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Now we have already not a single mathematical space,
but infinitely many of them, and it is unknown which
one is the most adequate model of the space of the
physical reality.

Modern controversies on the nature of Mathematics
A. N. Kolmogorov



Abstract

The dispute on whether the three-dimensional (3D) incompressible Euler equations
develop an infinitely large vorticity in a finite time (blowup) keeps increasing due
to ambiguous results from state-of-the-art direct numerical simulations (DNS), while
the available simplified models fail to explain the intrinsic complexity and variety of
observed structures. Here, we propose a new technique, which considers the Fluid
Dynamics equations restricted to a logarithmic lattice in Fourier space with specially
designed calculus and algebraic operations, giving rise to simplified models structurally
identical to the original ones. The application of this technique to the 3D Euler flow
clarifies the present controversy at the scales of existing DNS and provides unambiguous
evidence of the following transition to the blowup, explained as a chaotic attractor in
a renormalized system. The chaotic attractor has an anomalous multiscale structure,
suggesting that the existing DNS strategies at the resolution accessible now (and
presumably rather long into the future) may be unsuitable for the analysis of blowup.
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Chapter 1

Introduction

Turbulence remains one of the most important unsolved problems in Classical Physics.
A number of natural phenomena, ranging from ocean and atmosphere dynamics to
the formation of galaxies, is related to turbulence and defies a satisfactory theoretical
explanation. Furthermore, the extent of its applications in industry reinforces the need
for a reliable physical description: the increase of mixing rate in combustion engines
and chemical reactors, the reduction of drag in aircraft design, and weather forecasting
are just a few examples of turbulence-related thecnological problems with great impact
on our daily experience.

One of the greatest challenges in turbulence lies on how to recover its phenomeno-
logical theory from first dynamical principles, or, in other words, from the governing
equations of Fluid Dynamics. It is widely accepted that simple fluids are described by
the incompressible Navier-Stokes equations, which in dimensionless form read

∂tu + u · ∇u = −∇p + 1
Re

∆u, ∇ · u = 0, (1.1)

where u = (u1, u2, u3) is the velocity field and p is the scalar pressure; Re is the
Reynolds number defined as Re = UL/ν, where U and L are characteristic velocity and
length of the flow, respectively, and ν ≥ 0 is the kinematic viscosity. The divergence
free condition ∇·u = 0 is the mathematical constraint of incompressibility. The viscous
force 1

Re
∆u has the form of a diffusion term and acts in the system as a smoother of

irregularities. For high viscosity, the diffusion term is dominant and the flow is smooth
and regular, while as the viscosity decreases, the nonlinearities prevail and the fluid
motion becomes more chaotic and unpredictable. In this setting, ideal turbulence is
usually associated with the assymptotic limit ν → 0, or equivalently Re → ∞.
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Fig. 1.1 Normalized energy dissipation rate D = ⟨ε⟩L/U3 versus Taylor microscale
Reynolds number Rλ from numerical experiments. The energy dissipation attains a
nonzero value in the limit Rλ → ∞. Figure taken from [49].

When the viscosity is set to zero, ν = 0, the equations (1.1) become

∂tu + u · ∇u = −∇p, ∇ · u = 0, (1.2)

and are referred to as the Euler equations for incompressible ideal flow, since the
viscous dissipative term is dropped. In fact, it is not difficult to show that smooth
solutions u of this system conserve the energy E = 1

2
∫

|u|2dx in time.
By regarding equations (1.2) as the limit case ν → 0 of the Navier-Stokes system, the

Euler equations are expected to describe the dynamics of turbulent flows. However, an
experimental fact apparently defies this intuitive idea: the energy dissipation ε = ν|∇u|2

seems not to vanish in the limit ν → 0 [49, 68], a phenomenon known as anomalous
dissipation — see Fig. 1.1. This might look paradoxical at first sight, since the Euler
equations consitute a conservative system. Nevertheless, Onsager [67, 34] was the first
to notice that the Euler equations need not to conserve energy if they are not sufficiently
regular. He conjectured that non-vanishing energy dissipation in high-Reynolds-number
turbulence is associated to singular (distributional) solutions of the incompressible
Euler equations, a statement under active research nowadays [33, 20, 14, 48, 13].

Thus, Onsager linked the physical feature of anomalous dissipation in turbulent
flows to the mathematical regularity of Euler solutions. Accordingly, aiming a deep
understanding of turbulence, one may formulate the following fundamental question:
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how regular are the solutions of the Euler equations?

To discuss the regularity of Euler solutions, it is usefull to introduce the vorticity
field ωωω = ∇ × u. If we take the curl of equations (1.2), one obtains, after some
manipulations, a governing equation for the vorticity field

∂tωωω + u · ∇ωωω = ωωω · ∇u, (1.3)

usually called the Helmholtz equation.
In a 2D flow, the vorticity is perpendicular to the plane of motion, and therefore

equations (1.3) reduce to the advection equation

Dωωω

Dt
:= ∂tωωω + u · ∇ωωω = 0, (1.4)

where the material derivative Dωωω/Dt represents the variation of the vorticity field
along particle trajectories. The simpler equations (1.4) preserve the enstrophy of
the flow, defined as Ω = 1

2
∫

|ωωω|2dx, half of L2 norm of the vorticity field. Taking
advantage of this fact, one proves global-in-time regularity for the solutions of the 2D
equations [76, 64].

However, due to the presence of the nontrivial nonlinear term on the left hand side
of (1.3), the 3D case establishes a totally different scenario. The flow does not preserve
the enstrophy anymore and, thus, the arguments of global regularity used in the 2D
equations are no longer valid.

1.1 The Blowup Problem for the 3D Incompress-
ible Euler Equations

The question about the regularity of 3D Euler solutions is partially answered by the
many local-in-time existence theorems, e.g., [58, 28, 50, 74]. They assert that if the
velocity field is initially smooth at t = 0, then it remains smooth up to a certain finite
time T > 0 depending on the initial data. However, we know little about the solution
beyond this particular instant. What could prevent the solution from being smoothly
extended for all times is the development of a singularity in finite time, i.e., the loss of
regularity at a certain instant tb > 0. Such event is called finite-time blowup, or simply
blowup, and the time instant tb at which it occurs is the blowup time. The name is
motivated by the fact that some norm, related to the degree of regularity of the field,
becomes arbitrarily large as t approaches tb.
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The central problem we address in this thesis is:

The blowup problem for the Euler equations: does there exist a regular solution
of the 3D incompressible Euler equations (1.2) that becomes singular (blows up) in a
finite time?1

The existence of blowup in incompressible ideal flow is a long-standing open problem
both for physics and mathematics. On the physical side, such blowup is anticipated by
Kolmogorov’s theory of developed turbulence [36], predicting that the vorticity field
diverges at small scales as δω ∼ ℓ−2/3, while the time of energy transfer between the
integral and viscous scales remains finite in the inviscid limit, ν → 0. In this context,
the blowup would reveal an efficient mechanism of energy transfer from large to small
scales.

From the mathematical perspective, the inkling of blowup comes from the quadratic
nonlinearity of the Euler equations. This may be informally argued as follows [6].
Considering the Helmholtz equation (1.3), if we assume the velocity gradient and the
vorticity (which is actually its antisymmetric part) to be identified

∇u ≈ ωωω, (1.5)

one obtains (disregarding the distinction between scalars, vectors and tensors) a
quadratic differential equation

Dω

Dt
≈ ω2 (1.6)

for the vorticity in a Lagrangian framework (i.e., along particle trajectories).
Equation (1.6) is the common textbook example of an ordinary differential equation

that blows up in finite time. Its solution for initial data ω(t = 0) = ω0 > 0 is given by

ω(t) = 1
tb − t

, tb = ω−1
0 , (1.7)

which grows to infinity as t approaches the blowup time tb, i.e.,

ω(t) → ∞, as t → tb. (1.8)
1The blowup problem for the Euler equations is also formulated in the presence of physical

boundaries [32, 54], which is a related but different question. Similar open problems on finite-time
singularities, which are fundamental for the understanding of physical behavior, exist across many
other fields such as natural convection [64], geostrophic motion [69, 24], magnetohydrodynamics [9],
plasma physics [39, 4] and, of course, general relativity [22].
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Although we cannot make the above argument rigorous, it displays some subtle
features about the blowup problem that happen to be true. In the 1980s, Beale, Kato
and Majda published the famous blowup criterion:

Theorem 1.1 (Beale-Kato-Majda Theorem [5]). Let u be a smooth solution of the
Euler equations and suppose there is a time tb such that the solution cannot be smoothly
continued to t = tb; assume that tb is the first such time. Then

∫ tb

0
||ωωω(·, s)||∞ds = ∞, (1.9)

and in particular
lim sup

t↑tb

||ωωω(·, t)||∞ = ∞. (1.10)

The Beale-Kato-Majda Theorem has two important consequences. First, it shows
that the maximum vorticity controls the blowup. Second, if the maximum vorticity
diverges with the assymptotic behavior

||ωωω(·, t)||∞ ∼ (tb − t)−β, (1.11)

then, for the integral (1.9) to diverge, we must necessarily have β ≥ 1. Clearly, from
dimensional analysis, we expect the equality to hold, i.e., β = 1, since the vorticity
field has dimension of inverse time. Nevertheless, we remark that Theorem 1.1 is a
conditional statement: it characterizes the possible singularities in the Euler equations,
but it does not claim them to happen.

With such criterion in hand, it is appealing to look for a plausible singularity
formation through numerical simulations. Indeed, the unique quantity that needs to
be tracked is the maximum vorticity, while the theorem also constraints how it should
behave in the case of blowup. We briefly review the numerical investigations now.

