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Abstract

In this work we proposed a new method to estimate local volatility functions with a
non parametric approach. The method is based on the statistical learning literature and
uses gradient boosting with smooth transition trees as base learners. The smoothness
and robustness of the method generates well behaved local volatility functions, capable
of replicating vanilla option prices and the implied volatility surface. Furthermore, the
method proved to be useful for pricing exotic options. We tested the method for simulated
data, Asian calls, Float strike calls and Barrier knockout options.

Keywords: Local volatility function, implied volatility, gradient boosting, tree methods.
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Resumo

Nesse trabalho proponho um novo método para estimação da superf́ıcie de volatilidade
local com uma abordagem não paramétrica. O método é baseado na literatura de statis-
tical learning e usa gradient boosting com smooth trees como base learner. A suavidade
e robustes do método gera superf́ıcies de volatilidade local bem comportadas, capazes de
replicar o preço de opções vanilla e a superf́ıcie de volatilidade impĺıcita. Além disso, o
método se provou útil para precificar opções exóticas. O método foi testado com dados
simulados, opções de venda Asiáticas, opções de venda com Strike flutuante e opções com
Barreira e knockout.

Palavras-chaves: Superf́ıcie de volatilidade local, volatilidade impĺıcita, gradient boost-
ing, métodos baseados em árvores.

vi





Contents

Index viii

1 Introduction 1

2 Local Volatility Model 3
2.1 The Black and Scholes Formula . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Implied Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Local Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Estimation of Local Volatility . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Tree Based Methods 12
3.1 CART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Smooth Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Local Vol and Smooth Trees 19
4.1 Problem Statement and Solution . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Solving the Local Volatility PDE . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Inverting the BS formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Fitting Smooth Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Data Generating Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Numerical Results 25
5.1 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Exotic Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Asian Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.2 Float Strike Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.3 Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Conclusion 40

viii



Bibliography 41

Appendices 44
.1 Fokker-Planck’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



List of Figures

3.1 Example of Regression Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Example of Logistic Functions . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1 Example of simulated prices . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Example of simulated logprices . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Local Volatility Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Local Volatility surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5 Calculated prices of the derivatives used . . . . . . . . . . . . . . . . . . . 28
5.6 Option prices surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.7 Implied volatility of each derivative used . . . . . . . . . . . . . . . . . . . 29
5.8 Implied volatility surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.9 Root mean square as function of the number of trees . . . . . . . . . . . . 30
5.10 Evolution of the estimated Local Volatility . . . . . . . . . . . . . . . . . . 30
5.11 Evolution of the estimated Implied Volatility . . . . . . . . . . . . . . . . . 31
5.12 Estimated Local Volatility for the model with the least rmse . . . . . . . . 31
5.13 Comparison of the Local Volatility surfaces . . . . . . . . . . . . . . . . . . 32
5.14 Estimated Option Value for the model with the least rmse . . . . . . . . . 32
5.15 Comparison of the Option prices surfaces . . . . . . . . . . . . . . . . . . . 33
5.16 Estimated Implied Volatility for the model with the least rmse . . . . . . . 33
5.17 Comparison of the Implied Volatility surfaces . . . . . . . . . . . . . . . . 34
5.18 Asian Calls fitted values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.19 Float Strike Call fitted values . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.20 Up and Out Barrier with 0.5 maturity . . . . . . . . . . . . . . . . . . . . 39
5.21 Up and Out Barrier with 1 maturity . . . . . . . . . . . . . . . . . . . . . 39

x



List of Tables

5.1 Local Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Option Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Implied Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Error for Asian Call prices . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Error for Float Strike Call prices . . . . . . . . . . . . . . . . . . . . . . . 37
5.6 Up and Out Maturity = .5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.7 Up and Out Maturity = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xi



CHAPTER 1

Introduction

It is well accepted that under the hypothesis of efficient markets, asset prices cannot

be predicted [28, 30]. Therefore, financial derivative instruments have been widely used

in financial markets in order to mitigate some risks of assets and portfolios. The most

common types of derivatives are forwards, futures, options and swaps. Pricing these

derivatives is a problem almost as old as the financial markets themselves. However, the

seminal work of Louis Bachelier [5] is considered the origin of modern quantitative finance.

Despite the fact that the work was not recognized as it should at the time, Louis

Bachelier’s ”Theory of Speculation” was of significant importance years later for the work

developed by Fischer Black and Myron Scholes [7], leading to the so-called Black Scholes

formula.

In [7], the authors proposed a Geometric Brownian Motion for the underlying (usually

an asset price) and demonstrated that the price of an European Call option, as a function

of the underlying and time, should satisfy a parabolic Partial Differential Equation. After

a change of variables, the explicit analytical formula for the European call option was

derived. Using a non-arbitrage argument, it is possible to find the analytical formula for

the European put option as well. With the analytical expressions for the vanilla options

(European calls and puts), one could now build the well known delta-hedge portfolios,

replicating asset movements with derivatives.

Despite the importance of the Black Scholes formula and the attempts to build delta-

hedge portfolios, which were supposedly risk-free, the market soon begun to realize that

vanilla options with different strikes and maturities had different values for their implied

volatilities. The implied volatility is the unique values that one should plug into the the
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Black and Scholes formula in order to reproduce market prices. This surfaces of Implied

Volatility, called smiles, suggested that the original hypothesis of an asset with prices

following a Geometric Brownian Motion with constant diffusion parameter is indeed too

strong. Therefore, more general models started to be proposed in the late 1980’s.

Local Volatility models, are specially interesting in Financial Mathematics due to the

fact that the diffusion coefficient is a deterministic function of the current asset price

and time. This function is commonly called the volatility surface. Moreover, since we

are not adding additional risk factors, we keep the completeness of the market. Hence,

one can use Local Volatility models to compute options price and build hedge portfolios.

The main problem related to the estimation of the local volatility surface is that it is an

ill-posed problem in the Hadamard sense (see the definition in [6]). Therefore, techniques

such as Tikhonov regularization are commonly used [22, 17, 2].

In this work, a different approach will be used to deal with the estimation of the local

volatility surface that also accounts for regularization. However, instead of conventional

finite difference methods [30]. An algorithm based on regression trees which combines

Gradient Boosting [19] with smooth transition trees [11] will be used. The new method-

ology is completely data-driven. Moreover, it is more stable then conventional numerical

models for solving PDEs and the final output is an analytic smooth function that allows

the calculation of the volatility surface in any strike value, maturity and their respective

derivatives.

The work will be divided as follows, in Sections 2 and 3, a literature review for Lo-

cal Volatility and tree based algorithms will be presented. In Section 4, the proposed

algorithm is developed. In Section 5, the numerical results are showed and finally, in

Section 6, we have the concluding remarks.
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CHAPTER 2

Local Volatility Model

2.1 The Black and Scholes Formula

Following the hedging argument shown in [1] and assuming that prices moves according

to a Geometric Brownian Motion, it is possible to demonstrate that the price of a Call

option with Strike 𝐾 and maturity 𝑇 for a non-dividend payment stock can be expressed

in terms of the Partial Differential Equation (PDE):

𝜕𝐶

𝜕𝑡
+ 𝑟𝑆

𝜕𝐶

𝜕𝑆
+

1

2
𝜎2𝑆2𝜕

2𝐶

𝜕𝑆2
− 𝑟𝐶 = 0, 0 ≤ 𝑡 ≤ 𝑇, (2.1)

𝐶(𝑆𝑇 , 𝑇 ) = (𝑆𝑇 −𝐾)+.

Changing the variables, it is possible to transform the previous PDE into a standard

heat equation [7], which can be solved analitically. This solution is given by the Black

and Scholes formula:

𝐶𝐵𝑆(𝑡, 𝑆𝑡, 𝑇,𝐾, 𝜎) = 𝑆𝑡Φ(𝑑1)−𝐾𝑒−𝑟(𝑇−𝑡)Φ(𝑑2), (2.2)

𝑑1 =
ln(𝑆𝑡/𝐾) + (𝑟 + 1

2
𝜎2)(𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

, 𝑑2 = 𝑑1 − 𝜎
√
𝑇 − 𝑡,

where 𝑡 ∈ [0, 𝑇 ], 𝑟 is the risk free rate and 𝜎 is a positive constant called volatility and

Φ is the cumulative function of the standard normal distribution. Using a no-argitrage

argument [30], one can construct the so-called put-call parity (2.3) and build an analytical
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solution for the price of a put option.

