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1 Introduction

In several problems of the quantum and theoretical physics approximated solu-
tion to the partial differential equations which contain a small parameter in the
higher derivative order are obtained, as well as to approximated eigenvalues and
eigenvector of self-adjoint differential operator which depend on a small param-
eter. In such problems have been used the asymptotic methods [8, 7, 6], which
nowadays are developed widely in several branches of the physics-mathematics.
It is well known the success of asymptotic methods, e.g. with the quantifica-
tion method was solved the older and sharp problem of the mechanic classic:
calculation of the energetic level of the hydrogen atom [3].

In [7] over a 2n-dimensional phases space to obtain an asymptotic quasiclassi-
cal solution with respect to a small parameter on an isotropic tori k-dimensional
(k < n) is obtained. This asymptotic on a torus is accomplished with a new
geometric object which was called the Complex Germen .i.e. a family of com-
plex planes with certain properties. Such object does not exist over any isotropic
manifold. In such sense, V. P. Maslov put forward and solved the problem about
its existence and construction techniques. At the same time, the uniqueness of
Complex Germ has a great signification such that asymptotic be well defined.
In [4] were completed the results obtained in [7], as well as have solved the
uniqueness problem for the singular point and a closed trajectory of the Hamil-
tonian system. Further, was solved of existence and uniqueness of Germen on
isotropic torus to Hamiltonian with cyclic variable.

Some more later, M. M. Nekhoroshev put forward this problem but on
isotropic invariant torus with respect to Hamiltonian phases flows which come
from k-functions in involution. This statement was partially solved in [9] es-
tablishing that if certain simplectic operator has a simple spectrum then the
complex germ exist. In this work we solve this problem, providing a full so-
lution, i.e. we present conditions for the existence and uniqueness of complex
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germ through the monodromy operator constructed in [9], but without the sim-
ple spectrum condition. We study also the Hamiltonian system with cyclic
variables.

2 Preliminaries

Let M2n be a 2n-dimensional differentiable manifold with local coordinates
(p, q). We assume C∞ manifolds and scalar functions and vectorial fields as
well. Let us introduce basic results, details can be found in [1]. Let TmM

2n be
the tangent space at point m of manifold M2n. We introduce natural manifold
on TM2n = ∪m∈M2nTmM

2n.

Definition 1. It is called exterior form of degree two or 2-form at point m on
the manifold M2n to the bilinear and antisymmetric application ω2 : TmM

2n ×
TmM

2n → < , i.e.

• ω2(αx+ βy, z) = αω2(x, z) + βω2(y, z),

• ω2(x, y) = −ω2(y, x),

for all x, y, z ∈ TmM2n and α, β ∈ < (see [2]).

A 2-form ω2 is closed if dω2 ≡ 0, where d : Ω2(M2n) → Ω3(M2n) is an
operator of exterior differentiation on the space of the 2-form Ω2(M2n). Besides,
it is called non-degenerate if ω2(x, y) = 0 for all x ∈ TmM2n then y = 0.

Definition 2. A closed, non-degenerate and differential 2-form ω2 on the man-
ifold M2n is called symplectic structure. The couple (M2n, ω2) is called sym-
plectic manifold and the tangent space in each point m of the manifold is called
symplectic vectorial field whose symplectic structure is the restriction of ω2 to
TmM

2n × TmM2n.

One example of symplectic structure consist of M2n = <2n with ω2 = dq∧dp,
where

dq ∧ dp(x, y) =

n∑
i=1

dqi(x)dpi(y)− dqi(y)dpi(x), ∀x, y ∈ Tm<2n (1)

and for all m ∈ <2n. In this case Tm<2n is identified with <2n, where the
1-forms dqi and dpi are defined as

dqi(x) = qi(x) and dpi(x) = pi(x), (2)

where qi and pi: <2n → < are the coordinates system. i.e. qi(x) (pi(x)) are i-th
(n+ i-th) coordinates of the vector x in a prefixed basis of the real linear space
<2n. The symplectic structure defined in this way is called standard.

Definition 3. The coordinates of the local chart (q1, . . . , qn, p1, . . . , pn) of a
symplectic manifold are called canonical if the expression of the symplectic struc-
ture ω2 in this coordinate system coincides with the standard.
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As consequence of the Darboux Theorem, in each point of a symplectic
manifold, there is a neighbour with canonical coordinates [1].

Definition 4. Let M2n be a symplectic manifold and let TmM
2n and T ∗mM

2n

be tangent and cotangent spaces at point m ∈ M2n, we define the operator
J : T ∗mM

2n → TmM
2n as

ω2(x, Ja) = a(x), for x ∈ TmM2n; a ∈ T ∗mM2n. (3)

The operator J defined in this way constitutes an isomorphism between vectorial
spaces.

Definition 5. The Poisson bracket of two functions F , G over the manifold
M2n is defined as

[F,G] = ω2(JdF, JdG), (4)

where dF and dG are the differentials 1-forms of F and G on M2n.

If [F,G] = 0, we say that functions F and G are in involution.
From Definition 4, we have

[F,G] = −dG(JdF ) = dF (JdG). (5)

Definition 6. A Hamiltonian system is the triple (M2n, ω2, H), where (M2n, ω2)
is a symplectic manifold and functions H is defined on it. The field JdH is called
the Hamiltonian vectorial field.

The matrix of the Hamiltonian operator H in canonical coordinates is(
0 −In
In 0

)
where 0 and In denotes the zero and identity n-dimensional matrices. Thus, in
canonical coordinates the Hamiltonian system takes the form

ṗ = Hq, q̇ = −Hp, (6)

where Hq = (
∂H

∂q1
, . . . ,

∂H

∂qn
) and Hp = (

∂H

∂p1
, . . . ,

∂H

∂pn
).