1.1.1 Direct Numerical Simulations

Besides purely mathematical studies, e.g., [5, 18, 73], a crucial role in the blowup
analysis is given to direct numerical simulations (DNS)2. The chase after numerical
evidence of blowup in the 3D incompressible Euler equations has a long history [38].
Most early numerical studies were in favor of blowup, e.g., [71, 52, 42]. But the increase
of resolution owing to more powerful computers showed that the growth of small-scale

2See also [59] for DNS of the blowup at a physical boundary.
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Fig. 1.2 Plot of log log ωmax versus time, obtained from DNS at resolution 1536×1024×
3072. The growth is not greater than double exponential for the whole simulation.
Figure taken from [46].

structures may be depleted at smaller scales, even though it was demonstrating initially
the blowup tendency [47, 41, 46]. This may be explained by the self-organization of
the flow into quasi-two-dimensional vorticity structures, a regularizing phenomenon [2]
(recall that 2D flows are proved to retain smoothness). Some numerical studies [53, 46]
report that the growth of vorticity is not greater than double exponential, which would
prevent the blowup to occur if such rate of growth persisted for longer times – see
Fig. 1.2.

Figure 1.3 displays the typical picture of DNS results: the growth of vorticity is
usually moderate (not greater than 20 times the initial condition), there is no clear
tendency of assymptotics, and the solutions are strongly sensitive to perturbations
(even to numerical noise), a fact that resembles a chaotic nature [72].

It is fair to say that, now, there is a lack of consensus even on the more probable
answer (existence or not) to the blowup problem3. It remains an active area of numerical
research [53, 12, 56], but computational limitations are still the major obstacle. Indeed,
a typical state-of-the-art DNS will not exceed a resolution of 81923 node points. This
represents a spatial range of approximately 4 × 103 in Fourier space, which appears to
be insufficient for the blowup analysis.

3In his review, Gibbon [38] gives a score of 9 against 7 for the blowup and no-blowup claims,
respectively, from numerical studies reported in literature.
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Fig. 1.3 Growth of maximum vorticity for different numerical schemes. Figure taken
from [41].

1.1.2 Simplified Models

Numerical limitations of the DNS can be overcome using simplified models [75, 27, 62].
They were developed in lower spatial dimensions, like the Burgers equation [15] and the
Constantin-Lax-Majda model [23, 66], or by exploring the cascade ideas in the so-called
shell models [40, 65, 60]. Other approaches consider the restriction of the Euler or
Navier-Stokes dynamics to a self-similar set of wave vectors, e.g., the reduced wave
vector set approximation (REWA) model introduced in [31, 44] and the geometrical
formulation proposed in [45].

Despite being rather successful in the study of turbulence [43, 7, 10] and serving
as a useful testing ground for mathematical analysis [51, 21], these models fall short
of reproducing basic features of Euler’s blowup phenomenon. Most of them are one-
dimensional models and, thus, lack incompressibility. The Burgers equation is a
compressible model and it develops shock singularities, which do not occur in the
incompressible Euler flow. Regarding regularity and singularities, shell models are
closer to the Burgers equation than the Euler system [63]. The Constantin-Lax-Majda
model presents a self-similar blowup, which is prohibited in the Euler solutions [17, 19].
Among the available simplified models, the REWA model is the most structurally
similar to the Euler equations, being a three-dimensional like model4 and presenting

4The REWA model fixes a finite number of directions in the 3D Fourier space where the restricted
nodes lie.
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incompressibility constraint. Nevertheless, it shares with other models a geometric
simplicity in its formulation, which prevents all of them from reproducing the observed
vorticity structures from full DNS, e.g., two-dimensional depletion.

1.2 Goals and Structure of this Thesis

In the introductory section 1.1, we presented the main question addressed in this thesis
— the blowup problem for the 3D incompressible Euler equations. The approaches to
this problem and their underlying difficulties can be summarized as follows:

1. Direct numerical simulations. The state-of-the-art results display an insufficient
spatial resolution, justified by their high computational cost. As a consequence,
they established a controversy even about the most probable answer (existence
of blowup or not);

2. Simplified models. They allow high resolution simulations, but are too simple
for the blowup analysis, since they are structurally far from Euler equations and
cannot reproduce observed structures from DNS.

In view of this, the goal of this thesis is to formulate a new modelling technique
that, when applied to the Euler system, overcomes the above obstacles: it should retain
most of the features of the Euler flow, but still allowing a reliable blowup analysis
through numerical simulations.

The technique we propose considers the restriction of the Fluid Dynamics equations
to a discrete lattice of logarithmically distributed nodes Λ in Fourier space. For these
restricted equations to make sense, we need to define calculus and algebraic operations
on this new domain, which are especially designed for the resulting simplified models
to be structurally identical to the original ones. The main operation is the product
between two functions (the nonlinearities of the equations), which should mimic a
convolution sum

(f ∗ g)(k) ≃
∑

p,q∈Λ
k=p+q

f(p)g(q), k ∈ Λ, (1.12)

coupling triads k = p + q of interacting points on the lattice. Here, the first method-
ological problem arises, since the logarithmic lattice is not closed under addition, i.e.,
the sum of two points p and q of the lattice Λ does not necessarily lie again on the
lattice. Therefore, our first task is to determine all possible triad interactions k = p + q

of points lying on the lattice. This will allow us to obtain every possible product of



1.2 Goals and Structure of this Thesis 9

form (1.12), providing a classification of all models that may be introduced by our
methodology.

Unlike many previous simplified models, the application of our approach to the
Euler equations preserves not only the basic symmetries and invariants (energy and
helicity) but also a number of fine properties of the Euler flow, such as incompressibility
and Kelvin’s circulation theorem, in a generalized form, and its solutions correlate
with the existing DNS at the respective scales. Furthermore, it allows highly accurate
numerical simulations spanning a huge spatial range (up to sixteen orders of magnitude).
All these features provide a robust technique for the study of singularities.

This thesis is divided into two parts: in the first one, we formulate the modelling
technique on the logarithmic lattice, while in the second, we apply it to the Fluid
Dynamics equations. The chapters are organized as follows. In Chapter 2, we define
the logarithmic lattices and study their geometry. The main result is the classification
of the lattices based on their triad interactions. In Chapter 3, we endow the space of
functions on the logarithmic lattice with some operations. The main operation is the
product (or convolution sum) between functions. The classification of triads is used
here to obtain all possible products on the lattice. Chapter 4 serves as a testing ground:
we show that the application of this operational structure on the lattice to the Burgers
equation preserves most of its properties and reproduces their known singularities. For
specific choices of parameters, the resulting systems are reduced to the known shell
models of turbulence. In Chapter 5 we apply our modelling technique to the 3D Euler
equations, while in Chapter 6 we use the resulting model for the blowup problem. We
conclude with a short summary of the results and discuss possible future developments.

The results reported in Chapters 5 and 6 were published in the article [16] and
presented at the conferences

Workshop on Mathematical and Computational Problems of Incompressible Fluid
Dynamics. Chaotic blowup in the 3D incompressible Euler equations on a logarithmic
lattice. IMPA, Rio de Janeiro – RJ, Brazil. August 10-11, 2018;

ICMC Summer Meeting on Differential Equations. Fluid Dynamics on the logarithmic
lattice and singularities of Euler flow. São Carlos – SP, Brazil. February 4-6, 2019.



Part I

The Triad Structure of Logarithmic
Lattices



Chapter 2

Logarithmic Lattices

In this chapter, we study the geometry of logarithmic lattices, the domain on which
the dynamical models shall be defined. Logarithmic lattices were first applied in the
so-called shell models of turbulence in the 1970s [25]. Here we provide a new systematic
study of these lattices as an independent mathematical object. The main result is their
classification with respect to triad interactions k = p + q. This classification shall be
used in the next chapter to formulate products (convolution sums) between functions
defined on lattices.

Given a real number λ > 1, the logarithmic lattice with spacing λ is the set
Λ := {±λn}n∈Z consisting of positive and negative integer powers of λ.

This set has two main properties. First, Λ is scale-invariant, i.e., Λ = σλnΛ for any
sign σ = ±1 and any integer n. This is fundamental for the study of hydrodynamic
turbulence, which is characterized by statistical scale-invariance. Secondly, the points
λn grow geometrically with n. Thus, with only a few nodes we span a large range of
scales. However, the logarithmic lattice is not closed under addition, which imposes a
strong restriction to its applications. This is a question we address now.

A triad interaction on the logarithmic lattice Λ at the point k ∈ Λ is an ordered
triple

t = (k, p, q), with p, q ∈ Λ, such that k = p + q. (2.1)

The set of all triad interactions on Λ at k ∈ Λ shall be denoted by T (Λ; k), while the
collection of all triads on Λ is the union T (Λ) := ∪k∈ΛT (Λ; k). The lattice is called
reducible if it can be split into two nonempty disjoint subsets Λ = Λ1 ∪Λ2, Λ1 ∩Λ2 = ∅,
such that T (Λ) = T (Λ1) ∪ T (Λ2). The subsets Λ1 and Λ2 are not coupled by triads,
giving rise to two disconnected lattices. A logarithmic lattice which is not reducible is
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Fig. 2.1 Triad interactions on logarithmic lattices with different spacings λ.

called an irreducible lattice. An irreducible lattice has a triad at every k ∈ Λ, i.e.,

T (Λ; k) ̸= ∅, for every k ∈ Λ. (2.2)

We say that the logarithmic lattice Λ interacts in triads if it has the property (2.2).
We are interested in a twofold task: i) to determine which spacings λ generate

irreducible lattices and ii) to classify all triad interactions T (Λ) of such lattices.
Before giving some examples, let us show that every triad interaction at k ∈ Λ is

the scaling by k of a triad at the unity. This reduces the problem of triad classification
to the determination of the triads at this unique point. We claim that for every k ∈ Λ

T (Λ; k) = {(k, kp, kq); (1, p, q) ∈ T (Λ; 1)} (2.3)

Indeed, using the fact that the logarithmic lattice is closed under multiplication
and division, given a triad decomposition of the unity t = (1, p, q), the product
kt = (k, kp, kq) is a triad at k. Conversely, given t = (k, p, q), we have t = kt̃, where
t̃ = (1, p/k, q/k) is a triad decomposition of the unity.
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Thus, in order to determine every triad interaction on Λ, it suffices to characterize
the set T (Λ; 1), i.e., to find every

ti = (1, µi, ηi), with µi, ηi ∈ Λ, such that 1 = µi + ηi. (2.4)

By doing so, every triad at k ∈ Λ has the form kti = (k, µik, ηik).
A logarithmic lattice Λ interacts in triads only for certain spacings λ. If, for example,

λ = 2, then every point k ∈ Λ interacts with its immediate neighbors and all three triad
decompositions of the unity (2.4) are enumerated in the table 2.1 – see Fig. 2.1(a).

