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“The diversity of the phenomena of nature is so great, and the treasures hidden

in the heavens so rich, precisely in order that the human mind shall never be

lacking in fresh nourishment.”

................................................................................................Johannes Kepler
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RESUMO

Esta tese é dedicada a novos métodos data-driven para análise de problemas em epilep-

sia e epidemiologia da Dengue. A noção de redução de dimensionalidade será importante

nos dois problemas que estudamos.

Nossa primeira contribuição, em colaboração com Cláudio M. Queiroz (Instituto do

Cérebro, UFRN), Nathan Kutz (Universidade de Washington) e Roberto I. Oliveira (IMPA),

trata de um problema sobre detecção de crises epilépticas. Nós desenvolvemos um método

baseado na Decomposição em Valores Singulares (SVD) para explorar o grau de sin-

cronização antes, durante e após crises em um modelo animal de Epilepsia do Lobo Tem-

poral. Com nossa metodologia criamos um algoritmo baseado em limiares de sincronização

que melhora significativamente o estado da arte. Do ponto de vista neurobiológico, encon-

tramos ńıveis de sincronização consideravelmente baixos durante e alta atividade śıncrona

após as crises, o que tem importantes consequências.

Nossa segunda contribuição, em colaboração com Pedro D. Maia (Weill Cornell Medicine)

e Nathan Kutz (UW), trata da análise de séries climáticas e sua relação com epidemias

de Dengue. Condições climáticas locais têm papel importante no desenvolvimento da

população do mosquito Aedes Aegypti, responsável pela transmissão da Dengue. Nós apli-

camos técnicas de redução de dimensionalidade e algoritmos de aprendizado de máquina

em séries climáticas e analisamos sua conexão com a ocorrência de Dengue em sete capitais

brasileiras. Especificamente, identificamos duas variáveis chaves e um peŕıodo durante o

ciclo anual com grande poder preditivo. Assinaturas de temperatura e chuva variam sig-

nificativamente de cidade a cidade, sugerindo que a relação entre clima e Dengue é mais

complexa do que se pode imaginar.

Palavras-chave: Decomposição em Valores Singulares · Máquinas de Vetores de Suporte

· Validação cruzada · Aprendizado de Máquina · Dengue · Detecção de crises epilépticas



ABSTRACT

This thesis is devoted to new data-driven methods for the analysis of problems in

epilepsy and Dengue epidemics. The notion of dimensionality reduction will be important

throughout the thesis and in the two problems we study.

Our first contribution is a joint work with Cláudio M. Queiroz (Brain Institute, UFRN),

Nathan Kutz (University of Washington) and Roberto I. Oliveira (IMPA), and it deals

with a seizure detection problem. We develop a SVD-based method to explore the degree

of synchronization before, during and after seizures in a Temporal Lobe Epilepsy exper-

imental (animal) model. With our methodology we build a seizure detection algorithm

based on synchronization thresholds that significantly improves the state of the art. From

the neurobiological viewpoint, we have found considerably low levels of brain synchroniza-

tion during seizures and higher synchronous activity after seizures, which have important

consequences.

Our second contribution, joint with Pedro D. Maia (Weill Cornell Medicine) and

Nathan Kutz (UW), deals with the analysis of climate time series and their relation-

ship with Dengue epidemic outbreaks. Local climate conditions play a major role in the

development of the mosquito population responsible for transmitting Dengue Fever. We

apply dimensionality reduction techniques and machine-learning algorithms to climate

time series data and analyze their connection to the occurrence of Dengue outbreaks for

seven major cities in Brazil. Specifically, we have identified two key variables and a period

during the annual cycle that are highly predictive of epidemic outbreaks. Critical tem-

perature and precipitation signatures may vary significantly from city to city, suggesting

that the interplay between climate variables and Dengue outbreaks is more complex than

generally appreciated.

Keywords: Singular Value Decomposition · Support Vector Machine · Cross Validation

· Machine Learning · Dengue Epidemics · Seizure Detection
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In this thesis we develop new data-driven methodologies based on dimensionality reduc-

tion and machine learning techniques to investigate problems in epilepsy and Dengue

epidemiology. Dimensionality reduction deals with the problem of finding compact repre-

sentations of high-dimensional data via a smaller number of explanatory variables [1]. Our

overarching goal is to learn from data: extract important patterns, trends and ultimately

understand what the data says [2].

Data-driven methods are important tools in a world where huge amount of information

is produced everyday. The low cost of computational power and data storage in the last

years has increased the volume of available data in many scientific areas. The ability to

extract valuable knowledge from data, called the fourth paradigm of science [3], is the

essence of Machine Learning: A “field of study that gives computers the ability to learn

without being explicitly programmed” [4]. Prof. Abu-Mostafa says that the process of

solving a learning problem is essentially divided into three different parts [5]:

1. A pattern exists: we assume that the data has an underlying structure to be

explored by some computational tool.

2. We cannot pin it down mathematically: there is no closed mathematical

formula to describe such pattern.

3. We have data on it: without a considerable amount data the learning problem is

not feasible.

The different machine learning problems can be broadly categorized as supervised or

unsupervised. On supervised problems, we have access to the outcome variables and we

want to use them in the learning process. These algorithms usually starts with a training

step when the classification is done according to our labelling criteria. Then new data is

classified (testing step) and predictions can be made. On the unsupervised scenario, we

have no information about the outcomes so it is not possible to label the data previously.

So the idea is to describe how the data are organized or clustered.
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Why dimensionality reduction?

Generally, a large system of measured quantities can be represented by a smaller number of

explanatory variables. Dimensionality reduction methods are able to discover and extract

these explanatory variables which are often not directly observed. This may not be a

straightforward task, but is especially important in applications where the dimension is

quite large, potentially larger than the sample sizes coming from laboratory data.

From the mathematical modeling viewpoint, machine learning techniques have been

combined with nonlinear dynamical systems to discover equations from noisy measurement

data. The equations governing physical or biological processes have been traditionally

obtained from first principles and their predictive power has been evaluated by comparison

with data. The data-science approach consists of modeling those processes by identifying

nonlinear systems from data without assumptions on the form of the equations. As a

worth mentioning example, Brunton, Kutz and Proctor have recently developed a novel

framework to discover governing equations underlying a dynamical system simply from

data measurements [6], using sparse regression and compressed sensing. When the number

of measurements is very high, dimensionality reduction techniques can be used to extract

coherent structures. In this work the authors were able to discover the dynamics of a fluid

vortex shedding behind an obstacle, which took experts in the community nearly 30 years

to resolve.

In neuroscience, network dynamics of huge populations of neurons give rise to sensory,

cognitive and motor functions. Thanks to dimensionality reduction techniques, studies

have begun to characterize such complex systems by seeking for simplicity at neural en-

semble levels. Broome, Jayaraman and Laurent [7], studying the locust olfactory system,

recorded responses of projection neurons (PN) and Kenyon cells (KC) to different odor

stimulus. Using dimensionality reduction with Locally Linear Embedding techniques [1],

they examined how odor representations by PNs and by KCs change as different odors

coincided. Their results helped to explain the nature of odor perception or recognition.

For visual attention systems, Cohen and Maunsell ([8]) found that a single trial measure

of attention on a few dozen simultaneously recorded neurons can predict behavior. De-
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spite the apparent complexity of single-neuron responses, the population activity showed

orderly structure across different conditions. For an interesting review of dimensionality

reduction for neural recording we refer the work of Cunningham and Yu [9].

In epidemiology, prediction methods have been developed with the analysis of high-

dimensional data. Ju and Brasier ([10]) applied different feature selection methods to

identify informative blood variables for Dengue Hemorrhagic Fever (DHF). They found

that that IL-10, platelet and lymphocyte counts may be the major features for predicting

Dengue DHF on the basis of blood measurements. A different mathematical approach was

adopted recently by Frasca and colleagues [11], where a low-dimensional description of epi-

demic processes was carried with an isometric features mapping (ISOMAP) approach [12].

Using synthetic data from two epidemic models, they found an embedding dimensionality

equal to three, thus revealing that more than one macroscopic variable is necessary to

describe the epidemic dynamics.

Our work

Part II of this thesis is devoted to a seizure detection algorithm based on synchronization

thresholds, a joint work with Cláudio M. Queiroz (Brain Institute, UFRN), Nathan Kutz

(University of Washington) and Roberto I. Oliveira (IMPA). This work has been done

under the auspices of the Neuromat project1. Data has been made available from Prof.

Queiroz’s Lab and consist of Local Field Potential (LFP) activity from 24 channels of

mice hippocampus. LFP signals represent the electric potential in the extracellular brain

tissue [13]. Our method is a SVD-based technique to analyse brain synchronous activity.

We have been able to score the signal complexity by characterizing the energy tails of

the singular values. We applied our method on a dataset containing 19 epileptic seizures

from a Temporal Lobe Epilepsy experimental model and we were able to compare our

detection times with the expert opinions. From the neurobiological viewpoint, we obtained

1The Research, Innovation and Dissemination Center for Neuromathematics is hosted by the University

of São Paulo and funded by FAPESP (São Paulo Research Foundation), grant 2013/07699-0.
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interesting results regarding desynchronization during the seizure epochs and also high

synchronized activity during postictal (after seizure) phase.

In Part III we developed two methods based on machine learning algorithms to analyse

climate series and their connection with Dengue outbreaks in Brazil. This is a joint

work with Pedro D. Maia (Weill Cornell Medicine) and Nathan Kutz (UW). The first

methodology is based on the SVD decomposition of a climate data matrix. We project

temperature and precipitation time series onto a 2-mode plane and label them as epidemic

or non-epidemic year. This serve as classification step and also enable us to evaluate the

correlation between these critical climate signatures and Dengue epidemics. The second

methodology is an application of Support Vector Machine algorithms ([14, 15]) on two key

features: Mean temperature and frequency of rain events. We have also labelled those

climate indicators based on an epidemic or non-epidemic criteria and we were able to find

the most important seasons for Dengue epidemics for each state capital. Moreover we also

show how methods could be used for Dengue forecasting.



Part II

Seizure Detection and Analysis: a

SVD-based method

7





Chapter 1

Introduction

Epilepsy is one of the most common neurological disorders. It is well known for sudden

and apparently random seizures which are mainly triggered by stroke and trauma, but

also by accidents in the brain tissues, infections or inheritance [16, 17, 18]. Epileptic

seizures are produced by intense electrical impulses that might spread through the entire

brain (primary generalized seizures) or just through a relatively small part of it (partial

seizures). Almost 50 million people worldwide have epilepsy [19, 20] and for at least for

30% of the patients, the epileptic process cannot be controlled by current medication

[21]. Epilepsy surgery might be an alternative in some cases, but there is no guarantee of

success and the chances of long-term seizure outcomes are considerably high [22, 23]. In a

different direction, early warning systems for seizure detection prior the clinical onset have

been widely studied and might be the best way to avoid potentially harmful situations

[24, 25, 26, 27].

The study of the relationship between epileptic seizures and abnormal electric events

started in 1912 with the seminal works of Kaufman [28] and Pravidch-Neminsky [29],

using electroencephalography (EEG) data. EEG is a non-invasive electrophysiological

monitoring method in which the electrodes are usually placed along the scalp [30]. Major

contributions in the field EEG analysis in epilepsy were made in the subsequent decades

by Berger [31, 32], Gibbs and Lennox [33, 34, 35, 36]. For a historical review we refer the

work by Magiorkinis et al [37].

9
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It has long been speculated that epileptic seizures are related to synchronized electrical

activity in brain neurons, heretofore called synchronization. The first studies were done

by Penfield and Jasper in 1954, where seizures were characterized as hypersynchronous

neural activity caused by decreased inhibition and enhanced excitation [38]. In subsequent

years many authors tried to unveil the intrinsic nature of seizures without defining the

term “synchronization” rigorously. More recently, new mathematical tools have been

developed to better quantify synchronized neural activity such as cross-correlation, mutual

information, spectrum-based coherence, nonlinear interdependence, phase synchronization

and random matrix theory [39, 40, 41, 42, 43, 44, 45, 46].

As it turns out, the same techniques that were designed to quantify synchronization

have been used to suggest that desynchronization is also present in the epileptic process

[47, 48, 49, 50, 51, 52, 53, 54]. In 2002, Netoff and Schiff found desynchronization during

seizures by comparing various linear and non-linear detection methods for an experimental

in vitro model with CA1 pyramidal neurons [48]. Their findings were the first experimental

evidence that strongly coupled neurons may remain desynchronized on faster time scales.

