, 3, 5}. If they
meet each other, before any other particle outside {η2, η8, η9} ∪ {η7, η3, η5}, then all the
particles corresponding to {2, 8, 9, 7, 3, 5} stay together, all of them following the motion
of η2. Now suppose that we have (ξN)N , a sequence of irreducible and transitive Markov
chains that generates the sequence of processes (XN)N , previously described, over the
partitions of {1, 2, . . . , n}. We define θN as the mean meeting time of two particles starting
from the invariant measure. Then we prove that, starting from the invariant measure, the
sequence (XN

tθN
, t ≥ 0)N converges in distribution, considering the Skorokhod topology,

to the Kingman’s coalescent, starting from a partition with n equivalence classes, if the
following conditions are fulfilled:

1. With probability converging to one, there is no coalescence in a scale of time smaller
than (θN)N .

2. The coupling ξN := (ξ1, . . . , ξn) exhibits a local ergodic behavior, i.e. there exists a
scale of time (αN)N smaller than (θN)N such that

EN
mn

[∣∣∣ 1
αN

∫ αN

0
f (ξN

s ) ds
∣∣∣] N→∞−−−→ 0 ,

for all functions f with mn-mean zero. Here mn denotes the invariant measure of
ξN .

3. The times when two particles meet, starting from the invariant probability measure,
are uniformly bounded in L1+ε, for some ε > 0.

Condition 1 ensures that the partitions are meta-stable states of (XN)N , after rescaling
it. This also allow us to proof the tightness of (XN

tθN
, t ≥ 0)N . Condition 2 permit us to

make convenient averages in the (αN)N scale of time, whereas condition 3 is technical,
among other things, it help us to interchange some limits with expectations.

To prove our result we follow the same general strategy we used in Chapter 3. After
obtaining the tightness, we use a replacement condition to show that all the limit processes
of (XN

tθN
, t ≥ 0)N solve a martingale problem with unique solution. An abstraction of this

step is described in Subsection 4.2.1. In our proof, we reduce the replacement condition
to the study of the first coalescence of any m ≤ n particles starting from the invariant
measure. In regard to this, we proof in Section 4.3 that, under conditions 1, 2 and 3 for
n = 2, the time of the first coalescence of m particles starting from the invariant measure
behaves asymptotically as an exponential time of mean (m

2 )
−1. We also treat the reversible

case. In this case we study the following condition introduced by Aldous [1]:

lim
N→∞

γN
θN

= 0 , (1.2.4)

where γN denotes the relaxation time of each ξN . This condition is satisfied for all the
chains studied in [26] in the reversible case. In particular the discrete torus satisfies it. We



8 1. INTRODUCTION

show that (1.2.4) implies conditions 1, 2 and 3 for every n ∈N. Therefore, in this case, we
prove our main result provided that (1.2.4) holds.

1.2.4 Context and Related Work

The results obtained in Chapters 3 and 4 sharpen and extend previous ones. For the dis-
crete torus, in dimension 2, Zähle et al. [32] proved the convergence of the one-dimensional
distribution of Nt provided the particles are initially spread out. In dimension d ≥ 3,
Limic and Sturm [24] proved the convergence of Nt, excluding a neighborhood of t = 0.
In Td

N , by adopting the view point of a martingale problem, we are able to handle the
convergence in the Skorokhod topology for all times and to avoid assuming that particles
are initially spread out.

Since Cox’ article [11], the asymptotic behavior of the coalescence time CN has been
the subject of several papers. Consider a connected graph GN with N vertices. If GN is the
complete graph, the distribution of CN can be computed exactly and the process which
records the total number of particles is Markovian. This example is called the mean-field
model, and one expects that, under some mixing conditions on the random walk on the
graph GN , the asymptotic behavior of the coalescence time CN resembles the one of the
mean field model.

Denote by hN the expected hitting time of a vertex starting from the stationary distri-
bution, and by θN the expected meeting time of two independent random walks over GN ,
both starting from the stationarity state. Aldous and Fill [2, Chapter 14] conjectured in
Open Problem 12 that under some mixing conditions E[CN ] is of the same order of hN , as
in the mean-field case.

Durrett [13] proved mean field behavior in a small world random graph and Cooper,
Frieze and Radzik [10, Theorem 8] in random d-regular graphs. Oliveira [25, 26] showed
that under some reasonable mixing conditions CN/θN converges to τ, the random time
introduced in (1.2.1), in transitive, reversible, irreducible Markov chains. A direct con-
sequence of our study in Chapter 4 shows that in the reversible case, under the weaker
condition (1.2.4) related with the relaxation time, starting with n particles in the invariant
measure, CN/θN converges to

n

∑
k=2

Tk ,

where n is an arbitrary, but fixed, natural number. This put in evidence that, under
condition (1.2.4), in general settings, our understanding of Nt starting from ∞, is not
enough to get results like the one we obtain for the discrete torus.

To the best of our knowledge, the results we present in chapter 4 are the first ones
that show, under abstract conditions, the convergence of processes related to the coales-
cence of Markov chains. As we mentioned before, in the reversible case these conditions
are implied by (1.2.4), which is weaker than the mixing hypothesis assumed in previous
works.



Chapter 2

A Correction to the Hydrodynamic
Limit of Boundary Driven
Exclusion Processes in a

Super-diffusive Time Scale*

Abstract

We consider a one-dimensional, weakly asymmetric, boundary driven exclusion
process on the interval [0, N] ∩Z in the super-diffusive time scale N2ε−1

N , where
1 � ε−1

N � N1/4. We assume that the external field and the chemical potentials,
which fix the density at the boundaries, evolve smoothly in the macroscopic time
scale. We derive an equation which describes the evolution of the density up to the
order εN .

2.1 Notation and Main Results

2.1.1 The Model

We examine a one-dimensional weakly asymmetric exclusion process in contact with
reservoirs. Fix Λ = (0, 1), and let ΛN = {1, . . . , N − 1}, N ≥ 1, be a discretization of
Λ, i.e. the microscopic point j ∈ ΛN represents the macroscopic location j/N ∈ Λ. Parti-
cles evolve on ΛN under an exclusion rule which allows at most one particle per site. The
state space is denoted by ΣN = {0, 1}ΛN , and the configurations are represented by the
Greek letters η, ξ so that η(j) = 1 if site j ∈ ΛN is occupied for the configuration η, and
η(j) = 0 otherwise.

*Joint work with Claudio Landim

9
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Let A0 be a finite subset of Z which contains the set {0, 1}. Consider a strictly positive
function c : [0, 1]Z → R+ which does not depend on the variables η(0) and η(1) and
whose support is contained in A0:

c(η) = c∅ + ∑
A⊂A0

A∩{0,1}=∅

cA ∏
k∈A

η(k) ,

where cA are coefficients which may be negative. In the case where A0 = {0, 1}, c(η) is
constant equal to c∅.

Denote by {τk : k ∈ Z} the group of translations in {0, 1}Z so that τkη is the configura-
tion defined by (τkη)(j) = η(k + j), k, j ∈ Z. The action is extended to cylinder functions
Ψ : {0, 1}Z → R, in the usual way: (τkΨ)(η) = Ψ(τkη).

We assume throughout this chapter that the jump rate c satisfies the gradient condi-
tion: There exist m ≥ 1, cylinder functions h1, . . . , hm, and finite-range, signed measures
µ1, . . . , µm on Z with vanishing total mass such that

[η(0)− η(1)] c(η) =
m

∑
a=1

∑
j∈Z

µa(j) (τ−jha)(η) . (2.1.1)

This decomposition is clearly not unique. In the case c(η) = 1 + η(−1) + η(2), one may
take m = 3, h1(η) = η(−1)η(0), h2(η) = η(0)η(2), h3(η) = η(0), µ1(0) = 1 = −µ1(2),
µ2(0) = 1 = −µ2(−1), µ3(0) = 1 = −µ3(−1).

Fix a chemical potential λ : ∂Λ → R, where ∂Λ represents the boundary of Λ. In
one dimension, λ is simply a pair (λ0, λ1). Let α = (α0, α1) be the density of particles
associated to the chemical potential λ:

α0 =
eλ0

1 + eλ0
, α1 =

eλ1

1 + eλ1
·

Let τN,λ
j : ΣN → {α0, α1, 0, 1}Z, N ≥ 1, j ∈ Z, be the operators defined by

(τN,λ
j η)(k) = η(k + j) if k + j ∈ ΛN , (τN,λ

j η)(k) =

{
α0 if k + j ≤ 0,
α1 if k + j ≥ N,

for k ∈ Z. As before the action of the operator τN,λ
j can be extended to functions defined

on ΣN . For N ≥ 1, 1 ≤ j < N − 1, let the functions cN,λ
j,j+1 : ΣN → R+ be given by

cN,λ
j,j+1 = τN,λ

j c ,

so that cN,λ
j,j+1(η) = c(τN,λ

j η). Note that cN,λ
0,1 is usually not equal to c. It follows from (2.1.1)

that for N ≥ 1, 1 ≤ j < N − 1,

wN,λ
j,j+1 := [η(j)− η(j + 1)] cN,λ

j,j+1(η) =
m

∑
a=1

∑
k∈Z

µa(k) (τN,λ
j−k ha)(η) . (2.1.2)

We are now in a position to define the jump rates of the boundary driven exclusion
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process. Fix a smooth external field E : [0, 1]→ R, and let

cN,λ,E
0,1 (η) = rλ

0,1(η) e(1/2N) E(0) [1−2η(1)] cN,λ
0,1 (η) ,

cN,λ,E
j,j+1 (η) = e(1/2N) E(j/N) [η(j)−η(j+1)] cN,λ

j,j+1(η) , 1 ≤ j ≤ N − 2 ,

cN,λ,E
N−1,N(η) = rλ

N−1,N(η) e(−1/2N) E(1) [1−2η(N−1)] cN,λ
N−1,N(η) ,

where,

rλ
0,1(η) = α0[1− η(1)] + η(1)[1− α0] ,

rλ
N−1,N(η) = α1[1− η(N − 1)] + η(N − 1)[1− α1] .

Denote by Lλ,E
N = LN the generator whose action on functions f : ΣN → R is given by

(LN f )(η) =
N−1

∑
j=0

cN,λ,E
j,j+1 (η) { f (σj,j+1η)− f (η)} . (2.1.3)

In this formula, the configuration σj,j+1η, 1 ≤ j ≤ N − 2, represents the configuration
obtained from η by exchanging the occupation variables η(j), η(j + 1),

(σj,j+1η)(k) =


η(j + 1), k = j ,
η(j), k = j + 1 ,
η(k), k 6= j, j + 1 ,

while σ0,1η, σN−1,Nη represent the configuration obtained from η by flipping the occupa-
tion variables η(1), η(N − 1), respectively:

(σjη)(k) =

{
η(k), k 6= j ,
1− η(k), k = j ,

j ∈ {1, N − 1} ,

where σ1η represents σ0,1η, and σN−1η represents σN−1,Nη.

2.1.2 Transformations

The dynamics introduced in the previous subsection is a finite-state, irreducible,
continuous-time Markov chain. It has therefore a unique stationary state, denoted by
νN

λ,E. If the external field E(x) vanishes and the chemical potentials coincide, λ0 = λ1 = λ,
this stationary state is the Bernoulli product measure with density ρ = eλ/(1 + eλ).

For a given continuous density profile γ : [0, 1] → [0, 1], denote by νN
γ(·) the product

measure on ΣN with marginals given by

νN
γ(·){η(j) = 1} = γ(j/N) , j ∈ ΛN . (2.1.4)

Similarly, for 0 ≤ θ ≤ 1, νθ , stands for the Bernoulli product on {0, 1}Z with density θ:

νθ{η(j) = 1} = θ , j ∈ Z .

To describe the macroscopic evolution of the density, denote the diffusivity by D :
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[0, 1]→ R+, and the mobility by χ : [0, 1]→ R+:

D(θ) = Eνθ
[c(η)] , χ(θ) =

1
2

Eνθ

[
[η(1)− η(0)]2c(η)

]
= θ(1− θ) Eνθ

[c(η)] . (2.1.5)

The transport coefficients D and χ are related through the local Einstein relation

D(θ) = χ(θ) f ′′(θ) , (2.1.6)

where f : [0, 1]→ R the equilibrium free energy:

f (θ) = θ log θ + [1− θ] log(1− θ) .

Let A = [0, 1] or R+. Denote by Cr(A), r ≥ 0, the set of functions F : A → R

which are [r]-times differentiable, where [r] stands for the integer part of r, and whose
[r]-th derivative is Hölder continuous with exponent r − [r], and by Cr

0([0, 1]) the set of
functions in Cr([0, 1]) which vanish at the boundary. If r is an integer, we require the
[r]-th derivative to be continuous. Similarly, Cr,s(R+ × [0, 1]), r, s ≥ 0, represents the set
of functions F : R+ × [0, 1]→ R which are [r]-times differentiable in the time variable, [s]-
times differentiable in the space variable and whose [r]-th (resp. [s]-th) time (resp. space)
derivative is Hölder continuous with exponent r− [r] (resp. s− [s]). As before, if r or s is
an integer, we require the corresponding derivative to be continuous.

Assume that λa : R+ → R, a = 1, 2, are functions in C1(R+) and that E : R+× [0, 1]→
R is a function in C1,2(R+ × [0, 1]). Fix a density profile γ : [0, 1]→ (0, 1) in C2([0, 1]) and
assume that there exists a function ψ in C1+β/2,2+β(R+ × [0, 1]), for some β > 0, such that
f ′(ψ(t, a)) = λa(t) for a = 0, 1, ψ(0, x) = γ(x) for x ∈ [0, 1], and such that

∂tψ = ∂x(D(ψ)∂xψ)− ∂x(χ(ψ)E(t)) at (t, x) = (0, 0) and (t, x) = (0, 1).

Denote by ρ(t, ·) the unique classical solution of the parabolic equation
∂tρ = ∂x(D(ρ)∂xρ)− ∂x(χ(ρ)E(t)) ,

f ′(ρ(t, 0)) = λ0(t) , f ′(ρ(t, 1)) = λ1(t) ,

ρ(0, ·) = γ(·) .

(2.1.7)

We refer to Theorem 6.1 of Chapter V in [20] for the existence and the uniqueness of
classical solutions of equation (2.1.7).

Denote by MN = M (ΣN) the set of probability measures on ΣN endowed with the
weak topology. For two probability measures µ, π in MN , let HN(µ|π) be the relative
entropy of µ with respect to π:

HN(µ|π) = sup
f

{ ∫
f dµ − log

∫
e f dπ

}
,

where the supremum is carried over all functions f : ΣN → R. It is well known [18] that
the relative entropy has an explicit expression:

HN(µ|π) =


∫

log
dµ

dπ
dµ if µ� π,

∞ otherwise.
(2.1.8)

Denote by LN(t), t ≥ 0, the generator LN introduced in (2.1.3) in which the pair (E, λ)
is replaced by (E(t), λ(t)), and by {SN

t : t ≥ 0} the semigroup associated to the generators
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N2LN(t): (d/dt)SN
t = N2LN(t)SN

t . Note that time has been speeded-up diffusively since
the generator has been multiplied by N2.

Theorem 2.1.1. Let {µN : N ≥ 1} be a sequence of probability measures, µN ∈MN , such that

lim
N→∞

1
N

HN(µN |νN
γ(·)) = 0 .

Then, for every t > 0,

lim
N→∞

1
N

HN(µNSN
t |νN

ρ(t,·)) = 0 .

Corollary 2.1.2. Under the assumptions of Theorem 2.1.1, for every t ≥ 0, every continuous
function H : [0, 1]→ R, and every cylinder function Ψ : {0, 1}Z → R,

lim
N→∞

EµN SN
t

[ ∣∣∣ 1
N

N−1

∑
k=1

H(k/N) (τ
N,λ(t)
k Ψ)(η)−

∫ 1

0
H(x) Eνρ(t,x) [Ψ] dx

∣∣∣ ] = 0 .

2.1.3 Quasi-static Transformations

Fix ν > 0, a function λ in C1(R+), and let α : R+ → (0, 1) be given by

α(t) = f ′(λ(t)) , (2.1.9)

Fix a function v0 = vν
0 in C2

0([0, 1]), and assume that there exists a function ψ in
C1+β/2,2+β(R+ × [0, 1]), for some β > 0, such that ψ(t, 0) = ψ(t, 1) = α(t), t ≥ 0,
ψ(0, x) = α(0) + ν−1v0(x), x ∈ [0, 1], and

∂tψ = ν ∂x(D(ψ)∂xψ) at (t, x) = (0, 0) and (t, x) = (0, 1).

This means that we assume that

α′(a) = ∂x

{
D
(
α(0) + ν−1v0(a)

)
∂xv0(a)

}
for a = 0, 1 .

Denote by ρ(t, x) = ρν(t, x) the unique classical solution of the initial–boundary value
problem 

∂tρ = ν ∂x(D(ρ)∂xρ) ,

ρ(t, 0) = ρ(t, 1) = α(t) ,

ρ(0, x) = α(0) + ν−1v0 .

Let uν : R+ × [0, 1]→ R be the function given by

uν(t, x) = ν
{

ρν(t, x)− α(t)
}

,

and, for each t ≥ 0, let vt : [0, 1]→ R be the unique solution of the linear elliptic equation{
∂x(D(α(t))∂xvt) = α′(t) ,

vt(0) = vt(1) = 0 .
(2.1.10)

Proposition 2.1.3. Assume that λ belongs to C2(R+) and that v0 belongs to C4
0([0, 1]). Then,

for each t ≥ 0,

lim
ν→∞

∫ 1

0
[uν(t, x)− vt(x)]2 dx = 0 .
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One can strengthen the topology in which the convergence occurs, but we do not seek
optimal conditions here.

Inspired by the previous result, consider a function λ in C1(R+), and let α : R+ →
(0, 1) be given by (2.1.9). Fix a sequence εN which vanishes as N → ∞ and a function
γ = γN in C2

0([0, 1]). Assume that there exists a function ψ in C1+β/2,2+β(R+ × [0, 1]), for
some β > 0, such that ψ(t, 0) = ψ(t, 1) = α(t), t ≥ 0, ψ(0, x) = α(0) + εNγ(x), x ∈ [0, 1],
such that

α′(a) = ∂x

{
D
(
α(a) + εNγ(a)

)
∂xγ(a)

}
for a = 0, 1 .

Denote by ρN(t, x) the solution of
∂tρ = ε−1

N ∂x(D(ρ)∂xρ) ,

ρ(t, 0) = ρ(t, 1) = α(t) ,

ρ(0, x) = α(0) + εNγ(x) .

(2.1.11)

Denote by LN(t) the generator LN introduced in (2.1.3) with E = 0 and λ0 = λ1 =
λ(t). Let {TN

t : t ≥ 0} be the semigroup associated to the generator ε−1
N N2LN(t). Note

that time has been speed-up by ε−1
N N2.

Theorem 2.1.4. Assume that ε4
N N → ∞, that λ belongs to C2(R+), and that γ belongs to

C4
0([0, 1]). Let {µN : N ≥ 1} be a sequence of probability measures, µN ∈MN , such that

lim
N→∞

1
Nε2

N
HN(µN |νN

ρN(0,·)) = 0 . (2.1.12)

Then, for every t > 0,

lim
N→∞

1
Nε2

N
HN(µNTN

t |νN
ρN(t,·)) = 0 .

Corollary 2.1.5. Under the assumptions of Theorem 2.1.4, for every t ≥ 0, every continuous
function H : [0, 1]→ R, and every cylinder function Ψ : {0, 1}Z → R,

lim
N→∞

EµN TN
t

[ 1
εN

∣∣∣ 1
N

N−1

∑
k=1

H(k/N) (τ
N,λ(t)
k Ψ)(η)−

∫ 1

0
H(x) EνvN (t,x) [Ψ] dx

∣∣∣ ] = 0 ,

where vN(t, x) = α(t) + εNv(t, x), v(t, x) being the unique classical solution of the elliptic equa-
tion (2.1.10).

2.2 Proof of the Main Results

We present in Theorem 2.2.1 below a general statement from which one can easily deduce
Theorems 2.1.1 and 2.1.4. For a fixed chemical potential λ = (λ0, λ1) and a continuous
external field E : [0, 1]→ R, denote by ρ̄λ,E : [0, 1]→ R the solution of the elliptic equation{

∂x(D(ρ)∂xρ)− ∂x(χ(ρ)E) = 0 ,

f ′(ρ(0)) = λ0 , f ′(ρ(1)) = λ1 ,
(2.2.1)

Fix sequences {εN : N ≥ 1}, {`N : N ≥ 1} such that `N → ∞, εN → 0. Consider
a time-dependent external field E in C1,2(R+ × [0, 1]) and a time-dependent chemical
potential λ(t) = (λ0(t), λ1(t)) such that λ0, λ1 ∈ C1(R+). Fix a density profile γ = γN
in C2([0, 1]) and assume that there exists a function ψ in C1+β/2,2+β(R+ × [0, 1]), β > 0,
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such that f ′(ψ(t, a)) = λa(t) for a = 0, 1, ψ(0, x) = ρ̄λ(0),E(0)(x) + εNγ(x) for x ∈ [0, 1],
and such that

∂tψ = `N

{
∂x(D(ψ)∂xψ)− ∂x(χ(ψ)E(t))

}
at (t, x) = (0, 0) and (t, x) = (0, 1).

Denote by ρN(t, ·) the unique weak solution of the parabolic equation
∂tρ = `N

{
∂x(D(ρ)∂xρ)− ∂x(χ(ρ)E)

}
,

f ′(ρ(t, 0)) = λ0(t) , f ′(ρ(t, 1)) = λ1(t) ,

ρ(0, x) = ρ̄λ(0),E(0) + εNγ(x) .

(2.2.2)

In Theorem 2.2.1 the following conditions on the solution of equation (2.2.2) are
needed: For every T > 0, there exists 0 < δ < 1 such that

δ ≤ ρN(t, x) ≤ 1− δ for all 0 ≤ x ≤ 1 , 0 ≤ t ≤ T , N ≥ 1 . (2.2.3)

To explain the second condition, observe that we may rewrite the PDE (2.2.2) as

∂tρ = `N∂x
{

χ(ρ)
[
∂x f ′(ρ)− E

]}
because χ(ρ) f ′′(ρ) = D(ρ) by Einstein relation (2.1.6). Let

FN(t, x) = ∂x f ′(ρN(t, x)) − E(t, x)

We assume that for every T > 0, there exists a finite constant C0 such that for all N ≥ 1,
0 ≤ t ≤ T,

‖FN(t)‖∞ ≤
C0

`N
, ‖∂xFN(t)‖∞ ≤

C0

`N
. (2.2.4)

Note that for this condition to be fulfilled at t = 0, we need `NεN to be bounded:

`N εN ≤ C0 (2.2.5)

for some finite constant C0.
Consider two non-decreasing sequences KN , JN . We write

KN � JN if KN/JN → 0 as N → ∞.

Recall that we denote by LN(t) the generator LN introduced in (2.1.3) with E(t), λ(t) in
place of E, λ, respectively. Let {SN

t : t ≥ 0} be the semigroup associated to the generators
{`N N2LN(s) : s ≥ 0}: (d/dt)SN

t = `N N2SN
t LN(t).

Theorem 2.2.1. Consider a continuous external field E(t, x) and a continuous chemical potential
λ(t) = (λ0(t), λ1(t)). Assume that γ belongs to C2

0([0, 1]), that conditions (2.2.3), (2.2.4), (2.2.5)
hold, and that ε−4

N � N. Let {µN : N ≥ 1} be a sequence of probability measures, µN ∈ MN ,
such that

lim
N→∞

1
Nε2

N
HN(µN |νN

ρN(0,·)) = 0 . (2.2.6)

Then, for every t > 0,

lim
N→∞

1
Nε2

N
HN(µNSN

t |νN
ρN(t,·)) = 0 .

The proof of Theorem 2.2.1 is divided in several steps. Fix a density θ ∈ (0, 1), and
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denote by νθ = νN
θ the product measure on ΣN with density θ:

νθ(η) =
1

ZN(θ)
exp

{
β

N−1

∑
j=1

ηj

}
, (2.2.7)

where ZN(θ) is the partition function which turns νθ into a probability measure, and

β := f ′(θ) = log
θ

1− θ
. (2.2.8)

We use the same notation νθ to represent the the Bernoulli product measure on {0, 1}Z

with density θ.
Let L2(νθ) be the space of functions f : ΣN → R endowed with the scalar product

〈 f , g〉νθ
=
∫

f (η) g(η) νθ(dη) .

Denote by L∗N = Lλ,E,∗
N the adjoint in L2(νθ) of the generator LN introduced in (2.1.3). A

simple computation shows that for all f : ΣN → R,

(L∗N f )(η) = (L∗0,1 f )(η) +
N−2

∑
j=1

(L∗j,j+1 f )(η) + (L∗N−1,N f )(η) , (2.2.9)

where, for 1 ≤ j ≤ N − 2,

(L∗N−1,N f )(η) = cN,λ,E
N−1,N(σ

N−1,Nη) eβ(1−2ηN−1) f (σN−1,Nη) − cN,λ,E
N−1,N(η) f (η) ,

(L∗j,j+1 f )(η) = cN,λ,E
j,j+1 (σj,j+1η) f (σj,j+1η) − cN,λ,E

j,j+1 (η) f (η) ,

(L∗0,1 f )(η) = cN,λ,E
0,1 (σ0,1η) eβ(1−2η1) f (σ0,1η) − cN,λ,E

0,1 (η) f (η) .

In this formula, β is the chemical potential associated to the density θ, which has been
introduced in (2.2.8). It follows from the previous formula that the adjoint of LN(t) in
L2(νθ), denoted by L∗N(t), is given by (2.2.9) with E and λ replaced by E(t) and λ(t).

Proof of Theorem 2.2.1. Fix sequences `N , εN satisfying the assumptions of the theorem,
and let γ be a function in C2

0([0, 1]). Denote by ρ(t, x) = ρN(t, x) the solution of (2.2.2).
Consider a sequence of probability measures {µN : N ≥ 1}, µN ∈ MN , satisfying (2.2.6).
Let α(t) = (α0(t), α1(t)) be the density of particles associated to the chemical potential
λ(t):

α0(t) =
eλ0(t)

1 + eλ0(t)
, α1(t) =

eλ1(t)

1 + eλ1(t)
· (2.2.10)

Recall that {SN
t : t ≥ 0} represents the semigroup associated to the generator

N2`N LN(t), and let

ft =
dµNSN

t
dνθ

, ψt =
dνN

ρN(t,·)
dνθ

. (2.2.11)

A simple computation yields

ψt(η) =
ZN(θ)

ZN(ρ(t))
exp

{ N−1

∑
j=1

ηj[ f ′(ρ(t, j/N))− f ′(θ)]
}

, (2.2.12)

where ρ(t, x) = ρN(t, x) is the solution of equation (2.2.2), ZN(θ), f have been introduced
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in (2.2.7), (2.1.6), respectively, and ZN(ρ(t)) is the normalizing constant given by

ZN(ρ(t)) = exp
{
−

N−1

∑
j=1

log[1− ρ(t, j/N)]
}

.

With this notation, in view of (2.1.8),

H(µNSN
t |νρN(t,·)) =

∫
ft log

ft

ψt
dνθ .

Moreover, a usual computation shows that the density ft solves the Kolmogorov forward
equation

d
dt

ft = N2`N L∗N(t) ft . (2.2.13)

The proof of Theorem 2.2.1 is divided in three steps.

Step 1: Entropy production. A computation, similar to the one presented in the proof of
Lemma 1.4 in [18, Chapter 6], yields that

d
dt

H(µNSN
t |νρN(t,·)) ≤

∫ N2`N L∗N(t)ψt − ∂tψt

ψt
ft dνθ . (2.2.14)

Let h and g : {0, 1}Z → R be the cylinder functions given by

h(ξ) =
m

∑
a=1

ma ha(ξ) , g(ξ) =
1
2
[ξ1 − ξ0]

2 c(ξ) , (2.2.15)

where ma = ∑k kµa(k). Recall the definition of the operators τN,λ
j , N ≥ 1, 1 ≤ j <

N − 1, introduced just above (2.1.2), and let τN
j (t) = τ

N,λ(t)
j . A long, but straightforward,

computation which uses the identity (2.1.2), yields that

N2`N L∗N(t)ψt − ∂tψt

ψt
= `N{I1 + I2 + I3} + ON(`N) ,

where ON(`N) represents an error absolutely bounded by C0`N , C0 being a finite constant
independent of N, and where

I1 =
N−2

∑
j=1

G1(t, j/N) (τN
j (t) h)(η) +

N−2

∑
j=1

G2(t, j/N) (τN
j (t) g)(η)

−
N−1

∑
j=1

(∂tρ)

χ(ρ)
(t, j/N) [η(j)− ρ(t, j/N)] ,

I2 = N H−(t)
m

∑
a=1

∑
k∈Z

µa(k)
0

∑
j=1−k

(τN
j (t) ha)(η)

− N H+(t)
m

∑
a=1

∑
k∈Z

µa(k)
N−2

∑
j=N−1−k

(τN
j (t) ha)(η) ,

I3 = N H+(t) (τN
N−1(t) c)(η) [ηN−1 − α1(t)] − N H−(t) (τN

0 (t) c)(η) [η1 − α0(t)] .
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In these formulas,

G1(t, x) = ∂x
{

∂x f ′(ρ(t, x))− E(t, x)
}

,

G2(t, x) = ∂x f ′(ρ(t, x))
{

∂x f ′(ρ(t, x))− E(t, x)
}

,

H−(t) = ∂x f ′(ρ(t, 0))− E(t, 0) , H+(t) = ∂x f ′(ρ(t, 1))− E(t, 1) ,

and α0(t), α1(t) are the densities at the boundary, defined in (2.2.10). Note that G1 = ∂xFN ,
G2 = F2

N + EFN , H−(t) = FN(t, 0) and H+(t) = FN(t, 1). In particular, by (2.2.4), there
exists a finite constant C0 such that for all N ≥ 1, 0 ≤ t ≤ T,

‖G1(t)‖∞ ≤
C0

`N
, ‖G2(t)‖∞ ≤

C0

`N
, ‖H±(t)‖∞ ≤

C0

`N
. (2.2.16)

For a cylinder function Ψ : {0, 1}Z → R, let Ψ̂ : [0, 1]→ R be the polynomial given by

Ψ̂(θ) = Eνθ
[Ψ] , (2.2.17)

where, we recall, νθ is the Bernoulli product measure with density θ. By (2.2.15), (2.1.5)
and the equality (2.5.2) we shall prove in section 2.5,

ĥ′(θ) = D(θ) , ĝ(θ) = χ(θ) . (2.2.18)

We claim that, in the first line of I1, the replacement of the cylinder functions τN
j (t)h,

τN
j (t)g by τN

j (t)h − ĥ(ρ(t, j/N)), τN
j (t)g − ĝ(ρ(t, j/N)), respectively, produces an error

absolutely bounded by a finite constant independent of N. Similarly, the replace-cement
in the two lines of I2 of the cylinder functions τN

j (t)ha, j ∼ 0, τN
k (t)ha, k ∼ N, by τN

j (t)ha−
ĥa(α0(t)), τN

k (t)ha − ĥa(α1(t)) produces an error of the same order.

