Complex Germen on invariant isotropic tori under the Hamiltonian phases flow with in involution Hamilton functions

Amaury Alvarez Cruz and Baldomero Valiño Alonso

August 16, 2017

1 Introduction

In several problems of the quantum and theoretical physics approximated solution to the partial differential equations which contain a small parameter in the higher derivative order are obtained, as well as to approximated eigenvalues and eigenvector of self-adjoint differential operator which depend on a small parameter. In such problems have been used the asymptotic methods $[8,7,6]$, which nowadays are developed widely in several branches of the physics-mathematics. It is well known the success of asymptotic methods, e.g. with the quantification method was solved the older and sharp problem of the mechanic classic: calculation of the energetic level of the hydrogen atom [3].

In [7] over a 2 n -dimensional phases space to obtain an asymptotic quasiclassical solution with respect to a small parameter on an isotropic tori k -dimensional $(k<n)$ is obtained. This asymptotic on a torus is accomplished with a new geometric object which was called the Complex Germen .i.e. a family of complex planes with certain properties. Such object does not exist over any isotropic manifold. In such sense, V. P. Maslov put forward and solved the problem about its existence and construction techniques. At the same time, the uniqueness of Complex Germ has a great signification such that asymptotic be well defined. In [4] were completed the results obtained in [7], as well as have solved the uniqueness problem for the singular point and a closed trajectory of the Hamiltonian system. Further, was solved of existence and uniqueness of Germen on isotropic torus to Hamiltonian with cyclic variable.

Some more later, M. M. Nekhoroshev put forward this problem but on isotropic invariant torus with respect to Hamiltonian phases flows which come from k-functions in involution. This statement was partially solved in [9] establishing that if certain simplectic operator has a simple spectrum then the complex germ exist. In this work we solve this problem, providing a full solution, i.e. we present conditions for the existence and uniqueness of complex
germ through the monodromy operator constructed in [9], but without the simple spectrum condition. We study also the Hamiltonian system with cyclic variables.

2 Preliminaries

Let $M^{2 n}$ be a $2 n$-dimensional differentiable manifold with local coordinates (p, q). We assume C^{∞} manifolds and scalar functions and vectorial fields as well. Let us introduce basic results, details can be found in [1]. Let $T_{m} M^{2 n}$ be the tangent space at point m of manifold $M^{2 n}$. We introduce natural manifold on $T M^{2 n}=\cup_{m \in M^{2 n}} T_{m} M^{2 n}$.
Definition 1. It is called exterior form of degree two or 2-form at point m on the manifold $M^{2 n}$ to the bilinear and antisymmetric application $\omega^{2}: T_{m} M^{2 n} \times$ $T_{m} M^{2 n} \rightarrow \Re$, i.e.

- $\omega^{2}(\alpha x+\beta y, z)=\alpha \omega^{2}(x, z)+\beta \omega^{2}(y, z)$,
- $\omega^{2}(x, y)=-\omega^{2}(y, x)$,
for all $x, y, z \in T_{m} M^{2 n}$ and $\alpha, \beta \in \Re$ (see [2]).
A 2-form ω^{2} is closed if $d \omega^{2} \equiv 0$, where $d: \Omega^{2}\left(M^{2 n}\right) \rightarrow \Omega^{3}\left(M^{2 n}\right)$ is an operator of exterior differentiation on the space of the 2 -form $\Omega^{2}\left(M^{2 n}\right)$. Besides, it is called non-degenerate if $\omega^{2}(x, y)=0$ for all $x \in T_{m} M^{2 n}$ then $y=0$.

Definition 2. A closed, non-degenerate and differential 2-form ω^{2} on the manifold $M^{2 n}$ is called symplectic structure. The couple $\left(M^{2 n}, \omega^{2}\right)$ is called symplectic manifold and the tangent space in each point m of the manifold is called symplectic vectorial field whose symplectic structure is the restriction of ω^{2} to $T_{m} M^{2 n} \times T_{m} M^{2 n}$.

One example of symplectic structure consist of $M^{2 n}=\Re^{2 n}$ with $\omega^{2}=d q \wedge d p$, where

$$
\begin{equation*}
d q \wedge d p(x, y)=\sum_{i=1}^{n} d q_{i}(x) d p_{i}(y)-d q_{i}(y) d p_{i}(x), \quad \forall x, y \in T_{m} \Re^{2 n} \tag{1}
\end{equation*}
$$

and for all $m \in \Re^{2 n}$. In this case $T_{m} \Re^{2 n}$ is identified with $\Re^{2 n}$, where the 1 -forms $d q_{i}$ and $d p_{i}$ are defined as

$$
\begin{equation*}
d q_{i}(x)=q_{i}(x) \quad \text { and } \quad d p_{i}(x)=p_{i}(x) \tag{2}
\end{equation*}
$$

where q_{i} and $p_{i}: \Re^{2 n} \rightarrow \Re$ are the coordinates system. i.e. $q_{i}(x)\left(p_{i}(x)\right)$ are i-th ($n+i$-th) coordinates of the vector x in a prefixed basis of the real linear space $\Re^{2 n}$. The symplectic structure defined in this way is called standard.
Definition 3. The coordinates of the local chart $\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ of a symplectic manifold are called canonical if the expression of the symplectic structure ω^{2} in this coordinate system coincides with the standard.

As consequence of the Darboux Theorem, in each point of a symplectic manifold, there is a neighbour with canonical coordinates [1].
Definition 4. Let $M^{2 n}$ be a symplectic manifold and let $T_{m} M^{2 n}$ and $T_{m}^{*} M^{2 n}$ be tangent and cotangent spaces at point $m \in M^{2 n}$, we define the operator $J: T_{m}^{*} M^{2 n} \rightarrow T_{m} M^{2 n}$ as

$$
\begin{equation*}
\omega^{2}(x, J a)=a(x), \quad \text { for } \quad x \in T_{m} M^{2 n} ; a \in T_{m}^{*} M^{2 n} \tag{3}
\end{equation*}
$$

The operator J defined in this way constitutes an isomorphism between vectorial spaces.

Definition 5. The Poisson bracket of two functions F, G over the manifold $M^{2 n}$ is defined as

$$
\begin{equation*}
[F, G]=\omega^{2}(J d F, J d G) \tag{4}
\end{equation*}
$$

where $d F$ and $d G$ are the differentials 1-forms of F and G on $M^{2 n}$.
If $[F, G]=0$, we say that functions F and G are in involution.
From Definition 4, we have

$$
\begin{equation*}
[F, G]=-d G(J d F)=d F(J d G) \tag{5}
\end{equation*}
$$

Definition 6. A Hamiltonian system is the triple $\left(M^{2 n}, \omega^{2}, H\right)$, where $\left(M^{2 n}, \omega^{2}\right)$ is a symplectic manifold and functions H is defined on it. The field $J d H$ is called the Hamiltonian vectorial field.

The matrix of the Hamiltonian operator H in canonical coordinates is

$$
\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)
$$

where 0 and I_{n} denotes the zero and identity n-dimensional matrices. Thus, in canonical coordinates the Hamiltonian system takes the form

$$
\begin{equation*}
\dot{p}=H_{q}, \quad \dot{q}=-H_{p}, \tag{6}
\end{equation*}
$$

where $H_{q}=\left(\frac{\partial H}{\partial q_{1}}, \ldots, \frac{\partial H}{\partial q_{n}}\right)$ and $H_{p}=\left(\frac{\partial H}{\partial p_{1}}, \ldots, \frac{\partial H}{\partial p_{n}}\right)$.
Let us assume that the solution of the Hamiltonian system $\left(M^{2 n}, \omega^{2}, H\right)$ can be extended to \Re, i.e. for $-\infty<t<+\infty$. In this case, $g_{H}^{t} m$ denotes the value of the solution θ with initial condition $\theta(0)=m$, we obtain the application $g_{H}^{t} M^{2 n} \rightarrow M^{2 n}$ for t fixed. This application constitute a one parametric group of diffeomorphism, i.e. $g_{H}^{0} m=m$ and $g_{H}^{t+s} m=g_{H}^{t} m \circ g_{H}^{s} m$, for all $m \in M^{2 n}$. This group is called flow of phases of the Hamiltonian system. Moreover, the application g_{M}^{t} is symplectic for each t fixed, i.e. $\left(g_{H}^{t}\right)^{*} \omega^{2}=\omega^{2}$, where

$$
\begin{equation*}
\left(g_{H}^{t}\right)^{*} \omega^{2}(x, y)=\omega^{2}\left(\left(g_{H}^{t}\right)_{*, m} x,\left(g_{H}^{t}\right)_{*, m} y\right), \tag{7}
\end{equation*}
$$

for all $m \in M^{2 n}$. Here $\left(g_{H}^{t}\right)_{*, m}$ denotes the derivatives of $\left(g_{H}^{t}\right)$ for each $t \in \Re$ (see [2]).

Definition 7. Let Λ a submanifold of $M^{2 n}$ and $T_{m} \Lambda$ the tangent space of Λ at point m. The submanifold Λ is called isotropic if the symplectic structure ω^{2} is null on it, i.e., $\omega^{2}(x, y)=0, \forall x, y \in T_{m} \Lambda$ and $m \in M^{2 n}$.