Table 2.1 Triads at the unity 1 = µi + ηi when λ = 2.

i 1 2 3
µi 2 -1 1/2
ηi -1 2 1/2

The number of interactions can be improved by considering λ = (
√

5 + 1)/2, the
golden mean, which satisfies the relation 1 = λ2 − λ. The triads at the unity are
obtained from permutations and rescalings of such identity, providing the richer sample
of triads in table 2.2. In this case, each point interacts with its two immediate neighbors
– see Fig. 2.1(b).

Table 2.2 Triads at the unity 1 = µi + ηi when λ = (
√

5 + 1)/2.

i 1 2 3 4 5 6
µi λ2 −λ λ −λ−1 λ−2 λ−1

ηi −λ λ2 −λ−1 λ λ−1 λ−2

Because immediate neighbors are coupled, these are two examples of irreducible
lattices. On the other hand, if λ =

√
2, the triads at the unity are given by table 2.3

and now the nodes are coupled two by two. Therefore, the lattice is reducible into
Λ = Λ1 ∪ Λ2, where Λ1 takes the even powers of λ and Λ2 the odd ones – see Fig. 2.1(c).

Table 2.3 Triads at the unity 1 = µi + ηi when λ =
√

2.

i 1 2 3
µi λ2 -1 λ−2

ηi -1 λ2 λ−2
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From the above examples, depending on the spacing λ we obtain logarithmic
lattices with broader or narrower interacting bands. For practical purposes, we are not
interested in the limit λ → 1, which represents the collapse of the lattice to a unique
point. Therefore, we shall classify all irreducible lattices whose spacing is bounded
from below as λ ≥ λ0 by some λ0 > 1 sufficiently small1.

The main result of this chapter is the characterization of irreducible logarithmic
lattices with respect to their triad interactions, given by the following theorem.

Theorem 2.1. Let Λ be an irreducible logarithmic lattice with spacing λ ≥ 1.05. Then,
Λ corresponds to one of the following three cases:

(i) λ = 2, and all triads at the unity are given in table 2.1;

(ii) λ = λ∗ :=
3
√

9+
√

69+ 3
√

9−
√

69
21/332/3 ≈ 1.325, the plastic number2, and all triads at the

unity are given in table 2.4;

Table 2.4 Triads at the unity 1 = µi + ηi when λ = λ∗.

i 1 2 3 4 5 6 7 8 9 10 11 12
µi λ3 −λ λ2 −λ−1 λ−3 λ−2 λ5 −λ4 λ −λ−4 λ−5 λ−1

ηi −λ λ3 −λ−1 λ2 λ−2 λ−3 −λ4 λ5 −λ−4 λ λ−1 λ−5

(iii) otherwise, the spacing λ satisfies 1 = λb − λa for some integers 0 < a < b ≤ 65,
(a, b) ̸= (1, 3), (4, 5), with greatest common divisor gcd(a, b) = 1, and all triads at
the unity are given in table 2.5.

Table 2.5 Triads at the unity 1 = µi + ηi when λ satisfies 1 = λb − λa for integers
0 ≤ a < b.

i 1 2 3 4 5 6
µi λb −λa λb−a −λ−a λ−b λa−b

ηi −λa λb −λ−a λb−a λa−b λ−b

Proof. Let us show that given integers 0 ≤ a < b, there exists a unique logarithmic
lattice Λ allowing triad interactions, whose spacing λ satisfies 1 = λb − λa.

1The bound λ ≥ λ0 by some λ0 > 1 is essential for the proof, otherwise it becomes equivalent
to finding the intersection of algebraic curves with arbitrary degrees, which is a difficult problem in
algebraic geometry [70].

2Cf. [1].
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We start proving this assertion by showing that the trinomial p(x) = xb − xa − 1
has a unique real root λ greater than unity. Indeed, the case a = 0 gives λ = 21/b. If
0 < a < b, existence of such a root is a consequence of the Intermediate Value Theorem,
since p(1) = −1 and limx→+∞ p(x) = +∞, while uniqueness follows from the strictly
positive derivative p′(x) = bxb−1 − axa−1 > 0 for all x > 1.

Next, let Λ be the (unique) logarithmic lattice whose spacing λ > 1 satisfies
1 = λb − λa. By rescaling this identity and permuting its terms, we obtain the triad
interactions in table 2.5, which reduces to table 2.1 in the case a = 0. Observe that
these triads represent only local interactions and the role of the integers a and b is
precisely to state which neighbors are coupled.

Conversely, if the logarithmic lattice Λ interacts in triads, then its spacing λ > 1
satisfies 1 = λb − λa for some integers 0 ≤ a < b. Indeed, from identity (2.3), if the
lattice interacts in triads, then there exist µ, η ∈ Λ summing up to unity 1 = µ + η.
These points have the form µ = σλb, η = τλa, with σ, τ ∈ {±1} and a, b ∈ Z. We may
assume without loss of generality that 0 ≤ a ≤ b; rescale the identity by some integer
power of λ, if necessary. For two points of this form to be a decomposition of unity, we
must necessarily have σ = 1, τ = −1, while a and b must satisfy 0 ≤ a < b.

To determine every possible triad interaction in a lattice we need to find all pair
of integers 0 ≤ a < b for which the given spacing λ satisfies 1 = λb − λa. With
this information in hand, all triad interactions are given by table 2.5 for each pair
(a, b). This problem is reformulated as a system of trinomial equations. Consider two
trinomials given by

pj(x) = xbj − xaj − 1, 0 ≤ aj < bj, j = 1, 2. (2.5)

For which distinct integers a1, a2, b1, b2 the system p1 = p2 = 0 has a real root λ > 1?
Now we use the hypothesis λ ≥ 1.05 to bound the degree of such polynomials. This

will simplify the difficult problem of finding the intersection of algebraic curves with
arbitrary degree to a case of large but bounded degrees. Namely, we claim that for
λ ≥ 1.05 satisfying 1 = λb − λa with integers 0 ≤ a < b we must have b ≤ 65. We shall
prove the contrapositive in three steps.

First, let us consider two spacings λ1 and λ2 satisfying 1 = λb
1 − λa

1 and 1 = λb
2 − λc

2

with 0 ≤ a ≤ c ≤ b. Then we have λ1 ≤ λ2. This follows from the fact that, if we
define the polynomials p1(x) = xb − xa − 1 and p2(x) = xb − xc − 1, we have that each
one has a (unique) root greater than unity, both polynomials are strictly increasing in
[1, ∞) and p2 ≤ p1 in this interval. Therefore, if we fix the higher exponent b of the
identity 1 = λb − λa, the spacing λ is maximized when a = b − 1.
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Next, we show that the spacings λb satisfying 1 = λb
b − λb−1

b form a decreasing
sequence with respect to b. To prove this, we apply the same argument as above.
Consider the polynomials pb(x) = xb − xb−1 − 1. For x ≥ λb > 1 we have pb(x) ≤
xpb(x) = xb+1 − xb − x < xb+1 − xb − 1 = pb+1(x). Therefore, since these polynomials
are strictly increasing for x > 1, we have λb+1 < λb, so we conclude that the λb is a
decreasing sequence as b → ∞.

Finally, computing the roots λb for each b numerically, one verifies that if b ≥ 65,
then λb < 1.05 and, in view of the above statements, every λ satisfying 1 = λb − λa

with 0 ≤ a < b and b ≥ 65 is also bounded by the same value, λ < 1.05.
With bounded degrees bj ≤ 65, the trinomial system (2.5) can be evaluated in a

finite number of cases. Numerical analysis shows that the only solution for this problem
is the family of roots λk := λ

1/k
∗ satisfying both (and only) the trinomial identities

1 = λ3k
k − λk

k, and 1 = λ5k
k − λ4k

k . (2.6)

We have characterized all nontrivial logarithmic lattices. They must be one of the
three cases: i) λ = 21/b for some integer b > 0; the triads at unity are given by table
2.1; ii) λ = λ

1/k
∗ for some integer k > 0; we need to combine the triads from table 2.5

for both (a, b) = (k, 3k) and (a, b) = (4k, 5k) and they are depicted in table 2.4; iii) λ

satisfies 1 = λb − λa for some integers 0 < a < b < 65, (a, b) ̸= (k, 3k), (4k, 5k) for all
integer k > 0, and the triads are enumerated in table 2.5. See, e.g., Fig. 2.1(b) for the
case a = 1 and b = 2.

Lastly, we want to extract from these lattices the irreducible ones. Given a lattice
with spacing λ satisfying 1 = λb − λa for some integers 0 ≤ a < b, if the greatest
common divisor gcd(a, b) = k, then the lattice can be reduced into k uncoupled lattices.
Thus, the condition for irreducibility is mathematically translated to gcd(a, b) = 1.
Applying this criterion to each of the three cases, we obtain the desired classification
of irreducible lattices.

We say that the logarithmic lattice Λ is associative at k ∈ Λ if for every p, q, r ∈ Λ

such that k = p + q + r we have p + q, q + r ∈ Λ. When this occurs, the sums in
parentheses in the identity (p + q) + r = p + (q + r) lie on the lattice.