Let us assume that the solution of the Hamiltonian system (M2n, ω2, H) can
be extended to <, i.e. for −∞ < t < +∞. In this case, gtHm denotes the value
of the solution θ with initial condition θ(0) = m, we obtain the application
gtHM

2n →M2n for t fixed. This application constitute a one parametric group
of diffeomorphism, i.e. g0

Hm = m and gt+sH m = gtHm ◦ gsHm, for all m ∈ M2n.
This group is called flow of phases of the Hamiltonian system. Moreover, the
application gtM is symplectic for each t fixed, i.e. (gtH)∗ω2 = ω2, where

(gtH)∗ω2(x, y) = ω2((gtH)∗,mx, (g
t
H)∗,my), (7)

for all m ∈ M2n. Here (gtH)∗,m denotes the derivatives of (gtH) for each t ∈ <
(see [2]).
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Definition 7. Let Λ a submanifold of M2n and TmΛ the tangent space of Λ at
point m. The submanifold Λ is called isotropic if the symplectic structure ω2 is
null on it, i.e., ω2(x, y) = 0,∀x, y ∈ TmΛ and m ∈M2n.

The submanifold is invariant respect to the Hamiltonian system (M2n, ω2, H)
if IdH(m) ∈ TmΛ, ∀m ∈ Λ, which in terms of the phases flow is rewritten as
gtH(Λ) = Λ, for all t ∈ <, hence (gtH)∗,m(TmΛ) = TmΛ.

Let us consider the complexification of the linear space <2 and a linear
operator for a positive integer n. The complexification of <n is a n-dimensional
linear space (<n)C constructed as follow: the point in (<n)C is denotes either
by (x, y) or x+ iy , where x, y ∈ <n.

If α · V denotes the multiplication of a scalar by V ∈ <n and V + W the
sum of two any vectors in <n, the the multiplication of complex scalar α + iβ
by a vector V + iW ∈ (<n)C and the sum of two vectors V1 + iW1, V2 + iW2

are defined as:

(α+ iβ) · (V + iW ) = (αV − βW ) + i(αW + βV ), (8)

(V1 + iW1) · (V2 + iW2) = (V1V2 −W1W2) + i(V1W2 +W2V2), (9)

thus (<n)C constitutes an complex lineal space ((<n)C = Cn).

Remark. Similarly, for any real vectorial subspace P is possible to define its
complexification PC.

It is well known, that between the tangent space Tm(M2n) to submanifold
2n-dimensional M2n and <2n there is an isomorphism X : Tm(M2n) → <2n.
Analogously, we can establish an isomorphism between the complexifications
Tm(M2n)C and <C.

Let us denote by A : <m → <d a <-linear operator. A complexification of the
operator A is a C-linear operator AC : (<m)C → (<d)C defined by the relation
AC(x+ iy) = Ax+ iAy. The following relations are valid: (A+B)C = AC +BC,
where A and B are <-linear operators.

Let us introduce the following concepts: let ω2 be a real simplectic structure
on the manifold M2n. We call complexification of ω2 defined on Tm(M2n)C, for
all m ∈M2n to the form ωC : Tm(M2n)C × Tm(M2n)C → C, given by

(ω2)C(u+ iv, x+ iy) = (ω2(u, x)− ω2(v, y)) + i(ω2(u, y) + ω2(v, x)), (10)

∀u+ iv, x+ iy ∈ Tm(M2n)C.

Remark 8. Since ω2 is antisimetric then (1/2i)(ω2)C(x, x̄) is real for all x 6= 0
in Tm(M2n). We denote (ω2)C(x, y) = [x, y]. It is possible to verify that the
complexification of the standard simplectic structure on Tm(M2n) is the standard
simplectic structure on Tm(M2n)C at any point m of the manifold M2n ([5]).

3 Statement of the problem

Let M2n be a 2n-dimensional simplectic manifold and F1, . . . , Fk a family of
functions defined on M2n: Fj : M2n → <, j = 1, . . . , k such that k < n, which
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stay in involution on M2n. Let the k-Hamiltonian systems (M2n, ω2, Fj) with
the correspond Hamiltonian flux of phases gtFj , t ∈ <; j = 1, . . . , k. Since the
functions Fj , j = 1, . . . , k are in involution, the flux of phases commute, i.e.
gtFiog

t
Fj = gtFjog

t
Fi , for all t ∈ (−∞,+∞) and for all i, j = 1, . . . , k.

We assume that

• The Hamiltonian flux phases gtFj , j = 1, . . . , k are global, i.e. they are
defined for all t ∈ (−∞,+∞). It is valid for example if we assume that
the manifold M2n is compact.

• The torus Λk = S1×, . . . ,×S1 (where S1 denotes the unit circle), k < n is
a k-dimensional isotropic submanifold of M2n (Λk ⊂M2n) and is invariant
respect to the Hamiltonian system (M2n, ω2, Fj), j = 1, . . . , k.

• The differential dF1, . . . , dFk are lineal independent at each point of the
manifold M2n.

For the construction of asymptotic solution of several partial differential
equation in [7] the concept of Complex Germ on isotropic manifold is introduced.
The issues of existence and uniqueness of such object is treated in this work. The
main difficulty is that not always exist the Germ over any isotropic manifold.

Definition 9. A Complex Germ over the isotropic tori Λk(k < n) is a smooth
map on Λk, rn : m → rn(m),∀m ∈ Λk, such that to each point m ∈ Λk

correspond a n-dimensional complex subspace rr(m) of the complexification of
the tangent space to M2n at the point m (Tm(M2n)C) with following properties:

i) rn(m) is a lagrangian subspace, i.e. dim(rn(m)) = n and isotropic
([x, y] = 0,∀x, y ∈ rn(m)),

ii) rn(m) ⊃ Tm(Λk)C,
iii) rn(m) is disipative respect of Tm(Λk), i.e.

∀x ∈ rn(m) \ Tm(Λk)C holds (1/2i)[x, x̄] > 0, (11)

iv) rn(m) is invariant respect the Hamiltonian flux gtH , t ∈ < of a given
function H,i.e. ∀ ∈ Λk,∀t ∈ (−∞,+∞) holds

[(gtH)∗,m]C(rn(m)) = r(gtHm), (12)

where [(gtH)∗,m]C is the complexification of the derivative at point m of an el-
ement gtH of Hamiltonian flux phases H associated to Hamilton function H.

Remark 10. From now we omit the supraindex C that indicated the complexifi-
cation, in the space and operator. But implicitly we use the properties enunciated
previously.