The submanifold is invariant respect to the Hamiltonian system $\left(M^{2 n}, \omega^{2}, H\right)$ if $\operatorname{IdH}(m) \in T_{m} \Lambda, \forall m \in \Lambda$, which in terms of the phases flow is rewritten as $g_{H}^{t}(\Lambda)=\Lambda$, for all $t \in \Re$, hence $\left(g_{H}^{t}\right)_{*, m}\left(T_{m} \Lambda\right)=T_{m} \Lambda$.

Let us consider the complexification of the linear space \Re^{2} and a linear operator for a positive integer n. The complexification of \Re^{n} is a n-dimensional linear space $\left(\Re^{n}\right)^{\mathbb{C}}$ constructed as follow: the point in $\left(\Re^{n}\right)^{\mathbb{C}}$ is denotes either by (x, y) or $x+i y$, where $x, y \in \Re^{n}$.

If $\alpha \cdot V$ denotes the multiplication of a scalar by $V \in \Re^{n}$ and $V+W$ the sum of two any vectors in \Re^{n}, the the multiplication of complex scalar $\alpha+i \beta$ by a vector $V+i W \in\left(\Re^{n}\right)^{\mathbb{C}}$ and the sum of two vectors $V_{1}+i W_{1}, V_{2}+i W_{2}$ are defined as:

$$
\begin{array}{r}
(\alpha+i \beta) \cdot(V+i W)=(\alpha V-\beta W)+i(\alpha W+\beta V) \\
\left(V_{1}+i W_{1}\right) \cdot\left(V_{2}+i W_{2}\right)=\left(V_{1} V_{2}-W_{1} W_{2}\right)+i\left(V_{1} W_{2}+W_{2} V_{2}\right) \tag{9}
\end{array}
$$

thus $\left(\Re^{n}\right)^{\mathbb{C}}$ constitutes an complex lineal space $\left(\left(\Re^{n}\right)^{\mathbb{C}}=\mathbb{C}^{n}\right)$.
Remark. Similarly, for any real vectorial subspace P is possible to define its complexification $P^{\mathbb{C}}$.

It is well known, that between the tangent space $T_{m}\left(M^{2 n}\right)$ to submanifold 2n-dimensional $M^{2 n}$ and $\Re^{2 n}$ there is an isomorphism $X: T_{m}\left(M^{2 n}\right) \rightarrow \Re^{2 n}$. Analogously, we can establish an isomorphism between the complexifications $T_{m}\left(M^{2 n}\right)^{\mathbb{C}}$ and $\Re^{\mathbb{C}}$.

Let us denote by $A: \Re^{m} \rightarrow \Re^{d}$ a \Re-linear operator. A complexification of the operator A is a \mathbb{C}-linear operator $A^{\mathbb{C}}:\left(\Re^{m}\right)^{\mathbb{C}} \rightarrow\left(\Re^{d}\right)^{\mathbb{C}}$ defined by the relation $A^{\mathbb{C}}(x+i y)=A x+i A y$. The following relations are valid: $(A+B)^{\mathbb{C}}=A^{\mathbb{C}}+B^{\mathbb{C}}$, where A and B are \Re-linear operators.

Let us introduce the following concepts: let ω^{2} be a real simplectic structure on the manifold $M^{2 n}$. We call complexification of ω^{2} defined on $T_{m}\left(M^{2 n}\right)^{\mathbb{C}}$, for all $m \in M^{2 n}$ to the form $\omega^{\mathbb{C}}: T_{m}\left(M^{2 n}\right)^{\mathbb{C}} \times T_{m}\left(M^{2 n}\right)^{\mathbb{C}} \rightarrow \mathbb{C}$, given by

$$
\begin{equation*}
\left(\omega^{2}\right)^{\mathbb{C}}(u+i v, x+i y)=\left(\omega^{2}(u, x)-\omega^{2}(v, y)\right)+i\left(\omega^{2}(u, y)+\omega^{2}(v, x)\right) \tag{10}
\end{equation*}
$$

$\forall u+i v, x+i y \in T_{m}\left(M^{2 n}\right)^{\mathbb{C}}$.
Remark 8. Since ω^{2} is antisimetric then $(1 / 2 i)\left(\omega^{2}\right)^{\mathbb{C}}(x, \bar{x})$ is real for all $x \neq 0$ in $T_{m}\left(M^{2 n}\right)$. We denote $\left(\omega^{2}\right)^{\mathbb{C}}(x, y)=[x, y]$. It is possible to verify that the complexification of the standard simplectic structure on $T_{m}\left(M^{2 n}\right)$ is the standard simplectic structure on $T_{m}\left(M^{2 n}\right)^{\mathbb{C}}$ at any point m of the manifold $M^{2 n}$ ([5]).

3 Statement of the problem

Let $M^{2 n}$ be a $2 n$-dimensional simplectic manifold and F_{1}, \ldots, F_{k} a family of functions defined on $M^{2 n}: F_{j}: M^{2 n} \rightarrow \Re, j=1, \ldots, k$ such that $k<n$, which
stay in involution on $M^{2 n}$. Let the k-Hamiltonian systems $\left(M^{2 n}, \omega^{2}, F_{j}\right)$ with the correspond Hamiltonian flux of phases $g_{F_{j}}^{t}, t \in \Re ; j=1, \ldots, k$. Since the functions $F_{j}, j=1, \ldots, k$ are in involution, the flux of phases commute, i.e. $g_{F_{i}}^{t} o g_{F_{j}}^{t}=g_{F_{j}}^{t} o g_{F_{i}}^{t}$, for all $t \in(-\infty,+\infty)$ and for all $i, j=1, \ldots, k$.

We assume that

- The Hamiltonian flux phases $g_{F_{j}}^{t}, j=1, \ldots, k$ are global, i.e. they are defined for all $t \in(-\infty,+\infty)$. It is valid for example if we assume that the manifold $M^{2 n}$ is compact.
- The torus $\Lambda^{k}=S^{1} \times, \ldots, \times S^{1}$ (where S^{1} denotes the unit circle), $k<n$ is a k-dimensional isotropic submanifold of $M^{2 n}\left(\Lambda^{k} \subset M^{2 n}\right)$ and is invariant respect to the Hamiltonian system $\left(M^{2 n}, \omega^{2}, F_{j}\right), j=1, \ldots, k$.
- The differential $d F_{1}, \ldots, d F_{k}$ are lineal independent at each point of the manifold $M^{2 n}$.

For the construction of asymptotic solution of several partial differential equation in [7] the concept of Complex Germ on isotropic manifold is introduced. The issues of existence and uniqueness of such object is treated in this work. The main difficulty is that not always exist the Germ over any isotropic manifold.

Definition 9. A Complex Germ over the isotropic tori $\Lambda^{k}(k<n)$ is a smooth map on Λ^{k}, $r^{n}: m \rightarrow r^{n}(m), \forall m \in \Lambda^{k}$, such that to each point $m \in \Lambda^{k}$ correspond a n-dimensional complex subspace $r^{r}(m)$ of the complexification of the tangent space to $M^{2 n}$ at the point $m\left(T_{m}\left(M^{2 n}\right)^{\mathbb{C}}\right)$ with following properties:
i) $r^{n}(m)$ is a lagrangian subspace, i.e. $\operatorname{dim}\left(r^{n}(m)\right)=n$ and isotropic $\left([x, y]=0, \forall x, y \in r^{n}(m)\right)$,
ii) $r^{n}(m) \supset T_{m}\left(\Lambda^{k}\right)^{\mathbb{C}}$,
iii) $r^{n}(m)$ is disipative respect of $T_{m}\left(\Lambda^{k}\right)$, i.e.

$$
\begin{equation*}
\forall x \in r^{n}(m) \backslash T_{m}\left(\Lambda^{k}\right)^{\mathbb{C}} \quad \text { holds } \quad(1 / 2 i)[x, \bar{x}]>0 \tag{11}
\end{equation*}
$$

iv) $r^{n}(m)$ is invariant respect the Hamiltonian flux $g_{H}^{t}, t \in \Re$ of a given function H, i.e. $\forall \in \Lambda^{k}, \forall t \in(-\infty,+\infty)$ holds

$$
\begin{equation*}
\left[\left(g_{H}^{t}\right)_{*, m}\right]^{\mathbb{C}}\left(r^{n}(m)\right)=r\left(g_{H}^{t} m\right) \tag{12}
\end{equation*}
$$

where $\left[\left(g_{H}^{t}\right)_{*, m}\right]^{\mathbb{C}}$ is the complexification of the derivative at point m of an element g_{H}^{t} of Hamiltonian flux phases H associated to Hamilton function H.

Remark 10. From now we omit the supraindex \mathbb{C} that indicated the complexification, in the space and operator. But implicitly we use the properties enunciated previously.

The aim of this paper is to seek conditions for the existence and uniqueness of a Complex Germ on the a invariant torus to Hamiltonian system $\left(M^{2 n}, \omega^{2}, F_{j}\right), j=$ $1, \ldots, k ;(k<n)$.