𝐶𝐵𝑆(𝑡, 𝑆𝑡, 𝑇,𝐾, 𝜎, 𝑟) + 𝑒−𝑟(𝑇−𝑡)𝐾 = 𝑆𝑡 + 𝑃𝐵𝑆(𝑡, 𝑆𝑡, 𝑇,𝐾, 𝜎). (2.3)

The sensitivity of the option price with respect to the different parameters is the so

called Greeks. The most common ones are defined as:

Δ =
𝜕𝐶𝐵𝑆

𝜕𝑆
= 𝑁(𝑑1) > 0, (2.4)

Γ =
𝜕2𝐶𝐵𝑆

𝜕𝑆2
=

𝑛(𝑑1)

𝑆𝑡𝜎
√
𝑇 − 𝑡

> 0,

Λ =
𝜕𝐶𝐵𝑆

𝜕𝜎
= 𝑛(𝑑1)𝑆𝑡

√
𝑇 − 𝑡 > 0,

Θ =
𝜕𝐶𝐵𝑆

𝜕𝑡
= −𝑛(𝑑1)𝑆𝑡𝜎

2
√
𝑇 − 𝑡

− 𝑟𝐾𝑒−𝑟(𝑡−𝑡)𝑁(𝑑2) < 0,

𝜌 =
𝜕𝐶𝐵𝑆

𝜕𝑟
= 𝐾(𝑇 − 𝑡)𝑒−𝑟(𝑇−𝑡𝑁(𝑑2) < 0,

𝑉 =
𝜕2𝐶𝐵𝑆

𝜕𝜎2
= 𝑛(𝑑1)𝑆𝑡

√
𝑇 − 𝑡

𝑑1𝑑2
𝜎

,

Ψ =
𝜕2𝐶𝐵𝑆

𝜕𝑆𝑡𝜎
= −𝑛(𝑑1)

𝑑2
𝜎
.

The Greeks are specially important when building a portfolio. For instance, if one

would like to hedge a portfolio against moves of the asset price, Δ will give the number

of stocks that one should sell in order to hedge a Call. Thus, the portfolio will be given

by Π𝑡 = 𝐶𝑡(𝐾,𝑇 )−Δ𝑆𝑡.

Another interesting Greek is Λ𝐵𝑆. Since Λ𝐵𝑆 > 0, we have that (2.2) is an increasing

function with respect to 𝜎. In other words, the bigger the risk the bigger the premium of

an option. In another direction, the shorter the maturity, the shorter the premium of an

option. This intuitive concept is a consequence of Θ𝐵𝑆 < 0.

2.2 Implied Volatility

Given the price of a call or a put option, the implied volatility 𝜎𝐼𝑉 is the unique

value used in the Black Scholes formula to recover the option price. Since Λ𝐵𝑆 is always

positive, we can guarantee that 𝜎𝐼𝑉 is unique for the price in the range of no-arbitrage.

Moreover, when 𝜎 → 0, (𝜎 → ∞), the Black and Scholes formula approaches the lower

and upper no-arbitrage bounds for the call, respectively. See [26]. Therefore, one can

calculate the implied volatility using a root-finding technique or solving the optimization
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problem:

𝜎𝐼𝑉 = argmin
𝜎∈R+

(︀
𝐶(𝐾,𝑇 )− 𝐶𝐵𝑆(𝑆𝑡, 𝑟,𝐾, 𝑇, 𝑡, 𝜎)

)︀2
, (2.5)

where 𝐶(𝐾,𝑇 ) is the option price observed in the market and 𝐶𝐵𝑆 is the formula given

in (2.2).

As suggested by [26], rather than just the hypothesis of constant volatility, the implied

volatility surface can be seen as a language to understanding option prices in an alternative

way, which is more useful than just raw options prices. The implied volatility can be used

as a metric to compare options across strikes, maturities, underlyings and observations

times.

For the first case, let the volatility be a function of time. Then, one can write:

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡+ 𝜎(𝑡)𝑆𝑡𝑑𝑊𝑡. (2.6)

Defining �̄� = ( 1
𝑇

∫︀ 𝑇

0
𝜎2(𝑡)𝑑𝑡)1/2, and applying Itô’s formula in (2.6), we can see that:

𝑑(ln𝑆𝑡) = (𝑟 − 𝜎2(𝑡)

2
)𝑑𝑡+ 𝜎(𝑡)𝑑𝑊𝑡,

ln𝑆𝑇 = ln𝑆0 +

∫︁ 𝑇

0

𝑟𝑑𝑡−
∫︁ 𝑇

0

𝜎2(𝑡)

2
𝑑𝑡+

∫︁ 𝑇

0

𝜎(𝑡)𝑑𝑊𝑡,

= ln𝑆0 + (𝑟 +
�̄�2

2
)𝑇 +

∫︁ 𝑇

0

𝜎(𝑡)𝑑𝑊𝑡.

Therefore, ln𝑆𝑇 has mean (𝑟 + �̄�
2
2)𝑇 and variance �̄�2𝑇 , as a consequence:

𝐶(𝐾,𝑇 ) = 𝐶𝐵𝑆(𝐾,𝑇, �̄�).

Thus, the implied volatility is the time average of instantaneous volatility for this specific

case, where the asset price follows (2.6).

Many works tried to model directly the implied volatility surface, see for example [15],

[23] and [25]. However, the conventional approach is to use Stochastic Volatility models

and Local Volatility functions, since both of them are capable of generating smiles [21],

[16].
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2.3 Local Volatility

How consistent are market’s option prices with the Black Scholes formula? This ques-

tion has raised an important issue regarding one of the Black and Scholes hypotheses,

whether volatility is constant or not in the stochastic process that models asset prices.

Since the 90’s, it is a stylized fact that inverting the BS formula using market data

and plotting the implied volatility as a function of strike of maturity, one would see not a

constant value for the implied volatility as expected in the Black and Scholes world, but

rather a surface commonly called smile.

To deal with this stylized fact, [13] and [16] suggested that instead of using constant

volatility, the price of a option’s underlying asset should be a function of both the current

level of the asset and time. Hence, instead of (2.1) one would have (2.8).

𝜕𝐶

𝜕𝑡
+ 𝑟𝑆

𝜕𝐶

𝜕𝑆
+

1

2
𝜎2(𝑆, 𝑡)𝑆2𝜕

2𝐶

𝜕𝑆2
− 𝑟𝐶 = 0, (2.7)

𝐶(𝑆𝑇 , 𝑇 ) = (𝑆𝑇 −𝐾)+.

At this point, it is interesting to introduce the Feynman-Kac’s formula, which states

that if 𝑢 ∈ 𝐶2,1(R× [0, 𝑇 ]) satisfies the PDE:

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) + 𝜇(𝑥, 𝑡)

𝜕𝑢

𝜕𝑥
(𝑥, 𝑡) +

1

2
𝜎2(𝑥, 𝑡)

𝜕2𝑢

𝜕𝑥2
(𝑥, 𝑡) = 𝑟(𝑥, 𝑡)𝑢, (2.8)

𝑢(𝑥, 𝑇 ) = 𝑔(𝑥),

then. it can be written as:

𝑢(𝑥, 𝑡) = E[𝑒−
∫︀ 𝑇
𝑡 𝑟(𝑋𝑢,𝑢)𝑑𝑢𝑔(𝑋𝑇 )|𝑋𝑡 = 𝑥], (2.9)

for a probability space (Ω,ℱ ,P) and the process 𝑋 being given by the equation:

𝑑𝑋𝑡 = 𝜇(𝑋𝑡, 𝑡)𝑑𝑡+ 𝜎(𝑋𝑡, 𝑡)𝑑𝑊𝑡, (2.10)

where 𝑊 is a standard brownian motion under P.
Therefore, applying (2.9) in (2.20), we can see that the SDE for the price process 𝑆 is

given by:
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𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡+ 𝜎(𝑆𝑡, 𝑡)𝑆𝑡𝑑𝑊𝑡, 𝑡 ≥ 0, (2.11)

where the function 𝜎 is the so-called Local Volatility surface.

The strike 𝐾 and maturity 𝑇 are fixed in (2.8). Therefore, this PDE is a backward

equation for the option prices. However, it is also possible to write the forward equation,

fixing 𝑆𝑡 and 𝑡. Following [20] we can write the forward price of a call option as:

̃︀𝐶(𝐾,𝑇 ) = 𝑒𝑟(𝑇−𝑡)𝐶(𝐾,𝑇 ). (2.12)

Using (2.9), we have:

̃︀𝐶(𝐾,𝑇 ) = EQ[(𝑆𝑇 −𝐾)] =

∫︁ ∞

𝐾

(𝑥−𝐾)𝜙(𝑥, 𝑇 )𝑑𝑥, (2.13)

where 𝜙(., 𝑇 ) is the probability density of 𝑆𝑇 . Taking the derivative in (2.13) twice with

respect to 𝐾:

𝜕 ̃︀𝐶
𝜕𝐾

(𝐾,𝑇 ) =

∫︁ ∞

𝐾

−𝜙(𝑥, 𝑇 )𝑑𝑥, (2.14)

𝜕2 ̃︀𝐶
𝜕𝐾2

(𝐾,𝑇 ) = 𝜙(𝐾,𝑇 ). (2.15)

Moreover, 𝜙 satisfies the Fokker-Planck equation (6):

1

2

𝜕2

𝜕𝑥2
(𝜎2𝑥2𝜙(𝑥, 𝑇 ))− 𝜕

𝜕𝑥
(𝑟𝑥𝜙(𝑥, 𝑇 )) =

𝜕𝜙

𝜕𝑇
(𝑥, 𝑇 ). (2.16)

Hence, the derivative of (2.13) with respect to 𝑇 will be given by:

𝜕𝐶

𝜕𝑇
(𝐾,𝑇 ) =

∫︁ ∞

𝐾

(𝑥−𝐾)
𝜕𝜙

𝜕𝑇
(𝑥, 𝑇 )𝑑𝑥

=

∫︁ ∞

𝐾

(𝑥−𝐾)

{︂
1

2

𝜕

𝜕𝑥2
(𝜎2𝑥2𝜙(𝑥, 𝑇 ))− 𝜕

𝜕𝑥
(𝑟𝑥𝜙(𝑥, 𝑇 ))

}︂
𝑑𝑥. (2.17)

Integrating equation (2.17) by parts we have:
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𝜕𝐶

𝜕𝑇
(𝐾,𝑇 ) =

𝜎2𝐾2

2
𝜙(𝑥, 𝑇 ) +

∫︁ ∞

𝐾

𝑟𝑥𝜙(𝑥, 𝑇 )𝑑𝑥. (2.18)

Using (2.15) we find Dupire’s equation:

𝜕𝐶

𝜕𝑇
− 1

2
𝜎2(𝐾,𝑇 )𝐾2 𝜕

2𝐶

𝜕𝐾2
+ 𝑟𝐾

𝜕𝐶

𝜕𝐾
= 0, (2.19)

𝐶(𝐾,𝑇 ) = (𝑆0 −𝐾)+.

