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“I love inequalities. So if somebody shows me a new
inequality, I say, “Oh, that’s beautiful, let me think
about it,” and I may some ideas connected with it.”

L. Nirenberg, Interview with Louis Nirenberg. Notice of
the AMS. 49 (2002), pp. 441-449.



Abstract

This thesis deals with a general version of The Yamabe problem introduced by
Case in [B] and a general version of Escobar-Riemann mapping type problem
introduced as follows.

The Yamabe Problem in compact closed Riemannian manifolds is con-
cerned with finding a metric, with constant scalar curvature in the conformal
class of a given metric. It is well known that the Yamabe problem was
solved by the combined work of Yamabe, Trudinger, Aubin and Schoen. In
particular, we mention that Aubin solved the case when the Riemannian
manifold is compact, non-locally conformally flat and with dimension equal
and greater than 6.

In [5], Case considered a Yamabe type problem in the setting of smooth
measure space in manifolds without boundary and for a parameter m, which
generalize the original Yamabe problem when m = 0. In the context of
Euclidean space this generalization consists to find the functions that satisfy
the sharp Gagliardo, Nirenberg, Sobolev inequalities. Case also solved this
problem when the parameter m is natural. In this work we are able to
generalize Aubin’s result for non-locally conformally flat manifolds, with
dimension equal and greater than 7 and every parameter m.

On the other hand, the Escobar-Riemann problem in manifolds with
boundary is concerned with finding a metric, with scalar curvature identically
null in the interior and with constant mean curvature on the boundary, in the
conformal class of initial metric. This problem in the Euclidean half-space
reduces to the Trace Sobolev inequality. Then we generalize this inequality
and we consider Escobar-Riemann type problem for m parameter and smooth
measure space with boundary which generalize the Escobar-Riemann problem
when m = 0. We resolve the Escobar-Riemann type problem when the
weighted Escobar constant is negative. Also, we prove for compact manifolds
that the weighted Escobar constant is always less or equal than the weighted
Escobar constant for the Euclidean half-space.

Keywords: Yamabe problem, smooth measure space, Trace Sobolev ine-
quality, Escobar-Riemann problem, existence of minimizer.
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Resumo

Esta tese trata de uma versao geral do problema de Yamabe introduzida por
Case em [5] e uma versao geral do tipo de problema de Escobar-Riemann
introduzida por nés.

O Problema de Yamabe em variedades Riemannianas compactas sem
bordo esta relacionado com encontrar uma métrica com curvatura escalar
constante na classe conforme de uma dada métrica. E bem conhecido que
o problema de Yamabe foi resolvido pelo trabalho combinado de Yamabe,
Trudinger, Aubin e Schoen. Em particular, mencionamos que Aubin resolveu
o caso em que a variedade Riemanniana é nao localmente conformemente
plana e tem dimensao maior ou igual a 6.

Case em [5] considerou um problema tipo Yamabe no contexto de varieda-
des ponderadas sem bordo e para um parametro m, que generaliza o problema
original de Yamabe quando m = 0. No contexto do espaco Euclidiano
esta generalizacao reduz-se a encontrar fungoes que satisfacam desigualdades
6timas de Gagliardo, Nirenberg, Sobolev. Case também resolveu este problema
quando o parametro m ¢é natural. Neste trabalho generalizamos o resultado
de Aubin para uma variedade Riemanniana non-locally conformally flat, com
dimensao maior ou igual a 7 e qualquer parametro m.

Por outro lado, o problema de Escobar-Riemann em variedades Riema-
nnianas com bordo estd relacionado a encontrar uma métrica com curvatura
escalar identicamente nula no interior e com curvatura média constante
no bordo, na classe conforme da métrica inicial. Como este problema no
semiespaco Euclidiano se reduz a desigualdade do Trago de Sobolev nos
generalizamos essa desigualdade e consideramos o problema de tipo Escobar-
Riemann para o parametro m numa variedade ponderada com bordo que
generaliza o problema de Escobar-Riemann quando m = 0. Nos resolvemos o
problema tipo Escobar-Riemann quando a constante de Escobar com peso é
negativa. Também provamos para variedades compactas com bordo que a
constante de Escobar com peso é menor ou igual a constante de Escobar com
peso do semiespaco Euclidiano.

Palavras-chave: problema de Yamabe, variedades ponderadas, desigual-

viii



Jhovanny Muiioz Yamabe-type problems on smooth metric measure spaces

dade do Traco de Sobolev, problema de Escobar-Riemann, existéncia de
minimizadores.
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Introduction

Let (M",g) be an n-dimensional compact Riemannian manifold and R, the
scalar curvature associated to the metric g. If M is closed the Yamabe
problem is concerned with finding a metric of constant scalar curvature in the
conformal class of g. It is well known that the Yamabe problem was solved
by the combined work of Yamabe [I5], Trudinger [14], Aubin [I], and Schoen
[13], for an comprehensive presentation of this topic see [10]. In particular,
we mention that Aubin in [I] solved the problem under the hypothesis that
the Riemannian manifold is compact, non-locally conformally flat and with
dimension n > 6.

In [4], Case considered the weighted Yamabe constants which are a one-
parameter family of geometric invariants that interpolate between the Yamabe
constant and the v-entropy. This Yamabe type problem coincides with the
classical Yamabe problem when the parameter is zero. These invariants are
natural as curved analogues of the sharp constants for the Gagliardo-Nirenberg
inequalities studied by Del Pino and Dolbeault [6]. In order to introduce
Case’s work, we start by mentioning Del Pino and Dolbeault’s result.

2(m+n—1)

Theorem 1 ([6]). Fiz m € [0,00]. For allw € WY(R™) N L™mtn—2 (R™) 4t

holds that
2m
~ 2(m+n) 2(m+4+n—1) n
B ([ l528) 7 < ([ wer) ([ 52" )
RTL R’VL R?’L

where the constant Knm s given by

2m+n—2
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= () ()

(2)

Moreover, equality holds in (1)) if and only if w is a constant multiple of
the function w4, defined on R™ by

vl = (e o 3)

€2 + |z — xo|?

where € > 0, and xy € R".

Before we explain Case’s results, we introduce some terminology. A smooth
metric measure space without boundary is a four-tuple (M™, g, e_d’dVg, m) of
a Riemannian manifold (M", g), a smooth measure e~?dV, determined by a
function ¢ € C*(M) and by Riemannian volume element dV}, associated to
g, and a dimensional parameter m € [0, 00]. The weighted scalar curvature
Ry of a smooth metric measure space for m = 0 is Rj' = R, and for m # 0
is the function R} := Ry + 2A¢ — ™H|V¢|?, where A is the Laplacian
associated to the metric g. The weighted Yamabe quotient is the functional

Q[M™, g,e=*dV,,m] : C*°(M) — R defined by

2m
(m+4n—1) m— n

N fM(|Vw|2+4EfnTL__21)R?waQ)@*d)dVg (fM|w|2m++n721 6_( m1>¢qu>
<w) - 2m4n—2 .

(m+n) n
(fM|w fn+’j72 €7¢d‘/g>

(4)

The weighted Yamabe constant is the number

A[M", g, e=%dV,,m] = inf{Q[M", g, e~*dV,,m](w) : w € H'(M,e=*dV,)}.
(5)
For m = oo, Case defined the weighted Yamabe quotient as the limit of
(4) when m goes to infinity and the weighted Yamabe constant as . Note
that in the case m = 0 the weighted Yamabe constant coincide with the
Yamabe constant and in the case m = oo this is equivalent to Perelman’s
entropy (see [12]).
In particular Case proved in [5] an Aubin-type criterion for the existence
of a minimizer of the Yamabe quotient. The exact statement is:

Theorem 2 ([5]). Let (M™, g,e~?dV,, m) be a compact smooth metric measure
space such that m > 0. Then

Instituto de Matematica Pura e Aplicada 2 2017
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A[M™, g, e=*dV,,m] < A[R", da?, dV,m)]. (6)

Moreover, if the inequality @ 18 strict, then there exists a positive function
w € C®°(M) such that

é(w) = K[M”, g, e"’ﬁdVg, m].

Also, Case proved in [5] the strict inequality in (6) when m € NU {0}
together with a characterization for the equality in @

Theorem 3 ([5]). Let (M™, g,e~?dV,, m) be a compact smooth metric measure
space such that m € NU{0}. If

A[M", g, e=?dV,, m] = A[R", dz?, dV,m) (7)

then m € {0,1} and the smooth metric measure space (M™, g,e=%dV,,m) is
conformally equivalent to (S™, go, dVy,, m) for go a metric of constant sectional
curvature. Therefore, there exists a positive function w € C*(M) such that

Q(w) = A[M™, g, e*dV,, m].

In contrast with the Yamabe problem, for which the minimizer always
exists, the weighted Yamabe constant is not always achieved by a function.

Theorem 4 ([5]). There does not exist a minimizer for the weighted Yamabe
constant of (S™, go, dVy,, 3).