Indeed, denote by J1 (resp. J2) the first line of I1 (resp. the two lines of I2) with the
cylinder functions τN

j (t)h, τN
j (t)g (resp. τN

j (t)ha, j ∼ 0, τN
k (t)ha, k ∼ N) replaced by

ĥ(ρ(t, j/N)), ĝ(ρ(t, j/N)) (resp. ĥa(α0(t)), ĥa(α1(t))). In the expression of J2, observe
that ∑k kµa(k) = ma. For any Lipschitz-continuous function G : [0, 1] → R, and for any
non-negative integers p, q,

N−q

∑
j=p

G(j/N) = N
∫ 1

0
G(x) dx + ON(1) ,

where ON(1) represents an error absolutely bounded by a finite constant independent of
N. It follows from this estimate, from an integration by parts, and from the identities
(2.1.6), (2.2.18) that J1 + J2 is absolutely bounded by a finite constant independent of N,
proving the claim.

An elementary computation gives that

(∂tρ)

χ(ρ)
=
{

∂2
x f ′(ρ)− ∂xE

}
D(ρ) +

{
[∂x f ′(ρ)]2 − E ∂x f ′(ρ)

}
χ′(ρ) .

In conclusion, in view of (2.2.18), up to this point, we have shown that

N2`N L∗N(t)ψt − ∂tψt

ψt
= `N{ Î1 + Î2 + I3} + O(`N) , (2.2.19)
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where

Î1(t, η) =
N−2

∑
j=1

G1(t, j/N)VN(h; t, j, η) +
N−2

∑
j=1

G2(t, j/N)VN(g; t, j, η) ,

Î2(t, η) = N H−(t)
m

∑
a=1

∑
k∈Z

µa(k)
0

∑
j=1−k

{
(τN

j (t)ha)(η)− ĥa(α0(t))
}

− N H+(t)
m

∑
a=1

∑
k∈Z

µa(k)
N−2

∑
j=N−1−k

{
(τN

j (t)ha)(η)− ĥa(α1(t))
}

,

and, for a cylinder function ϕ : {0, 1}Z → R,

VN(ϕ; t, j, η) = (τN
j (t)ϕ)(η)− ϕ̂(ρ(t, j/N))− ϕ̂′(ρ(t, j/N))[ηj − ρ(t, j/N)] .

Step 2: A mesoscopic entropy estimate. Denote by D(R+, ΣN) the space of right-
continuous trajectories x : R+ → ΣN with left limits. For each probability measure µ in
MN , denote by PN

µ the probability measure on D(R+, ΣN) induced by the Markov chain
with generator `N N2LN(t) starting from the distribution µ. Expectation with respect to
PN

µ is represented by EN
µ .

Recall that ε−4
N � N. Let MN = ε−2

N , and fix a sequence {KN : N ≥ 1} such that
MN � KN , MN KN � N. Let

Ĩ1,N(t, η) =
N−KN−1

∑
j=KN+1

G1(t, j/N)VN(ĥ; t, j, η) +
N−1

∑
j=1

G2(t, j/N)VN(ĝ; t, j, η) ,

where, for a smooth function ϕ̂ : [0, 1]→ R,

VN(ϕ̂; t, j, η) = ϕ̂(ηKN (j))− ϕ̂(ρ(t, j/N))− ϕ̂′(ρ(t, j/N))[ηKN (j)− ρ(t, j/N)] .

Note that in the definition of Î1(t, η) the sum is carried over 1 ≤ j ≤ N − 1, while in the
definition of Ĩ1(t, η) it is carried over KN + 1 ≤ j ≤ N − KN − 1. In view of (2.2.16), this
produces an error of order KN/`N in the difference between Î1(t, η) and Ĩ1(t, η).

By (2.2.16) and Lemma 2.3.2, since MNKN � N,

lim
N→∞

MN`N
N

EµN

[ ∫ t

0
{ Î1,N(s, ηs)− Ĩ1,N(s, ηs)} ds

]
= 0 ,

and

lim
N→∞

MN`N
N

EµN

[ ∫ t

0
Î2(s, ηs) ds

]
= 0 , lim

N→∞

MN`N
N

EµN

[ ∫ t

0
I3(s, ηs) ds

]
= 0 .

On the other hand, by definition of MN , by (2.2.5) and by the assumption on εN , MN`N =
ε−2

N `N ≤ C0ε−3
N � N. Therefore, in view of (2.2.14), (2.2.19),

1
Nε2

N
H(µNSN

t |νρN(t,·)) ≤
1

Nε2
N

H(µN |νρN(0,·))

+
MN`N

N
EµN

[ ∫ t

0
Ĩ1,N(s, ηs) ds

]
+ RN ,

where RN vanishes as N → ∞.
Step 3: A large deviations estimate. A Taylor expansion up to the second order shows
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that VN(ϕ̂; t, j, η) is absolutely bounded by C0[η
KN (j)− ρ(t, j/N)]2. The second term on

the right hand side of the previous equation is thus bounded above by

C0 EµN

[ ∫ t

0

MN`N
N

N−KN−1

∑
j=KN+1

J(s, j/N) [ηKN
s (j)− ρ(s, j/N)]2 ds

]
,

where J(t, x) = |G1(t, x)| + |G2(t, x)|. Since MN = ε−2
N , by the entropy inequality, the

previous expression is less than or equal to

C0

ANε2
N

∫ t

0
H(µNSN

s |νρN(s,·)) ds

+
∫ t

0

ε−2
N

AN
log EνρN (s,·)

[
exp

{
A`N

N−KN−1

∑
j=KN+1

J(s, j/N) [ηKN (j)− ρ(s, j/N)]2
}]

ds

for every A > 0. By Hölder’s inequality and since νρN(s,·) is a product measure, the second
term of the last sum is less than or equal to

∫ t

0

ε−2
N

ANKN

N−KN−1

∑
j=KN+1

log EνρN (s,·)

[
exp

{
A`N J(s, j/N)KN [ηKN (j)− ρ(s, j/N)]2

}]
ds

By (2.2.3) and (2.2.16), `N J(s, j/N) ≤ C0 and δ ≤ ρN(s, x) ≤ 1 − δ for some δ > 0.
Therefore, since νρN(s,·) is the product measure with density ρN(s, ·), there exists A0 such
that for

EνρN (s,·)

[
exp

{
AC0KN [ηKN (j)− ρ(s, j/N)]2

}]
≤ C′0

for all 0 < A ≤ A0. The previous integral is therefore less than or equal to C0ε−2
N /AKN �

1. This proves that there exists a finite constant C0 such that

1
Nε2

N
H(µNSN

t |νρN(t,·)) ≤
1

Nε2
N

H(µN |νρN(0,·))

+ C0

∫ t

0

1
Nε2

N
H(µNSN

s |νρN(s,·)) ds + RN ,

where RN vanishes as N → ∞. To conclude the proof of Theorem 2.2.1 it remains to apply
Gronwall inequality.

Proof of Theorem 2.1.1. Set εN = `N = 1. (2.2.3). Conditions (2.2.4) and (2.2.5) are trivially
satisfied. The assertion of Theorem 2.1.1 follows therefore from Theorem 2.2.1.

Proof of Theorem 2.1.4. Assume that the external field vanishes: E(t, x) = 0 and that the
left and right chemical potentials are equal, λ0(t) = λ1(t), t ≥ 0. In this case the solution
of the elliptic equation (2.2.1) ρ̄λ,0 is constant in space, ρ̄λ,0(x) = α, where α = f ′(λ).

Condition (2.2.3) for N large enough follows from Proposition 2.4.1. Condition (2.2.4),
which can be read as conditions on ∂xρN and ∂2

xρN , follows from Propositions 2.4.1 and
2.4.2.

Proofs of Corollaries 2.1.2 and 2.1.5. The proofs are analogous to the one of Corollary 1.3,
Chapter 6 in [18], provided we replace in the statement of Corollary 2.1.5 νvN(t,x) by νρN(t,x).
However, since Ψ is a cylinder function,

1
εN

∣∣∣ ∫ 1

0
H(x)

{
EνvN (t,x) [Ψ]− EνρN (t,x) [Ψ]

}
dx
∣∣∣ ≤ C0

εN

∫ 1

0

∣∣vN(t, x)− ρN(t, x)
∣∣ dx .
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By definition of vN , the right hand side is equal to

C0

∫ 1

0

∣∣uN(t, x)− v(t, x)
∣∣ dx ,

where uN(t) = ε−1
N [ρN(t)− α(t)]. It remains to recall the statement of Proposition 2.1.3.

2.3 Entropy Estimates

We adopt in this section the notation and the set-up introduced in the previous one. Recall
from (2.2.7) that θ ∈ (0, 1) is a fixed parameter and that νθ is the product measure on ΣN
with density θ. It is not difficult to show that there exists a finite constant C0 = C0(θ) such
that

sup
µ

H(µ|νθ) ≤ C0N ,

where the supremum is carried over all probability measures µ on ΣN .
Fix a smooth function λ̂ : R+ × [0, 1] → R such that λ̂(t, a) = λa(t), t ≥ 0, a = 0, 1.

Let α(t, x) = eλ̂(t,x)/[1 + eλ̂(t,x)], and denote by νN
α(t), t ≥ 0, the product measure on ΣN

associated to the density α(t, x):

νN
α(t)(η) =

1
ẐN(t)

exp
{ N−1

∑
j=1

ηj f ′(α(t, j/N))
}

,

where ẐN(t) is the normalizing constant given by

ẐN(t) = exp
{
−

N−1

∑
j=1

log[1− α(t, j/N)]
}

.

Note that α(t, x) takes values in (0, 1). In particular, the quantities introduced above are
well defined.

Recall that {SN
t : t ≥ 0} represents the semigroup associated to the generator

N2`N LN(t), (d/dt)SN
t = N2`N LN(t)SN

t , and that HN(µ|π) stands for the relative en-

tropy of µ with respect to π. Denote by Dα(t)
N (·), t ≥ 0, the functional which acts on

functions h : ΣN → R, as

Dα(t)
N (h) =

N−2

∑
j=1

∫
cN,λ(t)

j,j+1 (η) [h(σj,j+1η)− h(η)]2 dνN
α(t)(η)

+
∫

cN,λ(t)
0,1 (η) rλ(t)

0,1 (η) [h(σ0,1η)− h(η)]2 dνN
α(t)(η)

+
∫

cN,λ(t)
N−1,N(η) rλ(t)

N−1,N(η) [h(σ
N−1,Nη)− h(η)]2 dνN

α(t)(η) ,

Lemma 2.3.1. Fix a sequence {µN : N ≥ 1} of probability measures, µN ∈ MN . For every
T > 0, there exists a finite constant C0, depending only on E(t), α(t), 0 ≤ t ≤ T, such that for all
0 ≤ t ≤ T,

HN(µNSN
t |νN

α(t)) ≤ −
N2 `N

2

∫ t

0
Dα(s)

N (
√

gs) ds + C0 N `N ,

where gt = gN
t = dµNSN

t /dνN
α(t).
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Proof. In this proof, C0 represents a finite constant which may depend only on θ, E(t),
α(t), 0 ≤ t ≤ T, but not on N.

Fix a sequence {µN : N ≥ 1} of probability measures, µN ∈MN . Recall the definition
of ft = f N

t , introduced in (2.2.11), and let φt, t ≥ 0, be given by

φt =
dνN

α(t)

dνθ
so that gt =

ft

φt
.

By definition,

HN(t) := H(µNSN
t |νN

α(t)) =
∫

ft log
ft

φt
dνθ ,

so that
d
dt

HN(t) = N2 `N

∫
ft LN(t) log

ft

φt
dνθ −

∫
ft ∂t log φt dνθ .

The second term on the right hand side is clearly bounded by C0N. On the other hand,
since a log b/a ≤ 2

√
a(
√

b−
√

a), for all a, b > 0, the first term on the right hand side is
less than or equal to

2N2 `N

∫
ht LN(t) ht dνN

α(t) ,

where ht =
√

gt =
√

ft/φt.

Recall the definition of the generator LN(t) introduced in (2.1.3). Denote by Lo
N(t) the

piece of LN(t) which corresponds to the sum for j in the range 1 ≤ j ≤ N − 2, and denote
by Lb

N(t) the remaining two terms. A change of variables η′ = σj,j+1η, 1 ≤ j ≤ N − 2,
yields

2
∫

ht Lo
N(t) ht dνN

α(t) = −
N−2

∑
j=1

∫
cN,λ(t)

j,j+1 (η) [ht(σ
j,j+1η)− ht(η)]

2 dνN
α(t)(η) + RN ,

where RN is a remainder absolutely bounded by

C0

N

N−2

∑
j=1

∫
cN,λ(t)

j,j+1 (η) [ht(σ
j,j+1η) + ht(η)] |ht(σ

j,j+1η)− ht(η)| dνN
α(t)(η)

for some finite constant C0. By Young’s inequality, and since gt = h2
t is a density with

respect to νN
α(t), the previous expression is bounded by the sum of a term which can be

absorbed by the first term on the right hand side of the penultimate displayed equation
with a term bounded by C0/N, that is,

2
∫

ht Lo
N(t) ht dνN

α(t) ≤ −
1
2

N−2

∑
j=1

∫
cN,λ(t)

j,j+1 (η) [ht(σ
j,j+1η)− ht(η)]

2 dνN
α(t)(η) +

C0

N
·

Since λ̃(t) is equal to λ(t) at the boundary of the interval [0, 1]

νN
α(t)(σ

0,1η)

νN
α(t)(η)

rλ(t)
0,1 (σ0,1η)

rλ(t)
0,1 (η)

= 1 + RN ,

where RN is absolutely bounded by C0/N. In view of this identity, and with a similar
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computation to the one presented for the interior piece of the generator, we conclude that

2
∫

ht Lb
N(t) ht dνN

α(t) ≤ −
1
2

∫
cN,λ(t)

0,1 (η) rλ(t)
0,1 (η) [ht(σ

0,1η)− ht(η)]
2 dνN

α(t)(η)

− 1
2

∫
cN,λ(t)

N−1,N(η) rλ(t)
N−1,N(η) [ht(σ

N−1,Nη)− ht(η)]
2 dνN

α(t)(η) +
C0

N2 .

It follows from the previous estimates that

HN(t) − HN(0) ≤ −
N2 `N

2

∫ t

0
DN(s,

√
gs) ds + C0 N `N ,

which concludes the proof of the lemma since HN(0) ≤ C0N, as observed at the beginning
of this section.

For a positive integer k, denote by ηk(j) the density of particles in an interval of length
2k + 1 centered at j:

ηk(j) =
1

2k + 1 ∑
i∈Ik(j)∩ΛN

η(i) ,

where Ik(j) = {j− k, . . . , j + k}.
Recall the definition of the polynomial ĥ : [0, 1] → R given in (2.2.17), where h is a

cylinder function, and recall the definition of the probability measures PN
µ introduced at

the beginning of Step 2 in the previous section.

Lemma 2.3.2. Let GN : R+ × [0, 1] → R (resp. HN : R+ → R), N ≥ 1, be a sequence of
functions in C0,1(R+ × [0, 1]) (resp. C(R+)) such that for all T > 0,

sup
N≥1

sup
0≤t≤T

‖GN(t)‖∞ < ∞ , sup
N≥1

sup
0≤t≤T

‖HN(t)‖∞ < ∞ .

Let h : {0, 1}Z → R be a cylinder function. Fix a sequence {µN : N ≥ 1} of probability measures,
µN ∈MN . Consider two sequences MN ↑ ∞ and KN ↑ ∞ such that MN � KN , MNKN � N.
Then, for every T > 0,

lim
N→∞

MN EµN

[ ∫ T

0

1
N

N−1−KN

∑
j=KN+1

GN(s, j/N)
{
(τjh)(ηs)− ĥ(ηKN

s (j))
}

ds
]

= 0 ,

and

lim
N→∞

MNEµN

[ ∫ T

0
HN(s)

{
τ

N,λ(s)
0 h(ηs)− ĥ(α(s, 0))

}
ds
]

= 0 ,

lim
N→∞

MNEµN

[ ∫ T

0
HN(s)

{
τ

N,λ(s)
N h(ηs)− ĥ(α(s, 1))

}
ds
]

= 0 .

Proof. Fix T > 0 and 0 ≤ t ≤ T. Every cylinder function can be written as a linear
combination of the functions ΨA = ∏j∈A ηj, A a finite subset of Z. It is therefore enough
to prove the lemma for such functions. We present the details for h = Ψ{0,1}, it will be
clear that the arguments apply to all cases.

Fix a sequence of continuous function GN : R+× [0, 1]→ R satisfying the assumptions
of the lemma and note that ĥ(θ) = θ2 in the case where h = Ψ{0,1}. It follows from the
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assumptions of the lemma and from a summation by parts that

1
N

N−1−KN

∑
j=KN+1

GN(s, j/N)
{

η(j)η(j + 1)− 1
2KN + 1

KN

∑
k=−KN

η(j + k)η(j + k + 1)
}

in the time interval [0, T] is absolutely bounded by a term of order KN/N. On the other
hand, we may write the difference (2KN + 1)−1 ∑|k|≤KN

η(j + k)η(j + k + 1)− ĥ(ηKN (j)) as

1
(2KN + 1)2 ∑

k,`
η(j + k) [η(j + k + 1)− η(j + `)] + O

( 1
KN

)
,

where the sum is carried over all k, ` such that |k| ≤ KN , |`| ≤ KN , k 6= `. The error
term takes into account the diagonal terms k = `. Denote by Vj,KN (η) the first term of the
previous formula.

In view of the former estimates, the first expectation appearing in the statement of the
lemma is equal to

EµN

[ ∫ T

0

1
N

N−1−KN

∑
j=KN+1

GN(s, j/N)Vj,KN (ηs) ds
]
+ RN ,

where RN is a remainder absolutely bounded by C0{(KN/N)+ (1/KN)}. Here and below,
C0 is a finite constant which does not depend on N, and which may change from line to
line.

Recall the definition of the density gs, introduced at the beginning of the proof of
Lemma 2.3.1. The first term of the previous formula is equal to

∫ T

0
ds
∫ 1

N

N−1−KN

∑
j=KN+1

GN(s, j/N)Vj,KN (η) gs(η) νN
α(s)(dη) . (2.3.1)

Recall the definition of Vj,KN (η) and represent the previous integral, denoted by I, as
(1/2)I + (1/2)I. In one of the halves, perform the change of variables η′ = σj+k+1,j+`η to
rewrite the previous expression as

1
2

1
(2KN + 1)2 ∑

k,`

∫ T

0
ds
∫ 1

N

N−1−KN

∑
j=KN+1

GN(s, j/N) η(j + k) ×

× [η(j + k + 1)− η(j + `)]{gs(η)− gs(σ
j+k+1,j+`η)} νN

α(s)(dη) + RN .

In this formula, RN is a remainder which appears from the change of measures
νN

α(s)(σ
j+k+1,j+`η)/νN

α(s)(η), and which is bounded by C0KN/N. Rewrite gs(η) − gs(η′)

as [
√

gs(η)−
√

gs(η′)] [
√

gs(η) +
√

gs(η′)] and apply Young’s inequality to estimate the
previous expression by

1
4A

1
K̃2

N
∑
k,`

∫ T

0
ds
∫ 1

N ∑
j

GN(s, j/N)2
{√

gs(η) +
√

gs(σj+k,j+`η)
}2

νN
α(s)(dη)

+
A
4

1
K̃2

N
∑
k,`

∫ T

0
ds
∫ 1

N ∑
j

{√
gs(η)−

√
gs(σj+k,j+`η)

}2
νN

α(s)(dη)

for every A > 0. In this formula, K̃N = 2KN + 1. Since gs is a density with respect to νN
α(s),
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the first term of the previous expression is bounded by

C0

A

∫ T

0
ds

1
N

N−1−KN

∑
j=KN+1

GN(s, j/N)2 ≤ C0

A
·

On the other hand, by the path lemma, explained in pages 94-95 of [18] and in details
below equation (3.7) in [21], the second term of the previous formula is bounded above by

C0 AK2
N

N

∫ T

0
ds Dα(s)

N (
√

gs) .

Recall that in the path lemma, a change of variables η′ = σj,j+1σj+1,j+2 · · · σk−1,kη is per-
formed. Usually, the Jacobian of this change of variables is equal to 1 because the reference
measure is a homogeneous product measure. In the present case, where the measure νN

α(s)
is a local equilibrium, the Jacobian is equal to exp{h(η)}, where h is uniformly bounded
by KN/N. By Lemma 2.3.1, the previous displayed equation is less than or equal to
C0 A(KN/N)2. Optimizing over A, we conclude that (2.3.1) is bounded by C0KN/N.

To compete the proof of the first assertion of the lemma it remains to recollect all the
previous estimates and to recall the assumptions on the sequences MN and KN .

We turn to the second assertion. Here again, we present the proof for the left boundary
in the case where h(η) = η1η2. Note that, by definition of τN,λ

0 , the case h(η) = η0η1
reduces to the case h(η) = η1.

By definition of gs, the expectation appearing in the statement of the lemma is equal
to ∫ T

0
ds HN(s)

∫ {
η1η2 − α(s, 0)2} gs(η) νN

α(s)(dη) .

Fix s and write the difference EνN
α(s)

[η1η2gs]− α(s, 0)2 as

{
EνN

α(s)

[
η1η2gs

]
− EνN

α(s)

[
η2gs

]
α(s, 0)

}
+
{

EνN
α(s)

[
η2gs

]
α(s, 0) − EνN

α(s)

[
gs
]
α(s, 0)2

}
.

(2.3.2)

Since 1 = η1 + (1− η1), the first term inside braces can be written as

[1− α(s, 0)] EνN
α(s)

[
η1η2gs

]
− α(s, 0) EνN

α(s)

[
(1− η1)η2gs

]
.

Performing a change of variables η′ = σ0,1η in the first expectation, this difference be-
comes

α(s, 1/N)
(1− α(s, 0))

1− α(s, 1/N)
EνN

α(s)

[
(1− η1)η2gs(σ

0,1η)
]
− α(s, 0) EνN

α(s)

[
(1− η1)η2gs

]
,

Since |α(s, 1/N)− α(s, 0)| ≤ C0/N, the previous expression is equal to

α(s, 0) EνN
α(s)

[
(1− η1)η2

{
gs(σ

0,1η) − gs(η)
}]

+ RN ,

where RN is a remainder bounded by C0/N in view of the assumptions on the sequence
HN . At this point, we may repeat the arguments presented in the first part of the proof
to bound the first term by C0{D

α(s)
N (
√

gs)}1/2, whose time integral, in view of Lemma
2.3.1, is bounded by C0N−1/2. A similar argument permits to estimate the second term in
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(2.3.2). This completes the proof of the lemma.

2.4 The Hydrodynamic Equation

We prove in this section Proposition 2.1.3 and some estimates, stated below in Propositions
2.4.1 and 2.4.2, on the solution of equation (2.4.1). Recall the definition of the spaces
Ck([0, 1]) and Ck

0([0, 1]), k ≥ 1, introduced just below (2.1.6). Denote by ‖ f ‖p, p ≥ 1, the
Lp-norm of a function f : [0, 1]→ R,

‖ f ‖p
p =

∫ 1

0
| f (x)|p dx .

Fix ν > 0, a smooth function α : R+ → (0, 1), and an initial condition ρ0 in C4([0, 1])
such that ρ0(0) = ρ0(1) = α(0). Denote by ρ(t, x) = ρν(t, x) the solution of the initial–
boundary value problem 

∂tρ = ν ∂x(D(ρ)∂xρ) ,

ρ(t, 0) = ρ(t, 1) = α(t) ,

ρ(0, x) = ρ0 .

(2.4.1)

Proposition 2.4.1. For every t0 ≥ 0, there exists ν0 < ∞, such that for all ν ≥ ν0, there exist
positive constants 0 < b < B < ∞, depending only on D, α(t), 0 ≤ t ≤ t0, such that for all
0 ≤ t ≤ t0,

‖ρ(t)− α(t)‖2
∞ ≤ B e−bν t‖∂xρ0‖2

2 +
B
ν2 ,

‖(∂xρ)(t)‖2
∞ ≤ B e−bνt

{
‖∂2

xρ0‖2
2 + ‖∂xρ0‖4

4 +
1
ν
‖∂xρ0‖2

2

}
+

B
ν2 .

In this proposition, e−bνt corresponds to the speed of convergence to equilibrium of the
solution of (2.4.1) in the case where the boundary condition α(t) does not change in time,
while 1/ν2 stands for the relaxation time due to the evolution of the boundary conditions.

Proposition 2.4.2. Assume that ρ0 = α(0) + εv0, where v0 belongs to C4
0([0, 1]). For every

t0 ≥ 0, there exists ε0 > 0 and ν0 < ∞, depending on D, v0, α(t), 0 ≤ t ≤ t0, such that for all
ε < ε0, ν ≥ ν0, there exist positive constants B < ∞, such that for all 0 ≤ t ≤ t0,

‖(∂2
xρ)(t)‖2

∞ ≤ B
{

ε2 +
1
ν4

}
.

The proof of these propositions is divided in a sequence of assertions. The Poincaré’s
inequality plays a fundamental role in the argument. It states that there exists a finite
constant K1 such that for every C1([0, 1]) function f which vanishes at some point x ∈
[0, 1], ∫ 1

0
f (x)2 dx ≤ K1

∫ 1

0
[ f ′(x)]2 dx .

Throughout this subsection, c0, C0 represent small and large constants which depend
only on K1 and D.

Let
β1(t) = sup

0≤s≤t
|α′(s)| , β2(t) = sup

0≤s≤t
|α′′(s)| . (2.4.2)
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Assertion A. There exist positive constants 0 < c0 < C0 < ∞ such that for all t ≥ 0,∫ 1

0
[ρ(t)− α(t)]2 dx ≤ e−c0νt

∫ 1

0
[ρ(0)− α(0)]2 dx +

C0

ν2 β1(t)2(1− e−c0νt) .

Proof. The proof follows classical arguments. Since ρ(t) = α(t) at the boundary, an inte-
gration by parts and the fact that α(t) is space independent yield that

1
2

d
dt

∫ 1

0
[ρ(t)− α(t)]2 dx = − ν

∫ 1

0
D(ρ(t)) (∂xρ(t))2 dx − α′(t)

∫ 1

0
[ρ(t)− α(t)] dx .

Since the diffusivity is bounded below by a strictly positive constant, in the first term we
may replace D(ρ(t)) by c0 and the identity by an inequality. By Poincaré’s inequality,
the integral of −(∂xρ(t))2 is bounded by the integral of −K−1

1 [ρ(t)− α(t)]2. The second
term on the right hand side can be estimated by Young’s inequality. One of the terms is
absorbed by what remained of the first term. The other one is (C0/ν)α′(t)2.

Up to this point we have shown that

1
2

d
dt

∫ 1

0
[ρ(t)− α(t)]2 dx ≤ − c0 ν

∫ 1

0
[ρ(t)− α(t)]2 dx +

C0

ν
α′(t)2 .

To complete the proof, it remains to apply Gronwall inequality.

Let d : [0, 1]→ R be a primitive of D, d′ = D, and let

c1 = inf
0≤α≤1

D(α) , C1 = ‖(log D)′‖∞ . (2.4.3)

Assertion B. Assume that 2K1C1β1(t0) < c1ν for some t0 > 0. Then, there exists a positive
constants C0 < ∞ such that for all 0 ≤ t ≤ t0,∫ 1

0
[∂xd(ρ(t))]2 dx ≤ e−aν t

∫ 1

0
[∂xd(ρ(0))]2 dx +

C0

ν

∫ t

0
e−aν(t−s)β1(s)2 ds ,

where aν = (c1/K1)ν− 2C1β1(t0).

Proof. The proof is similar to the previous one. Adding and subtracting α′(t) we have that

1
2

d
dt

∫ 1

0
[∂xd(ρ(t))]2 dx =

∫ 1

0
∂xd(ρ(t)) ∂x

{
D(ρ(t))

[
ν ∂2

xd(ρ(t))− α′(t)
]}

dx

+ α′(t)
∫ 1

0
∂xd(ρ(t)) ∂xD(ρ(t)) dx .

Since α(t) = ρ(t, 0) = ρ(t, 1), α′(t) = ν ∂2
xd(ρ(t, 0)) = ν ∂2

xd(ρ(t, 1)). In particular, we may
integrate by parts the first term on the right hand side. This operation yields a negative
term and one involving α′(t). This latter expression can be estimated through Young’s
inequality. The first piece is absorbed into the negative term and the second piece is
bounded by (C0/ν)α′(t)2. Hence,

1
2

d
dt

∫ 1

0
[∂xd(ρ(t))]2 dx ≤ − c1ν

2

∫ 1

0
[∂2

xd(ρ(t))]2 dx +
C0

ν
α′(t)2

+ C1 |α′(t)|
∫ 1

0
[∂xd(ρ(t))]2 dx .

Since
∫ 1

0 ∂xd(ρ(t))dx = 0, applying Poincaré inequality to the first term on the right hand
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side, we obtain that the last expression is bounded above by

−
[ c1 ν

2K1
− C1β1(t)

] ∫ 1

0
[∂xd(ρ(t))]2 dx +

C0

ν
β1(t)2 .

To complete the proof, it remains to replace β1(t) by β1(t0) in the term inside brackets,
getting an expression which is positive by assumption, and to apply Gronwall inequality.

Lemma 2.4.3. Assume that c1ν > 2K1C1β1(t0) for some t0 > 0. Then, there exist positive
constants 0 < c0 < C0 < ∞ such that for all 0 ≤ t ≤ t0,

‖ρ(t)− α(t)‖2
∞ ≤ C0e−c0ν teC0β(t0)t

∫ 1

0
[∂xd(ρ(0))]2 dx +

1
ν2

C0β1(t)2

1− (A1β1(t0)/ν)
,

where A1 = 2K1C1/c1.

Proof. Assume that 2K1C1β1(t0) < c1ν for some t0 > 0 and fix 0 < t ≤ t0. Since α(t) =
ρ(t, 0), by Schwarz inequality there exists a finite constant C0 such that for every x ∈ [0, 1],

|ρ(t, x)− α(t)|2 ≤ C0

∫ 1

0
[∂xρ(t)]2 dx ≤ C0

∫ 1

0
[∂xd(ρ(t))]2 dx .

To complete the proof, it remains to recall Assertion B and to estimate the term β1(s)2

appearing in the time integral by β1(t)2.

Let Fn, Gn : R+ → R, n ≥ 1, be given by

Fn(t) =
∫ 1

0
[∂xd(ρ(t))]2n dx , Gn(t) =

∫ 1

0
[∂2

xd(ρ(t))]2 [∂xd(ρ(t))]2n dx . (2.4.4)

Assertion C. For all n ≥ 2, there exist positive constants 0 < c0 < C0 < ∞, b0 > 0, such that
for all 0 < b < b0, t ≥ 0,

Fn(t) + c0 n2 ν
∫ t

0
Gn−1(s) e−bν(t−s) ds

≤ e−bνt Fn(0) + C0
n2

ν
β1(t)2

∫ t

0
Fn−1(s) e−bν(t−s) ds .

Proof. Since α′(t) = ∂tρ(t, 1) = ν∂2
xd(ρ(t, 1)), adding and subtracting α′(t), and then inte-

grating by parts yield that

F′n(t) = −2n(2n− 1) ν
∫ 1

0
D(ρ(t)) [∂xd(ρ(t))]2n−2 [∂2

xd(ρ(t))]2 dx

+ 2n(2n− 1) α′(t)
∫ 1

0
D(ρ(t)) [∂xd(ρ(t))]2n−2 ∂2

xd(ρ(t)) dx

+ 2n α′(t)
∫ 1

0
[∂xd(ρ(t))]2n−1 ∂xD(ρ(t)) dx .

