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Abstract. The theory of holomorphic foliations has its origins in the study of differential equations on

the complex plane, and has turned into a powerful tool in algebraic geometry. One of the fundamental
problems in the theory is to find conditions that guarantee that the leaves of a holomorphic foliation are

algebraic. These correspond to algebraic solutions of differential equations. In this paper we discuss algebraic

integrability criteria for holomorphic foliations in terms of positivity of its tangent sheaf, and survey the
theory of Fano foliations, developed in a series of papers in collaboration with Stéphane Druel. We end by

classifying all possible leaves of del Pezzo foliations.

1. Introduction

The theory of holomorphic foliations has its origins in the study of differential equations on the complex
plane C2. A central problem in this theory consists in finding conditions that guarantee the existence
of algebraic solutions ([Dar78], [Pai94], [Poi91]). Consider for instance the following algebraic differential
equations:

(1.1)
dy

dx
=

y

x
,

(1.2)
dy

dx
= y .

While the solutions to equation (1.1) are algebraic, namely y = cx, the solutions to equation (1.2) are
mostly transcendental, namely y = cex. In both cases, the algebraic differential equation defines a saturated
subsheaf F ⊂ TC2 . By saturated we mean that TC2/F is torsion free. We call this subsheaf a foliation of
the plane. Curves that are everywhere tangent to F correspond to solutions of the equation, and are called
leaves of the foliation. We remark that classically the word foliation refers to the partition of the plane into
leaves. If we extend to P2 the foliations F ⊂ TC2 defined by the equations above, we obtain the saturated
subsheaves OP2(1) ⊂ TP2 in (1.1) and OP2 ⊂ TP2 in (1.2). As we shall see, the ampleness of OP2(1) forces the
solutions of equation (1.1) to be algebraic. This is the simplest manifestation of a series of results relating
properties of positivity and algebraicity of holomorphic foliations.

In general, a foliation on a normal variety X is a saturated nonzero coherent subsheaf F ( TX that
satisfies the Frobenius integrability condition: F is closed under the Lie bracket. The Frobenius condition
guarantees that a dense open subset of X is covered by analytic submanifolds whose tangent bundles are
restrictions of F . When these submanifolds are connected and maximal, we say that they are leaves of
F . We refer to Section 2 for definitions and generalities about holomorphic foliations on complex varieties,
including notions of singularity for foliations.

In the last decades, foliations have proved to be a powerful tool in algebraic geometry. For instance, they
play an important role in the proof of Green-Griffiths conjecture for surfaces of general type with positive
Segre class ([Bog77], [McQ98]). In many applications, a key problem is to find conditions that guarantee
that a foliation has algebraic leaves, in which case we say that it is algebraically integrable, and to describe
the structure of these algebraic subvarieties. We briefly mention two important instances of this.

1.1 (Miyaoka’s criterion of uniruledness). In [Miy87], Miyaoka proved a remarkable criterion of uniruledness
in terms of numerical properties of the tangent sheaf. Namely, ifX is a non-uniruled normal projective variety,
then its cotangent sheaf Ω1

X is generically semi-positive. This last condition means that for a sufficiently
general complete intersection curve C on X, the restriction (Ω1

X)|C is semi-positive. This criterion in one of
the main ingredients in the proof of abundance for threefolds (see [SB92]). Algebraic integrability of foliations
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plays a key role in Miyaoka’s proof, which involves reduction to positive characteristic. Namely, if Ω1
X is not

generically semi-positive, then, using Harder-Narasimhan filtrations, one can construct a special foliation on
X, whose restriction to a sufficiently general complete intersection curve C is ample. This foliation is shown
to be algebraically integrable and covered by rational curves.

Miyaoka’s algebraicity criterion has been extensively generalized. We mention Bost’s arithmetic geometric
counterpart ([Bos01]), Bogomolov and McQuillan’s criterion, which gives rationally connectedness of general
leaves (see [BM16] and also [KSCT07]), and most recently the extension by Campana and Paŭn, which
considers positivity of the tangent sheaf with respect to more general movable curve classes ([CP15]). These
criteria will be further discussed in Section 2.

1.2 (The structure of singular varieties with numerically trivial canonical class). The Beauville-Bogomolov
decomposition theorem asserts that, after étale cover, any compact Kähler manifold with numerically trivial
canonical class is a product of a torus, Calabi-Yau and irreducible symplectic manifolds ([Bea83]). This
structure result has been recently generalized to the singular setting in [Dru17] and [HP17]. Algebraic
integrability of foliations plays a key role in the proof of this structure theorem. Namely, [GKP16b] gives
a decomposition of the tangent sheaf of a singular complex projective variety X with trivial canonical class
into a direct sum of foliations with strong stability properties. Druel provides in [Dru17] an algebraic
integrability criterion to show that this decomposition of the tangent sheaf is induced by a product structure
on an quasi-étale cover of X.