As a consequence of Theorem [2/ and Theorem , the equality in @ holds
for (S™, go, dV,, %) For non-locally conformally flat manifolds with dimension
n > 7 and every non-negative number m we prove that inequality (@ is strict.
Then by Theorem [2| the existence of a minimizer of the weighted Yamabe
problem follows. This result is a generalization of the Aubin existence Theorem
and generalization of Case existence result for m non-integer.

Theorem A. Let (M™,g,e ?dV,) be a compact smooth metric measure space
without boundary, m > 0 and n > 7. If (M, g) is non-locally conformally flat
then

K[M”,g,e"ﬁdvg,m] < A[R™, dz?, dV,m). (8)

Therefore, there exists a minimizer of the weighted Yamabe quotient.

Instituto de Matematica Pura e Aplicada 3 2017
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To prove Theorem A, we use similar Aubin’s arguments in [1], these
arguments involve test functions in the Yamabe quotient with support in a
neighborhood of a point where the Weyl Tensor is non-zero, this point exists
because in a non-locally conformally flat manifold with dimension n > 4 the
Weyl Tensor is not identically zero. However, when we restrict to the case
m = 0, we use different test functions to the ones used in Aubin in [I]. For
this reason, our proof is a different proof of Aubin’s Theorem for n > 7. On
the other hand, our proof does not work for general m > 0 in the case n = 6
(cf. Remark [7)).

When (M", g) is a Riemannian manifold with boundary, we denote by M
the boundary of M and by H, the trace of the second fundamental form of OM.
The Escobar-Riemann problem for manifolds with boundary is concerned
with finding a metric g with scalar curvature Rz = 0 in M and Hj; constant
on OM, in the conformal class of the initial metric g. Since this problem in
the Euclidean half-space reduces to finding the minimizers in the sharp Trace
Sobolev inequality then we generalize this Trace Sobolev inequality and prove
an analogue of Del Pino and Dolbeaut result, finding optimal constants and
minimizers of these inequalities. Let R? = {(z,t) : z € R"',t > 0} denote
the half-space and denoted its boundary by R’} = {(z,0) € R" : x € R"'}.
We identify R’} with R"~' whenever necessary.

2(m+n—1)

Theorem B. Fiz m € NU{0}. For allw € WY(RY) N L™mtn—=2 (R7) it
holds that

2m+4n—2

2t 1 m+n—1 2t 1 m+7:L7.—1

m4n— m4n—

A / w5 < / VP / ] e (9)
OR™ R R

where the constant A,, ., is given by

2m+n—1 1
Vol(§minhymt \ " D(2m 4 — 1) \mE
22m+n —2) aml(m +n — 1)

A = (m4n—2)? (

(10)
and Vol(S*™"=1) is the volume of the 2m +mn — 1 dimensional unit sphere.
Moreover, equality holds if and only if w is a constant multiple of the function
We 5, defined on RY by

m4+n—2

)= (=) (1)

(e+1)2 4 |z — 0|?

where € > 0 and xy € R* 1.
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Note that in Theorem B m is a non-negative integer. This result should
be true for m > 0 since it is analogous to Del Pino and Dolbeaut’s result
and because there exists a proof for the latter using probabilistic techniques.
However, at this moment, this kind of techniques escape from the author’s
knowledge.

Following Case’s ideas we will consider an Escobar-Riemann mapping
type problem. We introduce the notion of smooth metric measure space with
boundary defined by a five-tuple (M™, g, e~?dV,, e~ ?do,, m) where do, is the
volume form on the boundary dM induced by the metric g. The weighted
Escobar quotient for this smooth measure is defined by

S (VP4 22 Rra?)e=0dV, + [, 522 HivuPe % do,

(w) = A(mtn—1) (m+n—1)
(fon [0 7552 e=tdory) it ([ Jw] mins e~ 52 qy,) et
(12)
9¢

where we denoted by Hj' = H, + the Gromov mean curvature and n is

an
the outer normal derivative.
The weighted Escobar constant A[M™, g,e=?dV,, e %do,,m| € RU {—o0}

is defined by

A= AM" g, e ?dV,, e *do,,m] = inf{Q(w) : w € H'(M,e ?dV,)}. (13)

If m = 0 we require ¢ = 0 and this quotient coincides with the Sobolev
quotient considered by Escobar in the Escobar-Riemann problem. For this
reason and also in order to avoid confusions with the weighted Yamabe
quotient and weighted Yamabe constant we call the functional Q as the
weighted Escobar quotient and the constant A as the weighted Escobar
constant.

We prove the existence of a minimizer of the weighted Escobar constant
when this constant is negative. The exact statement is:

Theorem C. Let (M",g,e?dV,, e ®do,,m) be a compact smooth metric
measure space with boundary, m € NU {0} and negative weighted FEscobar
constant. Then there ezists a positive function w € C*°(M) such that

Q(w) = A[M", g,e~?dV,, e *do,, m].

Using Theorem B we prove a similar result to Theorem [2] finding that
the weighted Escobar constant for a compact smooth measure space with

boundary is always less or equal than the weighted Escobar constant of the
model case (R", dt* + dz?,dV,do, m).

Instituto de Matematica Pura e Aplicada 5 2017
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Theorem D. Let (M, g,e ?dV,, e ?do,,m) be a compact smooth metric
measure space with boundary such that m € NU{0}. Then

AM™, g,e=?dV,,m] < A[R?, dt* + da®,dV,do,m] = Ay, p. (14)

We recall that in Theorem [2]if the inequality (6]) is strict it follows the
existence of the minimizer for the Yamabe type problem, the same result is
expected for the Escobar type problem for that reason we conjecture that

Conjecture. Let (M",g,e ?dV,, e ®do,,m) be a compact smooth metric
measure space with boundary such that m € NU {0} and

A[M™, g, e %dVy,m] < A[R", dt* + da®,dV,do,m] = Ay, . (15)
Then there ezists a positive function w € C*°(M) such that

Q(w) = A[M™, g,e~%dV,, e *do,, m].

Organization

The chapters are organized as follows. In Chapter (1}, we prove Theorem B. In
Chapter [2l we introduce some basic concepts for the Yamabe type problem
and Escobar-Riemann type problem. In Chapter [3| we prove Theorem A. In
Chapter 4| we prove Theorem C and Theorem D

Instituto de Matematica Pura e Aplicada 6 2017



CHAPTER 1

New Trace inequality

In this chapter we prove Theorem B. As we mentioned in the introduction,
the new trace inequality prepare the way to introduce our Escobar-Riemann
type problem. Therefore, the purpose of presenting this chapter first is to
unify later some considerations for the Yamabe and the Escobar-Riemann
type problem.

1.1 Trace inequality

In this section, we prove Theorem B and state some remarks. We only prove
it for m being a positive integer because the argument depends on the Sobolev
trace inequality in R"*2™ and its minimizers. This kind of ideas are due to
Bakry et al. (see [2]).

Remark 1. In the case m = 0 in the inequality (9) we recover (see [3], [7])
the Sobolev trace inequality

n—2
2(n—1) not 2
Now [ [ 1) < ([ ver), (1.1)
OR™ Ri

+

where Ny, = ”T_z(vol(Snfl))ﬁ. FEquality in (1.1]) holds if and only if w is a
positive constant multiple of the functions w of the form

n—2

o= () 2

7
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Lemma 1. Let p,q, B,C be positive numbers and define h(1) = Br? + C171

for 7> 0. Then h attains the infimum in 7o = (%)ﬁ and

inf k(1) = h(ro) = BrtaC'ita (ﬂ)“" (M) .

>0 p p
Proof. Since h is a positive continuous function for 7 > 0 and

lim A(7) = lim A(7) = 00

70+ T—00

it follows that h attains the infimum for some 75 > 0. A direct computation
1
shows that h'(7) = 777! (pB — qC77P~%). Therefore 75 = (%)m and

M) =BG +C(55)7

= Bt Cta (4ot + Brta Cvva (4)ira 13
= BraCra (4 (1+2)
= B#L;Cffq(%)ri;(f%).

0

Remark 2. If m — oo, the inequality @D takes the form

Ao ( / Ri|w|2>2 < ( / nrw?) ( / n|w|2> (1.4

where lim A,,,, = Ason-
m—oo ’ ’

The inequality (1.4)) is equivalent to the trace inequality H* (M) — L*(OM)

2(Ar)? / fw|2dz §/|Vw\2dxdt+ wldzdt.  (15)
IR R R

In fact, suppose inequality (1.5)) holds. For T > 0 define the function
w,(x,t) = w((x,t)). The change of variable (y,s) = L(x,t) implies

| w0 = [ o0,
OR™ OR™

Vo )dedt =72 [Vl (y,s)dyds
R

J

n n
+ +

and

Instituto de Matematica Pura e Aplicada 8 2017
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lw,|*(z, t)dxdt = 7 | |w|*(y, s)dyds.