Apply Young’s inequality to the second term on the right hand side to bound it by the
sum of two terms. The first one can be absorbed by the first term on the right hand side,
and the second one is bounded by C0(n2/ν)α′(t)2Fn−1(t). In the last term on the right
hand side, replace ∂xD(ρ(t)) by ∂x[D(ρ(t)) − D(α(t))] and integrate by parts to obtain
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that it is equal to

−2n(2n− 1) α′(t)
∫ 1

0
[∂xd(ρ(t))]2(n−1) ∂2

xd(ρ(t)) [D(ρ(t))− D(α(t))] dx .

Apply Young’s inequality to bound this expression by the sum of two terms. The first one
can be absorbed by the first term on the penultimate formula, while the second one is less
than or equal to C0n2α′(t)2ν−1Fn−1(t). Therefore,

F′n(t) ≤ −c0 n2 ν Gn−1(t) + C0 n2 α′(t)2

ν
Fn−1(t) .

Let f (x) = [∂xd(ρ(t, x))]n. Since
∫ 1

0 ∂xd(ρ(t, x)) dx = 0, there exists x0 ∈ [0, 1] such
that ∂xd(ρ(t, x0)) = 0, so that f (x0) = 0. We may therefore apply Poincaré’s inequality to
[∂xd(ρ(t, x))]n to obtain that

Fn(t) =
∫

f (x)2 dx ≤ K1

∫
f ′(x)2 dx = K1n2Gn−1(t) .

It follows from the previous estimates that

F′n(t) ≤ −b0 ν Fn(t) − c0 n2 ν Gn−1(t) + C0 n2 α′(t)2

ν
Fn−1(t)

for some b0 > 0. The same inequality remains in force for any 0 < b < b0. It remains to
apply Gronwall inequality to complete the proof.

Iterating the inequality appearing in the previous assertion without the term Gn−1
yields

Assertion D. For all n ≥ 2, there exist positive constants 0 < c0 < C0 < ∞, b0 > 0, such that
for all 0 < b < b0, t ≥ 0,

Fn(t) + c0n2ν
∫ t

0
e−bν(t−s)Gn−1(s) ds ≤ rn(t) ,

where rn(t) = rn(t, b, C0) is given by

rn(t) = C0

n

∑
k=2

Fk(0)
( t[nβ1(t)]2

ν

)n−k e−bνt

(n− k)!

+ C0

( [nβ1(t)]2

ν

)n−1 ∫ t

0
e−bν(t−s) (t− s)n−2

(n− 2)!
F1(s) ds .

Let w : R+ × [0, 1]→ R be given by

w(t, x) = [∂2
xd(ρt)](x) − 1

ν
α′(t) . (2.4.5)

Assertion E. There exist positive constants 0 < c0 < C0 < ∞ such that∫ 1

0
w(t)2 dx ≤ e−c0νt

∫ 1

0
w(0)2 dx +

C0

ν3

∫ t

0
α′′(s)2 ds + r2(t) ,

where the remainder r2 has been introduced in Assertion D.
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Proof. The proof is similar to the one of Assertion A. We first show that

d
dt

∫ 1

0
w(t)2 dx ≤ − ν

∫ 1

0
D(ρt) [∂

3
xd(ρt)]

2 dx +
1

Aν3 α′′(t)2

+ ν
∫ 1

0

1
D(ρt)

[∂xD(ρt)]
2 [∂2

xd(ρt)]
2 dx + A ν

∫ 1

0
w(t)2 dx

for any A > 0. As w(t) vanishes at x = 0, apply Poincaré’s to this functions to get that∫ 1

0
w(t)2 dx ≤ K1

∫ 1

0
[∂3

xd(ρt)]
2 dx .

Hence, choosing A small enough yields

d
dt

∫ 1

0
w(t)2 dx ≤ − c0ν

∫ 1

0
w(t)2 dx +

C0

ν3 α′′(t)2 + C0νG1(t) ,

where the function G1 has been introduced in (2.4.4). We may replace the constant c0 by
one which is smaller than the constant b0 appearing in the statement of Assertion D. By
Gronwall inequality,

∫ 1

0
w(t)2 dx ≤ e−c0νt

∫ 1

0
w(0)2 dx + C0

∫ t

0
e−c0ν(t−s)

{α′′(s)2

ν3 + νG1(s)
}

ds .

To complete the proof of the assertion, it remains to recall the statement of Assertion
D.

Lemma 2.4.4. Assume that c1ν > 2K1C1β1(t0) for some t0 > 0. Then, there exist positive
constants 0 < c0 < C0 < ∞ such that for all 0 ≤ t ≤ t0,

‖∂xd(ρ(t))‖2
∞ ≤ C0e−c0νt

{ ∫ 1

0
w(0)2 dx + F2(0) +

1
ν

eC0β1(t0) t F1(0)
}

+
C0

ν2

{
α′(t)2 +

1
ν

∫ t

0
α′′(s)2 ds +

1
ν2 eC0β1(t0)[1+t]

}
.

Proof. Assume that 2K1C1β1(t0) < c1ν for some t0 > 0 and fix 0 < t ≤ t0. Since∫ 1
0 (∂xd(ρ(t)) dx = 0, subtracting this integral and applying Schwarz inequality, we get

that for all x ∈ [0, 1],

[∂xd(ρ(t, x))]2 ≤ C0

∫ 1

0
[∂2

xd(ρ(t, y))]2dy .

Adding and subtracting α′(t)/ν, by Young’s inequality, the previous expression is less
than or equal to

C0

∫ 1

0
w(t)2dy + C0

α′(t)2

ν2 ·

By Assertion E, the first term of the previous expression is less than or equal to

C0e−c0νt
∫ 1

0
w(0)2 dx +

C0

ν3

∫ t

0
α′′(s)2 ds + r2(t) .

By its definition and by Assertion B,

r2(t) ≤ C0e−c0νt
{

F2(0) +
1
ν

eC0β1(t0) t F1(0)
}

+
C0

ν4 eC0β1(t0)[1+t] .
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To complete the proof it remains to recollect all previous estimates.

Let
q(t) = ‖∂xd(ρt)‖∞ , Q(t) = sup

0≤s≤t
q(s) , t ≥ 0 . (2.4.6)

Assertion F. Suppose that Q(t0)(1 + n2K1) < c1 for some t0 > 0. Then, there exists a positive
constant C0 < ∞ such that for all 0 ≤ t ≤ t0,∫ 1

0
w(t)2n dx ≤ e−anνt

∫ 1

0
w(0)2n dx +

∫ t

0
e−anν(t−s)Hn−1(s) ds ,

where an = [c1 −Q(t0)(1 + n2K1)]/K1 and

Hn−1(s) = C0

{
n2q(s)2 α′(s)2

ν
+

α′′(s)2

ν3

} ∫ 1

0
w(s)2(n−1) dx .

Proof. Since w(t) vanishes at the boundary, an integration by parts yields that the time
derivative of

∫ 1
0 w(t)2n dx is equal to

− 2n(2n− 1) ν
∫ 1

0
w(t)2(n−1)D(ρt) [∂

3
xd(ρt)]

2 dx (2.4.7)

− 2n(2n− 1) ν
∫ 1

0
w(t)2(n−1)∂xD(ρt)w(t) ∂3

xd(ρt) dx

− 2n(2n− 1)α′(t)
∫ 1

0
w(t)2(n−1)∂xD(ρt) ∂3

xd(ρt) dx − 2nα′′(t)
ν

∫ 1

0
w(t)2n−1 dx .

In this formula, in the second line, we added and subtracted (1/ν)α′(t) to recover w(t)
from ∂2

xd(ρt).
Recall the definition of q(t), introduced in (2.4.6), and the one of the constants c1, C1,

defined in (2.4.3). Estimating ∂xD(ρt) by C1q(t), and applying Young inequality to the
last three terms of the previous displayed equation, we obtain that the time derivative of∫ 1

0 w(t)2n dx is bounded by

− 2n (2n− 1) ν
{

c1 −
q(t)

2
− 1

A

} ∫ 1

0
w(t)2(n−1) [∂3

xd(ρt)]
2 dx

+ 2n(2n− 1) ν
{ q(t)

2
+

1
A

} ∫ 1

0
w(t)2n dx

+ C0

{
n2 Aq(t)2 α′(t)2

ν
+

α′′(t)2

ν3

} ∫ 1

0
w(t)2(n−1) dx ,

for every A > 0.
Let f (x) = w(t, x)n. Since f vanishes at the boundary and since f ′(x) =

nw(t, x)n−1∂3
xd(ρt), by Poincaré’s inequality,∫ 1

0
w(t)2n dx =

∫ 1

0
f 2 dx ≤ K1

∫ 1

0
[ f ′]2 dx = K1n2

∫ 1

0
w(t)2(n−1) [∂3

xd(ρt)]
2 dx .

Set A = 2(1 + n2K1)/c1. With this choice, by assumption, c1 − q(t)/2 − 1/A > 0. In
particular, the sum of the first two lines of the penultimate displayed equation is less than
or equal to

−2n(2n− 1) ν

2n2K1

{
c1 − q(t)(1 + n2K1)

} ∫ 1

0
w(t)2n dx .
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Since 2n(2n− 1)/2n2 ≥ 1, to complete the proof it remains to apply Gronwall inequality.

Assertion G. Assume that 2(1 + K1)C1Q(t0) < c1 for some t0 > 0. Then, there exist positive
constants 0 < c0 < C0 < ∞ such that for all 0 ≤ t ≤ t0,∫ 1

0
[∂3

xd(ρt)]
2 dx ≤ e−aνt

∫ 1

0
[∂3

xd(ρ0)]
2 dx +

∫ t

0
e−aν(t−s)H(s) ds ,

where a = [c1 − 2(1 + K1)C1Q(t0)]/2K1, and

H(s) = C0 ν q(s)2
∫ 1

0
[∂2

xd(ρs)]
2 dx + C0 ν

∫ 1

0
[∂2

xd(ρs)]
4 dx +

C0

ν3 [α
′′(s)]2 .

Proof. The proof is similar to the one of Assertion B. Fix t0 > 0 satisfying the hypothesis
of the lemma and consider some t < t0. Since ρ(t, 1) = αt, α′′(t) = ν2 ∂2

x[D(ρ(t))∂2
xd(ρ(t))]

at x = 0, 1. Adding and subtracting ν−1α′′(t), and integrating by parts, we have that

1
2

d
dt

∫ 1

0
[∂3

xd(ρt)]
2 dx = − ν

∫ 1

0
∂4

xd(ρt) ∂2
x
{

D(ρt) ∂2
xd(ρt)

}
dx

+ ν−1α′′(t)
∫ 1

0
∂4

xd(ρt) dx .
(2.4.8)

Let D1(α) = (log D)′(α), D2(α) = (log D)′′(α)/D(α). Expand ∂2
x{D(ρt) ∂2

xd(ρt)}, and
observe that ∂2

xD(ρt) = D1(ρt)∂2
xd(ρt) + D2(ρt)[∂xd(ρt)]2 to write the first term on the

right hand side of the previous formula as

− ν
∫ 1

0
D(ρt) [∂

4
xd(ρt)]

2 dx − 2ν
∫ 1

0
∂xD(ρt) ∂3

xd(ρt) ∂4
xd(ρt) dx

− ν
∫ 1

0
D1(ρt) [∂

2
xd(ρt)]

2 ∂4
xd(ρt) dx − ν

∫ 1

0
D2(ρt) [∂xd(ρt)]

2∂2
xd(ρt) ∂4

xd(ρt) dx .

Recall the definition of q(t) introduced in (2.4.6), and recall that c1 = inf0≤α≤1 D(α), C1 =
‖D1‖∞. Apply Young’s inequality to the last three terms and to the last term in (2.4.8) to
obtain that the left hand side of (2.4.8) is less than or equal to

− ν
[
c1 −

2
A
− C1q(t)

] ∫ 1

0
[∂4

xd(ρt)]
2 dx + C1 ν q(t)

∫ 1

0
[∂3

xd(ρt)]
2 dx (2.4.9)

+ A C0 ν q(t)2
∫ 1

0
[∂2

xd(ρt)]
2 dx + A C0 ν

∫ 1

0
[∂2

xd(ρt)]
4 dx +

A
ν3 [α

′′(t)]2

for all A > 0.
Since ∂2

xd(ρ(t, 1)) = ∂2
xd(ρ(t, 0)),

∫ 1
0 ∂3

xd(ρt) dx = 0. Therefore, by Poincaré’s inequality,

∫ 1

0
[∂3

xd(ρt)]
2 dx ≤ K1

∫ 1

0
[∂4

xd(ρt)]
2 dx .

Set A = 4/c1. Since, by hypothesis, 2C1q(t) ≤ 2C1Q(t0) < c1, the first line of (2.4.9) is
bounded by

− ν

2K1

[
c1 − 2C1 [1 + K1] q(t)

] ∫ 1

0
[∂3

xd(ρt)]
2 dx ≤ −a ν

∫ 1

0
[∂3

xd(ρt)]
2 dx ,

where a has been introduced in the statement of the assertion. To complete the proof, it
remains to apply Gronwall inequality.
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Proof of Proposition 2.4.1. The claims are straightforward consequences of Lemmas 2.4.3
and 2.4.4. We turn to the third assertion.

Proof of Proposition 2.4.2. Since ∂2
xd(ρ)(t, 1) − (1/ν)α′(t) vanish as x = 0, by Schwarz in-

equality, for any x0 ∈ [0, 1],

[∂2
xd(ρt)(x0)− α′(t)]2 ≤

∫ 1

0
[∂3

xd(ρt)(x)]2 .

Fix t0 > 0. By Proposition 2.4.1, Q(t0)
2 ≤ C0δ2, where δ2 = ε2 + ν−2. Therefore, there

exist ε0 > 0 and ν0 < ∞ with the property that the hypothesis of Assertion G is in force
for all ε < ε0, ν > ν0. In particular, the previous expression is bounded by

C0ε2 +
∫ t

0
e−aν(t−s)H(s) ds ,

where H has been introduced in the statement of Assertion G. By Proposition 2.4.1, which
permits to estimate q(s)2, by adding and subtracting α′(s) to ∂2

xd(ρs), which permits to
recover the function w(s) introduced in (2.4.5), the second term of the previous equation
is less than or equal to

C0

{ 1
ν4 +

ε2

ν2

}
+ C0 ν

∫ t

0
ds e−aν(t−s)

∫ 1

0

{
δ2w(s)2 + [∂2

xd(ρs)]
4} dx .

By Assertion E, this sum is bounded by

C0

{ 1
ν4 + ε4

}
+ C0 ν

∫ t

0
ds e−aν(t−s)

{
δ2r2(s) +

∫ 1

0
[∂2

xd(ρs)]
4 dx

}
,

By Assertion B, r2(s) ≤ C0δ2. We may thus remove r2 from the previous formula. By
Young inequality, by Assertion F and by Proposition 2.4.1, the second term without r2(s)
is less than or equal to

C0

{ 1
ν4 + ε4

}
+ C0δ2

∫ t

0
ds e−aν(t−s)

∫ s

0
dr e−a′ν(s−r)

∫ 1

0
w(r)2 dx .

By Assertions E and B, the previous expression is less than or equal to C0δ4. This concludes
the proof of the proposition.

Proof of Proposition 2.1.3. By Proposition 2.4.1, for every t0 > 0, there exists ν0 < ∞ and
B < ∞, where B depends on α(s), 0 ≤ s ≤ t0, and on the initial condition v0, such that for
all 0 ≤ t ≤ t0

‖uν(t)‖2
∞ ≤ B ,

∫ 1

0
[∂xuν(t)]2 dx ≤ B (2.4.10)

Fix t0 > 0 and 0 ≤ t < t0. By definition, uν(t, 0) = uν(t, 1) = 0, and

∂tuν = ν
{

∂x
[
D(αt + εuν)∂xuν

]
− α′(t)

}
= ν ∂x

{
D(αt + εuν)∂xuν − D(αt)∂xvt

}
.

where ε = ν−1.



34 2. SUPER-DIFFUSIVE LIMIT OF EXCLUSION PROCESSES

Therefore, for every t ≥ 0, an integration by parts yields

1
2

d
dt

∫ 1

0
[uν(t)− vt]

2 dx =
∫ 1

0
[uν(t)− vt] ∂tvt dx

− ν
∫ 1

0
∂x[uν(t)− vt]

{
D(αt + εuν)∂xuν − D(αt)∂xvt

}
dx .

The second term is less than or equal to

− ν
∫ 1

0
D(αt) [∂xuν(t)− ∂xvt]

2 dx + C0

∫ 1

0
|∂xuν(t)− ∂xvt| |uν| |∂xuν| dx

≤ −c0ν
∫ 1

0
[∂xuν(t)− ∂xvt]

2 dx +
C0

ν

∫ 1

0
uν(t)2[∂xuν(t)]2 dx .

By (2.4.10), the second term is bounded by B/ν. Therefore, by Young’s inequality and by
Poincaré’s inequality,

1
2

d
dt

∫ 1

0
[uν(t)− vt]

2 dx ≤ −c0ν
∫ 1

0
[uν(t)− vt]

2 dx +
C0

ν

∫ 1

0
(∂tvt)

2 dx +
B
ν

.

To conclude the proof, it remains to apply Gronwall inequality.

2.5 The Diffusion Coefficient

We provide in this section a formula for the diffusion coefficient.
Fix a cylinder function f : {0, 1}Z → R, and recall from (2.2.17) that f̂ : [0, 1] → R

represents the polynomial defined by

f̂ (θ) = Eνθ
[ f (ξ)] .

Write Eνθ+h [ f (ξ)] as Eνθ
[ f (ξ)Nh], where Nh is the Radon-Nikodym derivative of νθ+h,

restricted to the support of f , with respect to νθ , to get that

f̂ ′(θ) =
1

c(θ) ∑
k∈Z

〈 f ; η(k)〉θ , (2.5.1)

where 〈 f ; g〉θ represents the covariance between two cylinder functions f , g in L2(νθ):
〈 f ; g〉θ = Eνθ

[ f g]− Eνθ
[ f ]Eνθ

[g], and c(θ) the static compressibility, given by c(θ) = θ(1−
θ).

Recall the definitions of the cylinder function h, introduced in (2.2.15). We claim that

ĥ′(θ) = D(θ) . (2.5.2)

Indeed, since the cylinder function c(η) does not depend on η(0) and η(1),

c(θ) D(θ) = − ∑
k∈Z

k
〈
[η(0)− η(1)]c(η) ; η(k)

〉
θ

.

Note that all terms in this sum vanish but the one with k = 1, and that the sum over k is
finite because c is a cylinder function. By (2.1.1) and by a change of variables, the right
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hand side is equal to

− ∑
k∈Z

k
m

∑
a=1

∑
j∈Z

µa(j)
〈
τ−jha ; η(k)

〉
θ
= −

m

∑
a=1

∑
k,j∈Z

k µa(j)
〈
τ−(j+k)ha ; η(0)

〉
θ

.

Note that sum over j is finite because µa has finite support. By definition of ma, and since
the total mass of µa vanishes, ∑j µa(j) = 0, performing the change of variables k′ = j + k
last term becomes

m

∑
a=1

ma ∑
k,∈Z

〈
τ−kha ; η(0)

〉
θ
=

m

∑
a=1

ma ∑
k,∈Z

〈
ha ; η(k)

〉
θ
= c(θ)

m

∑
a=1

ma ĥ′a(θ) ,

where the last identity follows from (2.5.1). This last expression is equal to c(θ)ĥ′(θ),
which concludes the proof of (2.5.2).





Chapter 3

From Coalescing Random Walks
on a Torus to Kingman’s

Coalescent*

Abstract

Let Td
N , d ≥ 2, be the discrete d-dimensional torus with Nd points. Place a particle

at each site of Td
N and let them evolve as independent, nearest-neighbor, symmetric,

continuous-time random walks. Each time two particles meet, they coalesce into
one. Denote by CN the first time the set of particles is reduced to a singleton.
Cox [11] proved the existence of a time-scale θN for which CN/θN converges to the
sum of independent exponential random variables. Denote by ZN

t the total number
of particles at time t. We prove that the sequence of Markov chains (ZN

tθN
)t≥0

converges to the total number of partitions in Kingman’s coalescent.

3.1 Notation and Results

Denote by p the probability measure on Zd given by

p(x) =
1

2d
if x ∈ {±e1, . . . ,±ed} , and p(x) = 0 otherwise . (3.1.1)

Let EN be the family of nonempty subsets of Td
N . The coalescing random walks introduced

in the previous section is the EN-valued, continuous-time Markov chain, represented by
{AN(t) : t ≥ 0}, whose generator LN is given by

(LN f )(A) = ∑
x∈A

∑
y 6∈A

p(y− x){ f (Ax,y)− f (A)} + ∑
x∈A

∑
y∈A

p(y− x){ f (Ax)− f (A)} ,

(3.1.2)

*Joint work with Claudio Landim and Johel Beltrán
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where Ax,y (resp. Ax) is the set obtained from A by replacing the point x by y (resp.
removing the element x):

Ax,y = [A \ {x}] ∪ {y} , Ax = A \ {x} .

3.1.1 Kingman’s Coalescent

Recall from subsection 1.2.2 the definition of the process (Nt)t≥0 associated to the King-
man’s coalescent, and the definition of the set S. Denote by D(R+, S) the space of S-
valued, right-continuous trajectories with left-limits, endowed with the Skorokhod topol-
ogy. The respective coordinate maps are denoted by

Xt : D(R+, S)→ S , t ≥ 0 .

Consider the canonical filtration

Gt := σ(Xs : 0 ≤ s ≤ t) , t ≥ 0 .

It is known that G∞ := σ(Xt : t ≥ 0) coincides with the corresponding Borel σ-field on
D(R+, S). Let C1(S) be the set of functions f : S → R of class C1, that is f ∈ C1(S) is the
restriction to S of a continuously differentiable function defined on a neighborhood of S.
For each f ∈ C1(S) define L f : S→ R as

(L f )(y) :=


(n

2)
{

f
(

1
n−1

)
− f

(
1
n

)}
, if y = 1

n and n ≥ 2 ,

0 , if y = 1 ,
(1/2) f ′(0) , if y = 0 .

(3.1.3)

The following proposition guarantees existence and uniqueness for the
(
C1(S), L

)
-

martingale problem and that (Xt)t≥0, defined in (1.2.3), provides the unique solution
starting at 0 ∈ S.

Proposition 3.1.1. For each x ∈ S, there exists a unique solution for the
(
C1(S), L

)
-martingale

problem starting at x. That is, there exists a unique probability measure Px on the measurable
space

(
D(R+, S),G∞

)
such that Px[X0 = x] = 1 and, for every f ∈ C1(S),

f (Xt)−
∫ t

0
(L f )(Xs) ds , t ≥ 0 , (3.1.4)

is a Px-martingale with respect to (Gt)t≥0. Moreover, P0 coincides with the law of (Xt)t≥0.

3.1.2 Main Result

Recall that EN stands for the set of nonempty subsets of Td
N . Consider the partition of EN

according to the number of elements:

EN =
⋃

n∈N

E n
N , where E n

N := {A ⊂ Td
N : |A| = n} , n ∈N , (3.1.5)

and |A| stands for the number of elements of A. Let ΨN : EN → S be the projection
corresponding to partition (3.1.5)

ΨN(A) = 1/|A| , A ∈ EN .
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For each A ∈ EN , let PN
A denote a probability measure under which the process(

AN(t)
)

t≥0 corresponds to a coalescing random walk on Td
N starting at A, i.e. a Markov

chain with state space EN and generator LN (defined in (3.1.2)) such that PN
A [AN(0) =

A] = 1. When A = Td
N , we denote PN

A simply by PN . Expectation with respect to PN
A , PN

is represented by EN
A , EN , respectively.

Consider two independent random walks (xN
t )t≥0 and (yN

t )t≥0 on Td
N , both with jump

probability given by p(·), starting at the uniform distribution. Let θN be the expected
meeting time:

θN := E
[

min{t ≥ 0 : xN
t = yN

t }
]

.

Since xN
t − yN

t evolves as a random walk speeded-up by 2, θN represents the expectation of
the hitting time of the origin for a simple symmetric random walk speeded-up by 2 which
starts from the stationary state. By [3, Proposition 6.10], we may express this expectation
in terms of capacities. Sharp bounds for the capacity then provide an asymptotic formula
for θN .

Consider a continuous-time, random walk (xt)t≥0 on Zd with jump probabilities given
by (3.1.1) and which starts from the origin. Assume that d ≥ 3, and denote by τ1 the
time of the first jump, τ1 = inf{t ≥ 0 : xt 6= 0}, and by H+ the return time to the origin:
H+ = inf{t ≥ τ1 : xt = 0}. Let vd be the escape probability: vd = P[H+ = ∞]. By the
argument presented in the previous paragraph, by [16, Corollary 6.8] in dimension d ≥ 3,
and by [16, Corollary 6.12] in dimension 2,

lim
N→∞

θN

Nd =
1

2 vd
in dimension d ≥ 3 ,

lim
N→∞

θN

N2 log N
=

1
π

in dimension d = 2 .
(3.1.6)

The factor 2 in the denominator appears because the process has been speeded-up by 2.
In particular, in d = 2, 1/π should be understood as (1/2)(2/π).

Consider the rescaled reduced process

XN(t) = ΨN(AN(θNt)) , t ≥ 0 . (3.1.7)

Notice that XN(t) is not a Markov chain, but only a hidden Markov chain. Denote by PN

the probability law on
(

D(R+, S),G∞
)

induced by the reduced process
(
XN(t)

)
t≥0 under

PN (i.e. starting from all vertices in Td
N occupied). The main result of this chapter reads

as follows

Theorem 3.1.2. For every d ≥ 2, the sequence of measures PN converges to P0.

It follows from Theorem 3.1.2 that, under PN ,(
XN(t)

)
t≥0

Law−−→ (Xt)t≥0 , for d ≥ 2.

The scaling limit for the coalescing times obtained in [11] immediately follows from these
results.

Remark 3.1.3. The proofs apply to the case in which the jump probability p(·) is symmetric
and has finite range. It also applies if the initial condition Td

N is replaced by a finite set A =
{x1, . . . , xn} whose points are scattered: ‖xi − xj‖ ≥ aN for 1 ≤ i 6= j ≤ n, where aN is the
sequence introduced in (3.2.3).
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3.1.3 Sketch of the Proof

The proof of Theorem 3.1.2 is divided in two steps. We first show that the sequence (PN)
is tight, and then we guarantee uniqueness of limit points by proving that every limit
point solves the

(
C1(S), L

)
-martingale problem.

For the later step, consider a smooth function f : R → R, and denote by MN(t) the
martingale given by

f (XN(t)) − f (XN(0)) −
∫ t

0
θN (LN f )

(
ΨN(AN(sθN))

)
ds .

Since
(LN f )(ΨN(A)) = R(A)

{
f
( x

1− x

)
− f (x)

}
,

where x = ΨN(A), and R(A) is the jump rate given by

R(A) = ∑
x∈A

∑
y∈A\{x}

p(y− x) , (3.1.8)

the martingale MN(t) can be written as

f (XN(t)) − f (XN(0)) − θN

∫ t

0
R(AN(sθN))

{
f
( XN(s)

1−XN(s)

)
− f (XN(s))

}
ds .

If the martingale MN(t) were expressed in terms of the process XN , that is if
θN R(AN(sθN)) = r(XN(s)), we could pass to the limit and argue that

f (X(t)) − f (X(0)) −
∫ t

0
r(X(s))

{
f
( X(s)

1−X(s)

)
− f (X(s))

}
ds . (3.1.9)

is a martingale for every limit point P∗ of the sequence PN . This result together with the
uniqueness of solutions of the martingale problem (3.1.9) on

(
D(R+, S),G∞

)
would yield

the uniqueness of limit points.
The previous argument evidences that the main point of the proof consists in “clos-

ing” the martingale MN(t) in terms of the reduced process XN(s), that is, that the major
difficulty lies in the proof of the existence of a function r : S→ R such that∫ t

0

{
θN R(AN(sθN)) − r(XN(s))

}
g(XN(s)) ds −→ 0

for all smooth functions g : R → R. This is the so-called “replacement lemma” or the
“local ergodic theorem”. One has to replace a function θN R(A) which does not vanish
only in a tiny portion of the state space (in the present context for subsets of (Td

N)
n which

contain at least two neighborhing points) and which is very large (here of order θN) when
it does not vanish, by a function of order 1 in the entire space.

The statement of the local ergodic theorem requires some notation. Denote by
D(R+, EN) the right-continuous trajectories ω : R+ → EN wich have left-limits. Let

r
( 1

n

)
:= λ(n) :=

(
n
2

)
, n ≥ 2 . (3.1.10)

Proposition 3.1.4. Let F : N → R be a function which eventually vanishes: there exists k0 ≥ 1
such that F(k) = 0 for all k ≥ k0. Let t0 > 0 and let (BN : D(R+, EN) → R; N ≥ 1) be a
sequence of uniformly bounded functions, with each BN measurable with respect to σ

(
AN(sθN) :
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0 ≤ s ≤ t0
)
. Then, for every t > t0,

lim
N→∞

EN
[

BN
∫ t

t0

{
θN R(AN(sθN))− nsθN

}
F(|AN(sθN)|) ds

]
= 0 ,

where ns = λ(|AN(s)|).

This chapter is organized as follows. In Section 3.2, we present the results on coalescing
random walks needed in the proof of Proposition 3.1.4, which is presented in the following
section. In Section 3.4, we prove Theorem 3.1.2 and, in Section 3.5, Proposition 3.1.1.

3.2 Coalescing Random Walks on Td
N

We present in this section some results on coalescing randoms walks obtained by Cox [11]:
Propositions 3.2.1, 3.2.5 and 3.2.6. We start with some notation.

Throughout this section, PN
x represents the distribution of a Td

N-valued random walk,
speeded-up by 2, whose jump probability is p(·), introduced in (3.1.1), and initial position
is x. Denote by pt(x, y) = PN

x [x(t) = y] the transition probabilities of this process and by
πN its stationary state, which is the uniform measure on Td

N .
The first result, Proposition (4.1) in [11], provides a bound on the expectation of the

number of particles still present at time t. Let

gN(t) =

{
N2 t−1 log(1 + t) d = 2 ,
Nd/t d ≥ 3 .

Proposition 3.2.1. There exists a finite constant cd such that

EN [ |AN(t)| ] ≤ cd max{1, gN(t)}

for all t > 0, N ≥ 1.

Recall from (3.1.5) that we denote by E n
N the subsets of Td

N with n elements. Denote by
τj, j ≥ 1, the time when the process AN(t) is reduced to a set of j elements:

τj = inf
{

t ≥ 0 : |AN(t)| = j
}

= inf
{

t ≥ 0 : AN(t) ∈ E
j
N
}

. (3.2.1)

Lemma 3.2.2. There exists a finite constant C0 such that for all j ≥ 2,

max
A∈E

j
N

1
θN

EN
A
[
τj−1

]
≤ C0 .