One year later, Mormann et al. applied an automated technique on EEG intra-cranial

recordings from a group of patients with focal epilepsy [49]. They found a characteristic

decrease in synchronization ranging from several minutes up to a few hours prior to the

seizure onset. They have also investigated whether such drop on the synchronization

degree where indeed a good criterion for the definition of a pre-seizure state. Many other

authors have found similar results on desynchronization during seizures. Such discoveries

on the mechanisms of neural synchrony during seizures have opened new avenues for

understanding the spatiotemporal dynamics of epileptogenesis. For a recent review about

we refer reader to the work of Jiruska et al [55].

The capability to perform seizure detection methods is one of the biggest challenges

in epilepsy research. From a historical perspective, automated analysis of EEG recordings

as warning systems for the occurrence of epileptic seizures started in the 1970s. Early

methods were based on relative EEG amplitude thresholds [56, 57, 58] and were aimed to

facilitate the recording process by making sure no seizure was missed. Different approaches

for seizure detection have been developed ever since. Review studies can be found in [59]
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and [25]. Most seizure detection methods consist of finding discriminative features in

the EEG signals during the seizure period and then performing a classification step. The

techniques for feature extraction are usually based on Wavelet and Fast Fourier transforms

[60, 61, 62], Lyapunov exponents [63], cross correlation functions [64], entropy [65] and

principal component analysis (PCA) [66]. The classification methods are important for

deciding whether a piece of EEG signal comes from a seizure or not. Most classifiers

are based on linear classifiers [67], support vector machines (SVM) [68], artificial neural

networks (ANN) [69], k-nearest neighbour [70], decision trees [71] and Gaussian mixture

models [72].

Our Work

In this work we develop a seizure detection algorithm based on a new method for scan-

ning synchronized activity of a multichannel neural recording system. We analyse data

coming from Local Field Potential (LFP) signals recorded at the hippocampus (HPC) for

a Temporal Lobe Epilepsy (TLE) animal model. Here we give a brief explanation about

these terms:

• Temporal Lobe Epilepsy is the most common form of partial or localization related

epilepsy [76]. It was defined in 1985 by the International League Against Epilepsy

(ILAE) as “a condition characterized by recurrent, unprovoked seizures originating

from the medial or temporal lobe” [77].

• A Local Field Potential ([13]) is an electro-physiological signal recorded with micro-

electrodes inside the neural tissue. It is generated by an electric current from multiple

neuron Voltage and is produced on the extracellular space by a large number of action

potentials in a small volume of the brain.

• The Hippocampus is a small region of the brain that is primarly associated with

memory and spatial navigation [73, 74]. It this the region where TLE seizures

commonly begins [75, 76], so it may be important to keep the LFP recordings in this

brain structure.
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Data has been made available from prof. Cláudio Queiroz’s lab at the Brain Institute

of the Federal University of Rio Grande do Norte (UFRN). In total, we analyzed a dataset

of 19 seizures from 4 mice, which were submitted to a pilocarpine animal model of TLE

[80, 81, 82, 83]. Our method is based on a synchrony indicator for the activity of an

arbitrary number of channels which is obtained from the Singular Value Decomposition

(SVD) of a data matrix [139]. Two consequences of this method are described:

1. We contribute to the debate on synchronization vs desynchronization by showing

that ictal activity (i.e brain activity during the seizure) is desynchronized for most

seizures in our dataset. For seizure detection, we apply a training and testing algo-

rithm based on threshold values of the synchrony indicator.

2. We characterize both short and long term effects of the seizure in the HPC, by

observing an increase of the synchronization level during the postictal (i.e post-

seizure) depression for most seizures.

This part of the thesis is outlined as follows. In chapter 2, we describe the data

acquisition procedure and give some information about each seizure in our dataset (section

2.1). We also explain our data analysis method (the α - series), which consists on defining

synchronization scores on sliding time windows (section 2.2). We then check the sanity

of our method with a stochastic Kuramoto model (section 2.3). In chapter 3 we present

our main results. First we show the neurobiological implications of our scanning method

(section 3.1) and then we describe the seizure detection process (section 3.2). The optimal

thresholds are obtained for each seizure and the training and testing algorithm is explained.

The results for each seizure and different sliding time windows are shown in subsections

3.2.1 and 3.2.2 respectively. In chapter 4 we discuss the neurobiological implications of our

method, we compare our results with previous studies and discuss limitations and future

perspectives on this work from the practical implementation viewpoint. We conclude this

work with an outlook of the developed methods.



Chapter 2

Materials and Methods

In this chapter we describe the TLE Experimental model and our data-driven methods for

analyzing synchronization levels across the Local Field Potential (LFP) time series. Our

mathematical tool is a synchrony indicator based on the energy distribution of the singular

values from data matrices. There are three major phases of seizures: preictal (immediately

before seizures), ictal (during seizures) and postictal (after seizures). All such phases are

important for the understanding of the epileptic process. Control strategies should target

preictal and ictal periods. On the other hand, it is important to analyze the postictal

stage in order to discover the impact of the seizure in the neural systems. We have been

able to explore all these stages with our methodology.

2.1 Data acquisition

In this work we have analyzed hippocampal Local Field Potentials (LFP) of 19 seizures

from 4 different mice (named Hx, A3, B10 and F10). We label them as Si for i =

1, 2, . . . , 19. Data was collected at the Neural Networks and Epilepsy Laboratory of the

Brain Institute (UFRN)1. The epileptic condition was produced by the systemic adminis-

tration of Pilocarpine in high doses (280mg/Kg i.p.)2, which produced a long term status

1http://www.neuro.ufrn.br/research/groups/4

2i.p. stands for intraperitonial injection.

13
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epilepticus [80, 81, 82, 83]. These brain insults produce neuronal death, synaptic reorga-

nization and spontaneous limbic seizures.

The LFP traces have been acquired at 1000 Hz for S1 and S2 and 2000 Hz for the

other series. A total of 24 channels were equally distributed on both sides of the HPC

(except for mouse F10 with 23 channels with 11 on HPC right and 12 on HPC left). Table

2.1 summarizes information about each seizure. The onset has been defined as the first

spike before the flattening of the LFP that precedes the paroxysmal activity. The end

of the paroxysmal activity was characterized by its disappearance, by depression of the

EEG amplitude and occasionally by low frequency postictal bursts. Seizure duration was

defined as the the difference between the end and onset times ([79]).

2.2 The α - series.

The main novel component of our methodology is what we call the α - series. We begin

our methods chapter by describing how we have produced this series for analysing the

levels of synchronized activity across the filtered LFP data (data filtering is described in

the Supporting Information chapter). We have introduced two temporal parameters: The

time window size Ws and the overlap gap Wg, both in seconds. For fixed values of these

parameters we divide the total recording time of T seconds into overlapping intervals of

the form
[
(k − 1)Wg, tk

)
with t0 = 0 and

tk = Ws + (k − 1)Wg k = 1, 2, . . . kend,

where the last window index

kend =
⌊
1 +
T −Ws

Wg

⌋
can be obtained after some algebraic manipulation. Fig. 2.1 illustrates our temporal

parameters and the first two consecutive sliding windows.

For a given seizure S and for each tk we define the data matrices M =M(tk, S) that

contains the filtered LFP signals from the N channels during the intervals [tk−1, tk). For a

sampling rate of fr Hz, eachM is a N×(Wsfr+1) data matrix. Fig. 2.3a) illustrates this

step: Each row of M is filled with data from a single channel during such time window.
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Table 2.1: The 19 seizures from our dataset.

Seizure Mouse name onset (sec) offset (sec) duration (sec)

1 Hx 1800 1835 35

2 Hx 1813 1864 51

3 Hx 1320 1356 36

4 A3 1800 1862 62

5 B10 314.4 343.2 28.8

6 B10 1791 1870 79

7 B10 1402 1444 42

8 B10 1041 1097 56

9 F10 1105 1156 51

10 F10 977.1 1015 37.9

11 F10 1803 1842 39

12 F10 1709 1753 44

13 F10 1805 1835 30

14 F10 1802 1840 38

15 F10 1387 1440 53

16 F10 540.9 590 49.1

17 F10 1788 1850 62

18 F10 1800 1836 36

19 F10 1210 1242 32

We then compute the SVD of M(tk, S), which can be written as

M = UΣV †,

where † is the symbol for the transpose of V . The matrices U = U(tk, S), Σ = Σ(tk, S)

(both with dimension N×N) and V = V (tk, S) (dimension (Wsfr+1)×N) provide a low-

dimensional representation of the internal structure of the data from its most informative
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Figure 2.1: Sliding window parameters. We illustrate the first two sliding windows.

Both time window size Ws and the overlap gap Wg are measured in seconds.

(correlated) viewpoint. In fact, by denoting ui and vi the column vectors of U and V

respectively, we know from theory that {ui}Ni=1 forms a orthonormal basis for the span

of the columns vectors of M. The matrix Σ is diagonal and contains the singular values

{σi}Ni=1 in a decreasing order. Thus the best rank - r linear approximation of M is given

by

M(r) =
r∑
j=1

σjujv
†
j

For each singular value σi, we compute the associated energy E(σi) defined by

E(σi) =
σi∑N
j=1 σj

and the tail of the energy distribution is a measure for data complexity (Fig. 2.3b). Fast

decay indicates low-dimensional dynamics: The first SVD-modes play a significant role in

data representation. From the neurological point of view this indicates highly correlated

LFP signals across channels, which may be seen as a synchronized activity. On the other

hand, slow decay tails means that data has more complex structure which implies, low

signal correlation, thus indicating desynchronized activity in the brain network.
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Figure 2.2: The Singular Value Decomposition of the data matrix. For each time

interval
[
(k − 1)Wg, tk

)
and given the sampling rate fr (in Hz), we proceed as folows: a.

We build a data matrixM =M(tk, S) with N rows and Wsfr + 1 columns with the LFP

measured values in each of the N channels. We compute the SVD of Mk(Ws, fr) and

also the Energy Distribution (E(σi) for i ∈ {1, 2, . . . N}) for the singular values of this

decomposition. b. The decay of the tail of such distribution indicates redundancy in the

data and is associated with synchronization in the LFP channels network.

Once the Energy from the singular values of Σ(Ws, fr) is obtained, we give a score for

its distribution tail by fitting a Pareto density function ([84])

ρ(x, α) =
α

xα+1
, x ≥ 1

via least-squares optimization ([85]). Fig. 2.3a illustrates this step in our methodology.

The Pareto probability density has the following property: For high values of the α pa-

rameter, the distribution tail exhibit a fast decay behaviour. On the contrary, low α’s
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represents slow decay tails. In the context of this work, high and low α’s may be associ-

ated to synchronized and desynchronized activity across different channels, respectively.

For given values of Ws and Wg, each matrix M(tk, S) we associate a positive number

α(tk) that gives a synchronization score for the data on a Ws - seconds window. Fig. 2.3b

illustrates this step for the first two sliding windows.

Singular Value index 
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0
N1 2 

0

0.5

1
High      :  Fast Decay

Low      :  Slow Decay

time (sec) 
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N
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E
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a. b.

Figure 2.3: Building the α - series. a. The energy distribution E(σi) of the singular

values (red stars) is fitted with a Pareto density function ρ(x, α) (blue curve). From the

fitting process we keep the α parameter as a score of the distribution. High/low α are

indicators of fast/slow decay tails and thus synchronized/desynchronized activity across

channels. b. Two temporal parameters: Ws is the size of the time window and Wg is

the time gap between two overlapped windows. Both assume a constant value across the

N different channels. We show the first two consecutive time windows at t1 = Ws and

t2 = Ws + Wg with their respective α -score. This process spans the entire time interval

and the resulting α-series can be used as tools for analysing the evolution of synchronized

activity in the network.
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2.3 Sanity Check: Kuramoto model

We apply our data-driven method on a theoretical model of in order to validate our

assumption that high and low values of the parameter α from our Pareto density function

are correlated with synchronized / desynchronized activity. We have chosen the well known

non-linear mathematical model of synchronization - the Stochastic Kuramoto Model -

where the phase
(
θit ∈ [0, 2π]

)
of N oscillators are coupled under the following dynamics

dθit =

ωi +
K(t)

N

N∑
j=1

sin(θjt − θit)

 dt+ εdξit i = 1, 2, . . . , N

Here K(t) is a real function representing the strength between any two oscillators. Each

element i has a natural frequency ωi and ξit are independent standard Brownian motions

describing the effects of noise in the system. The electric oscillations in the signal are

represented by Xi
t = cos(θit) for i = 1, 2, . . . , N . Fig. 2.4 shows an example that confirms

our hypothesis. In this simulation we have used the following parameters:

• Number of vertices N = 24.

