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Abstract

In the first part of the thesis, we propose an adaptation of Yau’s Relative Entropy Method
to the problem of proving fluctuations around the hydrodynamic limit for interacting particle
systems. The method is applied to a reaction-diffusion type model introduced in [dMFL]. For
this model, we establish bounds on the relative entropy between the law of the process and an
approximating product measure, in any dimension. In dimension 1, we give a complete proof of
the convergence of the fluctuation field to a generalized Ornstein-Uhlenbeck process. The proof
makes use of mass transport notation and of concentration inequalities for subgaussian random
variables.

In the second part, we establish an invariance principle for a random walk driven by simple
exclusion process in one dimension. The walk has a drift to the left (resp. right) when it
sits on a particle (resp. hole). The environment starts from equilibrium and is speeded up
with respect to the walker. After a suitable rescaling, the random walk converges to a sum
of a Brownian motion and a Gaussian process with stationary increments, independent of the
Brownian motion. The proof technique approximates additive functionals of the environment
process by additive functions of the exclusion process, putting the problem in the framework of
[GJ].
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Chapter 1

Introduction

1.1 The Relative Entropy Method

The present thesis consists of two new results in the area of scaling limits of interacting
particle systems, Theorem 2.1.1 and Theorem 3.1.3. The main tool in the proof of the first result
is an inequality which is of independent interest, Theorem 2.2.1 . The first result establishes
the fluctuations around the hydrodynamic limit for a reaction-diffusion process, starting from
a measure which is not invariant for the dynamics. The second result is an invariance principle
for a random walk on a random environment.

Both results are limit theorems at the fluctuation level for systems out of equilibrium. In the
random walk model, the key step to the proof was an estimate on the relative entropy between
the law of the process and the starting (non-invariant) measure, Theorem 3.2.1. We suspected
that a similar estimate could also hold for other models. An entropy estimate is the core to
a widespread method for proving hydrodynamic limits, Yau’s Relative Entropy Method. Since
we had better estimates, a natural goal was to adapt this method to the fluctuation setting.
The easiest model, from a technical point of view, was the reaction-diffusion model introduced
in [dMFL]. In Chapter II, we establish entropy estimates in all dimensions and give a complete
proof, in dimension 1, that the density fluctuation field converges.

We begin with an overview of Yau’s strategy for proving hydrodynamic limits. The reader
can see the original article [Y] or [KL], Chapter 6, for a more detailed exposition.

Consider an interacting particle system on the d-dimensional torus Tdn with an infinitesimal
generator Ln that acts on functions f : Tdn → R as

Lnf(η) := n2
∑
x

rx(η)[f(ϕx(η))− f(η)],

where the rates rx are non-negative and ϕx is a local function. For example, in the 1d exclusion
process rx(η) = 1 and ϕx(η) = ηx,x+1 (exchanges occupations at neighbouring sites); in Glauber
dynamics, ϕ(η) = ηx (flips the value of ηx).

Denote ηnt := ηtn2 . In several models, it is possible to prove that, for an adequate set of test
functions f : [0, 1]d → R,

lim
n→∞

n−d
∑
x∈Tdn

f
(x
n

)
ηnt (x) =

∫
[0,1]d

f(u)ρ(t, u) du (1.1.1)

in probability, where ρ is the solution of a certain PDE, called the hydrodynamic equation.
Let µnt be the law of ηnt . The first step of Yau’s method is to come up with a sequence of
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“approximating measures”, {νnt : t ≥ 0}n∈N, and to prove the following bound on the relative
entropy H(µnt |νnt ):

Lemma 1.1.1. ∂tH(µnt |νnt ) = o(nd). Therefore, if H(µn0 |νn0 ) = o(nd) then H(µnt |νnt ) = o(nd)
for all t ≥ 0.

Usually νnt is chosen to be the product measure associated to the profile ρ(t, ·) of the hydro-
dynamic equation. Thus, events that have small probability under νnt should also have small
probability under µnt . The second step is to prove (1.1.1) under the approximating law νnt .
When the νnt are product measures, the random variable n−d

∑
x∈Tdn f

(
x
n

)
ηnt (x) concentrates

around its mean, n−d
∑

x∈Tdn f
(
x
n

)
ρ
(
t, xn
)
. This assertion can be made more precise via large

deviation estimates or via concentration of measure inequalities. The point is: the hydrody-
namic limit follows from the combination of the estimate H(µnt |νnt ) = o(nd) and an estimate
on the rate of convergence in (1.1.1) under νnt . An improvement in the entropy estimate does
not immediately imply convergence of the fluctuation fields, but it is a step forward in this
direction.

For the reaction-diffusion model, we establish a bound on the relative entropy (with respect
to adequate product measures) of order 1 in dimension 1, order log n in dimension 2 and order
nd−2 in dimensions 3 and higher. These are improvements of the o(nd) bound required in the
Relative Entropy Method.

In the remaining of this introduction we lay down notation, establish some auxiliary results
and sketch the proof of Theorem 2.2.1.

Yau’s entropy inequality

We start with a general estimate on the entropy production. This is classical (see for example
[KL], p. 120 and p. 342), but we include the proof here for completeness and state it in the
form we are going to use, making explicit the appearance of the carré du champ operator in the
upper bound.

Before we state the inequality we need to introduce its setting. Let (Xt)t≥0 be a continuous
time Markov chain with state space Ω (finite) and infinitesimal generator L : RΩ → RΩ given
by

Lf(x) :=
∑
y∈Ω

r(x, y)[f(y)− f(x)],

for non-negative rates {r(x, y) : x, y ∈ Ω, x 6= y}. Let Γ the carré du champ operator associated
to L: for any f : Ω→ R,

Γf(x) :=
∑
y∈Ω

y 6=x

r(x, y)[f(y)− f(x)]2.

For t ≥ 0, let µt denote the law of Xt and νt be a probability measure on Ω, which we
think of as an approximation to µt.Let ν be a reference probability measure on Ω. Assume that
νt(x) > 0 and ν(x) > 0 for all x ∈ Ω and all t ≥ 0. Denote by ft and ψt the densities

ft(x) :=
µt(x)

νt(x)

ψt(x) :=
νt(x)

ν(x)
, for all x ∈ Ω and t ≥ 0.

2



Finally, denote by H(µt|νt) the relative entropy between the measures µt and νt:

H(µt|νt) :=

∫
ft log ft dνt.

Proposition 1.1.2 (Yau’s entropy inequality).

d

dt
H(µt|νt) ≤ −

∫
Γt
√
f t dνt +

∫
Lft −

d

dt
logψt dµt. (1.1.2)

Proof. For all g : Ω→ R, it holds 1∫
d

dt
(ψtft)g dν =

∫
ψtft Lg dν

Therefore

d

dt
H(µt|νt) =

d

dt

∫
ψtft log ft dν

=

∫
ft L log ft dνt +

∫
ψt

d

dt
ft dν

=

∫
ft L log ft dνt +

∫
d

dt
(ψtft)− ft(

d

dt
ψt) dν

The second integral is equal to −
∫
ft(

d
dtψt)ψ

−1
t dνt = −

∫
d
dt logψt dµt. It remains to show∫

ft L log ft dνt ≤ −Γ
√
ft +

∫
Lft dνt.

For that end, we expand L log ft and use the inequality a(log b − log a) ≤ 2
√
a(
√
b −
√
a).

We obtain ∫
ft L log ft dνt ≤ 2

∫ ∑
y∈Ω

r(x, y)
√
ft(x)

(√
ft(y)−

√
ft(x)

)
dνt(x). (1.1.3)

To finish, we use the identity 2
√
a(
√
b−
√
a) = −(

√
b−
√
a)2 + (b− a).

The integrand in (1.1.2) is, in the case of the reaction-diffusion model, 2 a polynomial of
degree two in the variables {ηx − ρ : x ∈ Tdn}. Thus, we need to estimate expectations of
quantities such as

∑
x∈Tdn(ηx − ρ)(ηx+ej − ρ) in terms of the carré du champ. Similar estimates

are needed in the proofs of the Boltzmann-Gibbs principle and the tightness of the fluctuation
fields. We do all the estimates in two steps: first, we replace each ηx by its mean on a box
around x and bound the error by the carré du champ, then we estimate the averaged polynomial
using the entropy inequality and concentration of measure estimates.

1This is another way of writing d
dt
Eν [g(Xt)] = Eν [Lg(Xt)].

2 For other systems, it will be a polynomial in the variables (τxω)(η) for some local function ω.
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Mass transport and flows

We think of telescoping sums as mass transport. The trivial identity

η0 − η` =
∑̀
j=1

ηj−1 − ηj

describes the movement of a point mass from 0 to ` in ` steps: at step j, mass 1 goes from j−1
to j. A less obvious identity (used in the proof of the Replacement Lemma) is

η0 −
η1 + · · ·+ η`

`
=

`−1∑
j=0

`− j
`

(ηj − ηj+1).

Here one spreads a unit mass at 0 uniformly along the interval {1, . . . , `} by sending mass 1
from 0 to 1, mass `−1

` from 1 to 2, mass `−2
` from 2 to 3 and so on. In d dimensions, we have

a similar identity. Let ` ∈ N and Λ` := {y ∈ Zd : 0 ≤ y ≤ `}. In Lemma 1.1.4 below, we find a
function φ : Λ` → R that satisfies 3

η0 −
1

`d

∑
y∈Λ`

ηy =

d∑
j=1

∑
0≤y≤`

φy(ηy − ηy+ej )

and such that
∑

y φ
2
y is small.

In the remaining of the introduction, we formalize the notion of mass flow and prove the
lemma that we need in the entropy estimate.

Definition 1.1.3. Given two measures µ and ν on the finite set G, we say that φ : G×G→ R
is a flow connecting µ and ν, and write φ : µ 7→ ν, if

(i) φ(x, y) = −φ(y, x) for all x, y ∈ G;

(ii)
∑

y∈G φ(x, y) = ν(x)− µ(x).

We call support of φ the set of oriented edges {(x, y) ∈ G × G : φ(x, y) 6= 0}, and refer to as
cost or norm of φ the quantity ‖φ‖2 :=

∑
x,y∈G φ(x, y)2.

Our goal is to construct a flow in a box of Zd that connects the point mass to the uniform
distribution at small cost.

Theorem 1.1.4 (Flow Lemma). Let d and ` be positive integers. Let Λ be a box of size ` in
Zd. To fix the notation, we can take Λ := {1, . . . , `}d.

Then, there exists a flow φ : Zd × Zd → R that connects the point mass at (1, . . . , 1) to the
uniform distribution in Λ and is supported in nearest neighbour edges such that 4

‖φ‖2 =


O(`) if d = 1;

O(log `) if d = 2;

O(1) if d ≥ 3.

In addition, there is a flow that connects the point mass at zero to the uniform distribution in
Λ whose cost is of the same order.

3 As usual, ej denotes the j-th canonical basis vector: ej is the vector in Zd whose j-th coordinate is 1 and
the remaining coordinates are 0.

4By ‖φ‖2 = O(`), we mean that ‖φ‖2 ≤ C` for some constant C that does not depend on `. Similarly for the
other two bounds.
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Remark 1.1.5. The concept of mass flow on a graph is closely related to that of current flow in
electric networks. Indeed, consider an electric network where every edge has resistance 1. If a
and z are distinct nodes of that network then a unit current flowing from a to z is also a mass
flow connecting the point mass at a to the point mass at z.

In the remaining of the present subsection, we are going to prove Theorem 1.1.4. Our proof
is going to be constructive. In one dimension, one can take

φ(k, k + 1) :=
`− k
`

1{0 ≤ k < `}. (1.1.4)

In higher dimensions, we will not give an explicit formula for the flow, but will build it
instead by gluing together several copies of (1.1.4).

Consider then d ≥ 2. We begin by introducing some notation. Let

Λk := {(x1, . . . , xd) ∈ Zd : 1 ≤ xj ≤ k for all j ≤ d},

and denote by UA the uniform distribution on the finite set A, that is, the measure that assigns
mass |A|−1 to every point of A. Our goal is to connect UΛ` to UΛ1 .

Lemma 1.1.6. Let k ∈ {2, . . . , `}. There exists a mass flow φk with support in the nearest-
neighbour edges of Λk such that

1. φk : UΛk 7→ UΛk−1
;

2. φk ≤ d
(

2
k

)d
.

Before we prove the lemma, let us use it to prove Theorem 1.1.4. Notice that the mass flow
defined by

φ :=
∑̀
k=2

φk,

connects UΛ` to the point mass at (1, . . . , 1) (this can be checked directly from Definition 1.1.3).
It remains to estimate the norm of φ. Take a nearest-neighbour edge in Λ`, say (x, x− ei),

where x ∈ Λk \ Λk−1, i ≤ d and k ≤ `. Notice that if j < k then φj(x, x− ei) = 0 . Therefore

|φ(x, x− ei)| ≤
∑̀
j=k

|φj(x, x− ei)| ≤
∑̀
j=k

d2d

jd
≤ d2d

d− 1

1

(k − 1)d−1
.

(the second inequality used Lemma 1.1.6).
Since there are less than kd−1 points in Λk \ Λk−1,

‖φ‖2 ≤ cd
∑̀
k=2

kd−1

(
1

kd−1

)2

,

for cd = 21+d/(d− 1). This expression is of order log ` when d = 2 and order 1 when d ≥ 3.

Proof of Lemma 1.1.6: For each j ∈ {0, 1, . . . , d}, let Aj be the set of those (x1, . . . , xd) ∈ Λk
for which exactly j entries are equal to k. Thus, Ad is the corner (k, . . . , k); Ad−1 consists of d
line segments of length k − 1; Ad−2 consists of

(
d
2

)
squares of side length k − 1, and so on. The

Aj are pairwise disjoint, A0 = Λk−1 and
⋃d
j=1Aj = Λk \ Λk−1.
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For each j ∈ {0, 1, . . . , d}, let mj := UΛk(Aj). Our strategy is to build flows ψd, ψd−1, . . . , ψ1

whose supports are pairwise disjoint and such that

ψj : (md + · · ·+md−j)UAj 7→ (m0 + · · ·+md−j−1)UAj−1

and |ψj | ≤ 2dk−d for all j ∈ {1, . . . , d}. The lemma is then proved by taking φk = ψd+ · · ·+ψ1.
It is helpful to think of this construction as evolving in time. First, Ad spreads its mass

uniformly along Ad−1. Then Ad−1 spreads its mass (plus the amount it got from Ad) across
Ad−2. Then Ad−2 spreads its mass (plus the amount it got from Ad−1) uniformly across Ad−3,
and so on.

Let x ∈ Aj and m = (m0 + · · · + mj)|Aj |−1 its mass at step j. Notice that m ≤ 2dk−d.
Then x has exactly j coordinates equal to k. It is adjacent to j line segments of Aj+1. Using
the one-dimensional flux (1.1.4), we can spread mass m/j at x uniformly along each of these
segments. Call ψxj the superposition of these j point-to-line flows. Notice that the {ψxj : x ∈ Aj}
have disjoint supports and that ψxj ≤ m ≤ 2dk−d. We can define ψj :=

∑
x∈Aj ψ

x
j .