Proof. Fix two points x, y in A and denote by τx,y the first time these particles meet:
τx,y = inf{t > 0 : x(t) = y(t)}. Since τj−1 ≤ τx,y, and since the difference x(t) − y(t)
evolves as a random walk speeded-up by 2, the expectation appearing in the statement of
the lemma is bounded by

max
x∈TN

1
θN

EN
x
[
H0
]

,

where H0 represents the hitting time of the origin. By [23, Proposition 10.13], this quantity
is bounded by a finite constant independent of N.
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It follows from the previous result that for every j ≥ 2,

lim
M→∞

lim sup
N→∞

max
A∈E

j
N

PN
A
[
τj−1 ≥ M θN

]
= 0 . (3.2.2)

Denote by ‖µ− ν‖TV the total variation distance between two probability measures, µ,
ν, defined on a countable state space E:

‖µ− ν‖TV =
1
2 ∑

a∈E
| µ(a)− ν(a) | .

Hereafter, the symbol αN � βN , for two non-decreasing sequences αN , βN , means that
αN/βN → 0. Denote by aN an increasing sequence such that 1� aN � N. In dimension
2, assume further that N/

√
log N � aN . Denote by GN(n, aN) the scattered subsets of

EN . These are the sets A = {y1, . . . , yn} in E n
N such that

min
i 6=j
|yi − yj| ≥ aN . (3.2.3)

Lemma 3.2.3. For every n ≥ 2, t > 0,

lim
N→∞

max
A∈E n

N

PN
A

[
AN(tθN) 6∈ E 1

N ∪
n⋃

k=2

GN(k, aN)
]

= 0 .

Proof. Since n is finite and since the difference of two random walks evolves as a random
walk speeded-up by 2, this assertion follows from the claim that for every t > 0

lim
N→∞

max
x∈Td

N

PN
{0,x}

[
AN(tθN) 6∈ E 1

N ∪GN(2, aN)
]

= lim
N→∞

max
x∈Td

N

PN
x
[
H0 > tθN , |x(tθN)| ≤ aN

]
= 0 .

By the Markov property, the previous probability is bounded by

EN
x

[
PN

x(tθN /2)
[
|x(tθN/2)| ≤ aN

] ]
.

Recall from the beginning of this section that πN represents the stationary state of the
random walk on Td

N . The previous expectation is less than or equal to

PN
πN

[
|x(tθN/2)| ≤ aN

]
+ 2 ‖πN(·)− ptθN /2(x, ·)‖TV ,

where pt(x, y) represents the transition probabilities of a random walk evolving on Td
N

speeded-up by 2. The first term is bounded by C0(aN/N)d → 0, while the second one
vanishes because θN � tN

mix.

Corollary 3.2.4. For every t > 0,

lim
N→∞

PN
[

AN(tθN) 6∈ E 1
N ∪

Nd⋃
k=2

GN(k, aN)
]

= 0 .

Proof. Fix t > 0, and let Hs =
{

AN(sθN) 6∈ E 1
N ∪

⋃Nd

k=2 GN(k, aN)
}

, s > 0. Clearly, for
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every M > 0,

PN [Ht] ≤ PN[ |AN(tθN/2)| ≤ M , Ht
]
+ PN[ |AN(tθN/2)| > M

]
.

By Proposition 3.2.1, the second term is bounded by C(d, t)/M, where C(d, t) is a constant
depending only on d and t. Hence, by the Markov property,

PN [Ht] ≤ max
2≤k≤M

max
A∈E k

N

PN
A [Ht/2] +

C(d, t)
M

.

By Lemma 3.2.3, the first term on the right-hand side vanishes as N → ∞ for every M ≥ 2.
This proves the corollary.

Proposition 3.2.5. For every 2 ≤ j < k,

lim
N→∞

max
A∈GN(k,aN)

PN
A
[
AN(τj) 6∈ GN(j, aN)

]
= 0 .

Proof. Fix 2 ≤ j < k. By (3.2.2), it is enough to prove that for all M > 0,

lim
N→∞

max
A∈GN(k,aN)

PN
A
[
AN(τj) 6∈ GN(j, aN) , τj ≤ M θN

]
= 0 .

This is exactly assertions (3.7) and (3.8) in [11].

Denote by πn
N , n ≥ 2, the uniform measure on E n

N . Recall the definition of λ(·) given
in (3.1.10). Next proposition is a weak version of [11, Theorem 5].

Proposition 3.2.6. For all j ≥ 2,

lim
N→∞

PN
π

j
N

[
τj−1 ≥ t θN

]
= e−λ(j) t .

It follows from the previous result that for every n ≥ 1,

lim
δ→0

lim sup
N→∞

PN[τn ≤ δθN
]
= 0 . (3.2.4)

Indeed, fix n ≥ 1 and consider a set A ∈ E n+1
N . Since A ⊂ Td

N , PN [τn ≤ δθN ] ≤ PN
A [τn ≤

δθN ]. Averaging over A with respect to πn+1
N we obtain that PN [τn ≤ δθN ] ≤ PN

πn+1
N

[τn ≤
δθN ]. By Proposition 3.2.6, the previous quantity vanishes as N → ∞ and then δ→ 0.

Denote by γN a sequence much larger than the mixing time and much smaller than
the hitting time:

tN
mix � γN � θN . (3.2.5)

Let (`N : n ≥ 1) be a sequence such that 1 � `N � N. In dimension 2, we assume that
Nα � `N � N for all 0 < α < 1, so that

lim
N→∞

`N
N

= 0 , lim
N→∞

log `N
log N

= 1 . (3.2.6)

Note that in dimension 2 the conditions imposed on `N are weaker than the ones assumed
on aN in [11, Theorem 4].

Lemma 3.2.7. For every n ≥ 2,

lim
N→∞

max
A∈GN(n,`N)

PN
A
[
τn−1 ≤ γN

]
= 0 .
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Proof. The probability is bounded by(
n
2

)
max
‖x‖≥`N

PN
x [H0 ≤ γN ] ,

where, recall, H0 stands for the hitting time of the origin. Since γN � θN , by equation
(6.18) in [16], this expression vanishes in the limit.

In the next lemma we compare the dynamics AN(t) with the one of independent
random walks. Fix n ≥ 2, and denote by (xn

N(t))t≥0, the evolution of n independent
random walks on Td

N with jump probabilities p(·) given by (3.1.1). The stationary state of
this dynamics, denoted by π⊗n

N , is the product measure on [Td
N ]

n in which each component
is the measure πN .

Denote by p(n)t (x, y) the transition probabilities of xn
N(t), and by tN,n

mix the corresponding
mixing time. Since the dynamics amounts to the evolution of a random walk on Tnd

N ,
there exist constants 0 < c(d, n) < C(d, n) < ∞ such that c(d, n)N2 ≤ tN,n

mix ≤ C(d, n)N2

(cf. [23, Section 5.3 and 7.4]).
Denote by xj(t) ∈ Td

N the j-th coordinate of xn
N(t), 1 ≤ j ≤ n. Up to time

τn−1 the process AN(t) evolves as {xn
N(t)} := {x1(t), . . . , xn(t)}. More precisely, fix

A = {a1, . . . , an} ∈ E n
N , and let

E ≤n
N :=

n⋃
k=1

E k
N .

There exists a probability measure on D
(
R+, E ≤n

N × (Td
N)

n), denoted by P̂N
A , which fulfills

the following conditions. The distribution of the first, resp. second, coordinate corre-
sponds to the distribution induced by AN(t), resp. xn

N(t). Furthermore, AN(0) = A,
xn

N(0) = (a1, . . . , an), and AN(t) = {xn
N(t)} for all 0 ≤ t ≤ τn−1, P̂N

A almost surely.

Lemma 3.2.8. Fix n ≥ 2. Let FN : E ≤n
N → R be a sequence of uniformly bounded functions,

‖F‖ := supN≥1 maxA∈E ≤n
N
|FN(A)| < ∞, and let (βN)N≥1 be a non-negative sequence. Then,

for every A = {a1, . . . an} ∈ E n
N ,

EN
A

[
FN(AN(βN)) 1{τn−1 > βN}

]
− Eπn

N

[
FN
]

= − ÊN
A

[
FN({xn

N(βN)}) 1
{

τn−1 ≤ βN , {xn
N(βN)} ∈ E n

N
} ]

+ RN ,

where ∣∣RN
∣∣ ≤ ‖F‖{2 ‖p(n)βN

(a, ·)− π⊗n
N (·)‖TV + cN

}
and limN→∞ cN = 0.

Proof. Fix A = {a1, . . . an} ∈ E n
N . We may rewrite the expectation appearing in the state-

ment of the lemma as
ÊN

A

[
FN(AN(βN)) 1{τn−1 > βN}

]
.

Since AN(t) = {xn
N(t)} in the time interval [0, τn−1], we may replace in the previous

equation AN(βN) by {xn
N(βN)} and then add the indicator function of the set {xn

N(βN)} ∈
E n

N . After these replacements, the previous expression becomes

ÊN
A

[
FN({xn

N(βN)}) 1{ {xn
N(βN)} ∈ E n

N }
]

− ÊN
A

[
FN({xn

N(βN)}) 1
{

τn−1 ≤ βN , {xn
N(βN)} ∈ E n

N
} ]

.
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We estimate the first term. Recall that we denote by p(n)t (x, y) the transition probabili-
ties of xn

N(t). With this notation, we may write this term as

∑
x∈[Td

N ]n

FN({x}) 1{ {x} ∈ E n
N } π⊗n

N (x) + R(1)
N ,

where ∣∣ R(1)
N

∣∣ ≤ 2 ‖F‖ ‖p(n)βN
(a, ·)− π⊗n

N (·)‖TV .

and a = (a1, . . . , an).
To bound the first term of the penultimate formula, recall that we denote by πn

N the
uniform measure on E n

N . Let

R(2)
N,n := ∑

A∈E n
N

∣∣∣πn
N(A) − ∑

x∈[Td
N ]n

1{ {x} = A} π⊗n
N (x)

∣∣∣ . (3.2.7)

An elementary computation shows that limN→∞ R(2)
N,n = 0 for every n ≥ 2. The assertion

of the lemma follows from the previous estimates.

The next lemma is a consequence of [11, Theorem 5] in dimension d ≥ 3. In dimension
2 is a slight generalization since our assumptions on `N are weaker. Recall (3.2.6).

Lemma 3.2.9. Let `N be a sequence satisfying the conditions introduced in (3.2.6). Then, for all
t > 0,

lim
N→∞

max
A∈G(n,`N)

∣∣∣ PN
A
[
τn−1 ≥ tθN

]
− e−λ(n) t

∣∣∣ = 0 .

Proof. We present the proof in dimension d = 2. The one in higher dimension is analogous.
Fix a set A = {a1, . . . , an} in GN(n, `N) and a sequence 1 � tN � log N. Recall from the
previous lemma the definition of the measure P̂N

A . Since the first coordinate evolves as
AN(t),

PN
A
[
τn−1 ≥ tθN

]
= P̂N

A
[
τn−1 ≥ tθN

]
.

By the Markov property and Lemma 3.2.7,

P̂N
A
[
τn−1 ≥ tθN

]
= ÊN

A

[
P̂N

AN(γN)

[
τn−1 ≥ tθN − γN

]
1{τn−1 > γN}

]
+ oN(1) ,

where γN = tN N2.
We apply Lemma 3.2.8 with βN = γN to estimate the right-hand side. Let FN : E ≤n

N →
R be the function defined by

FN(A) = PN
A
[
τn−1 ≥ tθN − γN

]
, A ∈ E n

N ,

and FN(A) = 0 for A 6∈ E n
N . By Lemma 3.2.8, the right hand side of the penultimate

formula is equal to
PN

πn
N

[
τn−1 ≥ tθN − γN

]
+ RN ,

where ∣∣RN
∣∣ ≤ P̂N

A
[
τn−1 ≤ γN

]
+ 2 ‖p(n)γN (a, ·)− π⊗n

N (·)‖TV + cN ,

with limN→∞ cN = 0.
Each term of the previous expression is negligible. In the first one, we may replace P̂N

A
by PN

A , and apply Lemma 3.2.7 to conclude that this expression vanishes as N → ∞. The
second one also vanishes in the limit because γN � tN

mix and tN,n
mix is of the same order of
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tN
mix. To complete the proof of the lemma, as γN � θN , it remains to apply Proposition

3.2.6.

Recall the properties of the sequence aN introduced in (3.2.3). By the previous result,
for all k > j ≥ 2,

lim
N→∞

max
A∈GN(k,aN)

∣∣∣ PN
A
[

τj−1 − τj ≥ t θN
]
− e−λ(j) t

∣∣∣ = 0 . (3.2.8)

Indeed, by Proposition 3.2.5, we may intersect the event appearing inside the probability
with the set {AN(τj) ∈ GN(j, aN)}. Then, applying the strong Markov property at time τj
we reduce assertion (4.5.4) to Lemma 3.2.9.

The next result together with the previous lemma entails the convergence of
EN

AN

[
τn−1/θN

]
to λ(n)−1 for any sequence AN ∈ G(n, `N).

Lemma 3.2.10. For every n ≥ 2, m ≥ 1, there exists a finite constant C(n, m) such that for all
N ≥ 1,

max
A∈E n

N

EN
A
[
(τn−1/θN)

m ] ≤ C(n, m) .

Proof. By the Markov property, for all k ≥ 1,

max
A∈E n

N

PN
A [τn−1/θN ≥ k] ≤

(
max
A∈E n

N

PN
A [τn−1/θN ≥ 1]

)k
.

We claim that

max
A∈E n

N

PN
A [τn−1 ≥ θN ] ≤ PN

πn
N
[τn−1 ≥ θN/2] + δN . (3.2.9)

where δN → 0. Indeed, fix A = {a1, . . . an} ∈ E n
N , and apply the Markov property to

obtain that

PN
A [τn−1 ≥ θN ] = EN

A

[
PN

AN(θN /2)[τn−1 ≥ θN/2] 1{τn−1 ≥ θN/2}
]

.

Let FN : E ≤n
N → R be the function defined by

FN(A) = PN
A
[
τn−1 ≥ θN/2

]
, A ∈ E n

N ,

and FN(A) = 0 for A 6∈ E n
N . Since FN is non-negative, by Lemma 3.2.8, the right-hand

side of the penultimate formula is bounded above by

PN
πn

N
[τn−1 ≥ θN/2] + 2 ‖p(n)θN /2(a, ·)− πn

N(·)‖TV + cN ,

where a = (a1, . . . an). Assertion (3.2.9) follows from the facts that θN � tN
mix and that tN,n

mix
is of the same order of tN

mix.
By Proposition 3.2.6, under the measure PN

πn
N

, τn−1/θN converges weakly to an expo-
nential random variable of parameter λ(n). Thus, the right-hand side of (3.2.9) converges
to e−λ(n)/2 < 1. Therefore, there exists δ < 1 such that for all N ≥ 1,

max
A∈E n

N

PN
A [τn−1/θN ≥ k] ≤ δk .

This proves the lemma.
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Corollary 3.2.11. For every n ≥ 2,

lim
N→∞

max
A∈GN(n,`N)

∣∣∣ 1
θN

EN
A [τn−1] −

1
λ(n)

∣∣∣ = 0 .

Proof. Fix a sequence AN ∈ GN(n, `N), N ≥ 1. The convergence in law of the sequence
τn−1/θN under the measure PN

AN
to an exponential random variable of parameter λ(n)

follows from Lemma 3.2.9. By the previous lemma the sequence τn−1/θN is uniformly
integrable.

Recall that we denote by (e1, . . . , ed) the canonical basis of Rd.

Lemma 3.2.12. Assume that d ≥ 3 and n ≥ 2. Fix a sequence of sets AN ∈ E n
N such that

AN = {xN , xN ± ej} ∪ BN , where BN ∪ {xN} belongs to GN(n− 1, `N). For all t > 0,

lim
N→∞

PN
AN

[τn−1 ≥ tθN ] = vd e−λ(n)t . (3.2.10)

Proof. Denote by x(t), y(t) the position at time t of the particle initially at xN , xN ± ej,
respectively. Let Dr, r ≥ 0, be the first time the distance between these particles attains r:
Dr = inf{t > 0 : ‖x(t)− y(t)‖ = r}, and let H = D0 ∧ D`N . As `N � N, an elementary
computation shows that

lim
N→∞

PN
AN

[H > N2] = 0 .

We may therefore insert the set {H ≤ N2} in the probability appearing in equation (3.2.10).
On the event {H ≤ N2}, when tNd−2 > 1, we have that {D0 < D`N} ∩ {τn−1 ≥ tθN} = ∅.
Note that here we used that d ≥ 3. Hence,

PN
AN

[τn−1 ≥ tθN ] = PN
AN

[
H ≤ N2 , D0 > D`N , τn−1 ≥ tθN

]
+ oN(1) ,

where oN(1)→ 0 as N → ∞.
By the Markov property, the probability on the right hand side is equal to

EN
AN

[
1{H ≤ N2 , D0 > D`N , τn−1 ≥ N2} PN

AN(N2)[τn−1 ≥ tθN − N2]
]

.

On the event {τn−1 ≥ N2}, we may replace the distribution of AN(N2) by the one of the
position at time N2 of n independent random walks starting from AN . After this replace-
ment, we may insert in the expectation the indicator of the set {AN(N2) ∈ GN(n, `N)}
because the probability of the complement vanishes as N → ∞ [indeed, whatever the ini-
tial position of a random walk, its probability to be a distance `N from the origin at time
N2 vanishes]. After this insertion, we write the previous expectation as

e−λ(n)t PN
AN

[
H ≤ N2 , D0 > D`N , AN(N2) ∈ GN(n, `N) , τn−1 ≥ N2

]
+ RN ,

where the absolutely value of RN is bounded by

max
A∈GN(n,`N)

∣∣∣PN
A [τn−1 ≥ tθN − N2] − e−λ(n)t

∣∣∣ .

By Lemma 3.2.9, this expression vanishes as N → ∞. Hence, up to this point we proved
that the probability appearing in (3.2.10) is equal to

e−λ(n)t PN
AN

[
H ≤ N2 , D0 > D`N , AN(N2) ∈ GN(n, `N) , τn−1 ≥ N2

]
+ oN(1) .
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On the set {H ≤ N2 , D0 > D`N , τn−1 ≤ N2} two particles which were at distance
at least `N met in a time interval of length bounded by N2. Indeed, the time τn−1 may
correspond to the coalescence of two particles on the set BN or one particle in the set BN
and one in the set {xN , xN ± ej}. In both cases, these particles were initially at distance
at least `N from each other. The time τn−1 may also correspond to the coalescence of the
particles initially at xN , xN ± ej. In this case, at time H ≤ N2 ∧ D0 these particles were at
distance `N .

By Lemma 3.2.7 with n = 2, the probability that two particles which are at distance
`N meet before time N2 vanish as N → ∞. We may therefore remove from the previous
probability the event {τn−1 ≥ N2}. We may also remove, as explained above in the proof,
the events {H ≤ N2} and {AN(N2) ∈ GN(n, `N)}, so that

PN
AN

[τn−1 ≥ tθN ] = e−λ(n)t PN
AN

[
D0 > D`N

]
+ oN(1) .

As N → ∞, this latter probability converges to the escape probability, denoted by vd,
which proves the lemma.

The next result follows from the previous lemma and from the uniform integrability
provided by Lemma 3.2.10.

Corollary 3.2.13. Assume that d ≥ 3 and n ≥ 2. Fix a sequence of sets AN ∈ E n
N such that

AN = {xN , xN ± ej} ∪ BN , where BN ∪ {xN} belongs to GN(n− 1, `N). Then,

lim
N→∞

1
θN

EN
AN

[τn−1] =
vd

λ(n)
·

By (3.1.6), the previous limit can be written as

lim
N→∞

1
Nd EN

AN
[τn−1] =

1
2 λ(n)

· (3.2.11)

We turn to the 2-dimensional case.

Lemma 3.2.14. Assume that d = 2 and n ≥ 2. Fix a sequence of sets AN ∈ E n
N such that

AN = {zN , zN ± ej} ∪ BN , where BN ∪ {zN} belongs to GN(n− 1, `N). Then,

lim
N→∞

1
N2 EN

AN
[τn−1] =

1
2 λ(n)

·

Proof. Fix a sequence of sets AN satisfying the hypotheses of the lemma. Enumerate the
points of AN = {x1, . . . , xn} in such a way that x1 = zN , x2 = zN ± ej. Denote by xi(t) the
position at time t of the random walks initially at xi.

Let (`N : N ≥ 1), (mN : N ≥ 1) be the sequences `N = N/(log N)4, mN = N/ log N.
Notice that both sequences fulfill the conditions above (3.2.6). Let T1,2 be the first time the
difference x1(t)− x2(t) reaches the distance `N , T1,2 = inf{t > 0 : ‖x1(t)− x2(t)‖ ≥ `N},
and denote by Ti, 1 ≤ i ≤ n, the first time the particle xi reaches a distance mN from its
original position: Ti = inf{t > 0 : ‖xi(t)− xi(0)‖ ≥ mN}. The proof of the lemma relies
on the estimates (3.2.12), (3.2.13) and (3.2.14).

Since the difference x1(t)− x2(t) evolves as a random walk speeded-up by 2,

EN
AN

[
T1,2
]
= EN

e1

[
D̄`N

]
,

where D̄`N is the first time the particle reaches a distance `N from the origin, and PN
e1

represents the distribution of a symmetric, nearest-neighbor random walk speeded-up by
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2, starting from e1. Denote by B(x, r) the ball centered at x of radius r. By equation (6.5)
in [16] and a simple estimate of the capacity between 0 and B(0, `N)

c, EN
e1
[D̄`N ] ≤ C0`

2
N for

some constant C0 independent of N. Hence,

lim
N→∞

1
N2 EN

AN

[
T1,2
]
= 0 . (3.2.12)

For every 1 ≤ i ≤ n, and every sequence (SN)N≥1 of non-negative numbers,

PN
AN

[Ti ≤ SN ] = P̂N
0 [D̄mN ≤ SN ] = P̂N

0
[

sup
t≤SN

‖x(t)‖ ≥ mN
]

,

where P̂N
0 stands for the distribution of a nearest-neighbor, symmetric, random walk start-

ing from the origin. The difference with respect to PN
0 is that the random walk is not

speeded-up by 2 under P̂N
0 . An elementary random walk estimation yields that the right

hand side multiplied by log N vanishes as N → ∞ if we choose SN = N2/(log N)4. Hence,
wit this definition for SN , for all 1 ≤ i ≤ n,

lim
N→∞

(log N) PN
AN

[Ti ≤ SN ] = 0 .

In contrast,

PN
AN

[T1,2 ≥ SN ] = PN
e1
[D̄`N ≥ SN ] = PN

e1

[
sup
t≤SN

‖x(t)‖ ≤ `N
]

.

Another elementary random walk estimation yields that the right hand side multiplied by
log N vanishes for the same choice of the sequence SN . Hence,

lim
N→∞

(log N) PN
AN

[T1,2 ≥ SN ] = 0 .

It follows from the last two estimates that

lim
N→∞

(log N) PN
AN

[
T1,2 ≥ min

i
Ti
]
= 0 . (3.2.13)

Denote by τi,j, 1 ≤ i 6= j ≤ n, the first time the particles xi, xj meet, τi,j = inf{t > 0 :
xi(t) = xj(t)}. The arguments used to derive (3.2.13) show that for all pairs {i, j} 6= {1, 2},

lim
N→∞

(log N) PN
AN

[
T1,2 ≥ τi,j

]
= 0 . (3.2.14)

We are now in a position to prove the lemma. By the strong Markov property,

EN
AN

[τn−1] = EN
AN

[ [
T1,2 + τn−1 ◦ ϑT1,2

]
1{T1,2 < τn−1}

]
+ EN

AN

[
τn−1 1{τn−1 < T1,2}

]
= EN

AN

[
EN

AN(T1,2)

[
τn−1

]
1{T1,2 < τn−1}

]
+ EN

AN

[
τn−1 1{τn−1 < T1,2}

]
.

The second term is bounded by EN
AN

[T1,2]. By (3.2.12), this expectation divided by N2

vanishes as N → ∞. On the other hand,

1
N2 EN

AN

[
EN

AN(T1,2)

[
τn−1

]
1{T1,2 ≥ min

i
Ti , T1,2 < τn−1}

]
≤ sup

A∈E n
N

1
(log N) N2 EN

A
[
τn−1

]
(log N)PN

AN

[
T1,2 ≥ min

i
Ti
]

.
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This expression vanishes as N → ∞ because, by Lemma 3.2.10, the first term is uniformly
bounded and, by (3.2.13), the second term tends to 0.

Up to this point, we proved that

lim
N→∞

1
N2 EN

AN
[τn−1] = lim

N→∞

1
N2 EN

AN

[
EN

AN(T1,2)

[
τn−1

]
1
{

T1,2 < min
i
{τn−1, Ti}

} ]
.

On the set {T1,2 < mini Ti}, AN(T1,2) belongs to GN(n, `N). Hence, by Corollary 3.2.11
and by (3.1.6),

1
N2 EN

AN(T1,2)

[
τn−1

]
= (log N)

π−1

λ(n)
[
1 + oN(1)

]
,

so that

lim
N→∞

1
N2 EN

AN
[τn−1] =

π−1

λ(n)
lim

N→∞
(log N) PN

AN

[
T1,2 < min

i
{τn−1, Ti}

]
.

By (3.2.13), in the previous expression we may remove the indicator of the set {T1,2 <
mini Ti}. By (3.2.14), we may also exclude the sets {τi,j ≤ T1,2} for {i, j} 6= {1, 2}. Hence,
the previous expression is equal to

π−1

λ(n)
lim

N→∞
(log N) PN

AN

[
T1,2 < τ1,2

]
=

π−1

λ(n)
lim

N→∞
(log N) PN

e1

[
D̄`N < H0

]
,

where H0 represents the hitting time of the origin. By [16, Lemma 6.10], the previous
expression is equal to 1/[2λ(n)], which completes the proof of the lemma.

Recall the definition of the jump rate R introduced in (3.1.8).

Lemma 3.2.15. For every n ≥ 2,

lim
N→∞

∑
A∈E n

N

πn
N(A) EN

A [τn−1] R(A) = 1 .

Proof. Since R(A) = 0 unless A contains two nearest-neighbor points, for all sets A such
that R(A) > 0, EN

A [τn−1] ≤ Ee1 [H0], where H0 represents the hitting time of the origin.
By [23, Proposition 10.13], this latter expectation is bounded by C0Nd.

Since R(A) is uniformly bounded, EN
A [τn−1] ≤ C0Nd, and πn

N(A) = 1/(Nd

n ), we may
restrict the sum appearing in the statement of the lemma to sets A = {x, x± ej}∪ B, where

B∪ {x} ∈ GN(n− 1, `N). The number of such sets A is (n− 1)d( Nd

n−1)[1+ oN(1)]. For them
R(A) = 1/d, and, by (3.2.11) and Lemma 3.2.14,

EN
A [τn−1] =

Nd

2λ(n)
[1 + oN(1)] .

Hence, the sum alluded to above is equal to

[1 + oN(1)] (n− 1) d
( Nd

n−1)

(Nd

n )

Nd

2 λ(n)
1
d

= [1 + oN(1)]
n(n− 1)
2 λ(n)

·

The result follows from the definition of λ(n) given in (3.1.10).
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3.3 Local Ergodicity

We prove in this section Proposition 3.1.4. It states that we may replace the time integral
of a function f (AN(s)) by the time integral of a function F(|AN(s)|). The proof is divided
in a sequence of lemmata.

Lemma 3.3.1. For every n ≥ 2, there exists a finite constant C(n) such that

max
A∈E n

N

EN
A

[ ∫ ∞

0
R(AN(s)) ds

]
≤ C(n) .

Proof. Since R(B) = 0 if |B| = 1,∫ ∞

0
R(AN(s)) ds =

∫ τ1

0
R(AN(s)) ds .

It is therefore enough to prove that for each n ≥ 2, there exists a finite constant C(n) such
that

max
A∈E n

N

EN
A

[ ∫ τn−1

0
R(AN(s)) ds

]
≤ C(n) .

Fix n ≥ 2 and a set A = {x1, . . . , xn} in E n
N . Denote by xi(s) the position at time s of the

particle xi and by τi,j the collision time of particles i and j: τi,j = inf{t > 0 : xi(t) = xj(t)}.
As ∫ τn−1

0
R(AN(s)) ds ≤ ∑

i 6=j

∫ τi,j

0
1
{
|xi(s)− xj(s)| = 1

}
ds ,

it is enough to estimate

EN
{xi ,xj}

[ ∫ τi,j

0
1
{
|xi(s)− xj(s)| = 1

}
ds
]

.

As the difference evolves as a random walk speeded-up by 2, it is enough to bound, for
x ∈ Td

N ,

EN
x

[ ∫ H0

0
1
{

x(s) = e1
}

ds
]

,

where H0 stands for the hitting time of the origin. This integral represents the time spent at
e1 before hitting the origin. In particular, it is bounded by a geometric sum of independent
exponential random variables, which completes the proof of the lemma.

Remark 3.3.2. It follows from last lemma and the strong Markov property at time τn that there
exists a finite constant C(n) such that

max
A∈EN

EN
A

[ ∫ ∞

0
R
(

AN(s)
)
1{|AN(s)| ≤ n}

]
≤ C(n) .

Recall the definition of the sequence aN introduced in (3.2.3), and that πn
N represents

the uniform measure in E n
N .

Lemma 3.3.3. For every n ≥ 2,

lim
N→∞

max
A∈GN(n,aN)

∣∣∣ EN
A

[ ∫ τn−1

0
R(AN(s)) ds

]
− ∑

B∈E n
N

πn
N(B) EN

B [τn−1] R(B)
∣∣∣ = 0 .

Proof. The goal is to replace the initial condition A by the pseudo-invariant measure πn
N

and then to apply Lemma 3.3.5. To carry out this strategy, we remove from the time
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integral an interval large enough for the process to relax and small enough not to interfere
with the overall value of the time integral.

Fix a set A in GN(n, aN), enumerate its elements, A = {x1, . . . , xn}, and denote by xi(t)
the position at time t of the particle initially at xi. Let D1 be the first time two particles are
at distance 1 from each other: D1 = inf{t ≥ 0 : ‖xi(t)− xj(t)‖ = 1 for some i 6= j}. Note
that R(AN(s)) = 0 for s ≤ D1 and that D1 ≤ τn−1.

Let γN be the sequence introduced in (3.2.5). We claim that

lim
N→∞

max
A∈GN(n,aN)

EN
A

[
1{τn−1 ≤ γN}

∫ τn−1

0
R(AN(s)) ds

]
= 0 .

Indeed, as R(AN(s)) = 0 for s < D1 and D1 ≤ τn−1, we may replace the lower limit in the
integral by D1 and include in the indicator the condition D1 ≤ γN to bound the previous
expectation by

EN
A

[
1{D1 ≤ γN}

∫ τn−1

D1

R(AN(s)) ds
]

. (3.3.1)

By the strong Markov property, this expression is bounded by

PN
A
[
D1 ≤ γN

]
max
B∈E n

N

EN
B

[ ∫ τn−1

0
R(AN(s)) ds

]
.