• Noise intensity ε = 0.05.

• Natural frequencies {ωi}Ni=1 and initial conditions {θi0}Ni=1 independent and uniformly

distributed on [0, 2π].

• Total of T = 90 seconds sampled at 2000 Hz.

We numerically solve the Kuramoto model with the Euler-Maruyama ([86]) scheme for a

coupling strength function given by

K(t) =


0 if t < 30

10 if 30 ≤ t < 60

0 if t ≥ 60.

The α - series have been produced with a time window size Ws = 1 seconds and time

overlap Wg = 0.25 seconds. As we expected, higher values of α(t) (around 0.8 on Fig. 2.4
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) follows synchronized activity when t ∈ [30, 60) and K(t) = 10. For a system without

coupling (K = 0), the natural frequencies dominate the dynamics and a desynchronized

activity with lower α(t) (around 0.4) is observed. This theoretical example illustrates

how the α - series gives rich information about the evolution of redundancy and therefore

synchrony on artificial networks of oscillatory elements.

time (sec) 0 30 60 90

0.4

0.8

 DESYNC  DESYNC SYNC

Figure 2.4: A sanity check example. We simulate an artificial network using the

stochastic Kuramoto Model with coupling strength given by a step function K(t). For

K(t) = 0 the system is decoupled and a desynchronized activity is followed by lower

values of α(t). When synchronization takes place (strong coupling with K(t) = 10 for

t ∈ [30, 60)), we observe an instantaneous increasing for α(t), which remains at higher

values until t = 60, when K(t) turns back to 0 again. High values of the α parameter are

correlated with strong levels of synchronization in the network.



Chapter 3

Results

In this chapter we present the results of our methods into two parts. In the first part

we highlight the contributions of the α - series method for a deeper understanding of

the epileptic process in the brain. In the second part we introduce a seizure detection

algorithm based on the same methodology. By defining new variables and notation for

explaining our results, we show the results with respect to different seizures and window

parameters.

3.1 Neurobiological implications of the α - series method

3.1.1 Desynchronized activity during Seizures epoch: The α - drop

seizures

We have applied the α - series methodology on our data. By scanning the whole LFP time

series, it has been possible to characterize, from the synchronization point of view, the

different regimes across the recording periods. The first interesting result is the sudden

changes in the signal at the seizure epoch. Fig. 3.1 shows an example of this result for

S7, (Ws,Wg) = (1.5, 0.25), both time windows measured in seconds. The whole α - series

is shown in Fig. 3.1a. By zooming a time window around the seizure, a clear drop on the

α parameter appears during seizures onset, followed by a rapid increase during the offset

(Fig. 3.1b). This pattern has been found for 15 seizures, which represents 79% of our

21
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dataset. We have called them α - drop seizures. Figs. 5.3, 5.4 and 5.5 exhibits the LFP

trace (channel 1) for such seizures with their respective α - series. This results highlights

the interplay between synchronized and desynchronized activity during the seizure. It

shows that desynchronization may play a major role in the epileptic process and that

seizure termination may be promoted by the increase of the synchronization level.
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Figure 3.1: Critical changes on synchronization during epileptiform acitivity. For

most of the seizures, we have found a significant drop of the α-series near the seizures onset,

thus indicating desynchronized activity. On the other hand, the offset is characterized by

high synchronization during the burst activity. This result allow us to recognize the

complexity of the seizure as a dynamic process. In this example we have used the LFP

signal of Seizure S7, with (Ws,Wg) = (1.5, 0.25).



The Seizure Detection algorithm 23

3.1.2 Postictal depression characterized by high synchronized activity

Our method have allowed us to investigate both short and long-term effects of the seizures

in the HPC. Once the α - series have been obtained, we have analysed the different

synchronization levels during both pre and post seizure epochs. By choosing time intervals

of length T = 1 or 10 minutes, we have built histograms with α values before and after

the epileptiform activity (from now on called α - histograms). Fig. 3.2a highlights this

procedure and Fig. 3.2b shows the results for S7. The mean of α values during the pre

and post seizure epochs are indicated by vertical red and green lines respectively. In this

example we have chosen (Ws,Wg) = (1.5, 0.25). Table 3.1 shows the average difference

between such mean of α values for each α - drop seizure, for all (Ws,Wg) ∈ Ωs×Ωg where

Ωs = [1.5 : 0.5 : 4] and Ωg = [0.25 : 0.25 : 1.5]. For T = 1 (short term), the average

difference was positive for all seizures except S5, S17 and S18. On the other hand for

T = 10 (long term) only seizure 5 has shown a negative difference. Hence for almost all

seizures we have found higher α - values during the post seizure epoch, thus indicating

that the postictal depression is characterized by high synchronization levels.

3.2 The Seizure Detection algorithm

The optimal threshold. Training and testing procedure.

We have built normalized versions of the α - series for the seizure detection process.

For each positive integer k ≥ 2 and tk = tk(Ws,Wg) as defined in section 2.2, we have

introduced the βtk parameter of a given seizure as

βtk =
αtk −

〈
αt1 , αt2 , . . . αtk

〉
σ
(
αt1 , αt2 , . . . αtk

)
where the symbols

〈
.
〉

and σ(.) represents mean and standard deviation respectively. The

real numbers βtk represent a measure of the discrepancy between αtk and the whole α -

series until time tk. For notational purposes, we may write βtk = βtk(S) if we want to

stress the dependence on a seizure S.

In order to quantify the seizure detection process, for a given real number β̄, we define

the β̄ -detection time for seizure S as
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Table 3.1: The average difference of mean α values for pre and post seizure epochs across

(Ws,Wg) ∈ Ωs × Ωg.

Seizure T = 1 min T = 10 min

3 0.0417 -0.0124

4 0.2250 0.0814

5 0 −0.0001∗

6 0.0454 0.0326∗

7 0.0942 0.0650

8 0.0364 0.0157

9 0.0684 0.0322

10 0.0533 0.0486

11 0.0612 0.0477∗

12 0.0661 0.0309

13 0.0518 0.0226

15 0.0229 0.0194

16 0.0304 0.0235∗

17 -0.0002 0.0090

18 -0.0092 0.0105

*For seizures S5, S6, S11 and S16 we didn’t have access to an interval of T = 10 minutes

before or after the seizure epoch. Therefore the maximum interval was chosen for both

pre and post seizure: T = 5.2 for S5, T = 3.7 for S6, T = 5.02 for S11 and T = 8.9 for

S16.

τd(β̄, S) = min{tk : βtk(S) ≤ β̄}.

In words, τd(β̄, S) is the first time where the β - series for seizure S reaches threshold β̄.
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Figure 3.2: Postictal depression is characterized by short and long-term syn-

chronized activity. a. In the top we show the LFP near the S7 epoch. We set a time

window with size T minutes before and after the seizure. In this work we have chosen

T = 1 or 10 minutes. The bottom plot shows the same time windows for the α - series.

b. The distribution of the α parameter for pre and post seizure epochs is evaluated. This

example shows higher values for the post seizure epoch, thus indicating strong correla-

tion between the occurrence of the seizure and the increased synchronization level in the

HPC. The means of the α parameter are represented by solid vertical lines, indicating the

shift between the distributions. For this simulations we have used (Ws,Wg) = (1.5, 0.25)

seconds.

Moreover, given the onset time tb(S), the β̄ - detection delay

∆(β̄, S) = τd(β̄, S)− tb(S)

is the time the distance between our detection time and the beginning of the seizure as

defined by experienced investigators ([79]). Fig. 3.3 illustrates both α and β - time series

and the detection parameters τd(β̄, S) and ∆(β̄, S) for S = S7, β̄ = −5 and (Ws,Wg) =

(1.5, 0.25). The drops of the α and β - series on the seizure epoch are aligned and represent

abnormal desynchronized activity.

The first part of the detection process consists on finding an optimal β - threshold for



26 Results

each α - drop seizure. Thus we define βopt = βopt(S) by

βopt =
〈

argmin
β
|∆(β, S)|

〉
.

In words, the optimization is done by evaluating the mean of all β such that the minimum

of |∆(β, S)| is achieved. For me optimization process, β ranges on the discrete interval

[mink(βtk) : dt : 1] for dt = 10−3 . Table 3.2 shows the list of βopt(S) and ∆(βopt, S) for

each seizure S and (Ws,Wg) = (1.5, 0.25).

Table 3.2: Optimal βopt(S) and ∆(βopt, S) for each α - drop seizure S. We have chosen

(Ws,Wg) = (1.5, 0.25)

Seizure βopt ∆(βopt, ·) (sec)

3 4.7 5.5

4 2.6 4.8

5 5.3 10.0

6 4.1 6.5

7 7.8 5.0

8 5.9 14.0

9 2.9 4.5

10 3.7 6.2

11 5.7 23.0

12 5.1 4.7

13 3.5 14.0

15 3.5 13.0

16 4.9 19.0

17 4.7 9.2

18 4.4 9.8

For fixed Ws and Wg and given the optimal βopt(S) values for all α - drop seizures
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Figure 3.3: Example of β - series and the seizure detection parameters for S7.

The spike criterion gives the onset time tb(S7). For Ws = 1.5 and Wg = 0.25, the β -

series are calculated by normalizing the α - series. The detection time τd(β̄, S7) is defined

as the first time at which the β parameter crosses down the threshold β̄ ( equals -5 in the

example). The detection delay ∆(β̄, S7) is time distance between the detection time and

the seizures onset.

S, we have been able to perform a seizure detection process by a training and testing

procedure with three steps:
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1. Pick a random subsample of d seizures and label them as r1, r2, ... rd.

2. Define the training threshold β∗ =
〈
βopt(r1), βopt(r2), . . . , βopt(rd)

〉
3. Evaluate the detection delay ∆(β∗, ·) for each one of the other 15− d seizures.

By repeating these steps we have been able to measure the mean detection delay for

each seizure and for different values of Ws and Wg.

3.2.1 Results for each α - drop seizure.

The training/testing procedure has been performed for Ws and Wg taking values at the

discrete intervals Ωs = [1.5 : 0.5 : 4] and Ωg = [0.25 : 0.25 : 1.5] respectively. For each pair

(Ws,Wg) ∈ Ωs × Ωg, the algorithm has been repeated 100,000 times. By denoting n(S)

as the number of iterations in which seizure S has been chosen for test and for a training

threshold β∗ (as defined in the previous subsection), we say that a seizure is detected at

some iteration if

|∆(β∗, S)| ≤ 30.

We say that a false positive occurs if at some iteration the absolute time distance between

the detection time and the onset time is greater than 30 seconds. We then define

g(S) =
{num. of iterations where |∆(β∗, S)| ≤ 30}

n(S)

as the detection rate for the seizure S. Hence 1−g(S) is the detection rate of false positives

before S. The average results across (Ws,Wg) ∈ Ωs ×Ωg are shown in table 3.3. Seizures

S3, S6, S7, S10 and S16 have been perfectly detected, whereas seizures S8,S17 and S18

were almost never detected. The other seizures were partially detected at different levels

of g(S). The best detection delay was ∆(β∗, S10) = −8.1 seconds, which means that our

method was able to identify S10 before its onset time. For the perfectly detected seizures,

the worst detection delay was 14 seconds for S6. The average g(S) and mean ∆(β∗, S)

across the α - drop seizures were 0.69 and 9.53 respectively.
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Table 3.3: Results: average for Ws ∈ [1.5 : 0.5 : 4] and Wg ∈ [0.25 : 0.25 : 1.5]

Seizure g(·) mean ∆(β∗, ·)

3 1.0 7.6

4 0.84 9.3

5 0.13 6.9

6 1.0 14.0

7 1.0 5.4

8 0 5.0

9 0.71 9.9

10 1.0 -8.1

11 0.82 8.2

12 0.97 10.0

13 0.55 8.7

15 0.35 19.0

16 1.0 18.0

17 0 15.0

18 0 14.0

average 0.69 9.53

3.2.2 Best window parameters (Ws,Wg)

The detection results can also be analysed with respect to the window parameters (Ws,Wg).

Tables 3.4 and 3.5 shows, for each (Ws,Wg) ∈ Ωg×Ωs, the results of the average detection

rates g(S) and detection delay ∆(β∗, S) across the 15 α - drop seizures. The highest/lowest

average g(S) were found at (Ws,Wg) = (4.0, 1.5) and (Ws,Wg) = (1.5, 0.25) respectively.