NA R™

Then using w, and the equalities above in inequality (1.5) we get

</ ]w|2(y,0)dy> <7tB+71'C, (1.6)
oR™

where B = [, |w|]*(y, s)dyds and C = [, |Vw|*(y,s)dyds. Lemma |1
R? R

yields that for 7o = (%)%, it holds

[NIES

2(Aso.n)

N
=

mB+n#czzB%ﬁ=2(/|VwﬂMﬁ>
R

y

Since inequality (1.6)) is true for every T > 0, in particular it is true for

To = (%)% and by (1.7)) we have
( / \w\?) a8
R}

200 ([ ) <2( [ vup
oR™ R
which is equivalent to (|1.4)).
Now, suppose that inequality (1.4]) holds, then inequality (1.8]) holds. Ine-
quality (1.5) is a consequence of inequality 2ab < a® + b2.

|w|2dxdt> . (L7

n n
+ +

N|=
N|=

In our proof for the Theorem B we use the following Lemma, which was
taken from [B].

Lemma 2. Fix k, | > 0, 2m € N, and constants a, 7 > 0. Then

/ ylPdy 7T (m A+ DT (m o+ ke — Dt
rem (a+ @)mﬁ% T(m)T(2m + k)am+h—t

Proof of Theorem B. We are able to prove inequality @ only for
m € N. For this purpose consider the inequality (L.1]) for R**". The proof’s
idea consists in using this inequality for the special function

_2m4n—2

fly,x,t) := <wm+32(x,t) + w) 2 € C(R7Hm). (1.9)

T

Instituto de Matematica Pura e Aplicada 9 2017
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where (z,t) € R, y € R*™ and 7 > 0.
Suppose f is of the form (1.9). First we analyze the term on the left
hand side of (1.1)). Fixing (x,t) we note that f “Smin=z takes the form of the

function considered in Lemma [2| with a = wn—2 (x,t). Therefore Fubini’s
Theorem, Lemma |2l with £ =n — 1 and [ = 0, and some calculation yield

m+n— mF - 1 m mrn—
/ 2 Pt drdy = = - (2m +n 1)7 / wms= dr. (1.10)
8R+m+n ( m + n — ) 8R1

In order to analyze the term on the right hand side of ([1.1]) we compute

2
ImAn—2 2 2 _2(7n+n) | ‘2
(2=2) ((m—i—n— 2) w m+"—2]Vw\2+43—2>

e AN
tn—2

IV fI*=

Lemma 2 leads to

om +n— 2\ (77" (m + n)
2

dydzdt =

/Rim+n|vf’ yar <m+n—2> < ['(2m +n)

_ 9\2,.m_ m—1 e —
n m2m +n —2)°7"7"T(m +n) / ol GELSS
(m+n—1T'(2m+n) R

> |Vw|*dadt
RY

n
(1.11)
Using equalities (1.10) and (1.11]) in inequality ([L.1]) we get that
2m1n—2
7" '(m+n—1)7" 2(mtn-1) et
Aomin,o ( / W mFn=—2 da:)
F@2m+n—-1)  Jorn
2 m -m
m+n—2 I'(2m +n) R?
m(2m +n — 2)*7™7r™ 0 (m + n) w i),
(m+n—1)I(2m+n) R
Rewriting (1.12]) we obtain
St
m — m+n— e
A2m+n 0 T F(m tn 1) / w2(m:_n—21) dx A S h('r) (113)
S\ T@m+n—1) Jopn
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Where
I'(2m+n)
T @2m4n -2 (m+n)’
7 1 |Vwl|*dzdt
N ﬁ w xdt,
(m+n—2) -
and
©= L/ |w[2(rlnff_’21> dt
m+n—1Jpn
Lemma 1| implies that the function A minimize for 75 = ( mt:—gnc);; s
and
2m+4n—2
amT(m +n—1) N 2mn2
Amn m+n—2d A<h ) 114
2+,O<F(2m+n—1) /GRiw x) < i) -

Inequality (L.14) proves inequality (9) with A,,, as in (10). Next, we
characterize the functions that achieve equality in @D Note that for R’ff?m
and f defined in (1.9)), the equality in ((1.1)) holds if and only if

2m4n—2

- 2
) , for 7>0,

(t+€)* + |z — zo[*+]y|?
T

fly, 1) = (

wmgﬁ(:c,t) =71((t+€)* + |z — x0|?)

(see Escobar [7] and Beckner [3]). Then the family of functions {w ., } in
satisfies the equality in @D n
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CHAPTER 2

Preliminaries

In this chapter, we introduce some preliminary notions for the Yamabe type
problem and our Escobar-Riemann type problem. In the first section, we
present some unified preliminaries for both. In the two following sections, we
present preliminaries for the Yamabe type problem and Escobar-Riemann
type problem, respectively.

2.1 Preliminaries for Yamabe and Escobar-
Riemann type problems

In this section, we just present preliminaries for manifolds with boundary
because all of them work for manifolds without boundary disregarding the
boundary terms. Our approach is based on [4] and [5]. The first step
is to introduce the correct definition of a smooth metric measure space
with boundary. The smooth metric measure spaces appear for example in
Perelman’s work (see [12]) and Lott and Villani’s which involves the Ricci
Tensor and theory of optimal transport (see [11]).

Definition 1. Let (M", g) be a Riemannian manifold with boundary and let
us denote by dV, and do, the volume form induced by g in M and OM , respecti-
vely. Set a function ¢ such that ¢ € C*(M) and m € [0, 00] be a dimensional
parameter. In the case m = 0, we require that ¢ = 0. A smooth metric
measure space with boundary is the five-tuple (M™, g,e=?dV,, e %do,,m).

12



Jhovanny Muiioz Yamabe-type problems on smooth metric measure spaces

As in [5], sometimes we denote a smooth metric measure space with
boundary by the four-tuple (M", g, v™dV,, v™do,) where v and ¢ are related
by v™ = e~?. We denote by R, the scalar curvature of M, n the outer normal

0 y
on OM and P the normal derivative. Also, we denote by h;;, H, := g h;; and
Ui

hg = —%; the second fundamental form, the trace of the second fundamental
form and the mean curvature on the boundary dM, respectively. In the
following definitions, we consider the case m = oo as the limit case of the
parameter m.

Definition 2. Let (M™",g,e *dV,,e %do,,m) be a smooth metric measure
space with boundary. The Bakry-Emery Ricci curvature Ricy, the weighted
scalar curvature R and the Gromov mean curvature Hg' are the tensors

1
Ricy :== Ric + V2 — —do @ do, (2.1)
m
1
R = Ry +2A¢ — ﬂ\v(p\? (2.2)
and
. 09
respectively.

Definition 3. Let (M", g,e=?dV,, e *do,,m) and (M™, g, e’dgd‘/},, e"z’dag, m)
be two smooth metric measure spaces with boundary. We say they are pointwise
conformally equivalent if there is a function o € C°(M) such that

20

(M"™, g, e_¢dVg, e_‘bdag, m) = (M", emin=—2g, emin=2%¢ qi’dV emin} e ¢dag, m).
(2.4)

(M™, g,e=%dV,, e *da,,m) and (M”, 7J, e*‘ing},, e*g’dag, m) are conformally
equivalent if there is a diffeomorphism F : M — M such that the new smooth
measure space (F~Y(M), F*g, F*(e~%dV,), F*(e~%do,), m) is pointwise con-
formally equivalent to (M™, §,edV;, e~ %day, m).

Note that in the equality - ) the terms emin=2% and emin-2° appear in
the smooth measure in M and OM, respectively. In particular, the numerators
of the quotients involved differ by 1. In other words, the smooth measure in
M changes like a (m + n)-dimensional manifold and the smooth measure in
OM changes like a (m + n — 1)-dimensional manifold.
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Definition 4. Let (M™, g,e=?dV,, e ?do,,m) be a smooth metric measure
space with boundary. The weighted Laplacian Ay, : C®(M) — C®°(M) is an
operator defined by

Agu = Au — Vu -V

where u € C®°(M), A is the usual Laplacian associated to the metric g and
V is gradient calculated in the metric g.

Definition 5. Let (M™",g,e *dV,,e %do,,m) be a smooth metric measure
space with boundary. The weighted conformal Laplacian (Lgl, By') is given by
the interior operator and boundary operator

-2
Lp = —Ap+ T2 gy
m+n— :
Bg‘:——i-—H(Qf on OM.

an  2(m+n-—1)

Proposition 1. Let (M", g,e=%dV,, e %doy,m) and (M™, §,e=%dV,,e%doy, m)
be two pointwise conformally equivalent smooth metric measure space such that
g = eﬁg and ¢ = %5 + ¢. Let us denote by (L}, BY') and (£$7 Beg‘)
their respective weighted conformal Laplacian. Similarly, we denote with
hat all quantities computed with respect to the smooth metric measure space
(M™, §,edV,, e ?doz,m). Then we have © = emtn2v and the following
transformation rules

ﬁg(w) = e_#%al/gl(e%w), E?(w) = 6_#%032?(6%@0),
(2.6)
. 25 & ) & R
VQ'U = e mtn-2 | gmtn-2 VgU + memJF"*Q VgO' (27)
and
NG "ol v — A
0 =e mn—2 | ——— p|Violit——Ajo
g (m+n—22"7"9 m4n-2""7
(2.8)
- n “ -
+A§U + ngO’VgU) .