Using (2.12) in (2.19) we have:

𝜕𝐶

𝜕𝑇
− 1

2
𝜎2(𝐾,𝑇 )𝐾2 𝜕

2𝐶

𝜕𝐾2
+ 𝑟𝐾

𝜕𝐶

𝜕𝐾
+ 𝑟𝐶 = 0, (2.20)

𝐶(𝐾,𝑇 ) = (𝑆0 −𝐾)+.

It is also interesting to note the connection between the Local Volatility function and

the Implied Volatility. Using (2.8), one could write:

𝜎2(𝐾,𝑇 ) = 2
𝜕𝐶
𝜕𝑇

+ 𝑟𝐾 𝜕𝐶
𝜕𝐾

𝐾2 𝜕2𝐶
𝜕𝐾2

. (2.21)

Following [20], one can use the log-moneyness 𝑦 = ln( 𝐾
𝑆𝑡𝑒𝑟(𝑇−𝑡) ) and define the total

implied variance as 𝑤(𝜏, 𝑦) = 𝜏𝜎2
𝐼𝑉 (𝜏, 𝑦), 𝜏 = 𝑇 − 𝑡. By (2.2) we have that:

𝐶(𝐾,𝑇 ) = 𝐶𝐵𝑆(𝜏, 𝑦,𝐾, 𝜎𝐼𝑉 (𝜏, 𝑦), 𝑟)

= 𝑆0

(︂
Φ
(︀
− 𝑦√

𝑤
+

1

2

√
𝑤
)︀
− 𝑒𝑦Φ

(︀
− 𝑦√

𝑤
− 1

2

√
𝑤
)︀)︂
. (2.22)

Moreover, using the log-moneyness in (2.20), Dupire’s equation becomes:

𝜕𝐶

𝜕𝑇
=
𝜎2(𝑆, 𝑡)

2

(︂
𝜕2𝐶

𝜕𝑦2
− 𝜕𝐶

𝜕𝑦

)︂
+ 𝑟𝐶. (2.23)

Taking the derivatives of the Black Scholes formula with respect to the total implied

variance and log-moneyness one can check that:
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𝜕2𝐶𝐵𝑆

𝜕𝑤2
=

(︂
− 1

8
− 1

2𝑤
+

𝑦2

2𝑤2

)︂
𝜕𝐶𝐵𝑆

𝜕𝑤
, (2.24)

𝜕2𝐶𝐵𝑆

𝜕𝑦𝜕𝑤
=

(︂
1

2
− 𝑦

𝑤

)︂
𝜕𝐶𝐵𝑆

𝜕𝑤
,

𝜕2𝐶𝐵𝑆

𝜕𝑦2
− 𝜕𝐶𝐵𝑆

𝜕𝑦
= 2

𝜕𝐶𝐵𝑆

𝜕𝑤
.

Using (2.22) to transform (2.20) in terms of implied variance we have that:

𝜕𝐶

𝜕𝑦
=
𝜕𝐶𝐵𝑆

𝜕𝑦
+
𝜕𝐶𝐵𝑆

𝜕𝑤

𝜕𝑤

𝜕𝑦
, (2.25)

𝜕2𝐶

𝜕𝑦2
= 2

𝜕2𝐶𝐵𝑆

𝜕𝑦𝜕𝑤

𝜕𝑤

𝜕𝑦
+
𝜕2𝐶𝐵𝑆

𝜕𝑤2

(︂
𝜕𝑤

𝜕𝑦

)︂2

+
𝜕𝐶𝐵𝑆

𝜕𝑤

𝜕2𝑤

𝜕𝑦2
,

𝜕𝐶

𝜕𝑇
=
𝜕𝐶𝐵𝑆

𝜕𝑇
+
𝜕𝐶𝐵𝑆

𝜕𝑤

𝜕𝑤

𝜕𝑇
=
𝜕𝐶𝐵𝑆

𝜕𝑤

𝜕𝑤

𝜕𝑇
+ 𝑟(𝑇 )𝐶𝐵𝑆.

Now, using (2.24) and (2.25), after some algebra we find the PDE (2.26) below that

connects the Local Volatility function and the Implied Volatility in terms of total implied

variance.

𝜎2(𝜏,𝐾) =

𝜕𝑤

𝜕𝜏

1− 𝑦

𝑤

𝜕𝑤

𝜕𝑦
+

1

4

(︂
−1

4
+

1

𝑤

𝑦2

𝑤2

)︂(︂
𝜕𝑤

𝜕𝑦

)︂2

+
1

2

𝜕2𝑤

𝜕𝑦2

. (2.26)

Moreover, [20] shows that for very short maturity (𝜏 → 0), and ATM (at the money)

options (𝑦 ∼ 0), we have

𝜕𝜎

𝜕𝑦
(0, 0) = 2

𝜕𝜎𝐼𝑉
𝜕𝑦

(0, 0). (2.27)

Thus, the Local Volatility skew (the derivative of the volatility with respect to the log-

moneyness) is twice the Implied Volatility skew.
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2.4 Estimation of Local Volatility

First, let us write (2.20) as:

𝜎2(𝐾,𝑇 ) = 2
𝜕𝐶
𝜕𝑇

+ 𝑟𝐾 𝜕𝐶
𝜕𝐾

+ 𝑟𝐶

𝐾2 𝜕2𝐶
𝜕𝐾2

. (2.28)

Therefore, we need to calculate the partial derivatives in the expression above in order

to calculate the values of the local volatility. One strategy is to consider the following

Taylor expansion:

𝑓(𝑥+ ℎ) = 𝑓(𝑥) + 𝑓 ′(𝑥)ℎ+
𝑓 ′′(𝑥)ℎ2

2!
+
𝑓 ′′′(𝑥)ℎ3

3!
+ 𝑜(ℎ4), (2.29)

𝑓(𝑥− ℎ) = 𝑓(𝑥) + 𝑓 ′(𝑥)ℎ+
𝑓 ′′(𝑥)ℎ2

2!
− 𝑓 ′′′(𝑥)ℎ3

3!
+ 𝑜(ℎ4).

Hence, 𝑓 ′ can be expressed as the forward difference, backward difference or centered

difference, where the later is given by:

𝑓 ′(𝑥) =
𝑓(𝑥+ ℎ)− 𝑓(𝑥− ℎ)

2ℎ
+ 𝑜(ℎ), (2.30)

and the second derivative will be given by:

𝑓 ′′(𝑥) =
𝑓(𝑥+ ℎ)− 2𝑓(𝑥) + 𝑓(𝑥− ℎ)

ℎ2
+ 𝑜(ℎ2). (2.31)

Since usually there are not enough different maturities and strikes in the observed

dataset, simply using the derivative approximations considered in (2.30) and (2.31) to

calculate the local volatility function is not reasonable. Therefore, one could interpolate

options prices and then use these approximations in order to calculate the local volatility

values. One of the methods commonly used for this interpolation is the Kahalé method

[24].

However, it is well-known that theoretically and empirically, estimation of local volatil-

ity surfaces is a highly ill-posed problem [2], [12], [17]. Hence, just use interpolated obser-

vations for estimating numerically the local volatility might not lead to reasonable results.

To solve this problem, techniques that improve the robustness of the estimation of the

local volatility function have been proposed. Among successful strategies, different types

of regularization techniques have been used, such as entropy-based regularization, in the
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spirit of [4] or convex type regularization [2], [12], [17].

In a general approach, one seeks to minimize the Tikhonov functional:

ℱ(𝑥) = ||𝐹 (𝑥)− 𝑦||2𝐿2(𝐷) + 𝛽𝑓𝑥0(𝑥), (2.32)

over 𝒟(𝐹 ). Where 𝛽 is the regularization parameter and 𝑓𝑥0 is the regularization func-

tional which can be interpreted as an a priori information about 𝐹 .