The aim of this paper is to seek conditions for the existence and uniqueness of
a Complex Germ on the a invariant torus to Hamiltonian system (M2n, ω2, Fj), j =
1, . . . , k; (k < n).
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4 Condition for the existence of the Complex
Germ on the torus

Let

Σ = {m ∈M2n : Fi(m) = fi, i = 1, . . . , k, f = (f1, . . . , fk) ∈ <k}, (13)

be the intersection of the level surfaces defined by the functions Fj , j = 1, . . . , k
which contain the trajectories of the Hamiltonian system x = JdFj(x), j =
1, . . . , k. Since dF1, . . . , dFk are linearly independent then Σ is a submanifold
submerge in M2n of dimension 2n− k.

Let us define the action of additive group <k over M2n, as follow: to each−→
t = (t1, . . . , tk) ∈ <k correspond the difemeorphism of M2n as:

g
−→
t = gt11 o . . . og

tk
k , (14)

where gtj = gtFj ,∀j = 1, . . . , k. Since gtj are simplectic diffemeorphism the g
−→
t as

well, i.e. (g
−→
t )∗ω2 = ω2,∀−→t ∈ <k.

4.1 Monodromy operator

The condition for existence of the Complex Germ are given in term of the
monodromy operator which we defined in the following paragraph

Let us fix the point m ∈ Λk. Denoting by G the discrete subgroup of <k
defined as follow

G = {−→t ∈ <k : g
−→
t m = m}, (15)

which does not depend on the choice of the point m. The subgroup G can be
generated by a set of k elements linearly independent(see [1]), i.e.

G = {l1T1 + . . . , lkTk; li ∈ <; Ti ∈ G are linearly independent, i = 1, . . . , k}.
(16)

Since Λk is invariant respect to Hamiltonian system x′ = JdFj(x); j = 1, . . . , k

we have gtjΛ
k = Λk therefore g

−→
t Λk = Λk. We have also that the map f :

<k → M2n given by f(t) = g
−→
t m which to any

−→
t correspond a point in Λk is

sobrejective, but is not injective because Λk is compact and <k is not; therefore
there exist t1, t2 ∈ <k; t1 6= t2, such that gt1m = gt2m and gt1−t2m = m with
t1 − t2 ∈ G; which mean that the subgroup G is not trivial.

Definition 11. Let T ∈ G. The operator Gm = (gT∗,m) : Tm(M2n)→ Tm(M2n)

is called monodromy operator of the subgroup G at point m ∈ Λk.

Let us rewrite the monodromy operator in a way more amassing to describe
the sufficient condition for the existence of the Complex Germ. We gave

gT∗,m = gl1T1+...+lkTk
∗,m , (17)
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for certain l = (l1, . . . , lk) ∈ Zk, where T1, . . . , Tk are the generator of subgroup
G. Let denote Tj = (tj1, . . . , tjk); tij<;∀i, j = 1, . . . , k. thus we obtain

gl1T1+...+lkTk
∗,m = gl1t11+...+lktk1

1∗,m o . . . ogl1t1k+...+lkTkk
k∗,m . (18)

Using that gt+sj = gtjog
s
j and gtjog

t
i = gtiog

t
j and reordering (18) we obtain

gT∗,m = (gl1t11
1∗,m+. . .+gl1t1kk∗,m)o(gl2t21

1∗,m+. . .+gl2t2kk∗,m)o . . . o(glktk1
1∗,m+. . .+glktkk1∗,m ), (19)

or
Gm = Gl11 o . . . oG

lk
k , (20)

where Gj = g
Tj
∗,m : Tm(M2n) → Tm(M2n), j = 1, . . . , k is called monodromy

operator with period Tj . The following is valid

Lemma 12. Over the torus Λk is possible to defined k vectorial fields linearly
independent.

Proof. Since Λk is invariant respect to the k- Hamiltonian system ẋ = JdfFj(x),
j = 1, . . . , k, JdFj(m) ∈ Tm(Λk),∀m ∈ Λk. Also, since dF1, . . . , dFk are linearly
independent at each point m ∈ Λk and the operator J is regular we obtain that
the vector JdFj(m), j = 1, . . . , k are linearly in each point of m ∈ Λk.

Note that JdFj , j = 1, . . . , k in each point m ∈ Λk constitute a basis of the
tangent space Tm(Λk) of Λk. Using the Λk is invariant we obtain

Gj(JdFi) =

k∑
n=1

βnJdFn, (21)

Gm(JdFi) =

k∑
n=1

µnJdFn, (22)

with βn, µn ∈ C;n = 1, . . . , k. Let Γm = Tm(Σ)�Tm(Λk); we have dim(Γm) =
2(n− k).

It is valid the following

Lemma 13. Let [θ] ∈ Γm then Gj([θ]) = [Gj(θ)] and Gm([θ]) = [Gm(θ)].

Proof. Let [θ] = {θ : θ
′
≡ θmod(Tm(Λk))}, θ

′
≡ θmod(Tm(Λk)) if and only if

θ
′

= θ +

k∑
i=1

βiJdFi, where βi ∈ C, i = 1, . . . , k, Also the following equality is

valid

Gj(θ
′
) = Gj(θ) +

k∑
i=1

µiJdFi, (23)
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and by using equality (21) we have Gj(θ
′
) = Gj(θ) +

k∑
i=1

µiJdFi for certain

µi ∈ C, i = 1, . . . , k and due to (20) also satisfy that

Gm(θ
′
) = Gm(θ) +

k∑
i=1

τiJdFi, (24)

Ξm : Γm → Γm, such that [θ]→ [Gm(θ)], (25)

Ξj : Γj → Γj , such that [θ]→ [Gj(θ)], (26)

with j = 1, . . . , k. From now, the structure [, ] must be defined between equiva-
lence class modulo Tm(Λ) on each point m ∈ Λk. To do so, we need to prove
that [, ] is compatible with respect to equivalence class i.e. if θ ≡ σmod(Tm(Λk))

and θ
′
≡ σ

′
mod(Tm(Λk)), then [θ, θ

′
] = [σ, σ

′
]. We assume by definition that

[[θ], [θ]] = [θ, θ]. We prove that [θ, θ
′
] = [σ, σ

′
]:

