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Abstract

This paper studies adverse selection problems with a one-dimensional
principal instrument and a two-dimensional agent type. We provide
an optimality condition that characterizes the bunching of types that
allows us to obtain analytical solutions for examples from the liter-
ature and for a new example that is far from the linear-quadratic
case. Additionally, by comparing types by their marginal valuation
for the instrument, we reduce the number of incentive compatibil-
ity constraints, thus making the discretized problem computationally
tractable for relatively fine discretizations.
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1 Introduction

Although the importance of multi-dimensions for modeling agents’ charac-
teristics is recognized, few bidimensional models have been analyzed in the
literature since the seminal work of Laffont et al. (1987). This is due to the
technical difficulties in deriving the optimal solution and to the complexity
in obtaining numerical solutions.

The purpose of this paper is to provide a methodology that can be used
for numerically solving a wide variety of bidimensional screening problems
and to provide a necessary optimality condition that can be used to derive
the analytical solution in particular examples.

In a one-dimensional context without the single-crossing property, Araujo
and Moreira (2010) obtained necessary conditions for implementability and
optimality that we generalize to the two-dimensional case. For implementabil-
ity, they established that if q(θ) = q(θ̂) = q with θ 6= θ̂, then vq(q, θ) =

vq(q, θ̂), meaning that the marginal valuation must be the same for differ-
ent types that receive the same allocation. This condition is extended as
d
ds
vq(k, a(s), b(s)) = 0 over a contour line q(a(s), b(s)) = k.

For optimality, Araujo and Moreira (2010) established that if q(θ) =

q(θ̂) = q with θ 6= θ̂, then

gq
vqθ

(q, θ) =
gq
vqθ

(q, θ̂)

where g is the one-dimensional virtual surplus. This necessary condition
for discrete one-dimensional pooling types is extended for two-dimensional
continuum types as ∫ s(r)

0

Gq

vqa
(φ(r), a(r, s), b(r, s))ds = 0

over a contour line q(a(r, s), b(r, s)) = φ(r) for a fixed r. Function G de-
notes the two-dimensional virtual surplus, and function φ(·) is the optimal
allocation for types on axis X.

This necessary condition for optimality allows us to solve the linear-
quadratic example of Laffont et al. (1987) and the variation proposed by
Deneckere and Severinov (2015). We also solve a log-valuation example in
the nonlinear pricing framework. This log-valuation is derived from strictly
convex demand curves, which is quite different than the linear demand asso-
ciated with the linear-quadratic valuation.
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Next, by defining a pre-order that compares types by their marginal val-
uation for the instrument, we prove that it is sufficient to consider (for each
type of agent) incentive compatibility constraints over a one-dimensional set
rather than the entire two-dimensional set as required by the definition. As
a consequence, a significant number of incentive constraints are ruled out
in the discretized problem, thus making it computationally tractable for a
relatively fine discretization.

With this methodology, we numerically solve the regulation model intro-
duced by Lewis and Sappington (1988b) and then reviewed by Armstrong
(1999) , who showed that Lewis and Sappington’s solution was incorrect. Be-
cause this is a model with an unknown analytical solution, it is important to
know the numerical solution. Armstrong (1999) has conjectured that, in this
model, it is optimal to exclude a positive mass of agents as in the non-linear
pricing setting. However, the numerical solution suggests that the exclusion
should not be optimal in this case. We provide a technical and an economic
argument about this feature.

1.1 Related Literature

As mentioned, Laffont et al. (1987) solved the case where the monopolist
sells a single product and considered customers’ linear demand curves with
an unknown slope and intercept.

McAfee and McMillan (1988) studied the problem when the dimensional-
ity of products is no bigger than the dimensionality of characteristics. They
introduced the generalized single-crossing (GSC), which is a condition under
which the first-order and second-order necessary conditions for the customer’s
problem are also sufficient for implementability. They have characterized the
optimal contract for single products and multiple types under the GSC by
generalizing the result from Laffont et al. (1987).

Rochet and Choné (1998) established the existence of the optimal con-
tract and provided the characterization in the case that the dimensionalities
of products and characteristics are the same and the customer’s valuation is
linear with the type. They introduced the sweeping procedure as a gener-
alization of the ironing procedure for dealing with bunching in the multidi-
mensional context.

Basov (2001) introduced the Hamiltonian approach as a tentative method
of generalizing Rochet and Choné (1998) to the case when the numbers of
products and characteristics may be different. Later on, these techniques
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were extended in Basov (2005) to address more general customer prefer-
ences. There are also cases where the multidimensionality can be reduced by
aggregation (for example, Biais et al. (2000)) or separability (for example,
Wilson (1993), Armstrong (1996)) to unidimensional problems.

Some numerical methods to address the problem are described in Wilson
(1995). Although those methods were formulated to allow for multidimen-
sional types and products, they were designed to solve a relaxed version of
the problem in which just the local incentive compatibility constraints are
assumed to be binding. Even when local IC constraints are sufficient in one
dimension, this is not the case in multiple dimensions. Therefore, we cannot
rely on these approximations as the solution of the complete problem.

1.2 Outline of the Paper

The plan of the paper is as follows. The model is presented in Section 2.
In Section 3, we derive the partial differential equation related to the incen-
tive compatibility constraints. The optimality conditions are established in
Section 4, and we use them in Section 5 to analytically solve two examples.
Section 6 is dedicated to explaining the reduction of incentive constraints
that is used in Section 7 for numerically solving a regulation model. All
proofs are relegated to the Appendix.

2 Model

To describe the model, we concentrate on the nonlinear pricing framework
in the style of Mussa and Rosen (1978). The customer (agent) has quasi-
linear utility v(q, a, b)− t, where v(q, a, b) is the value of the customer’s type
(a, b) ∈ Θ = [0, 1] × [0, 1] when it consumes q ∈ R+ and t is the monetary
payment. The firm is a profit maximizing monopolist producing a single
product q ∈ R+. The firm does not observe (a, b) but knows the probability
distribution over Θ according to the differentiable density function ρ(a, b) >
0. The firm’s revenue is t − C(q), where C(·) is a C2 cost function, with
C(·) ≥ 0 , C ′(·) ≥ 0 and C ′′(·) ≥ 0.

Using the revelation principle, we can restrict our attention to direct and
truthful mechanisms1. Thus, the monopolist’s problem consists of choosing

1The revelation principle has been enunciated in Gibbard (1973).
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the contract (q, t) : Θ→ R+ × R that solves

max
q(·),t(·)

∫ 1

0

∫ 1

0

(
t(a, b)− C(q(a, b))

)
ρ(a, b)da db (MP)

subject to individual rationality constraints,

v(q(a, b), a, b)− t(a, b) ≥ 0 (IR)

and incentive compatibility constraints,

(a, b) ∈ argmax(a′,b′)∈Θ{v(q(a′, b′), a, b)− t(a′, b′)} ∀ (a, b) ∈ Θ (IC)

A contract (q(·), t(·)) is incentive compatible if it satisfies the (IC) con-
straints. We say that q(·) is implementable if we can find a monetary payment
t(·) such that the pair (q(·), t(·)) is incentive compatible. For an incentive-
compatible contract, the informational rent is defined as

V (a, b) = v(q(a, b), a, b)− t(a, b) (1)

The informational rent is used to eliminate the monetary payment t(·)
from the monopolist’s problem (MP). In the single-product and single-charac-
teristic case, by combining the integration by parts and the envelope theorem
from Milgrom and Segal (2002), one can derive a new expression for the
monopolist’s expected profit that depends only on q(·).

This idea can be extended to the multi-dimensional context. Indeed, in
the case with multiple characteristics, Armstrong (1996) proposed the “inte-
gration by rays” technique that also results in an expression for the monopo-
list’s expected profit that depends only on q(·). However, when we have mul-
tiple characteristics, there are several paths connecting distinct customers.
Therefore, instead of using “integration by rays”, it may be convenient to
choose a different path for the integration. This decision, of course, depends
on the specific problem to be addressed.

In this paper, we are not concerned with the particular method used. We
will assume that the monopolist’s expected payoff is given by∫ 1

0

∫ 1

0

g(q(a, b), a, b)ρ(a, b)da db (2)

As in the one-dimensional case, we will call g(·) the virtual surplus. To
simplify our notation, we define G(q, a, b) = g(q, a, b)ρ(a, b). We make the
following assumptions about the valuation function v and the function G.
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Assumptions. v(q, a, b) is three times differentiable, and G(q, a, b) is two
times differentiable. They satisfy the following:

1. v(qout, a, b) is a constant.

2. va > 0 and vb < 0 when q > 0.

3. vqa > 0 and vqb < 0 when q > 0.

4. vqq < 0 and Gqq < 0.

Assumption 1 is usually presented as v(0, a, b) = 0 because in nonlinear
pricing, the exit option is qout = 0, and any agent assigns it zero value.
However, in other adverse selection problems, qout could be endogenously
determined. Therefore, we assume this more general expression. Assumption
2 implies that the informational rent increases with a and decreases with b.
It also implies that the boundary between the participation and exclusion
regions is increasing. Assumption 3 is the single-crossing condition in each
direction. As a consequence, it requires that an implementable q(a, b) be
increasing with a and decreasing with b. Finally, Assumption 4 requires the
strict concavity of both v(·, a, b) and G(·, a, b) for each (a, b)-type customer.
The last assumption ensures that the first-order necessary condition for a
q(a, b) that maximizes expression 2 is also sufficient for optimality.

Although our results do not depend on how virtual surplus is determined,
under previous Assumptions 1 and 2, we are able to provide an expression of
G in the case that the types are independently distributed over each direction.

Proposition 2.1. Assume q(0, b) = qout and ρ(a, b) = f(a)h(b). Then,

G(q, a, b) =
(
v(q, a, b)− C(q)− 1− F (a)

f(a)
va(q, a, b)

)
f(a)h(b)

, where F (·) is the cumulative distribution over a.

