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Fig. 1. Comparison of implicit mean curvature flows on a general polygonal mesh (29k vertices) after 10 iterations with time step t = 10
−4. On the far left is

the original mesh. Our method (second from left) and the the algorithm of [M. and M. 2011] with λ = 1 (third from left) produce a visually well–smoothed
meshes. However, the method of [M. and M. 2011] with λ = 0 (far right) exhibits some undesirable artifacts on the ears, neck, and tail of the kitten.

Discrete exterior calculus (DEC) offers a coordinate-free discretization of

exterior calculus especially suited for computations on curved spaces. In this

work, we present an extended version of DEC on surface meshes formed

by general polygons that bypasses the need for combinatorial subdivision

and does not involve any dual mesh. At its core, our approach introduces

a polygonal wedge product that is compatible with the discrete exterior

derivative in the sense that it satisfies the Leibniz product rule. Based on the

discrete wedge product, we then derive a novel primal–to–primal Hodge star

operator. Combining these three ’basic operators’ we then define discrete

versions of the contraction operator and Lie derivative, codifferential and

Laplace operator. We discuss the numerical convergence of each one of these

operators and compare them to existing DEC methods. Finally, we show

simple applications of our operators on Helmholtz–Hodge decomposition,

Laplacian surface fairing, and Lie advection of functions and vector fields

on meshes formed by general polygons.
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1 INTRODUCTION
The discretization of differential operators on surfaces is fundamen-

tal for geometry processing tasks, ranging from remeshing to vector

fields manipulation. Discrete exterior calculus (DEC) is arguably

one of the prevalent numerical frameworks to derive such discrete

differential operators. However, the vast majority of work on DEC

is restricted to simplicial meshes, and far less attention has been

given to meshes formed by arbitrary polygons, possibly non–planar

and non–convex.

In this work, we propose a new discretizaton for several operators

commonly associated to DEC that operate directly on polygons

without involving any subdivision. Our approach offers three main

practical benefits. First, by working directly with polygonal meshes,

we overcome the ambiguities of subdividing a discrete surface into

a triangle mesh. Second, our construction operates solely on primal

elements, thus removing any dependency on dual meshes. Finally,

our method includes the discretization of new differential operators

such as the contraction and Lie derivatives.

We concisely expose our framework, describe each of our op-

erators and compare them to existing DEC methods. We examine

the accuracy of our numerical scheme by a series of convergence

tests on flat and curved surface meshes. We also demonstrate the

applicability of our method for Helmholtz–Hodge decomposition
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of vector fields, surface fairing, and Lie advection of vector fields

and functions.

1.1 Contributions and Overview
In the following sections, we focus on the main concepts and proper-

ties of proposed operators, compare them to existing DEC schemes,

and provide some simple applications of our methods.

• In Section 2 we briefly present related work, talk about basic

notions, and discuss themain differences between our concept

and the approach of previous research in the area.

• We define a new discrete wedge product on polygonal meshes

and show experimental convergence of the product of two

discrete forms to the continuous wedge product of respective

differential forms in Section 3.1.

• We then provide a novel primal–primal discretization of the

Hodge star operator (Section 3.2) that is compatible with the

discrete wedge product. Using these two operators we derive

a discrete inner product in Section 3.3.

• Employing the discrete Hodge star and wedge product we

define a discrete contraction operator (Section 3.4). We then

use the Cartan’s magic formula to derive a discrete Lie deriv-

ative and discuss its convergence to the continuous version

in Section 3.5.

• In Section 3.6 we define and examine a novel discrete codif-

ferential operator on polygonal meshes and next a discrete

Laplace operator in Section 3.7.

• We illustrate the application of our operators in mesh smooth-

ing (Section 4.1), Helmholtz–Hodge decomposition (Section

4.2), and Lie advection of vector fields (Section 4.3).

• We conclude and suggest future work in Section 5.

2 RELATED WORK AND PRELIMINARIES
There is a vast literature on discrete exterior calculus on triangle

meshes, e.g., [K. et al. 2013; M. et al. 2006, 2005; N. 2003] – all these

publications have in common that they deal with purely simplicial

meshes and use a dual mesh to define operators, we will refer to

their approach as to the classical DEC from now on.

As announced, unlike the classical DEC, our method works with

general polygonal meshes and does not involve any dual meshes.

However, our operators differ also in other aspects, e.g., support

domains. Next we briefly introduce several basic DEC notions and

point out the key differences of our approach compared to existing

schemes, principally to the classical DEC.

2.1 Discrete differential forms and the exterior derivative
We strictly stick to the convention, common to previous DEC litera-

ture, that a discrete q–form is located on q–dimensional cells of the

given mesh.

Discrete differential forms are usually denoted by small Greek

letters and sometimes we add a number superscript to emphasize

the degree of the form, i.e., a q–form α can be denoted as αq . The
group of all discrete forms of a degree q of a given mesh S is denoted

by Cq (S ).
A polygonal mesh S is made of a set of vertices (0–dimensional

cells), edges (1–dimensional cells), and faces (2–dimensional cells).

A real discrete differential q–form αq on S is a q–cochain, i.e., a
real number assigned to each q–dimensional cell cq of S . E.g., if
(e0, e1, . . . , en ) is the vector of all edges of S , then an 1–form α1 is
a vector of real values

α1 = (α (e0), . . . ,α (en )).

The discrete exterior derivatived is the coboundary operator and

it holds:

(dα ) (cq+1) = α (∂cq+1) =
∑
cq ∈S

[cq+1 : cq ]α (cq ),

where ∂ denotes the boundary operator and [cq+1 : cq] denotes
the incidence relation between cells cq+1 and cq . See an example

bellow.

[f0 : e0] = 1, [f0 : e1] = 1, . . . , [f0 : e4] = −1

∂f0 =
∑
ei ∈S

[f0 : ei ]ei = e0 + e1 + e2 + e3 − e4

α 1 = (α (e0), . . . , α (en ))

dα (f0) =
∑
ei ∈S

[f0 : ei ]α (ei )

= α (e0) + α (e1) + α (e2) + α (e3) − α (e4)
In the figure above, the boundary of the face f0 is a sum of incident

oriented edges, where we take in account the orientation of the

bounary edges wrt to the given face. The discrete exterior derivative

of a 1–form α1 (that is stored on edges) is a 2–form dα located on

faces and on the face f0 it is the "oriented sum" of the values of α
on boundary edges of f0.