We mention that the first identity in (2.6) appears in [5].
In order to fix some notation, we denote by (w, @)y = [;, w.¢ v™dV, the

inner product in L*(M,v™dVy) and by (w,@)onm = [,,, w-¢ v"do, the inner
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product in L*(M,v™do,). If no confusion occurs we use the same notation
(w, p) for (w, @)y and (w, p)an-

We denote by ||.||2.n and ||.]|2,00 the norm in the space L?*(M,v™dV,)
and L*(OM,v™do,), respectively. Also, it will cause no confusion we use the
same notation ||.|| for both norms.

Moreover, H*(M,v™dV,) denotes the closure of C°°(M) with respect to

the norm
/ Vol + |l
M

Here and subsequently the integrals in M are computed using the measure
v™dV,. Similarly, we will omit the smooth measure v™do, when we compute
integrals on OM.

2.2 Preliminaries for Yamabe type problem

In this section, we recall some concepts necessary to state the Yamabe type
problem in a smooth measure space without boundary (M", g,v™dV,). They
are taken from [5]. We define the weighted Yamabe quotient which generalizes
the Sobolev quotient in the case m = 0 and we consider a suitable W-
functional. Following the presentation in [5], we also define the energies of
these functionals and we give some of their properties.

2.2.1 The weighted Yamabe quotient

We denote with tilde the terms associated to the Yamabe type problem in
order to avoid confusions with the Escobar-Riemann type problem. We start
with the definition of the Yamabe quotient.

Definition 6. Let (M™, g,v™dV,) be a compact smooth metric measure space
without boundary. The weighted Yamabe quotient Q : C°(M) — R is defined
by

(Lpw,w)( [y w5 v

(m+n) 2m+n—2
fM‘w‘m+n 2 n

(2.9)

Q[Mn7 9, Umdvg] (w) =

The weighted Yamabe constant A[M",g,vmd‘/;] € R of (M™, g,v™dV,, m)
is defined by

A[M™, g, v™dV,] = inf{Q[M", g, v™dV,])(w) : w € H'(M,v™dV,)}. (2.10)
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Remark 3. In some cases, when the context is clear, we will not write the
dependence of the smooth metric measure space with boundary, for example we
write Q and A instead of Q[M", g, v™dV,| and A[M™, g,v™dV,] respectively.
We note that since C*(M) is dense in H'(M,v™dV,) and A(|w|) = O(w),
we may equivalently define the weighted Yamabe constant by minimizing over
the space of positive smooth functions on M, as we shall often do without
further comment.

Next, we observe that the weighted Yamabe quotient is continuous in
m € [0,00] and it is conformal in the sense of Definition [3}

Proposition 2 ([5]). Let (M",g) be a compact Riemannian manifold. Fix
¢ € C®(M) and m € [0,00]. Given any w € C*°(M), it holds that

lim Q[M™, g,e%dV,, k](w) = Q[M", g, e~?dV,, m](w). (2.11)

k—m

Proposition 3 ([5]). Let (M™, g,v"dV,,v"do,) be a compact smooth metric
measure space without boundary. For any o, w € C*(M) it holds that

Q[Mn’ em+1720'g’ emﬁﬁwvmd‘/g](w) _ Q[M",g,vmdvg](e%w). (2.12)

2(m+n)
Note that the integral [|w|=+=2v™dV, measures the interior volume

M
[, 0V of

2(m+n)

(Mn7 .@7 @md‘/ﬁa m) = (Mn’ meri*Zg; wm+"72vmd‘/;7, m) (213)

In order to simplify computations and to avoid the trivial non-compactness
of the weighted Yamabe problem, we give the next definition:

Definition 7. Let (M™, g,v™dV,) be a compact smooth metric measure space
without boundary. We say that a positive function w € C°(M) is volume-
normalized in the interior if

/|w’f§ﬁf%vmd% = 1.

M

2.2.2 W-functional
Let us start with the definition of the W-functional considered by Case in [5].
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Definition 8. Let (M™, g,v™dV,) be a compact smooth metric measure space
without boundary. The W-functional, W : C*(M) x RT — R, is defined by

2(m+n—1)

W(w,7) = Tt (LEw, w) + m/ (T_Q(”:’l")w mn—3 p L — wiﬁfﬁ%)
M

when m € [0, 00).
The functional W satisfies the following property

Proposition 4 ([3]). Let (M"™, g,v™dV,) be a compact smooth metric measure
space without boundary. Then

—~

lim WM™, g,e~%dV,, k](w,7) = WIM", g,e*dV,, m](w, 7).

k—m

Also, W satisfies the following conformal property as Proposition 3.10 in
[5].
Proposition 5 ([3]). Let (M"™, g,v™dV,) be a compact smooth metric measure

space without boundary. The W-functional is conformally invariant in its
first component:

— — (m+n—2)
e 2

WM™, % g, e™FoymqV, ] (w, 7) = WM™, g, v™dV,)( Tw,T) (2.14)

forallo, w e C®(M) and T > 0. It is scale invariant in its second component:

—~ —~ n(m+n—2)

WM™, cg,v™dVy)(w,7) = WM™, g, o™ dV,)(c 5w w, e7l7).  (2.15)

Since, we are interested in minimizing the Yamabe quotient, it is natural
to define the following energies as infima of the W-functional. It is also
natural to relate one of these energies with the weighted Yamabe constant.

Definition 9. Let (M™, g,v™dV,) be a compact smooth metric measure space
without boundary. Given T > 0, the T-energy v[M", g,v™dV,](T) € R is
defined by

v[M", g,v"dV,](T) = inf {W(wﬂ') cw € HY(M, vdeg),/ Wttt = 1} :
M
The energy v[M™, g,v"dV,] € RU{—o0} is defined by

v[M", g, v"dV,] = ir;f(; v[M", g, v"dV,|(T).
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The conformal invariance property in the W-functional is transferred to
the energies.

Proposition 6 ([3]). Let (M™, g,v™dV,) be a compact smooth metric measure
space without boundary. Then

D[M", ce® g, eIV AV ] (er) = DM, g, v dVy, ](7),

D[Mnu 662097 €(m+n)Uvmd‘/cg] = ;[Mna 9, ,Umd‘/g}
for all 0 € C*(M), and for all ¢ > 0.
The following proposition shows that it is equivalent to considering the

energy instead of the weighted Yamabe constant when the latter is non-
negative.

Proposition 7 ([3]). Let (M™, g,v™dV,) be a compact smooth metric measure

space with boundary and denote by A and v the weighted Yamabe constant
and the enerqgy, respectively.

e A€ [—00,0) if and only if v = —o0;
e A=0 if and only if v = —m; and

e A>0 if and only if v > —m. Moreover, in this case we have

—_n_
2m+n

A
24 —m (2.16)

n

- 2m+n
V=
2

and if w is a interior volume-normalized, we have w is a minimizer of
A if and only if (w,T) is a minimizer of U for

2(m+n)
2(m+n—1) -1 2m-+n
[n Jyyw ]
T = :

2(LGw, w)

(2.17)

Next we consider the Euler-Lagrange equation of the W-functional.

Proposition 8 ([3]). Let (M", g,v™dV,) be a compact smooth metric measure
space without boundary. Fiz 7 > 0 and suppose that w € HY(M) is a
non-negative critical point of the map & — 17\//(577') acting on the space of
volume-normalized elements of H'(M). Then w is a weak solution of
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m+n m+n+2

m n
i M m(mAn=1) —ory e — cwmines ; _
Tt Lgw + = T w cw m M, (2.18)

for some constant c. If additionally (w,T) is a minimizer of the energy, then

_@2m4n—-2)(m+n), .
c= (2m+n)(m+n—2)<y+m)' (2.19)

Remark 4. If A = 0 then the Euler equation for the Yamabe quotient
coincides with the equation for finding a new conformal smooth measure space
such that qu = 0. On the other hand, the problem to find a conformal smooth
measure space with R™ = C is solved by a direct compact argument on the
functional

. (Lgw, w)u

Q(w) =

(f,, |l 2min) | 2mein—2

for m > 0.

2(m+n) m
due to 3575 < 753

2.2.3 Euclidean space as the model space for the weighted
Yamabe problem

In this sub-section, we consider a family of functions together with some of

its properties which are fundamental in our proof of the Aubin type existence

result for minimizers of the Yamabe quotient.