For example, when 𝑓𝑥0 is given by:

𝑓𝑥0 = 𝐾𝐿(𝑥0, 𝑥) =

∫︁
𝐷

(︁
𝑥 ln

(︁𝑥0
𝑥

)︁
− (𝑥0 − 𝑥)

)︁
𝑑𝑥, (2.33)

then we have the Kullback-Leibler regularization.

In a different way, instead of using regularization techniques and combine then with

conventional methods for solving PDEs, we will use tree based techniques from the statis-

tical learning literature to estimate the local volatility function. Thus, in the next section

a brief review about tree based methods will be presented.
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CHAPTER 3

Tree Based Methods

In the fields of Statistical and Machine Learning, tree based methods have been widely

used for approximating highly non-linear functions and forecasting in high dimensional

problems, [18]. Although tree based models such as Random Forest [9] and Gradient

Boosting with Regression or Classification Trees [19] were published in the early 2000’s, we

will first introduce the Classification and Regression Trees (CART) models [10] developed

in the 80’s.

3.1 CART

A regular regression tree is a non-parametric model that approximates a non-linear

function with local predictions using recursive partitioning of the space of the predictor

variables. A tree may be represented by a graph as in figure 3.1.

More formally, let 𝑥 = (𝑥1, . . . , 𝑥𝑚)
′ be a set of𝑚 explanatory variables for the response

variable 𝑦. The relationship between 𝑦 and 𝑥 is mapped by an unknown function 𝑓 such

that:

𝑦 ≈ 𝑓(𝑥) + 𝜀, (3.1)

where 𝜀 is an error term with zero mean, orthogonal to x and no assumptions regarding

its distribution. Following the notations in [11], a Regression Tree model with 𝑇 terminal

nodes (leaves) is a recursive partitioning model that approximates 𝑓 by a general nonlinear

function ℎ(., 𝜓), where 𝜓 is a vector of parameters. In regular Regression Tree, ℎ(., 𝜓) is

a piecewise function with 𝑇 subregions which cuts that are orthogonal to the axis of the
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predictor variables. Each subregion represents one terminal node, and they are denoted

by 𝑇𝑗(𝜃𝑗), 𝑗 = 1, . . . , 𝑇 . The parameter 𝜃𝑗 characterizes each subregion such that:

𝑓(𝑥) =
𝑇∑︁

𝑗=1

𝛽𝑗𝐼𝑗(𝑥; 𝜃𝑗), (3.2)

where 𝐼𝑗(𝑥; 𝜃𝑗) is an indicator function such that:

𝐼𝑗(𝑥; 𝜃𝑗) =

{︃
1 if 𝑥 ∈ 𝑇𝑗(𝜃𝑗),

0 otherwise.
(3.3)

In this case 𝜓 = (𝛽1, . . . , 𝛽𝑇 , 𝜃
′
1, . . . , 𝜃

′
𝑇 ), taking value 1 if an observation belongs to

that partitioning and 0 otherwise. By definition, the same observation may not be in two

subregions at the same time.

In figure 3.1, one can check an example for the database mtcars avaiable at R. In

this case, we are trying to use the explanatory variables ℎ𝑝 and 𝑤𝑡 to predict the output

variable𝑚𝑝𝑔. The variables represents the power, weight and miles per gallon performance

of different type of car engines. Indeed, one could easily agree that the higher the weight

and the higher the power of a motor, more fuel it is going to consumes.

wt >= 2.4

hp >= 178

20
100%

18
78%

14
31%

20
47%

29
22%

yes no

Figure 3.1: Example of Regression Tree

In order to adjust a CART model one needs to minimize the empirical risk:
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min
𝑇∑︁
𝑡=1

∑︁
𝑖∈𝑅𝑡

(𝑦𝑖 − 𝑦𝑅𝑡)
2, (3.4)

by choosing the best set of partitions, which is normally a unfeasible problem. Therefore,

greedy top-down algorithms are commonly used [18].

Even tough a tree with a large number of partitions is good for in sample predictions,

it may not generate good out of sample predictors. Hence, what is commonly called

”pruning the Tree” is used for regularize the size of the model.

More formally, (3.4) is modified to incorporate a penalization factor responsible for

control the depth of the tree (which is the number of terminal nodes). Thus, we have:

min
𝑇∑︁
𝑡=1

∑︁
𝑖∈𝑅𝑡

(𝑦𝑖 − 𝑦𝑅𝑡)
2 + 𝛼𝑇, (3.5)

where 𝑇 is the number of terminal nodes and 𝛼 is the tuning/penalty parameter that

controls the growth of the tree.

3.2 Smooth Tree

In order to introduce smoothness, we employed the Smooth Tree (ST), in the same

spirit of [11], changing the indicator function in (3.2) by a logistic function 𝐻 defined as:

𝐻(𝑥; 𝛾, 𝑐, 𝑠) =
1

1 + 𝑒−𝛾(𝑥𝑠−𝑐)
, (3.6)

where 𝛾 represents the smoothness of the transition, 𝑐 is the location of the transition and

𝑠 ∈ {1, ...,𝑚} represents the variable used to evaluate the logistic function. One can show

that if 𝛾 → ∞, then the logistic function converges to the indicator function as shown in

Figure 3.2.

It is important to note that differently from the Regression tree model, where the

domain is partitioned, in the ST model, all observations can belong to every possibles

terminal nodes with a certain ”probability”. The prediction for a observation 𝑥 under the

ST model is given by:

𝑓(𝑥, {𝜃}𝑇1 ) =
𝑇∑︁

𝑗=1

𝛽𝑗𝐻𝑗(𝑥; 𝜃𝑗), (3.7)
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Figure 3.2: Example of Logistic Functions

where 𝐻 is a product of logistic functions 𝐻 given by (3.6).

One can easily note that
∑︀𝑇

𝑗=1 𝐻𝑗(𝑥𝑖; 𝜃𝑗) = 1. Thus, instead of the notion of belonging

to a specific partition, the observations have a probabilistic or fuzzy interpretation of

belonging to a specific terminal node.

3.3 Random Forests

Although Tree Models have good in-sample performance when predicting non-linear

functions, it is remarkably unstable even with pruning procedures [8, 18]. Therefore,

models that combine different trees, taking advantage of their non-correlation, can be used

in a bagging procedure (boostrap aggregation) to increase out-of-sample performance [8].

Random Forests [9] perform bagging of trees that are forced to reduce their correlations

due to stochastic procedures introduced in the algorithm. To achieve this, each time that

a new node is grown, one needs to search among random selected explanatory variables

𝑝 < 𝑚. Normally, in each step, 𝑝 ∼
√
𝑚 variables are used, where 𝑚 is the total number

of explanatory variables or covariate.

The output of the model will be given by:
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𝑓𝐵(𝑥) =
1

𝐵

𝐵∑︁
𝑖=1

𝑓 𝑖(𝑥, {𝜃}𝑇𝑖
𝑗=1), (3.8)

where each 𝑓 is given by (3.2) and 𝐵 is the total number of boostrap samples.

3.4 Gradient Boosting

Boosting is another greedy method from the statistical learning literature to approx-

imate no-linear functions [19, 18] with trees growing sequentially. Therefore, differently

from Random Forests algorithm, in a Boosting model each tree is correlated with the

others trees.

Following [31], let ℱ = {𝐹 : R𝑝 → R} be a set of real-valued functions. We want to

find 𝐹 ⋆ such that:

𝐹 ⋆ = argmin
𝐹∈𝒮

ℒ(𝐹 ),

where ℒ is a function that is convex in 𝐹 .

For problems such as regression or classification, in order to estimate 𝐹 ⋆, one can

proceed as [19], defining the following form for ℒ(𝐹 ):

ℒ(𝐹 ) = E𝑦,𝑥[𝐿(𝑦, 𝐹 (𝑥))], (3.9)

where E𝑦,𝑥 is the expectation with respect to the joint distribution of (𝑦, 𝑥) and 𝐿 is a

specific loss function that is convex in the second term, such as, the square loss function.

Therefore, we seek to solve:

𝐹 ⋆ = argmin
𝐹∈ℱ

E𝑦,𝑥[𝐿(𝑦, 𝐹 (𝑥))]. (3.10)

In our case, since we have finite sample, we need to approximate (3.9) by the empirical

risk 𝑅𝐹 given by:

𝑅𝐹 (𝑦, 𝑥) =
1

𝑁

𝑁∑︁
𝑖=1

𝐿(𝐹 (𝑥𝑖), 𝑦𝑖), (3.11)

where the function 𝐹 is restricted to an additive expansion of the form:
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𝐹 (𝑥; {𝜌𝑚, 𝜃𝑚}𝑀𝑚=1) =
𝑀∑︁

𝑚=1

𝜌𝑚ℎ(𝑥; 𝜃𝑚). (3.12)

where ℎ is a base learner, for instance, a smooth-tree of the form (3.7), and 𝜃 is a finite

set of parameters that characterizes each base learner and each base learner can be seen

as a direction that minimizes (3.10) in functional space [27].