2.2 The cup product and the wedge product
Since we consider the wedge product on polygons to be the main

building block of our theory, we enjoy the opportunity to ponder

about it here.

On smooth manifolds, the wedge product allows for building

higher degree forms from lower degree ones. Similarly in algebraic

topology of pseudomanifolds, a cup product is a product of two

cochains of arbitrary degree p and q that returns a cochain of degree

p+q located on (p+q)–dimensional cells. Thus we consider the cup

product to be the appropriate discrete version of the wedge product.

The cup product was introduced by J. W. Alexander, E. Čech, and

H. Whitney [H. 1957] in 1930’s and it became a well–studied notion

in algebraic topology, mainly in the simplicial setting. Later, the cup

product was extended also to n–cubes [F. 2012; Massey 1991].

In graphics, Gu and Yau [X. and S.-T. 2003] presented the defini-

tion of a wedge product of two discrete 1–forms on triangulations,

which turns to be equivalent to the cup product of two 1–cochains

on triangle complexes well studied in algebraic topology [H. 1957].

Our discrete wedge product is equivalent to the cup product of

[H. 1957] on triangles, and thus to the discrete wedge product of

two 1–forms of [X. and S.-T. 2003] on triangles, see also the Figure

2. Furthermore, our discrete wedge product is equivalent to the cup

product of [F. 2012; Massey 1991] on quadrilaterals.

In [R. et al. 2011a,b] the authors also studied the cup product on

cubical and general polyhedral complexes P , but they employed the

so called AT–model, an algebraic set of data that provides homolog-

ical information about the the underlying complex P .
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Fig. 2. The wedge (cup) product of two 1–forms (1–cochains) on a triangle:
the product of two 1–forms is a 2–form located on faces (far left).

In common to previous approaches, this notion of discrete wedge

product is metric–independent and satisfies core properties such as

the Leibniz product rule, skew–commutativity, and associativity on

closed forms.

Alternative metric–dependent versions of the discrete wedge

product on simplicial complexes were suggested in [N. 2003, Section

7.2]. In particular, specialized expressions were necessary to address

the different combination of primal and dual forms.

2.3 The Hodge star operator
The most common discretization of the Hodge star operator on

triangle meshes is the so called diagonal approximation, which is

computed based on the ratios between the volumes of primal sim-

plices and their dual cells. In contrast, we propose a Hodge star

operator that does not use a dual mesh. Since our dual forms are

again located on primal elements, we can compute the wedge prod-

uct of primal and dual forms, hence define further operators using

our discrete Hodge star and polygonal wedge product. However,

this primal–primal definition brings some drawbacks as well, we

discuss them in Section 3.2.

2.4 The inner product
By employing our proposed discrete wedge product ∧ and Hodge

star operator ⋆, we define the inner product matrices byM := ∧⋆,

that turns to be identical to the one introduced in [M. and M. 2011,

Lemma 3] for the case of product of two 1–forms restricted to a

polygon.

2.5 The codifferential
On a Riemannian n–manifold, the Hodge star operator is employed

to define the codifferential operator δ (αk ) = (−1)n (k−1)+1⋆d⋆α . It
is a linear operator that maps k–forms to (k−1)– forms. On 1–forms

it is also called the divergence operator.

A discrete codifferential operator on triangle meshes has been

defined e.g. in [K. et al. 2013; M. et al. 2005; N. 2003], all these ap-

proaches are equivalent since they use the diagonal approximation

of the Hodge star operator. [M. and M. 2011, Section 3] hint at a

codifferential of 1–forms on general polygonal meshes. The main

difference between these and our codifferentials is in the support

domain, see Figures 3 and 4.

2.6 The Laplace operator
In exterior calculus, the Laplace operator is given by ∆ := δd + dδ ,
where δ is the codifferential and d the exterior derivative. The Lapla-

cian is defined in this way also in the classical DEC and we follow

Fig. 3. Comparison of the support domain of the codifferential of 1–forms
between the classical DEC (L) and our method (R). The codifferential of a
1–form α is a 0–form located on vertices. The value of δα on the red vertex
v is a linear combination of values of α on edges colored green. The support
domain of our codifferential (R) is larger. The edge thickness reflects the
intensity of influence of the corresponding edge values α on δα (v ).

Fig. 4. Comparison of the support domain of the codifferential of 2–forms
between the classical DEC (L) and our approach (R). The codifferential of
a 2–form β is a 1–form δ β located on edges. The value of δ β on the red
edge e is a linear combination of the values of β on faces colored green. The
color intensity of faces reflects the intensity of influence on δ β (e ).

this convention. The classical Laplacian on 0–forms is also called

the cotan Laplace operator. Even though many different approaches

lead to the cotan–formula, MacNeal [H. 1949] is often considered

to be the first to derive it.

Discrete Laplace operators on general polygonal meshes were

introduced in [M. and M. 2011]. By Theorem 2 therein, on triangle

meshes their polygonal Laplacian of 0–forms reduces to the cotan

Laplace operator. In Figure 5 we compare the support domain of

our Laplacian to theirs.

2.7 The contraction operator and the Lie derivative
The Lie derivative can be thought of as an extension of a directional

derivative of a function to derivative of tensor fields (such as vector

fields or differential forms) along a vector field. The Lie derivative

is invariant under coordinate transformations, which makes it an

appropriate version of a directional derivative on curved manifolds.

It evaluates the change of a tensor field along the flow of another

vector field and is widely used in mechanics.

Our discretization of Lie derivative of functions (0–forms) corre-

sponds to the functional map framework of [O. et al. 2013], but now

generalized to polygonal meshes. Our discrete Lie derivatives are

thus linear operators on functions on a manifold that produce new

functions, with the property that the derivative of a constant func-

tion is 0. Furthermore, both theirs and our Lie bracket of two vector

fields (Lie derivative of a vector field wrt a vector field) produces

another vector field. However, whereas their framework is build for

triangle meshes, we work with general polygonal meshes.