Fix n > 3 and m > 0. Let us denote by ¢(m,n) = % and define for

xo, T the family of function {¢,, .} such that

_ (m+4+n—2)

n(m+n—2) e 2
Ougr = 7 (1 LAmn) x0|2> . (2.20)
T

We denote the normalization of ¢,, , by

~ m+n—2

¢$077' — V_ 2(m+n) SO-TOJ—

where

_ 2(m—+n) 2(m+n)
m+n—2 m+n—2
V= / pon "1 dr = / Prpir 1" dw,

we used the change of variables in the second equality. On the other hand, a
computation shows
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_m_ m(m+n — 1) _ n m+n (m+n)(m+n — 1) m+n+2

— m+nA - 7 2(m+n) ;’H‘;—Q — :ZYL-!—;L—Z
T P, r T mrn—2 T Dot 3 A

(2.21)

For the definition of ¢, ., the definition of V and identity (2.21)) see (5.1),
(5.2) and (5.3) in [5]. On the other hand, @, . is normalized and attains the
infimum of the weighted Yamabe quotient, then there exists 7 > 0 such that

(R, da?, 1mdV,) +m = W(R", da?, 1™dV,)(@ugrs T) + M

m n
%m m%_m 2(m+”:1)
= e fRn|V¢$0,T’2+W Jgn P
(2.22)

Since @y, and ¢, » satisfy the equation (2.18) and ({2.21)), respectively,
it follows that 7 = 7V~ Znrn.

2.2.4 Relation between weighted Yamabe constants for
manifolds without boundary and the Euclidean
space

The next result, which corresponds to Theorem 7.1 in [5], links the weighted
Yamabe constants of (M™, g,v™dV,) and (M™, g,v"™"dV,) with the weighted
Yamabe constants for the Euclidean space with parameters m and m + 1.
This result allows us to prove the existence of a minimizer for the weighted
Yamabe constant in an inductive argument for the parameter m.

Theorem 5 ([5]). Let (M", g,v™dV,) be a compact smooth metric measure
space with non-negative weighted Yamabe constant, and suppose that there
exists a smooth, positive minimizer w of the weighted Yamabe constant. Then

~ ~ A[M™, g, v™d
AM™, g, v 1dV,) < A[R™, d?, dV,m + ) AMY g, 0" AV g g
A[R™ dz?,dV, m)]

2.3 Preliminaries for Escobar-Riemann type
problem
In this section, we define the weighted Escobar quotient which generalizes

the quotient considered by Escobar in [§] for the case m = 0. In general, the
weighted Escobar quotient is not necessarily finite.

Instituto de Matematica Pura e Aplicada 20 2017



Jhovanny Muiioz Yamabe-type problems on smooth metric measure spaces

2.3.1 The weighted Escobar quotient

Definition 10. Let (M",g,v™dV,,v™do,) be a compact smooth metric mea-
sure space with boundary. The weighted Escobar quotient Q : C*°(M) — R is
defined by

2(m+4n—1) m
(<me7 w>M + (Bmw7 w)BM)(f ‘wl m+n—2 ’U_l) m+n—1
Q(w) - ¢ ¢ 2(m4n—1) ]\42m+n—2 . (224)
<faM|w| mEn=2 ) min-1

The weighted Escobar constant A[M™, g, v™dV,,v"do,] € R of the smooth
measure space (M", g, v™dV,,v"do,, m) is

A[M", g,v™dV,,v"do,, m] = inf{Q(w) : w € H'(M,v™dV,,v"do,)}.
(2.25)

Here and subsequently, as in Remark [3 sometimes we do not write the
dependence of the smooth metric measure space with boundary and we
consider positive smooth functions for the weighted Escobar quotient.

On the other hand, the weighted Escobar quotient satisfies similar pro-
perties to the Yamabe quotient, for example we observe that the weighted

Escobar quotient is continuous in m € [0, oo] and it is conformal in the sense
of the Definition [3

Proposition 9. Let (M",g) be a compact Riemannian manifold with boun-
dary. Fiz ¢ € C*(M) and m € [0,00]. Given any w € C*(M), it holds
that

Jim Q[M™, g,e=?dV,, e~?do,, k)(w) = Q[M", g,e~?dV,, e~?do,, m](w).
—m
(2.26)

Proposition 10. Let (M™,g,v™dV,,v"do,) be a compact smooth metric
measure space with boundary. For any o, w € C*°(M) it holds that

QIM™, emii=2g, et 2y dV,, enin2 Ty dog) (w) (2.27)
= Q[M™, g,v"dV,, v™do,](eZw). '
Proof. A straightforward computation shows that the integrals
(m+n—1) (m+n—1)
/ w| W 0™ N4V, and / w| e ™ do, (2.28)
M oM
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are invariant under the conformal transformation

L TdV, v do,, w) — e =z ,emﬂiﬁf’vmdv,emm:%avmda e 2w).
9 g g 9 g g
(2.29)
By Proposition 1| the term (LJ'w, w) + (Bf'w, w) is invariant under ([2.29).
O
Similar to the smooth measure spaces we have some behavior for the
2(m+n—1)
boundary volume. Note that in the boundary the integral [ |w| m#=2"v™do,
oM
measure the boundary volume [,  0"do; of
2(m+n) 2(m+n—1)
(M™, g, 0"dVy, 0" dog, m) = (M”,wmﬁl—?g,wm%—?vmdvg,w min2 v"do,,m).
(2.30)

Also with the same purpose, to simplify calculus and to avoid the trivial
non-compactness of the weighted Escobar-Riemann type problem, we give
the next definition of the volume-normalized on the boundary.

Definition 11. Let (M", g,v™dV,,v™do,) be a compact smooth metric mea-
sure space with boundary. We say that a positive function w € C*(M) is
volume-normalized on the boundary if

2(m+4+n—1)
/|w| mtn=2 y"do, = 1.
oM

Remark 5. In this work, we use the same word “normalized” for functions
that satisfy the Definition |7 for the volume-normalized in the interior in the
Yamabe type problem and for functions that satisfy the Definition [11] for the
volume-normalized on the boundary in the FEscobar-Riemann type problem.

2.3.2 W-functional

We introduce a W-functional with similar properties as the WW-functional
considered by Case in [5] and Perelman in [12].

Definition 12. Let (M", g,v™dV,,v™do,) be a compact smooth metric mea-
sure space with boundary. The W-functional, W : C*°(M) x RT — R, is
defined by
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W(w, 1) =W[M", g,0"dVy,v"dog)(w, T)

m 1 2(m+4+n—1) _1 2(m+4n—1)
— 72(m+n-1) (( glw’ 'LU) + (BZ%LU, w)) + T 2 mtn—2 y — w mtn—2
M oM
(2.31)
when m € [0, 00].

As the weighted Escobar quotient and the W—functional, the W-functional
is continuous in m and conformally invariant. Additionally, we have one scale
invariant in the variable 7.

Proposition 11. Let (M",g,v™dV,,v"do,) be a compact smooth metric
measure space with boundary. Then

lim WIM", g, e *dV,, e %do,, k|(w,7) = WIM", g,e ?dV,, e *do,, m](w, 7).
—m

Proposition 12. Let (M",g,v"dV,,v"do,) be a compact smooth metric
measure space with boundary. The W-functional is conformally invariant in
its first component:

WM™, €2 g, emtmoymdy, emin=boym s |(w, 1)
(m+4n—2) (232)

= WM™, g,v"dV,,v"dogl(e 2z “w,T)

forallo, w e C®(M) and T > 0. Itis scale invariant in its second component:

WM™, cg,v"d Vg, v™dog)(w, T)
(n—1)(m4n—2) (2.33)
= WM™, g,v™dV,,v"do,|(c 1m0 w, ¢ 7).

Proof. The equality - 2.32)) follows as in Proposition [10|and the equality -
follows by a direct computation.

Since we are interested in minimizing the weighted Escobar quotient it is
natural to define the following energies as infima using the W-functional and
relating one of these energies with the weighted Escobar constant.

Definition 13. Let (M", g,v™dV,,v™do,) be a compact smooth metric mea-
sure space with boundary. Given T > 0, the T-energy v[M™, g, v"dV,, v"doy|(T)
15 the number defined by

v(T) =v[M"™, g,v"dV,,v"do,(T)
. 1 2(m+n—1) (234)
= inf {W(w,T) we H' (M,v"dV,,v"do,), faMw mIn—2 = 1}.
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The energy v M™, g,v"dV,,v"do,| € RU{—o00} is defined by

v=v[M", g,v"dV,,v"do,| = imgy[g, V" dV,, v dog|(T).

T>

The conformal invariance in the WW-functional is transferred to the energies.

Proposition 13. Let (M™,g,v"dV,,v"do,) be a compact smooth metric
measure space with boundary. Then

v[M", ce* g, e(m+”)"vdecg, e(m+"_1)"vmdacg] (er) = v[M™, g, v"dV,, v""do ] (T),

v[M", ce g, Ty dV,, M I g dg ] = v[M™ g, v™dV,, v do,)
for all o € C*(M) and ¢ > 0.

The following proposition shows that considering the energy is equivalent
to considering the weighted Escobar constant when the latter is positive.