We show next that when sums are restricted to the logarithmic lattice then the
lattice is nowhere associative. This property will be related with the lack of associativity
of products in the next chapter.

Theorem 2.2. The logarithmic lattices described in Theorem 2.1 are nowhere associa-
tive.
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Fig. 2.2 A two-dimensional logarithmic lattice Λ2 with spacing λ.

Proof. In view of identity (2.3), it suffices to show that the lattice Λ is not associative
at the unity.

We have shown in the proof of Theorem 2.1 that if the lattice interacts in triads,
then there are integers 0 ≤ a < b such that the spacing λ satisfies 1 = λb − λa.

Take p = λ2b, q = −λa+b and r = −λa. Then

p + q + r = λ2b − λa+b − λa = λb(λb − λa) − λa = λb − λa = 1.

Let us show that q + r = −(1 + λb)λa /∈ Λ, which will prove the theorem. We claim
that the factor 1 + λb /∈ Λ. Indeed, suppose that 1 + λb ∈ Λ. In this case, 1 + λb = λm

for some integer m > b. It follows that λ is a solution of the trinomial system (2.5) with
a1 = a, b1 = b, a2 = b and b2 = m. However, we already proved that such solutions do
not exist, see Eq. (2.6), leading to a contradiction.

The above results for a one-dimensional logarithmic lattice can be extended to
higher dimensions.

The n-dimensional logarithmic lattice with spacing λ > 1 is given by the
cartesian power Λn = Λ×· · ·×Λ (n factors) – see Fig. 2.2 for the two-dimensional picture.
A point k ∈ Λn of the n-dimensional logarithmic lattice is an n-tuple k = (k1, . . . , kn)
where each component kj lies on Λ. An ordered triple t = (k, p, q) of points from the
lattice k, p, q ∈ Λn is a triad interaction if each component kj = pj + qj is a triad
interaction on Λ. Thus all irreducible lattices Λn are given by the spacings λ listed in
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Theorem 2.1 and all triads are combinations of the one-dimensional triads for each
component.

The notion of associativity on the logarithmic lattice also extends naturally to
higher dimensions and it follows that the n-dimensional lattice is associative at a point
k ∈ Λn if the one-dimensional lattice Λ is associative at each component kj. For this
reason, Λn is nowhere associative, just as in the one-dimensional case.



Chapter 3

Functions on a Logarithmic Lattice

The main purpose of this chapter is to endow the space of functions on the logarithmic
lattice with calculus and algebraic operations that mimic the correspondent operations
between continuous functions, defined on the whole Euclidean space. By tracking their
essential properties, this will allow to formulate, in the next chapters, simplified models
structurally identical to the original fluid dynamical equations, sharing most of their
underlying attributes, e.g., symmetries and conserved quantities.

Let Λ be an irreducible logarithmic lattice with spacing λ and consider k ∈ Λ,
which we interpret as a wave number in Fourier space. Let us consider complex valued
functions f(k) ∈ C of the wave number k and impose the reality condition

f(−k) = f(k) (3.1)

where the bar denotes complex conjugation. This condition is motivated by the same
property of the Fourier transform of a real valued function. Thus, f is analogous
to the Fourier transform of a real function. The space of functions f defined on the
logarithmic lattice Λ and satisfying (3.1) shall be denoted by F(Λ).

A function f(k) on the lattice may be interpreted in several ways. For instance,
consider a real function F : R → R on the real line and fix a positive lattice point
k ∈ Λ. By considering the Fourier transform

F̂ (k′) =
∫

R
F (x)e−ik′xdx, k′ ∈ R, (3.2)
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one may associate the discrete value f(k) on the logarithmic lattice with the average
of F̂ over the interval [k, λk], that is

f(k) ≃ 1
λk − k

∫ λk

k
F̂ (k′)dk′, k ∈ Λ. (3.3)

In this interpretation, F may represent some physical variable. Then f maintains
the physical dimension of F̂ , providing dimensional coherence to the modelling.

The value f(k) could also be understood as the integration of F̂ in the interval
[k, λk] without the prefactor:

f(k) ≃
∫ λk

k
F̂ (k′)dk′, k ∈ Λ. (3.4)

In this second approach, the dimensionality of f and F̂ differ by the spatial dimension.
These two interpretations are summarized in a single formula

f(k) ≃ 1
|λk − k|α

∫ λk

k
F̂ (k′)dk′, k ∈ Λ, (3.5)

where the scaling exponent α takes unit value in the average definition (3.3) and zero
in the integration approach (3.4). If we define the rescaled function δλF (x) = F (x/λ),
one may check directly from definition (3.5) and from the Fourier transform property
(̂δλF )(k) = λF (λk) that the corresponding rescaled function on the logarithmic lattice
is

δλf(k) = λαf(λk). (3.6)

Therefore, the model on the logarithmic lattice scales with the λα prefactor.
In what follows, we construct an operational structure for the space F(Λ), aiming

to capture the essential differential and algebraic properties of continuous models.
Given two functions f and g in F(Λ), we define their inner product as

(f, g) :=
∑
k∈Λ

|k|αf(k)g(k). (3.7)

This definition mimics the standard functional product∫
f(x)g(x)dx =

∫
f̂(k)ĝ(k)dk

for continuous real functions, which is the average of the product fg. The factor |k|α

stands for the volume of integration for the lattice model with scaling exponent α.
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Using (3.6) and replacing k by λk in (3.7), yields the scaling property

(f, g) =
∑
k∈Λ

|k|αf(k)g(k) =
∑
k∈Λ

|λk|αf(λk)g(λk)

= λ−α
∑
k∈Λ

|k|αλαf(λk)λαg(λk) = λ−α(δλf, δλg). (3.8)

Again, if α equals unity, then the inner product (3.7) maintains the expected physical
dimension, since after the scaling the functions by λ, their mean value decreases by a
λ factor. Just like the standard functional product of real functions, expression (3.7) is
also real valued. Indeed, using the reality condition (3.1) one may rewrite equation
(3.7) as

(f, g) = 2Re

∑
k∈Λ
k>0

|k|αf(k)g(k)

 . (3.9)

Since we are working with Fourier-space representation, we define the space deriva-
tive ∂x by the Fourier factor,

∂xf(k) = ikf(k), (3.10)

where i is the imaginary unit. Clearly, higher order derivatives are powers of the
Fourier factors. This notion of differentiability on the lattice retains some important
calculus identities, like integration by parts

(∂xf, g) = −(f, ∂xg), (3.11)

which follows from the fact that the inner product (3.7) couples f(k) and g(k) = g(−k).
We next define the product of two functions on the logarithmic lattice, which in

Fourier space is understood as a convolution.
A product on the logarithmic lattice (or simply a product), represented by

∗, is a binary operation on F(Λ) satisfying, for any functions f, g, h ∈ F(Λ) and any
numbers γ, ξ ∈ R, the following properties:

(P.1) (Reality condition) (f ∗ g)(−k) = (f ∗ g)(k);

(P.2) (Commutativity) f ∗ g = g ∗ f ;

(P.3) (Bilinearity) (f + γg) ∗ h = f ∗ h + γ(g ∗ h);

(P.4) (Translation invariance) τξ(f ∗ g) = τξf ∗ τξg, where τξf(k) = e−ikξf(k) is the
translation of f by ξ;
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(P.5) (Scaling invariance) δλ(f ∗ g) = δλf ∗ δλg, where δλf is the rescaling of f by λ

given by (3.6);

(P.6) (Parity) P (f ∗ g) = Pf ∗ Pg, where Pf(k) = f(−k) is the reflection of f with
respect to the vertical axis;

(P.7) (Associativity in average) (f ∗ g, h) = (f, g ∗ h);

(P.8) (Leibniz rule) ∂x(f ∗ g) = ∂xf ∗ g + f ∗ ∂xg.

The required properties for the product are chosen in order to mimic a common
(pointwise) product of real functions on the real line, or, equivalently, a convolution
operation in Fourier space. The reality condition (P.1) is a closure property. Commuta-
tivity (P.2), bilinearity (P.3), translation invariance (P.4) and parity (P.6) are natural
properties of the pointwise product, such as scaling invariance (P.5), although this
last property in our case is restricted to the logarithmic lattice, and therefore given in
discrete form k 7→ λk. The Leibniz rule (P.8) is responsible for the coupling of triads.
As we shall see below, since the logarithmic lattice is nowhere associative, see Theorem
2.2, we cannot demand the product to be associative. Nevertheless, we require the
weaker property of associativity in average (P.7). This property also justifies the use
of the following notation. We define the product average of two functions as

⟨f ∗ g⟩ := (f, g) (3.12)

and the product average of three functions as the common value

⟨f ∗ g ∗ h⟩ := (f ∗ g, h) = (f, g ∗ h). (3.13)

Indeed, from the definitions of inner product and product on the logarithmic lattice,
they mimic the average values

∫
f(x)g(x)dx and

∫
f(x)g(x)h(x)dx, respectively. We

remark that higher order product averages are not well-defined, due to the lack of
associativity.

We shall see in the next chapters that these properties provide an algebraic structure
similar to the one in the original equations of Fluid Dynamics. As a result, the new
simplified models will present the same symetries and preserve most of the invariants.

We establish now the general form of the product on the one-dimensional lattice.
Later, it will be generalized to higher dimensions. By introducing the norm

||f ||1 :=
∑
k∈Λ

|k|α|f(k)|, (3.14)
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we define the space of absolutely summable functions, consisting of functions f with
finite norm (3.14).