While maintaining the discrete exterior calculus framework, our

work can also be interpreted as an extension of the Lie derivative
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Fig. 5. Comparison of support domains of the Laplacian of 0–forms between
the classical DEC on triangle meshes (top left), Laplacian of [M. and M.
2011] for λ = 0 (bottom left), our Laplacian on triangle (top right) and
polygonal (bottom right) meshes. The Laplacian of a 0–form α is a 0–form
∆α located again on vertices. The value of ∆α on the red vertex v is a linear
combination of values of α on vertices colored green. The support domain
of our Laplacian is always larger, the point size reflects the intensity of
influence of respective α s on ∆α (v ). We also color yellow the faces whose
vertices carry the α s that enter as variables for ∆α (v ).

of 1–forms presented in [P. et al. 2011] from planar regular grids to

surface polygonal meshes in space.

3 PRIMAL-TO-PRIMAL OPERATORS
This section contains the actual results of our research – we present

the theory and numerical evaluation of each operator and operation,

evaluate the quality of our approximations by setting our results

against analytical solutions, and also compare the output of our

calculations to outputs computed by other DEC schemes.

Not using dual meshes simplifies the definition of several opera-

tors on polygonal meshes, which may be a difficult task otherwise.

Moreover, it helps to maintain the compatibility of our operators

since both the initial and the mapped discrete forms are located on

primal elements. However, this approach also brings some draw-

backs, we discuss them in this section.

Our framework is an extension of our method that has been

studied already in [L. 2017] and presented as a poster in [L. and L.

2017].

3.1 The Discrete Wedge Product
Just like the wedge product of differential forms, our discrete wedge

product is a product of two discrete forms of arbitrary degree k
and l that returns a form of degree k + l located on primal (k + l )–
dimensional cells (see Figure 6).

On triangle meshes our discrete wedge product is identical to the

cup product given by [H. 1957] and on quadrilaterals it is equivalent

to the cubical cup product of [F. 2012]. Further, the wedge product

of differential forms satisfies the Leibniz product rule with exterior

derivative and is skew–commutative. The discrete wedge product

must satisfy these properties as well, we thus appropriately extend

the discrete wedge product from triangles and quads to general

polygons and derive the following formulas:

Fig. 6. The wedge product on a quadrilateral: the product of two 0–forms
is a 0–form located on vertices (far left). The product of a 0–form with a
1–form is a 1–form located on edges (center left). The product of a 0–form
with a 2–form is a 2–form located on faces (center right), and the product
of two 1–forms is a 2–form located on faces (far right).

Definition 3.1. Let S be a surface mesh (pseudomanifold) whose
faces (2–cells) are polygons. The polygonal wedge product ∧ : Ck (S ) ×

Cl (S ) → Ck+l (S ) of two discrete forms αk , βl is a (k+l )–form αk∧βl

defined on each (k + l )–cell ck+l ∈ S . Let f = (v0, . . . ,vp−1) be a p–
polygonal face, e = (vi ,vj ) an edge, andv a vertex of S , the polygonal
wedge product is given for each degree and per each (k + l )–cell by:

(α 0 ∧ β 0) (v ) = α (v )β (v ),

(α 0 ∧ β 1) (e ) =
1

2

(α (vi ) + α (vj ))β (e ),

(α 0 ∧ β 2) (f ) =
1

p

( p−1∑
i=0

α (vi )
)
β (f ),

(α 1 ∧ β 1) (f ) =

⌊
p−1
2
⌋∑

a=1

(
1

2

−
a
p

) p−1∑
i=0

α (i ) (β (i + a) − β (i − a)),

where α (i ) := α (ei ), β (j ) := β (ej ), and all indices are modulo p.

The polygonal wedge product is illustrated in Figures 2 and 6. It

is a bilinear operation that is skew–commutative:

αk ∧ βl = (−1)kl βl ∧ αk ,

matching its continuous analog. As premeditated, it satisfies the

Leibniz product rule with discrete exterior derivative:

d (αk ∧ βl ) = dα ∧ β + (−1)kα ∧ dβ .

Further, the wedge product of three 0–forms is trivially associative

(it is equivalent to multiplication of three scalar values). For proofs,

see [L. 2017, Proposition 3.2.3].

Unfortunately for higher degree forms it is not associative in

general, only if one of the 0–forms involved is constant. This is a

common drawback of discrete wedge products, see e.g. [N. 2003,

Remark 7.1.4.].

In matrix form, the polygonal wedge product reads:

α0 ∧ ϵ0 = α0 ⊙ ϵ0,

α0 ∧ β1 = (Bα0) ⊙ β1,

α0 ∧ ω2 = (fvα0) ⊙ ω2,

(β1 ∧ γ 1) |f = (β1 |f )
⊤ R(γ 1 |f ),

where ⊙ is the Hadamard (element–wise) product, β |f denotes the

restriction of β to a p–polygonal face f , and the matrices B ∈
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R |E |× |V | , fv ∈ R |F |× |V | , and R ∈ Rp×p per f read:

B[i, j] =
{

1

2
if vj ≺ ei ,

0 otherwise.

(1)

fv[i, j] =
{

1

pi
if vj ≺ fi , fi is a pi–gon,

0 otherwise.

(2)

R =
⌊
p−1
2
⌋∑

a=1

(
1

2

−
a
p

)
Ra, (3)

Ra [k, j] =



1 if ej is (k + a)–th halfedge of f , [f : ej ] = 1,

−1 if ej is (k − a)–th halfedge of f , [f : ej ] = 1,

0 otherwise.