Proposition 14. Let (M™,g,v"dV,,v"do,) be a compact smooth metric
measure space with boundary and denote by A and v the weighted Escobar
constant and the energy, respectively.

o A€ [—00,0) if and only if v = —o0;

e A=0if and only if v = —1; and

e A >0 if and only if v > —1. Moreover, in this case we have
m+n—1

~2m+n—1 mA Zmin-1

B m

v —1 (2.35)

m+n—1
and w is a volume-normalized minimizer of A if and only if (w,T) is a
volume-normalized minimizer of v for

—1
2(m+n—1) ot

mf w mtn-=2 fufl 2(2m+n—1)
(« . 2.36
(m+n = 1)(Lgw,w) + (Bjw,w)) (2:36)
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Proof. If A € [—00,0) then there is a volume-normalized function w € C*°(M)
such that (LJw,w) + (Bj'w,w) < 0. Then, it is clear that W(w, ) — —o0
as 7 — oo and it follows that v = —oo. Reciprocally, if ¥ = —oo there exist a
volume-normalized function w and 7 > 0 such that W(w, 7) < —1, it follows
that (Lfw,w) + (By'w,w) <0 and A € [~00,0).

Suppose A > 0. Lemma [I] shows that if A, B > 0, then

inf { Azm#n=1 + B!} =

2m+n—1 m m
z>0 m

A 2m+4n—1
BmFn=1 2.37
m+n—1 : ] ( )

for all x > 0, with equality if and only if

m+n—1
mB 2m+n—1
P 2.38
’ [(m +n—1)A (2.38)
Notes that equality (2.37) is achieved in the case A = 0. Then we have
immediately from the definitions of A and v that (2.36]) holds. O

2.3.3  Variational formulae for the weighted energy
functionals

The next proposition contains the computation of the Euler-Lagrange equa-
tions of the minimizing of weighted Escobar quotient. We will use it in the
proof of Theorem C on the regularity part.

Proposition 15. Let (M™,g,v"dV,,v"do,) be a compact smooth metric
measure space with boundary and suppose that 0 < w € H*(M) is a volume-
normalized minimizer of the weighted Escobar constant A. Then w is a weak
solution of

m+n 1

Liw + cywmi=2v" = 0, m M, (2.39)
m—4n .
Bi'w = cowm=2, on OM
where
_ 2m4n-—1
mA 2(m+n—1) 1 m+n—1
C]. = - w m+n—2 v
m+n—2\Jy
and

(2m +n— 2)/\ (/ 2(m+n—1) _1) T
CQ — w mtn=2 .
m+n—2 M
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Proof. This proposition follows immediately from the fact that the conformal
Laplacian is self-adjoint, and the definition of the weighted Escobar constant.
O

Remark 6. If A = 0 then we have in the proposition above that ¢; = 0,
co = 0. 1t follows that the equations in (2.39) coincide with the equations
for finding a new conformal smooth measure space such that R7 = 0 and

ﬁgL = 0. Moreover, the problem to find a conformal smooth measure space

with ]f?gf =0 and H™ = C is solved by a direct compact argument on the
functional

. (Lw,w)n + (Bf'w, w)am

(’LU = 2(m4+n—1) m4n—2
(faM’w m+4n—2 )'m+nfl
2(m+n—1 2(n—1
due to (T:L"Jr:_Q) < (:_2) for m > 0.

Next, we consider the Euler Lagrange equation on the W-functional and
we will use it in the proof of Theorem D.

Proposition 16. Let (M™,g,v"dV,,v"do,) be a compact smooth metric
measure space with boundary, fix T > 0, and suppose that w € H' (M) is a
non-negative critical point of the map & — W(E, T) acting on the space of
volume-normalized elements of H'(M). Then w is a weak solution of

T2(mrnfl> Lg‘w + 212:57’_%11)7::%?2 'U_l =0 in m M7 (240)
Tt Bilw = cgwmin-2 on OM,
where
7'_% 2( 1)
m—+n—
= 1 — m+n—2 _1'
c3 = (v(1)+ )+m+n—2/Mw v
If additionally (w,T) is a minimizer of the energy, then
—1)(2 -2
o mtn=@mAn=2) (2.41)

(m+n-—-2)2m+n-—1)

Proof. The equality (2.40]) follows immediately from the definition of W. If
(w,T) is a critical point of the map (w,7) — W(w, 1), then

N[

m (m+n—1)
P (L) + (B w)) =7 [ WL )
M

Using this identity we can express v and ¢z in terms of (Lj'w, w)+(Bg'w, w)

and these expressions yields to (2.41)). O

m+n—1
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2.3.4 Euclidean half-space as the model space weighted
Escobar problem

Theorem B gives a completed classification of the minimizers for the weighted
Escobar quotient in the model space (R, dt? + dx?, dV,do,m). In this sub-
section we take a new (7, xg)-parametric family of functions as in with
7>0and 2o € R* L.

To define the (7, z¢)-parametric family of functions fix n > 3 and m > 0.
Given any o € R"! and 7 > 0, define the function w,, , € C*(R") by

m4+n—2
1o\ 2 T2
_ (n=1)(mtn—2) c(m,n)\?2 c(m,n)|z — zo|?
wa’T(t’x) =T 4(m+n—1) <1 + <u) Zf> + ( )‘ 0|
T T
(2.43)
where ¢(m,n) = #72:2)2 By change of variables we get
2(m+n—1) 2(m+n—1)
V= / Weer "2 1Mdo = / w7 1™do. (2.44)
OR™ orRT
A straightforward computation shows that
72(mrn_1)A m4n—1_—1 s _ . R™
—T Weo,r + m+n727- 2Wgxq,7 = 0 n v,
m 1 m+4n
H—algn = (B uniT on ORY
(2.45)
7(n71)(m+n72)
( S;l% Wy 7 (T, 1) = Way 7 (70,0) = 7 Tndn=D (2.46)
z,t)eRY
and for any x # x,
Tlirgl+ Wyo.r(z,1) = 0. (2.47)

_ _min—2_ ) ) ) - )
Define Wy, , = V™ 2m+n=Dw,, ,; with V as in (2.44]). Since w,, . achieves
the weighted Escobar quotient, by Proposition [14], there exits 7 > 0 such that

v(RY, dt* + do?,dV, do,m) + 1 = W(RY, dt* + dz?, dV, do,m) (i, -, 7) + 1
F3(mAn—1) ) o 2(m:n:21>
T min—2 fRi |va077" av + 772V~ fRi wel 2 AV
m+n—1

(2.48)
2
Then Proposition yields to 7 = 7V " 2min-1,
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CHAPTER 3

An Aubin type existence theorem

In this chapter we are dedicated to prove Theorem A. Roughly speaking the
proof consists of taking a point p where the Weyl tensor is non-zero and
a smooth measure space conformal to the original so that the new density
v is well behaved, then we take a family of functions supported in a small
neighborhood of the point p. Such functions are of the form of a standard
cutoff function times the family of functions ¢,, . defined by . The

longest part of our argument consists in estimating the functional W in this
family. Then, changing again the smooth measure space by a conformal one
and taking the limit when the parameter 7 goes to zero we prove that the
entropy is less than the Euclidean space when m < 1. By Proposition [7]
and Theorem [2| we get the result for m < 1. Finally, using Theorem [5|in an
inductive argument we get the result for every positive m.

Before we prove Theorem A, we show a calculus lemma

Lemma 3. Let 1 < 1,57 < n with i # j, then

41l 22| x|t
/ ~x(l|:13|) dx :3/ f(]|)| dx
Bp (14 =2 z]2)k Br (14 =22 |z[2)k

3.1
3 / ||+ (3.1
¢(m,n) x
n(n+2) Jp, (14 - |2[2)F

Proof. We will use the formula

28
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2
P
dS = —= Aqgd
/sglq % d(d+n —2) /s;;l 745,

where S;}_l is the sphere of radius p and ¢ is a homogeneous polynomial of
degree d. Then

3
4 _ 2,.2 _ 4

Using the last equality and polar coordinates we get the result. O]

Proof of Theorem A. Here C is a positive constant which depends
only on (M™, g,v™dV,) and possibly changes from line to line or in the same
line. Since (M, g) is non-locally conformally flat there exist p € M such that
the Weyl Tensor in p is non-zero, i.e. |W|(p) # 0. By (2.14) we change our
original smooth measure space by (M", g, 0"dVj,9"dog) where § = ez mtn=2 g,
# = emt+20, such that in p we have 0(p) =1, V;39(p) = 0 and Ayo(p) = 0.
We consider this new smooth measure space in order to simplify calculations
in the proof. Also, we denote by tilde the terms associated to the new smooth
measure space.