The best/worst average detection delay (min/max ∆(β∗, S)) were found at (Ws,Wg) =

(4.0, 0.25) and (Ws,Wg) = (1.5, 1.5) respectively. In order to obtain the best window

parameters (Ws,Wg), we compute the quotient between the average g(S) and ∆(β∗, S)
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as a joint detection score. Table 3.6 shows this parameter for each (Ws,Wg) ∈ Ωg × Ωs.

We have found the best and worst detection parameters at (Ws,Wg) = (4.0, 0.25) and

(Ws,Wg) = (1.5, 1.5) respectively. It is worth noting that the maximum quotient has been

found with the largest Ws and smallest Wg among the chosen values. This indicates that

bigger windows with a strong overlap should increase the accuracy of the seizure detection

process. Table 3.7 shows g(S) and mean ∆(β∗, S) across the iterations at which seizure S

was detected, for Ws = 4 and Wg = 0.25 seconds. The mean parameters across seizures

have also been computed: the mean detection rate and mean detection delay were given

by 0.6 and 7.08 seconds respectively.

Table 3.4: Average g(S) (detection rate) across seizures for each pair Ws ∈ Ωs = [1.5 :

0.5 : 4.0] and Wg ∈ Ωg = [0.25 : 0.25 : 1.5]

Ws

1.5 2.0 2.5 3.0 3.5 4.0

0.25 0.54 0.57 0.59 0.59 0.59 0.6

0.5 0.6 0.62 0.59 0.6 0.61 0.61

Wg 0.75 0.59 0.66 0.6 0.62 0.65 0.64

1.0 0.64 0.67 0.65 0.62 0.66 0.65

1.25 0.66 0.63 0.62 0.65 0.65 0.64

1.5 0.58 0.65 0.68 0.64 0.66 0.7

The minimum detection score g(S) (blue color) was found for (Ws,Wg) = (1.25, 0.25)

and the maximum (red) for (Ws,Wg) = (4.0, 1.5).



The Seizure Detection algorithm 31

Table 3.5: Average mean ∆(β∗, S) (detection delay) across seizures for each pair Ws ∈

Ωs = [1.5 : 0.5 : 4.0] and Wg ∈ Ωg = [0.25 : 0.25 : 1.5]

Ws

1.5 2.0 2.5 3.0 3.5 4.0

0.25 9.93 9.28 8.81 8.2 8.12 7.08

0.5 9.95 9.39 8.76 8.19 8.2 7.32

Wg 0.75 10.3 9.77 8.22 8.44 8.71 7.89

1.0 10.4 9.65 8.95 7.99 8.96 8.38

1.25 9.98 9.71 9.61 9.57 9.37 8.5

1.5 11.1 9.8 9.65 9.63 9.47 9.3

The maximum ∆(β∗, S) (blue color) was found for (Ws,Wg) = (1.5, 1.5) and the

minimum (red) for (Ws,Wg) = (4.0, 0.25).

Table 3.6: Average g(S) / Average ∆(β∗, S) across seizures for each pair Ws ∈ Ωs = [1.5 :

0.5 : 4.0] and Wg ∈ Ωg = [0.25 : 0.25 : 1.5].

Ws

1.5 2.0 2.5 3.0 3.5 4.0

0.25 5.47∗ 6.18 6.68 7.16 7.29 8.5

0.5 6.08 6.57 6.71 7.29 7.46 8.32

Wg 0.75 5.75 6.79 7.25 7.32 7.43 8.14

1.0 6.1 6.96 7.25 7.72 7.38 7.74

1.25 6.59 6.5 6.43 6.83 6.97 7.58

1.5 5.26 6.59 7.04 6.62 6.94 7.55

* All results of this table are multiplied by 100.



Table 3.7: optimal results: (Ws,Wg) = (4, 0.25)

Seizure g(·) mean ∆(β∗, ·)

3 1.0 2.4

4 0.94 8.7

5 0.081 6.6

6 1.0 14.0

7 1.0 4.9

8 0 NaN

9 0.52 9.8

10 1.0 -8.9

11 0.56 8.1

12 1.0 10.0

13 0.92 7.3

15 0 NaN

16 1.0 15.0

17 0 NaN

18 0 NaN

Average 0.6 7.08

32
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Chapter 4

Discussion

In this work we developed a seizure detection algorithm based on a data-driven method

for scanning synchronization levels of a neural network, based on the low-dimensional

structure of sliding data matrices. The energy distribution of the singular values were

fitted with a Pareto density function and its α parameter was used as a score for the tail

decay for each time window. A threshold based on the drop of the synchronization level

during the seizure epoch was used as the detection parameter. Hence our methodology

has two main features: (i) the capability to provide useful information about the neural

mechanisms of a seizure based on the α - series and (ii) a detection algorithm that could

be utilized as the basis of a seizure warning system for epileptic patients.

Desynchronization at seizures onset.

The α - series method have shown a drop on the synchronization level during the seizure

epoch for 15 of the 19 ( 79%) seizures in our dataset. Similar results about desynchronized

activity were found recently in other contexts and with other methods. Specifically for the

pilocarpine model of TLE, our findings showed substantial agreement with the recent work

of Wang et al ([54]), where connection probabilities where calculated in order to measure

the change in cross-correlogram (CCG) peaks. This desynchronization phenomenon may

be explained by the fact that seizure initiation could be caused by multiple distributed

cortical domains, as suggested by Jiruska et al [55]. Another possible interpretation of this
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phenomenon was suggested by Le van Quyen et al ([87]): Early ictal desynchronization

could be the result of localized activity in the region that is generating the seizure, while

the other regions are still unaffected. Further studies could be done, for instance, by

removing channels and evaluating the α - series of the remaining dataset for locating the

seizure focus area. It is also worth noting that our result about desynchronization during

the ictal period should not be extended as a general principle for all kinds of seizure: Each

experimental model and epilepsy syndrome has its own particularities and synchronization

mechanisms. A distinguishing feature of our α - drop biomarker is that it is actionable,

in so far as it is the basis for our seizure detection algorithm.

Seizure termination and postictal depression

The mechanisms of spontaneous seizure termination are still poorly understood. The

α - series method indicates a possible explanation based on the sudden increase of the

synchronization level just after the α - drop. This pattern was observed in most of the

seizures in our dataset and indicates that increasing synchronization may be casually re-

lated with seizure termination. Similar results were found by Schindler et al ([88]) for

human intra-cranial and surface EEG recordings. For the postictal state, our methodol-

ogy was capable of characterizing such periods from the synchronization viewpoint. The

electrophysiological effects of the postical depression are well known for TLE experimental

models ([89], [90], [91],[92]). In this work the post ictal state has been characterized by

high synchronization levels for most seizures if compared to the pre seizure epoch, even

for a 10 minutes time window. We have measured this feature with histograms for the α

values for both epochs. The post seizure mean α’s were higher than the pre seizure ones

in all cases, except for S5. This indicates that the seizure produces a reverberant activity

in the hipocamppus. We hypothesize that such phenomenon for TLE is also an indicative

of a plasticity process in the epileptic brain ([93],[94], [95],[96],[97], [98]).
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The detection process

The detection times were compared with the spike criterion which embodies the opinion of

a experienced investigators and was defined by Queiroz et al previously ([79]). The results

for each seizure (averaged across different sliding windows) yielded an average (across

seizures) detection rate 0.69 and detection delay 9.53 seconds. By defining the quotient

between detection rates and delays as a joint score, the optimal sliding window values

were given by Ws = 4 seconds and Wg = 0.25. For these time parameters we have found

average (across seizures) detection rate 0.6 and detection delay 7.08 seconds.

We provide a short list with both classical and recent interesting papers which have

also calculated average detecion delays, with their respective summary of methods. For

the optimal window parameters, our delay results were better than Osorio et al. [99],

Qu et al. [100], Saab et al. [61] and Aarabi et al. [101]. On the other hand, better

results are found in Gardner et al. [102], Kharbouch et al. [103] and Ahammad et al.

[104]. It is worth noting that Kharbouch et al. and Ahammmad et al. had 67 and 184

seizures to analyse, respectively, therefore being larger scale studies. Gardner et al had 29

seizure, 10 more than our dataset. Finally, our method is considerably simpler from the

mathematical point of view, but even though it has shown good results if compared with

previous studies.

Limitations of our method

Here we describe several limitations of this work. Our method is based on the SVD of

data matrices for the N - channel LFP data. Our synchronization measure is the α pa-

rameter of a Pareto density function, obtained via data fitting of the energy distribution

of the singular values. Other distributions could be in principle used for the same pur-

pose. Our first candidate was the exponential distribution, but the fitting process did not

work well because the SVD energy tails generally showed faster decay than exponential.

Other synchronization measures could also be applied on our dataset in order to obtain

comparative results, such as autocorrelation function ([105]), synchronization likelihood

([106]) and nearest neighbor phase synchronization ([107]). It would be interesting to use
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Table 4.1: Classical and recent works on seizure detection.

Paper Delay (sec) Summary of methods

Osorio et al. [99] 15.5 Wavelets & image processing

Qu et al. [100] 9.35 Nearest - Neighbour Classifier

Saab et al. [61] 10 Seizure probability of EEG sections

Gardner et al. [102] -7.58 SVM for energy statistics

Aarabi et al. [101] 11 Fuzzy rule system

Kharbouch et al. [103] 5 SVM for spectral properties.

Ahammad et al. [104] 1.76 Wavelet - based features

Our work 7.08 desynchronization threshold

such techniques and look for some analogous for the α - drops, which could also provide

alternative detection algorithms.

We have developed a new seizure detection method, but several authors have been

working on the problem of seizure prediction, which consists on identifying pre-ictal state

sufficiently long before the electro-graphical seizure onset ([49], [108]). Seizure prediction

is a difficult problem ([109]), but at the same time more efficient for the development

of implantable devices and warning systems. Our α - series method does not show any

significant temporal signature before the seizures.

The drop of the α parameter is the cornerstone of our detection algorithm, but such

pattern was not found for 4 of 19 seizures in our dataset. Till date, we haven’t found

a definitive explanation for such lack of dropping profile. We hypothesize that those 4

seizures have their seizure onset zone out of the HPC, where the channels are located. In

fact, the drop of the α parameter indicates desynchronization, which might be seen as a

sign that the ictal activity has started at some region of the HPC. Therefore, if the drop

does not occurs, it could be an indicative that the seizure started at some other region of

the brain.

From all 15 seizures where the α drops occurred, 3 of them (S8, S17 and S18) had almost



37

zero detection rates g(S). Such problem is related to the existence of false positives,

which according to our criterion means that the time distance between the onset and

detection times was greater than 30 seconds. We could improve our method by applying

some machine learning algorithm to classify the profile of the α - series during such false

positives and discriminate them from those of the seizures epoch. In this work we also did

not compute the false positive rates for each animal, which is the quotient between number

of false positives and the total duration time in hours. This quantity is well known in the

literature and could be used for comparison with other existing detection algorithms.

We have explored the α - series and detection results for a wide range of window

parameters. The chosen discrete intervals were Ωs = [1.5 : 0.5 : 4] and Ωg = [0.25 : 0.25 :

1.5] for Ws and Wg respectively. Our results indicated Ws = 4 and W = 0.25 as the best

windows size and gap for the detection process. Surprisingly, such values corresponds to

our highest window size and lowest window gap. Further analysis could be employed in

order to extract optimal parameters from more refined intervals. From the practical point

of view, we believe Ws = 4 and W = 0.25 could be kept as the best choices for our method.

Practical implementation

This work was intended to introduce the theoretical background of a new seizure detection

method based on the low-dimensional structure of the LFP data matrices. Future work

should address the limitations described above in order to provide the basis for the practical

implementation of our methodology. We could also apply the α - series on more TLE

datasets to verify our results about desynchronization during seizure onset and calculate

the detection parameters with the same training and testing algorithm. A larger dataset

would provide a statistically more robust detection method. An other interesting point

is about the capability of our method to perform the seizure detection before the ‘points

of no return’, from which the epileptic process will inevitably evolve to a clinical seizure

([109]). Such question is fundamental for designing a reliable and efficient alarming system

for seizure detection. Such system would need to alert when the occurrence of an epileptic

seizure is imminent and also provide mechanisms for its abortion.
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Conclusions

Advances in seizure detection are giving rise to implantable devices able to trigger thera-

pies to prevent or abort epileptic attacks. Here we introduce a simple mathematical tool

for analysing synchronization of a neural networks which also provides the basis for an

early detection system. We have found time signatures indicating structural changes on

hippocampal networks at the onset of seizures. A drop of the synchronization level was

our biomarker for the detection algorithm. Detection rates and time delays were evalu-

ated by a training and testing procedure with all seizures for which the desynchronized

activity was found. On the other hand, the postictal epoch was characterized by high

levels of synchronous activity, thus highlighting the long term effects of the seizure in

the hippocampus. The techniques described here can be used for research in the area of

synchronization at different neuronal levels.
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Supplementary Information

This chapter contains technical information about our method and also a summary of the

α - drops and α - histograms for all seizures.