A common idea behind the algebraic integrability results for foliations discussed above is that positivity
properties of foliations tend to increase algebraicity properties of the leaves. In a series of papers in collabo-
ration with Stéphane Druel ([AD13], [AD14], [AD16], [AD17b] and [AD17a]), we have investigated foliations
with positive anticanonical class, which we call Fano foliations. For Fano foliations, a rough measure of
positivity is the index. The index ιF of a Fano foliation F on a complex projective manifold X is the largest
integer dividing −KF in Pic(X). One special property of Fano foliations is that their leaves are always
covered by rational curves, even when these leaves are not algebraic. Our works on Fano foliations with high
index indicated that the higher is the index, the closer it is to being algebraically integrable. First of all, we
have the following general bound on the index, in analogy with Kobayachi-Ochiai’s theorem on the index of
Fano manifolds:

Theorem 1.3 ([ADK08, Theorem 1.1]). Let F ( TX be a Fano foliation of rank r on a complex projective
manifold X. Then ιF 6 r, and equality holds only if X ∼= Pn.

Foliations on Pn attaining the bound of Theorem 1.3 are induced by linear projections Pn 99K Pn−r
([DC05, Théorème 3.8]). These results have been generalized to the singular setting in [AD14] and [Hör14].

Next we consider Fano foliations F ( TX of rank r on complex projective manifolds X with index
ιF = r − 1. In analogy with the theory of Fano manifolds, we call them del Pezzo foliations. In contrast
with the case of maximal index ιF = r, there are examples of del Pezzo foliations on Pn with non-algebraic
leaves. In fact, del Pezzo foliations on Pn were classified in [LPT13]. They are the following.

• A foliation induced by a dominant rational map Pn 99K P(1n−r, 2), defined by n− r linear forms and
one quadric form, where P(1n−r, 2) denotes the weighted projective space with weights 1, . . . , 1︸ ︷︷ ︸

r times

, 2.

• The linear pullback of a foliation C on Pn−r+1 induced by a global vector field.

In the second case, if the vector field is general, then the leaves of C are transcendental, as equation (1.2)
above illustrates. Hence, the leaves of the del Pezzo foliation are not algebraic either. The following algebraic
integrability result asserts that these are the only transcendental del Pezzo foliations on complex projective
manifolds.

Theorem 1.4 ([AD13, Theorem 1.1]). Let F be a del Pezzo foliation on a complex projective manifold
X 6∼= Pn. Then F is algebraically integrable, and its general leaves are rationally connected.

In the classical setting, del Pezzo manifolds were classified by Fujita in the 1980’s. Most of them are
complete intersections on weighted projective spaces. One may also expect a classification of del Pezzo
foliations. For example, the only del Pezzo foliations on smooth quadric hypersurfaces are those induced by
the restriction of linear projections from the ambient projective space ([AD16, Proposition 3.18]). Moreover,
quadrics are the only hypersurfaces that admit del Pezzo foliations ([AD13, Corollary 4.8.]). We also know
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examples of del Pezzo foliations on certain Grassmannians and projective space bundles over projective
spaces ([AD13, Sections 4 and 9]). In Section 3 we discuss the classification of del Pezzo foliations, under
restrictions on the rank or on the singularities of the foliation. A complete classification of del Pezzo foliations
seems to be a difficult problem. A step in this direction is a classification of all possible leaves of del Pezzo
foliations, which is given in Proposition 3.3.

We remark that codimension 1 Fano foliations of large index on complex projective spaces have been
classically studied. The degree d of a foliation F of rank r on Pn is defined as the degree of the locus of
tangency of F with a general linear subspace Pn−r ⊂ Pn. It satisfies d = r− ιF . So Fano foliations of large
index on Pn are precisely those with small degree. Codimension 1 foliations on Pn of degree 0 and 1 were
classified in [Jou79]. Those of degree 2 were classified in [CLN96].

Theorem 1.4 is in fact a special case of a more general result that gives a lower bound for the algebraic
rank of a Fano foliation in terms of the index. The algebraic rank raF of a foliation F on an algebraic variety
X is the maximum dimension of an algebraic subvariety through a general point of X that is everywhere
tangent to F . A foliation is said to be purely transcendental if its algebraic rank is 0.

Theorem 1.5 ([AD17a, Corollary 1.6.]). Let F be a Fano foliation of index ιF on a complex projective
manifold X. Then raF > ιF , and equality holds if and only if X ∼= Pn and F is the pullback under a linear

projection of a purely transcendental foliation on Pn−raF with trivial canonical class.

Fano foliations may also play a distinguished role in the emerging theory of birational geometry of fo-
liations. Higher dimensional algebraic geometry has had a strong influence in the study of holomorphic
foliations. Techniques from the minimal model program have been successfully applied to the study of global
properties of holomorphic foliations, leading to the birational classification of foliations by curves on surfaces
([Bru99], [Men00], [Bru04]). In higher dimensions, very little is known and difficulties abound: Kawamata-
Viehweg vanishing, abundance and resolution of singularities all fail in general for foliations. Positive results,
mostly in dimension 3, include a reduction of singularities for foliations on threefolds ([Can04], [MP13]) and
a cone theorem for rank 2 foliations on threefolds ([Spi17]). We also mention that there are structure results
for foliations with numerically trivial canonical class ([Tou08], [LPT13], [LPT11], [PT13]).