Corollary 1.1.7. Let ` ∈ {1, 2, . . . , n}. Let p` : Zdn → [0, 1] be the uniform distribution in Λ`,

p`(y) = `−d1{y ∈ Λ`}.

and define, for x ∈ Zd,

q`(x) =
∑
y∈Zd

p`(y)p`(x− y).

Then there exists a mass flow
ψ` : δ0 7→ q`

with support in Λ2`+1 and ‖ψ`‖2 ≤ ‖ψ`‖2, where φ` : δ0 7→ p` is the flow constructed in Theorem
1.1.4.

Proof. One can take, for x ∈ Zd and j ∈ {1, . . . , d}.

ψ`x,x+ej :=
∑
y∈Zd

p`(y)φ`x−y,x−y+ej .

1.2 The reaction-diffusion model

The dynamics is a superposition of symmetric exclusion on the discrete torus and a birth-
and-death (also called Glauber) dynamics. Its generator acts on functions f : Tn → R as

Lnf := n2
∑
x∈Tn

[f(ηx,x+1)− f(η)] +
∑
x∈Tn

cx(η)[f(ηx)− f(η)],

where {cx(η) : x ∈ Tn} is a family of translation invariant local functions (that is, f(x, η) =
f(0, τxη) for all x ∈ Tn and η ∈ {0, 1}Tn).

The model was introduced in [dMFL]. In this article, the authors proved that the hydrody-
namic equation is a heat equation with a forcing term, given by F (ρ) :=

∫
cx(η) dνρ(η).{

∂tρ(t, u) = ∂uuρ(t, u) + F (ρ(t, u)) for all t ∈ [0, T ], u ∈ T
ρ(0, u) = ρ0(u) for all u ∈ T.
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In the same article, the authors prove convergence of the density fluctuation field under the
stationary measure.

We chose this model as a first test for our approach to non-equilibrium fluctuations. The
birth-and-death rates cx(η) are chosen so that the product measure νρ is not invariant for the
dynamics. However, for a conveniently chosen value of the density, the product measure turns
out to be a good approximation (as measured by the relative entropy) to the evolution of the
system.

The study of large deviations is more recent. We point the reader to [FLT] and [LT] for this
problem.

1.3 Slowed random walk over symmetric exclusion

Informal description of the model, Law of Large Numbers

In the second part of the thesis, we study a model of random walk in random environment
(RWRE) in one dimension. The environment is a simple symmetric exclusion process, and the
walker jumps at times given by a Poisson process independent of the environment. If, at the
moment of jumping, the walker stands on a particle, it jumps with higher probability to its left
neighbour than to its right neighbour (say the jump rates are β to the left and α to the right,
0 < α < β). The rates are reversed if the walker is on a hole at the moment of jumping (the
rates are then β to the right and α to the left). We assume that the exclusion process starts at
equilibrium and look at the scaling where the environment is spedeed up by n2 and the walker
by n (see (3.1.2) for the infinitesimal generator). The model was introduced in [AFJV] and
[AJV], where the authors proved a law of large numbers and a large deviation principle.

Denoting by xnt the position of the random walk at time t and by ρ ∈ (0, 1) the initial density
of the environment (precise definitions in Section 3.1), [AFJV] proves

lim
n→∞

xnt
n

= (β − α)(1− 2ρ) in probability. (1.3.1)

Their result conforms to intuition: since the environment moves much faster than the random
walker, one expects that it has plenty of time to mix between one jump and the next. Therefore
the walk should behave, in the limit, as if the environment were refreshed after each jump. The
asymptotic speed would then be

(ρα+ (1− ρ)β)− (ρβ + (1− ρ)α)) = (β − α)(1− 2ρ).

In other words: at the level of the law of large numbers, the random walk does not feel the
influence of the random environment. It is natural, then, to ask about a central limit theorem.
It turns out that at the level of fluctuations the random environment does influence the limiting
process. Our result says that the sequence of processes{

xnt − (β − α)(1− 2ρ)nt√
n

: t ≤ T
}
n∈N

converges to the sum of a Brownian motion and a Gaussian process with stationary increments,
independent of the Brownian motion. When ρ = 1/2 this Gaussian process is a fractional
Brownian motion of Hurst exponent 3/4. When ρ 6= 1/2 we do not have qualitative information
about the process, only a formula for the variance of its increments, see (3.1.7).

For random walks in static random environments, several scaling limit results are known,
see for example [Z]. The study of dynamical random environments is more recent. Most results
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require good mixing properties of the environment. We point the reader to [A1] and the refer-
ences therein for an overview. In the setting of “slow mixing” random environments, no general
techniques are known. Ours is one of the several recent works that use a well-studied Markov
chain as random environment, thereby allowing the use of model-specific techniques to obtain
information about the random walk. See [AT] for a discussion of these issues, for simulations
and for conjectures. The work [A2] also uses the exclusion process as random environment. In
the results we mentioned, the scaling limit is Brownian motion, what does not happen in our
case.

The tools we use in our proof come from the field of hydrodynamic limits. In fact, our
theorem can also be viewed as a variation on the problem of the tagged particle. The seminal
article on this problem is [KV], where a powerful method for establishing scaling limits of tagged
particles was introduced. The method considers the environment as seen from the particle,
ξt(x) := ηt(x+xt) (ηt is the particle system and xt is the tagged particle) and writes the position
of the tagged particle as a martingale plus an integral term of the form

∫ t
0 f(ξs) ds, for a suitable

function f (this is called an additive functional). The martingale part can be handled by the
Martingale Functional Central Limit Theorem (MFCLT), see Theorem 3.1.5. The problem
reduces, therefore, to studying the scaling limit of the additive functional. [KV] gives sufficient
conditions to approximate this additive functional by a martingale, thus establishing, when the
conditions are met, Brownian motion as the scaling limit of the tagged particle. We point the
reader to [KLO] for a comprehensive exposition of the martingale approximation technique. See
also [A2] for an application of the technique in the context of RWRE. In our model, the additive
functional does not converge to Brownian motion. It is, instead, similar to the functionals
studied in [GJ].

Our proof faces two main difficulties. The first is that we don’t know the invariant measures
of the environment process. To handle this problem, we prove an estimate on the relative
entropy between the environment process at time t and the initial (not invariant) measure νρ.
This estimate tells us that the Bernoulli product measure, though not invariant, is close enough
to invariant for the usual hydrodynamic limit techniques to work. Another challenge is to find
the law of the limiting process. Recall that we start by writing the (centered and rescaled)
position of the random walk as Mn

t +Ant , where Mn
. is a martingale that converges to Brownian

motion and An. is an additive functional. In the aforementioned tagged particle results, it is
possible to approximate An. by a martingale Nn

. and use the MFCLT to show that Mn
. + Nn

.

converges to Brownian motion. This does not work in our case. The solution is to approximate,
for each t > 0, Ant by Nn

t,t, where {Nn
s,t : s ≤ t} is a martingale. Moreover, we can show that

Nn
.,t is (asymptotically) orthogonal to Mn

. and use an argument based on the MFCLT to show
that the limiting processes M. (Brownian motion) and A. are independent.

Invariance Principle: Sketch of the Proof

First Step: Martingale decomposition
Recall that xnt denotes the position of the random walk at time t, when the exclusion process

runs at speed n2 and the walk at speed n. We analyse the process by means of the environment
as seen by the walker, which is a process {ξnt : t ≥ 0} with state space {0, 1}Z. This process is
defined by ξnt (x) := ηnt (x+ xnt ) for all x ∈ Z. Then

xnt − (β − α)(1− 2ρ)nt√
n

= Mn
t + 2

√
n(β − α)

∫ t

0
ξns (0)− ρ ds, (1.3.2)

where Mn
t is a martingale with predictable quadratic variation given by 〈Mn

t 〉 = 2(β − α)t.
To see why this is reasonable, notice that, at time s, the walker may jump to the right at

rate nβ(1− ηns (xnt )) +nαηns (xns ) = nβ−n(β−α)ξns (0). Therefore, the moments where the walk

8



jumps to the right form a Poisson process in R+ with (random) intensity n(β−(β−α)ξns (0)) ds.
The number of jumps to the right up to time t can thus be written as a martingale Mn,+

t plus
n
∫ t

0{β − (β − α)ξns (0)) ds. Besides, 〈Mn,+
t 〉 is also equal to n

∫ t
0{β − (β − α)ξns (0)) ds, because

the jumps have size 1. An analogous statement holds for the process that counts the number
of jumps to the left. After subtracting, centering and scaling we arrive at (1.3.2).

For a rigorous proof, one can write down the Dynkin martingales for the N×{0, 1}N-valued
Markov chains (Nn,+, ξn) and (Nn,−, ξn), whereNn,+

t counts how many times the walker jumped
to the right up to time t. This martingale decomposition is standard in the interacting particle
systems literature, in the context of tagged particle problems. The interested reader can consult
[L], Proposition 4.1.
Second Step: Replacement Lemma

Convergence of the (predictable) quadratic variations to a linear function is enough to ensure
that the sequence Mn in (1.3.2) converges to Brownian motion. Therefore, we only need to deal
with the additive functional. The main step in the proof is the so-called replacement lemma,
where we estimate the error in the approximation of ξns (0) by (εn)−1(ξns (1) + · · ·+ ξns (εn)).

In Section 3.3), we prove that the sequence of additive functionals is tight and that its limit
points are continuous trajectories.

In the next display we summarize the steps in the characterization of the limit points of∫ t
0

√
n(ξns (0)−ρ) ds. We use the symbol “≈” to mean that both sides have the same distributional

limit as first n → ∞ then ε → 0. The first step is a consequence of the Replacement Lemma,
and Y n denotes the density fluctuation field of the simple symmetric exclusion process, see
(3.1.4).

∫ t

0

√
n(ξnt (0)− ρ) ds ≈

√
n

∫ t

0

(ξns (1)− ρ) + · · ·+ (ξns (εn)− ρ)

εn
ds

=
√
n

∫ t

0

(ηns (xns + 1)− ρ) + · · · (ηns (xns + εn)− ρ)

εn
ds

≈
∫ t

0
Y n
s

(
ε−11

[
xns
n
,
xns
n

+ ε

])
ds.

By the Law of Large Numbers (1.3.1), the last integral has the same limit as∫ t

0
Y n
s

(
ε−11 [v(ρ), v(ρ) + ε]

)
ds,

where v(ρ) := (β − α)(2ρ− 1) is the asymptotic speed of the random walk.
We are thus in the framework of [GJ], where the authors prove that the additive functional

above converges (as first n→∞ then ε→ 0) to a Gaussian process with stationary increments,
which, in the case where ρ = 1/2, is a fractional Brownian motion of exponent 3/4.
Third Step: Independence

We used different arguments for the convergence of each term in (1.3.2) and it is not obvious
what the joint law of their limits should be. We prove that they are independent, based on the
following fact: martingales that do not jump together are orthogonal and their joint limit has
independent marginals. The martingale Mn

t in (1.3.2) jumps only when the random walk does,
whereas the (limit of) the additive functional depends only on the underlying exclusion process.
Therefore, we need to approximate the additive functional by a martingale orthogonal to Mn.
We know, however, that the limit of of the additive functional is not Brownian, therefore it is
not possible to approximate it by a martingale.

The trick to overcome this difficulty is to use a different approximation for each t. That is,
we build a sequence {Nn

s,t : s, t ∈ [0, T ]}n∈N of stochastic processes such that, for each t ∈ [0, T ],

9



the processes Nn
t,t and

√
n
∫ t

0 (ξns (0)− ρ) ds are close and such that {Ns,t : s ≤ t} is a martingale
orthogonal to Mn.

To find a good candidate for Ns,t, we write down Dynkin martingales for the fluctuation
process. For smooth test functions H : [0, T ]×R→ R, the process {Nn

t (H) : t ∈ [0, T ]}, defined
by 5

Nn
t (H) := Y n

t (Ht)− Y n
0 (H0)−

∫ t

0
n2Lexs (Y n

s (Hs)) ds (1.3.3)

is a martingale. In addition, n2Lexs (Y n
s (Hs)) ≈ Y n

s ((∂s + ∆)Hs). For a fixed t ∈ [0, T ], we take
as test function the solution Ht of{

(∂s + ∆)Ht(s, u) = ε−11 [v(ρ)s, v(ρ)s+ ε] for all s ∈ [0, t], u ∈ R
Ht(t, u) = 0 for all u ∈ R.

Using Ht as test function in (1.3.3), we get that the process {Nn
s,t : s ∈ [0, t]}, defined as{

Nn
s,t := Y n

s (Ht
s)− Y n

0 (Ht
0)−

∫ s

0
n2Lexr (Y n

r (Ht
r)) dr : s ∈ [0, t]

}
is a martingale. Notice that it jumps only when the exclusion process jumps, and that

Nn
t,t ≈ −Y n

0 (Ht
0)−

∫ t

0
Y n
r

(
ε−11 [v(ρ)r, v(ρ)r + ε]

)
dr.

As we have seen in the Second Step, the Replacement Lemma (Theorem 3.2.3) and the Law
of Large Numbers 1.3.1 imply that the second term of this sum is a good approximation to√
n
∫ t

0 (ξnr (0)− ρ) dr.

5We denote by Ht the function u 7→ H(t, u).
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Chapter 2

Non-equilibrium fluctuations for a
one-dimensional reaction-diffusion
model

2.1 Presentation of the model, statement of the fluctuations
theorem and sketch of the proof

Fix T > 0 and n ∈ N. Let Tn = Z/nZ. We name reaction-diffusion process the Markov
Process {ηnt : t ∈ [0, T ]} with state space {0, 1}Tn and infinitesimal generator Ln, which we
write down below. The generator acts on functions f : Tn → R as

Lnf(η) := n2
∑
x∈Tn

[f(ηx,x+1)− f(η)] +
∑
x∈Tn

[c+
x (η)(1− ηx) + c−x (η)ηx] · [f(ηx)− f(η)]

:= n2Lexf(η) + Lrf(η).

(2.1.1)

We are going to work with the rates c−x (η) = 1 and c+
x (η) = 1 + bηx−1ηx+1. This is one of

the simplest choices for which Bernoulli product measures are not invariant for the dynamics.
The hydrodynamic limit was studied in [dMFL]. If the initial distribution ηn0 is associated 1

to a smooth profile u0 : R→ [0, 1], then the empirical measure 2 converges to the solution of{
∂tu(t, y) = ∂2

yu(t, y) + F (u(t, y)),

u(0, y) = u0(y).

In the above equation, F (m) = Eνm [c+
0 (η)(1− η0) + c−0 (η)η0]. For our choices of c+

x and c−x , we
have F (m) = (1 + bm2)(1 −m) −m. Notice that there is some ρ ∈ (0, 1) for which F (ρ) = 0.
We take νρ as the starting measure. Notice that none of the product measures {νm : m ∈ [0, 1]}
is invariant. 3 We expect the product measure associated to the hydrodynamic equation to be
a reasonable approximation to the distribution of the system.

Theorem 2.1.1. Let the reaction-diffusion process {ηnt : t ∈ [0, T ]} with generator given by
(2.1.1) start from the product measure νρ, where ρ satisfies Eνρ [c+

0 (η)(1 − η0) + c−0 (η)η0] = 0.