(4)

3.1.1 Numerical evaluation. We perform the numerical evalua-

tion of our polygonal wedge product as an approximation to the

continuous wedge product on a given mesh S over a smooth surface

in the following fashion:

1. We integrate each differential l–form over all l–dimensional

cells of the mesh S and thus define discrete forms α0, β1, γ 1, and
ω2

:

α 0 (v ) = A(v ), β 1 (e ) =
∫
e

B, γ 1 (e ) =
∫
e

Γ, ω2 (f ) =
∫
f

Ω,

where Greek capital letters denote the respective continuous differ-

ential forms. In practice, we integrate the continuous differential

2–form Ω over a set of triangles (C,vi ,vi+1) that approximate the

possibly non–planar face f = (v0, . . . ,vp−1), where C is the cen-

troid of f projected on the given underlying Riemannian surface

(that is why we use simple surfaces such as spheres and tori for our

tests). See the illustration bellow.

2. Next we compute the polygonal wedge products (α0 ∧ β1) (e ),
(α0 ∧ ω2) ( f ), (β1 ∧ γ 1) ( f ) using our formulas.

3. Wealso calculate analytical solutions of the (continuous) wedge

products and discretize (integrate) these solutions:

A ∧ B (e ) =
∫
e

A ∧ B, A ∧ Ω(f ) =
∫
f

A ∧ Ω, B ∧ Γ(f ) =
∫
f

B ∧ Γ.

4. We then compute the L∞ and L2 errors. So let ξk denote our

solution (a discrete k–form) and Ξk the respective discretized ana-

lytical solution, we compute:

Error2 =
(
ξk − Ξk

)⊤
Mk

(
ξk − Ξk ),

Error∞ =| |ξk − Ξk | |∞ = max

ck
( |ξk (ck ) − Ξk (ck ) |),

whereMk are discrete L2 Hodge inner product matrices, concretely,

M2 ∈ R
|F |× |R |

andM0 ∈ R
|V |× |V |

are diagonal matrices given by

M2[i, i] =
1

| fi |
, M0[i, i] =

∑
fj ≻vi

| fj |

pj
, (5)

and M1 is the inner product of two 1–forms of [M. and M. 2011],

i.e., for two 1–forms ϵ and λ,M1 is defined in the sense that

ϵ⊤M1λ =
∑
f

ϵ |⊤f Mf λ |f , Mf :=
1

| f |
Bf B

⊤
f , (6)

where ϵ |f again denotes the restriction of ϵ to a p–polygonal face
f and Bf denotes a p × 3 matrix with edge midpoint positions as

rows (we take the centroid of each face as the center of coordinates

per face).

5. To further evaluate the numerical convergence behavior, we

refine the mesh over the given smooth underlying surface. The

smooth surfaces used for tests are: unit sphere, torus azimuthally

symmetric about the z-axis, and planar square. To create unstruc-

tured meshes, we randomly eliminate a given percentage of edges

of an initially regular mesh.

We also use jittering to evaluate the influence of irregularity of

a mesh on the experimental convergence. When jittering, we start

with a regular mesh and displace each vertex in a random tangent

direction to distance r · |e |, where |e | is the shortest edge length,
and then project all thus displaced vertices on a given underlying

smooth surface.

If not stated otherwise, all graphs use log
10

scales on both the

horizontal and vertical axes.

We have tested quadratic and trigonometric differential forms

on flat and curved surface meshes (with non–planar faces) and our

polygonal wedge products exhibit at least linear convergence to the

respective analytical solutions, both in L2 and L∞ norm. In Figure 7

we give an example.

3.2 The Hodge Star Operator
We define a discrete Hodge star operator as a homomorphism (lin-

ear operator) from the group of k–forms to (2 − k )–forms, i.e.

⋆ : Ck (S ) → C2−k (S ), 0 ≤ k ≤ 2. But since we do not employ

any dual mesh and there is no isomorphism between the groups of

k– and (2 − k )–dimensional cells, our Hodge star is not an isomor-

phism (invertible operator), unlike its continuous counterpart and

diagonal approximations for which ⋆−1⋆ is the identity.

On the other hand, thanks to the dual forms being located on ele-

ments of our primal mesh, we can compute discrete wedge products

of primal and dual forms and thus define a discrete inner product

and discrete contraction operator later on.

Moreover, thanks to the Hodge star operating on primal meshes,

we circumvent the ambiguity of defining dual meshes of unstruc-

tured general polygonal meshes. The idea of defining a Hodge star

operator without using a dual mesh was borrowed from [F. 2012],

where the author suggests metric–independent Hodge star opera-

tors on simplicial and cubical complexes.

Our formulas for discrete Hodge star operators are motivated by

two conditions:
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Fig. 7. Convergence of the wedge products on a set of unstructured polyg-
onal meshes on a planar square to analytical solutions in L2 norm (L)
and L∞ norm (R). Both axes are in log

10
scale. The differential forms

tested are trigonometric forms α 0 = sin(x ) cos(y ) + 1, β 1 = (sin2 (x ) −
1)dx + (3 cos(x + 2) + sin(y ))dy , γ 1 = (cos(x ) sin(y ) + 3)dx + cos(y )dy ,
ω2 = (sin(xy ) + cos(1))dx ∧ dy . Above are samples of tested meshes, all
over a planar [−1, 1]2 square.

(1) The Hodge dual of constant discrete forms on planar surfaces

is exact, thus also⋆µ = 1 and⋆1 = µ just like on Riemannian

manifolds, where µ is the volume form on a given Riemannian

manifold (for details see [R. et al. 1988, Section 6.5]).

(2) The discrete Hodge star operator on 1–forms leads to the

L2–Hodge inner product on 1–forms identical to the one of

[M. and M. 2011, Lemma 3].

Fig. 8. On the left, the Hodge dual of a 2–form ω is a 0–form ⋆ω , which
value on a vertex v (colored red) is a linear combination of values of ω on
adjacent faces (colored green). On the right, the Hodge dual of a 0–form
α is a 2–form ⋆α , the value of ⋆α on a face f (colored red) is a linear
combination of values of α on vertices (green) of that face.

The Hodge star operator on 2–forms takes in account the

degree pi of pi–polygonal faces fi and their vector areas | fi |. If ω
2

is a 2–form, then the 0–form ⋆ω on a vertex v is given by

(⋆2ω) (v ) =
1∑

fi ≻v

| fi |

pi

·
∑
fi ≻v

ω ( fi )

pi
, (7)

i.e., it is a linear combination of values of ω on faces adjacent to v ,
see Figure 8 left.