In the context of birational geometry of foliations, it is important to develop the theory of foliations on
mildly singular varieties. In Section 2 we survey some aspects of the theory of foliations in this more general
setup. In Section 3 discuss the classification of del Pezzo foliations on projective manifolds.

Notation and conventions. We always work over the field C of complex numbers. Varieties are always
assumed to be irreducible. We denote by Xns the nonsingular locus of a variety X. Given a sheaf F of
OX -modules of generic rank r on a variety X, we denote by det(F ) the sheaf (∧rF )∗∗. If G is another
sheaf of OX -modules on X, then we denote by F [⊗]G the sheaf (F ⊗ G )∗∗. When X is a normal variety,
we denote by TX the tangent sheaf (Ω1

X)∗.

Acknowledgements. I am deeply grateful to Stéphane Druel for the collaboration throughout the years
and for his comments on earlier versions of this paper. I also thank Jorge Vitório Pereira for inspiring
conversations about holomorphic foliations.

2. Foliations

In this section we define foliations on algebraic varieties, their canonical class and notions of singularities.
We then discuss criteria of algebraic integrability and special properties of Fano foliations.

Definition 2.1. A foliation on a normal variety X is a saturated nonzero coherent subsheaf F ( TX that
is closed under the Lie bracket.

The rank r of F is the generic rank of F .
The canonical class KF of F is any Weil divisor on X such that OX(−KF ) ' det(F ).
We say that F is Gorenstein if KF is Cartier.
We say that F is Q-Gorenstein if KF is Q-Cartier.

Definition 2.2. Let F be a Q-Gorenstein foliation of rank r on a normal variety X, and consider the
induced map

η : ΩrX = ∧r(Ω1
X)→ ∧r(T ∗X)→ ∧r(F ∗)→ det(F ∗) ' OX(KF ).
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This is called a Pfaff field of rank r on X ([AD14, Definition 3.4]). The singular locus S of F is the closed
subscheme of X whose ideal sheaf IS is the image of the associated map ΩrX [⊗]OX(−KF )→ OX . On the
nonsingular locus Xns of X, Sred consists of the points at which F|Xns

is not a subbundle of TXns . When
S = ∅, we say that F is a regular foliation.

An analytic subvariety Y ⊂ X is invariant under F if it is not contained in the singular locus of F , and
the restriction η|Yns

: ΩrX |Yns
→ OX(KF )|Yns

factors through the natural map ΩrX |Yns
→ ΩrY |Yns

.

A maximal invariant subvariety of dimension r is called a leaf of F .

There are several notions of singularities for foliations. The notion of reduced foliations has been used in the
birational classification of foliations by curves on surfaces (see [Bru04]). More recently, notions of singularities
coming from the minimal model program have shown very useful when studying birational geometry of
foliations. We introduce the notions of canonical and log canonical foliations following McQuillan’s [McQ08,
Definition I.1.2]. Terminal and log terminal singularities can be defined analogously.

Definition 2.3. Let F be a Q-Gorenstein foliation on a normal variety X. Let ϕ : X̃ → X be a projective
birational morphism. There is a unique foliation F̃ on X̃ that agrees with ϕ∗F on the open subset of X̃
where ϕ is an isomorphism, and uniquely defined rational numbers a(E,X,F )’s such that

KF̃ = ϕ∗KF +
∑
E

a(E,X,F )E,

where E runs through all exceptional prime divisors for ϕ. As usual, the discrepancies a(E,X,∆)’s do
not depend on the birational morphism ϕ, but only on the valuations associated to the E’s. We say
that F is canonical if a(E,X,F ) > 0 for all E exceptional over X. We say that F is log canonical if
a(E,X,F ) > −ε(E) for all E exceptional over X, where

ε(E) =

{
0 if E is invariant by the foliation,
1 if E is not invariant by the foliation.

If a Gorenstein foliation is regular, then it is canonical ([AD13, Lemma 3.10]).

Definition 2.4. Let X be a normal projective variety, and F a Q-Gorenstein foliation on X. We say that
F is a Q-Fano foliation if −KF is ample. In this case, the index of F is the largest positive rational number
ιF such that −KF ∼Q ιFH for a Cartier divisor H on X.

If F is a Q-Fano foliation of rank r on a normal projective variety X, then, by [Hör14, Corollary 1.2],
ιF 6 r. Moreover, equality holds if and only if X is a generalized normal cone over a normal projective
variety Z, and F is induced by the natural rational map X 99K Z (see also [ADK08, Theorem 1.1], and
[AD14, Theorem 4.11]). In Section 3 below we discuss Fano foliations of rank r and index ιF = r − 1. We
call these del Pezzo foliations.