3 Local Incentive Condition

Now, we present the partial differential equation (PDE) derived from the
(IC) constraints. Consider an incentive compatible contract (q, t). Each
(a, b)-type customer must solve the maximization problem

max
(a′,b′)∈Θ

{v(q(a′, b′), a, b)− t(a′, b′)} (3)
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The first-order necessary optimality conditions for problem 3 are

vq(q(a, b), a, b)qa(a, b) = ta(a, b)

vq(q(a, b), a, b)qb(a, b) = tb(a, b)
(4)

From the equations in (4), we can derive the cross derivatives tab and
tba. Finally, by using Schwarz’s integrability condition tab(a, b) = tba(a, b),
we obtain the following proposition.2

Proposition 3.1 (Quasi-Linear PDE). Suppose that the contract (q, t) is
incentive compatible and twice differentiable in an open set Ω ⊃ Θ. Then, it
satisfies the following equation

−vqb
vqa

qa + qb = 0 (5)

Equation (5) is a quasi-linear first-order partial differential equation3. It
describes the relationship between the contour lines of q(a, b) and vq(q(a, b), a, b).
Indeed, let (a(s), b(s)) be a contour line with q(a(s), b(s)) = k. Then, by di-
fferentiating q(a(s), b(s)) and vq(k, a(s), b(s)) along this curve, we obtain

d

ds
q(a(s), b(s)) = qaas + qbbs = 0 (6)

and
d

ds
vq(k, a(s), b(s)) = vqaas + vqbbs (7)

Finally, by using equations (5), (6) and (7), we conclude that

d

ds
vq(k, a(s), b(s)) = 0 (8)

Observe that equation (8) states that if (a(s), b(s)) is a contour line
q(a, b) = k, then it is also a contour line of vq(k, a, b).

We have yet another interpretation. The “taxation principle” says that
we can also implement q(a, b) with a tariff T : Q = q(Θ) → R such that

2Laffont et al. (1987) mentioned this integrability condition and the PDE for the par-
ticular case they were treating. Here, we present the general expression for this PDE.

3See John (1981) for a complete analysis of this kind of PDE and a description of the
method of characteristic curves used to solve it.
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T (q(a, b)) = t(a, b) for all (a, b) ∈ Θ. By using this tariff T , we can write the
customer’s problem as

max
q∈Q
{v(q, a, b)− T (q)}

Note that when T is differentiable at q(a(s), b(s)) = k, Proposition 3.1 simply
states that all types that choose q(a(s), b(s)) obtain the same marginal utili-
ty vq(k, a(s), b(s)). Araujo and Moreira (2010) have a similar condition (the
U-condition) in the one-dimensional context. They use it in the derivation
of the optimality condition. We will follow the same steps adapted to the
two-dimensional case.

3.1 Solving the Quasi-Linear Equation

The solution of the quasi-linear equation (5) will provide a natural reparame-
trization of the types following the contour lines of q(·) in the participation
region. After that, using calculus of variations, we will derive the optimality
conditions involving types in the same contour line.

We use the method of characteristic curves to solve equation (5). This
method consists of reducing a partial differential equation to a system of
ordinary differential equations. Then, the system is integrated using the
initial data prescribed on a curve Γ. Formally, we have the following Cauchy
problem associated with equation (5):

−vqb
vqa

qa + qb = 0

q|Γ = φ(r)
(9)

where Γ = {(α0(r), β0(r)) : r ∈ [r1, r2]} is a curve on the ab−plane. The basic
idea is to prescribe the value of q(·) on Γ and then use the characteristic
curves to propagate this information to the participation region. In this
sense, because Γ is a one-dimensional curve, we are reducing the problem
from two dimensions to one.

Following the method, we define the family of curves (a(r, s), b(r, s)) as
the solution of

as(r, s) = −vqb
vqa

(φ(r), a(r, s), b(r, s)) , a(r, s0) = α0(r)

bs(r, s) = 1 , b(r, s0) = β0(r)
(10)
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Assuming that (a(r, s), b(r, s)) is invertible for all r and s such that (a, b) is
in the participation region, the method provides a change of variables

a = a(r, s) , b = b(r, s)

such that q(a(r, s), b(r, s)) = φ(r).
To be precise, if we fix r, the curve (a(r, s), b(r, s)) parametrized by s is

an isoquant of q(·) at level φ(r). Note that by fixing s, we obtain

qaar + qbbr = φ′(r) (11)

By denoting s(r) as the maximum value of the parameter s for a given r,
the contribution to the monopolist’s expected profits from the types in the
images of a(r, s) and b(r, s) is∫ r2

r1

∫ s(r)

s0

G(φ(r), a(r, s), b(r, s))
∣∣∣∂(a, b)

∂(r, s)

∣∣∣ds dr (12)

Because we want to maximize this contribution, by using the calculus of
variations techniques, we can derive the necessary conditions for φ(·) to be
optimal.

By varying the initial curve (α0(r), β0(r)), we analyze three cases that
deserve separate treatments

1. Isoquants intersecting the X axis.

2. Isoquants intersecting the participation’s boundary.

3. Isoquants that are concurrent at some point.

4 Optimality Conditions

4.1 Isoquants intersecting the X axis

For this case, consider Γ = {(r, 0) : r ∈ [r1, r2]} and s0 = 0. Then, the
solutions of system (10) are a(r, s) = A(φ(r), r, s) and b(r, s) = s (we use
A = A(q, r, s) to express the dependence of a(r, s) on φ(r)). Because s(r) is
such that a(r, s(r)) = 1 or b(r, s(r)) = 1, we denote s(r) = U(φ(r), r).
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Moreover, in view of φ′(r) > 0 (allocations over (r, 0) must be increasing),
qa > 0 and br = 0, by equation (11), ar > 0, which implies that the Jacobian
determinant is positive, i.e.,

∂(a, b)

∂(r, s)
=

∣∣∣∣ ar 0
as 1

∣∣∣∣ = Aqφ
′ + Ar > 0

Thus, the contribution to the monopolist’s expect profit (12) can be writ-
ten as ∫ r2

r1

∫ U(φ(r),r)

0

G(φ(r), A(φ(r), r, s), s) (Aqφ
′ + Ar) ds dr (13)

Considering the function

H(φ, φ′, r) :=

∫ U(φ,r)

0

G(φ,A(φ, r, s), s) (Aqφ
′ + Ar) ds (14)

we rewrite (13) and define the following problem

max
φ(·)

∫ r2

r1

H(φ(r), φ′(r), r) dr

The Euler equation for this problem is

Hφ −
d

dr
Hφ′ = 0

from which we obtain the following:

Theorem 4.1. If φ(r) is the optimal allocation of (r, 0) types, then∫ U(φ(r),r)

0

Gq

vqa
(φ(r), A(φ(r), r, s), s)ds = 0 (15)

Observe that Theorem 4.1 gives the optimality condition along the char-
acteristic curve γ(s) = (a(r, s), s). It is analogous to the Araujo and Mor-
eira (2010) optimality condition now prescribed in the characteristic curve
γ(s)4. The condition says that the average of the marginal virtual surplus
Gq weighted by 1/vqa along the characteristic curve γ(s) is zero.

4In Araujo and Moreira (2010), this condition can be found in their Theorem 2 (critical
U-shaped curve)
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4.2 Isoquants intersecting the participation’s bound-
ary

In this case, the characteristic curves intersect the boundary between the
participation and exclusion regions. We parametrize this boundary using
the curve β(r) that we assume is differentiable when r ∈ (r1, r2). For all
types in this boundary, the informational rent V (r, β(r)) = 0. Then,

d

dr
V (r, β(r)) = 0 (16)

Using the envelope theorem from Milgrom and Segal (2002), we obtain the
following expression for the marginal informational rent over the curve β(r):

d

dr
V (r, β(r)) = va(φ(r), r, β(r)) + vb(φ(r), r, β(r))β′(r) (17)

For a simpler notation, we define the function

R(φ, β, β′, r) = va(φ, r, β) + vb(φ, r, β)β′ (18)

Therefore, by using (17) and (18), we can write the boundary constraint (16)
for the monopolist’s problem as

R(φ(r), β(r), β′(r), r) = 0 (19)

For this case, Γ = {(r, β(r)) : r ∈ [r1, r2]} and s0 = β(r). Hence, the
solutions of the system (10) are a(r, s) = A(φ(r), β(r), r, s) and b(r, s) = s5.
We also denote s(r) = U(φ(r), β(r), r).

By equation (19), note that β(·) must be increasing because of the as-
sumptions va > 0 and vb < 0. Since characteristic curves are also increasing
in the ab−plane, the intersections with line x = 1, (1, s(r)), are increasingly
upward and with line y = 1, (a(r, 1), 1), are increasingly to the left. Then,
the allocations over x = 1 and y = 1 (q(1, s(r)) and q(a(r, 1), 1), respectively)
are decreasing as a function of r, so φ(r) it is.

By equation (11), in view of φ′(r) < 0, qa > 0 and br = 0, it is necessary
that ar < 0. Therefore, the Jacobian determinant is negative, i.e.,

∂(a, b)

∂(r, s)
=

∣∣∣∣ ar 0
as 1

∣∣∣∣ = Aqφ
′ + Aββ

′ + Ar < 0

5s0 = 0 could be taken and then ŝ = s+β(r) defined to obtain the same parametrization
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Thus, the contribution to the monopolist’s expect profits (12) can be
written as∫ r2

r1

∫ U(φ(r),β(r),r)

β(r)

−G(φ(r), A(φ(r), β(r), r, s), s) (Aqφ
′ + Aββ

′ + Ar) ds dr

(20)
By defining the function

H(φ, φ′, β, β′, r) :=

∫ U(φ,β,r)

β

−G(φ,A(φ, β, r, s), s) (Aqφ
′ + Aββ

′ + Ar) ds

(21)
we can rewrite (20) as∫ r2

r1

H(φ(r), φ′(r), β(r), β′(r), r) dr

We still have to consider constraint (19) in the monopolist’s problem. For
this, we use the Lagrangian multiplier λ(r) to append this constraint. The
resulting problem is

max
φ(·),β(·)

∫ r2

r1

{H(φ(r), φ′(r), β(r), β′(r), r) + λ(r)R(φ(r), β(r), β′(r), r)} dr

In this problem, we have to choose the optimal pair (φ(·), β(·)). Thus, we
have a system with two Euler equations, one for φ(·) and the other for β(·),
as follows:

Hφ −
d

dr
Hφ′ +Rφλ(r) = 0 ; and (22)

Hβ −
d

dr
Hβ′ + λ(r)[Rβ −

d

dr
Rβ′ ]−Rβ′λ′(r) = 0 (23)

From the system of equations above, we obtain

Theorem 4.2. Assume Rφ 6= 06. If φ(r) is the optimal allocation of (r, β(r))
types, then there is a function λ(r) such that

(i)

∫ U(φ(r),β(r),r)

β(r)

Gq

vqa
(φ(r), A(φ(r), β(r), r, s), r, s)ds = λ(r) (24)

(ii)
G

vb
(φ(r), r, β(r)) = λ′(r) (25)
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Observe that in Theorem 4.2 (i), we obtain a slightly different condition
compared with Theorem 4.1. Now, due to the boundary constraint (19), the
integral on the left side is not zero but is equal to the Lagrange multiplier
λ(r). Additionally, in Theorem 4.2 (ii), we have another condition to control
the variation of the Lagrangian multiplier. Theorem 4.2 together with the
boundary condition (19) will give us a system of ordinary differential equa-
tions. We need to solve this system to find the optimal φ(·) and β(·). This
is illustrated in example 5.1.