1Meaning that the random variables {ηn0 (x) : x ∈ Tn} are independent and P(ηn0 (x) = 1) = u0( x
n

).
2The empirical measure is the random measure in Tn induced by the process ηn, regarded as a particle system

in {0, 1
n
, . . . , n−1

n
} where each particle has mass 1

n
. Formally, we set πnt := 1

n

∑
x∈Tn

ηnt (x)δ x
n

.
3One can verify, for instance, that

∫
Ln(η0η1) dνm 6= 0 for all m. Notice, however, that F (ρ) = 0 implies∫

Lnη0 dνρ = 0.
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Define the density fluctuation field as the process {Xn
t : t ∈ [0, T ]} that acts on smooth functions

f : T→ R as

Xn
t (f) :=

1√
n

∑
x∈Tn

f
(x
n

)
(ηnt (x)− ρ).

Then, as n → ∞, the sequence Xn converges, with respect to the J1-Skorohod topology of
D[0,T ]H−2, to the weak solution of the infinite dimensional Ornstein-Uhlenbeck equation

dXt = (∆− (2 + bρ(2− ρ)))Xt dt+∇dMt.

That is: for every smooth f : T→ R, the processes

Mt(f) := Xt(f)−X0(f)−
∫ t

0
Xs(∆f − (2 + bρ(2− ρ))f) ds (2.1.2)

and
Nt(f) := Mt(f)2 − 2tχ(ρ) ‖∇f‖2L2(T) (2.1.3)

are martingales with respect to the filtration Ft := σ{Xs(g) : s ≤ t and g ∈ C∞(T)}.

There is a general framework for proving convergence theorems such as Theorem 2.1.1, but
each model presents its own challenges. Now we lay out this general framework. The remaining
chapters deal with the model-specific parts of the proof.

Step 1: Martingale decomposition and convergence of the martingale part
Let f : T→ R be a smooth function. Define the process {Mn

t (f), t ∈ [0, T ]} by

Xn
t (f) = Xn

0 (f) +Mn
t (f) +

∫ t

0
LnX

n
s (f) ds. (2.1.4)

then Mn(f) is a martingale. We also have an explicit formula for its quadratic variation, proved
in Section 4.1.

Lemma 2.1.2 (Quadratic Variation). The predictable quadratic variation of Mn(f) is given by

〈Mn
t (f)〉 =

∫ t

0
n2
∑
x∈Tn

1

n

{
f

(
x+ 1

n

)
− f

(x
n

)}2

(ηx(s)− ηx+1(s))2 ds

+

∫ t

0
cx(η(s))

∑
x∈Tn

1

n
f
(x
n

)2
ds,

where cx(η) = ηx + (1− ηx)(1 + bηx−1ηx+1). Moreover,

lim
n→∞

〈Mn
t (f)〉 = 2t χ(ρ)‖∇f‖2L2(T).

Therefore, a direct application of the Martingale Functional Central Limit Theorem (a good
reference is [W], Theorem 2.1) gives convergence of the sequence {Mn

t : t ∈ [0, T ]} with respect
to the J1-Skorohod topology of D[0,T ]R to a Brownian motion of covariance 2χ(ρ)‖∇f‖2L2(T).

Step 2: Boltzmann-Gibbs Principle
Fix f : T→ R smooth. Assume that we have tightness for the sequence {Xn

t : t ∈ [0, T ]}n∈N.
If the term LnX

n
s (f) inside the integral in (2.1.4) were a function of Xn, say Xn

s (Bf) for some

12



operator B, then we could pass to the limit and arrive at a martingale characterization of the
limit points. What we are going to show is that we can replace LnX

n
t (f) by a function of Xn,

asymptotically.

Proposition 2.1.3. Let f : T→ R be a smooth funtion and δ > 0. Then, for all t ∈ [0, T ],

lim
n→∞

P
(∣∣∣ ∫ t

0
LnX

n
s (f)−Xn

s (∆f − (2 + bρ(2− ρ))f) ds
∣∣∣ > δ

)
= 0 (2.1.5)

The proof is in Section 2.3. The hardest part is to show that functionals of the form∫ t
0 n
−1/2

∑
x∈Tn ηx−1(s)ηx(s)ηx+1(s) ds vanish in the limit.

Step 3: Tightness of the additive functional process
In Section 2.4, we prove that, for every smooth test function f : T → R, the sequence of

additive functionals {∫ t

0
LnX

n
s (f) ds : t ∈ [0, T ]

}
n∈N

is tight in C([0, T ];R). We have already seen that the sequence of martingales {Mn(f)}n∈N
converges. An application of Mitoma’s Theorem ([M], Theorem 3.1) yields then tightness of the
distribution-valued sequence {Xn

t : t ∈ [0, T ]}n∈N.
It turns out that, in dimension 1, tightness is a simple consequence of the Bounded Differ-

ences Inequality.

Step 4: Putting the proof together
In [HS] it is proven that this martingale problem given by (2.1.2) and (2.1.3) has only one

solution. We have to verify that the limit points of the sequence {Xn
t : t ∈ [0, T ]}n∈N are

solutions to this martingale problem and find the law of X0.
By the Boltzmann-Gibbs Principle, Mn

t (f) has the same limit as the sequence

M̃n
t (f) := Xn

t (f)−Xn
0 (f)−

∫ t

0
Xn
s (∆f − (2 + bρ(2− ρ))f) ds.

As we remarked in Step 2, it follows from the Martingale FCLT that Mn(f) converges to
a Brownian motion of variance 2tχ(ρ)‖∇f‖2L2(T). This verifies that the limit points solve the

martingale problem given by (2.1.2) and (2.1.3).
It remains to determine the law of X0. Since the initial distribution is product, the charac-

teristic function argument in [KL], Corollary 11.2.2 applies. The random field X0 is a Gaussian
field with covariance given by E[X0(f)X0(g)] = χ(ρ)

∫
T fg du.

2.2 Entropy bound

Theorem 2.2.1. Let {ηnt : t ≥ 0} be the reaction-diffusion process in Tdn. Assume ηn0 is
distributed as νρ, where ρ satisfies

∫
cx(η) dνρ = 0. Denote by Hn(t) the relative entropy between

(the law of ) ηnt and νρ.
Then there exists C > 0 that does not depend on n such that, for all t ∈ [0, T ],

Hn(t) ≤ Ct if d = 1,
Hn(t) ≤ Ct log n if d = 2,
Hn(t) ≤ Ctnd−2 if d ≥ 3.
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We will not estimate the entropy directly, we will estimate its time derivative instead. The
bound asserted on the statement will then follow from the assumption that the entropy at time
zero is null and a Gronwall type argument.

Our tool for estimating the time derivative is Yau’s Inequality, Proposition 1.1.2. In our
setting, it says

d

dt
Hn(t) ≤ −

∫
Γn
√
fnt dνρ +

∫
fnt · L∗n1 dνρ. (2.2.1)

In the inequality above, fnt denotes the Radon-Nykodym density of (the law of) ηnt and the
approximating measure νρ and Γn denotes the carré du champ associated to the generator Ln.

The hard work resides in estimating the last term in (2.2.1). It turns out that the density
fnt does not play a special role. The function L∗n1 is a polynomial of degree at least 2 in the
variables {ηx := ηx − ρ}x∈Tdn (see Proposition 4.1.2), and this is all the input we need from the
model. The choice of νρ as approximating measure was guided by the goal of killing the linear
term in L∗n1.

We do the estimate in two steps. The first step is to prove several inequalities of the form∫
g ·
∑
x∈Tdn

∏
y∈Λ

ηx+y dνρ ≤
∫

Γn (
√
g) dνρ + (error),

one for each term of L∗n1. These inequalities hold for general νρ-densities g : {0, 1}Tdn → R+ and
finite sets Λ ⊂ {Tdn} with |Λ| ≥ 2. We are going to do the case Λ = {−e1, 0, e1}, but the proof
carries for other sets. It uses the Flow Lemma to glue together several applications of a simple
integration by parts inequality. The second step uses concentration inequalities to control all
the error terms that pop out in the first step.

Static Replacement

Given x, y ∈ Tdn and η ∈ {0, 1}Tdn , denote by ηx,y the configuration that exchanges the values
of ηx and ηy.

Lemma 2.2.2 (Integration by parts). Let g and h be functions on the configuration space

{0, 1}Tdn and x, y ∈ Tdn. Assume h is invariant under the change of variables η 7→ ηx,y. Then,
for any positive a, the following inequality holds:∫

g · h(ηx − ηy) dνρ ≤ an2

∫ (√
g (ηx,y)−

√
g(η)

)2
dνρ(η) +

1

an2

∫
h2 · g dνρ.

Proof. Denote gx,y(η) := g(ηx,y). Since νρ is invariant under the change of variables η 7→ ηx,y,

∫
g · h(ηx − ηy) dνρ =

1

2

∫
h(g − gx,y)(ηx − ηy) dνρ.

Now we factor g − gx,y = (
√
g − √gx,y)(√g +

√
gx,y) and apply the elementary inequality

uv ≤ 2an2u2 + v2

2an2 . To finish the proof, we use (
√
gx,y +

√
g)2 ≤ 2(gx,y + g) and recall that

hx,y = h by assumption.

Recall the definitions of the boxes Λ` and measures p` and q` from Theorem 1.1.4 and
Corollary 1.1.7. Given x ∈ Tdn, denote −→η `x :=

∑
y∈Zd q

`(y)ηx+y.
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Proposition 2.2.3. Let ψ` be a mass flow connecting the point mass at 0 to q` Denote by 〈·, ·〉
the inner product in L2(νρ). Let (hx)x∈Tdn be a family of local functions. Then, for any a > 0,

〈
f,
∑
x∈Tdn

(
ηx −−→η `x

)
hx

〉
≤ a

∫
Γn

(√
f
)
dνρ +

a

dn2

d∑
j=1

∑
z∈Tdn

〈
f,

∑
y∈Tdn

hz−yψ
`
y,y+ej

2〉
under the assumption that the support of hx does not intersect Λ2`+1.

Proof. We start with the telescoping identity

ηx −−→η `x =

d∑
j=1

∑
y∈Tdn

(ηx+y − ηx+y+ej )ψ
`
y,y+ej ,

which yields〈
f,
∑
x∈Tdn

(
ηx −−→η `x

)
hx

〉
=

d∑
j=1

〈
f,
∑
x∈Tdn

hx
∑
y∈Tdn

(ηx+y − ηx+y+ej )ψy,y+ej

〉

=
d∑
j=1

〈
f ·
∑
z∈Tdn

(ηz − ηz+ej )
∑
y∈Tdn

hz−yψy,y+ej

〉
,

and finish by applying the Integration by Parts Lemma, 2.2.2.

Concentration of measure estimates

In the present section, as previously, ` ≤ n is an integer and ψ` is the mass flow constructed
in Corollary 1.1.7. In addition, 〈·, ·〉 denotes the inner product in L2(νρ) and f : {0, 1}Tdn → R+

denotes a νρ-density. Finally, H(f) :=
∫
f log f dνρ denotes the relative entropy of f dνρ with

respect to νρ.
Given a finite set A ⊂ Tdn, define

ηA =
∏
y∈A

ηy.

Lemma 2.2.4. Fix an integer `0 and a finite set A ⊂ −Λ`0. Then there exists a positive
κ = κ(d,A) such that〈

f, α
∑
z∈Tdn

∑
y∈Tdn

ηA+z−yψ
`
y,y+ej

2〉
≤ `d‖ψ`‖2

c

(
H(f) + 2αc

nd

`d

)
(2.2.2)

whenever the positive numbers c and α satisfy cα < (2κ)−1.

Proof. For z ∈ Tdn, define the random variable

(ψ ? ηA)z =
∑
y∈Zd

ηA+z−yψ
`
y,y+ej .

Let c > 0. By the entropy inequality, the lefthand side of (2.2.2) is bounded by
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`dgd(`)

c
H(f) +

`dgd(`)

c
logEνρ

exp

 cα

`dgd(`)

∑
z∈Tdn

(ψ ? ηA)2
z


 . (2.2.3)

Notice that (ψ ? ηA)z is independent of (ψ ? ηA)w whenever |vi −wi| > 2`+ `0 + 1 for some
i ∈ {1, . . . , d}. Besides, there exist a partition Tdn := ∪i∈IBi and a positive κ = κ(d,A)such
that |I | ≤ κ`d and the random variables {(ηA ? ψ`)z : z ∈ Bi} are independent.

To split the sum over Tdn into sums over the {Bi : i ∈ I }, we use Hölder’s inequality:

logEνρ

exp

 cα

`dgd(`)

∑
i∈I

∑
x∈Bi

(
ηA ? ψ

`
)2

x




≤ 1

κ`d

∑
i∈I

logEνρ

exp

 cακ

gd(`)

∑
x∈Bi

(
ηA ? ψ

`
)2

x




By independence, the last term is equal to

1

κ`d

∑
x∈Tdn

logEνρ
[
exp

{
cακ

gd(`)

(
ηA ? ψ

`
)2

x

}]
.

By Lemma 4.2.4, if

2cακ < 1,

then the logarithm in the last term is bounded by 2cακ. This gives

logEνρ

exp

 A

gd(`)`d

∑
x∈Tdn

∑
y∈Tdn

ηA+z−yψ
`
y,y+ej

2
 ≤ 2A

κ

nd

`d

for 2κA < 1.Substituting into (2.2.3), we finish the proof.

Lemma 2.2.5. Let `0, ` ∈ N and A ⊂ −Λ`0. Then there exists a positive κ′ = κ′(d, `0) such
that 〈

f, β
∑
x∈Tdn

ηA+x
−→η `x+e1

〉
≤ 1

c

(
H(f) + 2βc

(n
`

)d)
. (2.2.4)

whenever the positive numbers c and β satisfy βc < 1/κ′.

Proof. Denote p̃`(y) := p`(−y) Denote by η ? p` and η ? p̃` the averages on the boxes Λ` and
−Λ`, respectively. That is, (

η ? p`
)
x

:=
∑
y∈Tdn

p`(y)ηx+y(
η ? p̃`

)
x

:=
∑
y∈Tdn

p̃`(y)ηx+y.

We need the following indentity:∑
x∈Tdn

ηA+x

(
η ? q`

)
x+e1

=
∑
x∈Tdn

(
ηA ? p̃

`
)
x
·
(
η ? p`

)
x+e1

.
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For any c > 0, the entropy inequality (4.4.1) bounds the lefthand side by

1

c
H(f) +

1

c
logEνρ

exp

cβ ∑
x∈Tdn

(
ηA ? p̃

`
)
x
·
(
η ? p`

)
x+e1


 . (2.2.5)

There exist a partition Tdn := ∪i∈IBi and a positive κ′ = κ′(d,A)such that |I | ≤ κ′`d and
for each i ∈ I the random variables {

(
ηA ? p̃

`
)
z
·
(
η ? p`

)
z+e1

: z ∈ Bi} are independent.

As in the previous Lemma, we use Hölder’s inequality to take the sum outside of the loga-
rithm, at the cost of putting κ′`d inside the exponent. Expression (2.2.5) is bounded by

1

c
H(f) +

1

cκ′`d

∑
x∈Tdn

logEνρ
[
exp

{
cβκ′`d

(
ηA ? p̃

`
)
x
·
(
η ? p`

)
x+e1

}]
.