The Hodge star on an 1–form β1 is first defined per halfedges

of a p–polygonal face f as:

⋆1 β =W1 R⊤ β , (8)

where R is the matrix defined in (3) and W1 is a symmetric p × p
matrix given by:

W1[i, j] =
⟨ei , ej ⟩

| f |
,

for ek the halfedges incident to and having the same orientation as

the face f , where ⟨., .⟩ denotes the Euclidean dot product.

If an edge e is not on boundary, it has two adjacent faces, thus

we compute the values of⋆β on corresponding halfedges, sum their

values with appropriate orientation sign and divide the result by 2,

see an example in Figure 9.

Fig. 9. Let β ∈ C1 and e = (v0, v1) be the edge with e0, e4 as the corre-
sponding halfedges, then ⋆β (e ) = ⋆β (e0 )−⋆β (e4 )

2
, where ⋆β (e4) is a linear

combination of values of β on dashed orange edges and ⋆β (e0) is a lin-
ear combination of values of β on dashed blue edges, concretely ⋆β (e0) =
1

4|f0 |

(
(⟨e0, e1⟩−⟨e0, e3⟩) (β (e0)−β (e2))+(⟨e0, e0⟩−⟨e0, e2⟩) (β (e3)−β (e1)

)
.

The Hodge dual of a 0–form α is a 2–form ⋆α defined per a

p–polygonal face f by:

(⋆0α ) ( f ) =
| f |

p

∑
vi ≻f

α (vi ), (9)

and it is simply the arithmetic mean of the values of α on vertices

of the given face f multiplied by the vector area | f |.
In matrix form, the discrete Hodge star operators read

⋆0 =WF fv,

⋆1 =AW1 R⊤,

⋆2 =W−1V fv⊤,

where fv and R are defined in equations (2) and (3–4), resp., and

WF ∈ R
|F |× |F |

, WV ∈ R
|V |× |V |

, A ∈ R |E |× |E | are given by

WF [i, i] = | fi |, WV [i, i] =
∑
fk ≻vi

| fk |

pk
,

A[i, j] =




1 if i = j, ei is on boundary,
1

2
if i = j, ei is not on boundary,

− 1

2
if ei = −ej ,

0 otherwise.
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Even though our Hodge star matrices are not diagonal, they are

highly sparse and thus computationally efficient.We have performed

several numerical tests on linear, quadratic, and trigonometric forms

on planar and curved meshes and they exhibit the same (at least

linear) convergence rate. We give an example in Figure 10.

Fig. 10. In the top row we show two meshes of a torus azimuthally sym-
metric about the z-axis with 5k vertices (L) and 20k vertices (R). Bellow are
graphs showing the approximation errors of the discrete Hodge star on a set
of such irregular polygonal meshes on the torus, in L2 norm (L) and L∞ norm
(R). We have chosen α 0 = x 2 + y2, β 1 = X♭ , where X = (−y, x, 0) is a tan-
gent vector field, and ω2 = µ is the area element on the torus. Thus ⋆µ = 1,
⋆α = (x 2+y2)µ , and⋆β = Y♭ , whereY = 2(−xz, −yz, x 2+y2−

√
x 2 + y2)

is a tangent vector field orthogonal to X. Both axes are in log
10

scale.

3.3 The Hodge Inner Product

The L2–Hodge inner product of differential forms α , β ∈ Ωk (M ) on
a Riemannian manifoldM is defined as:

(αk , βk ) :=

∫
M
α ∧⋆β .

We define a discrete L2–Hodge inner product on a mesh S by:

(αk , βk ) :=
∑
f ∈S

(
α ∧⋆β

)
( f ) = α⊤Mk β, k = 0, 1, 2,

where Mk are the discrete Hodge inner product matrices that read:

M0 = fv⊤WF fv,

M1 =RAW1 R⊤,

M2 = fvW−1V fv⊤ .

It can be shown that our inner product of 1–forms restricted

to a face f is identical to the one of [M. and M. 2011, Lemma 3]:

RW1 R⊤ |f =
1

|f |Bf B
⊤
f , where Bf is a Rp×3 matrix with edge mid-

point vectors as rows (we take the centroid of each p–face f as the

center of origin per face). However, if a given mesh S is not just a

single face they differ in general, i.e., for 1–forms β1, γ 1:

β⊤M1 γ = β⊤ RAW1 R⊤ γ , β⊤ RW1 R⊤ γ =
∑
f ∈S

β⊤
1

|f |
Bf B

⊤
f γ .

To numerically evaluate our inner products, we calculate discrete

L2–Hodge norms of forms α0, β1,ω2
over a mesh S and compare

them to their respective analytical L2 norms. That is, if Γk is a

differential k–form and γk the corresponding discrete k–form, we

compute the error of approximation as:∫
S

Γ ∧⋆Γ −
∑
f ∈S

γ ∧⋆γ =
∫
S

Γ ∧⋆Γ − γ ⊤Mk γ .

An example of numerical evaluation of our L2–Hodge inner prod-
ucts and numerical evaluation of inner productsM0 andM1 of [M.

and M. 2011], see also the equations (5 – 6), is given in Figure 11. The

experimental convergence rate of our discrete L2 norms is at least

linear on all tested forms on compact manifolds with or without

boundary.

Fig. 11. The influence of jittering on experimental convergence of discrete
L2–Hodge inner norms to respective analytically computed solutions. The
graph on the left illustrates experimental convergence on a set of jittered
meshes with r = 0.2 and sample mesh with 5k vertices is located above.
Analogically on the right, with r = 0.4. We have chosen α 0 = x 2 + y2,
β 1 = −xzdx −yzdy + (x 2+y2)dz ,ω2 = xdy∧dz +ydz∧dx +zdx ∧dy .
Here α ∧⋆α denotes our L2–Hodge inner product norm on 0–form α , and
similarly for β and γ . α [AW11] denotes the inner products of 0–forms and
β [AW11] the product of 1–forms of [M. and M. 2011].