Theorem 3.1. Let Λ be one of the logarithmic lattices described in Theorem 2.1. Then,
the following operations define products on F(Λ):

(i) For λ = 2,

(f ∗ g)(k) = c|k|α[f(2k)g(k) + f(k)g(2k) + 4−αf(2−1k)g(2−1k)], (3.15)

where c ∈ R is an arbitrary real parameter;

(ii) For λ = λ∗ :=
3
√

9+
√

69+ 3
√

9−
√

69
21/332/3 ,

(f ∗ g)(k) = c|k|α{λ2α[f(λ3k)g(λk) + f(λk)g(λ3k)]
+f(λ2k)g(λ−1k) + f(λ−1k)g(λ2k)

+λ−4α[f(λ−3k)g(λ−2k) + f(λ−2k)g(λ−3k)]}
+d|k|α{λ8α[f(λ5k)g(λ4k) + f(λ4k)g(λ5k)]

+f(λk)g(λ−4k) + f(λ−4k)g(λk)
+λ−2α[f(λ−5k)g(λ−1k) + f(λ−1k)g(λ−5k)]},

(3.16)

where c, d ∈ R are arbitrary real parameters;

(iii) Otherwise, 1 = λb − λa and

(f ∗ g)(k) = c|k|α{λ2aα[f(λbk)g(λak) + f(λak)g(λbk)]
+f(λb−ak)g(λ−ak) + f(λ−ak)g(λb−ak)

+λ−2(b−a)α[f(λ−bk)g(λa−bk) + f(λa−bk)g(λ−bk)]}
(3.17)

where c ∈ R is an arbitrary real parameter.

Additionally, if f and g are absolutely summable, then also is f ∗ g.
Conversely, these are the most general products in the space of absolutely summable

functions.

Proof. Properties (P.1) to (P.8) for the products (3.15)–(3.17) can be verified directly
by substitution.

Let us show that the product f ∗ g of two absolutely summable functions f and
g is again an absolutely summable function. We prove it below using the known
Generalized Young Inequality on measure spaces.



24

Give the logarithmic lattice Λ the measure m pointwisely defined by

m({k}) = |k|α, k ∈ Λ.

In this case, the norm (3.14) is written as the integral

||f ||1 =
∫

|f |dm (3.18)

The three products depicted in the Theorem have the same structure

(f ∗ g)(k) =
N∑

j=1
cj|k|αf(µjk)g(ηjk), (3.19)

where N is the number of terms, cj are real parameters of the product, µj and ηj are
nonzero coupling factors.

The Generalized Young Inequality is stated as [35, p.9]: Let (X, µ) be a σ-finite
measure space, and let p ∈ [1, ∞] and A > 0. Suppose that K is a measurable function
on X × X such that

sup
x∈X

∫
X

|K(x, y)|dµ(y) ≤ A, sup
y∈X

∫
X

|K(x, y)|dµ(x) ≤ A. (3.20)

If g ∈ Lp(X), then the function Tg defined by

Tg(x) =
∫

X
K(x, y)f(y)dµ(y) (3.21)

is well-defined almost everywhere, it is in Lp(X), and

||Tg||Lp(X) ≤ A||g||Lp(X) (3.22)

For functions f and g defined on the euclidean space Rn, the known Young’s
Inequality ||f ∗ g||Lp(Rn) ≤ ||f ||L1(Rn)||g||Lp(Rn) for the usual convolution follows from
(3.22) by taking K(x, y) = f(x − y). However, we cannot do this on our domain, since
the difference of points from the logarithmic lattice does not necessarily lie on the
logarithmic lattice. A slight modification of this kernel is necessary.

Define the kernel K : Λ × Λ → C

K(k, q) =


cj

|ηj |α f(µjk), if q = ηjk, j = 1, . . . , N ;

0, otherwise.
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Then,

∫
K(k, q)g(q)dm(q) =

∑
q∈Λ

|q|αK(k, q)g(q) =
N∑

j=1
|ηjk|α cj

|ηj|α
f(µjk)g(ηjk) = (f ∗ g)(k),

where we used (3.19) in the last equality.
Additionally, by setting C = maxj=1,...,N

|cj |
|µj |α and using the norm (3.18), one obtains

∫
|K(k, q)|dm(q) =

∑
q∈Λ

|q|α|K(k, q)| =
N∑

j=1
|ηjk|α |cj|

|ηj|α
|f(µjk)|

=
N∑

j=1
|µjk|α |cj|

|µj|α
|f(µjk)| ≤ C

N∑
j=1

|µjk|α|f(µjk)| ≤ C||f ||1.

for every k ∈ Λ, from which

sup
k∈Λ

∫
|K(k, q)|dm(q) ≤ C||f ||1.

Following the same steps, one proves the other inequality

sup
q∈Λ

∫
|K(k, q)|dm(k) ≤ C||f ||1.

The Generalized Young Inequality with A = C||f ||1 yields

||f ∗ g||1 ≤ C||f ||1||g||1 < ∞,

which shows that f ∗ g is an absolutely summable function.
Let ∗ be a product on the space of absolutely summable functions, here denoted by

ℓ1. The product is a bilinear operator ∗ : ℓ1 × ℓ1 → ℓ1. Its action at two ℓ1 functions
is given by

(f ∗ g)(k) =
∑

p,q∈Λ

ckpqf(p)g(q)

where ckpq ∈ R are real coefficients independent of f and g.
The Leibniz rule (P.8) restricts the sum to triads k = p + q. From Theorem 2.1,

there is only a finite number N of triads at each k and we can write the triads at k

as k = pj + qj with pj = µjk and qj = ηjk. As a consequence, the coefficients can be
rewritten as ckpjqj

= ck
j . The scaling invariance (P.5) shows that the dependence of

coefficients ck
j on k is given by the volume factor cj

k = |k|αcj . Parity (P.6) demands the
coefficients to be independent on the sign of k. Hence, the product can be rewritten
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in the general form (3.19). Finally, commutativity (P.2) and associativity in average
(P.7) define the coefficients cj.

We skip these elementary but cumbersome calculations which lead to the expressions
(3.15)–(3.17) for each lattice spacing.

Observe that the three products (3.15)–(3.17) have the convolution form (3.19)
coupling triads, where the coupling factors µj and ηj are given by Theorem 2.1 and
the coefficients cj are given in Theorem 3.1. Particularly, for α = 0,

(f ∗ g)(k) =
∑

p,q∈Λ
k=p+q

f(p)g(q). (3.23)

Since all products couple triads in the form (3.23), a direct consequence of the
non-asscoativity of the logarithmic lattice expressed in the Theorem 2.2 is the lack of
associativity of the products.

Theorem 3.2. The products described in Theorem 3.1 are not associative:

(f ∗ g) ∗ h ̸= f ∗ (g ∗ h). (3.24)

Recall that the associativity condition is valid in average. However, since the
products are not associative, we cannot extend the definition of product average to
more than three factors.

We reinforce also the choice of focusing on irreducible lattices. Because a product
always couple triads, in a reducible lattice such product decouples the dynamics into
two noninteracting lattices.

Finally, it is possible to generalize the operations between functions introduced in
this chapter to higher dimensions. By considering a n-dimensional logarithmic lattice
Λn, the space of functions f(k) of the wave vector k ∈ Λn satisfying the reality condition
(3.1) is denoted by F(Λn). The inner product between two functions f, g ∈ F(Λn) is
defined as

(f, g) :=
∑

k∈Λn

|k1 . . . kn|αf(k)g(k), (3.25)

while the partial derivatives are given by the Fourier factors

∂jf(k) = ikjf(k), j = 1, . . . , n. (3.26)
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The product on F(Λn) is also a binary operation on this set satisfying properties
(P.1) to (P.8), except that the parity property (P.6) is substituted by the more
general isotropy property, which includes rotations and reflections. Namely, by isotropy
we imply that the product is invariant under any transformation R from the group
of cube symmetries Oh (Cf. [55, Sec.93] – this group includes all transformations
(k1, k2, k3) 7→ (±kσ1 , ±kσ2 , ±kσ3), where σ is a permutation of (1, 2, 3)). We express
this property as

TR(f ∗ g) = TRf ∗ TRg, (3.27)

where TRf is the “rotated” function f by R ∈ Oh.
One may apply the same techniques of Theorem 3.1 in order to classificate every

product on F(Λn). However, formulation (3.23) gives us a ready-to-use product for
any dimension:

(f ∗ g)(k) =
∑

p,q∈Λn

k=p+q

f(p)g(q). (3.28)

We shall apply this product in the Chapter 5 to formulate a model for the 3D Euler
equations.



Part II

Fluid Dynamics Models on
Logarithmic Lattices



Chapter 4

The Burgers Equation

In this chapter, we present how the operational structure on the logarithmic lattice,
introduced in the the first part of this thesis, can be used to formulate simplified
models, by considering the Burgers equation in one-dimensional space. This chapter
serves as a testing ground before going to the full Euler system. We verify that our
methodology not only preserves most of the properties of the Burgers equation but
is also capable of reproducing the known singularities of its solutions. We show that,
for a specific choice of parameters, the Burgers equation on the logarithmic lattice
reduces to a couple of popular shell models of turbulence. Still, our methodology is
more general and provides new similar models. Proofs for conservation laws assume
that all sums are absolutely convergent. For completing these proofs, one needs to
introduce the concept of strong solution, which is out of scope of this thesis.

The Burgers equation is given by

∂tu + u ∗ ∂xu = ν∂2
xu, (4.1)

where ν ≥ 0 is the viscosity. In physical space, u = u(x, t) with x ∈ R, the star product
corresponds to the usual pointwise multiplication and ∂x is the spatial derivative. On
the other hand, in Fourier-space representation u = u(k, t), the derivative ∂x is given
by the Fourier factor ∂x = ik, while the star denotes a convolution.

Equation (4.1) also makes sense on a logarithmic lattice, when by ∗ we understand
a product introduced in Chapter 3.

Independently of the concrete structure of the product, the lattice model (4.1)
retains important properties of the continuous Burgers equation, like its symmetry to
the physical space translations by a real number a ∈ R, defined as u(k) 7→ e−iaku(k),
and the conservation of the inviscid (ν = 0) invariants, proved in the following theorem.
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Theorem 4.1. If u(k, t) is a solution of the inviscid (ν = 0) Burgers equation (4.1),
then the energy

E(t) := 1
2⟨u ∗ u⟩, (4.2)

and the third order moment
M(t) := ⟨u ∗ u ∗ u⟩ (4.3)

are conserved in time.