Now we estimate the exponential moments of
(
ηA ? p̃

`
)
x
·
(
η ? p`

)
x+e1

for fixed x ∈ Tdn. A
computation based on Cauchy-Schwarz inequality gives

logEνρ
[
exp

{
cβκ′`d

(
ηA ? p̃

`
)
x
·
(
η ? p`

)
x+e1

}]
≤ 1

2
logEνρ

[
exp

{
cβκ′`d

(
ηA ? p̃

`
)2

x

}]
+

1

2
logEνρ

[
exp

{
cβκ′`d

(
η ? p`

)2

x+e1

}]
.

To bound the last expression, we use Lemma 4.2.4. Notice that
∑

y∈Tdn p
`(y)2 ≤ `−d.

1

2
logEνρ

[
exp

{
cβκ′`d

(
η ? p`

)2

x+e1

}]
≤ cβκ′

whenever cβκ′ < 1. An analogous inequality holds for the other term. We have to be a bit
careful, though, because the random variables {ηA+y : y ∈ Tdn} are not independent. Their
dependence is of finite-range, however, so we can use Hölder’s inequality to arrive at the same
bound, at the cost of increasing κ′. Substituting these inequalities back into (2.2.5) we finish
the proof.

Proof of Theorem 2.2.1:
We claim that there exists C > 0 that does not depend on ` nor on n such that 4

∂tHn(t) ≤ C
(

1 +
`d

n2
‖φ`‖2

)(
Hn(t) +

(n
`

)d)
. (2.2.6)

Let us finish the proof assuming the last inequality. We combine the assumption that ηn0 has
law νρ at time zero, Gronwall’s inequality and inequality (2.2.6) with the appropriate choices of
`: by the Flow Lemma 1.1.4, we know that ‖φ`‖2 = O(`) when d = 1, so that we can choose `
of order n; that ‖φ`‖2 = O(log `) when d = 2, so that we can choose ` of order n√

logn
; and that

‖φ`‖2 = O(1) when d ≥ 3, so that we can choose ` of order n2/d.
Now it remains to prove (2.2.6). We start with Yau’s Inequality 1.1.2: if fnt is the Radon-

Nykodym density of the law of ηnt with respect to νρ then

∂tHn(t) ≤
∫

Γn

(√
fnt

)
dνρ + 〈fnt , L∗n1〉 , (2.2.7)

4The constant C depends on the model though, through the coefficients of L∗n1 and the number of terms in
its expression.
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where L∗n denotes the adjoint of Ln in L2(νρ) and Γn denotes the carré du champ operator
associated to Ln. We chose ρ in such a way that L∗n is a polynomial in the variables {ηx :=
ηx − ρ : x ∈ Tdn} of order bigger than 1, see Proposition 4.1.2. It is enough to prove that

the integral against a νρ-density f : {0, 1}Tdn → R+ of each term in the expression for L∗n1 is
bounded by

a

∫
Γn

(√
f
)

dνρ + C(a)

(
1 +

`d

n2
‖φ`‖2

)(
H(f) +

(n
`

)d)
, (2.2.8)

where C(a) does not depend on n nor on `. We need the freedom in the choice of a so that we
can sum the bounds for each term in L∗n1 to cancel the carré du champ in Yau’s Inequality.

From now on we don’t need any more input from the model. We can put together the
inequalities of the present section to bound

∫
f ·
∑

x∈Tdn ηx−e1ηxηx+e1 dνρ by the expression in
(2.2.8), the proofs for the other terms differing only in notation. Recall that 〈·, ·〉 denotes the
inner product in L2(νρ).

Applying Proposition 2.2.3, we get〈
f,
∑
x∈Tdn

ηx−e1ηx

(
ηx+e1 −

−→η `x+e1

)〉
≤ an2D

(√
f
)

+
1

an2d

〈
f,W `

〉
,

where

W `(η) =

d∑
j=1

∑
z∈Tdn

∑
y∈Tdn

ηz−yηz−y−e1ψ
`
y,y+ej

2

.

Applying Lemma 2.2.4, we find that, for c > 0 small enough,

1

an2d

〈
f,W `

〉
≤ 1

ac

`d

n2
gd(`)

(
H(f) +

(n
`

)d)
.

Combining the last inequality with (2.2.4), we get the bound (2.2.7) for each term in the
expression for L∗n1 and thus finish the proof of Theorem 2.2.1.

2.3 Boltzmann-Gibbs Principle

The present section is devoted to the proof of Proposition 2.1.3.
Recall formula (4.1.2) for the integrand LnX

n
t (f). Our goal is to replace each term in the

formula by a function of Xn
t . The degree 1 terms, ηx−1 and ηx+1, can be replaced by ηx, giving

rise to the multiple of f that appears in (2.1.5). To see that, notice∣∣∣∣∣∑
x

f
(x
n

)
(ηx − ηx−1)

∣∣∣∣∣ =

∣∣∣∣∣∑
x

(f

(
x+ 1

n

)
− f

(x
n

)
)ηx

∣∣∣∣∣ ≤ ||f ′||∞.
Since our test functions are three times continuously differentiable, |∆nf −∆f | is of order

n−1. Therefore, |Xn(∆nf)−Xn(∆f)| is of order n−1/2.This allows us to replace Xn(∆nf) by
Xn(∆f).

The difficult step is to replace the terms of degree 2 and 3. In the remaining of this section,
we are going to prove that the degree 3 term vanishes in the limit. The same proof works for
the degree 2 terms.

For the proof of the Boltzmann-Gibbs principle, we are going to use the log-Sobolev in-
equality for simple exclusion and the assumption that the paramenter b in the generator is

18



small. This is a restriction of our proof technique, not an essential feature of the model. With
a different technique (which we use in Section 3.3) it is possible to prove the Boltzmann-Gibbs
principle without resorting to the log-Sobolev inequality and without any further assumptions
on the paramenter b.

Lemma 2.3.1.

lim
n→∞

P

(∣∣∣∣∣
∫ t

0

1√
n

∑
x

f
(x
n

)
ηns (x− 1)ηns (x)ηns (x+ 1) ds

∣∣∣∣∣ > δ

)
= 0.

An analogous statement holds for the terms with ηx−1ηx+1 and ηx−1ηx.
Denote

Vn(η) :=
1√
n

∑
x

f
(x
n

)
ηx−1ηxηx+1.

It is enough to prove limn→∞ P(
∫ t

0 Vn(ηs) ds > δ) = 0, and the analogous limit with −Vn
playing the role of Vn.

The first step combines Bernstein’s trick and Feynman-Kac’s Inequality: for any positive
θ > 0,

logP
(∫ t

0
Vn(ηs) ds > δ

)
≤ −θδ + sup

g
{〈θVn, g〉+ 〈Ln

√
g,
√
g〉} ,

where the supremum is taken with respect to all probability densities with respect to νρ and
〈g1, g2〉 denotes the inner product in L2(νρ).

Recall the entropy production inequality 〈Ln
√
g,
√
g〉 ≤ −n2D(

√
g) + 〈g, L∗n1〉 (see (1.1.3)).

We are using the more traditional notation D(g) for the expectation of the carré du champ.
In the remaining of the proof, we are going to find a positive C, independent of n, such that

the following estimates hold for all θ > 0 and νρ-density g:

〈θVn, g〉 ≤ n2

2 D(
√
g) + C

(
θ2

n + 1
)

and 〈g, L∗n1〉 ≤ n2

2 D(
√
g) + C.

(2.3.1)

From the inequalities above, lim supn→∞ logP(
∫ t

0 Vn(ηs) ds > δ) ≤ −θδ+ 2C. Since θ > 0 is

arbitrary, it follows limn→∞ P(
∫ t

0 Vn(ηs) ds > δ) = 0.
The integrals in (2.3.1) are the same that we needed to estimate in the proof of the entropy

bound. There, we established an upper bound involving the Dirichlet form and the entropy
H(f). For the Boltzmann-Gibbs principle, however, we cannot use the entropy as an upper
bound. To overcome this, we apply log-Sobolev to replace the entropy by a multiple of the
Dirichlet form. It is in this step that we need the extra assumption on the parameter b, to
ensure that the constant in front of n2D(

√
f) is smaller than 1.

Here a technical problem shows up: we cannot apply log-Sobolev directly because it doesn’t
work for the measure νρ, only for its conditioning on the sets Ωk := {η ∈ {0, 1}Tn :

∑
x ηx = k}.

Therefore, we need to redo all the computations in the proof of the entropy bound, but now
taking as reference measure the conditioning of νρ on the sets Ωk, not νρ itself.

Let νn,k be the uniform measure in Ωk, that is,

νn,k(η) :=
νρ(η)

νρ(Ωk)
· 1 {η ∈ Ωk} .

The relationship between the νρ and νn,k integrals is given by the following conditioning
identity:
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∫
h dνρ =

n∑
k=0

νρ(Ωk)

∫
Ωk

h dνn,k. (2.3.2)

We start with the estimate of 〈θVn, g〉, that is easier because the polynomial is simpler than

the one that appears in L∗n1 and because the n−
1
2 in front of the expression helps. The estimate

is done in two steps:

Step 1: Recall the definition of the measure q` from Corollary 1.1.7. Denote

V `
n(η) :=

1√
n

∑
x∈Tn

f
(x
n

)
ηx−1ηx

−→η `x+1,

where
−→η `x+1 =

∑
y∈Z

q`(y)ηx+1+y.

Then there is a constant C that depends only on ‖f‖∞ such that〈
V `
n , g
〉
≤ C θ

√
n

`

(
n2D (

√
g) + 1

)
.

Step 2: Let ` ∈ N, ` ≤ n. Then, for any a > 0,〈
θ
(
Vn − V `

n

)
, g
〉
≤ an2D (

√
g) +

2θ2

a

(
`

n

)2

.

Choosing ` of order n, for example ` = bn2 c, we get the first inequality in (2.3.1) for large
enough n.

Proof of Step 1: We split the expectation 〈θ
∑

x∈Tn f
(
x
n

)
ηx−1ηx

−→η `x+1, g〉 into the sets Ωk,
according to (2.3.2). Set Zk(g) :=

∫
Ωk
g dνn,k, so that g

Zk(g) is a probability density with respect
to νn,k. 〈

θV `
n , g
〉

= θ

n∑
k=0

νρ(Ωk)Zk(g)

∫
Ωk

V `
n

g

Zk(g)
dνn,k.

Let β > 0. Applying the entropy inequality, we bound the last expression by

θ
√
n

β`

n∑
k=0

νρ(Ωk)Zk(g)

(
Hk

(
g

Zk(g)

)
+ log

∫
Ωk

e
β`√
n
V `n dνn,k

)
, (2.3.3)

where Hk denotes relative entropy with respect to νn,k.
To estimate the first term, we apply the log-Sobolev inequality and (2.3.2), obtaining

θ
√
n

β`

n∑
k=0

νρ(Ωk)Zk(g)Hk

(
g

Zk(g)

)
≤ θ
√
n

β`
CLS n

2
n∑
k=0

νρ(Ωk)Zk(g)Dk

(√
g

Zk(g)

)
=
θ
√
n

β`
CLS n

2D (
√
g) .

To estimate the second term in (2.3.3), notice that
∑

k νρ(Ωk)Zk(g) = 1 and use Jensen’s
inequality to take the logarithm outside the sum, then apply (2.3.2) to recover the expectation
with respect to νρ.
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θ
√
n

β`

n∑
k=0

νρ(Ωk)Zk(g) log

∫
Ωk

e
β`√
n
V `n dνn,k ≤

θ
√
n

β`
log

n∑
k=0

νρ(Ωk)Zk(g)

∫
Ωk

e
β`√
n
V `n dνn,k

=
θ
√
n

β`
log

∫
e
β`√
n
V `n dνρ.

It is possible to prove that, for small enough β (depending only on ‖f‖∞), the logarithm in
the above display is bounded by 1. The heuristic is that each term in the sum that defines V `

n

concentrates like 1√
n`

(η1+···+η`√
`

)2, which, under νρ, concentrates like the square of a Gaussian of

variance n−
1
4 `−

1
2 . A rigorous proof can be done making use of Hölder’s inequality to get rid of

the sum and Hoeffding’s inequality to estimate the exponential moment. A similar computation
is in the proof of Lemma 2.2.5.

Proof of Step 2: Denote hx := ηx−1ηxf
(
x
n

)
. Let ψ` be the mass flow from Corollary 1.1.7,

that connects δ0 to q`. Then

〈
g,

θ√
n

∑
x∈Tn

hx

(
ηx+1 −−→η `x+1

)〉
=

〈
g,

θ√
n

∑
x∈Tn

hx
∑
j∈Z

ψj,j+1(ηx+j − ηx+j+1)

〉

=
θ√
n

〈
g,
∑
y∈Tn

(ηx+j − ηx+j+1)
∑
j∈Z

ψj,j+1hy−j

〉
.

Using the Cauchy-Schwartz inequality, we bound the last term by

an2D (
√
g) +

1

an2
· θ

2

n

∑
y∈Tn

〈
g,

∑
j∈Z

ψj,j+1hy−j

2〉
(2.3.4)

Recall that, by construction,
∑

j∈Z ψj,j+1 ≤ `. Besides, |hy| ≤ ‖f‖∞ for all y ∈ Tn. Applying
Cauchy-Schwarz to the sum above, we arrive at〈

θ√
n

∑
x∈Tn

f
(x
n

)
ηx−1ηx

(
ηx+1 −−→η `x+1

)
, g

〉
≤ an2D (

√
g) +

θ2

a
‖f‖2∞

(
`

n

)2

.

It remains to estimate the integral 〈L∗n1, g〉. We are going to follow the same steps as in
the estimate of 〈θVn, g〉, but now we have to be more careful with the constant that appears in
front of n2D(

√
g).

Recall formula (4.1.4) for the adjoint of Ln. Given ` ≤ n, define

W `
n :=

b

ρ

∑
x∈Tn

ηx−1ηx
−→η `x+1 + 2b

∑
x∈Tn

ηx
−→η `x+1.

For the estimate on 〈L∗n1, g〉, we are going to need
∫
eγW

`
n dνρ <∞ for a large (but fixed) γ.

Lemma 2.3.2. Let, a and γ be positive numbers. Let CLS be the log-Sobolev constant of the
simple symmetric exclusion. Then, for sufficiently small γb,

〈L∗n1, g〉 ≤
(

2a+
CLS
an2

n`

γ
+
CLS
γ

n

`

)
n2D (

√
g) +

(
1

an2

n`

γ
+ 1

)
.
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Therefore, choosing ` = n and assuming b is small enough (depending on CLS), we can choose

a such that 〈L∗n1, g〉 ≤ n2

2 D(
√
g) +O(1), as we needed.

Proof. Write 〈L∗n1, g〉 as 〈L∗n1−W `
n, g〉+〈W `

n, g〉. Repeating the computations that led to (2.3.4)
(telescoping and integration by parts), it is possible to prove that, for any a > 0,〈

g, L∗n1−W `
n

〉
≤ 2an2D(

√
g) +

1

an2

〈
g, W̃ `

n

〉
,

where W̃ `
n is defined by

W̃ `
n :=

∑
y∈T

 b

ρ

∑
j∈Z

ψj,j+1ηy−j−1ηy−j

2

+
∑
y∈T

2b
∑
j∈Z

ψj,j+1ηy−j

2

.