θ = σ +

k∑
i=1

αiJdFi, θ
′

= σ
′
+

k∑
i=1

δiJdFi. (27)

By using bi-linearity property we have

[θ, θ
′
] = [

k∑
i=1

αiJdFi,

k∑
i=1

δiJdFi],

or

[θ, θ
′
] = [σ, σ

′
] + [

k∑
i=1

αiJdFi,

k∑
i=1

δiJdFi], (28)

+[σ,

k∑
i=1

δiJdFi] + [

k∑
i=1

αiJdFi, σ
′
]. (29)

We have

[σ,

k∑
i=1

δiJdFi] =

k∑
i=1

δi[σ, JdFi] =

k∑
i=1

δiJdFi(σ) = 0, (30)

because JdFi(σ) = 0 since σ ∈ Tm(Σ). Analogously is prove that [

k∑
i=1

αiJdFi, σ
′
] =

0. Also that [

k∑
i=1

αiJdFi,

k∑
i=1

δiJdFi] = 0 holds , since the functions Fi, i =

1, . . . , k stay in involution. Finally we have the proof.
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Definition 14. The operator Ξm : Γm → Γm is called reduced monodromy
operator at point m. i.e.,

Ξm = (Ξ1)l1o . . . o(Ξk)lk , (31)

where the operators Ξj, j = 1, . . . , k are called reduced monodromy operator with
period Tj.

Also the following proposition is valid

Proposition 15. The quotient space Γm = Tm(Σ)/Tm(Λk) has a natural sym-
plectic structure such that the operators Ξj, j = 1, . . . , k are symplectic respect
to the structure [, ] of the space Tm(M2n) induce over this space.

Proof. It is known that if the vectorial space V is given a bilinear, antisymmet-
ric, degenerate form then over the quotient vectorial space V/V ⊥ is induced a
bilinear, antisymmetric, no degenerate form. Taking V = Tm(Σ) and the bilin-
ear form [, ] which is degenerate over Tm(Σ) and we use that Tm(Σ)⊥ = Tm(Λk).

Let σ =

k∑
i=1

σiJdFi, which σi 6= 0 for some i = 1, . . . , k. Since σ ∈ Tm(Λk) holds

that [x, σ] = 0, ∀x ∈ Tm(Σ) because [x, IJdFi] = dFi(x) = 0 (Fi is constant
on Σ). This proved that [, ] is degenerate on Tm(Σ) and JdFi ∈ Tm(Σ). Since
dim(Tm(Σ)) = 2n − k then dim(Tm(Σ)⊥) = k and IJdFi (i = 1, . . . , k) con-
stitutes a basis of Tm(Λk). Since Tm(Σ)⊥ = Tm(Λk) we have that Γm is a
subspace lineal symplectic. Now, we verify that the operator Ξj (j = 1, . . . , k)

are symplectic. Let [θ], [θ
′
] ∈ Γm. we have

[Ξj([θ]),Ξj([θ
′
])] = [Gj([θ]), Gj([θ

′
])],

where Gj , with j = 1, . . . are the monodromy operators in Definition 11. From
Lemma 13 we have

[Ξj([θ]),Ξj([θ
′
])] = [[Gj(θ)], [Gj([θ

′
)]],

By definition of the product of two class we obtain

[Ξj([θ]),Ξj([θ
′
])] = [Gj(θ), Gj(θ

′
)].

Since Gj are symplectic we have [Ξj([θ]),Ξj([θ
′
])] = [θ, θ

′
]. Using again the

definition of the product of two class we have [Ξj([θ]),Ξj([θ
′
])] = [[θ], [θ

′
]]; so

Ξj , with j = 1, . . . , k are symplectic.

Definition 16. Two symplectic lineal operator Ai : L1 → L2, with i = 1, 2.
are called equivalent if there exist a lineal symplectic τ : L1 → L2 such that
A2 = τA2τ

−1.

For the purposes of this work we need to verify that the reduced monodromy
operator does not depends on the point m ∈ Tm(Λk). They are precisely these
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operators which will serve to establish sufficient conditions for the existence of
the complex germ. Notice Ξj , with j = 1, . . . , k are symplectic operators then
by Definition 14, operator Ξm in (31) is symplectic as well.

It is valid the following

Proposition 17. Let m,m
′
∈ Λk then operators Ξm and Ξm′ defined in (31)

are equivalent.

Proof. There exist
−→
t ∈ <k such that m = g

−→
t m

′
. Let the operator Gm,m′ =

(g
−→
t )∗,m : Tm(M2m → Tm′ (M

2m), which is symplectic (see Section 2 ). Also
Gm,m′ (Tm(Σ)) = Tm′ (Σ) and Gm,m′ (Tm(Λk)) = Tm(Λk) hold. Then we define
the operator τm,m′ : Γm → Γm′ by τm,m′ ([θ]) = [Gm,m′ (θ)]. We can check that
Ξm′ τm,m′ = τm,m′Ξm.

Remark 18. Analogously it can prove that the operators Ξj, with j = 1, . . . , k
are equivalents at different points in the torus Λk.

Let Π : Tm(Σ)→ Γm the canonical map that each θ ∈ Tm(Σ) correspond its
equivalence class [θ] modulo Tm(Λk).

We have that is valid

Proposition 19. It is valid that

ΞjoΠ = ΠoGj . (32)

Proof. Let θ ∈ Tm(Σ); Π(Gj(θ)) = [Gj(θ)]. Besides that Ξj(Π(θ)) = Ξj([θ]) =
[Gj(θ)], being proved the proposition.

Definition 20. A complex linear subspace R ⊂ Cn is called positive if ∀x ∈
R;x 6= 0 (1/2i)[x, x̄] > 0 holds. It subspace is called negative if (1/2i)[x, x̄] < 0.

Lemma 21. Let R ⊂ Γm a lineal, positive, lagrangian and invariant respect
to the operators Ξi, i = 1, . . . , k. then the subspace rn = Π−1(R) is dissipative
respect to Tm(Λk), lagrangian and invariant respect of the operator Gi, i =
1, . . . , k, where Π is the canonical map.