In order to find 𝐹 that minimize (3.11), we follow the greedy approach proposed by

[19]. The Gradient Boosting algorithm is based on the steepest-descent algorithm, where

at each iteration of the algorithm, we take a step in the opposite direction of the gradient

of the loss function 𝐿.

The algorithm works as following: assuming that we have computed the algorithm

until iteration 𝑚− 1, the gradient at the 𝑚-th iteration is calculated as

𝑢𝑚(𝑥) =
𝜕E𝑥,𝑦[𝐿(𝑦, 𝐹 (𝑥))]

𝜕𝐹 (𝑥)

⃒⃒⃒⃒
𝐹=𝐹𝑚−1

, (3.13)

under the appropriate regularity conditions [19]

𝑢𝑚(𝑥) =
𝜕𝑅𝐹 (𝑦, 𝑥)

𝜕𝐹 (𝑥)

⃒⃒⃒⃒
𝐹=𝐹𝑚−1

, (3.14)

with

𝐹𝑚−1(𝑥) =
𝑚−1∑︁
𝑖=0

𝜌𝑖ℎ𝑖(𝑥). (3.15)

Using a two step procedure, first we solve:

𝜃𝑚 = argmin
𝜃

𝑁∑︁
𝑖=1

(︀
− 𝑢𝑚(𝑥𝑖)− ℎ(𝑥𝑖; 𝜃)

)︀2
, (3.16)

then we calculate the step size or line search in the direction of −𝑢𝑚 by solving:

𝜌𝑚 = argmin
𝜌

𝑁∑︁
𝑖=1

𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝜌ℎ(𝑥𝑖; 𝜃𝑚)). (3.17)

Finally, the updated model and forecast at the 𝑚-th step are:
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𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜌𝑚ℎ(𝑥, 𝜃𝑚), (3.18)

and the predictions of the final model will be given by:

𝑦𝑖 = 𝐹𝑀(𝑥𝑖) = 𝑓0 +
𝑀∑︁

𝑚=1

𝜌𝑚ℎ(𝑥𝑖, 𝜃𝑚), (3.19)

where 𝑀 is the total number of base learners and 𝑓0 is the initial guess. Another feature

commonly used in Grandient Boosting is the addition of a shrinkage factor 𝜈 in (3.18).

In this case, the update equation and prediction are:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈𝜌𝑚ℎ(𝑥, 𝜃𝑚), (3.20)

𝑦𝑖 = 𝐹𝑀(𝑥𝑖) = 𝑓0 +
𝑀∑︁

𝑚=1

𝜈𝜌𝑚ℎ(𝑥𝑖, 𝜃𝑚). (3.21)

It is worth noticing that the parameter 𝜈 is not used in the estimation of (3.16) and

(3.17). However, theoretical and empirical results shown that it is necessary for both

convergence and consistency of the gradient boosting [31].
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CHAPTER 4

Local Vol and Smooth Trees

4.1 Problem Statement and Solution

The main purpose of this work is to estimate a local volatility surface capable of

replicate the observed market price for the vanilla options and replicate the implied

volatility surface. Moreover, properties such as smoothness of the estimated local volatility

function and robustness of the method used is desired. To estimate the Local Volatility

function we will use Gradient Boosting using Smooth Transition Trees as base learner.

The main difference between the proposed method and conventional Gradient Boosting

with a generic base learner, is that our methodology makes use of a compound function

when calculating the loss function. In a conventional set-up as in (3.10), one have a

loss-function calculated in 𝑦 and 𝐹 (𝑥).

However, in our case, the variable 𝑦 is the observed implied volatility, and the function

that we are estimating is not the prediction of the implied volatility, rather it is the local

volatility function. Therefore, we needed to make use of the functional 𝒢 that connects

the local volatility surface with the implied volatility. In other words, instead of solving

(3.10), we are solving:

𝐹 ⋆ = argmin
𝐹∈ℱ

E𝑦,𝑥[𝐿[𝑦,𝒢(𝐹, 𝑥)]]. (4.1)

First, let us define the loss function 𝐿 as the square-error loss of predicted and observed

variable, such that for a given observed vector 𝑦 ∈ R𝑁 and a predicted vector 𝑦 ∈ R𝑁 :
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𝐿(𝑦, 𝑦) =
1

2
||𝑦 − 𝑦||22 =

1

2

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2, (4.2)

where 𝑦 = 𝐹 (𝑥) and 𝑥 is a set of explanatory variables. Hence, the gradient of 𝐿 with

respect to the model 𝐹 is:

∇𝐿 = −(𝑦 − 𝐹 (𝑥)) = −(𝑦 − 𝑦). (4.3)

The methodology proceeds as follows: first, we observe market prices, strike and ma-

turity for a set of vanilla options. Second, we need to calculate what we call ”observed

implied volatility” of these vanilla options by inverting the Black and Scholes formula fol-

lowing (4.3) for example. We consider the observed strikes and maturities as explanatory

variables and the implied volatility 𝜎𝐿𝑉 as the dependent variable.

To start the algorithm first we need a guess for the Local Volatility function 𝜎0. Let us

call 𝑋 the set of all possible values for 𝐾 and 𝑇 , one needs only that 𝜎0 : 𝑋 → R+. One

suggestion is to start with a constant local volatility function, for example the historical

volatility of the underlying asset.

Let 𝒢 be a mapping of the local volatility functional space ℱ𝐿𝑉 to the option’s price

functional space ℱ𝑐. With the first guess 𝜎0, is possible to calculate

𝒢(𝜎0) = 𝐶0, (4.4)

where the operator 𝒢(𝜎0) represents solving the Local Volatility PDE (2.8) with 𝜎𝐿𝑉 = 𝜎0.

Now, with the estimated price function 𝐶0, one should calculate the implied volatility

function denoted by

𝜑0 = 𝐶−1
𝐵𝑆(𝐶0). (4.5)

The next step is to calculate the gradient (4.3) and estimate a base learner �̂�1 in the

opposite direction of the gradient.

𝑢1 = −(𝜎𝐼𝑉 − 𝜑0), (4.6)

−�̂�1 = 𝐹 (𝑥),
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where 𝑥𝑖,𝑗 = {𝐾𝑖, 𝜏𝑗} is the strikes and maturities of the finite number of observed options.

The exactly methodology used to estimate the 𝐹 function is described in Section 4.4. Now,

one needs to find the parameter 𝜌1 such that:

𝜌⋆ = min
𝜌∈R

||𝜎𝐼𝑉 − 𝜑1(𝜌)||2, (4.7)

where

𝜑1(𝜌) = 𝐶−1
𝐵𝑆(𝒢(𝜎0 + 𝜌�̂�1)). (4.8)

The algorithm continues making the updating of the estimated local volatility by

updating

𝜎1 = 𝜎0 + 𝜈𝜌1�̂�1, (4.9)

where 𝜈 is the shrinkage factor that controls for over-fitting and performs regularization

[19]. The parameter 𝜈 is also called the learning rate in the machine learning literature.

Finally, one can recalculate the mapping 𝐺(𝜎1) = 𝐶1 with the updated local volatility

function solving (2.20) and repeat the steps above, recalculating the price and implied

volatility.

The algorithm is organized as a pseudo code in 1:

Algorithm 1: BooST for Local Volatility

Data: Observations of 𝐾,𝑇,𝐶𝑚𝑘𝑡

Result: �̂�𝐿𝑉 = 𝜎𝑀 , �̂�𝐼𝑉 = 𝜑𝑀 and 𝐶𝑀

initialize 𝜎0;

calculate 𝜎𝐼𝑉 = 𝐶−1
𝐵𝑆(𝐶𝑚𝑘𝑡);

calculate 𝐶0 = 𝒢(𝜎0);
calculate 𝜑0 = 𝐶−1

𝐵𝑆(𝐶0);

for m=1,. . . ,M do

make 𝑢𝑚 = 𝜎𝐼𝑉 − 𝜑𝑚−1;

grow a ST in 𝑢𝑚, such that �̂�𝑚 =
∑︀𝑇

𝑡=1 𝛽𝑘𝐻(𝑥;𝜃𝑘) ;

make 𝜌𝑚 = arg min𝜌||𝜎𝐼𝑉 − 𝜑𝑚(𝜌)|| where 𝜑𝑚(𝜌) = 𝐶−1
𝐵𝑆(𝒢(𝜎𝑚−1 + 𝜌�̂�𝑚));

update 𝜎𝑚 = 𝜎𝑚−1 + 𝜈𝜌𝑚�̂�𝑚;

end

In the next sections one can find the specific details of the methods used to solve the

steps of Algorithm 1.
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4.2 Solving the Local Volatility PDE

It is known that parabolic PDE can be solved using numerical methods, for instance

finite difference methods (FDM) in a explicit way, using the forward difference, or in a

implicit way is the backward difference. See for example [3]. Although it has some critics

due to it’s stability [14], the Crank-Nicholson Scheme has been widely used for pricing

options [29], [32], [30].

However, in this work, every time that a PDE needed to be solved, we wrote the

stochastic counterpart given by (2.11) and used a Monte Carlo method. To do that, we

proceeded by simulating several paths for the asset, explicitly calculating the payoff of

the derivative of each simulation, and then calculating the discounted price.