Definition 2.5. Let F be a foliation on a normal variety X. We say that F is algebraically integrable if it
is induced by a dominant rational map ϕ : X 99K Y with connected fibers into a normal variety. This means
that, over the smooth locus X◦ ⊂ X of ϕ, we have F|X◦ = TX◦/Y .

In the setting of Definition 2.5, the general leaf of F is a general fiber of ϕ|X◦ : X◦ 99K Y . The map
ϕ : X 99K Y is unique up to birational equivalence. It is often useful to take the variety Y to be the
normalization of the unique proper subvariety of the Chow variety of X whose general point parametrizes
the closure of a general leaf of F (viewed as a reduced and irreducible cycle in X). It comes with a universal
cycle and induced morphisms:

(2.1) Z
ν //

π

��

X

ϕ~~
Y.

Here Z is normal, ν : Z → X is birational and, for a general point y ∈ Y , ν
(
π−1(y)

)
⊂ X is the closure of a

leaf of F . We refer to the diagram (2.1) as the family of leaves of F .
In our investigations of Q-Gorenstein algebraically integrable foliations, it proved to be very useful to

work with their log leaves, rather than with their leaves.
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Definition 2.6 ([AD14, Definition 3.11 and Remark 3.12]). Let F be a Q-Gorenstein algebraically integrable
foliation on a normal projective variety X. Let i : F → X be the normalization of the closure of a general
leaf of F . There is a canonically defined effective Q-divisor ∆ on F such that KF + ∆ ∼Q i∗KF . If F
is Gorenstein, then ∆ is integral. The pair (F,∆) is called a general log leaf of F . If y ∈ Y is a general
point, then F ∼= Zy = π−1(y). Over the smooth locus of X, we have Supp(∆) = Exc(ν) ∩ Zy under
this identification, where Exc(ν) denotes the exceptional locus of ν : Z → X ([AD17a, Lemma 2.12]). In
particular, over the smooth locus of X, F \∆ is smooth.

For a Cartier divisor L on X, we write L|F for the pullback i∗L of L.

Proposition 2.7 ([AD17a, Corollary 2.14]). Let X be a smooth projective variety, and F ( TX an alge-
braically integrable foliation on X, with general log leaf (F,∆). Suppose that either ρ(X) = 1, or F is a
Fano foliation. Then ∆ 6= 0.

The following notion of log canonicity for algebraically integrable foliations is weaker than the notion
introduced in Definition 2.3 (see [AD13, Proposition 3.11]).

Definition 2.8. Let X be a normal projective variety, F a Q-Gorenstein algebraically integrable foliation
on X, and (F,∆) its general log leaf. We say that F has log canonical singularities along a general leaf if
(F,∆) is log canonical.

The following is a special geometric property of algebraically integrable Q-Fano foliation with log canonical
singularities along a general leaf. It implies in particular that there is a common point in the closure of every
general leaf.

Proposition 2.9 ([AD16, Proposition 3.13]). Let F be an algebraically integrable Q-Fano foliation on a
normal projective variety X, having log canonical singularities along a general leaf. Then there is a log
canonical center of the general log leaf (F,∆) whose image in X does not vary with the log leaf.

Remark 2.10. The log canonicity assumption in Proposition 2.9 is necessary to guarantee the existence of
a common point in the closure of a general leaf. For instance, consider the Grassmannian G(1,m) of lines
on Pm for m > 3, and the rational map G(1,m) 99K G(1,m − 1) induced by the projection Pm 99K Pm−1
from a fixed point P ∈ Pm. It induces a del Pezzo foliation F of rank 2 on G(1,m) whose general log
leaf (F,∆) is isomorphic to (P2, 2`), where ` is a line in P2 (see [AD13, Example 4.3]). More precisely,
F is the P2 of lines contained in a plane Π ∼= P2 of Pm that contains P , and ` is the line consisting of
lines on Π through P . This log leaf is not log canonical, and there is no common point in the closure of a
general leaf. Also, [AD13, Construction 9.10] produces del Pezzo foliations on projective space bundles over
positive dimensional smooth projective varieties, which are contained in the relative tangent bundle of the
fibration. Clearly there is no common point in the closure of a general leaf. The general log leaf in this case
is isomorphic to a cone over (C, 2P ), where C is a rational normal curve and P ∈ C is a point. Again, it is
not log canonical.

It is useful to have effective algebraic integrability criteria for foliations. We recall Bogomolov and Mc-
Quillan’s criterion (see also [Bos01] and [KSCT07]).

Theorem 2.11 ([BM16, Theorem 0.1]). Let X be a normal projective variety, and F a foliation on X. Let
C ⊂ X be a complete curve disjoint from the singular loci of X and F . Suppose that the restriction F|C is
an ample vector bundle on C. Then the leaf of F through any point of C is an algebraic variety, and the
leaf of F through a general point of C is moreover rationally connected.