4.3 Isoquants that are concurrent at some point

In the case that the planar characteristic curves are concurrent at the point
(x, y), this type is indifferent between any quantity in some interval [q, q].
We analyze the specific case that the isoquants end up at the border y = 1.
The other case of isoquants ending at x = 1 can be analyzed analogously.

Consider Γ = {(r, 1) : r ∈ [R1, R2]} as the initial curve and s0 = 1. The
solutions of the system (10) are a(r, s) = A(φ(r), r, s) and b(r, s) = s. We
have s ∈ [y, 1] because any isoquant starts at point (x, y), and s(r) = 1.

Here, φ : [R1, R2]→ [q, q] describes the quantity allocated to (r, 1) types,
which is strictly increasing in view of qa > 0. Then, by equation (11), ar > 0.

Let ϕ : [q, q]→ [R1, R2] be the inverse of φ. Now, a and b can be expressed
in terms of new variables q and s (q for quantity and s for the position on
the characteristic curve of (a, b)):

a(q, s) = A(q, ϕ(q), s) , b(q, s) = s

where q ∈ [q, q] , s ∈ [y, 1].
Because aq = arϕ

′ > 0, the Jacobian determinant is positive, i.e.,

∂(a, b)

∂(q, s)
=

∣∣∣∣ aq 0
as 1

∣∣∣∣ = Aq + Aϕϕ
′ > 0

Thus, the contribution to the monopolist’s expected profits can be written
as ∫ q

q

∫ 1

y

G(q, A(q, ϕ(q), s), s)(Aq + Aϕϕ
′) ds dq

6The condition Rφ 6= 0 in Theorem 4.2 is related to the method of characteristic curves.
This condition is equivalent to saying that the characteristic curves and the boundary curve
are not tangent when they cross each other at the point (r, β(r)). This is a requirement
of the method of characteristic curves.
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Furthermore, the fact that type (x, y) is indifferent between any q ∈ [q, q]
gives us a special restriction: Fix any q ∈ [q, q]. Since (x, y) and (ϕ(q), 1)
receive the same allocation q, this q is the solution of both

max
q̃
{v(q̃, x, y)− T (q̃)} and max

q̃
{v(q̃, ϕ(q), 1)− T (q̃)}

from which
vq(q, x, y) = vq(q, ϕ(q), 1) , ∀ q ∈ [q, q] (26)

Then, ∫ q

q

vq(q, x, y)− vq(q, ϕ(q), 1) dq = 0

Therefore, this new restriction must be considered in the optimization prob-
lem:

max
ϕ(·)

∫ q

q

∫ 1

y

G(q, A(q, ϕ(q), s), s)(Aq + Aϕϕ
′) ds dq

subject to

∫ q

q

vq(q, x, y)− vq(q, ϕ(q), 1) dq = 0

For this isoperimetric problem, the necessary condition for optimality is

Hϕ −
d

dq
(Hϕ′) = λ(Fϕ −

d

dq
(Fϕ′)) (27)

for some λ ∈ R, where

H(q, ϕ, ϕ′) =

∫ 1

y

G(q, A(q, ϕ, s), s)(Aq + Aϕϕ
′) ds (28)

F (q, ϕ, ϕ′) = vq(q, x, y)− vq(q, ϕ, 1) (29)

from which we obtain the following:

Theorem 4.3. If ϕ = ϕ(q) is optimal, then ∃ λ ∈ R such that∫ 1

y

Gq

vqa
(q, A(q, ϕ, s), s) ds = λ (30)

As we have seen, an isoperimetric problem arises in the case that an agent
is indifferent between any allocation in a range. This leads to the necessary
condition (30) that is slightly different from condition (24) in Theorem 4.2.
The difference is that the Lagrange multiplier has to be the same for all
characteristic curves.
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5 Examples with Analytical Solution

5.1 Linear Demand

The firm faces customers with linear demands and is uncertain about both
the slope and intercept of the demand curves, thus yielding the customers’
valuation

v(q, a, b) = aq − (b+ c)
q2

2
(31)

with the exogenous parameter c ∈ (0, 1]. Firm’s costs are assumed to be
zero, and the types are uniformly distributed. By Proposition 2.1, we obtain
the virtual surplus

G(q, a, b) = (2a− 1)q − (b+ c)
q2

2
(32)

Case 1/2 ≤ c ≤ 1

Laffont et al. (1987) obtained the solution for the case c = 1. In view of the
fact that the maximum quantity is attained at (1, 0), we begin the analysis
by looking for isoquants that intersect axis X. For this case, the change of
variables is a(r, s) = φ(r)s + r , b(r, s) = s. By Theorem 4.1, the optimal
allocation φ = φ(r) satisfies

(2r − 1− cφ)s(r) +
s(r)2

2
φ = 0

where s(r) = 1−r
φ

if the isoquants end up at the line x = 1 and s(r) = 1 if
the isoquants end up at the line y = 1. Thus, we obtain

φ(r) =

{
4r−2
2c−1

, r ≤ r ≤ rI
3r−1

2c
, rI ≤ r ≤ 1

where rI is such that φ(r) is continuous, that is, rI = 2c+1
2c+3

. Note that the
characteristic curve that crosses (rI , 0) also crosses the corner point (1, 1).
Furthermore, r = 1/2 because at this value, φ(r) = 0, and the participation
region is determined. To return to the original variables, r(a, b) is the solution
of a = r + bφ(r). By defining q(a, b) = φ(r(a, b)), we obtain

q(a, b) =


0 , a ≤ 1

2

4a−2
4b+2c−1

, 1
2
≤ (2c−1)a+2b

4b+2c−1
≤ 2c+1

2c+3

3a−1
3b+2c

, 2c+1
2c+3
≤ 2ac+b

3b+2c
≤ 1
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Case 0 < c < 1/2

Deneckere and Severinov (2015) have also analyzed this case. For a better
understanding of the explanation below, in Figure 1 below, we show the
isoquants of the solution.

Figure 1: Isoquants of optimal q for c ∈ (0, 0.5) in Example 5.1

a

b φIII(·)

ZIII

φII(·)

ZII

φI(·)

ZI

r 1

1

x

y

β(·)

Z0

exclusion zone

We begin the analysis as in the previous case, but now, the expression
φ(r) = 4r−2

2c−1
does not make sense in view of 4r−2

2c−1
< 0. Therefore, there are no

isoquants intersecting axis X and ending up at the line y = 1. As before, the
optimal allocation rule for (r, 0) types when isoquants end at the line x = 1
is

φI(r) =
3r − 1

2c
, r ∈ [r, 1] (33)

Note that 2c+1
2c+3

∈ (1
3
, 1

2
), so φI(r) > 0 and the participation region is not

determined yet. Next, we look for isoquants intersecting the participation’s
boundary β(r) (to be defined) and the line x = 1. In this case, the change
of variables is a(r, s) = (s − β(r))φ(r) + r , b(r, s) = s. We also have
s(r) = 1−r

φ(r)
+ β(r). Then, by Theorem 4.2 and boundary condition (19), we
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obtain the following system of ordinary differential equations

(3r2 − 4r + 1)φ′(r) + 2(r − 1)φ2(r)β′(r) + 2rφ(r) = 0

φ(r)− φ2(r)β′(r)

2
= 0

(34)

By solving this system, we obtain that the participation’s boundary is of the
form

β(r) =
2r3 − 4r2 + 2r

K0

+K1 (K0, K1 ∈ R) (35)

and the optimal allocation rule for (r, β(r)) types is

φII(r) =
K0

3r2 − 4r + 1
, r ∈ [r, x] (36)

If we look for isoquants intersecting the participation’s boundary and
ending up at the line y = 1, the boundary derived is not compatible with
our example.

Claim 1. There are no isoquants intersecting the participation’s boundary
and the line y = 1.

Note that φII is not zero. Hence, the participation region is not com-
pletely determined. By setting y = β(x), we first look for isoquants that are
concurrent at the point (x, y) and intersect the line x = 1, but this cannot
be the case.

Claim 2. There are no isoquants concurrent at point (x, y) and intersecting
the line x = 1.

If we look for isoquants concurrent at the point (x, y) and ending up at
the line y = 1, the change of variables (in terms on q and s) is a(q, s) =
(s− 1)q + ϕ(q) and b(r, s) = s+ 1. By Theorem 4.3 and restriction (26) we
have

y =
1− 2c

3
(37)

φIII(r) =
r − x
1− y

with r ∈ [x, 1] (38)

where φIII = ϕ−1 is the optimal allocation for (r, 1) types. Note that
φIII(x) = 0, hence the boundary participation has a vertical part.

Next, we determine K0, K1, x and r by the continuity of the allocation
rule and boundary conditions.
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Claim 3. We obtain r as the solution in (2c+1
2c+3

, 1
2
) of( (54 + 24c)r2 − (36 + 24c)r + 6

(63 + 18c)r2 − (42 + 24c)r + (7− 2c)

)3
=

(9 + 4c)r3 − (15 + 8c)r2 + (7 + 4c)r − 1

2c

With such r, we obtain

x =
(9− 6c)r2 − 6r + 1− 2c

(63 + 18c)r2 − (42 + 24c)r + (7− 2c)

K0 =
−(1− r)(3r − 1)2

2c
, K1 =

4cr(1− r)
(3r − 1)2

Thus, all the elements defining φI , φII , φIII , β and the special point (x, y)
are determined. This type is indifferent between any quantity in the interval
[0, 3(1−x)

2(1+c)
], while the optimal allocation range is [0, 1

c
].

To express the optimal quantity in terms of (a, b), note that the type set
[0, 1]2 can be partitioned into four sets Z0, ZI , ZII and ZIII that are defined
as

Z0 = {(a, b) ∈ [0, 1]2 : a < x ∧ b > β(a)}
ZI = {(a, b) ∈ [0, 1]2 : b ≤ ( 2c

3r−1
)a− r

3r−1
}

ZII = {(a, b) ∈ [0, 1]2 : a ≥ x ∧ b > ( 2c
3r−1

)a− r
3r−1

∧ b ≤ ( 1−y
1−x)a+ y−x

1−x}
∪ {(a, b) ∈ [0, 1]2 : a < x ∧ b > ( 2c

3r−1
)a− r

3r−1
∧ b ≤ β(a)}

ZIII = {(a, b) ∈ [0, 1]2 : a ≥ x ∧ b > ( 1−y
1−x)a+ y−x

1−x}

Here, Z0 is the exclusion region. Therefore, q(a, b) = 0 if (a, b) ∈ Z0.
Given (a, b) ∈ [0, 1]2 \ Z0, r(a, b) is defined as the solution of

a = φI(r)b+ r if (a, b) ∈ ZI

a = φII(r)(b− β(r)) + r if (a, b) ∈ ZII

a = φIII(r)(b− 1) + r if (a, b) ∈ ZIII

Finally, q(a, b) = φk(r(a, b)) if (a, b) ∈ Zk , k = I, II, III.