4.3 Inverting the BS formula

Once we have the estimated/observed option prices, the inversion to discover the esti-

mated/observed implied volatility was done using the Brent algorithm. The optimization

problem is described in (4.10). The relative quadratic error was used to give more sta-

bility to the objective function. Moreover, to keep the search in the feasible space, it was

used the following parametrization: 𝜎𝐼𝑉 = exp(𝑝), where 𝑝 is the parameter given by the

algorithm.

𝜎𝐼𝑉 = argmin
𝑝∈R

(︂
𝐶(𝐾,𝑇 )− 𝐶𝐵𝑆(𝑆𝑡, 𝑟,𝐾, 𝑇, 𝑡, exp(𝑝))

𝐶(𝐾,𝑇 )

)︂2

. (4.10)

4.4 Fitting Smooth Trees

A crucial step in the algorithm is the growth of base learner at each step of the gradient

boosting algorithm. As mentioned before, in our approach each base learner is a smooth

tree in the form of product of logistic functions. In our algorithm, the number of terminal

nodes of each tree is defined a priori and set equal to five. The methodology follows the

same idea than conventional CART models, which is a greedy procedure.

First, we receive the sequence of observations {𝑦𝑖, 𝜏𝑖, 𝐾𝑖} where 𝑦 is the gradient 𝜑𝑚

at the 𝑚-step of the algorithm and 𝜏,𝐾 are the maturity and strike of the options. The

algorithm starts looking for the best variable 𝐾, 𝜏 , splitting point 𝑐 and coefficients 𝛽0, 𝛽1

such that:
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𝜃⋆1 = argmin
𝑐,𝑠,𝛽0,𝛽1∈R+

𝑁∑︁
𝑖=1

(𝑦𝑖 − [𝛽1𝐻(𝑥; 𝛾, 𝑠, 𝑐) + 𝛽0(1−𝐻(𝑥; 𝛾, 𝑠, 𝑐))])2, (4.11)

where 𝐻 is the logistic function (3.6) and 𝑁 is the number of observations. The parameter

𝛾 is randomized for each step of the algorithm and 𝑠 indicates the variable used as splitting

variable to compute the logistic function value.

To create the second node, we need to apply at each terminal node the procedure

described before. Since we have one split, we have to solve the optimization problem for

two terminal nodes. For the first one, the problem can be formulated as:

𝜃⋆2 = argmin
𝑐,𝑠,𝛽2,𝛽3∈R+

𝑁∑︁
𝑖=1

(𝑦𝑖 − [𝛽1𝐻1(𝑥; 𝜃
⋆
1) + 𝛽2(1−𝐻1(𝑥; 𝜃

⋆
1)(1−𝐻2(𝑥; 𝛾, 𝑠, 𝑐))) (4.12)

+ 𝛽3(1−𝐻1(𝑥; 𝜃
⋆
1))𝐻2(𝑥; 𝛾, 𝑠, 𝑐)])

2,

and for the second possibility we have:

𝜃⋆2 = argmin
𝑐,𝑠,𝛽2,𝛽3∈R+

𝑁∑︁
𝑖=1

(𝑦𝑖 − [𝛽2𝐻1(𝑥; 𝜃
⋆
1)(1−𝐻2(𝑥; 𝛾, 𝑠, 𝑐)) + 𝛽3𝐻1(𝑥; 𝜃

⋆
1)𝐻2(𝑥; 𝛾, 𝑠, 𝑐)

+ 𝛽0(1−𝐻1(𝑥; 𝜃
⋆
1))])

2, (4.13)

where 𝜃⋆1 are the parameters (𝑠, 𝛾, 𝛽0, 𝛽1) defined in the first split. Finally, the second

split will be in the terminal node with the lower objective value. The procedure continues

until we have a total of five terminal nodes (4 splits).

Since at each step we need to solve one optimization problem in each terminal node, in

order to estimate a smooth tree with 5 terminal nodes, we need to solve 10 optimization

problems in each step of the algorithm. At each optimization, the parameter 𝑠 can be

found solving the problem for both strike and maturity, and the parameters 𝑐, 𝛽𝑚, 𝛽𝑚+1

were estimated using BFGS.

As mentioned before, the methodology is quite similar to conventional CART models.

The main difference is that we still need to use all observations when estimating each

terminal node, whereas in CART models the number of observations used decreases in

each step.

23



4.5 Data Generating Process

In order to analyze the performance of the proposed model, first we generated synthetic

options prices to simulate observed prices. The first steep is to consider the SDE of a

local volatility model as in (2.11). We simulated an asset price such that 𝑆0 = 1, in a

market with risk-free rate 𝑟 = 0 and a local volatility surface based in [2]. The discretized

version of the SDE using the Euler-Maruyama scheme is presented in (4.14).

Δ ln𝑆𝑡𝑖 = (𝑟 − 𝜎(𝑆𝑡𝑖 , 𝑡𝑖)
2

2
)Δ𝑡+ 𝜎(𝑆𝑡𝑖 , 𝑡𝑖)

√
Δ𝑡𝜖𝑖,

ln𝑆𝑡𝑖+1
= ln𝑆𝑡𝑖 +Δ ln𝑆𝑡𝑖 ,

𝜖
𝑖.𝑖.𝑑∼ 𝑁(0, 1), (4.14)

where 𝑖 = 1, ...,𝑀 , 𝑀 = 252 is the maximum number of iterations in time, Δ𝑡 = 1
𝑀
, 𝜎 is

the local volatility function described in (4.15) with annualized volatility.

𝜎(𝑆, 𝑡) =

{︃
2
5
− 4

25
exp(−0.5𝜏) cos(0.8𝜋𝑦), if − 2

5
≤ 𝑦 ≤ −2

5
,

2/5 otherwise,
(4.15)

where 𝑦 is given by (4.16).

𝑦 = ln
𝑆𝑒−𝑟𝑡

𝑆0

. (4.16)

We simulated 𝑁 paths using the equations described previously. Taking the expecta-

tion of the payoff function using the simulated prices give us the option price at time 𝑀 .

Moreover, discounting the risk-free rate one can get the option prices at any time 𝑖.

Thus, since we are in a market with 𝑟 = 0, we have that:

𝐶𝑗 = EQ[(𝑆𝑇𝑗
−𝐾𝑗)

+] ≈ 1

𝑁

𝑁∑︁
𝑖=1

(𝑆𝑖
𝑇𝑗

−𝐾𝑗)
+, (4.17)

where 𝑁 is the total number of simulations, 𝑆𝑖
𝑇𝑗

is the 𝑖-th simulated price at time 𝑇𝑗, 𝐾𝑗

and 𝑇𝑗 is the strike and maturity of option 𝑗, respectively.
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CHAPTER 5

Numerical Results

5.1 Simulated data

In order to generate observed option prices, we fixed the strikes varying from 𝐾 =

0.8, 0.85, . . . , 1.2 and maturities varying from 𝜏 = 10
30
, 15
30
, . . . , 1, giving the total number of

45 observed options. We use 𝑁 = 106 and 𝑀 = 252. The number 𝑁 used in the creation

of the synthetic data is greater than the number of simulation used to test the method.

Figures 5.1 and 5.2 shows the simulated path for 100 realizations of the process. Moreover,

to estimate the local volatility surface, it was defined a set of derivatives (vanilla Calls).
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Figure 5.1: Example of simulated prices
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Figure 5.2: Example of simulated logprices
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In Figure 5.3 is possible to check the value of the local volatility function for each

derivative used in the numerical experiment. The complete local volatility surface is

displayed at Figure 5.4. In the Figure, the 𝑧 axis is the volatility, the 𝑦 axis is the strike

and 𝑥 is the maturity. It is possible to see that the surface is not symmetric with respect to

the ATM option. In addition, the surface increases with maturity and when the derivative

is in the money or out of the money.

tau1 tau2 tau3 tau4 tau5

0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2

0.27

0.28

0.29

0.30

0.31

0.32

Strike

Lo
ca

l_
V

ol
at

ili
ty

Figure 5.3: Local Volatility Surface

Figure 5.4: Local Volatility surface

At Figure 5.5 we have the calculated prices for each derivative that will be used by

the proposed model. The full pricing surface is exposed shown in Figure (5.6). Naturally,

when maturity gets shorter, the price curve gets closer to the payoff function of the

derivative.
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Figure 5.5: Calculated prices of the derivatives used

Figure 5.6: Option prices surface

Applyying the methodology explained in Subsection 4.10, ie. inverting the Black and

Scholes formula, it was possible to construct the Implied Volatility surface. At 5.7 one

can observe the implied volatility for each option observed. The full plot of the Implied

Volatility surface (in a finer grid) is exposed at 5.8.
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Figure 5.7: Implied volatility of each derivative used

Figure 5.8: Implied volatility surface

Using the implied volatility of each observed option it was possible to apply Algorithm

1. At each step of Algorithm 1, we can compute the RMSE up to that point. Therefore,

each time a tree is grown, we can observe the in sample RMSE and see how the graphic

is decaying. In Figure 5.9 we can check the rmse of predicted implied volatility as the

number of tree grows.