Proof. We have that Π(x) = [x]modTm(Λk) = {x+ y : y ∈ Tm(Λk)};

a) Let us prove that rn = Π−1(R) is isotropic. Let x1, x2 ∈ Π−1(R) then
Π(x1),Π(x2) ∈ R; [Π(x1),Π(x2)] = 0 for being rn isotropic; by definition we
have [x1, x2] = [Π(x1),Π(x2)] = 0, therefore rn is isotropic.

b) Let us prove that rn is lagrangian in Tm(M2n), i.e.dim(R) = (1/2)dim(Γm) =
n − k,Π−1(0) = Tm(Λk), then dim(Π−1(0)) = k, also since Π−1(0) ⊂ Π−1(R),
then and dim(rn) = dim(Ker(Π)) + dim(Im(Π−1(R))) = k + n− k = n, then
rn is lagrangian.

c) Let us verify that rn is dissipative respect to Tm(Λk): we have that
Tm(Λk) ⊂ rn. Let x ∈ rn�Tm(Λk) then Π(x) = [x] 6= 0. Besides we have
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[x̄] = ¯[x], the dissipative condition of rn is a consequence of the positivity of R,
i.e.

(1/2i)[x, x̄] = (1/2i)[[x], [x̄]] = (1/2i)[[x], ¯[x]] = (1/2i)[Π(x),Π(x)] > 0,

due to R is positive.
d) The invariance of rn respect of Gi (i = 1, . . . , k) is a consequence of (32)

and the invariance of R respect to Ξj (i = 1, . . . , k).

It is valid the following

Theorem 22. Let m ∈ Λk fixed. If there exist a lineal subspace N lagrangian,
dissipative respect to Tm(Λk), invariant respect all the operators Gi (i = 1, . . . , k)

then the exist a complex germ respect to the Hamiltonian system x
′

= JdFj(x)
(j = 1, . . . , k).

Proof. The idea is to construct a smooth map rn : m → rn(m) such rn(m) ⊂
Tm(M2n), ∀m ∈ Λk satisfying Definition 9. Let us define rn(m) = N . Since

that map f : ~t → g
~tm, ~t ∈ <k is subjective, we have that ∀p ∈ Λk, there exist

m ∈ Λk and ~s ∈ <k such that g~sm = p. Let us put

rn(p) = (g~s)∗,m(rn(m)). (33)

Since the operator (g~s)∗,m is symplectic and carries the subspace Tm(Λk) in
Tp(Λ

k) then rn(p) ∀p ∈ Λk is lagrangian, disipative with respect to Tp(Λ
k).

Now, we verify that rn(m) is invariant: By Definition of Germ in (33) we
have

(g
~t)∗,m(rn(m)) = (g

~t)∗,po(g
~s)∗,m(rn(m)). (34)

Using g
~t+~s = g

~tog~s in (34) we obtain

(g
~t)∗,po(g

~s)∗,m(rn(m)) = (g
~t+~s)∗,m(rn(m)). (35)

Using again (33) in (35), we obtain the invariance

(g
~t+~s)∗,m(rn(m)) = rn(g

~t+~sm) = rn(g
~tog~sm) = rn(g

~tp). (36)

On the other hand, since (g0)∗,m = E2n, where E2n is identity map, then by

choosing appropriately the vector ~t we obtain (g
~t)∗,m = gtjm, where t ∈ < and

gtj is the Hamiltonian flux associated to the function Fj , with j = 1, . . . , k. As a

consequence the Germ is invariant respect to gtj . The smoothness of the Germ
we proof in the Appendix A.

Remark 23. From Lemma 21 we have that is possible to construct the complex
germ if the operators Ξi, i = 1, . . . , k have a common positive, lagragian and
invariant (P.L.I) linear subspace.

Remark 24. Proof of Theorem 22 consists in the construction of complex germ
analogously as done in [10]. In this way, we proof the the map rn : m→ rn(m)
is smooth.
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Now following Remark 23, we find that sufficient conditions on operators Ξi,
i = 1, . . . , k such that they has a common P. L. I subspace.

Definition 25. Let (M2n, ω2) a symplectic manifold. The subspace L ⊂ Tm(M2n)
in a point m ∈M2n is simplectic if the restriction of ω2 a L is no-degenerate.

Definition 26. A lineal transformation SL1 → L2 between two lineal spaces is
called stable if ∀ε > 0 ∃δ > 0 such that |x| < δ then |Sn(x)| < ε ∀nN, n > 0 (see
[2]).

Proposition 27. A symplectic map is stable if and only if all its eigenvalues
belong to the unitary circle and S is diagonalizable.

The proof can be found in [10], where also is proved that the stability con-
dition of symplectic operator is equivalent to have a P. L. I subspace. With
this idea, we present previous Lemmas used to prove sufficient condition the
existence of a P.L.I subspace for the monodromy operators Ξi, i = 1, . . . , k.

Let A y B two stable operators. Let K1 = {σ1, . . . , σ2n} the eigenvalues of
A, where 1 and −1 may also be included. Therefore, we can do the partition
K1 = Ka ∪ {−1, 1}, where Ka = {σ1, . . . , σr, σ̄1, . . . , σ̄r : Imσi 6= 0} with
r <= n and σi distinct. Analogously for the operator B we have the partition
K2 = Kb∪{−1, 1}, where Kb = {µ1, . . . , µs, µ̄1, . . . , µ̄s : Imµi 6= 0} with s <= n
and µi distinct.

Let us denote by Sσ the subspace associated to the eigenvalue σ. In general
the eigenvalues 1 and −1 they may not be included, these will be analyzed
separately.

The following Lemma are valid

Lemma 28. Let A y B two stable operators. Let us consider the restriction
of the operator Aj = A|Sσj⊕SSσ̄j

and Bj = B|Sσj⊕SSσ̄j
, where σj ∈ Ka. Then

there exist a common P. L. I subspace for Aj and Bj.