5.2 Convex Demand

The firm faces customers with strictly convex demand of the form p = (c −
b)/(aq + 1), where c ≥ 1 is exogenous and the parameters (a, b) ∈ [0, 1]2 are
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the customer’s private information. From this demand curve, the associated
valuation function is

v(q, a, b) = (c− b) log(aq + 1) (39)

Also consider the monopolist’s cost function C(q) = λq with λ ∈ (0, 1) and
the uniform distribution of types. By Proposition 2.1, the virtual surplus has
the form G(q, a, b) = v− λq− (1− a)va. As before, we begin the analysis by
looking for isoquants intersecting axis X and ending up at the line x = 1. For
this case, the change of variables is provided by the solutions of the system

as(r, s) =
a(r, s)

(
a(r, s)φ(r) + 1

)
c− b(r, s)

, a(r, 0) = r

bs(r, s) = 1 , b(r, 0) = 0

which are
a(r, s) =

c r

c− (1 + rφ(r))s
, b(r, s) = s

Then, by Theorem (4.1), if φ(r) is the optimal allocation over the curve
(a(r, s), b(r, s)), where r ∈ [r, 1] is fixed (r to be determined), then

D(r)φ2 + E(r)φ+ F (r) = 0 , where (40)

D(r) = λr(1−r) , E(r) = (λ−c r)(1−r)−λr log(r) , F (r) = (2c r−λ) log(r)+c(1−r)

Note that F is strictly convex and has a minimum r∗ ∈ (0, 1) in view of
F ′(r) < 0 when r ≈ 0 and F ′(r) > 0 when r ≈ 1. Additionally, due to
F (r) > 0 for r ≈ 0 and F (r∗) < 0 (because F (1) = 0), there exists a unique
r0 ∈ (0, 1) such that F (r0) = 0. Since φ(r) = 0 implies that F (r) = 0, we
must have r = r0. Therefore, r is defined as the unique solution on (0, 1) of

(2c r − λ) log(r) + c(1− r) = 0 (41)

In view of F (r) < 0 on (r, 1) (F is strictly convex, F (r) = 0 and F (1) = 0)
and D(r) > 0, one solution of the quadratic equation (40) is always negative
on (r, 1). Then, we can express φ(r) in the closed form

φ(r) =
−E(r) +

√
E(r)2 − 4D(r)F (r)

2D(r)
, r ∈ (r, 1) (42)
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Although φ(1) = q(1, 0) is not defined, by continuity,

q(1, 0) := lim
r→1

φ(r) =
c

λ
− 1

This value solves the equation vq(q, 1, 0) = C ′(q), meaning that there is no
distortion at the top, as expected for the solution.

Note that r defines the participation’s boundary since φ(r) = 0. This
boundary is given by b = c− (cr)/a in the ab−plane.

Next, we return to the original variables. Fix (a, b) ∈ [0, 1]2.

• If b ≥ c − (cr)/a, then q(a, b) = 0, meaning that the (a, b) type is
excluded.

• If b < c− (cr)/a, r(a, b) is defined as the solution of

c− b
br
− c

ab
=
−E(r) +

√
E(r)2 − 4D(r)F (r)

2D(r)

such that r(a, b) ∈ (r, 1) , φ(r(a, b)) > 0 and φ′(r(a, b)) > 0. With such
r(a, b), we define

q(a, b) =
c− b
b r(a, b)

− c

ab

In Figure 2, we show the isoquant curves of the optimal q for c = 1.5 and
λ = 0.5.

6 Reduction of Incentive Constraints

When numerically solving the problem, the main difficulty is related to the
number of constraints. This is because after discretizing the type set [0, 1]2

into a grid of n points over each axis, there are n4 − n2 IC constraints.
Therefore, fine discretizations result in memory storage problems. Next, we
present a methodology that allows us to reduce the number of IC constraints.
It is inspired by the ideas to address IC constraints in the unidimensional
case with a finite type set when single-crossing holds7.

In bidimensional models, we do not have a condition similar to the single-
crossing in the unidimensional case where all types can be exogenously or-
dered by their marginal valuation for consumption. This is because vqθ > 0

7See Laffont and Martimort (2002)
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Figure 2: Isoquants of optimal q in Example 5.2
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b
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1

φ(·)
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exclusion zone

is equivalent to θ1 < θ2 =⇒ vq(q, θ1) < vq(q, θ2) ∀q ∈ Q . Then, to be able
to compare a priori two different types at least partially, we introduce the
following binary relation:

Definition 1. Given (a, b), (â, b̂) ∈ [0, 1]2, we say that (a, b) is worse than

(â, b̂), which is denoted by (a, b) � (â, b̂), if and only if

vq(q, a, b) ≤ vq(q, â, b̂) ∀ q ∈ Q

Note that � is a pre-order (reflexive and transitive) on [0, 1]2. With this

definition, we try to capture the idea that when (a, b) � (â, b̂), the (a, b)-

agent is unwilling to pretend to be the (â, b̂)-agent. This is because for any

q ∈ Q, the (â, b̂)−agent has greater marginal valuation for consumption and
is willing to pay more for each additional unit of the product.

As a direct consequence of Assumption 3, we have that (a, b) is worse
than any type in the southeast.

Proposition 6.1. Given (a, b), if â > a and b̂ < b, then (a, b) � (â, b̂)
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By fixing type (a, b), we exclude a priori IC constraints with any type in
the southeast, as the difficulty comes from better agents willing to claim that
they are worse agents rather than the reverse. Specifically, we will omit the
following IC constraints:

V (a, b)− V (â, b̂) ≥ v(q(â, b̂), a, b)− v(q(â, b̂), â, b̂) â > a , b̂ < b (43)

In the next proposition, we show that these constraints are indeed fulfilled
when (q, V ) satisfies the necessary conditions related to the envelope theorem
and the monotonicity of q(·, ·) over each axis.

Proposition 6.2. Assume (q, V ) is such that

Va(a, b) = va(q(a, b), a, b) , Vb(a, b) = vb(q(a, b), a, b) , qa ≥ 0 , qb ≤ 0

By fixing (a, b), the constraints given in (43) are satisfied.

We denote by CC(â, b̂) the planar characteristic curve that contains (â, b̂).

Additionally, the expression “ (a, b) is IC with (â, b̂) ” means that

V (a, b)− V (â, b̂) ≥ v(q(â, b̂), a, b)− v(q(â, b̂), â, b̂)

The following proposition shows that we just need to verify the IC constraint
with a representative type of each characteristic curve.

Proposition 6.3. Let (a, b), (â, b̂) be such that (a, b) is IC with (â, b̂). Then

(a, b) is IC with (x, y) , ∀ (x, y) ∈ CC(â, b̂)

As a consequence, we can focus on the border of [0, 1]2. The following
proposition is key to reduce the restrictions.

Proposition 6.4. Let (x, y), (â, b̂), and (a, b) be such that (a, b) is IC with

(â, b̂) and (â, b̂) is IC with (x, y). If (â, b̂) � (a, b) and q(x, y) ≤ q(â, b̂), then
(a, b) is IC with (x, y).

Due to the kind of transitivity shown in Proposition 6.4, it is not necessary
that type (a, b) verifies the IC constraints with all the types (x, y) on the left
of a certain characteristic curve. Indeed, it is sufficient to verify the IC
constraint with any type worse than (a, b) over such a curve, but making
sure that this type verifies the IC constraints with all of those (x, y).
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By taking the characteristic curve as close as possible to type (a, b), the
most restrictions can be eliminated. Since the characteristic curves are en-
dogenously determined but any of them passing through (a, b) intersects the
border of the square [0, 1]2 on the northeast of that point, previous propo-
sitions suggest that it would be sufficient to verify that (a, b) is IC with all
the points over the set

F (a,b) := {(s, 1) | a ≤ s ≤ 1} ∪ {(1, s) | b < s ≤ 1} (44)

which is formalized it in the following theorem.

Theorem 6.1. Assume d
dq

(
vqa
vqb

)
≥ 0 and d

da

(
vqa
vqb

)
≥ 0. Let (q, V ) be such

that
∀ (a, b) ∈ [0, 1]2 , (a, b) is IC with (x, y) ∀ (x, y) ∈ F (a,b)

Then, (q, V ) satisfies all the incentive compatibility constraints.

Technical assumptions d
dq

(
vqa
vqb

)
≥ 0 and d

da

(
vqa
vqb

)
≥ 0 are given to avoid

pathological cases. This result could be understood as analogous to the
claim local IC constraint implies global IC constraint, which is true in the
unidimensional case when single-crossing holds.

6.1 Discretized Problem

By Theorem 6.1, it is sufficient that each point satisfies the IC constraints
with all points over a unidimensional set instead of the whole square. Now,
we can approximate the solution of the continuous problem by discretizing
the type set. This section is devoted to establishing this discrete problem
and discussing its limitations.

LetXn = {0, 1
n−1

, 2
n−1

, . . . , 1}×{0, 1
n−1

, 2
n−1

, . . . , 1} be the grid of n2 points

on [0, 1]2. For a fixed (a, b) with a < 1 and b < 1, let F̃ (a,b) := F (a,b) ∩ Xn,
where F (a,b) is defined in (44). Because for points over the line x = 1 or
y = 1, we cannot write the constraints with the points on the northeast, we
equivalently consider

F̃ (a,1) =
(
{(0, s) : 0 ≤ s ≤ 1} ∪ {(s, 0) : 0 ≤ s < a}

)
∩Xn

F̃ (1,b) =
(
{(0, s) : 0 ≤ s ≤ b} ∪ {(s, 0) : 0 ≤ s < 1}

)
∩Xn
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The set F̃ (a,b) contains all the types with which (a, b) must satisfy an IC
constraint. The integral in the monopolist’s objective will be approximated
by the trapezoidal rule. Therefore, we consider the associated weights w(i, j)
for each point (ai, bj) ∈ Xn. By denoting qi,j = q(ai, bj) and Vi,j = V (ai, bj),
we are interested in solving the following problem:

max
{qi,j ,Vi,j}

n∑
i=1

n∑
j=1

w(i, j)(v(qi,j, ai, bj)− Vi,j − C(qi,j))ρ(ai, bj)

subject to

(IR) V1,n = 0

(IC) (ai, bj) is IC with (âi, b̂j) , ∀ (âi, b̂j) ∈ F̃ (ai,bj)

(45)

Remarks:

1. In the original discretized problem, there are n4 constraints, of which
n2 are IR and n4−n2 are (maybe nonlinear) IC. After our methodology,
the number of IC constraints is of order n3.