4 Condition for the existence of the Complex Germ on the torus

Let

$$
\begin{equation*}
\Sigma=\left\{m \in M^{2 n}: F_{i}(m)=f_{i}, i=1, \ldots, k, f=\left(f_{1}, \ldots, f_{k}\right) \in \Re^{k}\right\}, \tag{13}
\end{equation*}
$$

be the intersection of the level surfaces defined by the functions $F_{j}, j=1, \ldots, k$ which contain the trajectories of the Hamiltonian system $x=J d F_{j}(x), j=$ $1, \ldots, k$. Since $d F_{1}, \ldots, d F_{k}$ are linearly independent then Σ is a submanifold submerge in $M^{2 n}$ of dimension $2 n-k$.

Let us define the action of additive group \Re^{k} over $M^{2 n}$, as follow: to each $\vec{t}=\left(t_{1}, \ldots, t_{k}\right) \in \Re^{k}$ correspond the difemeorphism of $M^{2 n}$ as:

$$
\begin{equation*}
g^{\vec{t}}=g_{1}^{t_{1}} o \ldots o g_{k}^{t_{k}} \tag{14}
\end{equation*}
$$

where $g_{j}^{t}=g_{F_{j}}^{t}, \forall j=1, \ldots, k$. Since g_{j}^{t} are simplectic diffemeorphism the $g^{\vec{t}}$ as well, i.e. $\left(g^{\vec{t}}\right)^{*} \omega^{2}=\omega^{2}, \forall \vec{t} \in \Re^{k}$.

4.1 Monodromy operator

The condition for existence of the Complex Germ are given in term of the monodromy operator which we defined in the following paragraph

Let us fix the point $m \in \Lambda^{k}$. Denoting by G the discrete subgroup of \Re^{k} defined as follow

$$
\begin{equation*}
G=\left\{\vec{t} \in \Re^{k}: g^{\vec{t}} m=m\right\}, \tag{15}
\end{equation*}
$$

which does not depend on the choice of the point m. The subgroup G can be generated by a set of k elements linearly independent(see [1]), i.e.
$G=\left\{l_{1} T_{1}+\ldots, l_{k} T_{k} ; l_{i} \in \Re ; T_{i} \in G\right.$ are linearly independent, $\left.i=1, \ldots, k\right\}$.
Since Λ^{k} is invariant respect to Hamiltonian system $x^{\prime}=J d F_{j}(x) ; j=1, \ldots, k$ we have $g_{j}^{t} \Lambda^{k}=\Lambda^{k}$ therefore $g^{\vec{t}} \Lambda^{k}=\Lambda^{k}$. We have also that the map f : $\Re^{k} \rightarrow M^{2 n}$ given by $f(t)=g^{\vec{t}} m$ which to any \vec{t} correspond a point in Λ^{k} is sobrejective, but is not injective because Λ^{k} is compact and \Re^{k} is not; therefore there exist $t_{1}, t_{2} \in \Re^{k} ; t_{1} \neq t_{2}$, such that $g^{t_{1}} m=g^{t_{2}} m$ and $g^{t_{1}-t_{2}} m=m$ with $t_{1}-t_{2} \in G$; which mean that the subgroup G is not trivial.
Definition 11. Let $T \in G$. The operator $G_{m}=\left(g_{*, m}^{T}\right): T_{m}\left(M^{2 n}\right) \rightarrow T_{m}\left(M^{2 n}\right)$ is called monodromy operator of the subgroup G at point $m \in \Lambda^{k}$.

Let us rewrite the monodromy operator in a way more amassing to describe the sufficient condition for the existence of the Complex Germ. We gave

$$
\begin{equation*}
g_{*, m}^{T}=g_{*, m}^{l_{1} T_{1}+\ldots+l_{k} T_{k}} \tag{17}
\end{equation*}
$$

for certain $l=\left(l_{1}, \ldots, l_{k}\right) \in Z^{k}$, where T_{1}, \ldots, T_{k} are the generator of subgroup G. Let denote $T_{j}=\left(t_{j 1}, \ldots, t_{j k}\right) ; t_{i j} \Re ; \forall i, j=1, \ldots, k$. thus we obtain

$$
\begin{equation*}
g_{*, m}^{l_{1} T_{1}+\ldots+l_{k} T_{k}}=g_{1 *, m}^{l_{1} t_{11}+\ldots+l_{k} t_{k 1}} o \ldots o g_{k *, m}^{l_{1} t_{1 k}+\ldots+l_{k} T_{k k}} . \tag{18}
\end{equation*}
$$

Using that $g_{j}^{t+s}=g_{j}^{t} o g_{j}^{s}$ and $g_{j}^{t} o g_{i}^{t}=g_{i}^{t} o g_{j}^{t}$ and reordering (18) we obtain

$$
\begin{equation*}
g_{*, m}^{T}=\left(g_{1 *, m}^{l_{1} t_{11}}+\ldots+g_{k *, m}^{l_{1} t_{1 k}}\right) o\left(g_{1 *, m}^{l_{2} t_{21}}+\ldots+g_{k *, m}^{l_{2} t_{2 k}}\right) o \ldots o\left(g_{1 *, m}^{l_{k} t_{k 1}}+\ldots+g_{1 *, m}^{l_{k} t_{k k}}\right) \tag{19}
\end{equation*}
$$

or

$$
\begin{equation*}
G_{m}=G_{1}^{l_{1}} o \ldots o G_{k}^{l_{k}} \tag{20}
\end{equation*}
$$

where $G_{j}=g_{*, m}^{T_{j}}: T_{m}\left(M^{2 n}\right) \rightarrow T_{m}\left(M^{2 n}\right), j=1, \ldots, k$ is called monodromy operator with period T_{j}. The following is valid

Lemma 12. Over the torus Λ_{k} is possible to defined k vectorial fields linearly independent.

Proof. Since Λ^{k} is invariant respect to the k - Hamiltonian system $\dot{x}=J d f F_{j}(x)$, $j=1, \ldots, k, J d F_{j}(m) \in T_{m}\left(\Lambda^{k}\right), \forall m \in \Lambda^{k}$. Also, since $d F_{1}, \ldots, d F_{k}$ are linearly independent at each point $m \in \Lambda^{k}$ and the operator J is regular we obtain that the vector $J d F_{j}(m), j=1, \ldots, k$ are linearly in each point of $m \in \Lambda^{k}$.

Note that $J d F_{j}, j=1, \ldots, k$ in each point $m \in \Lambda^{k}$ constitute a basis of the tangent space $T_{m}\left(\Lambda^{k}\right)$ of Λ^{k}. Using the Λ^{k} is invariant we obtain

$$
\begin{align*}
& G_{j}\left(J d F_{i}\right)=\sum_{n=1}^{k} \beta_{n} J d F_{n} \tag{21}\\
& G_{m}\left(J d F_{i}\right)=\sum_{n=1}^{k} \mu_{n} J d F_{n} \tag{22}
\end{align*}
$$

with $\beta_{n}, \mu_{n} \in \mathbb{C} ; n=1, \ldots, k$. Let $\Gamma_{m}=T_{m}(\Sigma) / T_{m}\left(\Lambda^{k}\right)$; we have $\operatorname{dim}\left(\Gamma_{m}\right)=$ $2(n-k)$.

It is valid the following
Lemma 13. Let $[\theta] \in \Gamma_{m}$ then $G_{j}([\theta])=\left[G_{j}(\theta)\right]$ and $G_{m}([\theta])=\left[G_{m}(\theta)\right]$.
Proof. Let $[\theta]=\left\{\theta: \theta^{\prime} \equiv \operatorname{\theta mod}\left(T_{m}\left(\Lambda^{k}\right)\right)\right\}, \theta^{\prime} \equiv \operatorname{\theta mod}\left(T_{m}\left(\Lambda^{k}\right)\right)$ if and only if $\theta^{\prime}=\theta+\sum_{i=1}^{k} \beta_{i} J d F_{i}$, where $\beta_{i} \in \mathbb{C}, i=1, \ldots, k$, Also the following equality is valid

$$
\begin{equation*}
G_{j}\left(\theta^{\prime}\right)=G_{j}(\theta)+\sum_{i=1}^{k} \mu_{i} J d F_{i} \tag{23}
\end{equation*}
$$

and by using equality (21) we have $G_{j}\left(\theta^{\prime}\right)=G_{j}(\theta)+\sum_{i=1}^{k} \mu_{i} J d F_{i}$ for certain $\mu_{i} \in \mathbb{C}, i=1, \ldots, k$ and due to (20) also satisfy that

$$
\begin{gather*}
G_{m}\left(\theta^{\prime}\right)=G_{m}(\theta)+\sum_{i=1}^{k} \tau_{i} J d F_{i}, \tag{24}\\
\Xi_{m}: \Gamma_{m} \rightarrow \Gamma_{m}, \quad \text { such that } \quad[\theta] \rightarrow\left[G_{m}(\theta)\right], \tag{25}\\
\Xi_{j}: \Gamma_{j} \rightarrow \Gamma_{j}, \quad \text { such that } \quad[\theta] \rightarrow\left[G_{j}(\theta)\right], \tag{26}
\end{gather*}
$$

with $j=1, \ldots, k$. From now, the structure [,] must be defined between equivalence class modulo $T_{m}(\Lambda)$ on each point $m \in \Lambda^{k}$. To do so, we need to prove that [,] is compatible with respect to equivalence class i.e. if $\theta \equiv \operatorname{\sigma od}\left(T_{m}\left(\Lambda^{k}\right)\right)$ and $\theta^{\prime} \equiv \sigma^{\prime} \bmod \left(T_{m}\left(\Lambda^{k}\right)\right)$, then $\left[\theta, \theta^{\prime}\right]=\left[\sigma, \sigma^{\prime}\right]$. We assume by definition that $[[\theta],[\theta]]=[\theta, \theta]$. We prove that $\left[\theta, \theta^{\prime}\right]=\left[\sigma, \sigma^{\prime}\right]$:

$$
\begin{equation*}
\theta=\sigma+\sum_{i=1}^{k} \alpha_{i} J d F_{i}, \quad \theta^{\prime}=\sigma^{\prime}+\sum_{i=1}^{k} \delta_{i} J d F_{i} \tag{27}
\end{equation*}
$$