5.1 Filtering process

In order to eliminate noise keeping high frequency oscillations which are relevant for our

purposes, raw electrophysiology data were band pass filtered bellow 600 Hz. We allow

such high frequency values in order to capture interesting oscillations such as fast ripples

([110, 111]) even though they are usually found only during the interictal periods, which

are not our main focus in this work. Fig. 5.1 describes the main steps of this process: For

each channel and for a fixed Ws - seconds time window, we apply a shift - Fast Fourier

Transform (FFT) F on the LFP signal and compute the complex magnitude associated to

each frequency f . We then multiply this magnitude by a Gaussian filter function Φ with

cutoff [112], which is given by

Φ(f) =


e−κf

2
if |f | ≤ 600Hz

0 if |f | > 600Hz

The filter Φ cuts off frequency oscillations above 600 Hz but also has a smoothing effect

high frequencies below this threshold. After this step, we apply the inverse FFT F−1 and

obtain the filtered signal.

39
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Figure 5.1: The filtering process. For a time window of length Ws seconds we pick

the raw data of each channel and proceed as follows: 1. We apply the shift - FFT F

and take the power spectral density of the signal. 2. Multiply the power density by the

filter function Φ that smooths high frequency oscillations and cuts off those above 600 Hz.

3. With the inverse FFT transform (denoted by F−1) we get the filtered signal. In the

bottom of this picture we plot a zoom of both raw and filtered signals.

5.2 SSR of the Pareto fitting process

The goodness of fit in the process of computing the α - series has been analysed. For each

seizure S and given Ws and Wg, the α parameter of the Pareto distribution ρ(x, α) has

been computed at times tk for the data matrixM(tk, S), where tk = Ws+(k−1)Wg for all

k = 1, 2, ...k∗ as defined in section 2.2. The α - series {α(tk)}k
∗

k=1 describes the evolution

of synchronization across the LFP traces. The associated Sum of Square Residuals (SSR)
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time series is given by

E(tk) =
N∑
i=1

(
ρ(i, α(tk))− E(σi)

)2
where E(σi) is the energy of the singular value σi and N is the number of singular values

coming from the SVD decomposition of M(tk, S). Fig. 5.2 shows an example for S7,

(Ws,Wg) = (1.5, 0.25). In this example, E(tk) = 0.5, obtained at t = 1437.75 and is

indicated by the red arrow. We have calculated maxtk E(tk) for all seizures, Ws ∈ Ωs =

[1.5 : 0.5 : 4.0] and Wg ∈ Ωg = [0.25 : 0.25 : 1.5]. The mean of the maximum values across

different Ws and Wg values are shown in table 5.1 for each seizure. This table illustrates

the well behavior of the error and consequently the good performance of the Pareto density

in the fitting process. The highest value of maxtk E(tk) was found for S8 and is equal to

0.0736.

time (sec)

Figure 5.2: The SSR series. The α values and their respective SSR (represented by

Et) across the whole α - series. The Et is discrete time that gives series gives the squared

L2 error during the fitting process at the times tk. For this example we indicate by

the red arrow the maximum maxtk E(tk) = 0.5. Here we have chosen seizure S7 and

(Ws,Wg) = (1.5, 0.25)
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Table 5.1: SSR Error: average maxtk E(tk) for Ws ∈ [1.5 : 0.5 : 4] and Wg ∈ [0.25 : 0.25 :

1.5]

Seizure average maxtk E(tk)*

1 0.0262

2 0.0279

3 0.055

4 0.0668

5 0.0245

6 0.0198

7 0.0443

8 0.0736

9 0.0417

10 0.0465

11 0.0319

12 0.0442

13 0.0561

14 0.0169

15 0.0318

16 0.0244

17 0.0259

18 0.0267

19 0.0191

5.3 α - series for all seizures

In this section we show a zoom of all α - drops with the respective seizures LFP trace

(channel 1). In total, from the 19 seizures in our dataset, 15 of them have exhibited such

behavior of the α - series. In all simulations we have chosen (Ws,Wg) = (1.5, 0.25) to
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compute the α - series. This pattern indicates a high degree of desynchronization at the

seizure epoch, which is a surprising result. Moreover this time signature has been used

for our seizure detection process. On the other hand, 4 seizures ( S1, S2, S14 and S19)

haven’t showed the α - drop. Fig 5.6 shows a zoom for each of them. The α - series have

shown low values during all recording periods. This phenomenon is still unexplained in a

reasonable way.

L
F

P
L

F
P

time (sec) time (sec) time (sec)

Figure 5.3: α - series for S3, S4, S5, S6, and S8 Highlight of the drop of the α

parameter. For these simulations we have assumed (Ws,Wg) = (1.5, 0.25). LFP from

Channel 1 in all pictures.
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Figure 5.4: α - series for S9, S10, S11, S12, S13 and S15. Highlight of the drop of the

α parameter. For these simulations we have assumed (Ws,Wg) = (1.5, 0.25). LFP from

Channel 1 in all pictures.

L
F
P

Figure 5.5: α - series for S16, S17 and S18. Highlight of the drop of the α parameter.

For these simulations we have assumed (Ws,Wg) = (1.5, 0.25). LFP from Channel 1 in all

pictures.
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Figure 5.6: α - series for S1, S2, S14 and S19. Seizures for which the α parameter

does not drop. For these simulations we have assumed (Ws,Wg) = (1.5, 0.25). LFP from

Channel 1 in all pictures.

5.4 α - histograms for all seizures

Figs. 5.7, 5.8 and 5.9 shows the histograms of all α - drop seizures for(Ws,Wg) =

(1.5, 0.25). We have chosen interval sizes of T = 1 and 10 minutes, but there were no

10 minutes time window of LFP data for S5, S6, S11 and S16. Therefore we have chosen

tha maximum interval as possible: T = 5.2 for S5, T = 3.7 for S6, T = 5.02 for S11

and T = 8.9 for S16. For most seizures the average of α values during the post seizure is

considerably higher than the average during the pre seizure epoch. This indicates higher

synchronization levels in the postictal depression and highlights the long term effects of
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the seizures.

Seizure 3

Seizure 6

Seizure 4 Seizure 5

Seizure 7 Seizure 8

 pre  seizure  post seizure         mean      :        pre seizure          post seizure      

Figure 5.7: α - histograms for S3, S4, S5, S6, S7 and S8. The post seizure α -

histograms are considerably shifted to the right if compared with the pre seizure ones. The

vertical lines represent the mean for both α - histograms. They also show the difference

of the α values of the pre and post seizure epochs. This results highlights both short and

long term effects of the post seizure depression in the brain. For this example (Ws,Wg) =

(1.5, 0.25).
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Seizure 9

Seizure 12

Seizure 10

Seizure 13

Seizure 11

Seizure 15

 pre  seizure  post seizure         mean      :        pre seizure          post seizure      

Figure 5.8: α - histograms for S9, S10, S11, S12, S13 and S15. For this example

(Ws,Wg) = (1.5, 0.25)

Seizure 16 Seizure 17 Seizure 18

 pre  seizure  post seizure         mean      :        pre seizure          post seizure      

Figure 5.9: α - histograms for S16, S17 and S18 For this example (Ws,Wg) = (1.5, 0.25)
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Outbreaks in Brazil: a Critical

Assessment of Climate Conditions

for Different Capitals.
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Chapter 6

Introduction

Dengue Fever is a tropical mosquito-borne viral disease present in more than 110 countries

and a current threat to half of the world population [113, 114, 115, 116]. The DENV

virus – and the more perilous Chikungunya and Zika virus – are primarily transmitted

to humans through infected Aedes Aegypti mosquitoes, which were the subject of much

debate during the 2016 Olympic Games in Rio de Janeiro. This main disease vector is well

adapted to urban environments, which allow viruses to spread easily through cities. Still,

regional climate conditions play a critical role in the development of epidemic outbreaks

in major urban centers. In this work we analyze temperature and precipitation time series

data for Brazilian state capitals and determine critical periods and seasons in which these

climate variables might favor the mosquito development cycle and therefore the occurrence

of Dengue outbreaks.

The first cases of Dengue in Brazil date from the end of the 19th century, and despite

the elimination of the Aedes Aegypti in 1955, the mosquito was reintroduced in the country

in the 70s. A historically important outbreak occurred in 1981 in Boa Vista, in the state

of Roraima, following several outbreaks in Central America involving the DENV-1 and

DENV-4 serotypes [117, 118]. Since then, Dengue has become one of the major public

health problems in Brazil, with several epidemics reported yearly across the country. While

Dengue symptoms are usually limited to fever and muscle/joint pain, some develop more

severe forms of the disease such as hemorrhagic fever or shock syndrome. The epidemics
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were aggravated with the latest Zika and Chikungunya developments. In fact, 91, 387

thousand cases of Zika and 39,017 thousand cases of Chikungunya were reported in 2016

from February to April alone [119], which caught the world’s attention just in time for

the Olympic Games in Rio de Janeiro. Until recently, Brazilian authorities limited their

actions to vector control measures, but a first-generation vaccine may represent a turning

point for stopping these epidemics [120, 121, 122].

The proliferation of Aedes aegypti and the sustained transmission of Dengue are in-

fluenced by a complex, interplay of multi-scale factors such as the circulation of different

serotypes [123, 124], the commuting of infected and susceptible humans within a city

[125, 126, 127], and the population size of the mosquitoes. There is also a growing body of

evidence showing that local climate conditions such as temperature and precipitation may

highly influence the development of the mosquitoes throughout different stages of their

life cycle [128, 129, 131, 132]. Complicating our understanding is the fact that several

regions experienced a nontrivial alternation between periods with and without epidemic

outbreaks over the past years, suggesting that the specific critical climate conditions that

propitiate the transmission of the disease is heterogeneous and still poorly understood

[133, 134, 137, 135, 136].

In this work we analyze climate and epidemiological data from seven major Brazilian

cities that in the recent past had years with and without Dengue outbreaks in order to

identify critical climate signatures that may have contributed to the epidemic outcomes.

Fig. 6.1 is a schematic overview of the work presented. We estimate the influence of

climate conditions in different epochs preceding epidemic periods using two data-driven

methodologies; the first one is based of the singular value decomposition and exploits the

low dimensional structures present in the climate time series [138, 139], and the second

one is based of machine learning algorithms for clustering and classification [14, 15] such

as Support Vector Machines (SVM) applied to climate variables that are key to the life

cycle of the mosquito [140, 141]. A crucial step in our methodology includes the usage of

compressed sensing to recover missing data [139, 142, 143, 144, 145] – in a plausible and in

a L1-optimal way – from climate recordings by the National Institute of Meteorology (IN-

MET) [146]. This allow us to explore the link between climate and Dengue in the following
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Figure 6.1: Schematic Overview. We analyze time series data for climate variables from

seven Brazilian state capitals (Aracajú, Belo Horizonte, Manaus, Recife, Rio de Janeiro,

Salvador and São Lúıs) and their connection to Dengue outbreaks. (i) Illustrative example

showing data from Rio de Janeiro. Two parameters define the epochs in which climate

conditions are considered: the starting date t0 (month/day) and period length p (days).

(ii) By applying machine-learning algorithms to historical data we locate periods along

the year where the separability between epidemic and non-epidemic climate is higher.

Keeping track of signature differences at key epochs, that vary from capital to capital,

may significantly improve Dengue outbreak forecasting in the upcoming years.

major Brazilian cities: Aracajú, Belo Horizonte, Manaus, Recife, Rio de Janeiro, Salvador

and São Lúıs. For each city, we highlight epochs that are critical for both methodologies.
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Surprisingly, there is a strong correlation between Dengue epidemics and favorable climate

conditions during winter and spring. This long-term influence is important evidence that

the interplay between climate, mosquito populations and Dengue outbreaks are extremely

complex. The insights of this work may help tailor public health policies for each different

city by increasing vector control measures during neglected critical epochs and ultimately

improving the forecasting of Dengue outbreaks – which would allow the public health

system to make earlier logistic preparations to better accommodate a large number of pa-

tients, or alternatively, mosquito eradication programs can be enacted during the winter

and spring months that are known to be associated with epidemic outbreaks.