2. In case Assumption 2 cannot be verified, we must consider all the IR
constraints Vi,j ≥ 0.

3. To obtain better accuracy of the solution, we can consider the mono-
tonicity constraints qi,j ≤ qi+1,j and qi,j ≤ qi,j−1 . These 2n2 linear
restrictions do not represent large numerical costs.

4. When the valuation function has the special multiplicative separable
structure v(q, a, b) = ψ(q) + α(a, b)q + β(a, b), the IC constraints be-
come linear in qi,j. Therefore, since the IC constraints are linear in
Vi,j (regardless of v) and the objective function is strictly concave, the
solution is unique, and we can rely on numerical approximations.

Because of the discretization, it is impossible to ensure that for each
type (a, b), all the IC constraints are fulfilled. Nevertheless, following Belloni
et al. (2010), we prove that the violations of the IC constraints (that is, the
terms for which these constraints are not satisfied) uniformly converge to zero
with finer discretizations and the sequence of optimal values converges to the
optimal value of the continuous problem. These authors have considered a
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linear model including multiple agents and border constraints8, which are
not present in our setting. In contrast, we consider a valuation function v
that could be nonlinear.

Let (Qn, V n) be the solution of the discretized problem (45). Since these

functions are defined on Xn, we define the extensions Q̃n, Ṽ n : [0, 1]2 → R as

Q̃n(x, y) := Qn(a, b) , Ṽ n(x, y) := V n(a, b)

where (a, b) ∈ Xn is such that a ≤ x < a+ 1
n−1 and b− 1

n−1 < y ≤ b .

Let δ∗(Q̃n, Ṽ n) be the supremum over all IC constraint violations by the

pair (Q̃n, Ṽ n). That is, although some constraints are not fulfilled, we can
be sure that for any (a, b), (a′, b′) ∈ [0, 1]2,

Ṽ n(a, b)− Ṽ n(a′, b′)− (v(Q̃n(a′, b′), a, b)− v(Q̃n(a′, b′), a′, b′)) ≥ −δ∗(Q̃n, Ṽ n)

To guarantee the asymptotic feasibility of extensions (Q̃n, Ṽ n), all IC con-
straint violations must uniformly converge to zero, as the next proposition
shows.

Proposition 6.5. We have δ∗(Q̃n, Ṽ n) ≤ O( 1
n−1

).

The following proposition shows that optimality can be achieved in the
limit.

Proposition 6.6. Let OPTn be the optimal value of the discretized prob-
lem, and let OPT ∗ be the optimal value of the continuous problem. Then,
lim inf
n→∞

OPTn ≥ OPT ∗ . Additionally, if lim
n→∞

Q̃n(a, b) and lim
n→∞

Ṽ n(a, b) exist

for any (a, b) ∈ [0, 1]2, then lim
n→∞

OPTn = OPT ∗ .

7 Numerical Solution: Regulating a Mono-

polist Firm

Lewis and Sappington (1988b) studied the design of regulatory policy when
the regulator is imperfectly informed about both the costs and the demand
functions of the monopolist firm he is regulating. They considered that

8These constraints are related to the allocation treated as a probability since, in their
model, there are N buyers and J degrees of product quality.
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demand for the firm’s product q = Q(p, a) and the costs of producing output
q, C(q, b), involve firm’s private information parameters (a, b) distributed
over Θ = [a, a]× [b, b] according to a strictly positive density function f(a, b).

The regulator offers the firm a menu of contracts (p(a, b), t(a, b)) whereby
if the firm sets the unit price p(a, b) for its output, it receives the subsidy
t(a, b). It is assumed that the regulator can ensure that the firm serves all
demand at the established prices. The regulator’s objective function is the
expected consumer surplus net of the transfer to the firm∫ a

a

∫ b

b

{Π(Q(p(a, b), a), a)− p(a, b)Q(p(a, b), a))− t(a, b)}f(a, b)da db

where Π(Q, a) =
∫ Q

0
P (ξ, a)dξ, and P (·) denotes the inverse demand curve.

By setting

v(p, a, b) = pQ(p, a)− C(Q(p, a), b)

H(p, a) = pQ(p, a)− Π(Q(p, a), a)

V (a, b) = v(p(a, b), a, b) + t(a, b)

we can write the regulator’s problem as

max
p(·),V (·)

∫ a

a

∫ b

b

{v(p(a, b), a, b)−H(p(a, b), a)− V (a, b)}f(a, b)dbda

subject to

(IR) V (a, b) ≥ 0 ∀ (a, b) ∈ Θ

(IC) V (a, b)− V (â, b̂) ≥ v(p(â, b̂), a, b)− v(p(â, b̂), â, b̂) ∀ (a, b), (â, b̂) ∈ Θ

Note that this formulation fits the standard nonlinear pricing model. The
authors have derived a solution for the particular example

Q(p, a) = α− p+ a , C(q, b) = K + (c0 + b)q

with α,K and c0 positive constants and a uniform distribution over Θ =
[0, 1]2. However, as Armstrong (1999) has noted, Lewis and Sappington’s
solution for this example cannot be right. Furthermore, in that paper, Arm-
strong argued that excluding a positive mass of types should be optimal (as
in nonlinear pricing). However, because of the change in the variables he
used, the type set is not convex, and his exclusion argument cannot strictly
be applied. He also expressed the following:
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• “Nevertheless, I believe that the condition that the support be convex
is strongly sufficient and that it will be the usual case that exclusion is
optimal...”

• “I have not found it possible to solve this precise example correctly...”

Therefore, we are facing a bidimensional adverse selection model with an
unknown solution where a conjecture about the optimality of exclusion was
made.

Given that v(p, a, b) = (α+ a− p)(p− c0− b)−K, the signs of va and vb
are endogenously determined, and Assumption 2 cannot be verified. Thus,
we must consider all the IR constraints in the discretized problem (45). Even
though Assumption 3 is not valid (vpa = vpb = 1), what really matters is the
constant signs of vpa and vpb. In this case, p(·, ·) will be non-decreasing in
a and b. Additionally, since

−vpb
vpa

< 0, the characteristic curves are strictly

decreasing. Following the same considerations as in Section 6, it will be
sufficient that each (a, b)−agent verifies the IC constraints with all the points
over the set

F (a,b) := {(0, s) | b ≤ s ≤ 1} ∪ {(s, 1) | 0 ≤ s ≤ a}

Note that the necessary conditions for optimality established in Section 4
cannot be applied in this case because Assumption 2 is not verified. In fact,
we believe that this lack of consideration could be one of the failures in Lewis
and Sappington’s work. After they transformed the problem into a one-
dimensional (by incorporating local incentive compatibility constraints into
the regulator’s objective function), they did not consider the IR constraints,
which cannot be ruled out if Assumption 2 fails.

Note that the discretized problem has a unique solution in view of the
linearity of IC constraints (v is multiplicative separable) and the strictly
concavity of the objective function (vpp −Hpp < 0 even when Hpp < 0).

We numerically solved the problem for three different cases of c0, α and
K. The type set was discretized into n = 51 points over each direction. The
numerical solutions were obtained via Knitro/AMPL by using the active set
algorithm. Next, we show the graphs of optimal prices, informational rent
and subsidies.
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Case 1: c0 = 1 , α = 5 , K = 2
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Case 2: c0 = 2 , α = 4 , K = 4.5

0
0.5

1

0

0.5

1
2

2.2

2.4

2.6

2.8

3

Unit Prices (p)

0
0.5

1
0

0.5
1
0

0.5

1

1.5

2

Informational Rent (V)

0 0.2 0.4 0.6 0.8 1
0

0.5

1
4

4.5

5

5.5

6

Subsidy (t)

Case 3: c0 = 3 , α = 4.5 , K = 3
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We also show the numerical differences between unit prices and marginal
costs.
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Some insights from these solutions:

We stress that this example derives into an optimization problem with
a unique solution. In fact, the numerical methods to solve it are efficient.
Thus, the statements below are reliable:

1. It seems that at the optimum, all types (a, b) such that a + b ≥ 1 are
bunching with unit price c0 + 1, and the subsidy for them is the fixed
cost K. Additionally, the unit price assigned to type (0, 0) seems to be
c0.9

2. In view of the numerical difference p − Cq, the regulator induces the
firm to price above marginal costs for almost all (a, b) types rather than
a = 0 or b = 1 (i.e., such types with the lowest demand function or
such types who obtain zero surplus)10.

3. The numerical informational rent suggests that there is no exclusion.

7.1 A Discussion about the Optimality of Exclusion

Perhaps the most intriguing insight from the numerical solutions is that the
non-exclusion of a positive mass of types should be optimal, contrary to
Armstrong’s conjecture stated previously.

Furthermore, in Barelli et al. (2014), the authors relaxed Armstrong’s
strong conditions (strict convexity and homogeneity of degree one) and proved
a more general result of the desirability of exclusion. For this example, they
considered that prices belong to [c0 + 1, α] to conclude that their result can
be applied and confirm Armstrong’s conjecture. However, as can be seen,
it is not true that P ⊂ [c0 + 1, α]. Therefore, their theorem should not be
applied.

9In fact, we conjecture the optimum price p to be p(a, b) = c0 + a+ b when a+ b ≤ 1
and p(a, b) = c0 + 1 when a+ b > 1

10 In Baron and Myerson (1982), the authors analyzed a model in which the regulator is
uncertain only about the firm’s cost function. At the optimum, prices are above marginal
costs for all cost realizations other than the lowest. In the model of Lewis and Sappington
(1988a), the regulator is uncertain only about the position of the demand curves. In that
model, if C ′′(q) ≥ 0 (similar to here), setting prices at the level of marginal costs for the
reported demand is optimal (p = Cq).
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We are able to provide one technical argument explaining why Arm-
strong’s Theorem about desirability of exclusion formulated in the nonlin-
ear pricing context cannot be extended to this model. Additionally, we can
provide an economic argument about why excluding types should not be
optimal.