Proof. Let us consider the subspace L = Sσj ⊕ SSσ̄j which is symplectic and

invariant respect to the operator A (see [10]), i.e. AL = L. We have that if p
the multiplicity of σj ∈ Ka then dim(L) = 2p.

a)Now we prove that the subspace L is also invariant for the operator B.
Since AjB = BAj we have AjBL = BL therefore BL is invariant for the
operator Aj and since B is a symplectic diffeomorphism then dim(BL) = 2p.

Let Sσj = {Ajx = σjx}, then for x ∈ Sσj we have B(Aj(x)) = σjBx.
Using BAj = AjB we obtain Aj(Bx) = σjB(x) therefore Bx ∈ Sσj and as a
consequence BL ⊂ L. Using that the operator B is a diffeomorphism we have
BL = L and the operator Bj = B|L is well defined.

b) Now since B is diagonalizable and symplectic operator in L, it is possible
to obtain a descomposition through K2 of L, i.e.

L =

d∑
i=1

(Sµj ⊕ Sµ̄j )⊕ S1 ⊕ S−1, (37)

12



where S1 and S−1 appear if 1 or −1 are eigenvalues of B in L. Let us consider
the restriction Bj |Lµj

of the operator Bj to Lµj = Sµj ⊕ Sµ̄j then the following

affirmation are true
1- Lµj , j = 1, . . . , d are symplectic operators and Bj are stable, therefore

there exist a subspace P.L.I for Bj |Lµj
in this subspace which we denote by Rµj

(see [10] for the construction of this subpace).
2-The subspace S1 is symplectic (see [10]). Also we have Bj |S1

= Id|S1
,

therefore all vector is eigenvalues for Bj |S1
. Then we can choose a collection of

vector in S1 such as they generated a P.L.I. subspace. Let us denote by Ro. Also
satisfy ARo = Ro. Analogously, for Bj |S−1

= Id|S−1
is possible to construct a

P.L.I subspace denoted by R−1.
Finally the subspace

Rµ = Ro ⊕R−1 ⊕Rµ1
⊕ . . .⊕Rµd , (38)

is a common P.L.I subspace to Aj and Bj in L. Thus, the proof is a consequence
of the way that such subspace are constructed, i.e. it are positive and Lagrangian
in L. Also, they are invariant for Bj ,i.e. BjRµ = Rµ. So, we need to prove that
is invariant for Aj , i.e. AjRµ = Rµ for any j = 1, . . . , d.

The subspace Rµj is constructed from h eigenvector e1, . . . , eh (h is a mul-
tiplicity of µj as eigenvalues of Bj in L), which are associated either µj or
µ̄j .

Let ei an arbitrary with i = 1, . . . , h. Since Rµ1
⊂ L, there ei is an eigenval-

ues of A associated to either σj or σ̄j . Assume that Ajei = σjei, therefore for
x ∈ Rµ1

, we have Ajx ∈ Rµ1
.

Lemma 29. Let A y B two stable operators. Let us consider the restriction
of the operator A1 = A|Sβ and B1 = B|Sβ , where β is either 1 or −1 which
are eigenvalues of the operator A and B. Then there exist a common P. L. I
subspace for A1 and B1.

Proof. The subspace S1 is symplectic (see [10]). Also we have B|S1
= Id|S1

,
therefore all vector is eigenvalues for B|S1

. Then we can choose a collection of
vector in S1 such as they generated a P.L.I. subspace. Let us denote by Ro.
Also satisfy ARo = Ro. Analogously, for B|S−1

= Id|S−1
is possible to construct

a P.L.I subspace denoted by R−1.

Due to the condition impose on these operators, we have that Lemma 31 is
a Corollary of

Lemma 30. Let A and B two stable symplectic operators that commutate in
the symplectic space C2n, then they has a common P.L.I subspace.

Proof. By proposition 27 the operators A and B have its eigenvalues in the

unitary circle and are diagonalizable. Then we have C2n =

d∑
i=1

(Sσj ⊕ Sσ̄j ) ⊕
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S1 ⊕ S−1, where σj , σ̄j , 1 and −1 are eigenvalues of A (in general 1 and −1 are
not necessarily eigenvalues of A). Now from Lemmas 28 and 29 we obtain that
there exist a common P.L.I subspace for the A and B.

Lemma 31. The reduce monodromy operators Ξi, i = 1, . . . , k are stable then
they have a common P.L.I. subspace.

Proof. The construction of the a common subspace for k > 2 is similar. After
we have for two operators we construct for the rest.

4.2 Existence of the Germ

It is valid the following

Theorem 32. If the reduce monodromy operators Ξi, i = 1, . . . , k are stable
then there exist a complex germ invariant respect Hamiltonian system (M2n, ω2, Fj),
with j = 1, . . . , k on the torus Λk.

The proof is a consequence of Lemma 31 and Theorem 22.
Further we despited a necessary condition for the existence of the Germ.

Theorem 33. Assume that there exist a complex germ on the isotropic torus
Λk invariant respect to the Hamiltonian flow ẋ = IdFj(x), with j = 1, . . . , k.
Then the reduce monodromy operators Ξi, i = 1, . . . , k are stable.

Proof. We have ∀m ∈ Λk there exist complex subspace lagrangian rn(m) ⊂
Tn(M2n) such that rn(m) ⊃ Tm(Λk) which is dissipative respect of Tm(Λk),
i.e. ∀x ∈ rn(m) r Tm(Λk) we have [x, x̄]/2i > 0 (condition (11) of Definition
9). Also, for t ∈ < we have condition (12) of Definition 9. Therefore, the flow

g
~t = gt1o . . . ogtk : M2n →M2n, where t = (t1, . . . , tn)<k satisfy g

~t
∗,m(rn(m)) =

rn(g
~tm). For T ∈ G (G discrete subgroup of <k defined in ) we have

gT∗,m(rn(m)) = rn(gTm),

which mean that Gj(r
n(m)) = rn(m), where Gj , j = 1, . . . , k are the mon-

odromy operators, which with period Tj , with j = 1, . . . , k generating the sub-
group G. Let us consider the canonical projection map Π : Tm(Σ) → Γm =
Tm(Σ)/Tm(Λk) and let R = Π(rn(m)).