3.4 The Contraction Operator
The contraction operator iX , also called the interior product, is the

map that sends a k–form ω to a (k − 1)–form iX ω such that

(iX ω) (X1, . . . ,Xk−1) = ω (X ,X1, . . . ,Xk−1)

for any vector fields X1, . . . ,Xk−1. The following property holds [N.
2003, Lemma 8.2.1]:

Lemma 3.1. Let M be a Riemannian n–manifold, X ∈ X(M ) a
vector field, then for the contraction of a differential k–form α with a
vector field X holds:

iXα = (−1)k (n−k ) ⋆ (⋆α ∧ X ♭ ),
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where ♭ : X(M ) → Ω(M ) is the flat operator.

Since we already have discrete wedge and Hodge star operators

that are compatible with each other, we can employ the lemma to

define our discrete contraction operator iX : Ck (S ) → Ck−1 (S )
on a polygonal mesh S by:

iX α = (−1)k (2−k ) ⋆ (⋆α ∧ X ♭ ), α ∈ Ck (S ), k = 1, 2, (10)

where the discrete flat operator on a vector field X is given by

discretizing its value over all edges of S . Let e = (v0,v1) be an edge

of S , then e = e (t ) = v0 + (v1 −v0)t , t ∈ [0, 1], and we set:

X ♭ (e ) =

∫
e

⟨e ′,X ⟩ =

1∫
0

⟨e ′(t ),X (e (t ))⟩dt . (11)

Thus the discrete contraction operator is a linear operator that

maps k–forms located on k–dimensional primal cells to (k − 1)–
forms located on (k − 1)–dimensional primal cells.

Our discrete contraction of differential 2–forms wrt to different

vector fields exhibit linear convergence to the analytically computed

solutions, both in L∞ and L2 norms. On 1–forms, the errors of

approximation decrease linearly in L2 norm and with slope 0.5 in

L∞ norm, see two examples in Figure 12.

Fig. 12. The contraction operator on a unit sphere (L) and a torus (R). For
the sphere we have used the set of jittered with r = 0.4 as in Figure 11,
and contracted the same forms as therein wrt vector field X = (−y, x, 0).
For the torus (R) we have contracted the differential forms of Figure 10
wrt vector field X = 2(−xz, −yz, x 2 + y2 −

√
x 2 + y2) on the same set

of meshes as therein. iX β L2 denotes the L2 error approximation of the
contraction operator on the 1–form β , whereas iX β Inf denotes the L∞

error approximation on β , and similarly for the 2–form ω .

3.5 The Lie Derivative
We define the discrete Lie derivative LX : Ck (S ) → Ck (S ) using
the Cartan’s magic formula and our discrete contraction operator:

LX α = iX dα + d iX α , α ∈ Ck (S ), k = 0, 1, 2. (12)

Unfortunately, the Leibniz product rule of the contraction operator

and Lie derivative with discrete exterior derivative is not satisfied

in general. Concretely

iX (αk ∧ βl ) = (iX αk ) ∧ βl + (−1)kαk ∧ (iX βl ),

LX (αk ∧ βl ) = (LX αk ) ∧ βl + αk ∧ (LX βl ),

holds only if α or β is a closed 0–form. Already in [N. 2003] the

author noticed that the Leibniz rule for Lie derivative might not hold

due to the discrete wedge product not being associative in general.

We confirm the observation in [M. et al. 2005] that the Leibniz rule

may be satisfied only for closed forms.

The Lie derivatives exhibit converging behavior on all tested

forms on regular meshes, planar and non–planar. However, the L2

error of approximation of Lie derivatives of 1– and 2–forms on

irregular meshes stays rather constant, see an example on a set of

regular versus jittered meshes on a unit sphere in Figure 13. In this

figure we can see that the L2 error of the Lie derivative of a 1–form
β and a 2–form ω on regular meshes decreases with slope −0.5,

whereas on very irregular meshes it stays constant (Fig. 13 top left).

Fig. 13. The influence of jittering on experimental convergence of discrete
Lie derivatives on a set of regular polygonal meshes on a sphere (L) and a set
of jittered meshes with vertex displacement by 0.4× shortest edge length
(R) – we use the same set of jittered meshes as in Figure 11. In the top row
we plot the errors in L2 norms and bellow in L∞ norm (log

10
scales). We

use the same forms and a vector field on the unit sphere as in Figure 12.

Fig. 14. Lie derivative used for advection of a color function (left). We encode
the function as a 0–form β and advect it using equation (19). The advected
function after 2000 iterations (center left), 4000 (center right), and 5000
iterations (right) with time step 10

−2.

3.6 The Codifferential Operator
Just like the codifferential on a Riemannian n–manifold, we define

our discrete codifferential operator on a k-form β , k > 0, by

δk β
k = (−1)n (k−1)+1 ⋆d ⋆ β .
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Thus in matrix form our codifferential operators read:

δ1 = −W−1V fv⊤ d1 AW1 R⊤,

δ2 = − AW1 R⊤ d0 W−1V fv⊤ .

IfM is a compactmanifoldwithout boundary or ifα or⋆β has zero
boundary values, then the codifferential is the adjoint operator of

the exterior derivative with respect to the L2–Hodge inner product:

(dα , β ) = (α ,δβ ) ∀α ∈ Ωk−1 (M ), β ∈ Ωk (M ). (13)

[M. and M. 2011] use this equation (13) to derive their discrete

codifferential operator on 1–forms by:

(δ1α , β ) = (α ,d0β ) for α ∈ C1, β ∈ C0

(δ1α )
⊤M0β = α⊤M1d0β

α⊤δ⊤
1
M0β = α⊤M1d0β

δ⊤
1
M0 = M1d0

δ1 = (M1d0M
−1
0

)⊤ = M−1
0
d⊤
0
M1,

where M0 and M1 are as in equations (5–6). This codifferential

reduces to the classical codifferential (e.g. [K. et al. 2013]) in the case

of a pure triangle mesh.