Applying the entropy inequality and the log-Sobolev inequality (following the procedure of
Step 1) it is possible to prove that, for γ1 > 0,〈

L∗n1−W `
n, g
〉
≤
(

2a+
CLS
an2

n`

γ

)
n2D(

√
g) +

1

an2

n`

γ
log

∫
e
γ
n`
W̃ `
n dνρ.

To estimate the exponential moment, we first apply Hölder to get rid of the sums over i
and y and then use independence and Lemma 4.2.2. We are not providing the details because
the computation is analogous to that of Lemma 2.2.4. It follows that the logarithm above is
bounded by 1 provided γb2 is sufficiently small.

To estimate
〈
g,W `

n

〉
we can repeat the computations we did in Step 1 for V `

n , but using
n/γ` instead of

√
n/` in the entropy inequality. We find that, if bγ is small enough,〈

g,W `
n

〉
≤ 1

γ

n

`

(
CLSn

2D(
√
g) + 1

)
.

2.4 Tightness

The proof uses the Kolmogorov-Centov criterion, see Problem 2.4.11 in [KS].

Proposition 2.4.1. Assume that the sequence of stochastic processes {Y n
t : t ∈ [0, T ]}n∈N

satisfies
lim
n→∞

E[|Y n
t − Y n

s |λ] ≤ C|t− s|1+λ′

for some positive constants λ, λ′ and C and for all s, t ∈ [0, T ]. Then it also satisfies

lim
δ→0

lim
n→∞

P

 sup
|t−s|≤δ
s,t∈[0,T ]

|Y n
t − Y n

s | > ε

 = 0, for all ε > 0.

More precisely, we will prove the following:
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Theorem 2.4.2. For any λ > 1, there exists a constant C = C(λ, f) such that

E
[∣∣∣ ∫ t

s
LnX

n
r (f) dr

∣∣∣λ] ≤ C(t− s)λ.

Tightness follows by choosing λ > 1 and applying Proposition 2.4.1.

Proof. We start by estimating νρ(LnX
n(f) > δ), and for that we use the Bounded Differences

Inequality, Proposition 4.2.1. Recall expression (4.1.2) for LnX
n
s (f). When the occupation at

site y is flipped, the expression changes by at most a constant (that depends on ||f ||∞ and
||f ′′′||∞) times n−1/2. Call this constant Cf . 5

Applying the Bounded Differences Inequality, we get

log νρ(LnX
n(f) > δ) ≤ −2δ2

C2
f

.

Recall from Section 2.2 that the entropy is of order 1. Plugging the last bound into the entropy
inequality (4.4.1) we find Kf > 0 that depends only on T and on f such that, for all t ∈ [0, T ],

µnt (|LnXn
r (f)| > δ) ≤

Kf

δ2
.

Applying Lemma 3.3.3, we get

E[|LnXn
t |λ] ≤ Kλ/2

f for all t ∈ [0, T ].

We finish the proof with an application of Jensen’s inequality:

E
[∣∣∣ ∫ t

s
LnX

n
r (f)| dr

∣∣∣λ] ≤ (t− s)λ · 1

t− s

∫ t

s
E[|LnXn

r (f)|λ] ds

≤ Kλ/2
f · (t− s)λ.

5We use that |ηx| ≤ 1 for all x ∈ Tn and that |Xn(∆nf)−Xn(∆f)| ≤ 2||f ′′′||∞n−1/2.
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Chapter 3

Invariance principle for a slowed
random walk over symmetric
exclusion

3.1 Notation and Results

Model and Result

Consider a simple symmetric exclusion process in Z, that is, a process (ηt)t≥0 taking values
in {0, 1}Z with generator Lex, where

Lexf(η) :=
∑
x∈Z

[f(ηx,x+1)− f(η)] (3.1.1)

for local functions f . In this definition, ηx,x+1 stands for the configuration η after interchanging
the values of η(x) and η(x+ 1). For any ρ ∈ (0, 1), the measure νρ on {0, 1}Z, under which the
random variables {η(x) : x ∈ Z} are independent and νρ(η(x) = 1) = ρ, is invariant for this
process.

The SSEP will be our dynamic random environment. Let 0 < α < β. On top of the SSEP
we put a random walk (xnt )t≥0 that moves as follows: the walker waits an exponential time of
rate n(α + β), independent of the environment, and flips a coin. If the coin comes up heads
(probability α

α+β ) the walker jumps to the right or to the left with equal probabilities. If the
coin comes up tails, the walker looks at the environment: if he sits on a particle, he jumps to
the left; otherwise, he jumps to the right.

We can write down the infinitesimal generator of the process {(ηnt , xnt ) : t ∈ [0, T ]} as

Lnf(η, x) := n2
∑
z∈Z

[
f(ηz,z+1, x)− f(η, x)

]
+ n

[
β + (α− β)η(x)

][
f(η, x+ 1)− f(η, x)

]
+ n

[
α+ (β − α)η(x)

][
f(η, x− 1)− f(η, x)

]
,

(3.1.2)
In [AFJV], the authors proved a law of large numbers for the trajectory of the random walk.

Here we state the special case that we will need.

Theorem 3.1.1 (Law of Large Numbers). Fix T > 0 and ρ ∈ (0, 1). Consider xn0 = 0 and
the process {ηnt : t ≥ 0} started from νρ. Then the sequence of processes {xnt : t ∈ [0, T ]}
converges in probability (with respect to the J1-Skorohod topology) to the deterministic process
{(β − α)(1− 2ρ)t : t ∈ [0, T ]}.
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Remark 3.1.2. Here is an heuristic for the speed (β−α)(1−2ρ): since the environment is much
faster than the random walk, we expect that in the limit it reaches equilibrium between any
two consecutive jumps of the walk, so that, at each step, the walk jumps to the right with
probability β(1− ρ) + αρ and to the left with probability α(1− ρ) + βρ, independently of the
past. Its mean drift is thus (β − α)(1− 2ρ).

We are now ready to state our result.

Theorem 3.1.3 (Central Limit Theorem). Fix T > 0 and ρ ∈ (0, 1). Consider the Markov
process {(ηnt , xnt ) : t ∈ [0, T ]} whose infinitesimal generator is given by (3.1.2). Assume that xn

starts from 0 and that the exclusion process ηn starts from νρ. Then the sequence{
xnt − (1− 2ρ)nt√

n
: t ∈ [0, T ]

}
n∈N

converges in distribution with respect to the J1- Skorohod topology on D[0,T ]R to a continuous
stochastic process, which is a sum of a Brownian motion of variance α + β and a Gaussian
process with stationary increments, independent of the Brownian motion.

Remark 3.1.4. As will be shown in Section 3.4, the variance of the the limiting Gaussian process
can be computed explicitly. It turns out that this limit is the same as the limit of the occupation
time of the origin for a weakly asymmetric exclusion process, see Theorem 6.4 in [GJ]. When
the initial density ρ equals 1/2, this process is a fractional Brownian motion of Hurst exponent
3/4.

Our proof follows a classic strategy that started in the context of proving scaling limits for
tagged particles in interacting particle systems. The proof starts by considering the environment
process, defined by ξnt (x) := ηnt (x+xnt ), x ∈ Z. That is the environment as seen by the particle.
Its dynamics consists of a simple symmetric exclusion process speeded up by n2 and superposed
with random shifts of the whole configuration (occurring at rate n(α+β)), that account for the
jumps of the random walk. It is a Markov process with generator

Lnf(ξ) = n2L exf + n[β + (α− β)ξ(0)]
[
f(τ1ξ)− f(ξ)

]
+n[α+ (β − α)ξ(0)]

[
f(τ−1ξ)− f(ξ)

]
=: n2Lexf(ξ) + nLrwf(ξ)

(3.1.3)

for any local function f : Ω→ R, where τyf(x) := f(x+ y).
The starting point is to write the position of the random walk as a sum of a martingale and

an additive functional of the environment process.1 We can write

xnt − (1− 2ρ)nt√
n

= Mn
t − 2

∫ t

0

√
n(ξns (0)− ρ) ds,

where (Mn
t )t≥0 is a martingale with predictable quadratic variation 〈Mn

t 〉 = (α+ β)t.
We can apply the Martingale Functional Central Limit Theorem (MFCLT) to show that, as

n→∞, the sequence of martingales {Mn
t : t ∈ [0, T ]}n∈N converges in distribution with respect

to the J1- Skorohod topology on path space D([0, T ],R) to a Brownian motion of variance α+β.
The next step is to prove that the sequence of processes {Ant : t ∈ [0, T ]}n∈N defined by

Ant :=

∫ t

0

√
n(ξns (0)− ρ) ds

converges in distribution to a Gaussian process {At : t ∈ [0, T ]} with stationary increments.

1This is a standard result. A proof (for the tagged particle in the SSEP) can be found in [L].
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Finally, we need to show that the limiting processes Mn and An are asymptotically inde-
pendent. In other words, the sequence {(Mn

t , A
n
t ) : t ∈ [0, T ]}n∈N converges in distribution to a

process with independent marginals.

Notation

Stochastic Processes:

• random walk: {xnt : t ∈ [0, T ]}, starts from 0.

• exclusion process: {ηt : t ∈ [0, T ]}, generator L ex given by (3.1.1) , starts from νρ.

• time scaling: ηnt := ηtn2 .

• environment as seen from the walker: ξns (x) := ηns (x + xns ), infinitesimal generator Ln =
n2Lex + nLrw given by (3.1.3).

• density fluctuation field: Y n
t := n−1/2

∑
x∈Z f(x/n)(ηnt (x)− ρ).

Functions and operators:

• mean in a box: ξ`(x) := (ξ(x+ 1) + · · ·+ ξ(x+ b`c))/b`c.

• approximations of the identity: iε := ε−11(0,ε).

• translations: τxf(u) := f(x+ u).

• functions: given u : R+ × R→ R, we denote u(t, x) by ut(x).

• discrete laplacian: given f : R → R and u ∈ R, we denote ∆nf(u) := n2[f(u + n−1) +
f(u− n−1)− 2f(u)].

• Dirichlet form, D(f): for the SSEP, (3.2.3); for the reaction-diffusion model, (??).

Other:

• Bernoulli product measure: for ρ ∈ (0, 1), νρ denotes the measure on {0, 1}Z under which
the random variables η(x) are i.i.d. and P(η(x) = 1) = ρ.

• configurations: ξx,y(z) denotes the element of {0, 1}Z obtained from ξ by interchanging
the values of ξ(x) and ξ(y).

• ηx denotes the element of {0, 1}Z obtained from η by changing the value of ηx (that is,
ηxz = (1− ηx)1x=z + ηz1x 6=z.

• for ξ ∈ {0, 1}Z and x ∈ Z, we sometimes denote ξ(x) by ξx.

• χ(ρ) := ρ(1− ρ) and ν(ρ) := (β − α)(1− 2ρ).
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Background Material

Invariance Principle for Martingales

Our first tool is the following theorem. Proofs and a more general statement can be found
in [W] and [EK].

Theorem 3.1.5 (Martingale FCLT). Let {Mn
t : t ∈ [0, T ]}n∈N be a sequence of square-integrable

martingales. Assume that

i) The sequence of the predictable quadratic variation processes {〈Mn
t 〉 : t ∈ [0, T ]}n∈N con-

verges in distribution to an increasing function H(t);

ii) The size of the largest jump of Mn converges in probability to 0.

Then {Mn
t ; t ∈ [0, T ]}n∈N converges in distribution to a continuous martingale of quadratic

variation H.

Moreover, if {Nn
t : t ∈ [0, T ]}n∈N is a sequence of square-integrable martingales such that

Mn is orthogonal to Nn for all n ∈ N (that is, 〈Mn, Nn〉 = 0) and (Nn)n∈N also satisfies
assumptions (i) and (ii), then the limiting martingales are independent.

Equilibrium Fluctuations and Ornstein-Uhlenbeck Processes

We will need two facts about equilibrium fluctuations. The first is that the distribution
valued fluctuation field Y n actually takes values in a metric subspace of S ′(R), namely the
Sobolev space H−2. A discussion can be found in [KL], Chapter 11 (for zero-range process) and
in [C].

The second fact is the equilibrium fluctuations theorem itself. A proof can be found in [C]
(for a generalized exclusion model on the torus) and in [FGN] (for an exclusion process with
slow bond in Z).

Theorem 3.1.6 (Equilibrium Fluctuations of SSEP). Let T > 0, ρ > 0. Denote χ(ρ) :=
ρ(1 − ρ). Consider the SSEP starting from νρ. The density fluctuation field Y n

t is a random
element of the Sobolev space H−2(R) that acts on test functions as

Y n
t (f) :=

1√
n

∑
x∈Z

f
(x
n

)
(ηtn2 − ρ). (3.1.4)

Then the sequence of H−2-valued processes {Y n
t : t ∈ [0, T ]}n∈N converges in distribution,

with respect to the J1-Skorohod topology on D[0,T ]H−2, to the stationary solution {Yt : t ∈ [0, T ]}
of the Ornstein-Uhnlenbeck equation

dYt = ∆Yt dt+
√
χ(ρ)∇dMt. (3.1.5)

This means that

1. Yt(f) has a Gaussian distribution with mean 0 and variance χ(ρ)||∇f ||2L2(R), for all f ∈
S (R) and t ∈ [0, T ].

2. For any smooth function u : [0, T ]× R→ R, the process{
Yt(ut)− Y0(u0)−

∫ t

0
Ys((∂s + ∆)us) ds : t ∈ [0, T ]

}
is a martingale of quadratic variation χ(ρ)

∫ t
0 ||∇us||

2
L2(R) ds.
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Finally, we will also need to consider the Ornstein-Uhlenbeck equation with drift:

Definition 3.1.7. Let a > 0. We say that a S ′(R)−valued process {Yt : t ∈ [0, T ]} is a
solution of the equation

dYt = ∆Yt dt+ a(1− 2ρ)∇Yt dt+
√
χ(ρ)∇dMt (3.1.6)

if Condition 1 of Theorem 3.1.6 is satisfied and, for any smooth function u : [0, T ]×R→ R, the
real valued process{

Yt(ut)− Y0(u0)−
∫ t

0
Ys((∂s + ∆− a(1− 2ρ)∇)us) ds : t ∈ [0, T ]

}
is a martingale of quadratic variation χ(ρ)

∫ t
0 ||∇us||

2 ds.

Scaling Limits of Additive Funtionals

During the proof we will need to work with a family of mollifiers. Let ϕ : R → R be a
smooth nonnegative function which vanishes outside (0, 1) and has integral 1. For ε > 0, denote
ϕε(u) := ε−1ϕ(u/ε).

We will need the following result from [GJ]:

Theorem 3.1.8. Let {Ỹt; t ∈ [0, T ]} be the stationary solution of (3.1.6). For ε ∈ (0, 1) and
t ∈ [0, T ], define Z ε

t as

Z ε
t :=

∫ t

0
Ỹs(ϕε)ds.