This criterion can be applied to describe special properties of Q-Fano foliations. Let X be a normal
projective variety and A any ample line bundle on X. Consider the usual notions of slope and semi-stability
with respect to A for torsion-free sheaves on X. Given a Q-Fano foliation F of rank r on X, we have

µA (F ) = −KF ·A n−1

r > 0. Let

(2.2) 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk = F

be the Harder-Narasimhan filtration of F with respect to A , with quotients Qi = Ei/Ei−1 satisfying
µA (Q1) > µA (Q2) > . . . > µA (Qk). By the Mehta-Ramanathan Theorem, the Harder-Narasimhan fil-
tration of F with respect to A commutes with restriction to a general complete intersection curve C.
This generality conditions means that C = H1 ∩ · · · ∩ Hdim(X)−1, where the Hi’s are general members of
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linear systems |miA | for mi ∈ N sufficiently large. It implies that each Fi is locally free along C. Set
s = max

{
i > 1 |µA (Fi/Fi−1) > 0

}
> 1. From the properties of the Harder-Narasimhan filtrations, it

follows that Fi ⊂ TX is a foliation for 1 6 i 6 s. From the slope conditions and properties of vector bundles
on smooth curves ([Har71, Theorem 2.4]), it follows that each restriction (Fi)|C is ample. By Theorem 2.11,
for 1 6 i 6 s, Fi ⊂ TX is an algebraically integrable foliation, and the closure of a general leaf is rationally
connected. This gives the following property of Q-Fano foliations.

Corollary 2.12. Let F be a Q-Fano foliation on a normal projective variety X. Then F contains an
algebraically integrable subfoliation whose general leaves are rationally connected.

Remark 2.13. Let X be a Fano manifold with ρ(X) = 1 and consider the Harder-Narasimhan filtration
of the tangent bundle TX as in (2.2). Since ρ(X) = 1, any ample line bundle A gives the same notion of
stability. A conjecture due to Iskovskikh predicts that TX is (semi-)stable. If TX is not semi-stable, the first
nonzero subsheaf F1 in its Harder-Narasimhan filtration is called the maximal destabilizing subsheaf of TX .
Arguing as before, we see that F1 is an algebraically integrable Fano foliation on X. The slope inequality
µA (F1) > µA (TX) is equivalent to the index inequality

ιF1

rank(F1)
> ιX

dim(X) . So in order to prove Iskovskikh’s

conjecture, one must rule out the existence of Fano foliations with large index on X.

More generally, one defines the algebraic rank raF of a foliation F as the maximum dimension of an
algebraic subvariety through a general point of X that is everywhere tangent to F . If F has rank r, then
0 6 raF 6 r, and raF = r if and only if F is algebraically integrable. When raF = 0, we say that the foliation
F is purely transcendental. Suppose that F is not algebraically integrable. Then there exist a normal
variety Y , unique up to birational equivalence, a dominant rational map with connected fibers ϕ : X 99K Y ,
and a purely transcendental foliation G on Y such that F is the pullback of G via ϕ. This means that
F|X◦ = (dϕ◦)−1(G|Y ◦), where X◦ ⊂ X and Y ◦ ⊂ Y are smooth open subsets over which ϕ restricts to a
smooth morphism ϕ◦ : X◦ → Y ◦.

We end this section by mentioning an algebraic integrability criterion of Campana and Păun, which
generalizes Theorem 2.11. The classical notion of slope-stability with respect to an ample line bundle has been
extended to allow stability conditions given by movable curve classes on Q-factorial normal projective varieties
([CP11], [GKP16a], [CP15]). In this more general setting, one still has Harder-Narasimhan filtrations as in
(2.2), although the analogous of the Mehta-Ramanathan Theorem fails in general. Let F be a foliation on
a Q-factorial normal projective variety X, and suppose that it has positive slope with respect to movable
curve class α ∈ N1(X)R. Consider the Harder-Narasimhan filtration of F with respect to α as in (2.2), and
set s = max

{
i > 1 |µα(Fi/Fi−1) > 0

}
> 1. Then the algebraic integrability criterion of Campana and

Păun ([CP15, Theorem 4.2]) implies that, for 1 6 i 6 s, Fi ⊂ TX is an algebraically integrable foliation, and
the closure of a general leaf is rationally connected. In particular, if F is a purely transcendental foliation,
then KF is pseudo-effective.

3. Classification of del Pezzo foliations

In this section we discuss classification results for del Pezzo foliations on projective manifolds.

Definition 3.1. A del Pezzo foliation is a Fano foliation F of rank r > 2 and index ιF = r − 1.

In the Introduction we described all del Pezzo foliations on projective spaces and quadric hypersurfaces.
We have the following classification of codimension 1 del Pezzo foliations on projective manifolds. See [AD14,
Theorem 1.3] for a more general statement.

Theorem 3.2. Let F ⊂ TX be a codimension 1 del Pezzo foliation on a smooth projective variety X. Then
one of the following holds.

(1) X ∼= Pn.
(2) X is isomorphic to a (possibly singular) quadric hypersurface in Pn+1.
(3) There is an inclusion of vector bundles K ⊂ E on P1, inducing a relative linear projection

P(E )

!!