By Lemma 3.3.1 the above expectation is bounded, and by equation (6.18) in [16] the
probability vanishes as N → ∞ uniformly in A ∈ GN(n, aN). Note that in dimension
d ≥ 3, by equation (6.6) in [16], the result (6.18) holds for any sequence lN such that
1� lN � N. This proves the claim.

Denote by ϑs : D(R+, EN) → D(R+, EN), s ≥ 0, the time translation operators such
that (ϑsω)(t) = ω(t + s) for all t ≥ 0. It follows from the previous assertion that we
may introduce the indicator of the set {γN < τn−1} in the expectation appearing in the
statement of the lemma. After the inclusion in the expectation of the indicator of the set
{γN < τn−1}, in the upper limit of the integral rewrite τn−1 as γN + τn−1 ◦ ϑγN and apply
the Markov property to get that the expectation is equal to

EN
A

[
1{γN < τn−1}

∫ γN

0
R(AN(s)) ds

]
+ EN

A

[
1{γN < τn−1} EN

AN(γN)

[ ∫ τn−1

0
R(AN(s)) ds

] ]
.

(3.3.2)

We claim that the first term vanishes as N → ∞, uniformly in A ∈ GN(n, aN). Recall
the definition of the hitting time D1. If γN ≤ D1, the expression inside the expectation
vanishes because R(AN(s)) = 0 for s ≤ D1. We may therefore assume that D1 ≤ γN .
We may also replace the lower limit of the integral by D1 and the upper limit by τn−1 to
find out that the first term in (3.3.2) is bounded by (3.3.1). Since the expectation in (3.3.1)
vanishes as N → ∞, uniformly in A ∈ GN(n, aN), the claim is proved.

It remains to examine the second expectation in (3.3.2). To apply Lemma 3.2.8, let
F : E ≤n

N → R be the function given by

F(B) = EN
B

[ ∫ τn−1

0
R(AN(s)) ds

]
, B ∈ E n

N , (3.3.3)

F(B) = 0 for B 6∈ E n
N . By Lemma 3.3.1, F is uniformly bounded, ‖F‖ ≤ C(n), and therefore

fulfills the condition of Lemma 3.2.8. Hence, by this result, the second term in (3.3.2) can
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be written as
EN

πn
N

[ ∫ τn−1

0
R(AN(s)) ds

]
+ RN ,

where the absolute value of the remainder RN is bounded by

C(n)
{

PN
A [τn−1 ≤ γN ] + 2 ‖p(n)γN (a, ·)− π⊗n

N (·)‖TV + cN

}
.

In this formula, a = (a1, . . . , an), aj are the elements of A and cN a constant which vanishes
as N → ∞. Since γN � tN

mix, the second term inside braces vanishes as N → ∞, uniformly
in A ∈ E n

N . By Lemma 3.2.7, the first term inside braces vanishes as N → ∞, uniformly
in A ∈ GN(n, aN). To complete the proof of the lemma, it remains to apply Corollary
3.3.6.

Lemma 3.3.4. Let F : N→ R be a function which eventually vanishes: there exists k0 ≥ 0 such
that F(k) = 0 for all k > k0. For all t > 0, n > 1,

lim
N→∞

max
A∈GN(n,aN)

∣∣∣ EN
A

[ ∫ tθN

0

{
R(AN(s))− θ−1

N ns
}

F(|AN(s)|) ds
] ∣∣∣ = 0 .

Proof. Fix n ≥ 2 and A in GN(n, aN). Since R(A′), λ(|A′|) vanish for |A′| = 1, if k0 ≤ 1
there is nothing to prove. Assume, therefore, that k0 ≥ 2. Since F(k) = 0 for k > k0, we
may start the integral from τn0 , where n0 = n ∧ k0. If tθN ≤ τn0 , the integral vanishes. We
may therefore insert inside the expectation the indicator function of the set {tθN > τn0},
which can be written as the disjoint union of the sets {τj < tθN ∧ τ1 ≤ τj−1}, 2 ≤ j ≤ n0.
Hence, the time-integral appearing in the statement of the lemma can be written as

n0

∑
j=2

1{τj < tθN ∧ τ1 ≤ τj−1}
∫ τj−1

τn0

R̂(AN(s)) F(|AN(s)|) ds

−
n0

∑
j=2

1{τj < tθN ∧ τ1 ≤ τj−1}
∫ τj−1

tθN

R̂(AN(s)) F(|AN(s)|) ds ,

(3.3.4)

where R̂(A) = R(A)− θ−1
N λ(|A|).

We consider each term separately. Write the integral appearing in the first line as a sum
of integrals on the intervals [τi, τi−1) and sum by parts to obtain that the first expression
is equal to

n0

∑
i=2

1{τi < tθN ∧ τ1 ≤ τ1} F(i)
∫ τi−1

τi

R̂(AN(s)) ds ,

where we used the fact that F is constant in the time interval [τi, τi−1). Remove from
the indicator the condition {tθN ∧ τ1 ≤ τ1}, which is always satisfied, and replace {τi <
tθN ∧ τ1} by {τi < tθN}. Fix 2 ≤ i ≤ n, disregard the constant F(i), and consider the
expectation with respect to PN

A :

EN
A

[
1{τi < tθN}

∫ τi−1

τi

R̂(AN(s)) ds
]

. (3.3.5)

We claim that

lim
N→∞

EN
A

[
1{AN(τi) 6∈ GN(i, aN)}

∫ τi−1

τi

{
R(AN(s))− θ−1

N ns
}

ds
]

= 0 .

Indeed, by the strong Markov property, the absolute value of the previous expectation is
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less than or equal to

PN
A
[
AN(τi) 6∈ GN(i, aN)

]
max
B∈E i

N

{
EN

B

[ ∫ τi−1

0
R(AN(s)) ds

]
+ λ(i) θ−1

N EN
B
[
τi−1

]}
.

By Lemmata 3.2.10 and 3.3.1, the maximum is bounded. On the other hand, since A
belongs to GN(n, aN), by Proposition 3.2.5, the probability vanishes as N → ∞, which
proves the claim.

We may therefore insert in (3.3.5) the indicator of the set {AN(τi) ∈ GN(i, aN)}. By the
strong Markov property, this expectation is equal to

EN
A

[
1{τi < tθN , AN(τi) ∈ GN(i, aN)} EN

AN(τi)

[ ∫ τi−1

0
R̂(AN(s)) ds

] ]
.

By Lemmata 3.3.3 and 3.2.15,

lim
N→∞

EN
B

[ ∫ τi−1

0
R(AN(s)) ds

]
= 1

uniformly for B ∈ GN(i, aN). By Corollary 3.2.11, as N → ∞, λ(i) EN
B [τi−1/θN ] converges

to 1 uniformly for B ∈ GN(i, aN).
It remains to examine the second expression in (3.3.4). The argument is similar to the

one presented above. Fix 2 ≤ j ≤ n0 and take the expectation with respect to PN
A for

A ∈ GN(n, aN). Since τ1 ≥ τj, we may remove τ1 from the indicator. For j = 2 the set
becomes {τ2 < tθN}, while for 2 < j ≤ n0 it is given by {τj < tθN ≤ τj−1}. In the first
case, to uniform the notation, we insert the condition tθN ≤ τ1. This is possible because
the integral vanishes if this bound is not fulfilled.

We claim that

lim
N→∞

EN
A

[
1{GN}

∫ τj−1

tθN

{
R(AN(s))− θ−1

N ns
}

ds
]

= 0 ,

where GN is the set {τj < tθN ≤ τj−1 , AN(tθN) 6∈ GN(j, aN)}. The proof of this claim
is identical to the one produced below (3.3.5). Observe that on the set {τj−1 ≥ tθN} we
may write τj−1 as tθN + τj−1 ◦ ϑtθN . Apply the Markov property at time tθN , estimate the

conditional expectation by the supremum over all sets in E
j
N , and apply Lemmata 3.2.10

and 3.3.1, and Lemma 3.2.3 (instead of Proposition 3.2.5).
After inserting in the expectation the indicator of the set {AN(tθN) ∈ GN(j, aN)},

applying the Markov property at time tθN , the expectation becomes

EN
A

[
1{MN} EN

AN(tθN)

[ ∫ τj−1

0
R̂(AN(s)) ds

] ]
,

where MN = {τj < tθN ≤ τj−1 , AN(tθN) ∈ GN(j, aN)}. By the first part of the proof, this
expression vanishes as N → ∞.

Proof of Proposition 3.1.4. Fix ε > 0. In view of Proposition 3.2.1, choose M ∈ N such that
PN [ |AN(t0θN)| > M] ≤ ε. Let W(A) = {θN R(A)− λ(|A|)} F(|A|). There exists a finite
constant C(F, B, t) such that∣∣∣ EN

[
BN1{|AN(t0θN)| > M}

∫ t

t0

W
(

AN(sθN)
)

ds
] ∣∣∣ ≤ C(F, B, t) ε . (3.3.6)

To prove this assertion, apply the Markov property to write the expectation appearing in
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the left-hand side as

EN
[

BN1{|AN(t0θN)| > M} EN
A(t0θN)

[ ∫ t−t0

0
W
(

AN(sθN)
)

ds
] ]

.

We claim that the absolute value of the expectation with respect to PN
A(t0θN)

is bounded
by a constant depending on F and t. On the one hand, the function λ(|A|) F(|A|) is
bounded because F(k) = 0 for all k large enough. On the other hand, since F vanishes
outside a finite subset of N, by Remark 3.3.2, the expectation of the time integral of
θN R(AN(sθN)) F(AN(sθN)) is bounded. This proves the claim.

It follows from this claim that the absolute value of the expectation appearing in the
last displayed equation is bounded by

C(F, B, t) PN[ |AN(t0θN)| > M
]

,

Assertion (3.3.6) follows from the choice of M.
A similar argument, using Corollary 3.2.4 instead of Proposition 3.2.1, proves that for

all N sufficiently large

∣∣∣ EN
[

BN1
{

AN(t0θN) 6∈ E 1
N ∪

Nd⋃
k=2

GN(k, aN)
}
×
∫ t

t0

W
(

AN(sθN)
)

ds
] ∣∣∣ ≤ C(F, B, t) ε .

It follows from the previous two estimates that we may restrict our attention to the
expectation

EN
[

BN1
{
MN(M, t0)

} ∫ t

t0

W
(

AN(sθN)
)

ds
]

,

where MN(M, t0) =
{
|AN(t0θN)| ≤ M , AN(t0θN) ∈ E 1

N ∪
⋃M

k=2 GN(k, aN)
}

. Applying
the Markov property at time t0θN yields that the absolute value of the previous expectation
is bounded by

C(B) max
A∈E 1

N ∪
⋃M

k=2 GN(k,aN)

∣∣∣EN
A

[ ∫ t−t0

0
W
(

AN(sθN)
)

ds
]∣∣∣ ,

where the constant C(B) is an upper bound for (|BN | : N ∈N). This expression vanishes
as N → ∞ by Lemma 3.3.4, which completes the proof of the proposition.

3.3.1 Equilibrium Expectation of Hitting Times

We conclude this section with a result on the equilibrium expectation of hitting times. Let
Xt be a reversible, irreducible, continuous-time Markov chain on a finite set E. Denote
by π the unique stationary state and by HB, B ⊂ E, the hitting time of the set B: HB =
inf{t ≥ 0 : Xt ∈ B}. Denote by Px the distribution of the Markov chain Xt starting from x.
Expectation with respect to Px is represented by Ex. As usual, for a probability measure
µ on E, Pµ = ∑x∈E µ(x)Px.

Lemma 3.3.5. For all subsets B of E, and all functions f : E→ R,

Eπ

[ ∫ HB

0
f (Xs) ds

]
= ∑

x∈E
π(x) f (x)Ex[HB] .
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Proof. Denote by (Yk)k≥0 the skeleton of the chain Xt. This is the discrete-time Markov
chain which keeps track of the sequence of elements of E visited by the process. Denote
by λ(x), x ∈ E, the holding time at x. Representing the process Xt in terms of the chain
Yk and independent, mean-one, exponential random variables (cf. Section 6 of [3]), the
expectation appearing in the statement of the lemma can be written as

Eπ

[ hB−1

∑
k=0

f (Yk)

λ(Yk)

]
= ∑

k≥0
∑
x 6∈B

∑
y 6∈B

π(x)
f (y)
λ(y)

Px
[
Yk = y , hB > k

]
,

where hB stands for the hitting time of the set B by the Markov chain Yk: hB = min{j ≥
0 : Yj ∈ B}. By reversibility, the previous expression is equal to

∑
k≥0

∑
x 6∈B

∑
y 6∈B

π(y)
f (y)
λ(x)

Py
[
Yk = x , hB > k

]
= ∑

y∈E
π(y) f (y)Ey

[ hB−1

∑
k=0

1
λ(Yk)

]
.

The last expectation is equal to Ey[HB], which completes the proof of the lemma.

Corollary 3.3.6. For every n ≥ 2,

lim
N→∞

∣∣∣ EN
πn

N

[ ∫ τn−1

0
R(AN(s)) ds

]
− ∑

B∈E n
N

πn
N(B) EN

B [τn−1] R(B)
∣∣∣ = 0 .

Proof. Let F : E ≤n
N → R be the function given by (3.3.3), and recall that it is uniformly

bounded. The expectation appearing in the statement of the lemma is equal to Eπn
N
[F]. By

(3.2.7) and since F vanishes on E m
N , m < n, and is uniformly bounded, this expectation is

equal to Eπ⊗n
N
[F({x})] + cN , where limN cN = 0.

By definition of F,

Eπ⊗n
N
[F({x})] = ∑

x∈[Td
N ]n

π⊗n
N (x) 1{{x} ∈ E n

N} EN
{x}

[ ∫ τn−1

0
R(AN(s)) ds

]
.

Up to time τn−1 the evolution of AN(s) corresponds to the evolution of n independent
particles. We may thus replace AN(s) by {xn

N(s)} inside the expectation, where τn−1
represents in this context the first time two particles meet. The previous sum is thus equal
to

∑
x∈[Td

N ]n

π⊗n
N (x) 1{{x} ∈ E n

N} ẼN
x

[ ∫ τn−1

0
R({xn

N(s)}) ds
]

,

where P̃N
x represents the distribution of xn

N starting from x.

Since τn−1 = 0 if the process xn
N(s) starts from a configuration x such that {x} 6∈ E n

N ,
we may remove the indicator in the previous sum. As the process is reversible and π⊗n

N is
its unique stationary state, by Lemma 3.3.5, the sum is equal to

∑
x∈[Td

N ]n

π⊗n
N (x) ẼN

x [τn−1] R({x}) .

As τn−1 = 0 if the process xn
N(s) starts from a configuration x such that {x} 6∈ E n

N , we
may restrict the sum to configurations x such that {x} ∈ E n

N . For such a configuration,
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ẼN
x [τn−1] = EN

{x}[τn−1]. Hence, the last sum is equal to

∑
x∈[Td

N ]n

π⊗n
N (x) EN

{x}[τn−1] R({x}) = ∑
A∈E n

N

EN
A [τn−1] R(A) ∑

{x}=A
π⊗n

N (x) ,

where the last sum is performed over all configuration x ∈ [Td
N ]

n such that {x} = A.
Comparing ∑{x}=A π⊗n

N (x) with πn
N(A) yields that the previous sum is equal to(

1 + O(N−d)
)

∑
A∈E n

N

EN
A [τn−1] R(A)πn

N(A) ,

where O(N−d) is a sequence of numbers whose absolute value is bounded by C0N−d for
some finite constant C0. By Lemma 3.2.15, the sum converges to 1. In particular, the term
O(N−d) times the sum is negligible. This completes the proof of the corollary.

3.4 Proof of Theorem 3.1.2

The proof of Theorem 3.1.2 is divided in two steps. We show in Lemma 3.4.3 that the
sequence (PN)N is tight, and in Lemma 3.4.1 that all limit points solve the

(
C1(S), L

)
-

martingale problem introduced in Proposition 3.1.1.
Denote by PN

A , A ∈ EN , the probability measure on D(R+, EN) induced by the Markov
chain AN(t) speeded-up by θN starting from A. When A = Td

N , we denote PN
A simply by

PN . Expectation with respect to PN
A , PN are represented by EN

A and EN , respectively.
Note that

PN = PN ◦ Ψ̂−1
N , (3.4.1)

where Ψ̂N : D(R+, EN)→ D(R+, S) is given by [Ψ̂N(ω)](t) = ΨN
(
ω(t)

)
.

In the next lemmata, expectation with respect to PN , P are represented by EPN , EP ,
respectively.

Lemma 3.4.1. Let P be a limit point of the sequence (PN)N , and let f : R → R be a function
in C1 which is constant in a neighborhood of the origin: there exists δ > 0 such that f (x) = f (0)
for x ≤ δ. Then, under P , the process defined by (3.1.4) is a martingale.

Proof. Assume without loss of generality that (PN)N converges to P . Let f : R → R be
a function in C1 which is constant in a neighborhood of the origin. Denote by MN(t) the
PN-martingale given by

f (XN(t)) − f (XN(0)) −
∫ t

0
θN (LN f )(ΨN(AN(sθN))) ds ,

where XN(t) = ΨN(AN(tθN)). Since

(LN f )(ΨN(A)) = R(A)
{

f
( x

1− x

)
− f (x)

}
,

where x = ΨN(A), and R(A) is the jump rate introduced in (3.1.8), the martingale MN(t)
can be written as

f (XN(t)) − f (XN(0)) − θN

∫ t

0
R(AN(sθN))

{
f
( XN(s)

1−XN(s)

)
− f (XN(s))

}
ds .

Fix 0 ≤ t0, k ≥ 1, 0 ≤ s1 < · · · < sk ≤ t0, a bounded function G : Rk → R, and let
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BN = G(XN(s1), . . . , XN(sk)). Since MN is a martingale, for every t0 ≤ t,

EN
[

BN {MN(t)−MN(t0)
} ]

= 0 .

By Proposition 3.1.4, in the integral part of the martingale we may replace the rate
θN R(AN(sθN)) by λ(|AN(sθN)|) = r(XN(s)) to obtain that

lim
N→∞

EN
[

BN {M̂N(t)− M̂N(t0)
} ]

= 0 , (3.4.2)

where

M̂N(t) = f (XN(t)) − f (XN(0)) −
∫ t

0
r(XN(s))

{
f
( XN(s)

1−XN(s)

)
− f (XN(s))

}
ds .

Notice that the process M̂N(t) is expressed as a function of XN . Therefore, in view of
(3.4.1), we may replace in (3.4.2) the probability PN by PN and write

lim
N→∞

EPN

[
BN {M̂N(t)− M̂N(t0)

} ]
= 0 ,

Since, by assumption, (PN)N converges to P ,

EP

[
BN {M̂N(t)− M̂N(t0)

} ]
= 0 .

This shows that (3.1.4) is a martingale under P and completes the proof of the lemma.

We turn to the tightness of (PN)N . Remember that for w ∈ D(R+, S), the modified
modulus of continuity is defined as

ω̃(w, t, δ) := inf
∆

max
k

sup
tk≤r,s<tk+1

‖w(s)− w(r)‖ , t > 0 , δ > 0 ,

where the infimum extends over all partitions ∆ = {0 = t0 < t1 < · · · < t` < t} such that
tk+1 − tk ≥ δ for k = 1, . . . , `− 1. It is well known (see for instance [19, Theorem 4.8.1])
that the tightness follows from

1. for any t ∈ R+, the sequence
(
XN(t)

)
N is tight in S; and

2. for all ε > 0, t > 0,
lim
δ→0

sup
N

PN [ω̃(XN , t, δ) > ε] = 0 . (3.4.3)

Since XN(t) ∈ S for all t ∈ R+ and S is compact, condition (1) holds immediately
thanks to Prohorov’s criterion. Denote by σj, j ≥ 1, the hitting time of 1/j: σj = inf{t ≥
0 : X(t) = 1/j}.

Lemma 3.4.2. Condition (2) follows from

lim
δ→0

lim sup
N→∞

PN[σj−1 − σj ≤ δ
]
= 0 , ∀ j ≥ 2 . (3.4.4)

Proof. Assume that (3.4.4) holds, fix ε > 0, t > 0, η > 0 and choose n ∈ N such that
1/n ≤ ε. By Proposition 3.2.1 and by the Markov inequality

PN [XN(t) ≤ 1/n] = PN [ |AN(tθN)| ≥ n ] ≤ EN [ |AN(tθN)| ]
n

≤ C(t, d)
n

,



3.4. PROOF OF THEOREM 3.1.2 59

where C(t, d) is a positive constant depending only on t and d. Then, increasing n if
necessary, we can assume that

PN [σn < t] > 1− η/3 .

Our assumption implies that there are δ0 > 0 and M ∈N such that

PN [σj−1 − σj ≥ δ0, for all j ∈ {2, 3, . . . , n}] > 1− η/3, ∀N > M.

Let m := min{j ≥ 1 : σj < t}. On the set {σn < t}, define the random partition ∆ := {0 =
t0 < t1 = σn < · · · < t` = σm < t}. Since XN(r) is constant in the intervals [σj, σj−1),
using this partition we deduce that

ω̃(XN , t, δ) ≤ 1/n ≤ ε , ∀ δ < δ0 , N > M ,

on the event
{σn < t} ∩

{
σj−1 − σj ≥ δ0, for all j ∈ {2, 3, . . . , n}

}
,

that has probability at least 1− 2η/3. Hence

sup
N>M

PN [ω̃(XN , t, δ) > ε] < 2η/3 , ∀δ < δ0 .

On the other hand, it is clear that there is δ1 > 0 such that

PN [ω̃(XN , t, δ) > ε] < η/3 , N ≤ M , ∀δ < δ1.

Therefore
sup

N
PN [ω̃(XN , t, δ) > ε] < η , ∀ δ < min{δ0, δ1} ,

which completes the proof, since η > 0 was arbitrary.

We complete the proof of the tightness in the next lemma.

Lemma 3.4.3. The sequence of measures (PN)N is tight.

Proof. By Lemma 3.4.2 it is enough to show (3.4.4). In terms of the measure PN , the
probability appearing in (3.4.4) can be rewritten as

PN[τj−1 − τj ≤ δ θN
]

.

Fix ε > 0 and M > j. In view of (3.2.4), choose α > 0 small enough for PN [τM ≤
3αθN ] ≤ ε for all N sufficiently large. By Proposition 3.2.1, choose K ≥ M such that
PN [ |AN(αθN)| ≥ K] ≤ ε for all N sufficiently large. Hence, the probability appearing in
(3.4.4) is less than or equal to

PN
[
|AN(αθN)| ≤ K , τM ≥ 3αθN , τj−1 − τj ≤ δθN

]
+ 2 ε .

By Lemma 3.2.3, this expression is less than or equal to

PN
[
|AN(αθN)| ≤ K , AN(2αθN) ∈ GN , τM ≥ 3αθN , τj−1 − τj ≤ δθN

]
+ 3 ε .

By the Markov property, this sum is bounded by

max
M≤n≤K

max
A∈GN(n,aN)

PN
A
[

τj−1 − τj ≤ δθN
]
+ 3 ε .
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By Propositions 3.2.5, 3.2.6 and the strong Markov property at time τj, the first term of the
previous expression vanishes as N ↑ ∞ and δ→ 0.

3.5 Uniqueness

In order to state the uniqueness result as it has been used in Section 3.4 we need to intro-
duce the subset D0 ⊆ C1(S) of functions f : S→ R which are constant on a neighborhood
of zero: f ∈ D0 if and only if for some k( f ) ∈N we have

f (0) = f (1/k) , ∀k > k( f ) .

We shall say that a probability measure P on the measurable space (D(R+, S),G∞) is a
solution of the (D0, L ) (resp. (C1(S), L ))-martingale problem if

M f
t := f (Xt)−

∫ t

0
(L f )(Xs) ds , t ≥ 0 (3.5.1)

is a P-martingale for every f ∈ D0 (resp. f ∈ C1(S)). In addition, we say that P is
starting at x ∈ S whenever P{X0 = x} = 1.

3.5.1 Uniqueness on S \ {0}
For each k ∈ N, let P1/k be the law on (D(R+, S),G∞) of a Markov process on S starting
at 1/k and with transition rates

q
( 1

n
,

1
n− 1

)
=

(
n
2

)
, for 2 ≤ n ≤ k

and zero elsewhere. By Dinkyn’s martingales, the process

f (Xt)−
∫ t

0
(L k f )(Xs) ds , t ≥ 0 (3.5.2)

is a P1/k-martingale, for all f : S→ R, where

L k f (x) :=

{
(n

2)
{

f
(

1
n−1

)
− f

(
1
n

)}
, if x = 1

n ∈ [ 1
k , 1

2 ] ,

0 , otherwise .

In particular, P1/k is a solution of the (D0, L k)-martingale problem. Moreover, unique-
ness for this problem can be obtained by standard methods so that

Remark 3.5.1. For each k ∈N, P1/k is the unique solution of the (D0, L k)-martingale problem
starting at 1/k.

Since P1/k{Xt ≥ 1/k , ∀ t ≥ 0} = 1 and

L k f (x) = L f (x) , for all x ≥ 1/k (3.5.3)

we may then replace L k by L in (3.5.2). Therefore,

Remark 3.5.2. For each x ∈ S \ {0}, Px is a solution of the (C1(S), L ), and so, also the
(D0, L )-martingale problem.



3.5. UNIQUENESS 61

We now prove that, for all x ∈ S \ {0}, Px is actually the unique solution for both
martingale problems when starting at x. Of course, it is enough to prove this assertion
for (D0, L ). In virtue of Remark 3.5.1, it suffices to prove that under any such solution
Xt ≥ 1/k, ∀ t ≥ 0 almost surely.

Lemma 3.5.3. For each x ∈ S \ {0}, Px is the unique solution of the (D0, L )-martingale problem
starting at x ∈ S.

Proof. Fix some x = 1/k and let P be a probability satisfying the assumption. Consider
the (Gt)-stopping time

τ := min{t ≥ 0 : Xt < 1/k} .

Since ∫ t∧τ

0
L f (Xs)ds =

∫ t

0
L k f (Xs∧τ)ds , ∀t ≥ 0 ,

then

f (Xt∧τ)−
∫ t

0
L k f (Xs∧τ)ds , t ≥ 0

is a P-martingale, for any f ∈ D0. Equivalently, if Xτ : D(R+, S) → D(R+, S) denotes
the measurable map defined by

Xt ◦ Xτ = Xt∧τ , ∀t ≥ 0

then the law of Xτ under P , denoted by P ◦ (Xτ)−1, turns out to be a solution of the
(D0, L k)-martingale problem. By Remark 3.5.1 we conclude that

P ◦ (Xτ)−1 = P1/k , (3.5.4)

which in turn implies that

P
(
Xt∧τ ≥ 1/k , ∀t ≥ 0

)
= P1/k

(
Xt ≥ 1/k , ∀t ≥ 0

)
Since the right hand side above equals one, then P(τ = ∞) = 1 and so

P ◦ (Xτ)−1 = P . (3.5.5)

The desired result follows from (3.5.4) and (3.5.5).

3.5.2 A Strong Markov Property

As our next step, we prove Lemma 3.5.4 below which relates any solution of the (D0, L )-
martingale problem with laws {Px}x∈S\{0} we just introduced.

Let ϑ : R+ × D(R+, S)→ D(R+, S) be the measurable map defined by

Xt ◦ ϑ(s, ·) = Xs+t(·) , for all t, s ≥ 0 .

In addition, given any (Gt)-stopping time τ we define ϑτ : D(R+, S)→ D(R+, S) as

ϑτ(ω) :=

{
ϑ(τ(ω), ω) , if τ(ω) < ∞ ,
ω , otherwise .

Consider the system of neighborhoods of 0 ∈ S

Ak := {x ∈ S : x < 1/k} , k ∈N ,
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and their corresponding exit times

σk := inf{t ≥ 0 : Xt ∈ S \ Ak} , k ∈N .

Since Ak and S \ Ak are closed subsets then every σk is a stopping time and

Xσk ≥ 1/k on {σk < ∞} . (3.5.6)

Lemma 3.5.4. Let P be any solution of the (D0, L )-martingale problem and let k ∈N. For any
C ∈ G∞, we have

P{ϑσk ∈ C , σk < ∞} =
∫
{σk<∞}

PXσk (ω)(C)P(dω) . (3.5.7)

(Recall observation (3.5.6).)

Proof. Fix k ∈N and let {Qω : ω ∈ D(R+, S)} be a conditional probability distribution of
P given Gσk such that for all ω ∈ D(R+, S) we have

Qω(A) = δω(A) , ∀A ∈ Gσk . (3.5.8)

The existence of such {Qω} is established in [30, Theorem 1.3.4]for a space of continuous
paths but the same proof apply for D(R+, S). Taking conditional expectation with respect
to Gσk in the left hand side below we have

P{ϑσk ∈ C , σk < ∞} =
∫
{σk<∞}

Qω{ϑσk ∈ C}P(dω) .

Applying (3.5.8) we get Qω{σk = σk(ω)} = 1 for all ω and so the right hand side above
equals ∫

{σk<∞}
Qω{ϑσk(ω) ∈ C}P(dω) . (3.5.9)

Now, we relate {Qω} to {Px}x∈S\{0}. For each f ∈ D0, we know that the process (M f
t )

defined in (3.5.1) is a P-martingale. Then, in virtue of [30, Theorem 1.2.10], for each
f ∈ D0 there exists some A f ∈ Gσk with P [A f ] = 1 such that, for all ω ∈ A f ∩ {σk < ∞},

(M f
t ) is a Qω-martingale after time σk(ω), (3.5.10)

i.e. Qω [M
f
t2
|Gt1 ]

Qω -a.s
= M f

t1
, whenever σk(ω) ≤ t1 < t2, where Qω [ · | · ] stands for condi-

tional expectation with repect to Qω. It follows from (3.5.10) that,

(M f
t ) is a Qω ◦ (ϑσk(ω))

−1-martingale . (3.5.11)

Let us consider the countable subset of D0

D̃0 :=
{

f ∈ D0 : f (x) is a rational number for all x ∈ S
}

and denote A :=
⋂

f∈D̃0
A f . Then, (3.5.11) implies that, for all ω ∈ A ∩ {σk < ∞},

Qω ◦ (ϑσk(ω))
−1 is a solution of the (D̃0, L )-martingale problem.

But, given any f ∈ D0, ∃ ( fn) in D̃0 such that fn → f and L fn → L f , both pointwise,
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and such that
sup
n≥1

max
x∈S

(
| fn(x)|+ |L fn(x)|

)
< ∞ .

By using this approximation it is easy to conclude that, for all ω ∈ A ∩ {σk < ∞},

Qω ◦ (ϑσk(ω))
−1 is a solution of the (D0, L )-martingale problem. (3.5.12)

On the other hand, for all ω ∈ {σk < ∞},

Qω ◦ (ϑσk(ω))
−1{X0 = Xσk (ω)} = Qω{Xσk(ω) = Xσk (ω)} = 1

(we applied (3.5.8) in the last equality.) Namely, for all ω ∈ {σk < ∞},

Qω ◦ (ϑσk(ω))
−1 is starting at Xσk (ω) ∈ S \ {0} , (3.5.13)

where we used observation (3.5.6) for the last assertion. We may now conclude from
(3.5.12), (3.5.13) and the uniqueness result established in Lemma 3.5.3 that

Qω ◦ (ϑσk(ω))
−1 = PXσk (ω) , ∀ω ∈ A ∩ {σk < ∞} .