Then, as ε → 0, the sequence of processes {Z ε
t ; t ∈ [0, T ]}ε>0 converges in distribution, with

respect to the uniform topology of C[0,T ]R, to a Gaussian process {Zt; t ∈ [0, T ]} of stationary
increments, such that

E
[
Z 2
t

]
= χ(ρ)

√
2

π

∫ t

0

(t− s)e−(a(1−2ρ))2s/2

√
s

ds. (3.1.7)

3.2 Replacement Lemma and Entropy Bound

Recall that the environment process starts from the Bernoulli product measure νρ. Making
an abuse of notation, we denote

Hn(t) := H(ξnt |νρ),

where ξnt above denotes the probability measure in {0, 1}Z induced by the random configuration
ξnt . The notation H(µ|ν) stands for the relative entropy between the measures µ and ν, also
known in the literature as the Kullback-Leibler divergence.

Our main task in this section is to show

Theorem 3.2.1. There is a constant C = C(α, β, ρ) such that, for every n ∈ N

Hn(t) ≤ Ct. (3.2.1)
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The proof is divided in two steps.
Step 1:

Hn(t) ≤ (β − α)E
[
n

∫ t

0
ξns (1)− ξns (−1) ds

]
.

Proof. Denote by ft : {0, 1}Z → R+ the Radon-Nykodym derivative of ξnt with respect to νρ .
Using Theorem A1.9.2 in [KL] we get (all inner products are L2(νρ) inner products)

H ′n(t) ≤ 2〈
√
ft,Ln

√
ft〉. (3.2.2)

Now we break the generator into its exclusion and random walk parts, Ln = n2Lex + nLrw.
For the exclusion part we can explicitly compute the Dirichlet form:

n2〈
√
f,L ex

√
f〉 = −n2Dex(f) := −n2

∑
x∈Z

∫
(
√
f(ηx,x+1)−

√
f(η))2νρ(dη). (3.2.3)

In view of (3.2.2), we only need to control 〈
√
ft,L rw

√
ft〉. In the remaining of the proof, we

will show that

〈
√
f,L rw

√
f〉 ≤ β − α

2
〈f, ξ1 − ξ−1〉 (3.2.4)

for any density f with respct to νρ. But, before starting the proof of (3.2.4), we show how to
use this inequality to finish the proof of Step 1.

Specializing to f = ft, we get

〈
√
ft, nL rw

√
ft〉 ≤ n

β − α
2

E [ξnt (1)− ξnt (−1)] .

Looking back at (3.2.2) and integrating,

Hn(t) ≤ −2n2

∫ t

0
Dex(fs) ds+ (β − α)E

[
n

∫ t

0
ξns (1)− ξns (−1) ds

]
,

what finishes Step 1.
Now we prove (3.2.4). During this proof, we’ll adopt the notation fj(η) := f(τjη) for the

translations of a function f . We start by splitting the generator: nLrw = αL1
n + (β − α)L2

n

where

L1
nf : = n(f1 + f−1 − 2f)

L2
nf : = n(ξ0, f−1 − f) + n(1− ξ0, f1 − f).

The generator L1
n captures the part of the dynamics that does not look at the environment.

Notice that, for any νρ-density f ,

〈L1
n

√
f,
√
f〉 ≤ 0,

so it suffices to show

〈L2
n

√
f,
√
f〉 ≤ 1

2
〈ξ1 − ξ−1, nf〉.

Using the translation invariance of the measure νρ we get
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〈L2
n

√
f,
√
f〉 = 〈nξ0

√
f,
√
f−1 −

√
f〉+ 〈n(1− ξ0)

√
f,
√
f1 −

√
f〉

= −n+ 〈n(1− ξ0 + ξ1),
√
ff1〉.

Using that 1− ξ0 + ξ1 ≥ 0 and the inequality ab ≤ (a2 + b2)/2, we get

〈L2
n

√
f,
√
f〉 ≤ −n+

1

2
〈1− ξ0 + ξ1, nf〉+

1

2
〈1− ξ0 + ξ1, nf1〉.

To finish the proof we only need to use the translation invariance of νρ and make the change
of variables ξ 7→ τ−1ξ in the second term.

Step 2: There exists a positive constant C = C(α, β, ρ) such that

E
[
n

∫ t

0
ξns (1)− ξns (−1) ds

]
≤ Ct. (3.2.5)

Proof. Applying Jensen’s inequality we get, for any A > 0,

E
[
n

∫ t

0
ξns (1)− ξns (−1) ds

]
≤ 1

A
logE

[
exp

{
An

∫ t

0
ξns (1)− ξns (−1) ds

}]
.

Using Feynman-Kac inequality, we can bound the right hand side by

t · sup
f

{
〈nf, ξ1 − ξ−1〉+

1

A
〈Ln

√
f,
√
f〉
}

=: t · sup
f

Γn(f),

where the supremum is taken over all νρ−densities f .
Here we can use (3.2.3) and (3.2.4) to get

Γn(f) ≤
(

1 +
β − α

2A

)
〈nf, ξ1 − ξ−1〉 −

n2

A
Dex(f). (3.2.6)

In the next computation, we use that the measure νρ is invariant with respect to the trans-
formation ξ 7→ ξx,y, the inequality ab ≤ Ba2 + b2/4B and the notation fx,y(ξ) := f(ξx,y).

〈ξ1 − ξ−1, nf〉
= 〈ξ1 − ξ0, nf〉+ 〈ξ0 − ξ−1, nf〉

=
n

2
〈ξ1 − ξ0, f − f0,1〉+

n

2
〈ξ0 − ξ−1, f − f−1,0〉

≤ Bn2Dex(f) +
1

16B
〈(ξ1 − ξ0)2,

(√
f +

√
f0,1

)2
〉

+
1

16B
〈(ξ0 − ξ−1)2,

(√
f +

√
f−1,0

)2
〉

≤ Bn2Dex(f) +
1

2B
.

(3.2.7)

Choosing A = 1, B = (1 + (β−α)/2)−1 and substituting into (3.2.6) we conclude the proof,
with C = 1

2(1 + (β − α)/2)2.
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Remark 3.2.2. We will need a slight variation of the bound (3.2.5) for the tightness proof in

Section 3.3. Namely, we need E
[
n
∫ t
s ξ

n
r (1)− ξnr (−1) dr

]
≤ Ct for s < t. To prove this, write

the integral as n
∫ t

0 1[s,t][ξ
n
r (1)− ξnr (−1)] dr and proceed as in the proof of (3.2.5), which applies

almost word for word.

Now we proceed to the proof of the Replacement Lemma. Given an integer ` and a config-
uration ξ ∈ {0, 1}Z,denote by ξ`(0) the density of particles in a box of size ` to the right of site
0, that is

ξ`(0) :=
ξ1 + · · ·+ ξ`

`
.

Making an abuse of notation, we use ξ` to stand for ξb`c even when ` is not an integer.

Lemma 3.2.3 (Replacement Lemma). For any t ∈ [0, T ],

lim
ε→0

lim
n→∞

E
∣∣∣ ∫ t

0

√
n(ξns (0)− ξn,εns (0)) ds

∣∣∣ = 0.

Proof. During this proof we will denote bεnc by `. Let A > 0. Using Jensen’s inequality, we
can bound the expectation in the statement by

1

A
logE

[
exp

∣∣∣ ∫ t

0
A
√
n(ξns (0)− ξn,`s (0)) ds

∣∣∣] .
To estimate this expectation, we use the well-known trick of applying the inequality e|a| ≤

ea + e−a and Feynman-Kac inequality and reduce the proof to the task of showing

inf
A>0

lim
ε→0

lim
n→∞

· sup
f

{
〈ξ0 −

ξ1 + · · ·+ ξ`
`

,
√
nf〉+

1

A
〈Ln

√
f,
√
f〉
}

= 0, (3.2.8)

where the supremum is taken over all densities with respect to νρ.
We begin with an elementary manipulation of the first inner product:

〈ξ0 −
ξ1 + · · ·+ ξ`

`
,
√
nf〉 =

1

`
〈
√
nf, (ξ0 − ξ1) + · · ·+ (ξ0 − ξ`)〉. (3.2.9)

Now we repeat the computations in (3.2.7), but choosing a different weight in the Cauchy-
Schwarz inequality: for any choice of Bk > 0, k ∈ {1, . . . , `},

〈ξ0 − ξk,
√
nf〉 =

k∑
j=1

√
n

2
〈ξj−1 − ξj , (

√
f −

√
f j,j−1)(

√
f j,j−1 +

√
f)〉

≤ nBkDex(f) +
k

4Bk
.

Plugging into (3.2.9) we get

〈ξ0 −
ξ1 + · · ·+ ξ`

`
,
√
nf〉 ≤ n

`
·Dex(f) ·

∑̀
k=1

Bk +
1

4`

∑̀
k=1

k

Bk
.

Choosing Bk = n
√
k/2A

√
` in the last inequality,

〈ξ0 −
ξ1 + · · ·+ ξ`

`
,
√
nf〉 ≤ n2

2A
·Dex(f) +

A`

2n
. (3.2.10)
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On the other hand, we can combine (3.2.3), (3.2.4) and (3.2.7) to get, for any B > 0,

〈Ln

√
f,
√
f〉 ≤ −n2Dex(f) +

β − α
2

(
Bn2Dex(f) +

1

2B

)
.

Using this inequality together with (3.2.10), we can bound the supremum in (3.2.8) by
A`
n + (β−α)2

A . Optimizing in A, we arrive at the bound (1 + (β − α)2)
√

`
n , from which (3.2.8)

follows since ` = bεnc.

We’ll finish this section with a variation on the Replacement Lemma. We can write the
mean ξn,εnt (0) as n−1/2

∑
x∈Z ξ

n
t (x)iε(x/n), where iε := ε−11(0,ε). For technical reasons, we will

need to use smooth versions of iε.

Theorem 3.2.4. Let ϕ : R→ R be a smooth nonnegative function which vanishes outside (0, 1)
and has integral 1. Let ϕε(u) := ε−1ϕ(u/ε). Then

lim
ε→0

lim
n→∞

E
∣∣∣ ∫ t

0

√
n(ξns (0)− ρ)− n−1/2

∑
x∈Z

ϕε(x/n)(ξnt (x)− ρ) ds
∣∣∣ = 0.

Proof. Using the smoothness and compact support of ϕ, it is possible to show∣∣∣1− n−1
∑
x∈Z

ϕε(x/n)
∣∣∣ ≤ Cε

n
,

with Cε = ε · supu∈R |ϕ′ε(u)|. Therefore, it is enough to show

lim
ε→0

lim
n→∞

E
∣∣∣ ∫ t

0
n−1/2

∑
x∈Z

ϕε(x/n)(ξns (x)− ξns (0)) ds
∣∣∣ = 0.

The proof is analogous to that of Lemma 3.2.3.

3.3 Tightness

In this section we prove that the sequence of additive functionals {Ant : t ∈ [0, T ]}n∈N, with

Ant :=

∫ t

0

√
n(ξns (0)− ρ) ds

is tight in C[0,T ]R. Since An0 = 0 for all n ∈ N, we only need to prove equicontinuity.

The proof uses the Kolmogorov-Centov criterion, see Problem 2.4.11 in [KS].

Proposition 3.3.1. Assume that the sequence of stochastic processes {Xn
t : t ∈ [0, T ]}n∈N

satisfies
lim
n→∞

E[|Xn
t −Xn

s |λ] ≤ C|t− s|1+λ′

for some positive constants λ, λ′ and C and for all s, t ∈ [0, T ]. Then it also satisfies

lim
δ→0

lim
n→∞

P

 sup
|t−s|≤δ
s,t∈[0,T ]

|Xn
t −Xn

s | > ε

 = 0, for all ε > 0.

More precisely, we will prove the following:
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Theorem 3.3.2. For any λ ∈ (0, 2), there exists a constant C = C(λ) such that

E
[∣∣∣√n ∫ t

s
(ξnr (0)− ρ) dr

∣∣∣λ] ≤ C|t− s|3λ/4
holds for every s, t ∈ [0, T ] and for every n ∈ N. In particular, by choosing λ ∈ (4

3 , 2) and using
Proposition 3.3.1, we see that the sequence An is tight in C[0,T ]R.

We break the estimate into two. estimating E[|
∫ t
s

√
n(ξnr (0)−ξn,`r (0)) dr|λ] for an appropriate

` and E[|
∫ t
s

√
n(ξn,`r (0)− ρ) dr|λ]. The second estimate is easier, because, when ` is large, ξn,`0 is

very close to its mean ρ (recall that at time zero the random variables ξn(x) are i.i.d. Bernoulli).

We use our estimate on the entropy, Theorem 3.2.1, to compare ξn,`r with ξn,`0 . This is done in
Lemma 3.3.4. Of course, this approach does not take the time cancellations into account. They
appear when we deal with

∫ t
s

√
n(ξn,`r (0)−ξnr (0)) dr. As in the proof of the Replacement Lemma

and the entropy bound, the main tool is Feynman-Kac‘s inequality. We don’t know how to use
it to estimate the moments directly, because it only gives a bound on the exponential moments.
The solution is to work with the tail probabilities P (|

∫ t
s

√
n(ξn,`r (0)) − ξnr (0)) dr| > δ) instead

of the moments.
We start with an elementary lemma that quantifies the relationship between tail bounds

and moment bounds. Its proof is in the Appendix.∫ 1

0
f(x) dx

Lemma 3.3.3. Let X be a nonnegative random variable. Assume that P(|X| > δ) ≤ C/δ2

for any δ > 0. Then, for any λ ∈ (0, 2), there exists an universal constant C(λ) such that
E[|X|λ] ≤ C(λ) · Cλ/2.

Proof of Lemma 3.3.3. Fix ε > 0. Then

E[Xλ] =

∫ ∞
0

λδλ−1P(X > δ) dδ

≤ ελ +

∫ ∞
ε

λCδλ−3 dδ

= ελ + C
λ

2− λ
ελ−2.

Choosing ε = C1/2 we get E[Xλ] ≤ (1 + λ/(2− λ))Cλ/2.

Lemma 3.3.4. Fix 0 ≤ s < t ≤ T . Then for all λ ∈ (0, 2) there exists a positive constant C(λ)
such that

E
[∣∣∣√n ∫ t

s
(ξn,n|t−s|

1/2

r (0)− ρ) dr
∣∣∣λ] ≤ C(λ)|t− s|3λ/4

for all n > |t− s|−1/2.

Proof. By Jensen’s inequality,

E
[∣∣∣√n ∫ t

s
(ξn,n|t−s|

1/2

r (0)− ρ) dr
∣∣∣λ] ≤ (t− s)λ−1

∫ t

s
E
[∣∣∣√n(ξn,n|t−s|

1/2

r (0)− ρ)
∣∣∣λ] dr.
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Therefore, it is enough to show

E
[√

n
∣∣∣ξn,n|t−s|1/2r (0)− ρ

∣∣∣λ] ≤ C(λ)|t− s|−λ/4. (3.3.1)

In order to obtain (3.3.1), it suffices to find a universal constant C such that

P
(√

n
∣∣∣ξn,n|t−s|1/20 (0)− ρ

∣∣∣ > δ
)
≤ C

δ2|t− s|1/2
. (3.3.2)

We compare the probability at time r with the probability at time 0 using the entropy
inequality (4.4.1):

P
(√

n
(
ξn,n|t−s|

1/2

r (0)− ρ
)
> δ
)
≤ Hn(r) + log 2

log

(
1 + P

(√
n
(
ξ
n,n|t−s|1/2
r (0)− ρ

)
> δ
)−1

) .
Using the entropy bound (3.2.1) and the last inequality, we reduce the proof of (3.3.2) to

that of

P
(√

n
(
ξn,n|t−s|

1/2

r (0)− ρ
)
> δ
)
≤ exp

(
−δ2|t− s|1/2

)
.