By using bi-linearity property we have

$$
\left[\theta, \theta^{\prime}\right]=\left[\sum_{i=1}^{k} \alpha_{i} J d F_{i}, \sum_{i=1}^{k} \delta_{i} J d F_{i}\right]
$$

or

$$
\begin{align*}
{\left[\theta, \theta^{\prime}\right]=} & {\left[\sigma, \sigma^{\prime}\right]+\left[\sum_{i=1}^{k} \alpha_{i} J d F_{i}, \sum_{i=1}^{k} \delta_{i} J d F_{i}\right] } \tag{28}\\
& +\left[\sigma, \sum_{i=1}^{k} \delta_{i} J d F_{i}\right]+\left[\sum_{i=1}^{k} \alpha_{i} J d F_{i}, \sigma^{\prime}\right] \tag{29}
\end{align*}
$$

We have

$$
\begin{equation*}
\left[\sigma, \sum_{i=1}^{k} \delta_{i} J d F_{i}\right]=\sum_{i=1}^{k} \delta_{i}\left[\sigma, J d F_{i}\right]=\sum_{i=1}^{k} \delta_{i} J d F_{i}(\sigma)=0 \tag{30}
\end{equation*}
$$

because $J d F_{i}(\sigma)=0$ since $\sigma \in T_{m}(\Sigma)$. Analogously is prove that $\left[\sum_{i=1}^{k} \alpha_{i} J d F_{i}, \sigma^{\prime}\right]=$
0. Also that $\left[\sum_{i=1}^{k} \alpha_{i} J d F_{i}, \sum_{i=1}^{k} \delta_{i} J d F_{i}\right]=0$ holds, since the functions $F_{i}, i=$ $1, \ldots, k$ stay in involution. Finally we have the proof.

Definition 14. The operator $\Xi_{m}: \Gamma_{m} \rightarrow \Gamma_{m}$ is called reduced monodromy operator at point m. i.e.,

$$
\begin{equation*}
\Xi_{m}=\left(\Xi_{1}\right)^{l_{1}} o \ldots o\left(\Xi_{k}\right)^{l_{k}} \tag{31}
\end{equation*}
$$

where the operators $\Xi_{j}, j=1, \ldots, k$ are called reduced monodromy operator with period T_{j}.

Also the following proposition is valid
Proposition 15. The quotient space $\Gamma_{m}=T_{m}(\Sigma) / T_{m}\left(\Lambda^{k}\right)$ has a natural symplectic structure such that the operators $\Xi_{j}, j=1, \ldots, k$ are symplectic respect to the structure [,] of the space $T_{m}\left(M^{2 n}\right)$ induce over this space.

Proof. It is known that if the vectorial space V is given a bilinear, antisymmetric, degenerate form then over the quotient vectorial space V / V^{\perp} is induced a bilinear, antisymmetric, no degenerate form. Taking $V=T_{m}(\Sigma)$ and the bilinear form [,] which is degenerate over $T_{m}(\Sigma)$ and we use that $T_{m}(\Sigma)^{\perp}=T_{m}\left(\Lambda^{k}\right)$. Let $\sigma=\sum_{i=1}^{k} \sigma_{i} J d F_{i}$, which $\sigma_{i} \neq 0$ for some $i=1, \ldots, k$. Since $\sigma \in T_{m}\left(\Lambda^{k}\right)$ holds that $[x, \sigma]=0, \quad \forall x \in T_{m}(\Sigma)$ because $\left[x, I J d F_{i}\right]=d F_{i}(x)=0\left(F_{i}\right.$ is constant on Σ). This proved that [,] is degenerate on $T_{m}(\Sigma)$ and $J d F_{i} \in T_{m}(\Sigma)$. Since $\operatorname{dim}\left(T_{m}(\Sigma)\right)=2 n-k$ then $\operatorname{dim}\left(T_{m}(\Sigma)^{\perp}\right)=k$ and $I J d F_{i}(i=1, \ldots, k)$ constitutes a basis of $T_{m}\left(\Lambda^{k}\right)$. Since $T_{m}(\Sigma)^{\perp}=T_{m}\left(\Lambda^{k}\right)$ we have that Γ_{m} is a subspace lineal symplectic. Now, we verify that the operator $\Xi_{j}(j=1, \ldots, k)$ are symplectic. Let $[\theta],\left[\theta^{\prime}\right] \in \Gamma_{m}$. we have

$$
\left[\Xi_{j}([\theta]), \Xi_{j}\left(\left[\theta^{\prime}\right]\right)\right]=\left[G_{j}([\theta]), G_{j}\left(\left[\theta^{\prime}\right]\right)\right]
$$

where G_{j}, with $j=1, \ldots$ are the monodromy operators in Definition 11. From Lemma 13 we have

$$
\left[\Xi_{j}([\theta]), \Xi_{j}\left(\left[\theta^{\prime}\right]\right)\right]=\left[\left[G_{j}(\theta)\right],\left[G_{j}\left(\left[\theta^{\prime}\right)\right]\right]\right.
$$

By definition of the product of two class we obtain

$$
\left[\Xi_{j}([\theta]), \Xi_{j}\left(\left[\theta^{\prime}\right]\right)\right]=\left[G_{j}(\theta), G_{j}\left(\theta^{\prime}\right)\right]
$$

Since G_{j} are symplectic we have $\left[\Xi_{j}([\theta]), \Xi_{j}\left(\left[\theta^{\prime}\right]\right)\right]=\left[\theta, \theta^{\prime}\right]$. Using again the definition of the product of two class we have $\left[\Xi_{j}([\theta]), \Xi_{j}\left(\left[\theta^{\prime}\right]\right)\right]=\left[[\theta],\left[\theta^{\prime}\right]\right]$; so Ξ_{j}, with $j=1, \ldots, k$ are symplectic.
Definition 16. Two symplectic lineal operator $A_{i}: L^{1} \rightarrow L^{2}$, with $i=1,2$. are called equivalent if there exist a lineal symplectic $\tau: L^{1} \rightarrow L^{2}$ such that $A_{2}=\tau A_{2} \tau^{-1}$.

For the purposes of this work we need to verify that the reduced monodromy operator does not depends on the point $m \in T_{m}\left(\Lambda^{k}\right)$. They are precisely these
operators which will serve to establish sufficient conditions for the existence of the complex germ. Notice Ξ_{j}, with $j=1, \ldots, k$ are symplectic operators then by Definition 14 , operator Ξ_{m} in (31) is symplectic as well.

It is valid the following
Proposition 17. Let $m, m^{\prime} \in \Lambda^{k}$ then operators Ξ_{m} and $\Xi_{m^{\prime}}$ defined in (31) are equivalent.

Proof. There exist $\vec{t} \in \Re^{k}$ such that $m=g^{\vec{t}} m^{\prime}$. Let the operator $G_{m, m^{\prime}}=$ $\left(g^{\vec{t}}\right)_{*, m}: T_{m}\left(M^{2 m} \rightarrow T_{m^{\prime}}\left(M^{2 m}\right)\right.$, which is symplectic (see Section 2). Also $G_{m, m^{\prime}}\left(T_{m}(\Sigma)\right)=T_{m^{\prime}}(\Sigma)$ and $G_{m, m^{\prime}}\left(T_{m}\left(\Lambda^{k}\right)\right)=T_{m}\left(\Lambda^{k}\right)$ hold. Then we define the operator $\tau_{m, m^{\prime}}: \Gamma_{m} \rightarrow \Gamma_{m^{\prime}}$ by $\tau_{m, m^{\prime}}([\theta])=\left[G_{m, m^{\prime}}(\theta)\right]$. We can check that $\Xi_{m^{\prime}} \tau_{m, m^{\prime}}=\tau_{m, m^{\prime}} \Xi_{m}$.

Remark 18. Analogously it can prove that the operators Ξ_{j}, with $j=1, \ldots, k$ are equivalents at different points in the torus Λ^{k}.

Let $\Pi: T_{m}(\Sigma) \rightarrow \Gamma_{m}$ the canonical map that each $\theta \in T_{m}(\Sigma)$ correspond its equivalence class $[\theta]$ modulo $T_{m}\left(\Lambda^{k}\right)$.