RMSE =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

(𝜎𝐼𝑉,𝑖 − �̂�𝐼𝑉,𝑖)2 (5.1)
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Figure 5.9: Root mean square as function of the number of trees

It is evident that the algorithm converges after a relative small number of trees. There

is no advantage in terms of RMSE of a model with more than 20 trees. In Figure 5.10

one can see a comparison between the local volatility estimated using a different number

of trees and the true local volatility of the options (black dots).
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Figure 5.10: Evolution of the estimated Local Volatility

In Figure 5.10 one can check the implied volatility generated by different number of

trees and compare with the true surface (black dots).
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Figure 5.11: Evolution of the estimated Implied Volatility

It is common in the statistical learning literature to use an empirical technique to

choose the appropriate size of the model [18]. One approach, is to select the number of

trees that minimizes the RMSE, which is 16 trees in this example. In Figure 5.12 we can

see the comparison between the true local volatility for each observed option, which is

unknown for the model, and the estimated local volatility for each option by the model.

Figure 5.13 compares the full slocal volatility surface of the estimated model and the true

function (2.21).
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Figure 5.12: Estimated Local Volatility for the model with the least rmse
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Figure 5.13: Comparison of the Local Volatility surfaces

Using the estimated local volatility surface, which is in fact a continuous function

rather than estimated values in a specific grid such as in numerical methods for solving

PDE, we computed the option prices using Monte Carlo simulations. For the model with

sixteen trees, the maximum error is less than 0.1%. In Figure 5.15 we have a comparison

between the prices generated using (2.21) and the prices generated with the estimated

model. We can see that even for strikes and maturities not used in the estimation, the

approximation keeps the same order of error.
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Figure 5.14: Estimated Option Value for the model with the least rmse
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Figure 5.15: Comparison of the Option prices surfaces

Using the Black Scholes formula and the estimated prices we compared the Implied

Volatility surface generated by the model and by the true function. In Figure (5.16) we

have a comparison for the observed options and Figure 5.17 shows the comparison of the

full surface.
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Figure 5.16: Estimated Implied Volatility for the model with the least rmse
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Figure 5.17: Comparison of the Implied Volatility surfaces

In Tables 5.1, 5.2 and 5.3 we can check error measurements for local volatility, op-

tion prices and implied volatility respectively. It worth to notice that the prices where

replicated almost exactly. Furthermore, the highest absolute error of the local volatility

and implied volatility are both less than 1%. We attributed the bigger difference in the

implied volatility surface due to instability in the inversion method used for the Black

Scholes formula.

Table 5.1: Local Volatility

Measures values

MSE 1.61E-05

RMSE 4.01E-03

MAE 3.19E-03

MAPE 1.08E-02

||.||∞ 9.35E-03

Table 5.2: Option Prices

Measures values

MSE 1.51E-07

RMSE 3.88E-04

MAE 2.98E-04

MAPE 3.91E-03

||.||∞ 9.32E-04

Table 5.3: Implied Volatility

Measures values

MSE 1.85E-06

RMSE 1.36E-03

MAE 1.09E-03

MAPE 3.78E-03

||.||∞ 3.50E-03

5.2 Exotic Options

5.2.1 Asian Call

In order to test the robustness of the model for pricing exotic options, first we used

the model for pricing Asian Call options. Recall that the price of a Asian Call exotic

option is given by the following payoff function:
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𝐶(𝐾,𝑇 ) = (𝑆⋆
𝑇 −𝐾)+, (5.2)

where 𝑆⋆
𝑇 is the price given by:

𝑆⋆
𝑇 =

1

𝑇

∫︁ 𝑇

0

𝑆𝑢𝑑𝑢. (5.3)

The price 𝑆⋆
𝑇 can be seen as a medium price of the asset 𝑆 in a continuous perspective.

Therefore, we need to calculate a discrete approximation given by:

𝑆⋆
𝑇 =

1

𝑇

𝐼∑︁
𝑖=1

(𝑆𝑖Δ𝑡) =
1

𝐼

𝐼∑︁
𝑖=1

𝑆𝑖. (5.4)

where Δ𝑡 is the discrete time interval, 𝐼 is the total number of partitions and 𝑆𝑖 is the

price of the underlying asset at time 𝑖.

To calculate the synthetic prices, we generated 106 prices paths using the local volatil-

ity function given by (4.15). It was calculated the option prices for two different type of

maturities 𝜏 = {0.5, 1} and strikes varying from 0.8 to 1.2 by 0.05.

The simulated prices for the exotic option using the ”true” local volatility function

was calculated with the following expression:

𝐶𝑗 = EQ[(𝑆⋆
𝑇𝑗

−𝐾𝑗)
+] =

1

𝑁

𝑁∑︁
𝑖=1

(𝑆⋆𝑖
𝑇𝑗

−𝐾𝑗)
+, (5.5)

where 𝑁 is the total number of simulations, 𝑆⋆𝑖
𝑇𝑗

is the 𝑖-th simulated price at time 𝑇𝑗

calculated using (5.4), 𝑆𝑖
𝑇𝑗

is the 𝑖-th simulated price at time 𝑇𝑗, 𝐾𝑗 and 𝑇𝑗 is the strike

and maturity of option 𝑗, respectively.

To estimate the prices of the Asian Call options with the proposed model, we used a

Monte Carlo simulation with the discrete SDE given by (4.14), 500.000 paths, starting

price 𝑆0 = 1 and a local volatility function given by the estimated model with 16 trees.

The estimated payoff was calculated using (5.9)..

In Figure 5.18 it is possible to check the fitted values for the adjusted model. Moreover,

some error measurements are show in Table 5.4.
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Figure 5.18: Asian Calls fitted values

Table 5.4: Error for Asian Call prices

Measures values
MSE 1.71E-07
RMSE 4.14E-04
MAE 3.60E-04
MAPE 8.91E-03
MAX 6.64E-04

5.2.2 Float Strike Call

Another type of exotic option tested in the work is the Float Strike Call. For this

option, the payoff function is given by:

𝐶(𝑇 ) = (𝑆𝑇 − 𝑆⋆
𝑇 )

+, (5.6)

where 𝑆⋆
𝑇 is the price given by:

𝑆⋆
𝑇 =

1

𝑇

∫︁ 𝑇

0

𝑆𝑢𝑑𝑢. (5.7)

In this case, the option does not have a strike parameter, since it is given by (5.7),

which is random and depends of the path of the price. The bigger the maturity, the bigger

the uncertainty of 𝑆⋆
𝑇 and the bigger the price of the option.

Again, we constructed the ”true” simulated prices using 106 paths and local volatility

function given by (4.15). For each maturity, the simulated option price using the ”true”
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local volatility function was calculated using:

𝐶𝑗 = EQ[(𝑆𝑇𝑗
− 𝑆⋆

𝑇𝑗
)+] =

1

𝑁

𝑁∑︁
𝑖=1

(𝑆𝑖
𝑇𝑗

− 𝑆⋆𝑖
𝑇𝑗
)+, (5.8)

where 𝑁 is the total number of simulations, 𝑆𝑖
𝑇𝑗

is the 𝑖-th simulated price at time 𝑇𝑗, 𝑇𝑗

is the maturity of option 𝑗 and 𝑆⋆𝑖
𝑇𝑗

is the 𝑖-th price calculated using (5.4).

To estimate the price given by our model, we used 500.000 simulated with (4.14) and

local volatility function given by the model with 16 trees. Then, to estimated prices for

the Float Strike options we used (5.8). In Figure 5.19 is exposed the comparison of the

fitted values with the synthetic observed prices.
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Figure 5.19: Float Strike Call fitted values

In Table 5.5 one can check the error metrics of the fitted values.

Table 5.5: Error for Float Strike Call prices

Measures values
MSE 7.32E-08
RMSE 2.70E-04
MAE 2.33E-04
MAPE 2.31E-03
MAX 4.00E-04

5.2.3 Barrier

Barrier options commonly have in addition to strike and maturity the barrier price,

that works as a another boundary condition in addition to the payoff function at maturity.
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The most common types are quickly described below:

∙ Up and Out - Asset prices starts below the barrier price. If the price hits the barrier

the payoff is zero;

∙ Up and In - Asset prices starts below the barrier price. If the price does not hit the

barrier the payoff is zero;

∙ Down and Out - Asset prices starts above the barrier price. If the price hits the

barrier the payoff is zero;

∙ Up and In - Asset prices starts above the barrier price. If the price does not hit the

barrier the payoff is zero.

Therefore, Barrier options is another path dependent derivative. In this example we

adjusted the price of a call option with strike 𝐾, maturity 𝑇 and Up and Out barrier

price 𝐵. Intuitively, one can expect that the lower the price of the barrier, the lower the

price of the option, since the higher the probability of the asset price 𝑆 to hit the barrier

price 𝐵. The payoff will be given by:

𝐶𝑗 = EQ[(𝑆⋆
𝑇𝑗

−𝐾𝑗)
+
1(𝑆𝑡 < 𝐵)] =

1

𝑁

𝑁∑︁
𝑖=1

(𝑆⋆𝑖
𝑇𝑗

−𝐾𝑗)
+
1(𝑆𝑖

𝑡 < 𝐵), (5.9)

where 1(𝑆𝑡 < 𝐵) is the indicator function equals to one if 𝑆𝑡 < 𝐵,∀ 0 ≤ 𝑡 ≤ 𝑇 , and

zero otherwise.