But since the random variables ξn0 (x) are i.i.d. Bernoulli under νρ, this follows from Hoeffd-
ing’s inequality, see Corollary 4.2.4.

Remark 3.3.5. Let ϕ : R → R be a smooth, nonnegative and compactly supported function.
We can reuse the above proof to show that the sequence{∫ t

0
n−1/2

∑
x∈Z

ϕ(x/n)(ξns (x)− ρ) ds : t ∈ [0, T ]

}
n∈N

is tight C[0,T ]R. The only additional information needed is that
∑

x∈Z ϕ(x/n) ≤ Cn for some
C > 0. We will need this fact in the next two sections.

Lemma 3.3.6. Fix 0 ≤ s < t ≤ T . Assume t− s < 1. Then

E
[√

n
∣∣∣ ∫ t

s
ξn,n|t−s|

1/2

r (0)− ξns (0) dr
∣∣∣λ] ≤ C(λ)|t− s|3λ/4,

for all λ ∈ (0, 2).

Proof. In view of Lemma 3.3.3, we only need to prove

P
(∣∣∣ ∫ t

s

√
n(ξn,n|t−s|

1/2

r (0)− ξnr (0)) dr
∣∣∣ > δ

)
≤ C (t− s)3/2

δ2
for some constant C. (3.3.3)

A natural idea would be to mimic the proof of Lemma 3.3.4, using the entropy bound (3.2.1)
and the entropy inequality (4.4.1) to reduce the proof of (3.3.3) to that of

P
(∣∣∣ ∫ t−s

0

√
n(ξn,n|t−s|

1/2

r (0)− ξnr (0)) dr
∣∣∣ > δ

)
≤ exp

(
−δ2

C(t− s)3/2

)
.
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However, if we try to use Feynman-Kac‘s inequality directly, the bound obtained will not
be good enough. What hinders the computation is the term 〈ξ1 − ξ−1, nf〉 in the variational
problem. A trick to overcome this difficulty is to define

Ãt(γ) :=

∫ t

0

√
n(ξn,n

√
t

r (0)− ξnr (0)) dr − γ β − α
2

∫ t

0
n(ξnr (1)− ξnr (−1)) dr,

where γ is a parameter to be chosen later. This allows us to write the integral in (3.3.3) as

Ãt(γ)− Ãs(γ) + γ
β − α

2

∫ t

s
n(ξnr (1)− ξnr (−1) dr.

To show (3.3.3), it is enough to show the two easier estimates

P(|Ãt(γ)− Ãs(γ)| > δ) ≤ C (t− s)3/2

δ2
(3.3.4)

and

P
(∣∣∣γ β − α

2

∫ t

s
n(ξnr (1)− ξnr (−1)) dr

∣∣∣ > δ

)
≤ C (t− s)3/2

δ2
. (3.3.5)

We start with (3.3.4). Using the entropy bound (3.2.1) and the entropy inequality, we see
that it is enough to show

P
(
Ãt−s(γ) > δ

)
≤ exp

(
−δ2/(t− s)3/2

)
(3.3.6)

for an appropriate choice of γ.
During the proof of (3.3.6), we will denote bn

√
t− sc by `. Using Feynman-Kac inequality,

we can bound E
[
exp

(
1
γ Ãt(γ)

)]
by

exp

(
t · sup

f
{〈ξ` − ξ0,

√
n

γ
f〉+

β − α
2
〈ξ1 − ξ−1, nf〉+ 〈Ln

√
f,
√
f〉}

)
,

where the supremum is taken over νρ-densities f and ξ` := (ξ1 + · · ·+ ξ`)/`. Using (3.2.4) and
(3.2.10) we can bound the last expression by exp((t− s)`/4nγ2). Using Markov‘s inequality, we
get

P
(
|Ãt−s(γ)| > δ

)
≤ exp

(
− δ
γ

+
(t− s)`

4nγ2

)
.

Choosing γ = (t− s)3/2/δ and using ` ≤ n
√
t− s, we arrive at (3.3.6).

To finish the proof of Lemma 3.3.6, it remains only to show (3.3.5). The additive func-
tional is the same that shows up in the proof of the entropy bound, see (3.2.5). As ob-
served in Remark 3.2.2, that proof also yields a uniform (that is, independent of n) bound

for E
[
n
∫ t
s ξ

n
r (1)− ξnr (−1) dr

]
, and that is all we need to prove (3.3.5), by an application of

Markov’s inequality.
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3.4 Limit Points of the Additive Functional

In the previous section we proved that the sequence of additive functionals An is tight. In
this section we identify its limit points. We rely strongly on the results of [GJ]. There it was
proved that, for a general class of interacting particle systems (ηs)s≥0 which includes the SSEP
it holds (recall the notation ηns := ηsn2)(∫ t

0

√
n(ηns (0)− ρ) ds

)
t≥0

−→ (Zt)t≥0 as n→∞, (3.4.1)

where Z is a fractional Brownian motion of Hurst parameter 3/4. The class of particle systems
for which (3.4.1) holds is large but has a serious constraint: the Bernoulli product measures νρ
must be invariant for such processes, what does not hold for our environment process.

The proof of (3.4.1) given in [GJ] is based on a Local Replacement Lemma very similar to our
Lemma 3.2.3. It makes it possible to replace ηns (0) by its average ηn,εns (0) and to approximate
the additive functional by a function of the density fluctuation field:∫ t

0

√
n(ηεns (0)− ρ) ds ≈

∫ t
0 Y

n
s (iε) ds. This is combined with their theorem(∫ t

0
Ys(iε) ds

)
t≥0

−→ (Zt)t≥0 as ε→ 0. (3.4.2)

In our case the replacement gives
∫ t

0

√
n(ξn,εns (0) − ρ) ds ≈

∫ t
0 Y

n
s (τxns /niε) ds, where Y n

stands for the density fluctuation field of the SSEP. It was proved in [AFJV] that, if we start
from νρ, the rescaled random walk xns /n converges to (β−α)(1− 2ρ)s =: ν(ρ)s, a deterministic

trajectory. Therefore, we expect
∫ t

0

√
n(ξns (0) − ρ) ds to behave like

∫ t
0 Ys(τν(ρ)siε) ds. When

ρ = 1/2, ν(ρ) = 0 and we can apply (3.4.2). When ρ 6= 1/2, we cannot apply (3.4.2) directly.
The trick is to relate the “moving field” Ys(τν(ρ)siε) with the fluctuation field of an asymmetric
exclusion process. The weakly asymmetric exclusion process was also studied in [GJ]. The limit
process in (3.4.2) is not a fractional Brownian motion anymore, but is still a Gaussian process
and can be explicitly described. In the remaining of this section we’ll implement this plan.

For technical reasons, we will not work with the discontinuous functions iε, using the smooth
mollifiers ϕε instead. Those were introduced before Theorem 3.1.8.

Proposition 3.4.1. Let {At : t ∈ [0, T ]} be a limit point of the sequence An and Z ε, Z
be the processes defined in Theorem 3.1.8, with a = β − α. Then A and Z have the same
finite-dimensional distributions.

We begin with a lemma that allows us to write Z ε in a more convenient way.

Lemma 3.4.2. Let Y be the stationary solution of the Ornstein-Uhlenbeck equation (3.1.5) and
ν(ρ) := (β − α)(1− 2ρ). Then the process {Ỹt : t ∈ [0, T ]} defined by

Ỹt(f) := Yt(τν(ρ)tf)

is a solution of the equation (3.1.6), with a = (β − α).

Proof. We want to show that, for any sufficiently smooth H : [0, T ] × R → R, the process
{M̃t(H) : t ∈ [0, T ]} with

M̃t(H) := Ỹt(Ht)− Ỹ0(H0)−
∫ t

0
Ỹs(∂s + ν(ρ)∇+ ∆)Hs ds

is a martingale with quadratic variation {
∫ t

0 ρ(1− ρ)||∇Hs||2 ds : t ∈ [0, T ]}. Using the elemen-
tary identity ∂s(τν(ρ)sHs) = τν(ρ)s(∂sHs) + ν(ρ)τν(ρ)s∇Hs, we obtain
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M̃t(H) = Yt(τν(ρ)tHt)− Y0(H0)−
∫ t

0
Ys(∂s(τν(ρ)sHs) + ∆(τν(ρ)sHs)) ds.

By the definition of Y , this is a martingale with quadratic variation

〈M̃t(H)〉 =

∫ t

0
ρ(1− ρ)||∇(τν(ρ)sHs)||2 ds =

∫ t

0
ρ(1− ρ)||∇Hs||2 ds,

as we wanted.

Proof of Proposition 3.4.1. Let Y n denote the density fluctuation field associated to the SSEP,
and Y its limit. Consider the auxiliary processes {An,εt : t ∈ [0, T ]} and {Z̃ ε

t : t ∈ [0, T ]} defined
by

An,εt :=

∫ t

0
Y n
s (τxns /nϕε) ds

Z̃ ε
t :=

∫ t

0
Ys(τν(ρ)sϕε) ds.

In the last lemma we saw that Z ε and Z̃ ε have the same law.
We claim that An,ε converges to Z̃ ε as n → ∞ in the sense of finite-dimensional distribu-

tions. To prove this, consider, for each t ∈ [0, T ], the function Ft : D[0,T ]H−2 × D[0,T ]R → R
given by Ft(X , x) :=

∫ t
0 Xs(τxsϕε) ds. Notice that all trajectories in C[0,T ]H−2 × C[0,T ]R are

continuity points for Ft (here is the only place in the proof where we need to use the smoothness
of ϕε). We can write An,εt = Ft(Y

n, xn/n). Using the continuity of Ft and the convergences of
Y n and xn/n we conclude that An,εt converges weakly to Z̃ ε

t . In the same way, we can prove
convergence of the remaining finite-dimensional distributions.

Now, fixing ε > 0 and t > 0, the pair (Ant , A
n,ε
t ) is tight in R2 (see Remark 3.3.5) and its

limit points2 (At,Z ε
t ) satisfy E|At − Z̃ ε

t | ≤ limn E|Ant − A
n,ε
t |. In the same way, the family

(At,Z ε
t )ε>0 is tight in R2, and its limit points (At,Zt) satisfy E|At−Zt| ≤ limε |At−Z ε

t |. By
the Replacement Lemma 3.2.4, E|At −Zt| = 0. This shows that the processes A and Z have
the same marginals. An analogous (but notationally more cumbersome) argument takes care
of the remaining finite dimensional distributions.

3.5 Asymptotic Independence

In the previous sections we wrote the position of the scaled random walk,
xnt −ν(ρ)nt√

n
, as

a sum of a martingale Mn
t and an additive functional −2Ant . We saw that the martingale

part converges to Brownian motion and that the additive functional converges to a Gaussian
process with stationary increments. In this section we show that these limiting processes are
independent, or, putting it more precisely, that the pair (Mn, An) converges weakly to a product
measure on (C[0,T ]R)2.

We start by noticing that the sequence of random vectors (Mn, An) is tight. Let (M,A) be
a limit point. We already know the marginal distributions M and A, so we only need to show
that their finite-dimensional distributions are independent.

2Here we abuse the notation when we denote the limit point by (At,Z
ε
t ), because At and Z ε

t are not defined
in the same probability space. However, the second coordinate of each limit point of the pair does have the same
law as Z ε

t .
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First we tackle the problem of proving that Mt is independent of At for each t ∈ [0, T ]. In
view of the Replacement Lemma 3.2.3 and the Law of Large Numbers 3.1.1 , we expect At to
behave like

∫ t
0

√
n(ηn,εns (ν(ρ)s) − ρ) ds, which depends only on the environment. Our strategy

is to construct a martingale {Nn
s,t : s ≤ t} such that Nn

t,t approximates this integral. Such
martingale is a function of the environment process alone, and therefore does not jump together
with the walker. On the other hand, Mn jumps only when the walker jumps, so {Mn

s,t : s ≤ t}
and {Nn

s,t : s ≤ t} are orthogonal. If in addition 〈Nn
s,t〉 converges to an increasing function of

s, we can apply the Martingale FCLT to conclude that {(Mn
s , N

n
s,t) : s ≤ t}n∈N converges to

a pair of independent continuous martingales M and N . In particular, Mt is independent of
Nt,t = At.

Lemma 3.5.1. Let (M,A) be a limit point of the sequence (Mn, An) and t ∈ [0, T ]. Then Mt

is independent of At.

Proof. All computations in this proof are standard in the field of scaling limits of interacting
particle systems, so we will just indicate most of them.

Recall the definitions of An,ε from the proof of Proposition 3.4.1 and Z ε from Theorem
3.1.8. The sequence (An,ε)n∈N is tight3 in C[0,T ]R, and we proved (in the beginning of the proof
of Proposition 3.4.1) that its finite-dimensional distributions converge to those of Z ε. Therefore
(An,ε)n∈N converges weakly to Z ε. We also know from Proposition 3.4.1 and Theorem 3.1.8
that (Z ε)ε>0 converges weakly to A.

The proof proceeds in several steps:
Step 1: It is enough to show that Mt is independent of Aεt , for each ε > 0.
Step 2: Fix ε > 0. Let H : [0, t]× R be the solution of{

∂sH(s, u) + ∂uuH(s, u) = τν(ρ)sϕε for all s ∈ [0, t], u ∈ R
H(t, u) = 0 for all u ∈ R.

Let ∆nf(u) := n2[f(u+ n−1) + f(u− n−1)− 2f(u)]. Then

Nn
s,t := −Y n

s (Hs) +

∫ s

0
Y n
r ((∂r + ∆n)Hr) dr, (3.5.1)

defined for s ≤ t, is a martingale with quadratic variation

〈Nn
s,t〉 =

∫ s

0

1

n

∑
x∈Z

n2

(
Hr

(
x+ 1

n

)
−Hr

(x
n

))2

(ηnr (x+ 1)− ηnr (x))2 dr.

Moreover, Nn
t,t −A

n,ε
t converges to zero in probability.4

Step 3:

lim
n→∞

〈Nn
s,t〉 =

∫ s

0
2ρ(1− ρ)||∂uHr(u)||2L2(R) ds in probability.

We now sketch a way of computing this limit. Denote
∫ (x+1)/n
x/n (∂uHr(u))2 du by fr(x, n).

One can use a Taylor expansion to show that 〈Nn
s,t〉 and

∫ s
0

∑
x fr(x, n)(ηnr (x+ 1)− ηnr (x))2 dr

have the same limit.
To finish, it remains to replace (ηnr (x+ 1)− ηnr (x))2 by its mean 2ρ(1− ρ). One can explore

the elementary fact that if a sequence of random variables Xn satisfies EXn → 0 and VarXn → 0

3Here one can use stationarity and the Cauchy-Schwarz inequality to estimate E[(An,εt −An,εs )2].
4It is here that we need the smoothness of ϕε, for this ensures smoothness of H, and therefore a O(n−1) error

in the approximation of ∂uuH by ∆n.
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then Xn → 0 in probability. The estimate on the variance combines Cauchy-Schwarz inequality
in the time integral, stationarity of νρ and the inequality fr(n, x) ≤ n/x2, valid for large x.
Step 4: Using the Martingale FCLT, we see that {(Mn

s , N
n
s,t) : s ≤ t}n∈N converges to a

continuous Gaussian process {(Mt, Ns,t) : s ≤ t} with independent increments. Since Mn is
orthogonal to Nn, Mn

t is independent of Nn
t,t = Aεt .