We have that is valid
Proposition 19. It is valid that

$$
\begin{equation*}
\Xi_{j} o \Pi=\Pi o G_{j} \tag{32}
\end{equation*}
$$

Proof. Let $\theta \in T_{m}(\Sigma) ; \Pi\left(G_{j}(\theta)\right)=\left[G_{j}(\theta)\right]$. Besides that $\Xi_{j}(\Pi(\theta))=\Xi_{j}([\theta])=$ $\left[G_{j}(\theta)\right]$, being proved the proposition.

Definition 20. A complex linear subspace $R \subset \mathbb{C}^{n}$ is called positive if $\forall x \in$ $R ; x \neq 0(1 / 2 i)[x, \bar{x}]>0$ holds. It subspace is called negative if $(1 / 2 i)[x, \bar{x}]<0$.

Lemma 21. Let $R \subset \Gamma_{m}$ a lineal, positive, lagrangian and invariant respect to the operators $\Xi_{i}, i=1, \ldots, k$. then the subspace $r^{n}=\Pi^{-1}(R)$ is dissipative respect to $T_{m}\left(\Lambda^{k}\right)$, lagrangian and invariant respect of the operator $G_{i}, i=$ $1, \ldots, k$, where Π is the canonical map.

Proof. We have that $\Pi(x)=[x] \bmod T_{m}\left(\Lambda^{k}\right)=\left\{x+y: y \in T_{m}\left(\Lambda^{k}\right)\right\}$;
a) Let us prove that $r^{n}=\Pi^{-1}(R)$ is isotropic. Let $x_{1}, x_{2} \in \Pi^{-1}(R)$ then $\Pi\left(x_{1}\right), \Pi\left(x_{2}\right) \in R ;\left[\Pi\left(x_{1}\right), \Pi\left(x_{2}\right)\right]=0$ for being r^{n} isotropic; by definition we have $\left[x_{1}, x_{2}\right]=\left[\Pi\left(x_{1}\right), \Pi\left(x_{2}\right)\right]=0$, therefore r^{n} is isotropic.
b) Let us prove that r^{n} is lagrangian in $T_{m}\left(M^{2 n}\right)$, i.e. $\operatorname{dim}(R)=(1 / 2) \operatorname{dim}\left(\Gamma_{m}\right)=$ $n-k, \Pi^{-1}(0)=T_{m}\left(\Lambda^{k}\right)$, then $\operatorname{dim}\left(\Pi^{-1}(0)\right)=k$, also since $\Pi^{-1}(0) \subset \Pi^{-1}(R)$, then and $\operatorname{dim}\left(r^{n}\right)=\operatorname{dim}(\operatorname{Ker}(\Pi))+\operatorname{dim}\left(\operatorname{Im}\left(\Pi^{-1}(R)\right)\right)=k+n-k=n$, then r^{n} is lagrangian.
c) Let us verify that r^{n} is dissipative respect to $T_{m}\left(\Lambda^{k}\right)$: we have that $T_{m}\left(\Lambda^{k}\right) \subset r^{n}$. Let $x \in r^{n} \backslash T_{m}\left(\Lambda^{k}\right)$ then $\Pi(x)=[x] \neq 0$. Besides we have
$[\bar{x}]=[\bar{x}]$, the dissipative condition of r^{n} is a consequence of the positivity of R, i.e.

$$
(1 / 2 i)[x, \bar{x}]=(1 / 2 i)[[x],[\bar{x}]]=(1 / 2 i)[[x],[\bar{x}]]=(1 / 2 i)[\Pi(x), \Pi(x)]>0
$$

due to R is positive.
d) The invariance of r^{n} respect of $G_{i}(i=1, \ldots, k)$ is a consequence of (32) and the invariance of R respect to $\Xi_{j}(i=1, \ldots, k)$.

It is valid the following
Theorem 22. Let $m \in \Lambda^{k}$ fixed. If there exist a lineal subspace N lagrangian, dissipative respect to $T_{m}\left(\Lambda^{k}\right)$, invariant respect all the operators $G_{i}(i=1, \ldots, k)$ then the exist a complex germ respect to the Hamiltonian system $x^{\prime}=J d F_{j}(x)$ $(j=1, \ldots, k)$.
Proof. The idea is to construct a smooth map $r^{n}: m \rightarrow r^{n}(m)$ such $r^{n}(m) \subset$ $T_{m}\left(M^{2 n}\right), \forall m \in \Lambda^{k}$ satisfying Definition 9. Let us define $r^{n}(m)=N$. Since that map $f: \vec{t} \rightarrow g^{\vec{t}} m, \vec{t} \in \Re^{k}$ is subjective, we have that $\forall p \in \Lambda^{k}$, there exist $m \in \Lambda^{k}$ and $\vec{s} \in \Re^{k}$ such that $g^{\vec{s}} m=p$. Let us put

$$
\begin{equation*}
r^{n}(p)=\left(g^{\vec{s}}\right)_{*, m}\left(r^{n}(m)\right) \tag{33}
\end{equation*}
$$

Since the operator $\left(g^{\vec{s}}\right)_{*, m}$ is symplectic and carries the subspace $T_{m}\left(\Lambda^{k}\right)$ in $T_{p}\left(\Lambda^{k}\right)$ then $r^{n}(p) \quad \forall p \in \Lambda^{k}$ is lagrangian, disipative with respect to $T_{p}\left(\Lambda^{k}\right)$.

Now, we verify that $r^{n}(m)$ is invariant: By Definition of Germ in (33) we have

$$
\begin{equation*}
\left(g^{\vec{t}}\right)_{*, m}\left(r^{n}(m)\right)=\left(g^{\vec{t}}\right)_{*, p} o\left(g^{\vec{s}}\right)_{*, m}\left(r^{n}(m)\right) \tag{34}
\end{equation*}
$$

Using $g^{\overrightarrow{t+s}}=g^{\vec{t}}$ og ${ }^{\vec{s}}$ in (34) we obtain

$$
\begin{equation*}
\left(g^{\vec{t}}\right)_{*, p} o\left(g^{\vec{s}}\right)_{*, m}\left(r^{n}(m)\right)=\left(g^{\vec{t}+\vec{s}}\right)_{*, m}\left(r^{n}(m)\right) . \tag{35}
\end{equation*}
$$

Using again (33) in (35), we obtain the invariance

$$
\begin{equation*}
\left(g^{\vec{t}+\vec{s}}\right)_{*, m}\left(r^{n}(m)\right)=r^{n}\left(g^{\vec{t}+\vec{s}^{\prime}} m\right)=r^{n}\left(g^{\vec{t}} o g^{\vec{s}} m\right)=r^{n}\left(g^{\vec{t}} p\right) \tag{36}
\end{equation*}
$$

On the other hand, since $\left(g^{0}\right)_{*, m}=E_{2 n}$, where $E_{2 n}$ is identity map, then by choosing appropriately the vector \vec{t} we obtain $\left(g^{\vec{t}}\right)_{*, m}=g_{j}^{t} m$, where $t \in \Re$ and g_{j}^{t} is the Hamiltonian flux associated to the function F_{j}, with $j=1, \ldots, k$. As a consequence the Germ is invariant respect to g_{j}^{t}. The smoothness of the Germ we proof in the Appendix A.

Remark 23. From Lemma 21 we have that is possible to construct the complex germ if the operators $\Xi_{i}, i=1, \ldots, k$ have a common positive, lagragian and invariant (P.L.I) linear subspace.
Remark 24. Proof of Theorem 22 consists in the construction of complex germ analogously as done in [10]. In this way, we proof the the map $r^{n}: m \rightarrow r^{n}(m)$ is smooth.

Now following Remark 23, we find that sufficient conditions on operators Ξ_{i}, $i=1, \ldots, k$ such that they has a common P. L. I subspace.

Definition 25. Let $\left(M^{2 n}, \omega^{2}\right)$ a symplectic manifold. The subspace $L \subset T_{m}\left(M^{2 n}\right)$ in a point $m \in M^{2 n}$ is simplectic if the restriction of ω^{2} a L is no-degenerate.

Definition 26. A lineal transformation $S L_{1} \rightarrow L_{2}$ between two lineal spaces is called stable if $\forall \epsilon>0 \exists \delta>0$ such that $|x|<\delta$ then $\left|S^{n}(x)\right|<\epsilon \forall n \mathbb{N}, n>0$ (see [2]).

Proposition 27. A symplectic map is stable if and only if all its eigenvalues belong to the unitary circle and S is diagonalizable.

The proof can be found in [10], where also is proved that the stability condition of symplectic operator is equivalent to have a P. L. I subspace. With this idea, we present previous Lemmas used to prove sufficient condition the existence of a P.L.I subspace for the monodromy operators $\Xi_{i}, i=1, \ldots, k$.