The underlying idea of this proof is to improve the upper bound estimated
in Proposition 6.3 in [5]. For this purpose, we fix a point p € M and
let {x;} be normal coordinates in some fixed neighborhood U, centered at
p=1(0,...,0). Let 1 > ¢ > 0 be such that B(p,2¢) C U. Let n: M — [0, 1] be
a cutoff function such that n =1 on B, supp(n) C Bs and |[Vn|*< Ce! in
Ac = By~ B For each 0 <7 < 1, define f, : M — R by f.(x1,...,2,) =

. m+n 2
NP0 (1, ..., ,), and set f, =V, > f_ where
~ 2(m+n)
_ Tn—2~m
Vi = TR d V.
M

Taking 7 = 7‘7*2m2+n, by the definition of W and property (2.14) in
Proposition [p| we get

WIM™, g, v™dV,)(e3 f, 7) +m = W[M", §,7"dV;)(f, 7) +m
Fmin m m—+n — m £~
IinTEQéIVﬂEv +Z——————R%ﬁvd%)
2e

v, e (m+n—1) (32)
mF " Ty 2(man-1)
+ . m4n—1 fT 2 ,Um_ld‘/‘vg
VT m—+n B26
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Recall that in g-normal coordinates it holds

k

G 1 1 J
dv; =(1- Rmycac~ 12R”kxxx

3.3
(b Rujsa + 1k R Botae — 5 By Bu)aiaiaal + O(af)de )

where the coefficients are evaluated in p. Thereafter, in the right hand side of
every equality or inequality that involves the terms R;l)”, 0™, Ry, R,-j, Rijkl or
Wijki, these functions will be calculated at p and we will omit this point from
notation.

First, we estimate in the right hand side of the term with the Bakry-
Emery scalar curvature R;” in the region A.. Using the changes of variable

1 1 :
y =7 2¢(m,n)2x we obtain

/A RIf25™dV; < O(1+ Ce) / 02 dx

Ae

:C(l_,_CG)T—n(zTJf;)Q)/ (1+ c(m )| 2y~ (m4n=2) gy
A

n—2)
= O+ Cgr T [ @)y
A

o 2\—(m+n—2) n—1
<C(1+4Cer /eT—%a(mn)% (1+177) r" i dr
< CO(1 4 Ce)et-2m—npmim tmti >
(3.4)
Next, we estimate in the right hand side of the term with the Bakry-
Emery curvature R;” in the region B!'. For this purpose we use the Taylor
expansion around p

. (R,
R2(2) = Ry + (R}’ + —S—a'c/ + O([«]’), (3.5)

i(z) =14+ & 2)” G 6>”lxwa:l + %xwxlazk +O(lz]) (3.6)

where we recall that the coefficients are computed in p. Using the symmetries
in the ball we have
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/ R fromdV,

€

Let us define
and

Then

/ o e =

€

and similarly

/ o -|zdx
n
€

1
=Ry [ odrt oo (ARZ 3R [ fePas
. on 370 [, 70
: (3.7)
+ [ ,0(fal)da.
By
fi= [ @lgly ety (3.8)
Iy = |y| (1+ [y~ =2)dy. (3.9)
o / (14 Ayt g
n T
n(m+n— 2)+
T 2(m—+n) (mtn—
—/ (1+ [y~ =D dy
c(m,n)? n
v (3.10)
Tmn T (m+n—
- [ (14 o)~y
) R"\Bem
\/;
Tm+n i fl T O<€4—2m nTm+n+m+"T’4)
é¢(m,n)z
S CON / (1+ &m,n) || 2) =t =2 2y
4 g (3.11)

+
= —Tm nn+2 IG + O( 6=2m— nTm+”+m+ )
é(m,n) 2

Now, taking ¢ < min{2m +n —6,1} and 0 < € < 1 then for |z|< € we get

|z|9> |z|* and
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| eidaltae < [ jaProas

_ n(m+n—-2) |x|2+q
< 77 20min) / ) dx
gr (L S a2ymin=
—nlmin-2) 454144 lyl®
(m+n)
=er o / A+ ypyo

< CT#_HL—&-H-%(C + O/ r6—2m—n+q—1dr)
1

n q
< Orman iz,

Estimates (3.4)), (3.7, (3.10) and (3.12)) lead to

(3.12)

Tmi"Jrljﬁ

R f25"dV; = R; s 1+ AR 1R2 —_—
/n [ g 9 &(m, ) 1 ( )an(m n)%Q (3.13)
+O(Tm+"+1+2)+0(64_2m nTm+n+m+ )

To estimate the gradient term in A, note that, in g-normal coordinates,
the term |V f ]3 in A, satisfy the following inequality

IV2< CIV - P< CP Voo +Vnl*es ). (3.14)

Also, we obtain

[ Inpgav, <careort [ g
Ae

:C’(1+C6)627n%ﬁ’j)/( clm )| )~ da
A

= C’(l—l—C’e)Tanrn/ (1 + |y|?)~mtn=2dy
A o/Emm)
\/;
< O(1 + Ce)en2mpmiatmtiyt
(3.15)
and
2017
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| Va4 e) [ Voo
Ac Ae

n(m+n—2

_nlmin=2) _ é(m,
= C(1+ Ce)rFmm 2/ (1+ M|x|2)_(m+n)|x|2d:ﬂ
Ae T

—c@ogrEt [ ) Py
Ae\/é(m,n)
\/,T,

_n__

S C(l + 06)62—n—2m7_m+n+m+nT—4.
(3.16)
Then

/A IV f2dedt = O n—2mpwtatmt 3, (3.17)

Next, we estimate the integral with the gradient term in B! in equality
(3.2)). For this purpose we note that in g-normal coordinates around p, we get

g7 =0y - %Rikzljxkxi - %ﬁz’klj,sﬂka z*
_(g_loRiklj,su - %Rikerjsur)kalxsxu + O(|Jf|5)
where 1 < 4,7, k,[,r, s,u <n, again and for the last time we recall that the

coefficients are computed in p. Then using the symmetries in the ball, the
Taylor expansion (3.6)), V50" (p) = 0 and Az0™(p) = 0 it follows that

l (3.18)
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m R~
[ vstravy = [ Vg0 G2 [ Vg0 Plafiar

1
_3Riklj/ (9i0.+) (0001 ) al da

1. 1 - - .
_(éRiklj(U )su — 18Riklszu)/n(ai(PO,T)(ajSOO HaFalaatda
1 - 3 B, l,.s. .u
_(?ORiklj,su - ERikerrsuj) n(ai(PO,T)(8]900 Hakaletztdr

1 2 k
12( URM \V(poT\ sl ek alda
1 2, 4.7 l
24 )ikl \VgpoT] gl kol d

1 - 1~

—(= Rijikt + = Brijs Rrkts — *Ri'ékl / Vo [*a'a! ob ol dx
40 1807 727 )B?‘ |

—i—/ ‘V(,O07T‘20(‘$‘6)d.%'
By

(3.19)
For the second integral in (3.19)) we have
_ n(m+n-2) 4~ 2 _ 2 2
/ Vo |e)?de =7 St / jz["e(m, n) (m—l—n ) dx
: ;L DRy
e e e
’ B /amm
\/.T-
_ 7—m+n%l2 _|_O( 4—2m— n,rm+n+m+ )
(3.20)
where
L= | lyl"(+1yl) " dy. (3.21)
R

Using the symmetries of the Riemann curvature tensor and Lemma |3| we
get
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~ _n(m+n—2) 2 =
(m +n —2)26(m, n)r" 2me
< D ~ ~
3 Risir} + Z (Riijj + Rijij + Rijji)aias
=1 i#j
B ¢ 1 emyn) | .12 ym+n dr = 0.

€

fB;L (aiSDO,T)(ajSOO,T)Riklj(O) Falde / Rikljxiwjxkxl
Bn (1 + E(LTvn)‘xP)m-‘rn
(3.22)

Again, symmetries of the Riemann curvature tensor yield

(Riga; (0)(3™) 50 (0) — éRiklj(O)Rsu(o))/n(&‘ﬂﬂﬂ’)(aﬂoo HaFalatztde = 0
‘ (3.23)
and

(%Riklj,su(o) - 435Rzklr(0)-érsug(0))/ (@‘900,7)(3]800 'r)x I ziz"dr = 0. (324)

n
€

In order to compute the sixth integral in the right hand side of (3.19)) we
will use Lemma [3| and the symmetries of the ball, which imply

n(m+n—2)

T 2(m+n) +2sz(0)(1~1m)kl(0)
(m +n —2)%¢(m,n)?