We finish the section by indicating how to prove that the finite-dimensional distributions
(Mt1 , . . . ,Mtk) and (Aεt1 , . . . , A

ε
tk

) are independent. The proof builds upon the strategy used in
Lemma 3.5.1.

Theorem 3.5.2. Let (M,A) be a limit point of the sequence (Mn, An) and t ∈ [0, T ]. Let
0 < t1 < · · · < tk ≤ T . Then (Mt1 , . . . ,Mtk) and (Aεt1 , . . . , A

ε
tk

) are independent.

Proof. To simplify the notation, let us treat the case with just two times s and t, with s < t.
Recall the definition of Aε in the beginning of the proof of Lemma 3.5.1 and that it is enough
to show that M is independent of Aε, for each ε > 0.
Step 1: It suffices to prove that a1Ms+a2Mt is independent of b1A

ε
s+b2A

ε
t for any a1, a2, b1, b2 ∈

R. The proof uses characteristic functions.
Step 2: Define the Dynkin martingales {Nn

r,s : r ≤ s} and {Nn
r,t : r ≤ t} as in (3.5.1) (notice

that the test function H in used in (3.5.1) depends on t). Declare Nn
r,s := Nn

s,s when r > s.
Notice that {b1Nn

r,s + b2N
n
r,t : r ≤ t} is also a Dynkin martingale. One can show that its

quadratic variation converges, as n→∞, to an increasing function of r.
Step 3: Using the Martingale FCLT, we see that {(Mn

r , b1N
n
r,s + b2N

n
r,t) : r ≤ t}n∈N converges

weakly and the limit has independent marginals. In particular, b1A
ε
s + b2A

ε
t = b1N

n
t,s + b2N

n
t,t is

independent of Mt.
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Chapter 4

Appendix

4.1 Computations involving the generator

Lemma 4.1.1. Consider the fluctuation field

Xn
t (f) :=

1√
n

∑
x∈Tn

f
(x
n

)
(ηx − ρ).

Then

LnX
n(f)(η) =

1√
n

∑
x

∆nf
(x
n

)
ηx

+
1√
n

∑
x

f
(x
n

)
(−bηx−1ηxηx+1 + bηx−1ηx+1 − 2ηx + 1).

(4.1.1)

If we center ηx := ηx−ρ and use the assumption 0 = (1+bρ2)(1−ρ)−ρ = −bρ3+bρ2−2ρ+1
we get

LnX
n(f)(η) =

1√
n

∑
x

∆nf
(x
n

)
ηx

+
1√
n

∑
x

f
(x
n

)
(−bηx−1ηxηx+1 − bρ(ηx−1ηx + ηxηx+1) + (b− bρ)ηx−1ηx+1

+ (bρ− bρ2)(ηx−1 + ηx+1)− (bρ2 + 2)ηx).

(4.1.2)

Proof. We are going to do two computations, one for the birth and death dynamics and one for
the exclusion dynamics. Let us denote by Lr the generator associated to the birth and death
dynamics, that is,

Lrf(η) :=
∑
x

{ηx + (1− ηx)(1 + bηx−1ηx+1)}[f(ηx)− f(η)].

Let us also denote cx(η) := ηx + (1− ηx)(1 + bηx−1ηx+1).
We begin by computing Lrηx. The reader who wants to follow the computations or to try

them out on his or her own should keep in mind the identities ηx(1 − ηx) = 0, η2
x = ηx and

(1− ηx)2 = 1− ηx. These are true because ηx can only assume the values 0 and 1.
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Lrηx = cx(η)(−ηx + 1− ηx)

= −ηx + (1− ηx)(1 + bηx−1ηx+1).

This formula will be useful for the computation of the quadratic variation, so we keep it for
reference. For the Boltzmann-Gibbs principle it is better to have a polynomial in the variables
ηx. To get this polynomial we expand the last expression. This gives us the expression in the
last line of (4.1.1).

Now for the exclusion part. Denote by Lexn the generator of the simple symmetric exclusion
process, that exchanges the occupations of sites x and x+ 1 at rate n2. We begin by computing

ηx,x+1
x − ηx = (1− ηx)(ηx−1 + ηx+1)− ηx(1− ηx−1 + 1− ηx+1) = ηx+1 + ηx−1 − 2ηx.

Summing the last equation over x ∈ Tn,

Lexn X
n(f) = n−1/2

∑
x

n2f
(x
n

)
(ηx+1 + ηx−1 − 2ηx)

= n−1/2
∑
x

n2

[
f

(
x+ 1

n

)
+ f

(
x− 1

n

)
− 2f

(x
n

)]
ηx

= Xn(∆nf).

Proof of Lemma 2.1.2:
Let us begin by recalling a general formula: if (Yt)t≥0 is a Markov chain on a finite state

space Ω, with transition rates {r(η, ξ) : η, ξ ∈ Ω}, then

Mg
t := g(Yt)− g(Y0)−

∫ t

0

∑
ξ∈Ω

r(Ys, ξ)[g(ξ)− g(Ys)] ds

is a martingale, and its quadratic variation is given by

〈Mf
t 〉 =

∫ t

0

∑
ξ∈Ω

r(Ys, ξ)[g(ξ)− g(Ys)]
2 ds.

In our case, the quadratic variation will be the sum of two integral terms. The first one comes
from the exclusion dynamics. The role of the function g is played by g(η) := n−1/2

∑
y f(y/n)ηy,

and we need to compute g(ηx,x+1)− g(η). The corresponding term in the quadratic variation is∫ t

0
n2
∑
x

1

n

{
f

(
x+ 1

n

)
− f

(x
n

)}2

(ηx(s)− ηx+1(s))2 ds.

For the part of the quadratic variation due to the reaction dynamics, notice that [g(ηx) −
g(η)]2 = n−1f

(
x
n

)2
. The corresponding term in the quadratic variation is∫ t

0
cx(η(s))

∑
x

1

n
f
(x
n

)2
ds (4.1.3)

Now, let us compute the limit of the quadratic variation as n→∞. We start with (4.1.3).
The usual statement of the hydrodynamic limit asserts that, for each t > 0,
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1

n

∑
x

f
(x
n

)
ηx −→

∫
f(u)ρ(t, u) du,

where ρ is the solution of the hydrodynamic equation. It is possible to generalize the above
statement replacing ηx by the translation of a local funtion, τxψ, that is, for any local function
ψ,

1

n

∑
x

f
(x
n

)
τxψ −→

∫
f(u)Eνρ(t,u)

[ψ] du.

This stronger statement is proven in [dMFL], Theorem 1, and can also be deduced from a
bound of order o(n) on the relative entropy between the law of ηnt and the product measure
νρ(t,·) ([KL], Corollary 6.1.3). In our case, the initial density ρ was chosen so that the solution to
the hydrodynamic equation is constant. Thus, the integral in (4.1.3) converges to zero (because∫
cx dνρ = 0) and the integral in (4.1.3) converges to tχ(ρ)‖∇f‖2L2(T).

Proposition 4.1.2. Let L∗n denote the adjoint of the generator Ln in L2(νρ). The function

L∗n1 : {0, 1}Tdn → R can be written as a finite linear combination of terms of the form∑
x∈Tdn

∏
y∈Λ

ηx+y,

where Λ ⊂ Zd is a finite set with |Λ| ≥ 2.

Proof. We start by recalling that the exclusion part is self-adjoint with respect to νρ. Writing
Ln = n2Lex + Lr, we just need to worry about the reaction part Lr. We know that, for any
η, η ∈ {0, 1}Tn , detailed balance should hold:

νρ(η)Ln(η, η) = νρ(η)L∗n(η, η).

Since Lr(η, η) is non-zero only when η = ηx or η = η, the same holds for (Lr)∗. Notice

(Lr)∗(η, ηx) = cx(ηx)
νρ(η

x)

νρ(η)

(Lr)∗(η, η) = −
∑
x

cx(η).

Since Lex is self-adjoint and Lex1 = 0, we have L∗n1 = (Lr)∗1. Therefore

L∗n1 =
∑
x

[
cx(ηx)

νρ(η
x)

νρ(η)
− cx(η)

]
=
∑
x

{
ηx

(
1− ρ
ρ

c+
x (η)− c−x (η)

)
+ (1− ηx)

(
ρ

1− ρ
c−x (η)− c+

x (η)

)}
.

From the last formula it is possible to compute L∗n1 explicitly and verify that it is indeed
a polynomial of degree at least two in the ηx variables. In one dimension with Ln given by
(2.1.1), the formula is

L∗n1(η) =
b

ρ
ηx−1ηxηx+1 + b(ηx−1ηx + ηxηx+1). (4.1.4)
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Below we provide a different argument, that works with more general birth and death rates.
To keep the notation simple, assume that d = 1 and c−x (η) and c+

x (η) depend only on ηx−1 and
ηx+1.

Denote

p(ηx−1, ηx, ηx+1) := ηx

(
c+
x (η)

1− ρ
ρ
− c−x (η)

)
+ (1− ηx)

(
ρ

1− ρ
c−x (η)− c+

x (η)

)
.

We regard p as a polynomial in the variables ηx−1, ηx, ηx+1. There is a polynomial q such
that

p(ηx−1, ηx, ηx+1) = q(ηx−1, ηx, ηx+1).

Notice that c+
x (ρ, ρ, ρ) =

∫
c+
x dνρ, and an analogous identity holds for c−x . We claim that

the degree of q is at least 2. The independent term is

q(0, 0, 0) = p(ρ, ρ, ρ)

= (1− ρ)c+
x (ρ, ρ, ρ)− ρ+ ρ− (1− ρ)c−x (ρ, ρ, ρ)

= 0.

Now let us look at the coefficient of ηx. It is equal to

(∂ηxq)(0, 0, 0) = (∂ηxp)(ρ, ρ, ρ)

=

(
1− ρ
ρ

c+
x (ρ, ρ, ρ)− c−x (ρ, ρ, ρ)

)
−
(

ρ

1− ρ
c−x (ρ, ρ, ρ)− c+

x (ρ, ρ, ρ)

)
= 0.

In the last inequality, we used the identity c+
x (ρ, ρ, ρ)(1− ρ) = ρ c−x (ρ, ρ, ρ).

A similar computation proves that the coefficients of ηx−1 and ηx+1 in q are zero.

4.2 Concentration Inequalities

Proposition 4.2.1 (Bounded Differences Inequality, [BLM], Theorem 6.2). Assume the func-
tion f : {0, 1}Tn → R satisfies

|f(ηx)− f(η)| ≤ cx
for a family of constants cx. Then

log νρ

(
f(η)−

∫
f dνρ > δ

)
≤ − 2δ2∑

x c
2
x

.

Lemma 4.2.2 (Subgaussianity). Let Z be a non-negative random variable and c1, c2 > 0.

1. If

E[eθZ ] ≤ c1e
c2 θ2/2 for all θ > 0

then

P(Z > λ) ≤ c1e
−λ2/2c2 for all λ > 0.
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2. If

P(Z > λ) ≤ c1 e
−c2λ2

for all λ > 0,

then

logE[eθZ
2
] ≤ c1θ

c2 − θ
, for all θ ∈ (0, c2).

Proof. The first assertion uses Markov’s inequality. For any θ > 0

P (Z > λ) ≤ c1e
−θλec2θ

2/2.

The expression −θλ + c2θ
2/2 attains its minimum at θ = λ/c2, where it takes the value

−λ2/2c2.
For the second assertion, we assume θ < c2. Then

E[eθZ
2
] = 1 +

∫ ∞
0

2θu eθu
2
P(Z ≥ u) du

≤ 1 +

∫ ∞
0

2θu c1e
−(c2−θ)u2

du

= 1 +
θc1 e

−(c2−θ)u2

−(c2 − θ)

∣∣∣∣∣
u=+∞

0

= 1 +
c1θ

c2 − θ
.

To finish, we apply the inequality log(1 + x) ≤ x.

Theorem 4.2.3 (Hoeffding’s Inequality). Let X be a mean zero random variable taking values
in the interval [a, b]. Then

E[eθX ] ≤ eθ2(b−a)2/8 for all θ > 0,

P(|X| > λ) ≤ 2e−2λ2/(b−a)2

and

logE[eθX
2
] ≤ 2θ

2
(b−a)2 − θ

for all θ <
2

(b− a)2
.

Proof. We are going to prove only the first inequality. The first step is to write X as a convex
combination of a and b, say X = Λa+(1−Λ)b, for a random variable Λ ∈ [0, 1]. From E[X] = 0,
we get E[Λ] = b/(b−a). Since we are looking for bounds in terms of b−a, let us denote λ := b−a,
so that a = b− λ.

The second step is to apply Jensen’s inequality:

E[eθX ] ≤ E[Λeθa + (1− Λ)eθb] =
b

λ
eθ(b−λ) +

λ− b
λ

eθb.

Let us denote y := b/λ to see the convex combination more clearly. We want to prove
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y eλ(y−1)θ + (1− y)eλyθ ≤ eλ2θ2/8, for all θ > 0 and y ∈ (0, 1).

To prove the last inequality, we compare Taylor expansions.

Corollary 4.2.4. Let X1, . . . , Xn be independent random variables and a ∈ Rn. Denote ‖a‖ :=
(
∑n

j=1 a
2
j )

1/2 Assume |Xj | ≤ 1 for all j. Then, for all θ > 0 and for c < (2‖a‖2)−1,

E
[
eθ
∑n
j=1 ajXj

]
≤ eθ2‖a‖2

and

logE
[
ec(

∑n
j=1 ajXj)

2
]
≤ 2c‖a‖2.

4.3 Log-Sobolev Inequality for the Simple Symmetric Exclusion
Process

This inequality says that the entropy of a density g in configuration space is bounded by
n2 times the Dirichlet form of

√
g. The catch is that both the entropy and the Dirichlet form

cannot be taken with respect to the product measure νρ, as can be seen by taking a density
that is a function of the number of particles in the system. However, it is true when instead of
νρ we use the uniform distribution on some hyperplane Ωk := {η ∈ {0, 1}Tn :

∑
x ηx = k}. We

denote this measure by µn,k, and the log Sobolev inequality reads

Theorem 4.3.1. There exists a universal constant C such that∫
Ωk

g log g dµn,k ≤ Cn2
∑
x∈T

∫ (√
gx,x+1 −√g

)2
dµn,k.

The log-Sobolev inequality was proved in [Y97].

4.4 Entropy Inequalitites

Proposition 4.4.1. Let µ and ν be probability measures on some finite set Ω. Let f : Ω → R
be a function and H(µ|ν) the relative entropy between µ and ν. Then, for all γ > 0,∫

f dµ ≤ 1

γ
H(µ|ν) +

1

γ
log

∫
eγf dν

and

µ(A) ≤ H(µ|ν) + log 2

log
(

1 + 1
ν(A)

) . (4.4.1)
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