1. In nonlinear pricing, the customers’ exit option is qout = 0. Hence,
the natural assumptions v(qout, a, b) = 0 and C(qout) = 0 imply that the
monopolist’s revenue v(qout, a, b)−C(qout)−V (a, b) is zero when V (a, b) = 0
(that is, when type (a, b) is excluded). Then, the monopolist’s penalty for
causing some customers to exit the market is to not receive income from
them.

On the other hand, in the regulation model, the firm’s exit option is the
unit price at which there is no production (i.e., pout is such that Qout = 0 ).
Then, Π(Qout, a)−poutQout−t(a, b) = −t(a, b) when type (a, b) is excluded.
Additionally, t(a, b) = C(Qout, b) = C(0, b) because IR is binding. Thus, the
regulator’s penalty of excluding a firm is to subsidize the firm’s fixed costs.

Thereby, in contrast with the monopolist, the regulator has to assume
a negative penalty whenever firm’s fixed costs are positive (in the previous
example, C(0, b) = K > 0). Therefore, Armstrong’s argument of comparing
benefits (more income from agents still in the market) versus penalties (zero
income from agents excluded) might not be applicable to this model. Thus,
the main technical assumption not satisfied in Armstrong’s Theorem is re-
lated neither to the strict convexity of the type set nor to the homogeneity
of degree one of the valuation function (the strong technical assumptions), it
is related to the invalidity of v(pout, a, b) = 0.

2. When designing the contract, the monopolist is faced with a mass of
customers, and the type distribution reflects the customers’ different charac-
teristics. In contrast, the regulator is faced with a single firm who is going
to exercise the monopoly of some good. The type distribution reflects the
probability that this firm has certain characteristics unknown by the regu-
lator. Therefore, in the case that the regulator designs a contract with the
possibility of exclusion and the firm chooses to be excluded as its best op-
tion, neither production nor consumption of the good occurs in the economy.
Even in that case, consumers have to subsidize the firm’s fixed costs. This
situation cannot be optimal.
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8 Appendix: Mathematical Proofs

Proof of Proposition 2.1. By the fundamental theorem of calculus and the
envelope theorem,

V (a, b)− V (0, b) =

∫ a

0

va(q(ã, b), ã, b)dã

V (0, b)− V (0, 1) =

∫ b

1

vb(q(0, b̃), 0, b̃)db̃ =

∫ b

1

vb(q
out, 0, b̃)︸ ︷︷ ︸

=0

db̃ = 0

We have vb(q
out, 0, b̃) = 0 as a consequence of Assumption 1. Moreover, by

Assumption 2, we must have V (0, 1) = 0. Hence, V (a, b) =

∫ a

0

va(q(ã, b), ã, b)dã.

Then, through integration by parts,∫ 1

0

∫ 1

0

V (a, b)f(a)h(b) da db

=

∫ 1

0

[( ∫ a

0

va(q(ã, b), ã, b)dã
)
F (a)

∣∣∣a=1

a=0
−
∫ 1

0

F (a)va(q(a, b), a, b)da
]
h(b) db

=

∫ 1

0

∫ 1

0

(1− F (a)

f(a)
va(q(a, b), a, b)

)
f(a)h(b) da db

The result follows after placing the last expression into the expected income.

Proof of Proposition 3.1. The cross derivatives tab and tba are given by

tab =
(
vqq(q, a, b)qb + vqb(q, a, b)

)
qa + vq(q, a, b)qab

tba =
(
vqq(q, a, b)qa + vqa(q, a, b)

)
qb + vq(q, a, b)qba

As t is twice differentiable at (a, b), we use Schwarz’s integrability condition
tab = tba and qab = qba, and the result follows.
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Proof of Theorem 4.1. From the definition of function H in (14), we have

Hφ =

∫ U

0

{(Gq +GaAq)(Aqφ
′ + Ar) +G(Aqqφ

′ + Aqr)} ds

+G(φ,A(φ, r, U), U)
(
Aqφ

′ + Ar
)
Uq

Hφ′ =

∫ U(φ,r)

0

G(φ,A(φ, r, s), s)Aq(φ, r, s) ds

d

dr
Hφ′ =

∫ U

0

{
(
Gqφ

′ +Ga(Aqφ
′ + Ar)

)
Aq +G(Aqqφ

′ + Aqr)} ds

+G(φ,A(φ, r, U), U)Aq(φ, r, U)
(
Uqφ

′ + Ur
)

Hence, the Euler equation Hφ − d
dr
Hφ′ = 0 yields

G(ArUq − AqUr) +

∫ U

0

GqAr ds = 0 (46)

Let us show that ArUq−AqUr = 0. Since U(φ, r) is such that a(r, U(φ, r)) = 1
or b(r, U(φ, r)) = 1, we have two possibilities:

1. A(φ, r, U(φ, r)) = 1
By differentiating with respect to φ and r, we obtain Aq + AsUq = 0
and Ar + AsUr = 0, respectively, from which

ArUq − AqUr = ArUq − (−AsUq)Ur = Uq(Ar + AsUr) = 0

2. U(φ, r) = 1
Differentiating with respect to φ and r, we obtain Uq = 0 and Ur = 0.

Additionally, in the view that the marginal valuation is constant along the
characteristic curve, we have vq(φ, r, 0) = vq(φ,A(φ, r, s), s) . Then, by dif-
ferentiating with respect to r,

vqa(φ, r, 0) = vqa(φ,A(φ, r, s), s)Ar(φ, r, s)

Finally, by substituting Ar(φ, r, s) into equation (46), we obtain∫ U(φ,r)

0

vqa(φ, r, 0)
Gq

vqa
(φ,A(φ, r, s), s) ds = 0 (47)

Note that vqa(φ, r, 0) > 0 does not depend on s. Therefore, we obtain the
result.
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Proof of Theorem 4.2(i). From definition of H in (21), we have

Hφ =−G(φ,A(φ, β, r, U), U)
(
Aqφ

′ +Aββ
′ +Ar

)
Uq

−
∫ U

β
{(Gq +GaAq)(Aqφ

′ +Aββ
′ +Ar) +G(Aqqφ

′ +Aβqβ
′ +Arq)} ds

Hφ′ =−
∫ U

β
GAq ds

d

dr
Hφ′ =−G(φ,A(φ, β, r, U), U)Aq(φ, β, r, U)

(
Uqφ

′ + Uββ
′ + Ur

)
−
∫ U

β

(
Gqφ

′ +Ga(Aqφ
′Aββ

′ +Ar)
)
Aq +G(Aqqφ

′ +Aqββ
′ +Aqr) ds

Then,

Hφ −
d

dr
Hφ′ =−G(AβUq −AqUβ)β′ −G(ArUq −AqUr)−

∫ U

β
(GqAββ

′ +GqAr) ds

Let us show that AβUq−AqUβ = 0 and ArUq−AqUr = 0. From the definition
of U , we have two possibilities:

1. A(φ, β, r, U(φ, β, r)) = 1
By differentiating with respect to q, β and r, we obtain Aq +AsUq = 0,
Aβ + AsUβ = 0 and Ar + AsUr = 0, respectively, from which

AβUq − AqUβ = AβUq − (−AsUq)Uβ = Uq(Aβ + AsUβ) = 0

ArUq − AqUr = ArUq − (−AsUq)Ur = Uq(Ar + AsUr) = 0

2. U(φ, β, r) = 1
By differentiating with respect to q, β and r, we obtain Uq = Uβ =
Ur = 0.

Thus, the Euler equation (22) can be written as∫ U

β

Gq

(
Aββ

′ + Ar
)
ds−Rφλ(r) = 0 (48)

Since the marginal valuation is constant along the characteristic curve, that
is, vq(φ, r, β) = vq(φ,A(φ, β, r, s), s), by differentiating with respect to β and
r,

vqb(φ, r, β) = vqa(φ,A(φ, β, r, s), s)Aβ(φ, β, r, s) (49)

vqa(φ, r, β) = vqa(φ,A(φ, β, r, s), s)Ar(φ, β, r, s)
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Then, considering (18),

Aββ
′ + Ar =

vqb(φ, r, β)β′ + vqa(φ, r, β)

vqa(φ,A(φ, β, r, s), s)
=

Rφ

vqa(φ,A(φ, β, r, s), s)

Finally, by substituting this expression into (48), we obtain

Rφ

[ ∫ U(φ(r),β(r),r)

β(r)

Gq

vqa
(φ(r), A(φ(r), β(r), r, s), r, s)ds− λ(r)

]
= 0

and the result follows in view of Rφ 6= 0.

Proof of Theorem 4.2(ii). From the definition of H in (21), we have

Hβ = −G(φ,A(φ, β, r, U), U)
(
Aqφ

′ +Aββ
′ +Ar

)
Uβ

+G(φ,A(φ, β, r, β), β)
(
Aqφ

′ +Aββ
′ +Ar

)
−
∫ U

β
{GaAβ(Aqφ

′ +Aββ
′ +Ar) +G(Aqβφ

′ +Aβββ
′ +Arβ)} ds

Hβ′ = −
∫ U

β
GAβ ds

d

dr
Hβ′ = −G(φ,A(φ, β, r, U), U)Aβ(φ, β, r, U)(Uqφ

′ + Uββ
′ + Ur)

+G(φ,A(φ, β, r, β), β)Aβ(φ, β, r, β)β′

−
∫ U

β
{
(
Gqφ

′ +Ga(Aqφ
′ +Aββ

′ +Ar)
)
Aβ +G(Aβqφ

′ +Aβββ
′ +Aβr)} ds

Then,

Hβ −
d

dr
Hβ′ = −G(AqUβ −AβUq)φ′ −G(ArUβ −AβUr)

+G(φ, r, β)
(
Aq(φ, β, r, β)φ′ +Ar(φ, β, r, β)

)
+ φ′

∫ U

β
GqAβ ds

As we have seen in the proof of item (i), AqUβ−AβUq = 0 and ArUβ−AβUr =
0. Furthermore, since A(φ, β, r, β) ≡ r, we obtain Aq(φ, β, r, β) = 0 and
Ar(φ, β, r, β) = 1. Therefore, by also considering (49), we have

Hβ −
d

dr
Hβ′ = G(φ, r, β) + φ′vqb(φ, r, β)

∫ U

β

Gq

vqa
(φ,A(φ, β, r, s), s) ds (50)
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On the other hand, from the definition of R in (18),

Rβ −
d

dr
Rβ′ =− vqb(φ, r, β)φ′ (51)

Then, by substituting (50), (51) and Rβ′ = vb(φ, r, β) into (23), we obtain

φ′vqb(φ, r, β)
[ ∫ U

β

Gq
vqa

(φ,A(φ, β, r, s), s) ds−λ(r)
]

+G(φ, r, β)−vb(φ, r, β)λ′(r) = 0

Note that, by item (i), the term in brackets is zero, and the result follows.