Since P(A) = 1, this last assertion implies that (3.5.9) equals∫
{σk<∞}

PXσk (ω)( C )P(dω) .

This concludes the proof.

3.5.3 A Solution Starting at 0 ∈ S

From now on, we shall denote by P0 the law of (Xt) (defined in (1.2.3)) so that we have
now the complete set of laws {Px : x ∈ S}. Obviously P0 starts at 0. We prove now that
P0 is a solution of the (C1(S), L )-martingale problem. Recall the sequence (Tn)n≥2 of
independent random variables considered in (1.2.2). For each k ∈ N define the process
(X k

t ) as

X k
t =



1/k , 0 ≤ t < Tk ,
1/(k− 1) , Tk ≤ t < Tk + Tk−1 ,
...

...
1/2 , ∑k

n=3 Tn ≤ t < ∑k
n=2 Tn ,

1 , t ≥ ∑k
n=2 Tn ,

for all t ≥ 0. Clearly, the law of (X k
t ) is P1/k. Also, observe that (X k

t ) is related to (Xt)
by

X k
t = XSk+t , ∀t ≥ 0 , where Sk :=

∞

∑
n=k+1

Tn .

In particular, for all t ≥ 0,

f (X k
t )

a.s.−→ f (Xt) and L f (X k
t )

a.s.−→ L f (Xt) , as k ↑ ∞ . (3.5.14)
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Fix an arbitrary f ∈ C1(S), a continuous function G : Sm → R and a finite set of times
0 ≤ s1 < · · · < sm ≤ s < t. In virtue of Remark 3.5.2, we have

E
[

G(X k
s1

, . . . , X k
sm)
{

f (X k
t )− f (X k

s )−
∫ t

s
L f (X k

r )dr
}]

= 0 , (3.5.15)

for all k ≥ 1. Letting k ↑ ∞ in (3.5.15) and using (3.5.14) we get

E
[

G(Xs1 , . . . , Xsm)
{

f (Xt)− f (Xs)−
∫ t

s
L f (Xr)dr

}]
= 0 . (3.5.16)

We have thus shown that P0 is a solution of the (C1(S), L )-martingale problem.

3.5.4 Uniqueness Starting at 0 ∈ S

In this subsection we prove the uniqueness result that we used in Section 3.4. Let σ stand
for the exit time from 0 ∈ S, i.e.

σ := inf{t ≥ 0 : Xt 6= 0} . (3.5.17)

Clearly, σk ↓ σ pointwise. Notice that σ is not a (Gt)-stopping time.

Proposition 3.5.5. There exists a unique probability measure P on (D(R+, S),G∞) such that
P{X0 = 0, σ = 0} = 1 and

f (Xt)−
∫ t

0
L f (Xs)ds , t ≥ 0

is a P-martingale for every f ∈ D0.

Existence is, of course, a consequence of Lemma 3.4.1. Nevertheless, it follows from
the conclusion of the previous subsection that P0 fulfils all the requirements. In order to
show uniqueness we first improve the result obtained in Lemma 3.5.4.

Proposition 3.5.6. Let P be a solution of the (D0, L )-martingale problem starting at 0 ∈ S. If
P{σ = 0} = 1 then

P{ϑσk ∈ C} = P1/k(C) , ∀ k ≥ 1 and C ∈ G∞ .

Proof. We start showing that

P{σm < ∞ , ∀m ∈N} = 1 . (3.5.18)

Let us denote
A := {σm < ∞ , ∀m ∈N} = {σ1 < ∞} .

Since P1/n(A) = 1 for any n ∈ N then applying equation (3.5.7) for C = A and using
observation (3.5.6) we get

P{ϑσk ∈ A , σk < ∞} = P{σk < ∞} , ∀k ∈N .

But σk + σ1 ◦ ϑσk = σ1 and so {ϑσk ∈ A , σk < ∞} = A. Using this observation in the last
displayed equation we get

P(A) = P{σk < ∞} , ∀k ∈N .
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Since {σk < ∞} ↑ {σ < ∞} then, letting k ↑ ∞ in the previous equation, we get P(A) =
P{σ < ∞} which equals one by assumption.

As second step, we prove that

P
{

Xσm = 1/m , ∀m ∈N
}

= 1 . (3.5.19)

For it, consider the events

Bn := {X0 = 1/n and Xσm = 1/m for all 1 ≤ m ≤ n} , n ∈N

and B :=
⋃

n∈N Bn. Since P1/n(Bn) = 1 for all n ≥ 1, then, for all k ∈N, we have

PXσk (ω)(B) = 1 , ∀ω ∈ {σk < ∞} .

Applying (3.5.7) for C = B along with this last observation we get

P{ϑσk ∈ B , σk < ∞} = P{σk < ∞} = 1 , ∀k ∈N .

We used (3.5.18) in the last equality. Therefore,

P
{

ϑσk ∈ B and σk < ∞ , for all k ≥ 1
}

= 1 . (3.5.20)

Now (3.5.19) follows from (3.5.20), assumption P{X0 = 0 , σ = 0} = 1 and the following
observation

{X0 = 0 , σ = 0 , ∀k ≥ 1 , ϑσk ∈ B , σk < ∞} ⊆ {Xσm = 1/m , ∀m ∈N}

To prove this inclusion, fix some ω in the event of the left hand side and fix an arbitrary
m′ ∈N. Since σk(ω) ↓ σ(ω) = 0 then Xσk (ω)→ X0(ω) = 0 as k ↑ ∞ and so

∃ k′ ∈N such that Xσk′ (ω) < 1/m′ . (3.5.21)

On the other hand, ϑσk (ω) ∈ B for all k ∈N and so ∃ n′ ∈N such that

ϑσk′ (ω) ∈ Bn′ . (3.5.22)

In virtue of (3.5.21) and (3.5.22) we necessarily have

m′ < n′ ≤ k′

because
1/k′

(3.5.6)

≤ X0 ◦ ϑσk′ (ω)
(3.5.22)
= 1/n′ = X0 ◦ ϑσk′ (ω)

(3.5.21)

< 1/m′ .

From (3.5.22) it follows that

Xσm ◦ ϑσk′ (ω) = 1/m , ∀ 1 ≤ m ≤ n′ .

Since m′ < n′ in particular we have

Xσm′ ◦ ϑσk′ (ω) = 1/m′ .

But Xσm′ ◦ ϑσk′ (ω) = Xσm′ (ω) since m′ < k′ and so Xσm′ (ω) = 1/m′. This concludes the
proof of the desired inclusion.

Finally, the desired result follows from (3.5.19) and (3.5.7).
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Proof of Proposition 3.5.5. Let P be a probability satisfying the stated assumptions and let
E and E1/k stand for expectation with respect to P and P1/k respectively. Fix an arbitrary
n ∈ N some 0 ≤ t1 < t2 < · · · < tn and a bounded continuous function F : Sn → R. In
virtue of (3.5.6) we have

E
[
F(Xσk+t1 , . . . , Xσk+tn)

]
= E1/k

[
F(Xt1 , . . . , Xtn)

]
, ∀k ∈N .

But (Xσk+t1 , . . . , Xσk+tn)→ (Xt1 , . . . , Xtn) P-a.s. as k ↑ ∞ and so

E
[
F(Xt1 , . . . , Xtn)

]
= lim

k→∞
E1/k

[
F(Xt1 , . . . , Xtn)

]
.

This guarantees the desired uniqueness.

3.5.5 Proof of Proposition 3.1.1

In virtue of Remark 3.5.2 and Lemma 3.5.3, in order to conclude the proof of Proposition
3.1.1, it remains to prove that P0 is the unique solution of the (C1(S), L )-martingale
problem starting at 0 ∈ S.

Observe that f g ∈ C1(S) for all f , g ∈ C1(S). We shall make use of the carré du champ
corresponding to (C1(S), L ):

Γ( f , g) := L ( f g)− gL f − f L g , for every f , g ∈ C1(S) .

Clearly, Γ( f , g) turns out to be continuous for each f , g ∈ C1(S). Since L acts as a
derivation at 0 ∈ S we have

Γ( f , g)(0) = 0 , ∀ f , g ∈ C1(S) . (3.5.23)

Recall definition of (M f
t ) given in (3.5.1) for each f ∈ C1(S).

Lemma 3.5.7. Let P be any solution of the (C1(S), L )-martingale problem. For all f , g ∈ C1(S),
the process

M f
t Mg

t −
∫ t

0
Γ( f , g)(Xs) ds , t ≥ 0 ,

is a P-martingale with respect to (Gt).

Proof. Fix some f , g ∈ C1(S). Denote

V f
t :=

∫ t

0
L f (Xs) ds and Vg

t :=
∫ t

0
L g(Xs) ds , t ≥ 0 ,

so that, for all t ≥ 0,

M f
t + V f

t = f (Xt) and Mg
t + Vg

t = g(Xt)

By multiplying these equalities we get

M f
t Mg

t + V f
t Vg

t + M f
t Vg

t + V f
t Mg

t = ( f g)(Xt) . (3.5.24)

By using

( f g)(Xt) = M f g
t +

∫ t

0
L ( f g)(Xs)ds , t ≥ 0 ,
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along with

V f
t Vg

t =
∫ t

0
V f

s dVg
s +

∫ t

0
Vg

s dV f
s , t ≥ 0 ,

in equality (3.5.24) we get

M f
t Mg

t + M f
t Vg

t + V f
t Mg

t

= M f g
t +

∫ t

0
L ( f g)(Xs)ds−

∫ t

0
V f

s dVg
s −

∫ t

0
Vg

s dV f
s . (3.5.25)

If we denote, for all t ≥ 0,

M1
t := M f

t Vg
t −

∫ t

0
M f

s dVg
s and M2

t := Mg
t V f

t −
∫ t

0
Mg

s dV f
s , (3.5.26)

then equality (3.5.25) can be rewritten as

M f
t Mg

t + M1
t + M2

t = M f g
t +

∫ t

0
Γ( f , g)(Xs)ds . (3.5.27)

By assumption, (M f g
t ) is a P-martingale. In addition, in virtue of [30, Theorem 1.2.8],

(M1
t ) and (M2

t ) are also P-martingales. Therefore the desired result follows from (3.5.27).

We now use observation (3.5.23) to prove that 0 ∈ S is an instantaneous state for any
solution starting at 0.

Lemma 3.5.8. For any solution P of the (C1(S), L )-martingale problem starting at 0 ∈ S we
have P{σ = 0} = 1.

Proof. Let P be a probability satisfying the assumptions. Define f : S→ R as the inclusion
function i.e. f (x) = x, for x ∈ S. Clearly f ∈ C1(S) and so

Mt := Xt −
∫ t

0
(L f )(Xs) ds , t ≥ 0 (3.5.28)

is a P-martingale. Since σk is a stopping time then it follows from Lemma 3.5.7 that

(Mt∧σk )
2 −

∫ t∧σk

0
Γ( f , f )(Xs) ds , t ≥ 0 ,

is a P-martingale. In particular, for all t ≥ 0 we have

E
[
(Mt∧σk )

2] = E
[ ∫ t∧σk

0
Γ( f , f )(Xs) ds

]
, ∀k ∈N , (3.5.29)

(since M0 = 0, P-a.s.) where E represents the expectation with respect to P . By the
bounded convergence theorem, letting k ↑ ∞ in (3.5.29) we get

E
[
(Mt∧σ)

2] = E
[ ∫ t∧σ

0
Γ( f , f )(Xs) ds

]
, ∀t ≥ 0 . (3.5.30)

Since {s < σ} ⊆ {Xs = 0}, the right hand side in the above equation equals

E[t ∧ σ] Γ( f , f )(0)

which vanishes as noticed in observation (3.5.23). Therefore, from (3.5.30) we conclude
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that
P [Mt∧σ = 0 , ∀t ≥ 0] = 1 .

Using this fact in (3.5.28) we get that, P-a.s.,

Xt∧σ =
∫ t∧σ

0
(L f )(Xs) ds =

1
2
(
t ∧ σ

)
, ∀t ≥ 0 .

But, for any t > 0, we have on {t < σ} that

Xt∧σ = Xt = 0 6= 1
2
(
t ∧ σ

)
.

Hence P{t < σ} = 0, ∀ t > 0 and we are done.

It follows from Lemma 3.5.8 and Proposition 3.5.5 that P0 is the only solution of the
(C1(S), L )-martingale problem.



Chapter 4

From Finite Coalescing Transitive
Markov Chains to Kingman’s

Coalescent*

Abstract

Let ξ be an irreducible and transitive Markov chain in continuous time, over a
finite state space. Fix n ≥ 2 and suppose that ξ1, . . . , ξn are i.i.d. copies of ξ. Each
time two chains meet, they stay together and follow the motion of the one with
the smaller label. This mechanism induces a process in the set of partitions of
{1, 2, . . . , n}. Starting from the invariant measure, we find conditions under which
a sequence of these processes, in an appropriate scale of time, converges to the
Kingman’s coalescent that starts with n equivalence classes. In particular, we prove
this convergence in the reversible case under a condition that involves the relaxation
time.

4.1 Notation and Results

Let S be a metric space. As usual, we denote by D(R+, S) the set of càdlàg paths w :
R+ := [0,+∞)→ S and we allways consider in D(R+, S) the Skorokhod topology. When
S is finite, unless we say otherwise, we consider in it the discrete metric. For every t ∈ R+

there is the projection pt : D(R+, S)→ S defined by

pt(w) := w(t) , ∀ w ∈ D(R+, S) .

Given a process ζ : Ω → D(R+, S) we denote by ζt the composition ζ ◦ pt for all t ∈ R+,
and call them the marginals of ζ.

*Joint work with Johel Beltrán
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For every n ∈ N := {1, 2, . . . } we denote [n] := {1, 2, . . . , n}. We call Pn the set of
partitions of [n], and given π ∈ Pn, we denote by #(π) the number of equivalence classes
of π, for all n ∈N.

Let n ∈N and π ∈ Pn, we define i(π) := (i1, . . . , i#(π)) ∈ [n]#(π) as the vector verifying

i1 < i2 < . . . < im , (4.1.1)

where m = #(π), and ik = min{i ∈ ik} for all k ∈ [m], where ik stands for the equivalence
class to which ik belongs. Clearly i1 = 1 for every partition.

4.1.1 Kingman’s Coalescent

Fix n ≥ 1. We define the Kingman’s coalescent over Pn as the process Kn with trajectories
in D(R+,Pn), determined by the following generator

L n f (π) := 1{#(π)≥2} ∑
1≤i<j≤#(π)

[ f
(
(i, j)[π]

)
− f (π)] , (4.1.2)

for every f : Pn → R. Where, in (4.1.2), for a partition π with #(π) ≥ 2, and j, k ∈N such
that 1 ≤ j < k ≤ #(π), we define (j, k)[π] as follows. Suppose that i(π) = (i1, . . . , i#(π)),
then

(j, k)[π] :=
{

im : m 6∈ {j, k}
}
∪ {ij ∪ ik} .

In other words, (j, k)π is the partition obtained from π by coalescing ij and ik.

4.1.2 Coalescence

Here we introduce the n-Kingman’s approximation, a sequence of processes that under
conditions (H1), (H2) and (H3), converges to the Kingman’s coalescent as we state more
precisely in Theorem 4.1.3

Independent Markov Chains

Let ξ : Ω→ D(R+, E) be an irreducible Markov chain in continuous time, with generator
Q, over the finite set E. Fix n ∈ N and x = (x1, . . . , xn) ∈ En. Increasing Ω if necessary,
we define the process ξQ,n : (Ω, PQ

x )→ D(R, En) as the coupling

ξQ,n := (ξ1, . . . , ξn) ,

where PQ
x is a probability, defined in the sigma-algebra σ(ξQ,n

t : t ≥ 0), such that the
processes ξ1, . . . , ξn are independent copies of ξ satisfying PQ

x [ξ
Q,n
0 = x] = 1.

Given a probability measure µ on Ek we let PQ
µ stand for the respective probability

under which ξQ,n has initial distribution µ, i.e.

PQ
µ [ · ] =

∫
PQ

x [ · ]µ(dx) .

We denote by mn the stationary distribution of ξQ,n. Hence, under PQ
mn the process ξQ,n

is the coupling of n i.i.d. copies of ξ, each of them starting from its stationary probability
distribution. Also, we let 〈 f 〉µ stand for the µ-integral of some real-valued function f .
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Coalescing Markov Chains

Fix n ∈ N, a set E, and x = (x1, . . . , xn) ∈ En. We denote by π(x) ∈ Pn the partition
induced by the equivalence relation

i ∼ j ⇐⇒ xi = xj .

This permit us to define the function ΨE,n : En → Pn by ΨE,n(x) := π(x).
We associate to ξQ,n the process ηQ,n : Ω→ D(R+, En) with marginals

ηQ,n
t = (η1

t , η2
t , . . . , ηn

t ) , t ≥ 0 ,

defined as follows. First, we set η1 := ξ1. Now, suppose that processes η1, . . . , ηm−1 have
been defined for some m ≤ n. After denoting

T := min{t ≥ 0 : ξm
t = η

j
t for some j < m} and jm := min{j : ξm

T = η
j
T} ,

we define

ηm
t :=

{
ξm

t , for t < T ,

η
jm
t , for t > T .

Finally, we define the process XQ,n : Ω→ D(R+,Pn) by

XQ,n
t := ΨE,n(η

Q,n
t ) , ∀t ≥ 0 .

4.1.3 Main Result

Let n ∈N and consider ηQ,n as defined in Subsection 4.1.2. We define the stopping times

TQ,n
m := inf{t ≥ 0 : #

(
XQ,n

t
)
= m} , m ∈ [n] ,

Often, when the superscript Q, n is understood we do not write it. We apply this conven-
tion to all the stopping times defined in this work.

Definition 4.1.1 (Coalescing hypotheses). Consider a sequence of irreducible Markov chains
(ξN)N∈N with their respective generators QN , over finite state spaces. Define the scale of time
(θN)N∈N by θN := EN

m2 [T1], and fix n ∈ N \ {1}. We say that (ξN)N∈N fulfills the coalescing
hypotheses starting with n particles if the following conditions are satisfied

(H1) With probability converging to one, two independent particles starting from the stationary
distribution do not coalesce in a scale of time smaller than (θN)N∈N:

lim
δ→0

lim sup
N→∞

PQN
m2 [T1 ≤ δθN ] = 0 .

(H2) There exist p > 1 and a scale of time (αN)N∈N ⊂ R+ smaller than (θN)N∈N, where ξQN ,n

exhibits a local ergodic behavior in the sequences of functions uniformly bounded in Lp(mn):

lim
N→∞

αN
θN

= 0 ,

and

lim
N→∞

EQN
mn

[∣∣∣∣∣ 1
αN

∫ αN

0
f N(ξQN ,n

s ) ds

∣∣∣∣∣
]

= 0 ,
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provided that ( f N : En
N → R)N∈N is uniformly bounded in Lp(mn), and satisfies

〈 f N〉mn = 0 for all N ∈N.

(H3) There exists ε > 0 such that the sequences of scaled times (TQN ,2
1 /θN)N∈N is uniformly

bounded in L1+ε(PQN
m2 ):

EQN
m2

[( T1

θN

)1+ε]
≤ C(n) , for some ε > 0 ,

where C(n) is a constant only, possibly depending on n.

Clearly, in Hypothesis (H2), for the sequence of functions ( f N)N∈N, the condition
〈 f N〉mn = 0 for all N ∈N can be replaced by 〈 f N〉mn → 0 as N → ∞.

Suppose that we have a sequence (ξQN )N∈N of irreducible Markov chains, like in
Definition 4.1.1. For the time scale θ := (θN)N∈N ⊂ R+ and a natural number n, we de-
fine the (θ, n)-Kingman’s approximation associated to (ξQN )N∈N as the sequence of processes
(Xθ,QN ,n)N∈N defined by

X
θ,QN ,n
t = XQN ,n

tθN
, ∀t ≥ 0 , N ∈N .

When θ is the time scale introduced in Definition 4.1.1 we write (XQN ,n)N∈N instead of
(Xθ,QN ,n)N∈N and call it just the n-Kingman’s approximation associated to (ξQN )N∈N

To make notation simpler, when we consider a sequence of Markov chains like in the
last paragraph, in all the previously established and future notation, we agree to replace
the subscripts or subscripts QN with simply N. In this way, we shall write ξN,n

t , PN
mn , etc.

in place of the respectives ξQN ,n
t , PQN

mn , etc. Also, when there where no room for confusion,
we shall omit the number n that designates the number of Markov chains considered to
generate ηQ,n. For example, when n is understood it will be usual for us to write ηQ and
XQ instead of ηQ,n and XQ,n, respectively.

We are ready to state our main theorem; but before that we remember the notion of
transitivity for Markov Chains

Definition 4.1.2. Let W : Ω → D(R+, S) be a Markov chain, and denote by Px, x ∈ S, the
probabilities in D(R+, S) such that Px[W0 = x] = 1. We say that W is transitive if for every
x, y ∈ S there is a bijection ϕx,y : S → S such that ϕx,y(x) = y, and the induced bijection
ϕ̂x,y : D(R+, S)→ D(R+, S) defined by

ϕ̂x,y(w)(t) = ϕ(w(t)) , ∀w ∈ D(R+, S) , ∀t ≥ 0 ,

preserves the law of the chain, i.e. (ϕ̂x,y)−1 ◦Px = Py.

Theorem 4.1.3. Let (ξN)N∈N be a sequence of transitive, irreducible Markov chains over finite
state spaces, and fix a natural number n ≥ 2. Suppose that (ξN)N∈N fulfills the coalescing
hypotheses starting with n particles. Then, under PN

mn , the n-Kingman’s approximation associated
to (ξN)N∈N converges in distribution to the Kingman’s coalescent Kn starting at πn, the partition
of [n] with n equivalence classes.

For an irreducible Markov Chain ξ with generator Q, we denote by TQ,n
π , π ∈ Pn, the

stopping times defined by

TQ,n
π := inf{t ≥ 0 : XQ,n

t = π} , π ∈ Pn ;
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and we call T̃Q,n
m the first time XQ,n has at most m equivalence classes:

T̃Q,n
m := inf{t ≥ 0 : #

(
XQ,n

t
)
≤ m} .

Compare this with the definition of TQ,n
m made at the beginning of Section 4.1.3.

As we show in Subsection 4.4.1. To prove Theorem 4.1.3, we do not need Hypothesis
(H2) in its full extension. For us it is enough to have the local ergodic behavior for the
sequences ( f N,π)N∈N, π ∈ P#(π)+1 with #(π) ≤ n− 1, defined by

f N,π(x1, . . . , xn) := EQN
(x1,...,x#(π)+1)

[ T̃#(π)

θN
− 1{T̃#(π)=Tπ}

]
, (4.1.3)

for all (x1, . . . , xn) ∈ En
N and N ∈ N. Thanks to Hypothesis (H3), these sequences are

uniformly bounded in L1+ε(mn). For this reason, reducing ε if necessary, we can assume
that 1− p ≥ ε. In all the remaining work we make this this assumption without mention
it.

The Reversible Case

Let ξ be an irreducible Markov chain with generator Q, over a finite state space. Suppose
that ξ is reversible and denote by γQ its relaxation time.

Consider a sequence (ξN)N∈N of transitive, irreducible and reversible Markov chains
such that the size of the state spaces goes to infinite as N → ∞. We define the following
condition

lim
N→∞

γN
θN

= 0 , (H’)

where (θN)N∈N is defined by θN = EN
m2 [T1], for all N ∈ N. As we discuss in Subsection

4.4.3, from the work of Aldous [2] follows that (H’) implies (H1) and (H3); whereas we
prove that (H’) also imples (H2). Therefore, we have the following corollary of Theorem
4.1.3.

Corollary 4.1.4. Let (ξN)N∈N be a sequence of transitive, irreducible and reversible Markov
chains over finite state spaces. Fix a natural number n ≥ 2, suppose that condition (H’) holds.
Then, under PN

mn , the n-Kingman’s approximation associated to (ξN)N∈N converges in distribu-
tion to the Kingman’s coalescent Kn starting at πn, the partition of [n] with n equivalence classes.

4.1.4 Sketch of the Proof

Fix a natural number n ≥ 2 and consider (ξN)N∈N, a sequence of transitive, irreducible
Markov chains over finite state spaces that fulfills the coalescing hypotheses starting with
n particles. Our strategy to prove Theorem 4.1.3 is summarized in the next two steps:

1. We prove that the n-Kingman’s approximation is tight.

2. Then we show that every limit process of the n-Kingman’s approximation solves a
martingale problem with unique solution.

To achieve step (1) we use the transitivity of (ξN)N∈N and the Hypothesis (H1). These
conditions allow us to show that asymptotically, when N → ∞, the jumps in XN do not
happen instantly. Thanks to this, we are able to find a sequence of explicit partitions of the
time that makes the modified modulus of continuity as small as we want, in probability.
This sequence of partitions is determined by the times where the process jumps, i.e. it is
generated by {TN

n−1 ≤ TN
n−2 ≤ · · · ≤ TN

1 }.
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For step (2) we prove a “replacement condition” between (XN)N∈N and Kn. More
specifically, we find that for any pair of positive numbers t1 < t2, the conditional expecta-
tion, at time t1, of ∣∣∣ ∫ t2

t1

(L n f )XN
s − θN Ln

N( f ◦ΨN)(η
N
sθN

) ds
∣∣∣

goes to zero when N → ∞, for all f : Pn → R. This allow us to proof that, in the limit,
the martingals defined by

f (XN
t )−

∫ 1

0
θN Ln

N( f ◦ΨN)(η
N
sθN

) ds , t ≥ 0 ,

become the martingals associated to the Kingman’s coalescent generated by L n. This
completes our strategy. Then, the main point in our path to show Theorem 4.1.3 is the
proof of the replacement condition. Here is where we use the local ergodic Hypothesis
(H3), which permit us to neglect averages in time when they are made in a scale smaller
than (θN)N , and when the functions subject to this averages have zero mean. To do it
we perform a series of transformations on the replacement condition, until reduce it to
the computation of the expectations EN

mm [Tm−1], when N → ∞ for all 2 ≤ m ≤ n. In
a few words, we reduce the proof of the replacement condition to the study of the first
coalescence in XN , when N tends to infinity.

4.1.5 Extra Notation

Finally, here we introduce more notation that we use in the next sections. Fix n ∈ N and
m ≤ n. We denote by In,m the set of all vectors (i1, . . . , im) ∈ [n]m satisfying (4.1.1). We
also set

In :=
n⋃

m=1

In,m .

Assume that we are in the setting of Subsection 4.1.2. Let ζ be a process whose trajec-
tories are in D(R+, En) and take i = (i1, . . . , im) ∈ In. Suppose that ζt = (ζ1

t , . . . , ζn
t ) for

all t ≥ 0. Then we denote
ζt(i) := (ζ i1

t , . . . , ζ im
t ) . (4.1.4)

Using this notation it is clear that

ηQ,n
t
(
i(XQ,n

t )
)
= ξQ,n

t
(
i(XQ,n

t )
)

, for all t ≥ 0 . (4.1.5)

Now we define some stopping times. For 1 ≤ i < j ≤ n we denote by τQ,n
i,j the first time

when ξ i
t = ξ

j
t:

τQ,n
i,j := inf{t ≥ 0 : ξ i

t = ξ
j
t} .

Observe that, when n ≥ 2, every TQ,n
m , when it is finite, coincides with τQ,n

i,j for some

random indexes 1 ≤ i < j ≤ k. Also TQ,n
m coincides with TG,k

π for some random π ∈ Pn
such taht #(π) = m.

To conclude, we distinguish the following sets in En

E π
E,n := {x ∈ En : ΨE,k(x) = π} ,

for all π ∈ Pn and m ∈ [n].
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4.2 Some General Tools

This section is independent from the others in the present chapter. Here we develop some
general theory, mostly related with the notion of maringale problem and convergence of
processes, that we use in the following sections.

4.2.1 About Martingale-problem Solutions

Here we examine some results related to martingale-problem solutions. We start by fixing
some notation.

Let E be a metric space. We denote by Mb(E) the space of measurable and bounded
functions f : E → R. Similarly, we call Cb(E) the space of continuous and bounded
functions f : E → R. Clearly Cb(E) ⊂ Mb(E). Like in the other sections D(R+, E)
denotes the space of cadlag functions α : R+ → E. In D(R+, E), we always consider the
sigma-algebra generated by the Skorokhod topology.

Definition 4.2.1. Fix a pair (D, L), where D ⊂Mb(E) and L : D →Mb(E). Let (Ω,F , P) be
a probability space, (Ft)t≥0 be a filtration of F , and X : Ω→ D(R+, E) be a measurable process,
adapted to (Ft)t≥0. We say that X is a solution for the (D, L)-martingale problem associated to
(Ft)t≥0, if for every f ∈ D

M f
t := f (Xt)−

∫ t

0
(L f )(Xs) ds , t ≥ 0 ,

defines a (P, (Ft)t≥0)-martingale. In addition, we say that X starts at x ∈ E when P[X0 = x] = 1.
When (Ft)t≥0 is the filtration generated by X we agree not to mention it, we assume it understood.

Under the conditions of Definition 4.2.1, we say that the (D, L)-martingale problem
associated to (Ft)t≥0 has a unique solution starting from x ∈ E if the induced laws in
D(R+, E), of all the solutions starting from x, are the same.

A Product of Martingale-problem Solutions

In this subsection all the state spaces we consider are discrete topological spaces. Now
fix two pairs (D, L) and (D̃, L̃), where D ⊂ Mb(E), L : D → Mb(E), D̃ ⊂ Mb(Ẽ), and
L̃ : D̃ → Mb(Ẽ). Consider the probability space (Ω,F , P) and (Ft)t≥0, a filtration of F .

Suppose that the processes X : Ω → D(R+, E) and Y : Ω → D(R+, Ẽ), adapted to
(Ft)t≥0, are solutions for the (D, L)- martingale problem and(D̃, L̃)-martingale problem,
respectively, both associated to(Ft)t≥0. The purpose of this subsection is to establish that,
under certain conditions, the coupled process (X, Y) : Ω→ D(R+, E× Ẽ) is a solution for
the (D ⊗ D̃, L⊗ L̃)-martingale problem associated to (Ft)t≥0. Here D ⊗ D̃ ⊂ Mb(E× Ẽ)
denotes the set of functions f ⊗ g : E× Ẽ→ R defined by

f ⊗ g(x, y) := f (x)g(y) , x ∈ E, y ∈ Ẽ, f ∈ Mb(E), g ∈ Mb(Ẽ),

and L⊗ L̃ : D ⊗ D̃ →Mb(E× Ẽ) stands for the operator defined by

(L⊗ L̃) f ⊗ g := f (x)L̃(y) + g(y)L f (x) , ∀x, y ∈ E .