Let A y B two stable operators. Let $K_{1}=\left\{\sigma_{1}, \ldots, \sigma_{2 n}\right\}$ the eigenvalues of A, where 1 and -1 may also be included. Therefore, we can do the partition $K_{1}=K_{a} \cup\{-1,1\}$, where $K_{a}=\left\{\sigma_{1}, \ldots, \sigma_{r}, \overline{\sigma_{1}}, \ldots, \overline{\sigma_{r}}: \operatorname{Im} \sigma_{i} \neq 0\right\}$ with $r<=n$ and σ_{i} distinct. Analogously for the operator B we have the partition $K_{2}=K_{b} \cup\{-1,1\}$, where $K_{b}=\left\{\mu_{1}, \ldots, \mu_{s}, \overline{\mu_{1}}, \ldots, \overline{\mu_{s}}: \operatorname{Im} \mu_{i} \neq 0\right\}$ with $s<=n$ and μ_{i} distinct.

Let us denote by S_{σ} the subspace associated to the eigenvalue σ. In general the eigenvalues 1 and -1 they may not be included, these will be analyzed separately.

The following Lemma are valid
Lemma 28. Let A y B two stable operators. Let us consider the restriction of the operator $A_{j}=A_{\mid S_{\sigma_{j}} \oplus S_{S_{\bar{\sigma}_{j}}}}$ and $B_{j}=B_{\mid S_{\sigma_{j}} \oplus S_{S_{\bar{\sigma}_{j}}}}$, where $\sigma_{j} \in K_{a}$. Then there exist a common P. L. I subspace for A_{j} and B_{j}.

Proof. Let us consider the subspace $L=S_{\sigma_{j}} \oplus S_{S_{\bar{\sigma}_{j}}}$ which is symplectic and invariant respect to the operator A (see [10]), i.e. $A L=L$. We have that if p the multiplicity of $\sigma_{j} \in K_{a}$ then $\operatorname{dim}(L)=2 p$.
a)Now we prove that the subspace L is also invariant for the operator B. Since $A_{j} B=B A_{j}$ we have $A_{j} B L=B L$ therefore $B L$ is invariant for the operator A_{j} and since B is a symplectic diffeomorphism then $\operatorname{dim}(B L)=2 p$.

Let $S_{\sigma_{j}}=\left\{A_{j} x=\sigma_{j} x\right\}$, then for $x \in S_{\sigma_{j}}$ we have $B\left(A_{j}(x)\right)=\sigma_{j} B x$. Using $B A_{j}=A_{j} B$ we obtain $A_{j}(B x)=\sigma_{j} B(x)$ therefore $B x \in S_{\sigma_{j}}$ and as a consequence $B L \subset L$. Using that the operator B is a diffeomorphism we have $B L=L$ and the operator $B_{j}=B_{\mid L}$ is well defined.
b) Now since B is diagonalizable and symplectic operator in L, it is possible to obtain a descomposition through K_{2} of L, i.e.

$$
\begin{equation*}
L=\sum_{i=1}^{d}\left(S_{\mu_{j}} \oplus S_{\overline{\mu_{j}}}\right) \oplus S_{1} \oplus S_{-1}, \tag{37}
\end{equation*}
$$

where S_{1} and S_{-1} appear if 1 or -1 are eigenvalues of B in L. Let us consider the restriction $B_{j_{\mid \mu_{j}}}$ of the operator B_{j} to $L_{\mu_{j}}=S_{\mu_{j}} \oplus S_{\overline{\mu_{j}}}$ then the following affirmation are true

1- $L_{\mu_{j}}, j=1, \ldots, d$ are symplectic operators and B_{j} are stable, therefore there exist a subspace P.L.I for $B_{j_{\mid L_{\mu_{j}}}}$ in this subspace which we denote by $R_{\mu_{j}}$ (see [10] for the construction of this subpace).

2-The subspace S_{1} is symplectic (see [10]). Also we have $B_{j_{\mid S_{1}}}=I d_{\mid S_{1}}$, therefore all vector is eigenvalues for $B_{\left.\right|_{\mid S_{1}}}$. Then we can choose a collection of vector in S_{1} such as they generated a P.L.I. subspace. Let us denote by R_{o}. Also satisfy $A R_{o}=R_{o}$. Analogously, for $B_{j_{\mid S_{-1}}}=I d_{\mid S_{-1}}$ is possible to construct a P.L.I subspace denoted by R_{-1}.

Finally the subspace

$$
\begin{equation*}
R_{\mu}=R_{o} \oplus R_{-1} \oplus R_{\mu_{1}} \oplus \ldots \oplus R_{\mu_{d}} \tag{38}
\end{equation*}
$$

is a common P.L.I subspace to A_{j} and B_{j} in L. Thus, the proof is a consequence of the way that such subspace are constructed, i.e. it are positive and Lagrangian in L. Also, they are invariant for B_{j},i.e. $B_{j} R_{\mu}=R_{\mu}$. So, we need to prove that is invariant for A_{j}, i.e. $A_{j} R_{\mu}=R_{\mu}$ for any $j=1, \ldots, d$.

The subspace $R_{\mu_{j}}$ is constructed from h eigenvector e_{1}, \ldots, e_{h} (h is a multiplicity of μ_{j} as eigenvalues of B_{j} in L), which are associated either μ_{j} or $\overline{\mu_{j}}$.

Let e_{i} an arbitrary with $i=1, \ldots, h$. Since $R_{\mu_{1}} \subset L$, there e_{i} is an eigenvalues of A associated to either σ_{j} or $\overline{\sigma_{j}}$. Assume that $A_{j} e_{i}=\sigma_{j} e_{i}$, therefore for $x \in R_{\mu_{1}}$, we have $A_{j} x \in R_{\mu_{1}}$.

Lemma 29. Let A y B two stable operators. Let us consider the restriction of the operator $A_{1}=A_{\mid S_{\beta}}$ and $B_{1}=B_{\mid S_{\beta}}$, where β is either 1 or -1 which are eigenvalues of the operator A and B. Then there exist a common P. L. I subspace for A_{1} and B_{1}.

Proof. The subspace S_{1} is symplectic (see [10]). Also we have $B_{\mid S_{1}}=I d_{\mid S_{1}}$, therefore all vector is eigenvalues for $B_{\mid S_{1}}$. Then we can choose a collection of vector in S_{1} such as they generated a P.L.I. subspace. Let us denote by R_{o}. Also satisfy $A R_{o}=R_{o}$. Analogously, for $B_{\mid S_{-1}}=I d_{\mid S_{-1}}$ is possible to construct a P.L.I subspace denoted by R_{-1}.

Due to the condition impose on these operators, we have that Lemma 31 is a Corollary of

Lemma 30. Let A and B two stable symplectic operators that commutate in the symplectic space $\mathbb{C}^{2 n}$, then they has a common P.L.I subspace.

Proof. By proposition 27 the operators A and B have its eigenvalues in the unitary circle and are diagonalizable. Then we have $\mathbb{C}^{2 n}=\sum_{i=1}^{d}\left(S_{\sigma_{j}} \oplus S_{\sigma_{j}}\right) \oplus$
$S_{1} \oplus S_{-1}$, where $\sigma_{j}, \overline{\sigma_{j}}, 1$ and -1 are eigenvalues of A (in general 1 and -1 are not necessarily eigenvalues of A). Now from Lemmas 28 and 29 we obtain that there exist a common P.L.I subspace for the A and B.

Lemma 31. The reduce monodromy operators $\Xi_{i}, i=1, \ldots, k$ are stable then they have a common P.L.I. subspace.

Proof. The construction of the a common subspace for $k>2$ is similar. After we have for two operators we construct for the rest.

4.2 Existence of the Germ

It is valid the following
Theorem 32. If the reduce monodromy operators $\Xi_{i}, i=1, \ldots, k$ are stable then there exist a complex germ invariant respect Hamiltonian system $\left(M^{2 n}, \omega^{2}, F_{j}\right)$, with $j=1, \ldots, k$ on the torus Λ^{k}.

The proof is a consequence of Lemma 31 and Theorem 22.
Further we despited a necessary condition for the existence of the Germ.
Theorem 33. Assume that there exist a complex germ on the isotropic torus Λ^{k} invariant respect to the Hamiltonian flow $\dot{x}=I d F_{j}(x)$, with $j=1, \ldots, k$. Then the reduce monodromy operators $\Xi_{i}, i=1, \ldots, k$ are stable.

Proof. We have $\forall m \in \Lambda^{k}$ there exist complex subspace lagrangian $r^{n}(m) \subset$ $T_{n}\left(M^{2 n}\right)$ such that $r^{n}(m) \supset T_{m}\left(\Lambda^{k}\right)$ which is dissipative respect of $T_{m}\left(\Lambda^{k}\right)$, i.e. $\forall x \in r^{n}(m) \backslash T_{m}\left(\Lambda^{k}\right)$ we have $[x, \bar{x}] / 2 i>0$ (condition (11) of Definition 9). Also, for $t \in \Re$ we have condition (12) of Definition 9. Therefore, the flow $g^{\vec{t}}=g^{t_{1}} o \ldots o g^{t_{k}}: M^{2 n} \rightarrow M^{2 n}$, where $t=\left(t_{1}, \ldots, t_{n}\right) \Re^{k}$ satisfy $g_{*, m}^{\vec{t}}\left(r^{n}(m)\right)=$ $r^{n}\left(g^{\vec{t}} m\right)$. For $T \in G$ (G discrete subgroup of \Re^{k} defined in) we have

$$
g_{*, m}^{T}\left(r^{n}(m)\right)=r^{n}\left(g^{T} m\right)
$$

which mean that $G_{j}\left(r^{n}(m)\right)=r^{n}(m)$, where $G_{j}, j=1, \ldots, k$ are the monodromy operators, which with period T_{j}, with $j=1, \ldots, k$ generating the subgroup G. Let us consider the canonical projection map $\Pi: T_{m}(\Sigma) \rightarrow \Gamma_{m}=$ $T_{m}(\Sigma) / T_{m}\left(\Lambda^{k}\right)$ and let $R=\Pi\left(r^{n}(m)\right)$.