ϕ // P(K ) ,

q
{{

P1
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such that X ∼= P(E ) and F is the pullback via ϕ of a foliation

q∗
(

det
(
E /K

))
↪→ TP(K ) .

Moreover, one of the following holds.
• (E ,K ) ∼=

(
OP1(2)⊕ OP1(a)⊕2,Op1(a)⊕2

)
for some positive integer a.

• (E ,K ) ∼=
(
OP1(1)⊕2 ⊕ OP1(a)⊕2,OP1(a)⊕2

)
for some positive integer a.

• (E ,K ) ∼=
(
OP1(1)⊕ OP1(a)⊕ OP1(b),OP1(a)⊕ OP1(b)

)
for distinct positive integers a and b.

Theorem 3.2 is the first instance of classification of del Pezzo foliations, when the ambient space is smooth
and the codimension is 1. The classification problem can move in different directions. One may be interested
in del Pezzo foliations on mildly singular varieties. In this direction, [AD14, Theorem 1.3] allows X to be
factorial and canonical. The conclusion is the same as in Theorem 3.2, with the additional possibility of X
being a cone over certain surfaces of Picard rank 1. One may be interested in classifying codimension 1 Fano
foliations of slightly smaller index. Fano foliations F of rank r ≥ 3 and index ιF = r − 2 are called Mukai
foliations. In [AD17b], we have classified codimension 1 Mukai foliations on projective manifolds. Finally,
one is often interested in del Pezzo foliations of arbitrary rank. For the rest of this paper, we consider del
Pezzo foliations of arbitrary rank on projective manifolds. Recall from Theorem 1.4 that, except when the
ambient space is Pn, del Pezzo foliations are always algebraically integrable. As a step in the classification
problem, we give a classification of all possible general log leaves of del Pezzo foliations.

Proposition 3.3. Let F be an algebraically integrable del Pezzo foliation of rank r > 2 on a smooth projective
variety X, with general log leaf (F,∆). Let L be an ample divisor on X such that −KF ∼ (r − 1)L. Then(
F,∆, L|F

)
satisfies one of the following conditions.

(1)
(
F,OF (∆),OF (L|F )

) ∼= (Pr,OPr (2),OPr (1)).

(2) (F,∆) is a cone over (Qm, H), where Qm is a smooth quadric hypersurface in Pm+1 for some
2 6 m 6 r, H ∈

∣∣OQm(1)
∣∣, and L|F is a hyperplane under this embedding.

(3)
(
F,OF (∆),OF (L|F )

) ∼= (P2,OP2(1),OP2(2)).

(4)
(
F,OF (L|F )

) ∼= (PP1(E ),OP(E )(1)), and one of the following holds:
(a) E = OP1(1)⊕OP1(d) for some d > 2, and ∆ ∼Z σ + f , where σ is the minimal section and f a

fiber of P(E )→ P1.
(b) E = OP1(2)⊕ OP1(d) for some d > 2, and ∆ is a minimal section.
(c) E = OP1(1)⊕ OP1(1)⊕ OP1(d) for some d > 1, and ∆ = PP1(OP1(1)⊕ OP1(1)).

(5) (F,∆) is a cone over (Cd, B), where Cd is rational normal curve of degree d in Pd for some d > 2,
B ∈

∣∣OP1(2)
∣∣, and L|F is a hyperplane under this embedding.

(6) (F,∆) is a cone over the pair (4a) above, and L|F is a hyperplane section of the cone.

Proof. By Proposition 2.7, ∆ 6= 0, and so KF + (r − 1)L|F ∼ −∆ is not pseudo-effective.

Let ν : F̃ → F be a resolution of singularities, and set L̃ = ν∗L|F . Then L̃ is nef and big. In the language

of [And13], (F̃ , L̃) is a quasi-polarized variety. Moreover, KF̃ + (r − 1)L̃ is not pseudo-effective. As in the

proof of [Hör14, Lemma 2.5], we run a (KF̃ + (r − 1)L̃)-MMP, ϕ : F̃ 99K F ′. Since KF̃ + (r − 1)L̃ is not
pseudo-effective, it ends with a Mori fiber space F ′ → Z:

(F̃ , L̃) //

ν

��

(Fi, Li) // (F ′, L′).

F

By [And13, Proposition 3.6], if (Fi, Li) is an r-dimensional terminal Q-factorial quasi-polarized variety, and

R>0[C] is a (KFi
+(r−1)Li)-negative extremal ray of birational type, then Li ·C = 0. Therefore, ϕ : F̃ 99K F ′

is an MMP relative to F , and there exists a morphism ν′ : F ′ → F such that ν = ν′ ◦ ϕ. In particular,
L′ = (ν′)∗L|F is nef and big. Quasi-polarized varieties (F ′, L′) with a Mori fiber space structure induced by
a (KF ′+(r−1)L′)-negative extremal ray were classified in [And13, Proposition 3.5]. They are the following:

(a) (Pr,OPr (1)).
(b) (Qr,OQr (1)), where Qr is a quadric hypersurface in Pr+1.
(c) A cone over (P2,OP2(2)) (where the vertex is allowed to be empty).
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(d) (PB(E ),OPB(E )(1)), where E is a nef and big vector bundle of rank r over a smooth curve B.