This part is outlined as follows. In chapter 7, we describe both epidemiological and

climate datasets, our techniques for data completion and other details of our analysis.

In chapter 8 we present our findings for all seven Brazilian state capitals, emphasizing

epochs that are critical for all methods. In chapter 9 we summarize the most important

seasons for dengue epidemics in each city, highlighting the long-term impact of climate. We

also discuss the limitations of this work, its potential impact for improving early warning

systems, and the usage of our methods as a modest outbreak prediction tool.



Chapter 7

Methods

7.1 Description of epidemiological and climate datasets

All epidemiological data utilized in this work were taken from the publicly available

datasets of the Brazilian Notifiable Diseases Information System (SINAN, [147]). This

includes the total number of Dengue cases per year (from 2002 to 2012) for all Brazilian

state capitals. We also include data made available for Rio de Janeiro by the city’s hall

health department for 2013 [148]. A year is conventionally classified as an epidemic year

for a given city if the incidence of Dengue is above 100 cases (per 100,000 inhabitants)

and classified as a non-epidemic year otherwise [149]. In order to find critical climate

signatures that may have contributed to the epidemic outcomes, we restrict ourselves to

seven state capitals that displayed at least 3 epidemic years and 3 non-epidemic years in

the recent past. This allowed us to investigate the correlation between distinct climate

conditions and the complicated alternations between years with and without epidemic out-

breaks over time. The climate data utilized in this work was obtained from the National

Institute of Meteorology (INMET) and included time series for the average temperature

and precipitation for the state capitals Aracajú, Belo Horizonte, Manaus, Recife, Salvador,

and São Lúıs (from 1/1/2001 to 12/31/2012) and for Rio de Janeiro (from 1/1/2002 to

12/31/2013).
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7.2 Completing missing climate data via compressive sens-

ing

The time series of our selected climate dataset contain episodical gaps on days where

variables (temperature and precipitation) were not recorded. To fill in the missing data

gaps, we employ two different methods: Compressive sensing [139, 142, 143, 144, 145]

and interpolation (see Fig. 7.1 for illustrative examples). For temperature time series

data with 2 or more consecutive missing recordings, we use a recently developed compres-

sive sensing method based upon L1-convex optimization for approximating the missing

data [139, 142, 143, 144, 145]. The compressive sensing method attempts to reconstruct

a signal from a sparse, sub-sampling of the time series data. In this case, the sparse

sub-sampling occurs from the fact that we have missing data. The signal reconstruction

problem is nothing more than a large underdetermined system of linear equations. To be

more precise, consider the conversion of a time series data to the frequency domain via

the discrete cosine transform (DCT)

ψc = f (7.1)

where f is the signal vector in the time domain and c are the cosine transform coefficients

representing the signal in the DCT domain. The matrix ψ represents the DCT transform

itself. The key observation is that most of the coefficients of the vector c are zero, i.e.

the time series is sparse in the Fourier domain. Note that the matrix ψ is of size n × n

while f and c are n × 1 vectors. The choice of basis functions is critical in carrying out

the compressed sensing protocol. In particular, the signal must be sparse in the chosen

basis. For the example here of a cosine basis, the signal is clearly sparse, allowing us to

accurately reconstruct the signal using sparse sampling. The idea is to now sample the

signal randomly (and sparsely) so that

b = φf (7.2)

where b is a few (m) random samples of the original signal f (ideally m� n). Thus φ is

a subset of randomly permuted rows of the identity operator. More complicated sampling
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Figure 7.1: Completing missing data. The daily measurements of climate variables for

Brazilian state capitals from the National Institute of Meteorology (INMET) a. We re-

construct larger portions of lacking data with compressed sensing (L1-convex optimization

routines). b. Data values at minor holes were estimated by simpler interpolation proto-

cols. The state capitals with intractable missing portions of data were not considered (see

appendix) for more details.

can be performed, but this is a simple example that will illustrate all the key features.

Note here that b is an m× 1 vector while the matrix φ is of size m× n.

Approximate signal reconstruction can then be performed by solving the linear system

Ax = b (7.3)
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where b is an m× 1 vector, x is n× 1 vector and

A = φψ (7.4)

is a matrix of size m×n. Here the x is the sparse approximation to the full DCT coefficient

vector. Thus for m� n, the resulting linear algebra problem is highly underdetermined.

The idea is then to solve the underdetermined system using an appropriate norm con-

straint that best reconstructs the original signal, i.e. the sparsity promoting L1 is highly

appropriate. The signal reconstruction is performed by using

f ≈ ψx . (7.5)

If the original signal had exactly m non-zero coefficients, the reconstruction could be made

exact (See Ref. [139], Ch. 18).

We applied this technique specifically to the climate series of Rio de Janeiro, Salvador

and São Lúıs. For the other state capitals, we just linearly interpolate the time series

whenever a single daily recording is missing. We note that there were intractable large gaps

for the INMET precipitation series for Rio de Janeiro, which forced us to use alternative

data sources made available by the city’s alert system of rain events [150]. See the SI

tables for details.

7.3 Defining periods of critical climate conditions for Dengue

In what follows, we investigate the influence of climate conditions on Dengue outbreaks at

different periods along the yearly cycle. We let (t0, p) denote a sampling period of p days

starting at the date t0. Then, for a fixed period, we evaluate a score quantifying the dis-

crepancy between climate conditions in epidemic years and non-epidemic years. See Fig.

6.1 for an illustrative example using data from the city of Rio de Janeiro; we postulate that

periods with high climate separability between epidemic years (in red) and non-epidemic

years (in blue) might be of critical importance to the cycle of the urban mosquito popu-

lation and consequently, to the occurrence of Dengue outbreaks in the following year. We

calculate the separability score of a period using two different methodologies: The first is
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based of the Singular Value Decomposition (SVD) [139] and a low dimensional representa-

tion of the climate data, while the second is based of a machine learning algorithm know as

support vector machine (SVM) [14, 15]. In both cases, the methods highlight potentially

critical periods for the occurrence of Dengue. Finally, since Dengue outbreaks in Brazil

typically take place between March–May in a given year, we limit the range of (t0, p) from

June, (of the previous year) to May. In Fig. 6.1, we note that there are critical periods in

the winter (green box with t0 in June) that may be critical for the occurrence of Dengue.

7.4 Separability scores from SVD methodology

Fig. 7.2 shows how we select climate data over the same period (t0, p) for different years

and build a corresponding matrix X(t0, p) that allows for a SVD analysis: (i) We select

data from k climate variables over the years, always starting at t0 and ending p days later.

(ii) We stack and normalize the data associated with year l in a block matrix Bl(t0, p), for

l = 1, 2, · · · , N . (iii) Finally, all blocks are reshaped into column vectors, forming a new

matrix X = X(t0, p), which yields

X(t0, p) = UΣVT (t0, p). (7.6)

The columns of U – the SVD modes – form an orthogonal basis for the space generated

by the columns of X and the projections of the principal components are given by the

ΣVT (t0, p) matrix (see Fig. 7.3 i).

In our analysis, we project climate data collected over (t0, p) each year onto a 2-mode

plane and label years as epidemic (red) or non-epidemic (blue) according to our outbreak

convention (see Fig. 7.3 ii). This yields a set of l points (one for each year) and allow us to

quantify how separate the blue/red dots are from each other: We consider two convex hulls

connecting red/blue vertices and evaluate the distanceH(t0, p) between them (see Fig. 7.3

iii a,b). Finally, we explore a large range of values for t0 and p to find periods along the

yearly cycle in which discrepancies between climate conditions might have contributed to

Dengue outbreaks in the following year.
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Figure 7.2: Outline of SVD methodology: Data matrix setup. (i) We select climate

data with the same starting date t0 and length p across the years (1, 2 . . . , N). (ii) After

normalizing each climate variable over the years, we store them in block matrices Bj(t0, p),

which in turn, are stacked in a matrix B(t0, p). (iii) Reshape B into X, where different

columns correspond to climate information collected at (t0, p) in different years. The SVD

of X provides a low-dimensional representation of the internal structure of the data from

its most informative (correlated) viewpoint. Our goal is to, based in the historic data,

determine specific epochs of the year in which the separability between epidemic and

non-epidemic climate is higher.

a
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Figure 7.3: Outline of SVD methodology: Convex Hull analysis. (i) The pro-

jection’s component of the k-th column of X onto the j-th mode is the (j, k)-element of

the matrix ΣV T . We plot the projection for each year l (l = 1, 2, · · · , N) in the plane

spanned by modes j and j + 1. (ii) For each year we color the projections according to

epidemic or non-epidemic year criteria. We choose red If the (t0, p) interval preceded a DF

outbreak and blue if it doesn’t. (iii) We compute the convex hulls for the epidemic and

non-epidemic projections set. a. If there is no overlapping between the hulls, we calculate

the minimum distance between two vertices and set H(t0, p) = d. b. H(t0, p) = 0 in the

case of overlapping hulls. (iv) The SVD separability score H can be obtained for a range

of (t0, p) intervals.
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7.5 Separability scores from SVM methodology

Our second separability score for measuring discrepancies between climate conditions in

epidemic/non-epidemic years is based on a supervised learning technique for classification.

Fig. 7.4 outlines the main steps of our Support Vector Machines (SVM) algorithm: (i)

For a fixed (t0, p) interval, we evaluate two climate indicators – the arithmetic mean of the

average temperature 〈Tj〉 and average frequency of rain events 〈δj〉−1, where δj represents

time intervals between consecutive peaks on precipitation data (see Fig. 7.4 i). (ii) We

label the climate indicators in a 2D plot as an epidemic year (red) or as a non-epidemic

year (blue) according to our Dengue outbreak criteria. (iii) We repeat the process for t0

and p within a rectangular range R in the parameter space. Then, instead of a single

point representing year l, we have a collection of red/blue points (dashed ellipses in Fig.

7.4 iia). In our simulations, the rectangular range R was 5×6, i.e, spanning 5 consecutive

starting dates and 6 consecutive duration lengths. We tried both a linear kernel and a

Radial Basis Function (RBF) kernel for the SVM training step on R and cross-validated

the climate indicators by sampling 80% of each dataset and testing the accuracy of the

predictions in the remaining 20%. Our separability score is ultimately defined as the

average classification accuracy after re-sampling and testing data for 100 trials.
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Figure 7.4: Outline of SVM methodology. A supervised learning technique for classi-

fication: (i) We calculate and plot mean of average temperature 〈Tj〉 and frequency of rain

events 〈δj〉−1 for a fixed (t0, p) interval of all years, using red and blue colors for periods

preceding epidemic and non-epidemic years respectively. (ii)a. For each (t0, p) interval of

the rectangle R , we apply (i) to obtain a cloud (dashed circles) of points in the plane,

for each year. b. Linear and RBF kernels are used to execute the SVM train/test and

cross validation routines. c. The SVM score for R is obtained. We plot t0 × p Heatmaps

with Regions of High and Low separability scores, which indicates where temperature and

precipitation are better correlated with Dengue fever outbreaks.



Chapter 8

Results

8.1 Survey of critical climate conditions for different cities

In this section, we highlight significant differences between climate conditions during

epidemic/non-epidemic years for a period starting at day t0 and duration of p days along

the yearly cycle. We postulate that periods with high separability scores might be of

critical importance to the cycle of the urban mosquito population and consequently, to

the occurrence of Dengue outbreaks in the following year. The values of t0 range from

June 1st to February 21st and the values of p range from 10–100 days, which completely

covers plausible periods that may influence Dengue outbreaks. The interpretation of the

colormaps presented bellow should be straightforward and we highlight (in green) peri-

ods/epochs with high separability for both SVD and SVM methodologies. We restrict our

SVD analysis to the five principal modes and fix the color bar for H(t0, p) between 0 and

6 (highest value found for all simulations). For the SVM colormaps, we focus our analysis

on the highest separability scores and choosing scores above 0.8 for the Linear Kernel. For

the RBF kernel, which usually has a better predictive performance, the highlight threshold

is 0.95.

Figs. 7.3 and 7.4 demonstrate how assessments and scoring are performed for both

the SVD and SVM based methods. In what follows, a detailed evaluation is made for

each capital city. Before proceeding to this analysis, however, it is highly informative to
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ARACAJÚ : 8/12 – 9/25

Period            precedes :       

               epidemic year
        non-epidemic year        
                   

  Mean of temperature

  Rate  of  rain events

BELO HORIZONTE : 1/9 – 4/9

MANAUS : 8/12 – 9/15

RECIFE : 1/3 – 1/27

RIO DE JANEIRO  : 6/19 – 8/17

SALVADOR : 10/11 – 12/9

SÃO LUÍS : 7/25 – 9/17

Figure 8.1: Examples of high separability plots. For each state Capital we have se-

lected special time windows in which there is a clear separation between climate signatures

preceding epidemic and non-epidemic years. Note the distinct separation of the data for

each individual city, suggesting that a universal model for climate effects across all cities

may be unattainable. The separability of data further suggests that epidemics may be

accurately predicted in a given capital six to nine months in advance of the their outbreak.