Now only rest to prove that the subspace R is lagragian, positive in Γ_{m} and invariant respect of the operators Ξ_{j} with $j=1, \ldots, k$. Since $\Pi^{-1}(0)=T_{m}\left(\Lambda^{k}\right)$ we have $\operatorname{dim}(R)=\operatorname{dim}\left(r^{n}(m)\right)-k=n-k=(1 / 2) \operatorname{dim}\left(\Gamma_{m}\right)$. From the definition of symplectic structure in the quotient space Γ_{m} we obtain that R is isotropic and a consequence lagragian en Γ_{m}.

We have that if $\Pi(x) \neq 0$ then $x \notin T_{m}\left(\Lambda^{k}\right)$. Using that R is disipative respect of $T_{m}\left(\Lambda^{k}\right)$ and that $\overline{\Pi(x)}=\Pi(\bar{x})$ we have $(1 / 2 i)[x, \bar{x}]=[\Pi(x), \Pi(\bar{x})]=$ $[\Pi(x), \overline{\Pi(x)}]>0$ and as consequence R is positive.

Since $\Xi_{j} o \Pi=\Pi o G_{j}$, with $j=1, \ldots, k$ follows that R is invariant respect of Ξ_{j}, with $j=1, \ldots, k$. Thus we obtain a P.L.I subspace common for the
operators Ξ_{j}, with $j=1, \ldots, k$ therefore this operators are diagonalizables and its eigenvalues belong to unitary circle then by Proposition 27 are stables.

5 Uniqueness of the Germ

In this section we discuss about sufficient and necessary conditions of complex Germ. This issue is crucial since the germ is used in the construction of an asymptotic quase-classic it necessary to verify if obtained in this way is unique, which depend on the uniqueness of the germ. To display here a full characterization we summarized some basic concept.

Definition 34. An stable map $S: L_{1} \rightarrow L_{2}$ is called strong stable if all close map is stable.

What means close map in above Definition?. Let consider the group of the symplectic map which constitute a submanifold of the lineal map of \Re^{n}. We consider any distance between two lineal map on \Re^{n} as a distance between the respective matrix in a prefixed basis. i.e. Let $\left[s_{i j}\right]$ and $\left[s_{i j}^{\prime}\right]$ the matricial representantin of two lineal map $L_{1}, L_{2}: L^{1} \rightarrow L^{2}$ then they are close if $\max \left|s_{i j}-s_{i j}^{\prime}\right| \leq \epsilon, \forall \epsilon>0$ and $i, j=1, \ldots, k$.

Let $A: \mathbb{C}^{2 n} \rightarrow \mathbb{C}^{2 n}$ an symplectic operator and σ an eigenvalues of A. We denote by L_{σ} the maximal invariant subspace respect to A associated to σ.

Definition 35. The eigenvalues σ is called elliptic positive (negative) if the subspace L_{σ} is positive (negative).

In [10] a collection of results of the elliptic eigenvalues are obtained. Here we summarize those we will use
Proposition 36. An symplectic map $L: \mathbb{C}^{2 n} \rightarrow \mathbb{C}^{2 n}$ is strong stable if all its eigenvalues are elliptic belong to the unitary circle.

Also the following proposition is valid
Proposition 37. An symplectic map $L: \mathbb{C}^{2 n} \rightarrow \mathbb{C}^{2 n}$ is strong stable if has a unique P.L.I subspace.

The following Lemma holds
Lemma 38. If there exist a unique common subspace P.L.I to the reduce monodromy operator Ξ_{j}, with $j=1, \ldots, k$ then there exist a unique complex germ on the torus Λ^{k}.

Proof. Assume that there exist two distinct complex germ r_{1}^{n} and r_{2}^{n}, i.e. there exist a point m_{o} such that $r_{1}^{n}\left(m_{o}\right) \neq r_{2}^{n}\left(m_{o}\right)$. Let Π the canonical subjective and let the subspace $R_{j}=\Pi\left(r_{j}\left(m_{o}\right)\right), j=1,2$ which are by definition lagragian and positive in $\Gamma_{m_{o}}$ and invariant respect the operators Ξ_{j}, with $j=1, \ldots, k$. Using analogous process to describe in Lemma 28 is possible to construct more that one common P.L.I subspace to the operators Ξ_{j}, with $j=1, \ldots, k$.

Now we give sufficient condition for the existence of a unique complex germ.
Theorem 39. In the reduce operator of monodromy are stable and there exist at least one strong stable then there exist a unique complex Germ on the torus Λ^{k} invariant respect to the Hamiltonian system $\left(M^{2 n}, \omega^{2}, F_{j}\right)$ with $j=1, \ldots, k$.

Proof. Let Ξ_{j} for some $j \in J=1, \ldots, k$ a strong stable operators. By Proposition 37 there exist a unique P.L.I subspace for Ξ_{j} which we denote by R. As the operator Ξ_{i}, with $i \in I \backslash j$ commute with Ξ_{j} then by Lemma 31 is possible to construct a common P.L.I subspace for these operators, which is a unique. Then by Lemma 38 we have a Theorem.

A necessary condition for the existence of germ is given the following
Lemma 40. If there exist a unique complex germ on the torus Λ^{k} invariant respect to the Hamiltonian system $\left(M^{2 n}, \omega^{2}, F_{j}\right)$ with $j=1, \ldots, k$. Then there exist a unique common P.L.I subspace for the reduce monodromy operators Ξ_{j}, with $j=1, \ldots, k$.

Proof. Let the stable reduce monodromy operators Ξ_{j}, with $j=1, \ldots, k$. Then by Lemma 31 these operators have for a common P.L.I subspace $R \subset \Gamma_{m}$ for each $m \in \Lambda^{k}$.

From Theorem 22 (with this subspace), we can construct the complex germ $r^{n}=r^{n}(R)$. Besides, to distinct subspace correspond distinct Germ, i.e. if $R_{1} \neq R_{2}$ then for $r_{1}^{n}=r^{n}\left(R_{1}\right)$ and $r_{2}^{n}=r^{n}\left(R_{2}\right)$ we have $\forall m \in \Lambda^{k}$ that $r_{1}^{n}(m) \neq r_{2}^{n}(m)$. Assume that there exist $m \in \Lambda^{k} \operatorname{such} r_{1}^{n}(m)=r_{2}^{n}(m)$; let $m^{\prime} \in \Lambda^{k}$ which serves to construct the reduce operator $\Xi_{m^{\prime}}$ and the subspace R_{1} and R_{2}. Since there exist $\vec{s} \in \Re^{k}$ such that $g^{\vec{s}}\left(m^{\prime}\right)=m$, and if we define $r_{1}(m)=g_{*, m^{\prime}}^{\vec{s}}\left(r^{n}\left(m^{\prime}\right)\right) ; r_{1}^{n}\left(m^{\prime}\right)=R_{1}$ and $r_{2}^{n}(m)=g_{*, m^{\prime}}^{\vec{s}}\left(r^{n}\left(m^{\prime}\right)\right) ; r^{n}\left(m^{\prime}\right)=R_{2}$ we obtain a contradiction $R_{1}=R_{2}$.

We have the following
Lemma 41. In there is a unique P.L.I subspace common to the reduce monodromy operators Ξ_{j}, with $j=1, \ldots, k$ then these operators are stable and at least one is strong stable.

Proof. We assume that all the operators Ξ_{j}, with $j=1, \ldots, k$ are stable and none is strong stable then from Lemmas 28, 29 it is possible to construct more of one P.L.I subspace common for two operators, i.e. R_{1} and R_{2}. With the procedure of Lemma 31 is possible to construct more of one common P.L.I for the operators Ξ_{j}, with $j=1, \ldots, k$.

We present a necessary condition for the complex germ
Theorem 42. If there is a unique complex germ invariant respect to the Hamiltonian system $\left(M^{2 n}, \omega^{2}, F_{j}\right)$ with $j=1, \ldots, k$. Then the reduce monodromy operators Ξ_{j}, with $j=1, \ldots, k$ are stable and at least one is strong stable.

The proof follow from the Lemmas 38 and 40.

6 Smoothness of the complex Germ

A p-distribution on a manifold M, with $p \leq \operatorname{dim}(M)$ is a map such that to each point $m \in M$ correspond a subspace p-dimensional $\theta(m)$ of the $T_{m}(M)$. We say that such distribution is smooth if there are p smooth vectorial fields X_{1}, \ldots, X_{k} defined on a neighbor U of the point m such that $X_{1}(m), \ldots, X_{k}(m)$ generate the subspace $\theta(m)$.