Proof of Theorem 4.3. From the definitions of H and F in (28) and (29),
similar to the proofs of Theorems 4.1 and 4.2, we have

Hϕ −
d

dr
(Hϕ′) = −

∫ 1

y

Gq(q, A(q, ϕ, s), s)Aϕ(q, ϕ, s) ds (52)

Fϕ −
d

dq
(Fϕ′) = −vqa(q, ϕ, 1) (53)

Since for any q and s fixed, vq(q, ϕ, 1) = vq(q, A(q, ϕ, s), s), taking the deriva-
tive with respect to ϕ yields

vqa(q, ϕ, 1) = vqa(q, A(q, ϕ, s), s)Aϕ(q, ϕ, s) (54)

Thus, by substituting (52), (53) and (54) into (27), we obtain as a necessary
condition that there exists some λ ∈ R such that

−vqa(q, ϕ, 1)

∫ 1

y

Gq

vqa
(q, A(q, ϕ, s), s) ds = −λvqa(q, ϕ, 1)

, and the result follows in view of vqa > 0.

Proof of Claim 1. For this example, the necessary conditions (24) and (25)
yield

λ(r) =
3

2
β(r)2φ(r) + (c− 2)β(r)φ(r) +

1− 2c

2
φ(r) + (2r − 1)(1− β(r)) (55)

λ′(r) =
2(1− 2r)

φ(r)
+ β(r) + c (56)

By taking the derivative of (55), by (56), we obtain

φ′(r) =
2(2− c− 3β(r))

(3β(r) + 2c− 1)(β(r)− 1)
(57)
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Additionally, from boundary condition (19),

φ(r)β′(r) = 2 (58)

By taking the derivative of (58), by (57), we obtain

β′′ +
(2− c− 3β)

(3β + 2c− 1)(β − 1)
(β′)2 = 0 (59)

Thus, in the case that isoquants intersect line y = 1 and the participation’s
boundary β, curve β satisfies the differential equation (59). The solutions of
(59) (besides constant functions) are of the form

β(r) =
e
√

3B0r

2
√

3B1

+
B1(c+ 1)2

6
√

3
e−
√

3B0r − c− 2

3
(60)

with B0, B1 ∈ R.
Note that, for this example, informational rent V is a convex function.

Hence, the non-participation region Ω = {(a, b) : V (a, b) = 0} is a convex
set, and the boundary curves must be convex functions. That is, β′′(r) ≥ 0,

which implies B1 > 0. Since
√

3e
√

3B0r

(c+1)B1
+ (c+1)B1√

3e
√

3B0r
≥ 2 , we have

β(r) =
(√3e

√
3B0r

(c+ 1)B1

+
(c+ 1)B1√

3e
√

3B0r

)(c+ 1)

6
− c− 2

3
≥ 1

Therefore, such curves cannot represent the boundary because they are not
contained in the interior of [0, 1]2.

Proof of Claim 2. First, we derive the necessary condition in the case that
the isoquants are concurrent at the point (x, y) and intersect the line x = 1.
The PDE (5) can be written as qa + (−vqa

vqb
)qb = 0. Consider {(1, r) : r ∈

[R1, R2]} as the initial curve. If a(r, s) = s and b(r, s) = B(φ(r), r, s) are the
solutions of

as(r, s) = 1 , a(r, 1) = 1

bs(r, s) = −vqa
vqb

(φ(r), a(r, s), b(r, s)) , b(r, 1) = r
(61)

where φ : [R1, R2]→ [q, q] describes the quantity allocated to (1, r) types, a
and b can be expressed as a(q, s) = s and b(q, s) = B(q, ϕ(q), s) with q ∈ [q, q]
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and s ∈ [x, 1], where ϕ = φ−1 (φ is strictly increasing due to vqb < 0).
Since type (x, y) is indifferent between any q ∈ [q, q] , vq(q, x, y) = vq(q, 1, ϕ).

By setting H(q, ϕ, ϕ′) =
∫ 1

x
G(q, s, B(q, ϕ(q), s))

(
− (Bq + Bϕϕ

′)
)
ds and

F (q, ϕ, ϕ′) = vq(q, x, y)− vq(q, 1, ϕ), the problem can be written as

max
ϕ(·)

∫ q

q

H(q, ϕ, ϕ′) dq subject to

∫ q

q

F (q, ϕ, ϕ′) dq = 0

The necessary condition Hϕ − d
dq

(Hϕ′) = λ(Fϕ − d
dq

(Fϕ′)) for some λ ∈ R
implies ∫ 1

x

Gq

vqb
(q, s, B(q, ϕ, s)) ds = λ (62)

Next, we prove Claim 2. For this case, the solutions of the system (61) are

a(r, s) = s and b(r, s) = s−1
φ(r)

+ r. Then, a(q, s) = s and b(q, s) = (s−1)
q

+ϕ(q).

By condition (62), there exists λ ∈ R such that
∫ 1

x

(
1−2s
q

+ (s−1)
q

+ϕ+c
)
ds =

λ, from which

ϕ(q) =
1 + x

2q
+

λ

1− x
− c (63)

On the other hand, vq(q, x, y) = vq(q, 1, ϕ) implies that

ϕ(q) =
1− x
q

+ y (64)

Then, (63) and (64) imply x = 1
3
, which contradicts 1

3
< 2c+1

2c+3
< x < 1.

Proof of Claim 3. By using the conditions φI(r) = φII(r) and β(r) = 0, we
obtain the constants K0 and K1 in terms of r:

K0 =
−(1− r)(3r − 1)2

2c
, K1 =

4cr(1− r)
(3r − 1)2

(65)

Since we can write φIII(r) = (r − x)/(1− β(x)), from φII(x) = φIII(1),

β(x) = 1− (1− 3x)(1− x)2

K0

(66)

Then, by (35) and using (65),

(1− x)3 =
(9 + 4c)r3 − (15 + 8c)r2 + (7 + 4c)r − 1

2c
(67)
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On the other hand, since β(x) = y from (66) and (35),

(1− 3x)(x− 1)2 = K0(1− y) and 2x(x− 1)2 = K0(y −K1)

By dividing (seeing that 1
3
< 2c+1

2c+3
< x < 1), clearing x, using K1 from (65)

and now using y = (1− 2c)/3, we obtain

1− x =
(54 + 24c)r2 − (36 + 24c)r + 6

(63 + 18c)r2 − (42 + 24c)r + (7− 2c)
(68)

Therefore, by (67) and (68), we have that r is the solution on (2c+1
2c+3

, 1
2
) of

( (54 + 24c)r2 − (36 + 24c)r + 6

(63 + 18c)r2 − (42 + 24c)r + (7− 2c)

)3
=

(9 + 4c)r3 − (15 + 8c)r2 + (7 + 4c)r − 1

2c

with such r. We obtain x from (68).

Proof of Proposition 6.1. Fix q ∈ Q; by Assumption 2, vq(q, ·, b) is strictly

increasing and vq(q, â, ·) is strictly decreasing, so â > a and b̂ < b im-

ply vq(q, a, b) < vq(q, â, b) and vq(q, â, b) < vq(q, â, b̂), respectively. Thus,

vq(q, a, b) < vq(q, â, b̂).

Proof of Proposition 6.2. Fix (â, b̂) such that a < â and b > b̂. Define

F (x, y) := V (x, y)− v(q(â, b̂), x, y) ∀ (x, y) ∈ [0, â]× [̂b, 1]. Then,

Fx = Va(x, y)− va(q(â, b̂), x, y) = va(q(x, y), x, y)− va(q(â, b̂), x, y)

Fy = Vb(x, y)− vb(q(â, b̂), x, y) = vb(q(x, y), x, y)− vb(q(â, b̂), x, y)

Conditions qa ≥ 0 and qb ≤ 0 imply that q(x, y) ≤ q(â, b̂). From Assumption

3, we obtain Fx ≤ 0 and Fy ≥ 0. Then, since a < â and b > b̂, we have

F (a, b) ≥ F (â, b̂). That is, (a, b) is IC with (â, b̂).

Proof of Proposition 6.3. If (x, y) ∈ CC(â, b̂), then q(â, b̂) = q(x, y). There-

fore, by the taxation principle, t(â, b̂) = T (q(â, b̂)) = T (q(x, y)) = t(x, y).

Because (a, b) is IC with (â, b̂), we have

v(q(a, b), a, b)− t(a, b) ≥ v(q(â, b̂), a, b)− t(â, b̂) = v(q(x, y), a, b)− t(x, y)

that is, (a, b) is IC with (x, y).
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Proof of Proposition 6.4. Since (a, b) is IC with (â, b̂) and (â, b̂) is IC with
(x, y), we have

V (a, b)− V (x, y)+v(q(x, y), x, y) ≥ (69)

v(q(â, b̂), a, b)− v(q(â, b̂), â, b̂) + v(q(x, y), â, b̂)

Additionally, because vq(q, â, b̂) ≤ vq(q, a, b) ∀ q ∈ Q and q(x, y) ≤ q(â, b̂),∫ q(â,̂b)

q(x,y)

vq(q, â, b̂)dq ≤
∫ q(â,̂b)

q(x,y)

vq(q, a, b)dq . Then,

v(q(â, b̂), a, b)− v(q(â, b̂), â, b̂) + v(q(x, y), â, b̂) ≥ v(q(x, y), a, b) (70)

Therefore, from (69) and (70), (a, b) is IC with (x, y).

Proof of Theorem 6.1. Fix any (a, b), (â, b̂) ∈ [0, 1]2. Let us prove that (a, b)

is IC with (â, b̂).

If q(â, b̂) = qout (that is, if type (â, b̂) is excluded), we have V (â, b̂) = 0,
so from the IR constraint V (a, b) ≥ 0, we can write

V (a, b)− V (â, b̂) ≥ v(qout, a, b)− v(qout, â, b̂)

in view of v(qout, a, b) = v(qout, â, b̂) by Assumption 1.

If q(â, b̂) 6= qout, because CC(â, b̂) is strictly increasing, there are three
possible cases:

Case 1 CC(â, b̂) intersects F (a,b):
Let (x, y) the point of intersection. Because (a, b) is IC with (x, y) and

(x, y) ∈ CC(â, b̂), by Proposition 6.3, (a, b) is IC with (â, b̂).