In case (a) we have F ′ ∼= F and ∆ ∈
∣∣OPr (2)

∣∣.
In case (b) we have F ′ ∼= F and ∆ ∈

∣∣OQr (1)
∣∣. Moreover, since F \ ∆ is smooth, (F,∆) is a cone over

(Qm, H), where Qm is a smooth quadric hypersurface in Pm+1 and H ∈
∣∣OQm(1)

∣∣, for some 1 6 m 6 r.
When m = 1, F is isomorphic to a cone over a conic curve, and this case will be covered under case (d)
below.

In case (c), we have F ′ ∼= F , (F,∆) is a cone over the Veronese embedding of (P2, `) in P5. Here ` is a
line in P2 and thus ∆ is a cone over a smooth conic. In particular, (F,∆) is log canonical and ∆ is its only
log canonical center. By Proposition 2.9, the image of ∆ does not vary with the log leaf. Suppose that the
vertex V of (F,∆) is nonempty. Then the image of V does not vary with the log leaf either. Therefore any
point of X can be connected to any point in the image of V in X by a rational curve of L-degree 1. This
implies that X ∼= Pn. From the classification of del Pezzo foliations on Pn, we see that this is not possible.
We conclude that V = ∅ and

(
F,OF (∆),OF (L|F )

) ∼= (P2,OP2(1),OP2(2)).

We now consider case (d). Denote by g is the genus of B and by f a fiber of the natural morphism
π : F ′ → B. Write ξ for a divisor on F ′ such that OP(E )(1) ∼= OF ′(ξ), and e for a divisor on B such that
OB(e) ∼= det E . Then −KF ′ = rξ + π∗(−e−KB).

We consider the following possibilities:

(d-1) F ′ ∼= F .
(d-2) ν′ : F ′ → F is the divisorial contraction induced by ξ.
(d-3) ν′ : F ′ → F is the small contraction induced by ξ.

In case (d-1), since F is rationally connected, we must have B ∼= P1 and E is an ample vector bundle on
P1. Write

E = OP1(a1)⊕ · · · ⊕ OP1(ar),

with 1 6 a1 6 · · · 6 ar. We have 0 6= ∆ ∈
∣∣ξ + (−

∑
ai + 2)f

∣∣, and so

1 6 h0
(
P(E ),OP(E )(1)⊗ π∗OP1(−

∑
ai + 2)

)
= h0

(
P1,E (−

∑
ai + 2)

)
.

This implies that (r; a1, . . . , ar−1) ∈
{

(2; 1), (2; 2), (3; 1, 1)
}

. When E = OP1(1) ⊕ OP1(1), F is a smooth
quadric surface, and has already been consider. So we have one of the possibilities described in (4).

In case (d-2), F is Q-factorial and (ν′)∗∆ ∈
∣∣OP(E )(1)⊗ π∗(det E ∨ ⊗ ω∨B)

∣∣, and so

1 6 h0
(
P(E ),OP(E )(1)⊗ π∗(det E ∨ ⊗ ω∨B)

)
= h0

(
B,E ⊗ det E ∨ ⊗ ω∨B

)
.

By Hartshorne’s theorem ([Har71, Theorem 2.4]), E is nef if and only if it has no quotient with negative slope.
So we must have g ∈ {0, 1}. Moreover, if g = 1, then det E is the first nonzero piece of the Harder-Narasimhan
filtration of E , and Q = E /det E is a vector bundle on B. The only member of

∣∣OP(E )(1) ⊗ π∗(det E ∨)
∣∣ is

precisely the projectivization of Q. It is the exceptional divisor of ν′, which is impossible. So we conclude
that B ∼= P1, F is a cone over a rational normal curve of degree d for some d > 1, and L|F is a hyperplane
under this embedding. When d = 1, we have F ∼= Pr. So we may assume that d > 2. A straightforward
computation shows that ∆ is linearly equivalent to two times a ruling of the cone.