Since the complex Germ is a n-dimensional distribution with certain additional properties (see Definition) the smoothness property is a consequence of the own construction of the germ. From remark 23 the germ is generate by a P.L.I subspace R. We assume that this subspace is generated by the vector r_{1}, \ldots, r_{n}. Since the map $\left(g_{F_{j}}^{t}\right)_{*, m}$ are smooths the the vectorial fields X_{j}, $j=1, \ldots, k$ defined on each point $m \in \Lambda^{k}$ by

$$
\begin{equation*}
X_{j}(m)=\left(g^{\vec{t}}\right)_{*, m_{o}} r_{j} \tag{39}
\end{equation*}
$$

where $\vec{t} \in \Re^{k}$ satisfy $g^{\vec{t}} m_{o}=m_{o}$, with $g^{\vec{t}}=g_{1}^{t_{1}} o \ldots, g_{k}^{t_{k}}$ and $g_{j}^{t_{1}}$ are Hamiltonian flows associated to the Hamilton functions F_{j}. It is possible to check that X_{j}, $j=1, \ldots, k$ are smooth and generated the germ $r^{n}(m)$.

7 Application to the Hamiltonian system with cyclic variables

In this section we study a $2 n$-dimensional symplectic manifold that contains a 2 k -dimensional manifold $(k<n)$ which consist of k invariant isotropic torus respect to certain Hamiltonian system. These system in the local coordinate (I, p, θ, q) has the form $H=H(I, p, q)$ and the rest are $k-1$ coordinates. These are called system with cyclic variables. The basis and the problem are described following. Let $\left(M^{2 n}, \omega^{2}\right)$ a symplectic manifold with canonical variables p, q..

Definition 43. An atlas on the manifold $\left(M^{2 n}, \omega^{2}\right)$ is called symplectic if the the coordinate space $(p, q) \in \Re^{2 n}$ the symplectic structure take the form $\omega^{2}=$ $\sum_{i=1}^{n} d p_{i} \wedge d q_{i}$ and the cart $\Phi o \Theta^{-1}: \Theta\left(U_{1} \cap U_{2}\right) \rightarrow \Phi\left(W_{1} \cap W_{2}\right)$ are symplectic transformations, where $\Phi: U_{1} \rightarrow W_{1}, \Theta: U_{2} \rightarrow W_{2}$, with $U_{1}, U_{2} \subset M^{2 n}$ and $W_{1}, W_{2} \subset \Re^{2 n}$,

Definition 44. A Hamiltonian system $\left(M^{2 n}, w^{2}, H\right)$ with Hamilton function H is called system with k cyclic variables if there are the system of symplectic coordinates I, p, θ, q such that $H=H(I, p, q)$. The cyclic variables do not appear in the expression of the Hamilton function which we denote by $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$.

Let the variables $I=\left(I_{1}, \ldots, I_{k}\right), p=\left(p_{1}, \ldots, k\right)$ canonical conjugate of the variables $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right) \bmod 2 \pi, q=\left(q_{1}, \ldots, q_{k}\right)$ with $1<=k<=n$. i.e. the
phase space $M^{2 n}$ have the coordinate system (I, p, θ, q) where the symplectic structure w^{2} can be written in the form

$$
\begin{equation*}
w^{2}=\sum_{i=1}^{k} d I_{i} \wedge \theta_{i}+\sum_{i=1}^{k} d p_{i} \wedge q_{i} \tag{40}
\end{equation*}
$$

We assume that coordinate system define a diffeormorphism from $M^{2 n}$ under the space consist of the direct product of the torus T^{k} with open region of $\Re^{2 n-k}$. In this system the canonical equation of the Hamilton function take the form

$$
\begin{equation*}
I^{\prime}=0, \quad p^{\prime}=-H_{q}, \theta^{\prime}=H_{I}, \quad q^{\prime}=H_{p} \tag{41}
\end{equation*}
$$

where $H_{q}=\left(\partial H / \partial q_{1}, \ldots, \partial H / \partial q_{k}\right.$ and $H_{p}=\left(\partial H / \partial p_{1}, \ldots, \partial H / \partial p_{k}\right.$.
We consider the subset

$$
\begin{equation*}
N=\left\{(I, p, \theta, q): H_{p}=H_{q}=0\right\} \tag{42}
\end{equation*}
$$

and we assume that is connected. Let us denote by $\Lambda^{k}=\Lambda^{k}\left(I_{o}, p_{o}, q_{o}\right)$ the kdimensional torus defined by the the equalities $\left\{(I, p, \theta, q): I=I_{o}, p=p_{o}, q=\right.$ $\left.q_{o}\right\}$. It is possible to check that N represent the union of such torus.

We consider the restriction of the vectorial Hamiltonian field to the torus Λ^{k} where a trajectory on such field take the form $g_{H}^{t}=\left(I_{o}, p_{o}, H_{I} t+\theta, q_{o}\right)$ defined for all $t \in(-\infty,+\infty)$ because Λ^{k} is compact. It is possible to check that any torus $\Lambda \subset N$ is invariant respect to this system. Also, from the symplectic structure in (40) we deduce that $\left.\omega^{2}\right|_{\Lambda^{k}}=0$, i.e. the torus are isotropic. Therefore H is the union of isotropic, invariant respect to the Hamiltonian system $\left(M^{2 n}, \omega^{2}, H\right)$.

We have the following Definition
Definition 45. We say that F is first integral of the Hamiltonian system with function H if the Poisson braked satisfy $[F, H]=0$.

It is possible to check that described above the coordinate function I_{1}, \ldots, I_{k} are first integral of the system $\left(M^{2 n}, w^{2}, H\right)$.

We have
Proposition 46. Assume that for any point in N given in (42) the determinant of $\operatorname{Hess}(H)$ is distinct of zero, i.e.

$$
\begin{equation*}
\mathrm{H}_{\mathrm{pp}} \mathrm{H}_{\mathrm{qq}}-\mathrm{H}_{\mathrm{qp}} \mathrm{H}_{\mathrm{pq}} \neq 0 \tag{43}
\end{equation*}
$$

Then N is sub-manifold symplectic 2k-dimensional that has locally the form of a map $(I, \theta) \rightarrow(p, q)$ that does not depend on the coordinate θ, i.e. $p=P(I), q=$ $q(Q)$.

The proof of this result can be found in [10].
From now, we assume that Λ^{k} consist of regular points, i.e. $H_{I} \neq 0$, as a consequence the functions $H, I 2, \ldots, I_{k}$ are k first integral involution. The
problem is under what conditions there is a complex Germ on Λ^{k} with respect to the Hamiltonian system defined by Hamilton functions $H, I 2, \ldots, I_{k}$.

The reduce monodromy operators for this case are the following: $G 1=$ $\left(g_{H}^{t}\right)_{*, m}, G_{j}=\left(g_{I_{j}}^{t}\right)_{*, m}=E_{2 n}$, with $j=2, \ldots, k$ and $E_{2 n}$ is identity operator of order $2 n$. This mean that the invariance condition if only necessary to check for the operator G_{1}. Applying the result of this paper we obtain the sufficient and necessary for the existence of Germ different from those obtained in those obtained in [2].

8 Conclusion

In this work we give answer to the question about the existence and uniqueness of a complex germ on a isotropic torus invariant respect to the Hamiltonian flows defined by k function F_{1}, \ldots, F_{k} that stay in involution in the phase state $M^{2 n}$.

We proof that there exist such germ if and only if the reduce monodromy operator with period $T_{j}, j=1, \ldots, k$ are stable. This germ is unique if at least one operator is strong stable.

The result obtained here were applied to the case of an Hamiltonian with cyclic variables resulting in new condition for the existence and uniqueness of complex germ.

References

[1] V. I Arnold. Ordinary Differential Equations. Springer, 1978.
[2] V. I Arnold. Mathematical method of the Mechanics Classical. SpringerVerlag, 1989.
[3] V. V. Belov and S. Y. Dobrokhotov. On certain asymptotic spectrum series for a quantum kepler-problem. Review of Scientific Instruments, 331(1):150-154, 1993.
[4] S. Y. Dobrokhotov, B. Valiño, and P.I. Nekhoroshev. Complex germ in systems with one cyclic variable. Uspekhi Mat. Nauk, 39(3):233-234, 1984.
[5] E Gonzalez and M Wong. Estructuras simplecticas y sistemas hamiltonianos con coeficients periodicos. Tesis de Diploma, 1986.
[6] V. P. Maslov. The Complex WKB Method for Nonlinear Equations I: Linear Theory. Springer, 1994.
[7] V. P. Maslov and M. V. Fedoriuk. Semi-Classical Approximation in Quantum Mechanics. Springer, 1981.
[8] V.P Maslov. Operational Methods. MIr, 1976.
[9] A. V. Ponomariova. Germen complejo sobre toros isotropicos invariantes en los sistemas con k primeras integrales en involucion. Tesis de Diploma, 1983.
[10] B. Valiño. The complex germ on lagrangian tori with incomplete dimension. PhD. Thesis. Moscu University.