To compare the support domain of our and the classical DEC

codifferentials, see Figures 3 and 4. In Figure 15 we numerically

evaluate our discretization and compare it to the codifferential of 1–

forms of [M. and M. 2011]. In this example we choose trigonometric

forms but the convergence behavior for linear and quadratic forms

is the same.

Fig. 15. The influence of jittering on experimental convergence of codif-
ferentials of a 1–form β 1 = (sin(2x ) + cos( 1

2
))dx + (3 sin(x ) − cos(y ))dy

and a 2–form κ2 = (sin ( x+1
4

) + cos (1 − y
3
))dx ∧ dy on a set of planar

quadrilateral jittered meshes with vertex displacement 0.01× shortest edge
length (L) and 0.2× shortest edge length (R). Here δ β denotes the L2 error
of approximation of our codifferential of β to the exact, i.e. analytically
computed, solution, AWβ stands for the L2 error of the codifferential of
1–forms of [M. and M. 2011], δκ is the L2 error of our codifferential of the
2–form κ .

3.7 Discrete Laplacians
Laplace–deRham operator ∆ is an operator taking differential k–
forms to k–forms and is defined as

∆ = dδ + δd, (14)

where δ is the codifferential operator and d is the exterior deriva-

tive. We define our discrete Laplacian in the same manner, using

the codifferentials presented in the previous section. On 0–forms

(functions), it simplifies to ∆ = δd .
Our Laplace operator on 0–forms is linearly precise, i.e., it is zero

on linear forms in the plane. In Figure 16 we depict experimental

convergence of our discrete Laplacian on trigonometric 0–forms

and we compare it to the discrete Laplacian on general polygonal

meshes of [M. and M. 2011] on two sets of jittered meshes. The

experimental convergence behavior observed is the same for other

kinds of 0–forms.

Fig. 16. The discrete Laplacian operator of a trigonometric 0–form α 0 =

sin (x − 1) − cos (2y ) on two sets of jittered quadrilateral planar meshes,
with displacement r = 0.01 (L) and r = 0.2 (R). We use the same set of
meshes as in Figure 15. ∆α denotes our Laplacian and ∆α AW the Laplacian
of [M. and M. 2011].

4 APPLICATIONS
In this section we show some basic applications of our operators on

general polygonal meshes.

4.1 Implicit Mean Curvature Flow
One of the widely used methods for smoothing a surface is the

implicit mean curvature flow. If f is a discrete 0–form representing

vertex positions, then ∆f give us the direction and magnitude in

which we should move each point in order to smooth the given

mesh, see e.g. [K. et al. 2013, Section 6.6].

Let f0 denote the initial state and ft the configuration after a mean

curvature flow of some duration t > 0. We employ the backward
Euler scheme to calculate ft by solving the linear system:

(I − t∆) ft = f0,

where I is the identity matrix. To solve this system, we use the

mldivide algorithm of MATLAB.

In Figures 1 and 17 we show smoothing of general polygonal

meshes and compare our method to the one of [M. and M. 2011]

for various parameters λ that can be used to improve their results.

After testing also other meshes and several other parameters λ, time

steps, and number of iterations, we conclude that our results are
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visually comparable to the ones smoothed by method of [M. and M.

2011] with λ ∈ [1, 2], and that our scheme does not create as many

undesirable artifacts as theirs for λ = 0.

Fig. 17. Ears of Standford bunny (15k vertices) after applying our Laplacian
flow (L), Laplacian flow of [M. and M. 2011] with λ = 0 (C) and with
λ = 2 (R). We applied 100 iterations with time step t = 10

−5. There appear
degenerate polygons for λ = 0 (C).

4.2 Helmholtz–Hodge Decomposition
By the Hodge Decomposition Theorem (see e.g. [R. et al. 1988, Theo-

rem 7.5.3]), ifM is a compact oriented Riemannian manifold without

boundary and ωk ∈ Ωk (M ), then there exists a (k − 1)–form α ,
(k + 1)–form β , and a harmonic k–form γ (γ is harmonic iff ∆γ = 0)

such that

ω = dα + δβ + γ . (15)

Furthermore, dα , δβ , and γ are uniquely determined.

If instead of forms, we think about a sufficiently smooth vec-

tor field X = (ω1)♯ , where ♯ is the sharp operator, then an anal-

ogous Helmholtz theorem states that any vector field X can be

decomposed into an irrotational vector field (corresponding to dα ),
a divergence–free component (analogous to δβ), and a both irrota-

tional and divergence–free vector field (corresponding to γ ). Thus
the equation (15) is also referred to as to Helmholtz–Hodge decom-

position (HHD).

If X is a divergence–free vector field (also known as solenoidal),

we can find its so called two–component HHD, i.e., decompose X
into a rotational and irrotational part. In terms of differential forms,

for ω1 = X ♭
we get

ω = δβ + γ , (16)

where γ is a harmonic 1–form and thus γ ♯ is an irrotational vector

field, and (δβ )♯ is a rotational vector field. The two–component

HHD is used for decomposition of vector fields of incompressible

flows.

We use our codifferential operator to find our discrete two–
component Helmholtz–Hodge decomposition as in equation

(16) by performing these steps:

(1) Discretize a given vector field X with discrete flat operator

(11) and define discrete 1–form ω1 = X ♭
.

(2) Find the 2–form β by solving equation dδβ = dω.
(3) Set γ = ω − δβ .