In case (d-3), OF (L|F ) pulls back to OP(E )(1), and ∆ is the image under the small contraction of a nonzero

effective divisor ∆′ ∈
∣∣OP(E )(1) ⊗ π∗(det E ∨ ⊗ ω∨B)

∣∣. As before, g ∈ {0, 1}. Moreover, if g = 1, then det E
is the first nonzero piece of the Harder-Narasimhan filtration of E , Q = E /det E is a vector bundle on B,
and ∆′ ∼= P(Q) is the only member of

∣∣OP(E )(1) ⊗ π∗(det E ∨)
∣∣. In particular, (F,∆) is log canonical and

∆ is its only log canonical center. By Proposition 2.9, the image of ∆ does not vary with the log leaf, and
so the image of its singular locus V does not vary with the log leaf either. Note that V is the image of the
exceptional locus of ν′. Therefore any point of X can be connected to any point of V by a rational curve of
L-degree 1, and thus X ∼= Pn. From the classification of del Pezzo foliations on Pn, we see that this is not
possible. So we conclude that B ∼= P1. As in (d-1), we see that one of the following holds:

• E = O⊕r−2P1 ⊕OP1(1)⊕OP1(d) for some d > 2, r > 2, and ∆′ ∼Z σ+f , where σ = PP1

(
O⊕r−2P1 ⊕OP1(1)

)
,

and f a fiber of PP1(E )→ P1.
• E = O⊕r−2P1 ⊕ OP1(2)⊕ OP1(d) for some d > 2, r > 2, and ∆ = PP1

(
O⊕r−2P1 ⊕ OP1(2)

)
.
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• E = O⊕r−3P1 ⊕OP1(1)⊕OP1(1)⊕OP1(d) for some d > 1, r > 3, and ∆ = PP1(O⊕r−3P1 ⊕OP1(1)⊕OP1(1)).

The first case can also be described as a cone over the pair (4a) above, yielding (6).
The latter two cases, can be described as cones over the pairs (4b) and (4c) above, respectively. In these

cases, (F,∆) is log canonical and ∆ is its only log canonical center. Moreover, ∆ is a cone with vertex V 6= ∅
over a conic and a smooth quadric surface, respectively. By Proposition 2.9, the image of ∆ does not vary
with the log leaf, and so the image of V does not vary with the log leaf either. Therefore any point of X
can be connected to any point in the image of V in X by a rational curve of L-degree 1, and thus X ∼= Pn.
From the classification of del Pezzo foliations on Pn, we see that this is not possible. �

We do not know examples of del Pezzo foliations with log leaves of type (3) and (6) described in Theo-
rem 3.3. When the general log leaf of F is log canonical, Proposition 2.9 may be used to recover the ambient
space X. For example, consider case (1), when

(
F,OF (∆),OF (L|F )

) ∼= (Pr,OPr (2),OPr (1)). If (F,∆) is log
canonical, then Proposition 2.9 yields a common point x ∈ X in the closure of a general leaf. Therefore any
point of X can be connected to x by a rational curve of L-degree 1. This implies that X ∼= Pn. On the other
hand, there are del Pezzo foliations with general log leaf of type (1) and not log canonical (see Remark 2.10).

We end this paper by reviewing a classification of del Pezzo foliations on projective manifolds under
restrictions on the singularities of the foliation F . Namely, we assume that F has log canonical singularities
and is locally free along a general leaf. Recall from Theorem 1.4 that, if X 6∼= Pn, then del Pezzo foliations on
X are always algebraically integrable. If we remove the log canonicity assumption, we know more examples of
del Pezzo foliations, as discussed in Remark 2.10. One may be able to remove the locally freeness assumption
using the classification of log leaves in Proposition 3.3.

Theorem 3.4 ([AD13, 9.1 and Theorems 1.3, 9.2, 9.6]). Let F be an algebraically integrable del Pezzo
foliation of rank r on a projective manifold X. Suppose that F has log canonical singularities and is locally
free along a general leaf. Then one of the following holds.

(1) X ∼= Pn.
(2) X is isomorphic to a quadric hypersurface in Pn+1.
(3) X ∼= P1×Pk, r ∈ {2, 3} and F is the pullback via the second projection of a foliation on Pk induced

by a linear projection.
(4) There is an inclusion of vector bundles K ⊂ E on P1, inducing a relative linear projection

P(E )

!!

ϕ // P(K ) ,

q
{{

P1

such that X ∼= P(E ) and F is the pullback via ϕ of a foliation

q∗
(

det
(
E /K

))
↪→ TP(K ) .

Moreover, one of the following holds.
• (E ,K ) ∼=

(
OP1(2)⊕ OP1(a)⊕m,OP1(a)⊕m

)
for some a > 1 and m > 2 (r = 2).

• (E ,K ) ∼=
(
OP1(1)⊕2 ⊕ OP1(a)⊕m,OP1(a)⊕m

)
for some a > 1 and m > 2 (r = 3).

• E ∼= OP1(1) ⊕ K , where K is an ample vector bundle not isomorphic to OP1(a)⊕m for any
integer a (r = 2).

(5) There is an inclusion of vector bundles K ⊂ E on Pk, with k > 2 and E /K ∼= OPk(1), inducing a
relative linear projection

P(E )

!!

ϕ // P(K ) ,

q
{{

Pk

such that X ∼= P(E ) and F is the pullback via ϕ of a foliation q∗OPk(1) ↪→ TP(K ) (r = 2).
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Supér. (4) 41 (2008), no. 4, 655–668.

Carolina Araujo: IMPA, Estrada Dona Castorina 110, Rio de Janeiro, 22460-320, Brazil

E-mail address: caraujo@impa.br