Proof. Recall that, by the definitions of product averages (3.12) and (3.13), the energy
and the third order moment are given by E = (u, u) and M = (u ∗ u, u) = (u, u ∗ u),
respectively.

For the energy, taking the time derivative and substituting the equation (4.1), one
obtains

dE

dt
= (∂tu, u) = −(u ∗ ∂xu, u).

On the other hand, using successively the Leibniz rule (P.8) together with com-
mutativity (P.2), integration by parts (3.11), and associativity in average (P.7), we
have

−(u ∗ ∂xu, u) = −1
2(∂x(u ∗ u), u) = 1

2(u ∗ u, ∂xu) = 1
2(u ∗ ∂xu, u).

It follows that (u ∗ ∂xu, u) = 0, from which dE/dt = 0.
For the third order moment, using the associativity in average (P.7) and substituting

the Burgers equation, one may write

dM

dt
= 3(u ∗ u, ∂tu) = −3(u ∗ u, u ∗ ∂xu)

With similar manipulations of the product properties, one obtains

− 3(u ∗ u, u ∗ ∂xu) = −3
2(u ∗ u, ∂x(u ∗ u)) =

= 3
2(∂x(u ∗ u), u ∗ u) = 3(u ∗ ∂xu, u ∗ u) = 3(u ∗ u, u ∗ ∂xu),

from which (u ∗ u, u ∗ ∂xu) = 0 and hence we have also conservation of the moment
M .

The conservation of energy is a property of the shell models of turbulence [10, 26],
while the conservation of the third order moment is related to a Hamiltonian structure
in the Sabra shell model [61]. Recall from Chapter 3 that higher order moments, e.g.
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⟨u ∗ u ∗ u ∗ u⟩, are not well defined due to the lack of associativity in the products –
see Theorem 3.2.

One can also make sense of conservation of momentum for the Burgers equation.
Consider the continuity equation

∂tρ + ∂x(ρ ∗ u) = 0, (4.4)

where ρ is interpreted as the fluid density. The total momentum is defined as the
cross-correlation

P (t) := ⟨ρ ∗ u⟩, (4.5)

which is proved to be conserved in time in the following theorem.

Theorem 4.2. Let u(k, t) be a solution of the inviscid (ν = 0) Burgers equation (4.1)
and let ρ(k, t) be a solution of the continuity equation (4.4). Then, the momentum
(4.5) is conserved in time.

Proof. Taking the time derivative of (4.5), one obtains two terms

dP

dt
= (∂tρ, u) + (ρ, ∂tu),

which we treat separately.
For the first term, we substitute the continuity equation (4.4) and apply successively

associativity in average (P.7), integration by parts (3.11) and Leibniz rule (P.8):

(∂tρ, u) = −(u ∗ ∂xρ, u) − (ρ ∗ ∂xu, u) = −(∂xρ, u ∗ u) − (ρ, u ∗ ∂xu)
= 2(ρ, u ∗ ∂xu)) − (ρ, u ∗ ∂xu) = (ρ, u ∗ ∂xu).

For the second term, just substitute the Burgers equation (4.1) to obatin

(ρ, ∂tu) = −(ρ, u ∗ ∂xu).

Summing the two contributions, we conclude that dP/dt = 0 and the momentum
is conserved in time.

Theorem 4.2 shows that the logarithmic model for the Burgers equation conserves
an infinite number of invariants. Indeed, a solution u(t) preserves the cross-correlation
(4.5) for every solution ρ(t) of equation (4.4).

Depending on the concrete nature of the product given by Theorem 3.1 presented
in Chapter 3, we have different models, as we present now.
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4.1 Burgers Equation on Logarithmic Lattices and
Shell Models of Turbulence

We show in this section that popular shell models of turbulence are obtained from the
one-dimensional Burgers equation by applying our methodology.

First let us take λ = 2 and consider the product (3.15). The Burgers equation (4.1)
takes the form

∂tu(k) = −1
2cik|k|α

[
2u(2k)u(k) + 4−αu2

(
k

2

)]
− νk2u(k). (4.6)

Let us choose α = 0 and c = 2. Define the geometric progression

kn := λn, n ∈ Z (4.7)

and consider purely imaginary solutions of type

u(±kn) = ±iun, for un ∈ R. (4.8)

Note that Eq. (4.8) is a property of the Fourier transform for any odd function in
physical space. Then, the equation (4.6) taken at k = kn reduces to the form

u̇n = knu2
n−1 − kn+1un+1un − νnun, (4.9)

where we have introduced the viscosities νn = νk2
n. This system is known as the

Desnyansky-Novikov (DN) shell model [25], also called dyadic model.
For the next example, take λ = (

√
5 + 1)/2, the golden mean, which satisfies

1 = λ2 − λ and consider the product (3.17) with a = 1, b = 2, α = 0 and c = −λ

expanded as
(u ∗ v)(k) = −λ[u(λ2k)v(−λk) + u(−λk)v(λ2k)+

+u(λk)v(−λ−1k) + u(−λ−1k)v(λk)+
+u(λ−2k)v(λ−1k) + u(λ−1k)v(λ−2k)].

(4.10)

With the product (4.10), the Burgers equation (4.1) becomes

∂tu(k) = iλk[u(λ2k)u(λk) + u(λk)u(λ−1k) + u(λ−2k)u(λ−1k)] − νk2u(k). (4.11)
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By setting u(kn) = un and u(−kn) = un with kn = λn, the equation (4.11) reduces
to the form

u̇n = i[kn+1un+2un+1 − (1 + d)knun+1un−1 − dkn−1un−1un−2] − νk2
nun, (4.12)

with d = −λ2. System (4.12) is the Sabra shell model [60].
Besides the energy (4.2), the Sabra model (4.12) has one more inviscid quadratic

invariant of the form I = ∑
n∈Z d−n|un|2. However, this invariant has no analogue for

the Burgers equation. In studies of hydrodynamic turbulence, it was interpreted as the
enstrophy for d > 0 (sign definite invariant) and as helicity for d < 0 (not sign-definite
invariant).

4.2 Blowup and Shock Solutions

Let us consider the inviscid Burgers equation on the logarithmic lattice of spacing
λ = 2 with constant forcing. Taking Eq. (4.6) with ν = 0, c = 4 and α = 1, we write
our system as

∂tu(k) = −ik|k|
[

1
2u2

(
k

2

)
+ 4u(2k)u(k)

]
+ f(k). (4.13)

Considering again the geometric progression (4.7) and purely imaginary solutions of
form (4.8), system (4.13) can be rewritten as

u̇n = k2
n

[1
2u2

n−1 − 4un+1un

]
+ fn (4.14)

where we have introduced the forces f(±kn) = ±ifn with fn ∈ R. For the force, we
take the Kronecker delta fn = δ1

n, which is equal to one for n = 1 and zero otherwise.
The initial conditions are set to zero. We provide no perturbations on the nodes
k = λn, n < 1. In this case, from the governing equation, un ≡ 0 for n < 1 and all
t ≥ 0 and, therefore, the dynamics is restricted to the nodes kn with n ≥ 1 and the
boundary condition u0 = 0.

The model (4.13) is integrated numerically with a finite but large number of nodes
N = 60, thus covering the scale range 2N ∼ 1018. The truncation error is kept below
10−20 for the whole simulation, providing an accurate numerical analysis. The solution
blows up as t approaches the blowup time tb ≈ 0.34543415, developing a power law
|u(k)| ∼ |k|−ξ with ξ ≈ 1.19 – see Fig. 4.1. The scaling is very close to the known
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Fig. 4.1 Time evolution for the spectrum |u(k)| as t approaches the blowup time
tb ≈ 0.34543415, developing a power-law assymptotics |u(k)| ∼ |k|−ξ with exponent
ξ ≈ 1.19.

blowup assymptotics for the continuous Burgers equation u(x) ∼ −x1/3, which in
Fourier space becomes u(k) ∼ k−4/3.

Model (4.13) may be regularized by introducing the viscous term −νk2u(k) on the
right hand side with finite but small viscosity ν > 0. This system reduces to the form

u̇n = k2
n

[1
2u2

n−1 − 4un+1un

]
− νk2un + fn, (4.15)

analogous to (4.14). In this case, the simulation can be extended beyond the blowup
time tb, from which a transition occurs on the spectrum steepness: the solution assumes
an assymptotic power-law scaling |u(k)| ∼ |k|−1 on the intermediate (inertial) range of
wave numbers k . 104 and it drops down in the dissipation range k & 104 – see Fig.
4.2. The dissipation range is shifted towards larger k as ν → 0. One may check by
substitution that

u(k) = ik−1 (4.16)

is a fixed-point solution of the inviscid model (4.13). On the real line, the function
(4.16) is the Fourier transform of a discontinuous (shock) solution u(x) = −1

2sign(x)
for the Burgers equation. Thus, our lattice model demonstrates the blowup followed
by the formation of a shock solution.
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Fig. 4.2 Transition from the blowup assymptotics |u(k)| ∼ |k|−ξ, with ξ ≈ 1.19,
developed up to the blowup time tb ≈ 0.345, to a shock solution |u(k)| ∼ |k|−1,
obtained from viscous regularization with small viscosity, ν = 10−5.