This separability notion is made quantitatively precise by the SVD and SVM separability

scores (see text for details).
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ARACAJÚ : 2/2 – 2/26

Period            precedes :       

               epidemic year
        non-epidemic year        
                   

  Mean of temperature

  Rate  of  rain events

BELO HORIZONTE : 11/22 – 2/14

MANAUS :10/29 – 11/22  

RECIFE : 10/5 – 12/18 

RIO DE JANEIRO  : 11/28 – 12/17 

SALVADOR : 9/11 – 10/20 

SÃO LUÍS : 11/28 – 1/11 

Figure 8.2: Examples of low separability plots. Specific time windows in which the

epidemic and non-epidemic climate variables seems to be poorly distinguishable, therefore

not suitable for Dengue prediction. Unlike Fig. 8.1, the mixing of data suggests poor

predictability across all cities. This separability notion is made quantitatively precise by

the SVD and SVM separability scores (see text for details).

interpret that a high score or low score achieves for separating epidemic and non-epidemic

correlations. Figs. 8.1 and 8.2 demonstrate the clustering of data, or lack thereof, for all

cities. In Fig. 8.1, representative data for windows achieving a high correlation score is

shown. Remarkably, the red (epidemic) and blue (non-epidemic) dots are well separated
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and distinguishable from visual inspection. Indeed, one could easily postulate decision

regions which properly identify, months in advance, the oncoming presence of a Dengue

epidemic by simply considering the mean temperature and precipitation frequency. Fig.

8.2 shows the data structure when a low correlation score is achieved. Note that in this

case, there is significant overlap between the red and blue dots, suggesting that this region

for prediction of an epidemic is highly suspect. Figs. 8.1 and 8.2 provide an easily

interpretable understanding of the predictive nature of our proposed analysis. It also

highlights important and significant differences between the various Brazilian cities. Some

cities are on the coast, while others are in the interior, but regardless, each city has a unique

pattern of clustering that can be capitalized on in order to provide predictive metrics for

epidemic outbreaks. In the figures that follow, a principled analysis is performed for each

Brazilian city in order to compute regions that give high scores on the SVD/SVM metrics

and provide strong predictive metrics.

8.1.1 Rio de Janeiro

Fig. 8.3 shows periods with high separability scores for the city of Rio de Janeiro. Notice

that both SVD and SVM methodologies highlight critical epochs during the winter. In

fact, there is a good accordance between the projection of climate data to 3rd and 4th SVD

modes and the linear SVM kernel for t0 in June and p around 60 days. This suggests that

time series for temperature and precipitation from June to August may be crucial for the

occurrence of Dengue outbreak the following year. There is also good accordance between

both criteria during the spring, for t0 starting in October-November and p around 15 days.

8.1.2 São Lúıs

Fig. 8.4a. shows critical periods for São Lúıs, the state capital of Maranhão. Overall,

we found good accordance between separability scores provided by the SVM and SVD

methods. The SVD method indicated (for modes 3,4 and 4,5) critical (t0, p) intervals for

t0 in July and p varying from 30 to 85 days. A similar period was found with the SVM

method (using a linear kernel). This match suggests that temperature and rain in late

winter and beginning of spring may play an important role in the occurrence of Dengue
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Figure 8.3: Critical periods for Rio de Janeiro. There is a good match between the

different data-driven methods suggesting that specific climate conditions during winter

season may be crucial to Dengue epidemics. Both methods also indicate a critical period

of approximately 15 days during spring.

outbreaks. Another critical period indicated by both methods has t0 in December and

duration p around 60 days.

8.1.3 Manaus

The capital of Amazonas has a set of periods with high separability scores in the winter

(see Fig. 8.4b). In the SVD colormaps (for modes 3,4 and 4,5), the separability score is

high for t0 between June and July and p between 60 and 90 days. This corresponds to the

months of June, July and August. This is in good accordance with the scores given by the

SVM methodology (using a linear kernel). We also highlight that there is a good match

between the methods during a critical period with t0 lying between July and August and
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Figure 8.4: Critical periods for São Lúıs and Manaus. The two state capitals in the

north of Brazil exhibit good accordance between SVD separability scores (for modes 3,4

and 4,5) and SVM separability scores (for both Linear and RBF kernels). a. Temperature

and precipitation are correlated with Dengue outbreaks during winter and summer in the

case of São Lúıs. b. For Manaus, the correlation is higher during winter and spring.
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Figure 8.5: Critical periods for Aracajú and Belo Horizonte. For these cities, we

have found periods with high correlation between climate indicators and Dengue outbreaks

during winter, spring and summer. Aracajú (a.) and Belo Horizonte (b.) are the state

capitals of Sergipe and Minas Gerais, located in the northeast and southeast regions of

Brazil, respectively.

p ≤ 60 days, which would also include the first days of spring.
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8.1.4 Aracajú

The capital of Sergipe displays high separability scores according to the SVD methodology

(for modes 1,2 and 2,3) for periods with t0 in November – January and period length p < 60

days (see Fig. 8.5 a). Similar critical periods in the t0 × p-plane also occur in the SVM-

RBF color map. This suggests that the climate conditions during spring and summer are

of crucial importance for the occurrence of Dengue in Aracajú. The SVM methodology

also highlights critical periods for t0 in August and p between 30 and 60 days, which would

correspond to late winter and/or beginning of spring.

8.1.5 Belo Horizonte

In Fig. 8.5 b. we show the highlights for Belo Horizonte, the state capital of Minas

Gerais. The SVD color map (for modes 1,2) shows critical regions for t0 between June–

July and p between 30 and 60 days. These (t0, p)-periods corresponds to the winter season

in Brazil. A similar result was found in the SVM - RBF method, but with a larger range

of p. There was also a good accordance between SVD scores (for modes 4,5) and SVM (for

the RBF kernel) when t0 is between October and November and p is between 60 and 90

days. These critical periods with high separability scores correspond to the spring season.

For the summer period and beginning of the fall (where the epidemic outbreaks usually

occur), both SVM kernels indicate critical periods for t0 between December and January

and p between 45 and 90 days.

8.1.6 Recife

The capital of Pernambuco shows high separability scores for both SVD and SVM method-

ologies during the summer season (see Fig. 8.6a). We found critical periods for t0 between

December–January and p varying from 15 to 60 days using the SVD methodology (for

modes 2,3) and the SVM methodology (for both Linear and RBF kernels). Both SVD

color map (for modes 4,5) and SVM color map (RBF kernel) indicate regions with high

separability scores for t0 between December and January and p around between 60 and

90 day, which would include the first days of the fall season. For winter and spring, the
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Figure 8.6: Critical periods for Recife and Salvador. These two northeast state cap-

itals have exhibited strong correlation between climate signatures and Dengue epidemics,

specially during spring and summer. a. For Aracajú, we have found accordance between

SVD (modes 2,3 and 4,5) and the SVM methods. b. For Salvador, SVM methods has

shown a good performance by showing big RHS for t0 between August and December.

SVM methods (for both linear and RBF kernels) find critical periods for t0 in August and

p around 90 days.
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8.1.7 Salvador

For the state capital of Bahia (see Fig. 8.6 b), the SVM separability scores are high for

t0 between August and December (for both Linear and RBF kernels) and for all values of

length p. This suggests that spring and summer are crucial for the development of Dengue

epidemics in Salvador. We also highlighted that SVD separability scores (for modes 2,3

and 3,4) are high for t0 between December and January and p between 60 and 90 days,

which would also correspond to the summer season.



Chapter 9

Discussion

In this work, we developed data-driven methods to identify in a systematic manner a set

of critical periods in the annual cycle in which climate conditions may play a significant

role in the development of Dengue outbreaks the following year. For a fixed time period

starting at t0 and lasting p days, we evaluate separability scores between the climate

conditions on epidemic/non-epidemic years. We postulate that the periods where these

climate conditions differ most might be crucial for the development of the life cycle of

the mosquito population, and consequently, to Dengue outbreaks. The separability scores

were calculated following two different methods. The first one is based on dimensionality

reduction of data via Singular Value Decomposition (SVD) and the second one on the

machine learning classification algorithm known as Support Vector Machines (SVM). We

applied these methods to temperature and precipitation time series data for seven state

capitals in Brazil where there was a significant alternation between epidemic and non-

epidemic years in the recent past. Both methods indicated critical periods with remarkable

agreement. The analysis of this particular dataset was only made possible due to the

successful application of compressed sensing techniques to plausibly complete missing data.

In fact, the cities of Rio de Janeiro, Salvador, and São Lúıs had the larger gaps in their

daily recording of climate variables that were circumvented using compressive sensing.

73
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Long-term effects

After localizing the critical periods with high separability scores between epidemic/non-

epidemic climate conditions we were able to find which seasons were crucial for the de-

velopment of Dengue outbreaks at each city. See Table 9.1 for a summary of the results.

We obtained strong evidence that the climate influence on epidemics varies significantly

from place to place [133, 151, 152], and thus rejecting simplistic or universal explanations

involving temperature and rain precipitation in urban centers. We found a high correla-

tion between critical climate signatures during the winter season and the occurrence of

outbreaks in Aracajú, Belo Horizonte, Manaus, Rio de Janeiro, and São Lúıs.

Several works report and quantify how climate influence the mosquito development on

a weekly scale [153, 154, 155]. We suggest that climate conditions may have long-term

effects as well, occurring even months before the outbreaks. As a consequence, intensifying

mosquito control campaigns during the winter season may prove an interesting epidemic

control strategy, especially due to the smaller size of the vector populations during that

period. In Brazil, the national and local campaigns are usually restricted to spring and

summer periods [156, 157]. In fact, the Brazilian government announced that a special

task force for fighting mosquitos was to be formed November 3rd, 2016 [158]. We believe

this starting date to be too late since critical climate conditions were detected in some

cities even 9 months prior to epochs with higher Dengue incidence.

Assisting early warning systems

A number of early warning systems are available for calculating the risk of Dengue epi-

demics taking climate factors into account [135, 136, 159, 160, 161, 162]. In this sense,

our methodology offers an additional set of key periods that may assist current warning

systems or serve as basis to a new model focusing on climate signatures of epidemic years.

Fig. 9.1 illustrates how this could be achieved using SVM linear kernel separability scores:

(i) We would train climate data projected onto the 〈Tj〉 × 〈δj〉−1 plane and divide it into

two regions referring to epidemic (red) or non-epidemic (blue) data. (ii) Once we obtain

temperature and precipitation measurements for the following year we can quantify the
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Table 9.1: Summary of most important seasons for Dengue outbreaks.

Capital Winter Spring Summer Fall (DF)

Aracajú x x

Belo Horizonte x x x

Manaus x

Recife x x x

Rio de Janeiro x x

Salvador x x

São Lúıs x x

Remark: peaks of Dengue Fever outbreaks happen typically during the fall (March – May).

fraction of climate data falling into each region and use it to forecast Dengue the following

year. (iii) After the Dengue outcome is known for that year, we can append that data

to our set and retrain the classifier line between epidemic/non-epidemic regions. This

should improve, at least in theory, the precision of future forecasts and our understanding

of critical climate signatures.