To this end, we shall perform a series of computations. But first we introduce the following
definition

Definition 4.2.2. In the previous setting. We say that the (D ⊗ D̃, L⊗ L̃)-martingale problem
associated to (Ft)t≥0 is the product of the (D, L)-martingale problem with the (D̃, L̃)-martingale
problem, both associated to the same filtration, (Ft)t≥0.
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Remark 4.2.3. Given three martingale problems defined by the pairs (Di, Li), i = 1, 2, 3, associ-
ated to the same filtration, it is easy to see that

(L1 ⊗ L2)⊗ L3 = L1 ⊗ (L2 ⊗ L3) .

This allows us to define the the product of a finite number of martingale problems defined by
(Di, Li), i = 1, . . . , n, and associated to the same filtration. We call this product, the

(D1 ⊗ · · · ⊗ Dn, L1 ⊗ · · · ⊗ Ln)-martingale problem,

associated to the same filtration.

Take f ∈ D, g ∈ D̃ and denote

Vt :=
∫ t

0
L f (Xs) ds , Wt :=

∫ t

0
L̃(Ys) ds ,

then we have the martingales Mt := f (Xt)−Vt and Nt := g(Yt)−Wt, t ≥ 0. Observe that

f (Xt)g(Yt) = MtWt + NtWt + VtWt + MtNt. (4.2.1)

Take into account that the differences MtWt −
∫ t

0 Ms dWs and NtVt −
∫ t

0 Ns dYs are martin-
gales, and that VtWt =

∫ t
0 Vs dWs +

∫ t
0 Ws dVs. Then, replacing these in (4.2.1), we deduce

that

f (Xt)g(Yt)−MtNt −
∫ t

0
(Ms + Vs) dWs −

∫ t

0
(Ns + Ws) dVs

= f ⊗ g(Xt, Yt)−MtNt −
∫ t

0
(L⊗ L̃) f ⊗ g(Xs, Ys) ds , (4.2.2)

defines a martingale.
On the other hand, because t 7→ Vt and t 7→ Wt are continuous with finite total

variation, [Mt, Nt] = [ f (Xt), g(Yt)]; hence MtNt − [ f (Xt), g(Yt)] is a martingale. This
together with (4.2.2) imply that

f ⊗ g(Xt, Yt)− [ f (Xt), g(Yt)]−
∫ t

0
(L⊗ L̃) f ⊗ g(Xs, Ys) ds , (4.2.3)

defines a martingale.
From these computations we deduce the following lemma.

Lemma 4.2.4. Let X and Y be solutions of two martingale problems associated to the same filtra-
tion. Suppose that X and Y do not jump at the same time, then the coupled process (X, Y) is a
solution of the product of the previous martingale problems.

Proof. Consider X and Y as before and assume that they do not jump simultaneously.
Then

[ f (Xt), g(Yt)] = 0 , ∀t ≥ 0 ,

for all f ∈ D and g ∈ D̃. To conclude observe that, thanks to (4.2.3), calling F = f ⊗ g

F(Xt, Yt) −
∫ t

0
(L⊗ L̃)F(Xs, Ys) ds, t ≥ 0 , (4.2.4)

defines a martingale for all F ∈ D ⊗ D̃.
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Remark 4.2.5. Let Xi, i = 1, . . . , n, be solutions of the respective (Di, Li)-martingale problems,
i = 1, . . . , n, associated to the same filtration. Then, if any pair of this solutions do not jump at the
same time, then the coupled process (X1, . . . , Xn) is a solution of the (D1 ⊗ · · · ⊗ Dn, L1 ⊗ · · · ⊗
Ln)-martingale problem associated to the same filtration.

Corollary 4.2.6. Two Markov processes over finite state spaces that share the same filtration are
independent, if and only if they do not jump at the same time.

Proof. Let X : Ω → D(R+, E) and Y : Ω → D(R+, Ẽ) be two Markov processes over the
finite sets E and Ẽ. Suppose that the generator of X and Y are L and L̃, respectively. We
know that X is the unique solution of the (Mb(E), L)-martingale problem and, similarly,
Y is the unique solution of the (Mb(Ẽ), L̃)-martingale problem, both problems associated
to the same filtration. In what follows, for simplicity, we do not mention the filtration
since all the processes and martingales are adapted to this.

Suppose that X and Y do not jump at the same time. Thanks to Lemma 4.2.4

f ⊗ g(Xt, Yt)−
∫ t

0
(L⊗ L̃) f ⊗ g(Xs, Ys) ds , t ≥ 0 , (4.2.5)

defines a martingale for every pair of functions f ∈ Mb(E) and g ∈ Mb(Ẽ). Observe that
any function F ∈ Mb(E× Ẽ) can be written as

F = ∑
(x,y)∈E×Ẽ

F(x, y)1x ⊗ 1y ,

where 1z stands for the indicator function of the set {z}, included in E or Ẽ as appropriate.
This, together with the linearity of L ⊗ L̃ implies that the expression in (4.2.5) is still a
martingale if we replace f ⊗ g by any function in Mb(E× Ẽ). This means that, (X, Y) is
the unique solution of the (Mb(E× Ẽ), L⊗ (̃E))-martingale problem, therefore X and Y
are independent.

The converse in clear.

This lemma and an obvious inductive procedure prove the following corollary.

Corollary 4.2.7. Any finite number of Markov processes over finite state spaces that share the
same filtration are independent, if and only if any pair of them do not jump at the same time.

Convergence to a Martingale-problem Solution

Here we show that, under a replacement condition, the limit in distribution of a sequence
of processes solves a martingale problem. For simplicity, all the metric spaces that we
consider in this subsection are at most countable.

The previous topological assumption ensures that in the spaces we shall work the open
sets are well approximated by closed sets from inside, and by open sets from outside. As
a consequence, the indicators of all open sets are pointwise-approximated by continuous
functions uniformly bounded by one. If we want more generality, last condition can
replace the topological assumption we made in the previous paragraph.

Let (ΩN ,FN , PN), N ∈N, be a sequence of probability spaces where we have defined
the processes

κN : ΩN → D(R+, E), YN : ΩN → D(R+, S̃), N ∈N .

In last expression, E and S̃ are metric spaces. We denote by (FN
t )t≥0, N ∈N, the filtration

defined by
FN

t := σ(YN
s , s ≤ t) , ∀t ≥ 0 , N ∈N .
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We assume that each κN is a solution of the (DN , LN)-martingale problem associated to
(FN

t )t≥0, for some operators LN : DN →Mb(E), N ∈ N. Consider ϕN : E → S, N ∈ N,
a sequence of measurable functions between E and the metric space S, and define the
processes XN : ΩN → D(R+, S) by

XN
t := ϕN(κN

t ) , t ≥ 0 , ∀N ∈N .

Suppose that (XN , YN)N converges in distribution to (X, Y) as N → ∞, where (X, Y) :
Ω → D(R+, S × S̃) is a process defined in the probability space (Ω,F , P). Finally we
denote by (Ft)t≥0 the filtration defined by

Ft := σ(Ys, s ≤ t) , ∀t ≥ 0 .

Under this framework we have the following result.

Lemma 4.2.8. Let κN , YN , XN , X and Y be like before, and let L : D ⊂ Cb(S) → Cb(S) be an
operator such that f ◦ ϕN ∈ DN for all f ∈ D and N ∈ N. Suppose that for all n ∈ N and for
all continuous and bounded functions H : S̃n → R we have

lim
N→∞

EN
[

H(YN
s1

, . . . , YN
sn )
∫ t2

t1

{(L f ) ◦ ϕN − LN( f ◦ ϕN)}(κN
s ) ds

]
= 0 , (4.2.6)

for every (s1, . . . , sn, t1, t2) ∈ (0, ∞)n+2 such that s1 < s2 < · · · < sn ≤ t1 < t2, and all f ∈ D.
Then X is a solution of the (D, L)-martingale problem associated to (Ft)t≥0. We call expression
(4.2.6) a replacement condition between (XN)N and X.

Proof. We take T ⊂ R+ for which each projection pt : D(R+, S× S̃), t ∈ T, is continuous
except at points forming a set of PN-probability zero, for all N ∈ N. Like it is shown
in [9, Section 13], the set T contains 0, and its complement in R+ is at most countable.

Denote by (MN
t )t the martingale given by

MN
t := f (XN

t )−
∫ t

0
LN( f ◦ ϕN)(κN

s ) ds . (4.2.7)

Let n ∈ N, fix (s1, . . . , sn, t1, t2) ∈ [(0, ∞) ∩T]n+2 such that s1 < s2 < · · · < sn ≤ t1 < t2
and take a continuous and bounded function H : S̃n → R. From the hypothesis

0 = EN [H(YN
s1

, . . . , YN
sn ){MN

t2
−MN

t1
}] . (4.2.8)

Then, calling

MN
t := f (XN

t )−
∫ t

0
(L f )(XN

s ) ds ,

and replacing in (4.2.8) we have

0 = EN [H(YN
s1

, . . . , YN
sn ){M

N
t2
−MN

t1
}]

+ EN
[

H(YN
s1

, . . . , YN
sn )
∫ t2

t1

{(L f ) ◦ ϕN − LN( f ◦ ϕN)}(κN
s ) ds

]
.
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We let N → ∞ in both sides of last equality and use (4.2.6) to obtain

0 = lim
N→∞

EN [H(YN
s1

, . . . , YN
sn ){M

N
t2
−MN

t1
}]

= lim
N→∞

EN
[

H(YN
s1

, . . . , YN
sn )
{

f (XN
t2
)− f (XN

t1
)−

∫ t2

t1

(L f )(XN
s ) ds

}]
= E

[
H(Ys1 , . . . , Ysn)

{
f (Xt2)− f (Xt1)−

∫ t2

t1

(L f )(Xs) ds
}]

.

Finally, because n, H and (s1, . . . , sn, t1, t2) ∈ [(0, ∞) ∩ T]n+2 such that s1 < s2 < · · · <
sn ≤ t1 < t2 were arbitrary, and thanks to the topological assumption we made at the
beginning of the subsection, we conclude that X is a solution of the (D, L)-martingale
problem associated to (Ft)t≥0.

Observe that when (YN)N = (XN)N for all N ∈ N, we only need the convergence
in distribution of (XN)N . In this case the hypothesis of Lemma 4.2.8 implies that X is a
solution of the (D, L)-martingale problem (associated to the filtration generated by X).

4.2.2 The Jump Function

Let (S, ρ) be a metric space where ρ take its values in Z≥0. We define the jump function in
S, J : D(R+, S)→ R, by

J (w) := sup
t≥0

ρ(w(t), w(t−)) , ∀w ∈ D(R+, S) . (4.2.9)

Our objective here is to prove that J is continuous. As usual, in D(R+, S) we consider
the Skorokhod topology.

In this subsection ‖ · ‖ denotes the uniform norm of bounded functions taking values in
R. Fix m ∈N. We define Λm as the set of all continuous increasing bijections λ : [0, m]→
[0, m], and denote by Idm the identity map of the interval [0, m]. For w ∈ D(R+, S) it is
also convenient to write

Js(w) := sup
t∈[0,s]

ρ(w(t), w(t−)) , ∀s > 0 .

Remember that the Skorokhod topology can be generated by the metric d defined by

d(u, v) :=
∞

∑
m=1

1
2m dm(gmu, gmv) ,

where gm : R+ → R is defined by

gm(t) :=


1 if t ≤ m− 1

m− t if m− 1 < t ≤ m
0 otherwise

, ∀m ∈N ,

and dm : D(R+, S)× D(R+, S)→ R is defined by

dm(u, v) := inf
λ∈Λm

{
‖Idm − λ‖ ∨ sup{ρ

(
u(t), v ◦ λ(t)

)
: t ∈ [0, m]}

}
,

for all m ∈N.

Lemma 4.2.9. The jump function J defined in (4.2.9) is continuous.
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Proof. It is sufficient to prove that the sets J −1({k}) are closed for all k ∈ Z≥0.

Fix k ∈ Z≥0, and take a sequence (wN)N∈N ⊂J −1({k}) converging to w ∈ D(R+, S),
i.e.

lim
N→∞

d(wN , w) = 0 .

From the definition of d we deduce

lim
N→∞

dm(wN , w) = 0 , ∀m ∈N .

Then we fix M ≥ 2 such that JM−2(wN) = k, and take an N sufficiently large to verify
dM(wN , w) < 1/4. This implies that there exists λM ∈ ΛM satisfying

‖IdM − λM‖ <
1
4

and sup
t∈[0,M−5/4]

ρ
(
wN(t), w ◦ λM(t)

)
<

1
4

.

Then
|JM−5/4(wN) − JM−5/4(w ◦ λM)| < 1/2 ,

hence k = JM−5/4(wN) = JM−5/4(w ◦ λM) = JλM(M−5/4)(w). Note that

M− 3/2 < λM(M− 5/4) < M− 1 .

Therefore, since M can be arbitrarily large, we deduce that J (w) = k.

4.3 The first Coalescence

The present section is devoted to the study of the asymptotic behavior of the first coales-
cence in (ξN,n

t ), under PN
mn , in an appropriate scale of time.

We start by fixing some notation. Consider ξ, an irreducible Markov chain with gener-
ator Q over the finite state space E. Fix a natural number n ≥ 2. We consider the coupling
ξQ,n : Ω → D(R+, E) of n i.i.d. copies of ξ, described in Subsection 4.1.2, and define the
process ζQ,n = (ζQ,(i,j))(i,j)∈In,2

: Ω→ D(R+, (E2)In,2) as follows

ζ
Q,(i,j)
t := (ξ i

t, 1{τQ,n
i,j ≤t}ξ

i
t + 1{τQ,n

i,j >t}ξ
j
t) , ∀t ≥ 0 , (i, j) ∈ Ik,2 .

Note that ζQ,n is a Markov process with respect to its own sigma-algebra, we call it
(HQ,n

t )t≥0:
HQ,n

t := σ(ζQ,n
s , 0 ≤ s ≤ t) , t ≥ 0 .

This implies that all the coordinates are Markov processes with respect to the same sigma-
algebra. This observation is crucial in this section. Note also, that each coordinate ζQ,(i,j)

has essentially the same behavior that ξQ,2. In fact, if the generator Q is given by

Qg(x) := ∑
y∈E

r(x, y)[g(y)− g(x)] ,
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for all g : E→ R, the generator of each ζQ,(i,j) is defined by

(L̃Q f )(a, b) := 1{a 6=b} ∑
c∈E

{
r(a, c)[ f (c, b)− f (a, b)]

+ r(b, c)[ f (a, c)− f (a, b)]
}

+ 1{a=b} ∑
c∈E

r(a, c)[ f (c, c)− f (a, b)] , (4.3.1)

for all f : E2 → R. We also define YQ,n = (YQ,(i,j))(i,j)∈In,2
: Ω→ D(R+, {0, 1}In,2) as

YQ,(i,j)
t := 1{τQ,n

i,j ≤t} , ∀t ≥ 0 , (i, j) ∈ In,2 .

This process can be obtained from ζQ,n by composing each of its coordinates with the
function Ψ̃Q : E2 → {0, 1} defined by Ψ̃Q(a, b) = 1{a=b}, i.e. YQ,(i,j)

t = Ψ̃Q(ζ
Q,(i,j)
t ) for all

t ≥ 0, for all (i, j) ∈ In,2. The metric we consider in {0, 1}In,2 is dn defined by

dn(x, y) := ∑
(i,j)∈In,2

|x(i,j) − y(i,j)| ,

for all x = (x(i,j))(i,j)∈In,2
, y = (y(i,j))(i,j)∈In,2

∈ {0, 1}In,2 . This is the metric that induces the
Skorokhod topology we take into account in D(R+, {0, 1}In,2).

On the other hand, we denote by Y the process with trajectories in {0, 1} that jumps
from zero to one in an exponential time of mean one, and stay in one forever. More
specifically, the generator L̃ of Y is defined by

(L̃ f )(a) := 1{a=0}[ f (1)− f (0)] ,

for all f : {0, 1} → R. Given n ∈ N we call Y(n) the process with trajectories in {0, 1}In,2

defined as the coupling of (n
2) independent copies of Y.

Now, for the rest of the section we fix (ξN)N∈N, a sequence of irreducible Markov
chains over finite state spaces, and a natural number n ≥ 2. For a time scale θ =
(θN)N∈N ⊂ R+ we define Yθ,N,n by

Y
θ,N,n
t = YN,n

tθN
, t ≥ 0 , N ∈N .

When θ is like in Definition 4.1.1, we write simply YN,n, instead of Yθ,N,n. The main result
of this section reads as follows.

Proposition 4.3.1. Fix a natural number n ≥ 2. Suppose that (ξN)N∈N is transitive and fulfills
the coalescing hypotheses starting with two particles. Then, under PN

mn , the sequence (YN,n)N∈N

converges in distribution to Y(n) starting in (1, . . . , 1) ∈ {0, 1}In,2 .

As a consequence we have the following corollary

Corollary 4.3.2. Fix n ≥ 2. Under the hypotheses of Proposition 4.3.1, the sequence of scaled
times (T̃N,n

n−1/θN)N∈N converges in distribution to an exponential random variable of mean (n
2)
−1.

Moreover

lim
N→∞

EN
mn

[ T̃N,n
n−1
θN

]
=

(
n
2

)−1
. (4.3.2)

Proof. Since (YN,n)N converges in distribution to Y(n), the vector of stopping times
(τN

i,j /θN , (i, j) ∈ In,2) converges in distribution, when N → ∞, to the random vector
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(ei,j, (i, j) ∈ In,2), where all the variables ei,j, (i, j) ∈ In,2 are i.i.d. with exponential dis-
tribution of mean one. This implies that (T̃N,n

n−1/θN)N∈N converges in distribution, when
N → ∞, to

exp
(

n
2

)
:= min{ei,j : (i, j) ∈ In,2} ,

which is an exponential random variable of mean (n
2)
−1.

Finally, Hypothesis (H3) implies that (T̃N,n
n−1/θN)N∈N is uniformly integrable, therefore

(4.3.2) holds.

Now we start with the proof of Proposition 4.3.1. This proof is divided several steps
across the following subsections.

4.3.1 Replacement Condition

Fix (i, j) ∈ In,2. In this subsection we proof the following result

Lemma 4.3.3. Suppose that the sequence (ξN)N∈N is transitive and fulfills the coalescing hy-
potheses starting with two particles. Fix an integer k ≥ 1, some (s1, . . . , sk, t1, t2) ∈ (0, ∞)k+2

such that s1 < s2 < · · · < sk ≤ t1 < t2 and a continuous function K :
(
{0, 1}In,2

)k → R. Then

lim
N→∞

EN
mn

[
K(YN

s1θN
, . . . , YN

skθN
)
∫ t2θN

t1θN

{
(L̃ f ) ◦ Ψ̃N

θN

− L̃N( f ◦ Ψ̃N)

}
(ζ

N,(i,j)
s ) ds

]
= 0 ,

for any f : {0, 1} → R.

To keep notation simple we denote KN := K(YN
s1θN

, . . . , YN
skθN

).

Localizing to a Well

As our first step here we show that Lemma 4.3.3 follows from the following result which
we check in the subsequent parts of this subsection.

Lemma 4.3.4. Suppose that the sequence (ξN)N∈N is transitive and fulfills the coalescing hy-
potheses starting with two particles. Then for all t ≥ sk we have

lim
N→∞

EN
mn

[
KN1{tθN<τi,j}

{τi,j − tθN

θN
− 1

}]
= 0 . (4.3.3)

We define the following sets

E 1
N := {(a, a) ∈ E2

N : a ∈ EN} and E 0
N := E2

N \ E 1
N ,

for all N ∈N. Given f : {0, 1} → R, a direct computation shows that

L̃N( f ◦ Ψ̃N) ≡ 1E 0
N

{
[ f (1)− f (0)]L̃N1E 1

N

}
.

Then, to prove Lemma 4.3.3 it suffices to verify that

lim
N→∞

EN
mn

[
K(YN

s1θN
, . . . , YN

skθN
)
∫ t2θN

t1θN

1E 0
N
(ζ

N,(i,j)
s )RN(ζ

N,(i,j)
s ) ds

]
= 0 , (4.3.4)
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where
RN(a, b) :=

1
θN
−
(

L̃N1E 1
N

)
(a, b) , (a, b) ∈ E 0

N .

Thanks to the indicator 1E 0
N
(·) we may rewrite the integral in (4.3.4) as

∫ t2θN

t1θN

1E 0
N
(ζ

N,(i,j)
s )RN(η

N
s ) ds = 1{t1θN<τi,j}

∫ τi,j

t1θN

RN(ζ
N,(i,j)
s ) ds

− 1{t2θN<τi,j}

∫ τi,j

t2θN

RN(ζ
N,(i,j)
s ) ds . (4.3.5)

Therefore, (4.3.4) follows from the limit

lim
N→∞

EN
mn

[
K(YN

s1θN
, . . . , YN

skθN
)1{tθN<τi,j}

∫ τi,j

tθN

RN(ζ
N,(i,j)
s ) ds

]
= 0 , (4.3.6)

for any t ≥ sk. Recall that, for each N ≥ 1,

MN
t := 1E 1

N
(ζ

N,(i,j)
t )−

∫ t

0

(
L̃N1E 1

N

)
(ζ

N,(i,j)
s ) ds , t ≥ 0 ,

is a martingale with respect to the filtration (HN
t ). To deal with (4.3.6), notice that

∫ τi,j

tθN

RN(ζ
N,(i,j)
s ) ds =

τi,j − tθN

θN
− 1 +

(
MN

τi,j
−MN

tθN

)
.

Since KN1{tθN<τi,j} is HN
tθN

-measurable, expectation in (4.3.6) coincides with

EN
mn

[
KN1{tθN<τi,j}

{τi,j − tθN

θN
− 1

}]
. (4.3.7)

Time Average

In order to prove Lemma 4.3.4 we shall apply the Markov property to expectation in
(4.3.7). But before that, we need to write (4.3.7) as a time average. For it, to keep notation
simple it is convenient to write W := {tθN < τi,j}.

Take a scale of time (αN)N∈N ⊂ R+ such that

lim
N→∞

αN
θN

= 0 . (4.3.8)

The difference between expression in (4.3.7) and

1
αN

∫ αN

0
EN

mn

[
KN1W∩{tθn+`<τi,j}

{τi,j − tθN

θN
− 1

}]
d` (4.3.9)

is bounded above by {αN
θN

+ 1
}
‖K‖ PN

mn [τi,j ≤ αN ] , (4.3.10)

where ‖K‖ = maxx∈({0,1}In,2 )k |K(x)|. At this point we assume that (ξN)N satisfies Hy-
pothesis (H1). Then, thanks to (4.3.8) we get that (4.3.10) vanishes as N → ∞. In turn, the
difference between expression in (4.3.9) and

1
αN

∫ αN

0
EN

mn

[
KN1W∩{`<τi,j}

{τi,j − (tθn + `)

θN
− 1

}]
d` (4.3.11)
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is bounded by ‖K‖αN/θN which vanishes as N → ∞. So, in order to get (4.3.3) it suffices
to show that (4.3.11) vanishes as N → ∞.

Markov Property

We define f N : E2
N → R as

f N(x) := EN
x

[ T1

θN
− 1
]

, x ∈ E2
N .

Then, applying the Markov property, expectation in (4.3.11) can be written as

EN
mn

[
KN1W∩{tθN+`<τi,j} f N(ζN,(i,j)

tθN+`

)]
. (4.3.12)

Notice that on the event {tθN + ` < τi,j} we have ζ
N,(i,j)
tθN+` = (ξ i

tθN+`, ξ
j
tθN+`). Then (4.3.12)

equals to

EN
mn

[
KN1W∩{tθN+`<τi,j} f N(ξ i

tθN+`, ξ
j
tθN+`)

]
.

Now, in addition to Hypothesis (H1), we assume that (ξN)N∈N is such that Hypothesis
(H3) also holds for some ε > 0. In order to get rid of the indicator of the event {tθN + ` <
τi,j} we observe that ∣∣∣EN

mn

[
KN1W∩{τi,j≤tθN+`} f N(ξ i

tθN+`, ξ
j
tθN+`)

]∣∣∣ (4.3.13)

is bounded above by

‖K‖
{

PN
mn [tθN < τi,j ≤ tθN + `]

ε
1+ε EN

m2

[( T1

θN

)1+ε] 1
1+ε

+ PN
mn [tθN < τi,j ≤ tθN + `]

}
, (4.3.14)

From the Markov property

PN
mn [tθN < τi,j ≤ tθN + `] ≤ PN

m2 [T1 ≤ `] ≤ PN
m2 [T1 ≤ αN ] .

Hence, using last inequality in (4.3.14), we deduce that (4.3.13) is bounded by

‖K‖PN
m2 [T1 ≤ αN ]

ε
1+ε

(
EN

m2

[( T1

θN

)1+ε] 1
1+ε

+ 1
)

.

Last expression vanishes when N → ∞ thanks to (H1) and (H3). This proves that (4.3.12)
equals

EN
mn

[
KN1W f N(ξ i

tθN+`, ξ
j
tθN+`

)]
+ oN .

This means that, replacing in (4.3.11), (4.3.3) follows from

lim
N→∞

1
αN

∫ αN

0
EN

mn

[
KN1W f N(ξ i

tθN+`, ξ
j
tθN+`

)]
d` = 0 . (4.3.15)

Since KN1W ∈ HN
tθN

, applying the Markov property in (4.3.15) we deduce that (4.3.3) is
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consequence of

lim
N→∞

EN
mn

[
KN1WEN

(ξ i
tθN+`,ξ j

tθN+`

)[ 1
αN

∫ αN

0
f N(ξ i

`, ξ
j
`

)
ds
]]

= 0 . (4.3.16)

Proof of Lemma 4.3.4

Thanks to what we have done in the previous parts of this subsection, to prove Lemma
4.3.4, it only remains to show (4.3.16).

We have∣∣∣∣∣EN
mn

[
KN1WEN

(ξ i
tθN+`,ξ j

tθN+`

)[ 1
αN

∫ αN

0
f N(ξ i

`, ξ
j
`

)]
ds

]∣∣∣∣∣
≤ ‖K‖EN

m2

[∣∣∣ 1
αN

∫ αN

0
f N(ξ i

`, ξ
j
`

)
ds
∣∣∣] . (4.3.17)

Finally we assume that (ξN)N satisfies Hypothesis (H2) for the time scale (αN)N∈N.
Thanks to this hypothesis, it only remains to prove that 〈 f N〉m2 = 0 for all N ∈ N;
but this is a direct consequence of the definition of f N ; remember that θN = EN

m2 [T1] for
all N ∈N.

4.3.2 Proof of Proposition 4.3.1

Here we prove Porposition 4.3.1. The terminology we use is precised in Subsection 4.2.1,
in particular we use the notions of a martingale problem and maringale problem solution
established in Definition 4.2.1. First we notice that taking a convenient function K in
Lemma 4.3.3, or performing the same computations of its proof with a function R : Ik

2 → R

in place of K, we obtain the following replacement condition.

Corollary 4.3.5. Suppose that the sequence (ξN)N∈N is transitive and fulfills the coalescing
hypotheses starting with two particles. Fix an integer k ≥ 1, some (s1, . . . , sk, t1, t2) ∈ (0, ∞)k+2

such that s1 < s2 < · · · < sk ≤ t1 < t2 and a continuous function R : Ik
2 → R. Then

lim
N→∞

EN
mn

[
R(YN,(i,j)

s1θN
, . . . , YN,(i,j)

skθN
)
∫ t2θN

t1θN

{
(L̃ f ) ◦ Ψ̃N

θN

− L̃N( f ◦ Ψ̃N)

}
(ζ

N,(i,j)
s ) ds

]
= 0 ,

for any f : {0, 1} → R, and all (i, j) ∈ In,2.

Let (i, j) ∈ In,2 and take Y∗,(i,j) a limit process of (YN,(i,j))N . Thanks to Corollary
4.3.5 we can use Lemma 4.2.8 to deduce that Z∗,(i,j) is a solution of the (Mb({0, 1}), L̃ )-
martingale problem starting at 0. On the other hand, the tightness of (YN,(i,j))N follows
from the tightness of (YN,n)N . Therefore, since the (Mb({0, 1}), L̃ )-martingale problem
starting at 0 has a unique solution, we conclude that (YN,(i,j))N converges to some process

Y(i,j) : (Ω(i,j), P(i,j)) → D(R+, {0, 1}) .

This defines the probability P(i,j) ◦ (Z(i,j))−1 in D(R+, {0, 1}). Now, we call p(i,j) :
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D(R+, ({0, 1})In,2)→ D(R+, {0, 1}) the projection defined by

p(i,j)((w(`,m))(`,m)∈In,2

)
:= w(i,j) ,

and consider in D(R+, {0, 1}In,2) the sigma-algebra induced by p(i,j). Then, we define the
probability P (i,j) in

(
D(R+, {0, 1}In,2) by

P (i,j)({p(i,j)}−1(B)
)

:= P(i,j) ◦ (Y(i,j))−1(B) ,

for all Borel set B ⊂ D(R+, {0, 1}). This probability is the unique probability in
D(R+, {0, 1}In,2) that makes p(i,j) a solution of the (Mb({0, 1}), L̃ )-martingale problem
starting at 0, for all (i, j) ∈ In,2. We denote by (F

(i,j)
t )t≥0, (i, j) ∈ In,2, the filtration defined

by p(i,j):
F

(i,j)
t := σ(p(i,j)

s , 0 ≤ s ≤ t) , ∀t ≥ 0 .

And we call (Ft)t≥0 the filtration generated by all the (F
(i,j)
t )t≥0, (i, j) ∈ In,2:

Ft := σ
(
F

(i,j)
t , (i, j) ∈ In,2

)
, ∀t ≥ 0 .

With this notation we are ready to start the proof.

Proof of Proposition 4.3.1. We prove in Section 4.5 that (YN)N is tight under PN
mn . Take

Y∗ : (Ω∗, P∗)→ D(R+, {0, 1}In,2) a limit process of (YN)N . To conclude we have to prove
that the induced probability in D(R+, {0, 1}Ik,2), that we denote by P∗ := P∗ ◦ (Y∗)−1, is
uniquely determined.

Assume that N∗ ⊂ N is the infinite subset through which (YN)N converges in distri-
bution to Y∗. Thanks to Lemma 4.2.9, the set

U := {w ∈ D([0,+∞), {0, 1}In,2) : J (w) > 1}

is open, hence
0 = lim inf

N∈N∗
PN

mn [YN ∈ U] ≥ P∗[U] .

This means that with P∗-probability one, in D(R+, {0, 1}In,2) there are not two different
projections p(i,j) and p(`,m) that jump at the same time.

On the other hand, Lemma 4.3.3 permit us to use Lemma 4.2.8 and deduce that

p(i,j) : (D(R+, {0, 1}Ik,2),P∗)→ D(R+, {0, 1})

is a solution of the (Mb({0, 1}), L̃ )-martingale problem starting at 0, associated to the
filtration (Ft)t≥0, for all (i, j) ∈ In,2. Then, in virtue of Corollary 4.2.7, we deduce that
under P∗ all the projections p(i,j), (i, j) ∈ In,2, are independent. This concludes the proof
because we also have that each restriction P∗|σ(p(i,j)) coincides with P (i,j), (i, j) ∈ In,2.
Observe that these conditions determine uniquely the probability P∗.