Case 2 CC(â, b̂) intersects {(1, s) : 0 ≤ s ≤ b}:
Since CC(â, b̂) is strictly increasing, then b̂ < b. If â > a, by Proposition 6.1,

we have that (a, b) � (â, b̂). Then, (a, b) is IC with (â, b̂). If â ≤ a, consider

(x, y) ∈ CC(â, b̂)∩ conv{(a, b), (1, 0)} 11. Then, (x, y) is such that x > a and
y < b, and we are in the previous case. That is, (a, b) is IC with (x, y), and

by Proposition 6.3, (a, b) is IC with (â, b̂).

Case 3 CC(â, b̂) intersects {(s, 1) : 0 ≤ s ≤ a} 12:

Since CC(â, b̂) is strictly increasing, â < a. Without the loss of generality,

11conv{(a, b), (1, 0)} is the convex hull of these points.
12In Figure 3, we present a graphic illustration for this case.
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we consider that b̂ > b 13. Let (x1, 1) ∈ CC(â, b̂) ∩ {(s, 1) : 0 ≤ s ≤ a}, and

(x1, y1) ∈ {(x1, y) : y ∈ R} ∩ conv{(â, b̂), (a, b)}. Note that q(â, b̂) < q(x1, y1)
and, by Proposition 6.1, (x1, y1) � (a, b). Since (x1, y1) is IC with (x1, 1) (due

to (x1, 1) ∈ F (x1,y1)), by Proposition 6.3, (x1, y1) is IC with (â, b̂). Then, by
Proposition 6.4, it will be sufficient that CC(x1, y1) ∩ F (a,b) 6= ∅ to conclude

that (a, b) is IC with (â, b̂). If CC(x1, y1) ∩ F (a,b) = ∅, repeat the procedure
taking (x2, 1) ∈ CC(x1, y1) ∩ {(s, 1) : 0 ≤ s ≤ a} and (x2, y2) ∈ {(x2, y) :
y ∈ R} ∩ conv{(x1, y1), (a, b)}. Similarly to the above, we have q(x1, y1) <
q(x2, y2), (x2, y2) � (a, b) and that (x2, y2) is IC with (x1, y1). Then, by
Proposition 6.4, it will be sufficient that CC(x2, y2) ∩ F (a,b) 6= ∅ to conclude
that (a, b) is IC with (x1, y1), and therefore, by Proposition 6.4, that (a, b) is

IC with (â, b̂). If CC(x2, y2)∩F (a,b) = ∅, we set up the point (x3, y3), and so

on. Note that d
dq

(
vqa
vqb

)
≥ 0 and d

da

(
vqa
vqb

)
≥ 0 implies d

dr
as(r, 1) ≥ 0 in view of

d

dr
as(r, 1) =

d

dr

(
−
vqb
vqa

(q(r, 1), r, 1)
)

=
( vqb
vqa

)2[ d
dq

(vqa
vqb

)
× qa(r, 1) +

d

da

(vqa
vqb

)]
That is, the slope of the characteristic curves at the border (r, 1) is non-

decreasing, which guarantees that for a large enough n, CC(xn, yn)∩F (a,b) 6=
∅ because (xn, yn) will be close to (a, b) and CC(xn, yn) is strictly increasing.

Thus, applying Proposition 6.4 n times, we have that (a, b) is IC with (â, b̂).

Proof of Proposition 6.5. The proof is based in the two following lemmas.

Lemma 1. Given (a, b) ∈ Xn, ∀ (x, y) ∈ F (a,b), we have

Ṽ n(a, b)− Ṽ n(x, y) ≥ v(Q̃n(x, y), a, b)− v(Q̃n(x, y), x, y)−O( 1
n−1)

That is, since (a, b) ∈ Xn verifies IC with all points in F̃ (a,b) = F (a,b)∩Xn,
it satisfies a relaxed IC version with all points in the continuous set F (a,b)

with some tolerance that is asymptotically zero. The next lemma shows that
between any two points on the grid Xn, the same relaxed IC version holds.

Lemma 2. Given (a, b), (â, b̂) ∈ Xn, we have

V n(a, b)− V n(â, b̂) ≥ v(Qn(â, b̂), a, b)− v(Qn(â, b̂), â, b̂)−O( 1
n−1)

13If this is not the case, replace (â, b̂) for any point in CC(â, b̂) on the northwest of
(a, b).
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Figure 3: Illustration of Theorem 6.1 proof.
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We return to the proof of Proposition 6.5. Given (a, b), (a′, b′) ∈ [0, 1]2, it
will be sufficient to prove that

Ṽ n(a, b)− Ṽ n(a′, b′)− (v(Q̃n(a′, b′), a, b)− v(Q̃n(a′, b′), a′, b′)) ≥ −O( 1
n−1)

Let (â, b̂), (â′, b̂′) ∈ Xn be such that â ≤ a < â + 1
n−1 , b̂ − 1

n−1 < b ≤ b̂ and

â′ ≤ a′ < â′ + 1
n−1 , b̂′ − 1

n−1 < b′ ≤ b̂′. Let q = Q̃n(a′, b′) = Qn(â′, b̂′). Since

Ṽ n(a, b) = V n(â, b̂) , Ṽ n(a′, b′) = V n(â′, b̂′) we have

Ṽ n(a, b)− Ṽ n(a′, b′)− (v(q, a, b)− v(q, a′, b′)) =

V n(â, b̂)− V n(â′, b̂′)− (v(q, â, b̂)− v(q, â′, b̂′))

+ v(q, â, b̂)− v(q, a, b) + v(q, a′, b′)− v(q, â′, b̂′)

Since (â, b̂), (â′, b̂′) ∈ Xn, by Proposition 2,

V n(â, b̂)− V n(â′, b̂′)− (v(q, â, b̂)− v(q, â′, b̂′)) ≥ −O( 1
n−1)

Moreover, va > 0 and â′ ≤ a′ imply that v(q, â′, b′) ≤ v(q, a′, b′). Additionally,

vb < 0 and b′ ≤ b̂′ imply that v(q, â′, b̂′) ≤ v(q, â′, b′). Then, v(q, a′, b′) −
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v(q, â′, b̂′) ≥ 0. Hence,

Ṽ n(a, b)− Ṽ n(a′, b′)− (v(q, a, b)− v(q, a′, b′)) ≥ v(q, â, b̂)− v(q, a, b)−O( 1
n−1)

Since v is Lipschitz (with constant L),∣∣∣v(q, â, b̂)− v(q, a, b)
∣∣∣ ≤ L||(â, b̂)− (a, b)|| ≤ O( 1

n−1)

Then, v(q, â, b̂)− v(q, a, b) ≥ −O( 1
n−1). Therefore,

Ṽ n(a, b)− Ṽ n(a′, b′)− (v(q, a, b)− v(q, a′, b′)) ≥ −O( 1
n−1)

Proof of Lemma 1. Let (x, y) ∈ F (a,b) be such that x = 1 (case y = 1 is

analogous), and let b̂ be such that b̂ − 1
n−1

< y ≤ b̂. Since (Qn, V n) are the

solutions of problem (45), (a, b) satisfies IC with (1, b̂)

V n(a, b)− V n(1, b̂) ≥ v(Qn(1, b̂), a, b)− v(Qn(1, b̂), 1, b̂)

By definition, Q̃n(x, y) = Qn(1, b̂) and Ṽ n(x, y) = V n(1, b̂) . Additionally, in

view of (a, b) ∈ Xn, we have Ṽ n(a, b) = V n(a, b). Then,

Ṽ n(a, b)− Ṽ n(x, y) ≥ v(Q̃n(x, y), a, b)− v(Q̃n(x, y), 1, b̂) (71)

On the other hand, since v is Lipschitz,∣∣∣v(Q̃n(x, y), 1, b̂)− v(Q̃n(x, y), x, y)
∣∣∣ ≤ L||(1, b̂)− (x, y)|| = O( 1

n−1)

Then,
−v(Q̃n(x, y), 1, b̂) ≥ −v(Q̃n(x, y), x, y)−O( 1

n−1) (72)

Therefore, from (71) and (72),

Ṽ n(a, b)− Ṽ n(x, y) ≥ v(Q̃n(x, y), a, b)− v(Q̃n(x, y), x, y)−O( 1
n−1)

Proof of Lemma 2. If CC(â, b̂) ∩ F (a,b) = (x, y), we apply Proposition 1 for

(a, b) with (x, y), and considering that Qn(â, b̂) = Qn(x, y) and t(x, y) =

t(â, b̂), we conclude. Other cases are treated analogously as in the proof of
Theorem 6.1.
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Proof of Proposition 6.6. Let (Q, V ) denote the solution for the continuous
problem, and let (Q

n
, V

n
) be their restriction on the grid Xn. If (Qn, V n)

are the solutions of the discretized problem and OPTn is the optimal value,
we have

OPTn ≥
n∑
i=1

n∑
j=1

w(i, j)(v(Q
n

i,j, ai, bj)− V
n

i,j − C(Q
n

i,j))f(ai, bj)

=

∫ 1

0

∫ 1

0

(v(Q(a, b), a, b)− V (a, b)− C(Q(a, b)))f(a, b) da db−O(
1

n
)

= OPT ∗ −O(
1

n
)

Then, lim infn→∞OPTn ≥ OPT ∗.
On the other hand, if ∃ limn→∞ Q̃

n(a, b) and limn→∞ Ṽ
n(a, b) for any

(a, b) ∈ [0, 1]2, define

Q̂(a, b) := lim
n→∞

Q̃n(a, b) , V̂ (a, b) := lim
n→∞

Ṽ n(a, b)

Proposition 6.5 guarantees that (Q̂, V̂ ) is feasible. Hence

OPT ∗ ≥
∫ 1

0

∫ 1

0
(v(Q̂(a, b), a, b)− V̂ (a, b)− C(Q̂(a, b)))f(a, b) da db

= lim
n→∞

(∫ 1

0

∫ 1

0
(v(Q̃n(a, b), a, b)− Ṽ n(a, b)− C(Q̃n(a, b)))f(a, b) da db

)
= lim

n→∞

( n∑
i=1

n∑
j=1

w(i, j)(v(Q̃ni,j , ai, bj)− Ṽ n
i,j − C(Q̃ni,j))f(ai, bj) +O( 1

n−1)
)

= lim
n→∞

( n∑
i=1

n∑
j=1

w(i, j)(v(Qni,j , ai, bj)− V n
i,j − C(Qni,j))f(ai, bj) +O( 1

n−1)
)

= lim
n→∞

(
OPTn +O( 1

n−1)
)

where equalities are true by the dominated convergence theorem (each Q̃n

and Ṽ n are bounded), by the finite approximation of the integral, by the def-

inition of Q̃n and Ṽ n, and because (Qn, V n) is the solution of the discretized
problem.
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