Chapter 5

The 3D Incompressible Euler
Equations

In this chapter, we apply our methodology to the 3D incompressible Euler equations.
Let Λ3 be a three-dimensional irreducible logarithmic lattice with spacing λ. In our

simplified model, we represent the velocity field as a function u(k, t) = (u1, u2, u3) ∈ C3

of the wave vector k ∈ Λ3 and time t ∈ R. Thus, at each lattice point, u stands for
the corresponding velocity in Fourier space. Similarly, we define the scalar function
p(k) representing the pressure. All functions are supposed to satisfy the reality
condition: ui(−k) = ui(k). For the governing equations, we use the exact form of 3D
incompressible Euler equations

∂tui + uj ∗ ∂jui = −∂ip, ∂juj = 0, (5.1)

which are now considered on the logarithmic lattice, with some product ∗ introduced
in Chapter 3; here and below repeated indices imply the summation.

The proposed model retains most of the properties of the continuous Euler equations,
which rely only upon the structure of the equations and elementary operations on
the logarithmic lattice enumerated in Chapter 3. These include the basic symmetry
groups.

Theorem 5.1 (Symmetry groups of the Euler equations on the logarithmic lattice). Let
u(k, t) be a solution of the Euler equations (5.1). Then the following transformations
also yield solutions:

(S.1) (Time translations) uτ (k, t) = u(k, t + τ), for any number τ ∈ R;

(S.2) (Space translations) uξξξ(k, t) = e−ik·ξξξu(k, t), for any vector ξξξ ∈ Rn;
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(S.3) (Isotropy) uR(k, t) = RT u(Rk, t), for any transformation R from the group of
cube symmetries Oh (Cf. [55, Sec.93]);

(S.4) (Scale invariance) uλ,τ (k, t) = λα+1τu (λk, τ t) , for any nonzero τ , where λ is
the lattice spacing and α is the scaling exponent (3.5).

The symmetries of the Euler equations on the logarithmic lattice are the same as
those for the continuous model, except that isotropy (S.3) and scaling invariance (S.4)
are given in discrete form.

Model (5.1) also preserves the same invariants as the continuous Euler equations.
Let us show this first for the energy and helicity. Like in Chapter 4, the proofs for the
conservation laws are formal: they assume that all sums are convergent and can be
manipulated. For these proofs to be rigorous, one needs to define the proper function
spaces, on which the variables and their derivatives are summable up to a certain order.
However, this is beyond the scope of this thesis.

Theorem 5.2 (Conservation of energy and helicity). Let u(k, t) be a solution of the
Euler equations (5.1). Then the energy

E(t) := 1
2⟨ui ∗ ui⟩ (5.2)

and the helicity
H(t) := ⟨ui ∗ ωi⟩, (5.3)

where ωωω := ∇ × u is the vorticity, are conserved in time.

Proof. Taking the energy as an example, let us show how the proof can be written
using the basic operations defined on the logarithmic lattice, following the standard
approach of Fluid Dynamics. Using the Euler equations (5.1), we obtain

dE

dt
= d

dt

[1
2(ui, ui)

]
= (ui, ∂tui)

= − (ui, ∂ip) − (ui, uj ∗ ∂jui).

The pressure term vanishes owing to the incompressibility condition as

(ui, ∂ip) = −(∂iui, p) = 0,

where the first relation is obtained from the integration by parts (3.11). In the inertial
term, using commutativity of the product (P.2), the Leibniz rule (P.8) and the
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associativity in average (P.7), one obtains

(ui, uj ∗ ∂jui) = (ui ∗ ∂jui, uj) = 1
2(∂j(ui ∗ ui), uj).

After integration by parts, this term vanishes due to the incompressibility condition.
Conservation of helicity can be proved following a similar line of derivations.

One can also make sense of Kelvin’s circulation theorem in the three-dimensional
system (5.1). It is related to the conservation of cross-correlation Γ := ⟨ui ∗ hi⟩ for an
arbitrary “frozen-into-fluid” divergence-free field h(k, t) = (h1, h2, h3) satisfying the
equations

∂thi + uj ∗ ∂jhi − hj ∗ ∂jui = 0, i = 1, 2, 3
∂jhj = 0.

(5.4)

Theorem 5.3 (Kelvin’s Theorem). Let u(k, t) be a solution of the three-dimensional
Euler equations (5.1) and consider a “frozen-into-fluid” divergence-free field h(k, t)
satisfying equations (5.4). Then the cross-correlation

Γ(t) = ⟨ui ∗ hi⟩ (5.5)

is conserved in time.

Since equations (5.4) are satisfied by the vorticity field ωωω, the proof for conservation
of the cross-correlation Γ = ⟨ui ∗ hi⟩ follows the same steps as for conservation of
helicity H = ⟨ui ∗ ωi⟩.

In the continuous formulation, the circulation around a closed material contour
C(s, t) in physical space (s is the arc length parameter) is given by the cross-correlation
Γ with the field [77]

h(x, t) =
∮ ∂C(s, t)

∂s
δ3(x − C(s, t)) ds, (5.6)

where δ3 is the 3D Dirac delta-function. This field satisfies the continuous analogue
to equations (5.4) in the distributional sense. Thus, the conservation of Γ defined
as (5.5) yields exactly the circulation in Kelvin’s theorem. For the lattice model, its
conservation provides an infinite number of circulation invariants: the cross-correlation
Γ is conserved for any solution of system (5.4).



Chapter 6

Chaotic Blowup in the 3D
Incompressible Euler Equations

In this chapter, we use the lattice model of the 3D incompressible Euler equations
introduced in the Chapter 5 for the study of the blowup problem in this system. We
start by formulating the numerical model and presenting the simulations. Next, we
explain the blowup as a chaotic wave in a renormalized system. We conlude with a
comparison between our results and those from the existing DNS.

6.1 Numerical Model and Simulations

Let Λ3 be the 3D logarithmic lattice with spacing λ = (
√

5 + 1)/2, the golden mean,
which satisfies 1 = λ2 − λ. All triads on this lattice are obtained from combinations of
the one-dimensional triads given by Theorem 2.1. This provides 216 interactions at
each lattice point. We consider the product on the logarithmic lattice introduced in
Chapter 3,

(f ∗ g)(k) =
∑

p,q∈Λ3

k=p+q

f(p)g(q). (3.28)

The sum in equation (3.28) has 216 terms, the number of triads at each node point.
For numerical simulations, we used the Euler equations in vorticity formulation

∂tωi + uj ∗ ∂jωi − ωj ∗ ∂jui = 0, (6.1)

where u = rot−1ωωω = ik×ωωω/|k|2; here and below repeated indices imply the summation.
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Aiming for the blowup study, we consider initial conditions limited to large scales.
They are explicitly given below in terms of velocities. Nonzero components are limited
to scales λ ≤ |k1,2,3| ≤ λ3 and taken in the form

uj(k) = |ϵjmn|
2 kmkneiθj(k)−|k|, for j = 1, 2. (6.2)

Here ϵjmn is the Levi-Civita permutation symbol and the phases θj are given by

θj(k) = sgn(k1)αj + sgn(k2)βj + sgn(k3)δj

+ sgn(k1k2k3)γj

(6.3)

with the constants (α1, β1, δ1, γ1) = (1, −7, 13, −3)/4 and (α2, β2, δ2, γ2) = (−1, −3, 11,

7)/4. The third component of velocity is uniquely defined by the incompressibility
condition.

Equations (6.1) are integrated with double-precision using the fourth-order Runge-
Kutta-Fehlberg adaptive scheme. The local error, relative to ωmax(t), was kept below
10−10. Since only a finite number of modes n = 1, . . . , N can be simulated, the infinite-
dimensional nature of the problem was tracked very accurately by using the following
adaptive scheme in the simulation. At each time step, we computed the enstrophy
Ω = 1

2(ωi, ωi) of the modes with wavenumbers |k| ≥ Kmax/λ, where Kmax is the largest
wavenumber in each direction of the lattice. This quantity estimates the enstrophy
error due to mode truncation, and it was kept extremely small, below 10−20, during
the whole simulation. Every time the threshold of 10−20 was reached we increased the
number of nodes in each direction by five, i.e., multiplying Kmax by λ5. Together, this
provided the remarkably high accuracy of numerical results. We stopped the simulation
with N = 80, thus, covering the scale range of λN ∼ 1017 with the total of 13180 time
steps. The energy was conserved at all times with the relative error below 3.8 × 10−10.

Figures 6.1(a) and 6.1(b) analyze the temporal evolution of the maximum vorticity
ωmax(t) = maxk∈Λ3 |ωωω(k, t)| and the corresponding wave number kmax(t) = |k|. The
Beale-Kato-Majda theorem [5] (whose proof for our model is identical to the continuous
case) states that the blowup of the solution at finite time tb requires that the integral∫ t

0 ωmax(t)dt diverges as t → tb. In particular, this implies that the growth of maximum
vorticity must be at least as fast as ωmax(t) & (tb − t)−1. This dependence is readily
confirmed in Fig. 6.1(a) providing the blowup time tb = 15.870 ± 0.001. Furthermore,
Fig. 6.1(b) tracks the dependence ωmax(t) ∼ (tb − t)−1 in logarithmic coordinates up
to the values ωmax ∼ 105. The same figure demonstrates the power-law dependence
kmax(t) ∼ (tb − t)−γ with the exponent γ = 2.70±0.01, simulated up to extremely small
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Fig. 6.1 (a) Inverse maximum vorticity, 1/ωmax, as a function of time; the inset
displays an amplified segment very close to the blowup time tb = 15.870. The
graph shows deterministic chaotic oscillations; it is not smooth, because the vorticity
maximum jumps between nodes of the 3D lattice with increasing time. (b) Evolution
of maximum vorticity in log-scale, demonstrating chaotic oscillations around the power
law ∝ (tb − t)−1, and wave number kmax corresponding to the vorticity maximum,
following in average the power law (tb − t)−γ with γ = 2.70. (c) The energy spectrum,
E(k) = 1

2∆
∑

k≤|p|<λk |u(p)|2 with ∆ = λk − k, in log-scale at different renormalized
times τ = − log(tb − t). As t → tb corresponding to τ → ∞, the spectrum develops
the power law E ∝ k−ξ with ξ = 3 − 2/γ ≈ 2.26.

physical scales, ℓ ∼ 1/kmax ∼ 10−15. Finally, Fig. 6.1(c) shows the development of the
power law E(k) ∝ k−ξ in the energy spectrum as t → tb. The exponent can be obtained
with the dimensional argument E ∝ ω2

max/k3
max, which yields ξ = 3 − 2/γ ≈ 2.26.