4.4 Convergence to the Kingman’s Coalescent

The goal of this section is to prove Theorem 4.1.3, our main result. We start with some
observations about the processes defined in Subestion 4.1.2.
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Fix n ∈N and ξ : Ω→ D(R+, E), an irreducible Markov chain with generator Q given
by

Qg(x) := ∑
y∈E

r(x, y)[g(y)− g(x)] ,

for all functions g : E→ R. Then, the generator Ln
Q of ηQ,n is defined by

(Ln
G f )(x) := 1#(ΨE,n(x)≥2) ∑

(i,j)∈In,2

{
r(xi, xj)[ f (xi,j)− f (x)]

+ r(xj, xi)[ f (xj,i)− f (x)]
}

+ ∑
y≈x

r(xi(x,y), yi(x,y))[ f (y)− f (x)] , (4.4.1)

for all f : En → R. Where, in equation (4.4.1), x = (x1, . . . , xn), y = (y1, . . . , yn). Also, for
i, j ∈ [n] with i 6= j, xi,j = (a1, . . . , an) ∈ En denotes the vector defined by

ak = xk , for all k 6∈ {i, j} and ai = aj = xj .

Additionally y ≈ x means that ΨQ,n(x) = ΨQ,n(y), and there is an index i(x, y) ∈ [n] such
that xj = yj for all j 6= i(x, y) in ΨQ,n(x) and xi(x,y) ∼ yi(x,y). Notice that ηQ,n is Markov
with respect to its own filtration (GQ,n

t )t≥0 defined by

GQ,n
t := σ(ηQ,n

s , 0 ≤ s ≤ t) , t ≥ 0 ;

whereas ξQ,n is Markov with respect to the filtration (FQ,n
t )t≥0 defined by

FQ,n
t := σ(ξQ,n

s , 0 ≤ s ≤ t) , t ≥ 0 ;

On the other hand, in respect to the process ξQ,n, it is important to take into account the
following observation

Remark 4.4.1. Suppose that n ≥ 2. Let m ∈ [n] and fix the indexes

1 ≤ i1 < · · · < im ≤ n .

Observe that, when ξ is transitive, under PQ
mn the random vector

(ξ i1

τQ,n
i,j

, . . . , ξ im

τQ,n
i,j

) has the distribution of mm ,

for all 1 ≤ i < j ≤ n such that {i, j} 6⊂ {i1, . . . , im}.

Now we start with the proof of Theorem 4.1.3. To this end we fix n ∈ N and
(ξN : ΩN → D(R+, EN), a sequence of irreducible Markov chains over finite state spaces,
with QN , N ∈ N, their respective generators. Our strategy is very similar to the one
performed in Section 4.3, to prove Proposition 4.3.1. The main differences are due to the
more complicated nature of the process XN in comparison with the coordinates of YN .
Like in the case of Proposition 4.3.1, the proof of Theorem 4.1.3 is divided in several steps
across the following subsections.

4.4.1 Replacement Condition

In this subsection we proof the following replacement condition
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Lemma 4.4.2. Suppose that the sequence (ξN)N∈N is transitive and fulfills the coalescing hy-
potheses starting with n particles. Fix an integer k ≥ 1, some (s1, . . . , sk, t1, t2) ∈ (0, ∞)k+2 such
that s1 < s2 < · · · < sk ≤ t1 < t2 and a continuous function H : P k

n → R. Then

lim
N→∞

EN
mn

[
H(XN

s1θN
, . . . , XN

skθN
)
∫ t2θN

t1θN

{
(L n f ) ◦ΨN

θN

− Ln
N( f ◦ΨN)

}
(ηN

s ) ds

]
= 0 ,

for any f : Pn → R.

To keep notation simple we denote HN := H(XN
s1θN

, . . . , XN
skθN

).

Localizing to a Well

As our first step here we show that Lemma 4.4.2 follows from the following result which
we check in the subsequent parts of this subsection. Remember the notation established
in Section 4.1.

Lemma 4.4.3. Suppose that the sequence (ξN)N∈N is transitive and fulfills the coalescing hy-
potheses starting with n particles. Then, for any partition π ∈ Pn with #(π) ≥ 2, and t > sk we
have

lim
N→∞

EN
mn

[
HN1{t1θN<Tπ≤t2θN}

{T#(π)−1 − Tπ

θN
− 1{T#(π)−1=T(i,j)[π]}

}]
= 0 , (4.4.2)

and

lim
N→∞

EN
mn

[
HN1{Tπ≤tθN<T#(π)−1}

{T#(π)−1 − tθN

θN
− 1{T#(π)−1=T(i,j)[π]}

}]
= 0 , (4.4.3)

for all (i, j) ∈ I#(π),2.

Given f : Pn → R, for π ∈ Pn with #(π) ≥ 2 we have

LN( f ◦ΨN) ≡ ∑
(i,j)∈I#(π),2

[ f ((i, j)[π])− f (π)]
(

LN1
E
(i,j)[π]
N

)
on E π

N .

In virtue of this observation, to prove Lemma 4.4.2 it suffices to fix an arbitrary π ∈ Pn
with #(π) ≥ 2 and verify that

lim
N→∞

EN
mn

[
H(XN

s1θN
, . . . , XN

skθN
)
∫ t2θN

t1θN

1E π
N
(ηN

s )R(i,j)
N (ηN

s ) ds
]

= 0 , (4.4.4)

for all (i, j) ∈ I#(π),2, where

R(i,j)
N (x) :=

1
θN
−
(

LN1
E
(i,j)[π]
N

)
(x) , x ∈ E π

N .

Thanks to the indicator 1E π
N
(·) we may rewrite the integral in (4.4.4) as the sum of three
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terms as follows

∫ t2θN

t1θN

1E π
N
(ηN

s )R(i,j)
N (ηN

s ) ds = 1{t1θN<Tπ≤t2θN}

∫ T#(π)−1

Tπ

R(i,j)
N (ηN

s ) ds

+ 1{Tπ≤t1θN<T#(π)−1}

∫ T#(π)−1

t1θN

R(i,j)
N (ηN

s ) ds

− 1{Tπ≤t2θN<T#(π)−1}

∫ T#(π)−1

t2θN

R(i,j)
N (ηN

s ) ds . (4.4.5)

Therefore, (4.4.4) follows from the following two limits

lim
N→∞

EN
mn

[
H(XN

s1θN
, . . . , XN

skθN
)1{t1θN<Tπ≤t2θN}

∫ T#(π)−1

Tπ

R(i,j)
N (ηN

s ) ds
]

= 0 , (4.4.6)

and, for any t > sk,

lim
N→∞

EN
mn

[
H(XN

s1θN
, . . . , XN

skθN
)1{Tπ≤tθN<T#(π)−1}

∫ T#(π)−1

tθN

R(i,j)
N (ηN

s ) ds
]

= 0 . (4.4.7)

Recall that, for each N ≥ 1,

M
N,(i,j)
t := 1

E
(i,j)[π]
N

(ηN
t )−

∫ t

0

(
LN1

E
(i,j)[π]
N

)
(ηN

s ) ds , t ≥ 0 ,

is a martingale with respect to the filtration (GN
t ). To deal with (4.4.6), notice that

∫ T̃#(π)−1

T̃#(π)

R(i,j)
N (ηN

s ) ds =
T̃#(π)−1 − T̃#(π)

θN

− 1{T̃#(π)−1=T(i,j)[π]}
+
(
M

N,(i,j)
T̃#(π)−1

−M
N,(i,j)
T̃#(π)

)
.

Since HN1{t1θN<Tπ≤t2θN} is GN
T̃#(π)

-measurable, expectation in (4.4.6) coincides with

EN
mn

[
HN1{t1θN<Tπ≤t2θN}

{T#(π)−1 − Tπ

θN
− 1{T#(π)−1=T(i,j)[π]}

}]
. (4.4.8)

Applying the same argument we get that expectation in (4.4.7) equals to

EN
mn

[
HN1{Tπ≤tθN<T#(π)−1}

{T#(π)−1 − tθN

θN
− 1{T#(π)−1=T(i,j)[π]}

}]
. (4.4.9)

Time Average

In order to prove Lemma 4.4.3 we shall apply Markov property to expectations in (4.4.8)
and (4.4.9). But before that, we need to write (4.4.8) and (4.4.9) as time averages. For it, to
keep notation simple it is convenient to write

U := {t1θN < Tπ ≤ t2θN} and V := {Tπ ≤ tθN < T#(π)−1}

for the events involved in such expressions. Take a scale of time (αN)N∈N ⊂ R+ such that

lim
N→∞

αN
θN

= 0 . (4.4.10)
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The difference between expression in (4.4.8) and

1
αN

∫ αN

0
EN

mn

[
HN1U∩{Tπ+`<T#(π)−1}

×
{T#(π)−1 − Tπ

θN
− 1{T#(π)−1=T(i,j)[π]}

}]
d` (4.4.11)

is bounded above by {αN
θN

+ 1
}
‖H‖ PN

mn [T#(π)−1 ≤ T#(π) + αN ] , (4.4.12)

where ‖H‖ = maxx∈P k
n
|H(x)|. At this point we assume that (ξN)N satisfies Hypothesis

(H1). Then, in virtue of Lemma 4.5.3 along with (4.4.10) we get that (4.4.12) vanishes as
N → ∞. In turn, the difference between expression in (4.4.11) and

1
αN

∫ αN

0
EN

mn

[
HN1U∩{Tπ+`<T#(π)−1}

×
{T#(π)−1 − (Tπ + `)

θN
− 1{T#(π)−1=T(i,j)[π]}

}]
d` (4.4.13)

is bounded by ‖H‖αN/θN which vanishes as N → ∞. So, in order to get (4.4.2) it suffices
to show that (4.4.13) vanishes as N → ∞. The same argument permits us to conclude that
(4.4.3) follows from the limit

1
αN

∫ αN

0
EN

mk

[
HN1V∩{tθN+`<T#(π)−1}

×
{T#(π)−1 − (tθN + `)

θN
− 1{T#(π)−1=T(i,j)[π]}

}]
d` → 0 , (4.4.14)

as N ↑ ∞.

Markov Property

Fix π ∈ Pn with m := #(π) ≥ 2, (i, j) ∈ Im,2, and define gN : Em
N → R as

gN(x) := EN
x

[ T
θN
− 1{T=TN,m

(i,j)[πm ]
}

]
, x ∈ Em

N ,

where T := T̃N,m
m−1 = min{τN,m

ı̂, ̂ : (ı̂, ̂) ∈ Im,2} and πm ∈ Pm is the partition with #(πm) =

m. Then, applying the Markov property, expectation in (4.4.13) can be written as

EN
mn

[
HN1U∩{Tπ+`<Tm−1}g

N(ηN
Tπ+`

(
i(XN

Tπ+`)
))]

. (4.4.15)

We apply observation (4.1.5), and notice that on the event {Tπ + ` < Tm−1} we have
XN

Tπ+` = π, to show that (4.4.15) equals to

EN
mn

[
HN1U∩{Tπ+`<Tm−1}g

N(ξN
Tπ+`

(
i(π)

))]
.

Now, in addition to Hypothesis (H1), we assume that (ξN)N∈N is such that Hypothesis
(H3) also holds for some ε > 0. In order to get rid of the indicator of the event {Tπ + ` <
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Tm−1} we observe that ∣∣∣EN
mn

[
HN1U∩{Tm−1≤Tπ+`}g

N(ξN
Tπ+`(i(π))

)]∣∣∣ (4.4.16)

is bounded above by

‖H‖ EN
mn

[
1{Tm−1≤Tm+`}

{
1{Tm=Tπ<∞}E

N
ξN

Tm+`(i(π))

[
T/θN

]}
+ 1
]

≤ ‖H‖
{

PN
mn [Tm−1 ≤ Tm + `]

ε
1+ε EN

mn

[
1{Tm=Tπ<∞}E

N
ξN

Tm+`(i(π))

[
T/θN

]1+ε
] 1

1+ε

+ PN
mn [Tm−1 ≤ Tm + `]

}
. (4.4.17)

We express {Tm = Tπ < ∞} as the disjoint union of the events

Aı̂, ̂ := {Tm = Tπ < ∞} ∩ {Tm = τN
ı̂, ̂ } , 1 ≤ ı̂ < ̂ ≤ n ,

such that ı̂ is one of the coordinates of i(π), and ̂ belongs to the equivalence class of ı̂ in
π. Then we use Remark 4.4.1 to obtain

EN
mn

[
1{Tm=Tπ<∞}E

N
ξN

Tm+`(i(π))

[
T/θN

]1+ε
]
= ∑

Aı̂, ̂

EN
mn

[
1Aı̂, ̂ E

N
ξN

τN
ı̂, ̂ +`

(i(π))

[
T/θN

]1+ε
]

≤ n2EN
m1+ε

[( T1

θN

)1+ε]
≤ n2C(n) ,

where in last inequality we used the Hypothesis (H3) for some constant C(n). Then, using
this in (4.4.17) we deduce that (4.4.16) is bounded above by

Ĉ(n) ‖H‖ PN
mn [Tm−1 ≤ Tm + `]

ε
1+ε ,

where Ĉ(n) is a constant depending on n. Hence, in virtue of Lemma 4.5.3, expression
(4.4.15) equals

EN
mn

[
HN 1U gN(ξN

Tπ+`

(
i(π)

))]
+ oN .

This means that, replacing in (4.4.13), (4.4.2) follows from

lim
N→∞

1
αN

∫ αN

0
EN

mn

[
HN 1U gN(ξN

Tπ+`

(
i(π)

))]
d` = 0 . (4.4.18)

To conclude, we define

hN(ξN,n̂, π̂) :=
1

αN

∫ αN

0
gN(ξN,n̂

`

(
i(π̂)

)
) d` ,

for all n̂ ≥ m and π̂ ∈ Pn̂ with #(π̂) = m. Since HN1U ∈ FN
T̃#(π)

, applying the Markov

property, the expression inside the limit in (4.4.18) equals

EN
mn
[
HN1UEN

ξN
Tπ

[hN(ξN,n, π)]
]
= EN

mn
[
HN1UEN

ξN
Tπ

(i(π))
[hN(ξN,m, πm)]

]
.

Therefore (4.4.18) is equivalent to

lim
N→∞

EN
mn
[
HN1UEN

ξN
Tπ

(i(π))
[hN(ξN,m, πm)]

]
= 0 . (4.4.19)
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Similarly, (4.4.3) follows from

lim
N→∞

EN
mn
[
HN1VEN

ξN
tθN

(i(π))
[hN(ξN,m, πm)]

]
= 0 . (4.4.20)

Proof of Lemma 4.4.3

Thanks to what we have done in the previous parts of this subsection, to prove Lemma
4.4.3, it only remains to show (4.4.19) and (4.4.20). We continue with the notation estab-
lished in these parts.

We have∣∣EN
mn
[
HN1UEN

ξN
Tπ

(i(π))
[hN(ξN,m, πm)]

]∣∣
≤ ‖H‖ EN

mn
[
1UEN

ξN
Tπ

(i(π))
[|hN(ξN,m, πm)|]

]
. (4.4.21)

The event U is included in {Tm = Tπ < ∞}, then we can express U as the disjoint union
of the events

Bı̂, ̂ := U ∩ {Tπ = τN
ı̂, ̂ } , 1 ≤ ı̂ < ̂ ≤ n ,

such that ı̂ is one of the coordinates of i(π), and ̂ belongs to the equivalence class of ı̂ in
π. Then we use Remark 4.4.1 to bound (4.4.21) as follows

‖H‖ EN
mn
[
1UEN

ξN
Tπ

(i(π))
[|hN(ξN,m, πm)|]

]
= ‖H‖ ∑

Bı̂, ̂

EN
mn

[
1Bı̂,ı̂ EN

ξN
τN
ı̂,ı̂
(i(π))

[
|hN(ξN,m, πm)|

]]
≤ ‖H‖∑

Bı̂, ̂

EN
mm
[
|hN(ξN,m, πm)|

]
≤ n2 ‖H‖ EN

mm
[
|hN(ξN,m, πm)|

]
.

This proves∣∣EN
mn
[
HN1UEN

ξN
Tπ

(i(π))
[hN(ξN,m, πm)]

]∣∣ ≤ n2 ‖H‖ EN
mm
[
|hN(ξN,m, πm)|

]
. (4.4.22)

And similarly we obtain∣∣EN
mn
[
HN1VEN

ξN
tθN

(i(π))
[hN(ξN,m, πm)]

]∣∣ ≤ n2 ‖H‖ EN
mm
[
|hN(ξN,m, πm)|

]
. (4.4.23)

Finally we assume that (ξN)N satisfies Hypothesis (H2) for the time scale (αN)N∈N.
Thanks to what we have done, it only remains to proof that

lim
N→∞

EN
mm
[
|hN(ξN,m, πm)|

]
= 0 .

Using (H2), this is a consequence of proving the local ergodic behavior for the sequence of
functions ( f N,(i,j)[πm ])N∈N described in (4.1.3). More precisely, we are at the point where
Lemma 4.4.3 is a consequence of the following result. Remember the definition of the
functions f N,π made in (4.1.3).

Lemma 4.4.4. For any 2 ≤ m ≤ n and 1 ≤ i < j ≤ m we have

lim
N→∞

〈 f N,(i,j)[πm ]〉mn = 0 .
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Proof. We can assume that i, j are the indexes we fix previously in this section, then

〈 f N,(i,j)[πm ]〉mn = 〈gN〉mm

= EN
mm

[ T
θN
− 1{T=TN,m

(i,j)[π]
}

]
= EN

mm
[
T/θN

]
−
(

m
2

)−1
+ oN ;

and we conclude thanks to Corollary 4.3.2.

4.4.2 Proof of Theorem 4.1.3

In this subsection we finish the proof of Theorem 4.1.3. Suppose that the sequence
(ξN)N∈N we fix at the beginning of the section is transitive and fulfills the coalescing
hypotheses starting with n particles.

The Hypothesis (H1) along with the transitivity of (ξN)N∈N prove, as we show in
Section 4.5, that the sequence (XN)N∈N is tight.

Take X∗ a limit process of (XN)N∈N. Lemma 4.4.2 allows us to use Lemma 4.2.8. This
proves that X∗ is a solution of the (Mb(Pn), L n)-martingale problem starting at πn, the
partition of [n] with #(πn) = n. This martingale problem has as its unique solution the
Kingman’s coalescent Kn starting at πn. Therefore, since X∗ was arbitrary, we conclude
that under PN

mn , (Xθ,N)N converges to Kn starting at πn.

4.4.3 The Reversible Case

Here we proof Corollary 4.1.4. As we mention in Subsection 4.1.3 it is enough to prove
that condition (H’) implies the coalescing hypotheses starting with n particles, when we
take a sequence of irreducible, transitive and reversible Markov chains.

Fix ξ, an irreducible, transitive and reversible Markov chain with generator Q, over
a finite state space E. We have the following result. Remember that γQ denotes the
relaxation time.

Lemma 4.4.5. For n ≥ 1, t ≥ 0 we have

EQ
mn

[(
1
t

∫ t

0
f (ξQ,n

s ) ds
)2
]
≤

2γQ〈 f 2〉mn

t

for any f : En → R with 〈 f 〉mn = 0.

Proof. Fix n ≥ 1 and let B = {g0, g1, . . . , g|E|n} be an orthonormal basis for L2(mn) com-
posed by eigenfunctions of the generator of ξQ,n, where g0 is the eigenfunction corre-
sponding to 0. In this proof, for simplicity, we write ξQ instead of ξQ,n.

Take g ∈ B and x ∈ En; we know that

EQ
x [g(ξ

Q
t )] = g(x) eλt ,

where λ is the eigenvalue corresponding to g. It follows, from this and the Markov
property, that for any 0 ≤ s < r

EQ
mn [g(ξQ

s )g(ξQ
r )] = EG

mn [g(ξG
s )g(ξQ

s )e
λ(r−s)]

= eλ(r−s) .
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Therefore, integrating eλ|r−s| on the square [0, t]2∫ t

0

∫ t

0
EQ

mn [g(ξQ
s )g(ξQ

r )] ds dr =
2

λ2 (e
λt − λt− 1) ,

for all g ∈ B \ {g0}. Hence, bounding the right hand side,∣∣∣ 1
t2

∫ t

0

∫ t

0
EQ

mn [g(ξQ
s )g(ξQ

r )] ds dr
∣∣∣ ≤ 2

−λt
, (4.4.24)

for all g ∈ B \ {g0}.
Finally, we take f : En → R such that 〈 f 〉mn = 0. We can write f = ∑

|E|n
j=1 ajgj for some

constants a1, . . . , a|E|n . Then

EQ
mn

[(1
t

∫ t

0
f (ξQ

s ) ds
)2]

=
1
t2

∫ t

0

∫ t

0
EQ

mn [ f (ξQ
s ) f (ξQ

r )] ds dr

=
1
t2

|E|n

∑
j=1

a2
j

∫ t

0

∫ t

0
EQ

mn [gj(ξ
G
s )gj(ξ

G
r )] ds dr

≤
2γQVar( f )

t
,

where in the second equality we used that EQ
mn [gi(ξ

Q
s )gj(ξ

Q
r )] = 0, for all i 6= j and

r, s ∈ [0, t], and in last inequality we used (4.4.24).

On the other hand. A direct application of [2, Proposition 3.23] give us the following
bound

PQ
m2

[
T1 ≤ δθr

Q
]
≤

γQ

θQ
+ (1− e−δ) , ∀δ ≥ 0 . (4.4.25)

And from the proof of this proposition we also obtain

EQ
m2

[( T1

θr
Q

)2]
≤

2γQ

θr
Q

+ 2 . (4.4.26)

Now consider (ξN)N∈N, a sequence of transitive, irreducible and reversible Markov
chains over finite state spaces. Fix n ∈ N \ {1} and suppose that (H’) holds. Then it is
possible to take (αN)N∈N ⊂ R+ such that

lim
N→∞

γN
αN

= 0 and lim
N→∞

αN
θN

= 0.

Lemma 4.4.5 implies (H2) for p = 2 and the scale of times (αN)N∈N. Actually, we have
a stronger condition with convergence in L2(PN

mn) instead of just in L1(PN
mn). Condition

(H1) follows from (4.4.25), taking the respective limits and using (H’). Finally, (H3) with
ε = 2 follows from (4.4.26).

4.5 Tightness

Fix n ≥ 2, a sequence of irreducible Markov chains (ξN)N∈N, and a scale of time θ =
(θN)N , not necessarily the scale introduced in Definition 4.1.1. Here we prove the tightness
of
(
Xθ,N)

N and (Yθ,N)N under PN
mn , assuming that all the the Markov chains ξN , N ∈ N,

are transitive an that the Hypothesis (H1) holds for the scale θ. For simplicity, in this
section we write

(
XN)

N and (YN)N instead of
(
Xθ,N)

N and (Yθ,N)N , respectively.
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Remember that for a trajectory w ∈ D([0,+∞), S), where (S, ρ) is a metric space, the
modified modulus of continuity is defined as

ω̃(w, t, δ) := inf
∆

max
m

sup
tm≤r,s<tm+1

ρ(w(s), w(r)) , t > 0 , δ > 0 ,

where the infimum extends over all partitions ∆ = {0 = t0 < t1 < · · · < t` < t} such that
tm+1 − tm ≥ δ for m = 1, . . . , `− 1. It is well known (see for instance [19, Theorem 4.8.1])
that the tightness of a sequence of processes (ZN)N with trajectories in D([0,+∞), S),
under PN

mk , follows from

1. for any t ≥ 0, the sequence
(
ZN

t
)

N is tight in S; and

2. for all ε > 0, t > 0,
lim
δ→0

sup
N

PN
mk [ω̃(ZN , t, δ) > ε] = 0 . (4.5.1)

In our case, since XN
t ∈ Pn, YN

t ∈ {0, 1}In,2 for all t ≥ 0, and Pn, {0, 1}In,2 are compact,
condition (1) holds immediately thanks to Prohorov’s criterion. For simplicity, in this
section we call σj, 1 ≤ j ≤ n, the time when XN has j coordinates:

σj := inf{t ≥ 0 : #(XN
t ) = j} .

And we call νi,j, (i, j) ∈ In,2, the time when the coordinate (i, j) of YN
t hits 1:

νi,j := inf{t ≥ 0 : YN,(i,j)
tθN

= 1} .

Clearly σj = TN
j /θN for all j ∈ [n], and νi,j = τN

i,j /θN for all (i, j) ∈ In,2.

Lemma 4.5.1. For the processes (XN)N , condition (2) follows from

lim
δ→0

lim sup
N→∞

PN
mn
[
σj−1 − σj ≤ δ

]
= 0 , ∀ j ≥ 2 . (4.5.2)

Proof. Assume that (4.5.2) holds, fix ε > 0, t > 0, ε > 0. Our assumption implies that there
are δ0 > 0 and M ∈N such that

PN
mk [σj−1 − σj ≥ δ0, for all j ∈ {2, 3, . . . , n}] > 1− ε/2, ∀N > M.

Denote m := min{j ∈ [n] : σj < t} and define the random partition ∆ := {0 = t0 < t1 =
σn−1 < · · · < t` = σm < t}. Using this partition we deduce that

ω̃(XN , t, δ) = 0 < ε , ∀ δ < δ0 , N > M ,

on the event {
σj−1 − σj ≥ δ0, for all j ∈ {2, 3, . . . , n}

}
,

that has probability at least 1− ε/2. Hence

sup
N>M

PN
mn [ω̃(XN , t, δ) > ε] < ε/2 , ∀δ < δ0 .

On the other hand, it is clear that there is δ1 > 0 such that

PN
mn [ω̃(XN , t, δ) > ε] < ε/2 , N ≤ M , ∀δ < δ1.
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Therefore
sup

N
PN

mn [ω̃(XN , t, δ) > ε] < ε , ∀ δ < min{δ0, δ1} , (4.5.3)

which completes the proof, since ε > 0 was arbitrary.

Similarly, in regard to (YN)N

Lemma 4.5.2. For the processes (YN)N , condition (2) follows from

lim
δ→0

lim sup
N→∞

PN
mn
[
|νi,j − ν`,m| ≤ δ

]
= 0 , (4.5.4)

for all (i, j), (`, m) ∈ In,2 such that (i, j) 6= (`, m).

Proof. We proceed like in Lemma 4.5.1. Assume that (4.5.4) holds, fix ε > 0, t > 0, ε > 0.
Our assumption implies that there are δ0 > 0 and M ∈N such that

PN
mn
[
|νi,j − ν`,m| ≥ δ0, ∀(i, j), (`, m) ∈ In,2

such that (i, j) 6= (`, m)
]
> 1− ε/2, ∀N > M.

We order all the K := (n
2) random times as follows

νi1,j1 < νi2,j2 < . . . < νiK ,jK .

Of course ik, jk, k ∈ [K], are random indexes. Denote

` := min{k ∈ [K] : νik ,jk < t} ,

and define the random partition ∆ := {0 = t0 < t1 = νi1,j1 < · · · < t` = νi`,j` < t}. Using
this partition we deduce that

ω̃(YN , t, δ) = 0 < ε , ∀ δ < δ0 , N > M ,

on the event {
|νi,j − ν`,m| ≥ δ0, ∀(i, j), (`, m) ∈ In,2 such that (i, j) 6= (`, m)

}
,

that has probability at least 1− ε/2. Hence

sup
N>M

PN
mn [ω̃(YN , t, δ) > ε] < ε/2 , ∀δ < δ0 .

On the other hand, it is clear that there is δ1 > 0 such that

PN
mn [ω̃(YN , t, δ) > ε] < ε/2 , N ≤ M , ∀δ < δ1.

Therefore
sup

N
PN

mn [ω̃(YN , t, δ) > ε] < ε , ∀ δ < min{δ0, δ1} , (4.5.5)

which completes the proof, since ε > 0 was arbitrary.

In virtue of Lemma 4.5.1, and the definition of the stopping times σj, the tightness of
(XN)N under PN

mn follows from next lemma.
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Lemma 4.5.3. Suppose that the Markov chains ξN are transitive for all N ∈N, and that Hypoth-
esis (H1) holds for the scale of time (θN)N . Then for every 2 ≤ m ≤ k we have

lim
δ→0

lim sup
N→∞

PN
mn
[

TN
m−1 − TN

m ≤ δθN
]
= 0 .

Proof. Fix 2 ≤ m ≤ n. Note that PN
mn [TN

m = ∞] goes to 0 as N → ∞. Then we divide
{TN

m < ∞} into the disjoint sets

Aπ
i(π),j(π) := {TN

m < ∞} ∩ {TN
m = TN

π } ∩ {TN
π = τN

i(π),j(π)} ,

where π ∈ Pn is such that #(π) = m, and 1 ≤ i(π) < j(π) ≤ m are such that i(π) is
one of the coordinates of i(π), and j(π) ∈ i(π) in π. Then using the Markov property,
observation (4.1.5), and Remark 4.4.1 we have

PN
mn
[
TN

m−1 − TN
m ≤ δθN

]
= ∑

Aπ
i(π),j(π)

EN
mn

[
1Aπ

i(π),j(π)
EN

ηN
TN

m

(
i(XN

TN
m
)
)[1{TN,m

m−1≤δθN}
]]

+ oN

= ∑
Aπ

i(π),j(π)

EN
mn

[
1Aπ

i(π),j(π)
EN

ξN
τN
i(π),j(π)

(i(π))

[
1{TN,m

m−1≤δθN}
]]

+ oN

≤ C(n)PN
mm
[
TN,m

m−1 ≤ δθN
]
+ oN ,

where C(n) is a constant depending on n. On the other hand {TN,m
m−1 ≤ δθN} =⋃

i<j{τN,m
i,j ≤ δθN}. Then using the union bound, and taking into account that PN

mm [τ
N,m
i,j ≤

δθN ] = PN
m2 [T

N,2
1 ≤ δθN ], we obtain

PN
mn
[
TN

m−1 − TN
m ≤ δθN

]
≤ Ĉ(n)PN

m2

[
TN,2

1 ≤ δθN
]
+ oN ,

where Ĉ(n) is a constant depending only on n. We conclude thanks to Hypothesis (H1).

Similarly, the tightness of (YN)N under PN
mn follows from next lemma.

Lemma 4.5.4. Suppose that the Markov chains ξN are transitive for all N ∈N, and that Hypothe-
sis (H1) holds for the scale of time (θN)N . Then for all (i, j), (`, m) ∈ In,2 such that (i, j) 6= (`, m)
we have

lim
δ→0

lim sup
N→∞

PN
mn
[
|τN

i,j − τN
`,m| ≤ δθN

]
= 0 .

Proof. Fix (i, j), (`, m) ∈ In,2 such that (i, j) 6= (`, m). Using the Markov property

PN
mn
[
|τN

i,j − τN
`,m| ≤ δθN

]
= EN

mn
[
1{τN

i,j≤τN
`,m}

EN
ξN

τN
i,j

[τN
`,m ≤ δθN ]

]
+ EN

mn
[
1{τN

i,j >τN
`,m}

EN
ξN

τN
`,m

[τN
i,j ≤ δθN ]

]
.

Then, in virtue of Remark 4.4.1, we deduce

PN
mn
[
|τN

i,j − τN
`,m| ≤ δθN

]
≤ 2PN

m2

[
TN,2

1 ≤ δθN
]

.

Therefore, like in the proof of 4.5.3, we conclude thanks to Hypothesis (H1).
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