Now only rest to prove that the subspace R is lagragian, positive in Γm and
invariant respect of the operators Ξj with j = 1, . . . , k. Since Π−1(0) = Tm(Λk)
we have dim(R) = dim(rn(m))−k = n−k = (1/2) dim(Γm). From the definition
of symplectic structure in the quotient space Γm we obtain that R is isotropic
and a consequence lagragian en Γm.

We have that if Π(x) 6= 0 then x 6∈ Tm(Λk). Using that R is disipative
respect of Tm(Λk) and that Π(x) = Π(x̄) we have (1/2i)[x, x̄] = [Π(x),Π(x̄)] =
[Π(x),Π(x)] > 0 and as consequence R is positive.

Since ΞjoΠ = ΠoGj , with j = 1, . . . , k follows that R is invariant respect
of Ξj , with j = 1, . . . , k. Thus we obtain a P.L.I subspace common for the
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operators Ξj , with j = 1, . . . , k therefore this operators are diagonalizables and
its eigenvalues belong to unitary circle then by Proposition 27 are stables.

5 Uniqueness of the Germ

In this section we discuss about sufficient and necessary conditions of complex
Germ. This issue is crucial since the germ is used in the construction of an
asymptotic quase-classic it necessary to verify if obtained in this way is unique,
which depend on the uniqueness of the germ. To display here a full characteri-
zation we summarized some basic concept.

Definition 34. An stable map S : L1 → L2 is called strong stable if all close
map is stable.

What means close map in above Definition?. Let consider the group of the
symplectic map which constitute a submanifold of the lineal map of <n. We
consider any distance between two lineal map on <n as a distance between
the respective matrix in a prefixed basis. i.e. Let [sij ] and [s

′

ij ] the matri-

cial representantin of two lineal map L1, L2 : L1 → L2 then they are close if
max |sij − s

′

ij | ≤ ε, ∀ε > 0 and i, j = 1, . . . , k.

Let A : C2n → C2n an symplectic operator and σ an eigenvalues of A. We
denote by Lσ the maximal invariant subspace respect to A associated to σ.

Definition 35. The eigenvalues σ is called elliptic positive (negative) if the
subspace Lσ is positive (negative).

In [10] a collection of results of the elliptic eigenvalues are obtained. Here
we summarize those we will use

Proposition 36. An symplectic map L : C2n → C2n is strong stable if all its
eigenvalues are elliptic belong to the unitary circle.

Also the following proposition is valid

Proposition 37. An symplectic map L : C2n → C2n is strong stable if has a
unique P.L.I subspace.

The following Lemma holds

Lemma 38. If there exist a unique common subspace P.L.I to the reduce mon-
odromy operator Ξj, with j = 1, . . . , k then there exist a unique complex germ
on the torus Λk.

Proof. Assume that there exist two distinct complex germ rn1 and rn2 , i.e. there
exist a point mo such that rn1 (mo) 6= rn2 (mo). Let Π the canonical subjective
and let the subspace Rj = Π(rj(mo)), j = 1, 2 which are by definition lagragian
and positive in Γmo and invariant respect the operators Ξj , with j = 1, . . . , k.
Using analogous process to describe in Lemma 28 is possible to construct more
that one common P.L.I subspace to the operators Ξj , with j = 1, . . . , k.
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Now we give sufficient condition for the existence of a unique complex germ.

Theorem 39. In the reduce operator of monodromy are stable and there exist
at least one strong stable then there exist a unique complex Germ on the torus
Λk invariant respect to the Hamiltonian system (M2n, ω2, Fj) with j = 1, . . . , k.

Proof. Let Ξj for some j ∈ J = 1, . . . , k a strong stable operators. By Propo-
sition 37 there exist a unique P.L.I subspace for Ξj which we denote by R. As
the operator Ξi, with i ∈ I�j commute with Ξj then by Lemma 31 is possible
to construct a common P.L.I subspace for these operators, which is a unique.
Then by Lemma 38 we have a Theorem.

A necessary condition for the existence of germ is given the following

Lemma 40. If there exist a unique complex germ on the torus Λk invariant
respect to the Hamiltonian system (M2n, ω2, Fj) with j = 1, . . . , k. Then there
exist a unique common P.L.I subspace for the reduce monodromy operators Ξj,
with j = 1, . . . , k.

Proof. Let the stable reduce monodromy operators Ξj , with j = 1, . . . , k. Then
by Lemma 31 these operators have for a common P.L.I subspace R ⊂ Γm for
each m ∈ Λk.

From Theorem 22 (with this subspace), we can construct the complex germ
rn = rn(R). Besides, to distinct subspace correspond distinct Germ, i.e. if
R1 6= R2 then for rn1 = rn(R1) and rn2 = rn(R2) we have ∀m ∈ Λk that
rn1 (m) 6= rn2 (m). Assume that there exist m ∈ Λk such rn1 (m) = rn2 (m); let

m
′
∈ Λk which serves to construct the reduce operator Ξm′ and the subspace

R1 and R2. Since there exist ~s ∈ <k such that g~s(m
′
) = m, and if we define

r1(m) = g~s∗,m′ (r
n(m

′
)); rn1 (m

′
) = R1 and rn2 (m) = g~s∗,m′ (r

n(m
′
)); rn(m

′
) = R2

we obtain a contradiction R1 = R2.

We have the following

Lemma 41. In there is a unique P.L.I subspace common to the reduce mon-
odromy operators Ξj, with j = 1, . . . , k then these operators are stable and at
least one is strong stable.

Proof. We assume that all the operators Ξj , with j = 1, . . . , k are stable and
none is strong stable then from Lemmas 28, 29 it is possible to construct more
of one P.L.I subspace common for two operators, i.e. R1 and R2. With the
procedure of Lemma 31 is possible to construct more of one common P.L.I for
the operators Ξj , with j = 1, . . . , k .

We present a necessary condition for the complex germ

Theorem 42. If there is a unique complex germ invariant respect to the Hamil-
tonian system (M2n, ω2, Fj) with j = 1, . . . , k. Then the reduce monodromy
operators Ξj, with j = 1, . . . , k are stable and at least one is strong stable.