6.2 Chaotic Blowup

The observed scaling agrees with the Leray-type [57] self-similar blowup solution
ωωωL(k, t) defined as

ωωωL(k, t) = (tb − t)−1W[(tb − t)γk]. (6.4)

Such a solution, however, cannot describe the blowup in Fig. 6.1, where the maximum
vorticity and the corresponding scale ℓ ∼ 1/kmax have the power-law behavior only in
average, with persistent irregular oscillations.

In order to understand the nonstationary blowup dynamics, we perform the change
of coordinates

ω̃ωω = (tb − t)ωωω, η = log |k|,
o = k/|k|, τ = − log(tb − t). (6.5)
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Fig. 6.2 Absolute value of the third component of renormalized vorticity |ω̃3|, as a
function of two positive wave numbers k1 > 0 and k2 > 0 (in log scale) at four different
instants τ . The third wave number is fixed at the node nearest to k3 = eγτ+6 ∝ (tb−t)−γ .
Values below 0.1 are plotted in white. In the left figure, the small box bounds the
square region |k1,2| ≤ 4096, which would be accessible for the high-accuracy DNS with
resolution 81923.

This change of coordinates applies similarly in Fourier space R3 and in our 3D lattice
Λ3. With the renormalized variables (6.5), it is convenient to define new differentiation
operators as the Fourier factors ∂̃j = ioj, where o = (o1, o2, o3) = k/|k| and i is the
imaginary unit. Thus, derivatives in the original and in the renormalized variables are
related as ∂j = eη∂̃j . Also, the renormalized velocity can be defined as ũ = (tb − t)|k|u,
which is related to the renormalized vorticity as

ũ = io × ω̃ωω. (6.6)

Using relations (6.5) and (6.6), the vorticity equation (6.1) after dropping the common
factor e2τ becomes

∂τω̃ωω = G[ω̃ωω], (6.7)

where the ith component of the nonlinear operator G[ω̃ωω] is

(G[ω̃ωω])i = −ω̃i − ũj ∗ ∂̃jω̃i + ω̃j ∗ ∂̃jũi, ∂̃j = ioj. (6.8)

The choice of variables (6.5) is motivated by the scaling invariance: the operator G[ω̃ωω]
is homogeneous (invariant to translations) with respect to τ and η, which correspond
to temporal and spatial scaling, respectively. In our model, the scaling invariance is
represented by the shifts of η with integer multiples of log λ. These properties allow
studying the blowup as an attractor of system (6.7); see, e.g., [29, 62, 30]. For example,
the self-similar blowup solution (6.4) corresponds to the traveling wave ω̃ωω = W(eη−γτ o),
which has a stationary profile in the comoving reference frame η′ = η − γτ . In the
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limit η ∼ γτ → ∞, the original variables (6.5) yield the blowup dynamics: |ωωω| → ∞
and ℓ ∼ 1/|k| → 0 as t → tb. Such a blowup is robust to small perturbations if the
traveling wave is an attractor in system (6.7).

Irregular evolution observed in Fig. 6.1 suggests that the attractor of system (6.7)
cannot be a traveling wave. We will now argue that the attractor in the renormalized
system represents a chaotic wave moving with the average speed γ. Figure 6.2 shows
absolute values of the third component ω̃3 as functions of two wave numbers k1 > 0 and
k2 > 0 for four different values of τ ; here the third wave vector component is constant
and chosen at the node nearest to k3 = eγτ+6 ∝ (tb − t)−γ. This figure presented in
log scale demonstrates a wave moving with constant speed in average η ∼ γτ , but
not preserving exactly the spatial vorticity distribution. In order to confirm that the
wave is chaotic, we computed the largest Lyapunov exponent λmax = 9.18 ± 0.07 in
Fig. 6.3; here we added a tiny perturbation to the original solution at τ = 1.7, when
the attractor is already fully established, and observed the exponential deviation of
the solutions maxk |δω̃ωω(τ)| ∝ eλmaxτ in renormalized time τ . In the original variables,
this yields the rapid power-law growth

max
k

|δωωω(t)| ∝ (tb − t)−ζ , ζ = λmax + 1 ≈ 10.18. (6.9)

Fig. 6.3 Evolution of a small perturbation of vorticity, maxk |δω̃ωω|, in renormalized
variables. Solutions deviate exponentially with the Lyapunov exponent λmax ≈ 9.18.

The striking property of the chaotic attractor is that it restores the isotropy in
the statistical sense, even though the solution at each particular moment is essentially
anisotropic, in similarity to the recovery of isotropy in the Navier-Stokes turbulence [36,
8]. This property is confirmed in Fig. 6.4 presenting the averages of renormalized
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Fig. 6.4 Statistical isotropy: Left panel shows the τ average of |ω̃3| from Fig. 6.2 in
a comoving reference frame η′ = η − γτ . Right panel shows analogous result for the
average of |ω̃2| on plane (k̃1, k̃3). Planes of the two figures are related by the 90◦

rotation about the k̃3 axis. Similar results are obtained for other elements of the
rotation symmetry group Oh.

vorticity components |ω̃i|, considered in the comoving reference frame η′ = η − γτ .
The isotropy, as well as other statistical properties, are expected to be established very
rapidly in realistic conditions, e.g., in the presence of microscopic fluctuations, because
of the very large Lyapunov exponent; see Eq. (6.9). This resembles closely a similar
effect in developed turbulence [72].

6.3 Relation to Existing DNS

As one can infer from Figs. 6.2 and 6.4, the chaotic attractor has the span of about
six decades of spatial scales. This property imposes fundamental limitations on the
numerical resources necessary for the observation of blowup, assuming that the dynamics
in the continuous 3D Euler equations can be qualitatively similar to our model. The
approximate time limit, which would be accessible for the state-of-the-art DNS with the
81923 grid [41, 46, 53] can be estimated in our model as tDNS ≈ 9 or τDNS ≈ −1.9 for
the renormalized time; see Fig. 6.2 (left panel). At this instant, the chaotic attractor is
still at its infant formation stage and, hence, the dynamics is essentially transient. The
increase of the vorticity from ωmax(0) = 0.91 to ωmax(tDNS) = 1.89 and of the enstrophy
from Ω(0) = 27.2 to Ω(tDNS) = 1.92 × 103 is moderate, which is also common for the
DNS. Moreover, Fig. 6.5 shows that the growth of enstrophy and vorticity for t . tDNS

is not faster than double exponential in agreement with [47, 46, 53] – see also Fig. 1.2
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Fig. 6.5 Evolution of log log Ω and log log (50ωmax) for the enstrophy and maximum
vorticity; the factor 50 is used to avoid complex values of the logarithm. The dash-dotted
line indicates the blowup time. The vertical solid line estimates the limit tDNS ≈ 9 that
would be accessible for the state-of-the-art DNS with the grid 81923. Until tDNS, both
Ω and ωmax demonstrate the growth not greater than double exponential. See Fig. 1.2
for the DNS picture.

for the DNS picture. The chaotic blowup behavior offers a diversity of flow structures
as it is indeed observed for different initial conditions [38]; some DNS showed the
incipient development of power-law energy spectra [2], in qualitative agreement with
Fig. 6.1(c).

At the time tDNS, the wave vector at the vorticity maximum is equal to kmax =
(λ6, −λ3, λ10) ≈ (18.9, −4.2, 123). Its third component is much larger than the other
two. This has a similarity with DNS, which typically demonstrate depleting of vorticity
growth within quasi-2D (thin in one and extended in the other two directions) vorticity
structures [11, 37, 3]. Such dominance of one scale over the others by 1 or 2 orders of
magnitude persists for larger times in our model.



Chapter 7

Conclusions

We propose a new modelling technique for the study of singularities in fluid flows. This
technique considers the restriction of the Fluid Dynamics equations on logarithmic
lattices in Fourier space. We classified all irreducible lattices with respect to their
triad interactions and used this classification to endow the space of functions on the
logarithmic lattice with an operational strucuture which mimics the usual calculus and
algebraic operations between functions defined on the whole Euclidean space. This
approach yields new simplified models structurally identical to the Fluid Dynamics
equations and, therefore, retaining automatically many of their properties.

The capability of this technique to recover singular solutions was attested by its
application to the Burgers equation. The inviscid solutions of the logarithmic model
blows up in finite time, developing a power law with scaling exponent close to the
known assymptotics for the continuous model, while the viscous regularized equation
reproduces the discontinuous (shock) solutions in the inviscid limit ν → 0.

The application of our methodology to the Euler equations provides an intermediate
approach between the full DNS and the oversimplified available toy models. It preserves
not only the basic symmetries and invariants, like energy and helicity, but also a
number of fine properties of the Euler flow, such as incompressibility and Kelvin’s
circulation theorem, in a generalized form. Moreover, it allows highly accurate numerical
simulations spanning a large spatial range. Their solutions correlate with DNS in their
respective scales, and still have access to a much more refined resolution.

With this technique, we propose an explanation for the existing controversy in
the blowup problem for the incompressible 3D Euler equations. We show that the
logarithmic model has the non-self-similar blowup, which is explained as a chaotic
attractor in renormalized equations. Our results demonstrate that the blowup has
enormously higher complexity than anticipated before: its “core” extends to six decades



47

of spatial scales. This suggests that modern DNS of the original continuous model may
be unsuitable for the blowup observation.

Our approach to the blowup phenomenon is not limited to the Euler equations,
but is ready-to-use for analogous studies in other fields such as natural convection,
geostrophic motion, magnetohydrodynamics, and plasma physics.
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