We tested the adjusted local volatility for two types of maturities 𝜏 = {.5, 1}, different
types of barrier prices and different strikes. In Figure 5.20 we can see the fitted values

for different strikes and barrier prices for 𝜏 = .5. In Figure 5.21 we have the prices for

different strikes and barrier prices for 𝜏 = 1.
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Figure 5.20: Up and Out Barrier with 0.5 maturity

1.2 1.3 1.4

0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10

0.00

0.02

0.04

0.06

Strike

P
ric

es

Model

Up and Out

Local Vol

Figure 5.21: Up and Out Barrier with 1 maturity

The error measures are exposed in Table 5.6 and 5.7 for 𝜏 = .5 and 𝜏 = 1 respectively.

Table 5.6: Up and Out Maturity = .5

Measures values

MSE 5.98E-08

RMSE 2.45E-04

MAE 2.01E-04

MAPE 5.68E-03

MAX 4.72E-04

Table 5.7: Up and Out Maturity = 1

Measures values

MSE 3.50E-07

RMSE 5.91E-04

MAE 4.45E-04

MAPE 1.68E-02

MAX 1.28E-03
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CHAPTER 6

Conclusion

The proposed method, which uses gradient boosting and smooth transition trees,

was capable of generating correct option prices with almost zero errors. The true local

volatility surface was estimated and the implied volatility surface generated by the method

had a good prediction performance even for non observed strikes and maturities, with

mean absolute error less than 1%.

Furthermore, the estimated local volatility surface could be used to pricing exotic

options. Another advantage of the technique is the possibility to compute the convexity

by explicit calculating the derivative of the local volatility surface with respect to the

strike.

The main drawback of the method is the time taken to solve the PDE with the

local volatility function using Monte Carlo. Moreover, sometimes we could observe some

instability inverting the options prices in order to get the implied volatility values, specially

for short maturities and very OTM options.

It might be useful to solve directly the PDE that connects the local volatility surface

with the implied volatility surface as described in (2.26). Although this last approach

involves solving a nonlinear PDE, it avoids the necessity of inverting the Black Scholes’s

Formula and the use of Monte Carlo.
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Appendices
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.1 Fokker-Planck’s Equation

Let define a probabilistic space (Ω,ℱ ,P), where ℱ𝑡 is a filtration for the process 𝑋𝑡

and let 𝑋𝑡 be a stochastic process defined by the following SDE:

𝑑𝑋𝑡 = 𝑓(𝑋𝑡, 𝑡)𝑑𝑡+ 𝜎(𝑋𝑡, 𝑡)𝑑𝑊𝑡, (1)

where 𝑊𝑡 is a standard brownian motion under P. Them, using Ito’s formula, we have

that for any suitable function 𝑣(𝑋𝑡, 𝑡) that:

𝑣(𝑋𝑇 , 𝑇 )− 𝑣(𝑋𝑡, 𝑡) =

∫︁ 𝑇

𝑡

(︂
𝜕𝑣

𝜕𝑠
(𝑋𝑠, 𝑠) + 𝑓(𝑋𝑠, 𝑠)

𝜕𝑣

𝜕𝑋
(𝑋𝑠, 𝑠) + 𝜎2(𝑋𝑠, 𝑠)

1

2

𝜕2𝑣

𝜕𝑋2
(𝑋𝑠, 𝑠)

)︂
𝑑𝑠

(2)

+

∫︁ 𝑇

𝑡

𝜎(𝑋𝑠, 𝑠)
𝜕𝑣

𝜕𝑋
(𝑋𝑠, 𝑠)𝑑𝑊𝑠.

Taking the expectation under P and using 𝑣 such that 𝑣(𝑥, 𝑡) = 0 and 𝑣(𝑥, 𝑠) → 0 as

𝑠→ 𝑇 uniformly in 𝑥 we have that:

0 = E
[︂∫︁ 𝑇

𝑡

(︂
𝜕𝑣

𝜕𝑠
(𝑋𝑠, 𝑠) + 𝑓(𝑋𝑠, 𝑠)

𝜕𝑣

𝜕𝑋
(𝑋𝑠, 𝑠) +

1

2
𝜎2(𝑋𝑠, 𝑠)

𝜕2𝑣

𝜕𝑋2
(𝑋𝑠, 𝑠)

)︂
𝑑𝑠|ℱ𝑡

]︂
. (3)

Therefore, writing in terms of transition density 𝜌 we have that:

0 =

∫︁ 𝑇

𝑡

∫︁ ∞

−∞

(︂
𝜕𝑣

𝜕𝑠
(𝑥, 𝑠) + 𝑓(𝑥, 𝑠)

𝜕𝑣

𝜕𝑥
(𝑥, 𝑠) +

1

2
𝜎2(𝑥, 𝑠)

𝜕2𝑣

𝜕𝑥2
(𝑥, 𝑠)

)︂
𝜌𝑑𝑥𝑑𝑠. (4)

Integrating by parts and choosing a suitable 𝑣 function with compact support, we have

that:

∫︁ 𝑇

𝑡

∫︁ ∞

−∞

𝜕𝑣

𝜕𝑠
(𝑥, 𝑠)𝜌𝑑𝑥𝑑𝑠 =

∫︁ ∞

−∞

(︃
𝑣𝜌

⃒⃒⃒⃒𝑇
𝑡

−
∫︁ 𝑇

𝑡

𝑣(𝑥, 𝑠)
𝜕𝜌

𝜕𝑠
𝑑𝑠

)︃
𝑑𝑥 (5)

=

∫︁ ∞

−∞

∫︁ 𝑇

𝑡

−𝑣(𝑥, 𝑠)𝜕𝜌
𝜕𝑠
𝑑𝑠𝑑𝑥,
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∫︁ 𝑇

𝑡

∫︁ ∞

−∞
𝑓(𝑥, 𝑠)

𝜕𝑣

𝜕𝑥
(𝑥, 𝑠)𝜌𝑑𝑥𝑑𝑠 =

∫︁ 𝑇

𝑡

(︂
𝑓(𝑥, 𝑠)𝑣𝜌

⃒⃒⃒⃒∞
∞
−
∫︁ ∞

−∞
𝑣(𝑥, 𝑠)

𝜕𝑓(𝑥, 𝑠)𝜌

𝜕𝑥
𝑑𝑥

)︂
𝑑𝑠 (6)

=

∫︁ 𝑇

𝑡

∫︁ ∞

−∞
−𝑣(𝑥, 𝑠)𝜕(𝑓𝜌)

𝜕𝑥
𝑑𝑥𝑑𝑠,

∫︁ ∞

−∞

∫︁ 𝑇

𝑡

1

2
𝜎2(𝑥, 𝑠)

𝜕2𝑣

𝜕𝑥2
(𝑥, 𝑠)𝜌𝑑𝑥𝑑𝑠 =

∫︁ 𝑇

𝑡

(︂
1

2
𝜎2(𝑥, 𝑠)

𝜕𝑣

𝜕𝑥
𝜌

⃒⃒⃒⃒∞
−∞

−
∫︁ ∞

∞

1

2

𝜕𝑣

𝜕𝑥
(𝑥, 𝑠)

𝜕(𝜎2𝜌)

𝜕𝑥
𝑑𝑥

)︂
𝑑𝑠

=

∫︁ 𝑇

𝑡

−
(︂
1

2
𝑣(𝑥, 𝑠)

𝜕(𝜎2𝜌)

𝜕𝑥

⃒⃒⃒⃒∞
∞
−
∫︁ ∞

−∞

1

2
𝑣(𝑥, 𝑠)

𝜕2(𝜎2𝜌)

𝜕𝑥2

)︂
𝑑𝑠

=

∫︁ 𝑇

𝑡

∫︁ ∞

−∞

1

2
𝑣(𝑥, 𝑠)

𝜕2(𝜎2𝜌)

𝜕𝑥2
𝑑𝑥𝑑𝑠. (7)

Substituting (5), (6) and (7) in (4) we have:

∫︁ 𝑇

𝑡

∫︁ ∞

−∞
−𝑣(𝑥, 𝑠)𝜕𝜌

𝜕𝑠
− 𝑣(𝑥, 𝑠)

𝜕(𝑓𝜌)

𝜕𝑥
+

1

2
𝑣(𝑥, 𝑠)

𝜕2(𝜎2𝜌)

𝜕𝑥2
𝑑𝑥𝑑𝑠 = 0, (8)

for any suitable 𝑣. Therefore:

𝜕𝜌

𝜕𝑠
= −𝜕(𝑓𝜌)

𝜕𝑥
+

1

2

𝜕2(𝜎2𝜌)

𝜕𝑥2
, (9)

which is the Fokker-Planck’s equation.
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