Limitations of our methodology

There are several limitations to our work and all of our results must be interpreted with

caution and parsimony. Ultimately, we are only suggesting that temperature and precip-

itation discrepancies in key epochs affected mosquito populations in a critical way, and

despite the plausible hypotheses, they were not yet directly measured or reported satis-

factory by field studies. Moreover, we didn’t consider several other factors believed to be

important for explaining Dengue dynamics in details, such as: (i) Circulation of different

strains of the dengue virus [123, 124, 163, 164]; once the cross-immunity wanes with time,

the introduction of new DENV serotypes may affect an entire population. (ii) Human mo-

bility within and among the cities [125, 126, 127, 165, 166]; the lifetime movement range

of an Ae.Aegypti mosquito is typically less than a kilometer and the spread of Dengue
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through an urban area is most likely driven by everyday human movement [167, 168]. In

fact, humans act as vectors between relatively localized mosquito populations and might

change their commute strategies based on climate factors as well. (iii) Human demo-

graphic dynamics: Lower death rates may increase the longevity of immune individuals

and lower birth rates may decrease the number of susceptible individuals. Such fluctua-

tions over the years may change the magnitude of the infections [169, 170]. (iv) Global

warming and global climate changes: Several studies examined for instance the influence of

El Niño Southern Oscillation (ENSO) in Dengue incidence. While some argue that ENSO

is behind the synchronization of Dengue epidemics and traveling waves of infections, oth-

ers dismiss it as a minor factor [171, 172, 173, 174]. In any case, global climate changes

are likely to affect local climate conditions and consequently, Dengue transmission. (v)

Our methodological limitations constrained the analysis to cities that experienced at least

three epidemic and three non-epidemic years in the recent past. Poorly recordings of cli-

mate data also prevented us from including two additional state capitals to our dataset

(see Appendix and SI for details). In the future, we expect to extend our analysis to other

state capitals. Finally, at this stage, we outline a modest prediction system for Dengue

outbreaks using our methods only as a proof of concept, leaving detailed forecasting (as

done in [135, 136]) for future works.
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Figure 9.1: Forecasting Dengue Outbreaks and appending data for further anal-

ysis. Example for the SVM-Linear methodology on climate data from Rio de Janeiro. (i)

We choose a high scored (t0, p)-rectangle, for which we plot the climate indicators with

their respective colors. (ii) We apply a SVM training algorithm on this 2D-dataset. a. A

classifier line can be drawn and two semi-planes (Dengue and No-Dengue) are obtained.

b. With data from a new year for the same (t0, p) periods (black crosses), we can compute

the percentage of indicators that falls into each of those semi-planes. Therefore we are able

to estimate the correlation between new and previous climate data with respect to Dengue

epidemics. (iii) Depending on the classification of the new year as epidemic or not, the

new data is colored red or blue to become part of a new SVM-training set. This procedure

will give a more accurate information about the importance of the chosen (t0, p)-rectangle

on Dengue prediction.
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Conclusion

Epidemic control of Dengue, Zika and Chikungunya is one of the most urgent public health

challenges in a globalized world, and their effects have dramatic societal consequences in

large tropical countries such as Brazil. A better understanding of the multi-scale and long

terms effects of climate conditions on the development of Aedes Aegypti populations is

crucial for improving the timing of vector-control efforts and other policies. In this sense,

this work adds a new piece to the complex puzzle that is the development of mosquito

populations in dynamic urban environments under variable climate conditions. Figs. 8.1

and 8.2 illustrates the power of our methodology. We have found two specific parameters

– mean of temperature and frequency of precipitation – that may be crucial for Dengue

prediction in Brazil.

Not only are the analytic metrics developed in this manuscript predictive, they are also

easily interpretable in terms of simple to acquire measurement proxies of temperature and

precipitation. Moreover, in all cities considered where data was readily available, distinct

and separable climate patterns were shown which suggest that accurate prediction of

epidemics can be achieved in the winter preceding the outbreak. This suggests that many

of the eradication strategies should be performed well in advance of the summer months

where the epidemic is manifest.

Table 9.1 summarizes the potential for predictive success of Dengue outbreaks. Re-

markably, in almost all cities, aside from Recife and São Lúıs, a prediction can be made

approximately six to nine months in advance of the epidemic outbreak. And aside from

Manaus, all cities offer multiple windows of opportunity for forecasting the Dengue levels

during the annual cycle. Interestingly, the summer in Rio de Janeiro offers little insight

into this matter, since data of years with and without Dengue are qualitatively similar

from a climate perspective. Yet public strategies have typically been enacted and decided

during this time period, which is both too late and does not leverage the predictive capabil-

ities of the climate data. We conjecture that the winter months are critical for establishing

the ideal breeding conditions, through temperature and frequency of precipitation, which

ultimately determine the size of the Aedes Aegypti population. This suggests that disrupt-
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ing the breeding cycle six to nine months in advance may be a robust strategy for vector

control. For instance, in Rio de Janeiro, if during the winter months the rain frequency

is approximately once per week and the average temperature is approximately 22 Celsius

(See Fig. 8.1), then it is highly likely that an epidemic will occur, thus requiring an

intervention strategy 9 months in advance.

The work also highlights that the patterns allowing for predictive success are quite

distinct from city to city. Fig. 8.1 demonstrates that a simple, universal rule about

climate effects may be hard to achieve. Indeed, data on the seven cities demonstrate

a remarkably heterogeneous range of behaviors despite each individual city giving rise

to clear prediction windows. This is largely to be expected as climatic effects, such as

proximity to ocean, jungle, forest, dense populations, etc. will all play a significant role

in how precipitation and temperature favorably or unfavorably effects the growth of the

disease vector Aedes Aegypti.
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Supporting Information

10.1 Details about the choice of the seven capitals

As explained in our methods chapter, we chose state capitals that had at least 3 years

with Dengue Epidemics (DE) and at least 3 years without DE in the recent past. The

following 9 state capitals passed this criterium: Aracajú, Belo Horizonte, Cuiabá, João

Pessoa, Manaus, Recife, Rio de Janeiro, Salvador and São Lúıs. We completed missing

data through linear interpolation and/or usage of alternative sources for precipitation time

series given that the CVX routine does not work well for episodical data events. From

the 9 state capitals, the following 6 had only single precipitation gaps: Aracajú, Belo

Horizonte, Manaus, Recife, Salvador and São Lúıs. The cities of Cuiabá, João Pessoa and

Rio de Janeiro had big missing data epochs. For Rio de Janeiro we found an alternative

source of precipitation data, but the other two state capitals had to be discarded from our

analysis.

10.2 Epidemic / non-epidemic years and missing Climate

data for each chosen state capital

We provide tables with estimated population, total number of Dengue cases, incidence per

100, 000 inhabitants, and details of our climate data completing protocols (if any). For

80
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Rio de Janeiro, we consider the time period from 2003 to 2013 and we use epidemic data

from municipal webpage (1). For the other state capitals, the analyzed period ranges from

2002 to 2012 and data was collected from the Ministry of Health’s Notifiable Diseases

Information System. (2)

Table 10.1: Aracajú.

Year Pop. Cases Incidence

2002 473, 991 1, 933 407.81

2003 479, 767 1, 301 271.17

2004 491, 898 166 33.75

2005 498, 619 271 54.35

2006 505, 286 355 70.26

2007 520, 303 728 139.92

2008 536, 785 10, 702 1,993.72

2009 544, 039 1, 232 226.45

2010 571, 149 302 52.88

2011 579, 563 1, 399 241.39

2012 587, 701 2, 656 451.93

Incidence = Cases per 100, 000 inhabitants. Single gaps of missing climate data were

filled by linear interpolation; temperature on 12/21/2006 and precipitation on 7/24/2006.

1//www.rio.rj.gov.br/web/sms/dengue

2http://www.portalsinan.saude.gov.br
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Table 10.2: Belo Horizonte.

Year Pop. Cases Incidence Temp (L.I) Precip (L.I)

2001 – – – 8/9 8/9

2002 2, 284, 468 4, 749 207.88 8/31 8/31

2003 2, 305, 812 1, 800 78.06 – –

2004 2, 350, 564 472 20.08 – –

2005 2, 375, 329 149 6.27 – –

2006 2, 399, 920 872 36.33 – –

2007 2, 412, 937 5278 218.74 12/31 12/31

2008 2, 434, 642 12, 967 532.60 1/1 1/1

11/21 11/21

2009 2, 452, 617 14, 494 590.96 12/12 12/12

2010 2, 375, 151 52, 315 2,202.60 – –

2011 2, 385, 640 1, 749 73.31 – –

2012 2, 395, 785 635 26.50 – –

Incidence = Cases per 100, 000 inhabitants. L.I stands for Linear Interpolation.
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Table 10.3: Manaus.

Year Pop. Cases Incidence

2002 1, 488, 805 1, 855 124.60

2003 1, 527, 314 3, 731 244.29

2004 1, 592, 555 789 49.54

2005 1, 644, 690 915 55.63

2006 1, 688, 524 495 29.32

2007 1, 646, 602 1, 989 120.79

2008 1, 709, 010 5, 975 349.62

2009 1, 738, 641 623 35.83

2010 1, 802, 014 3, 748 207.99

2011 1, 832, 424 54, 342 2,965.58

2012 1, 861, 838 3, 703 198.89

Incidence = Cases per 100, 000 inhabit. Single gaps of missing climate data were filled by

linear interpolation; temperature on 12/23/2005 and precipitation on 2/11/2005.
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Table 10.4: Recife.

Year Pop. Cases Incidence Temp (L.I) Precip(L.I)

2001 – – – – –

2002 1, 449, 135 42, 791 2,952.86 – –

2003 1, 461, 320 449 30.73 – –

2004 1, 486, 869 241 16.21 – –

2005 1, 501, 008 830 55.30 – –

2006 1, 515, 052 1, 443 95.24 11/4 –

12/2

2007 1, 533, 580 1, 503 98.01 – –

2008 1, 549, 980 4, 771 307.81 4/28 –

2009 1, 561, 659 578 37.01 4/30

7/31 –

11/19

2010 1, 537, 704 11, 494 747.48 9/8 –

2011 1, 546, 516 5, 471 353.76 – –

2012 1, 555, 039 11, 444 735.93 1/1 1/1

5/2 5/2

6/14 8/14

8/14

Incidence = Cases per 100, 000 inhabitants. L.I stands for Linear Interpolation.
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Table 10.5: Rio de Janeiro.

Year Pop. Cases Incidence Temp (CVX) Precip (subst)

2002 – – – 8/31 –

2003 5, 974, 081 1, 610 26.95 3/1 – 3/2 6/20 – 6/30

6/20 – 6/30

2004 6, 051, 399 607 10.03 – –

2005 6, 094, 183 980 16.08 – –

2006 6, 136, 652 14, 435 235.23 – 12/13 – 12/31

2007 6, 093, 472 26, 507 435.01 1/1 – 2/1 1/1 – 1/10

2008 6, 161, 047 110, 861 1799.39 – –

2009 6, 186, 710 2, 961 47.86 2/11 –

2010 6, 320, 446 3, 000 47.47 – –

2011 6, 355, 949 78, 645 1237.34 – –

2012 6, 390, 290 137, 505 2151.78 12/8 –

12/26 – 12/27

2013 6, 429, 923 66, 278 1030.77 6/13 – 6/21 6/14 – 6/19

Incidence = Cases per 100, 000 inhabitants. Number of Dengue cases in 2013 taken from

the City’s hall health department, because data from SINAN is not available for that

year. For the larger gaps of missing data on precipitation time series, we have used data

of the Alerta Rio system from Saúde neighborhood, the closest to the Santos Dumont

airport where INMET’s rain collectors are located.
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Table 10.6: Salvador.

Year Pop. Cases Incidence Temp (CVX) Precip (L.I)

2001 – – – – –

2002 2, 520, 504 26, 838 1,064.79 10/9 – 10/21 –

2003 2, 556, 429 908 35.52 – –

2004 2, 631, 831 154 5.85 – –

2005 2, 673, 560 270 10.10 10/21 – 10/31

2006 2, 714, 018 377 13.89 – –

2007 2, 892, 625 1, 349 46.64 10/6 – 10/7 10/7

2008 2, 948, 733 2, 476 83.97 – –

2009 2, 998, 056 6, 819 227.45 6/9 –

12/27

2010 2, 675, 656 6, 159 230.19 – –

2011 2, 693, 606 5, 321 197.54 – –

2012 2, 710, 968 5, 161 190.37 – –

Incidence = Cases per 100, 000 inhabitants. L.I stands for Linear Interpolation.



Table 10.7: São Lúıs .

Year Pop. Cases Incidence Temp (CVX) Precip (L.I)

2001 – – – 10/1 – 10/31

11/14 –

11/21

2002 906, 567 448 49.42 4/30 –

2003 923, 526 567 61.40 9/5 – 9/26 –

9/28 – 10/10

2004 959, 124 154 16.06 – –

2005 978, 824 2, 580 263.58 – –

2006 998, 385 1, 395 139.73 – –

2007 957, 515 3, 827 399.68 – –

2008 986, 826 1, 183 119.88 – –

2009 997, 098 100 10.03 – 5/31

2010 1, 014, 837 2, 731 269.11 – –

2011 1, 027, 430 5, 229 508.94 10/20 –

2012 1, 039, 610 1, 315 126.49 6/8 – 6/9

6/12 – 6/13 –

7/24 – 7/25

7/29

Incidence = Cases per 100, 000 inhabitants. L.I stands for Linear Interpolation.
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