We can then map the discrete 1–forms δβ and γ to discrete vector

fields by applying discrete sharp operator ♯ defined on an 1–form

ϵ and per a vertex v by:

ϵ♯ (v ) =
1

ρ (v )

∑
f ≻v

(
ϵ (e2)

|e2 |

nf × e1

|e1 |
−
ϵ (e1)

|e1 |

nf × e2

|e2 |

)
, (17)

Fig. 18. The discrete sharp operator on a vertex v restricted to a face f . Let
X ♭ be a 1–from computed by applying a discrete flat operator on a constant
vector field X , then the orthogonal projection of X on the unit direction

vector of the edge e1 equals ⟨X ,e1⟩
|e1 |

=
X ♭ (e1 )
|e1 |

. Similarly the orthogonal

projection of X on the unit direction vector of e2 is
⟨X ,e2⟩
|e2 |

=
X ♭ (e2 )
|e2 |

. Recon-

structing the vector fieldX fromX ♭ , i.e., applying the sharp operator onX ♭

as in equation (17), yields vector (X ♭ )♯ |f =
⟨X ,e2⟩
|e2 |

nf ×e1
|e1 |

−
⟨X ,e1⟩
|e1 |

nf ×e2
|e2 |

that has the same direction as X and approximates its magnitude.

where ρ (v ) is the number of faces adjacent to v . Further e1, e2 ≺ f ,
e1 is the edge which endpoint is v , e2 is the edge with v as the

starting point, see Figure 18, and nf is a unit normal vector of the

face f = (v0, . . . ,vn−1) computed as:

nf =
n̂f

|n̂f |
, n̂f =

1

2

n−1∑
j=0

(vj ×vj+1), indices modulo n.

In Figure 19 we give an example of our HHD of an incompressible

vector field on a general polygonal mesh of a torus. In Figure 20

we then employ the HHD to remove vortices of an arbitrary vector

field.

4.3 Lie Advection
The Lie derivative finds its application in dynamical systems. In

computer graphics the Lie advection of differential forms (including

scalar and vector fields) is used for tasks ranging from fluid flow

simulation [A. 2007] to authalic parametrization of surfaces [G. et al.

2011].

In Figure 21 we employ our discrete Lie derivative to perform a

simple discrete Lie advection of a tangent vector field Y discretized

as a 1–form β1 = Y ♭
by a tangent vector field X = (−y,x , 0) on a

torus azimuthally symmetric about the z axis. Y is a vorticial vector

field given as

Y = −∇ exp *
,
−

(
x +
√
2

2

)
2

−

(
y −
√
2

2

)
2

−

(
z −

1

2

)
2+
-
× n, (18)

where n is the unit normal vector of the torus. To advect the 1–form

β by the flow of X , we discretize β and store its values on edges of

the mesh, as usual, and denote this initial state as β0. We then iterate

over our discrete solutions using a simple forward Euler method:

βk+1 = βk − t LX βk , k = 0, . . . , (19)
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Fig. 19. HHD of a solenoidal vector fieldX on a torus azimuthally symmetric
about the z axis and centered at the origin (a general polygonal mesh with
20k vertices). The decomposed vector field is X = XH + XR , where XH =

(−y, x, 0) is a harmonic field on the torus, andXR is a rotational vector field
given by XR = ∇(exp(−(x −x1)2 − (y −y1)2 − (z −z1)2)−exp(−(x −x2)2 −
(y−y2)2− (z−z2)2))×n, where n is the unit normal vector of the torus. We
have chosen the center of CCW rotation (x1, y1, z1) = ( 3

2
, 0, 0), where the

vector potential β ♯ reaches its maximum, and the center of CW rotation at

(x2, y2, z2) = ( −
√
2

2
,
√
2

2
, 1

2
), where the vector potential β ♯ has its minimum

(is negative). Our discrete decomposition gives approximate expected results.
In the top left corner is the original vector field X , the harmonic part γ ♯ is
shown in the top right, in the bottom left is the rotational part (δ β )♯ . In
the bottom right we also depict the vector potential β ♯ , computed by our
algorithm, in pseudocolors varying approximately from -0.3 to 0.3.

Fig. 20. HHD applied to remove the vortices of a vector field ω on a mesh
of Spot (model created by Keenan Crane). On the left is the original vector
field ω = δ β + ϕ , on the right is its curl–free part ϕ .

where t is the time step, k is the number of iterations, and each

LX βk is computed using our discrete Lie derivative (12). Note that

the vector field X is also discretized as a discrete 1–form and its

values are stored on edges of the mesh.

The Lie derivative can be employed also for advection of a func-

tion by a vector field. In Figure 14 we advect a color function on a

mesh of a vase.

5 FUTURE WORK
Applying our operators in geometry processing tasks is a work in

progress. E.g., design of tangent vector fields on general polygonal

meshes using HHD or vector field processing with Lie derivative is

an object of our ongoing research.

Further, we know that it is possible to define a discrete wedge

product on tetrahedrons and 3–dimensional (topological) cubes in a

way that it satisfies the defining properties of a wedge product such

as the bilinearity, Leibniz product rule, and skew–commutativity.

Therefore we want to examine the possibility to extend the calculus

we have just presented from 2–dimensional to (intrinsically) 3–

dimensional manifolds, that is:

• Define DEC operators on 3–dimensional cubical and simpli-

cial complexes, these shall include except the discrete wedge

product also the Hodge star operator. Once defined these,

we could derive a discrete contraction operator, a Lie de-

rivative, codifferential, and Laplacian, just as we did in the

2–dimensional case.

• Look for a definition of a discrete wedge product on general

3–dimensional polytopes other than tetrahedras and cubes or

at least find a subset of polytopes that allow for such a wedge

product that would satisfy the Leibniz product rule and other

properties. Then possibly follow the workflow above.

6 CONCLUSION
Geometry processing with polygonal meshes is a new developing

area, maybe one of the first steps and also the most influential ones

has been the definition of discrete Laplacians on general polygonal

meshes by [M. and M. 2011]. Our objective was to continue in

this venue by presenting a novel discretization of several operators

and operations that act directly on general polygonal meshes and

are compatible with each other. We thus extend further the DEC

framework from simplicial and cubical setting to general polygonal

case.

Our aim has been to give a concise yet complete exposition of

a primal–primal discrete exterior calculus on general polygonal

meshes, including rigorous theory but also simple practical exam-

ples. Furthermore, we have tested and discussed empirical conver-

gence of our schemes on regular vs. irregular planar and curved

meshes. We have then shown applicability of our approach on sev-

eral tasks, ranging from Helmholtz–Hodge decomposition to Lie

Advection.

We believe that the generality of our framework will make it

a useful tool in many geometry processing tasks and will inspire

further research in the area.
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