The proof follow from the Lemmas 38 and 40.
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6 Smoothness of the complex Germ

A p-distribution on a manifold M , with p ≤ dim(M) is a map such that to
each point m ∈ M correspond a subspace p-dimensional θ(m) of the Tm(M).
We say that such distribution is smooth if there are p smooth vectorial fields
X1, . . . , Xk defined on a neighbor U of the point m such that X1(m), . . . , Xk(m)
generate the subspace θ(m).

Since the complex Germ is a n-dimensional distribution with certain addi-
tional properties (see Definition ) the smoothness property is a consequence of
the own construction of the germ. From remark 23 the germ is generate by
a P.L.I subspace R. We assume that this subspace is generated by the vec-
tor r1, . . . , rn. Since the map (gtFj )∗,m are smooths the the vectorial fields Xj ,

j = 1, . . . , k defined on each point m ∈ Λk by

Xj(m) = (g
~t)∗,morj , (39)

where ~t ∈ <k satisfy g
~tmo = mo, with g

~t = gt11 o . . . , g
tk
k and gt1j are Hamiltonian

flows associated to the Hamilton functions Fj . It is possible to check that Xj ,
j = 1, . . . , k are smooth and generated the germ rn(m).

7 Application to the Hamiltonian system with
cyclic variables

In this section we study a 2n-dimensional symplectic manifold that contains a
2k-dimensional manifold (k < n) which consist of k invariant isotropic torus
respect to certain Hamiltonian system. These system in the local coordinate
(I, p, θ, q) has the form H = H(I, p, q) and the rest are k−1 coordinates. These
are called system with cyclic variables. The basis and the problem are described
following. Let (M2n, ω2) a symplectic manifold with canonical variables p, q..

Definition 43. An atlas on the manifold (M2n, ω2) is called symplectic if the
the coordinate space (p, q) ∈ <2n the symplectic structure take the form ω2 =
n∑
i=1

dpi ∧ dqi and the cart ΦoΘ−1 : Θ(U1 ∩ U2) → Φ(W1 ∩W2) are symplectic

transformations, where Φ : U1 → W1, Θ : U2 → W2, with U1, U2 ⊂ M2n and
W1,W2 ⊂ <2n,

Definition 44. A Hamiltonian system (M2n, w2, H) with Hamilton function
H is called system with k cyclic variables if there are the system of symplectic
coordinates I, p, θ, q such that H = H(I, p, q). The cyclic variables do not appear
in the expression of the Hamilton function which we denote by θ = (θ1, . . . , θk).

Let the variables I = (I1, . . . , Ik), p = (p1, . . . , k) canonical conjugate of the
variables θ = (θ1, . . . , θk)mod2π, q = (q1, . . . , qk) with 1 <= k <= n. i.e. the
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phase space M2n have the coordinate system (I, p, θ, q) where the symplectic
structure w2 can be written in the form

w2 =

k∑
i=1

dIi ∧ θi +

k∑
i=1

dpi ∧ qi, (40)

We assume that coordinate system define a diffeormorphism from M2n under
the space consist of the direct product of the torus T k with open region of
<2n−k. In this system the canonical equation of the Hamilton function take the
form

I
′

= 0, p
′

= −Hq, θ
′

= HI , q
′

= Hp, (41)

where Hq = (∂H/∂q1, . . . , ∂H/∂qk and Hp = (∂H/∂p1, . . . , ∂H/∂pk.
We consider the subset

N = {(I, p, θ, q) : Hp = Hq = 0}, (42)

and we assume that is connected. Let us denote by Λk = Λk(Io, po, qo) the k-
dimensional torus defined by the the equalities {(I, p, θ, q) : I = Io, p = po, q =
qo}. It is possible to check that N represent the union of such torus.

We consider the restriction of the vectorial Hamiltonian field to the torus Λk

where a trajectory on such field take the form gtH = (Io, po, HIt+ θ, qo) defined
for all t ∈ (−∞,+∞) because Λk is compact. It is possible to check that any
torus Λ ⊂ N is invariant respect to this system. Also, from the symplectic
structure in (40) we deduce that ω2|Λk = 0, i.e. the torus are isotropic. There-
fore H is the union of isotropic, invariant respect to the Hamiltonian system
(M2n, ω2, H).

We have the following Definition

Definition 45. We say that F is first integral of the Hamiltonian system with
function H if the Poisson braked satisfy [F,H]=0.

It is possible to check that described above the coordinate function I1, . . . , Ik
are first integral of the system (M2n, w2, H).

We have

Proposition 46. Assume that for any point in N given in (42) the determinant
of Hess(H) is distinct of zero , i.e.

Hpp Hqq −Hqp Hpq 6= 0. (43)

Then N is sub-manifold symplectic 2k-dimensional that has locally the form of a
map (I, θ)→ (p, q) that does not depend on the coordinate θ, i.e. p = P (I), q =
q(Q).

The proof of this result can be found in [10].
From now, we assume that Λk consist of regular points, i.e. HI 6= 0, as

a consequence the functions H, I2, . . . , Ik are k first integral involution. The
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problem is under what conditions there is a complex Germ on Λk with respect
to the Hamiltonian system defined by Hamilton functions H, I2, . . . , Ik.

The reduce monodromy operators for this case are the following: G1 =
(gtH)∗,m, Gj = (gtIj )∗,m = E2n, with j = 2, . . . , k and E2n is identity operator
of order 2n. This mean that the invariance condition if only necessary to check
for the operator G1. Applying the result of this paper we obtain the sufficient
and necessary for the existence of Germ different from those obtained in those
obtained in [2].

8 Conclusion

In this work we give answer to the question about the existence and uniqueness
of a complex germ on a isotropic torus invariant respect to the Hamiltonian
flows defined by k function F1, . . . , Fk that stay in involution in the phase state
M2n.

We proof that there exist such germ if and only if the reduce monodromy
operator with period Tj , j = 1, . . . , k are stable. This germ is unique if at least
one operator is strong stable.

The result obtained here were applied to the case of an Hamiltonian with
cyclic variables resulting in new condition for the existence and uniqueness of
complex germ.
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