/ Vo2 2! ¥t dw

Ri, ~m 2 J ok 0l
:/ ne C)(:i|f| craxixkx I
B (14 22|y |2)men

> Ri(8™)ux} + (; Rii(5™)j5 + Rij(0™)ij + Ry (™) jiw?a?
i#]
(1+

M|x’2)m+n‘w’72
T

dx

1, - R o |z}
:§Z(RM(U )i + Rij(0")i; + Riy(07) ) b (117

1+ C(ﬂ:n) |x|2)m+n

_ (Ra(0m); + Ry (0™)i; + Ry (6™);:) / ||°
n(n + 2) By (1 4 Smn) | 2)yme+n
_ RyAD™ + 2(Hess 0™, Ric) / |6
n(n + 2) Br (1+ @mp)mﬂz

(3.25)
Since Az0™(p) = 0, we obtain
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R (0)(0™)(0) / \Vo,r|2a’ 2l 2k ol da
By

2(m+n—2)2((Hessﬁm,Ric>)/ ||6
- n(m+n—2) é(m,n mn
n(n + 2)i(m, n)~27 St 2 JBr (14 LR a2yt
2T#M+l(m +n — 2)?(Hess 9™, Ric) |y|© (3.26)
= nz T mn W
é(m,n) 2 B, jimw (1+ lyl*)
\/;
o — ~m .
_ ormin T (m 4 n— 2)2<Hesiv , Ric) jan O(eG_Zm_”rmLﬂﬁm*nT%)
n(n + 2)(m,n) T
where
L= | |yl*(+yf*)~ " dy, (3.27)
R
A similar argument implies that
5™ (0 \V. 20000 okl
(0™)ijr(0) [ Vo |"a'a’x 2 de
By
n (3.28)
37—m+1 m + n — 2 2A26m jad n n—
= ( )nj I7 4 O<€672m7n7_m+m+74)7

n(n +2)é(m,n) 2

Riju(0) | Vo, |2a' vz ! dx
By
27t — 2)%(Riij; + Rijo; + Rijji) n n—
_ AT (m +n — 2)*(Riiyy ‘: A + Fij,j )1—7 + O<€672m7n7_m+m+74)

n(n + 2)é(m,n)"z
2rmtn T (m +n — 2)2AR;

n+2

n(n 4+ 2)é(m,n) 2

_n

~ n—4
[7_'_O<€672m7n7_m+n+m+ 5 )’

(3.29)
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Rrijs(O)Rrkls(O)/ |V900,T]2xixjxkxldx

Br
— TmLJr"—H(m +n— 2)2(Rrers + Rirsy'Rirsj + Rirsjéisrj) j?
&(m,n)"s
FO(S-2mn i T
_n_41 2 L1243 P »
_ 7t (m et n - 2) (|an+ig| +§Rirszirsj)I~7 4 O(S 2yt it

é¢(myn) =2
(3.30)
and

-1 2/ P2
N By o rmint (m 4+ n — 2)2(R2 + 2R Ry -
Ri;(0)Ri(0) | Vo |2aiaizbalde = ( ) i ”>17
B n(n + 2)é(m,n) 2

_n

LO(- o)
(3.31)
We used the contraction of Bianchi’s identity Rj,; = 2]%%7 ; and the identity
Riju R = %Rijkl]%“kj in equalities and ([3.30), respectively. For the
last integral in the right hand side of , taking ¢ < min{2m +n — 6, 1}
and € < 1 as in (3.12)), we get

Voo *|z°de < [, [Vpor e de
Br €

_n(m+n-—2) |x’4+q
B A
r (1 4+ S2layrn

<Crmtd [ L )y
Bn

ey/é(m,n)
Ne

< Ormintits,
(3.32)
Equalities (3.17), B-19), G20), B-22), 3.23), B24), B26), (3.29),

(3.29), (3.30), (3.31) and inequality (3.32) lead to
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o (m+n—2)2 A" R, -
V£ |2vmdV, = \Y Tde+7-m+n( - A
/BQJ f |g g BQ| ¥o, | E(m,n)f m 67’L) 2

_Tm+"+1(Tf;+n72)2[ Ay

28(m,n) " n(n+2)
—|—O(Tmin+m+”2 62—2m—n) +O(Tm7jrn+ +g>
(3.33)
where
nm y ~m 2 .
A, = (Hess 0™, Ric) B A2p N ARy & B 2| Ricy|? . Ruj R

3 4 10 36 45 '
(3.34)

In order to analyze the term A;, we use Aubin’s ideas and the following
identities (see [I])

- - R
Tij = Rij — —gij» (3.35)
n
.. .. 2
. ijkl - ijkl - T.TY g 3.36
RzyklR Vszle + iJ + TL(’I’L — 1) ( )
and
. . .. R2
Ry R = T,;TV + —2. (3.37)
n
Then
A — (Hess @™, Ric)  A*p™ N AR;
3 4 10 (3.38)
(B +3n - RS (20— 7T Wi, Wik '
180n(n — 1) 45(n — 2) 60

Next, we analyze the last integral in the right hand side of (3.2 in the
region A,
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Ae

2(m+n—1) 2(m+n—1)
frr e ldv; < (1 —i—eC)/ o dx
Ac
n)

SO(l—I—EC’)T_W/ (1+ ( S T g 2) = =) gy

. (3.39)

<(C(1 —1—60)7-2(»7?%)/ (1 + |y[2)" (=D gy
A

ey/e(m,n)
\/;

< C(1 + C)rTmmm T @2-2mn,

In order to estimate the last integral in (3.2)) in the region B! we use the
Taylor expansion around p for ¥™~! and the symmetries in the ball to obtain

2(m+n—1) U 2(m+n—1) Rg 2(m+n—1) 9
f’r m4n—2 vm d‘/g :/ (,OOT+7L 2 dx 6_ ()007777—L+7L72 ‘x’ d$
Bn n n Jpr
1 ~ 1 2(m+n—1) L
—E(Rij(ﬁm_l)kz - 5(5m_1)ijkl)/ N
1 - 1 - _ 2(m+n—1) o (340)
_<4_0Rij,kl + @Rristrkls)/ %TM P a'rlataldr
2(m+n 1)
+ [ Ollal)da
Br
Now, we deal with the second term in right hand side of (3.40))
2(m+7:z 1) n(m+n 1) ( ) Mt
/%ﬁZledﬂC:T 2Gntm) \I( |[?) Ot Dy
TW—H (m+n—
— s [ Py
¢(m,n) 2 B, je
\/?
mrm T n -
e —2 N pES) ]3 + O( 2(m+n) +m+T2€472m7n)
¢(m,n) 2
(3.41)
where
Iy= [ |yP(1+[yl*) " Ddy. (3.42)
Rn
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For the third term in the right hand side of (3.40), using A;o™(p) =0
and Lemma |3|in a similar argument like in 13.25: , we get

~ 2(m+n—1)

Ry(O)@ ul0) [ of T wlaatalds
By

_ 2(Hess 0™, Ricg) / EE (3.43)
n(n + 2)7% Br (1+ M]xp)mw%fl
Let us define
Is= | |y*(1 +|y[») "t Day. (3.44)
Rn

It follows from ((3.43) that

2(m+n—-1) 2 mﬁ’Q H ~m—1 R N
Rij(0)<7~)m_l>kl(0)/ g0[)7:+w2 xll_jl_kxldx _ T < €SS v n,ﬂ ch> Ig
By n(n+2)é(m,n) 2

n -2
+O(€672m7n7_m+m+"7 ) )

(3.45)
Also, we get
2(m+tn-1)
N
By
T T2A2gm—1 . . (3.46)
= 37 2(m+ A=%D — 18 + O(EG—menTm-f—m-&-Tz)’
n(n+2)c(m,n) 2
~ 2(m+n-1)
Rija(0) / por " alal bl d
By
ﬁ+2 g 7 n n— (347)
= 27—2 + AR5+4 1—8 + 0(66—2m—n7m+m+72)’
n(n+2)¢(m,n) 2z
~ ~ 2(m+tn—-1) Tm+2 R’L’C~ 2_'_3RTij3RT‘ijs ~
Rm’js(o)Rrkls(O)/ (70077{””*2 332$J.Tkxld$ _ (| 9| an _)Ig
Br n(n+2)é(m,n) 2

+O(€672m7n7_m+m+"7_2 )
(3.48)
and
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— n+4+4 8

~ ~ 2(mtn—-1) ﬁ‘i’? R% 4+ 9 R?;C~ 2 B
Rij(O)Rkl(())/ 0ot glalakalde = T (R5 + 2| Ricg| )I
s n(n + 2)&(m,n)"

(3.49)

We used the contraction of Bianchi’s identity Rz = QR’;J and the identity

Ry R7* = %Rz‘jkléilk‘j in equalities and (3.48)), respectively. On the

other hand, since € < 1 and choose 0 < ¢ < min{2m +n — 6,1} then the last
term in the right hand side of is estimated as follows

+O(66—2m—n7m+m+%2)

2(m+4+n—1) n(m-mn— =
/ (po’l"ll-’b+n*2 |J}|6d1‘ < T*W / ’x|4+q<1 + C(m’n)|x’2)_(m+n_1)d$
By By T

< C’T?(mn+”7)+2+% / |y|2+q(1 + |y|2)—(m+n—1)dy
B o /atmm
\/;

< CrImem +2+3

(3.50)
The estimates (3.39)), (3.40), (3.41), (3.45)), (3.46), (3.47), (3.48), (3.49)
and (3.50) yield

2(m4n—1) 2(m4n—1) Tﬁ—HR B
m+n—2 ~m—1 _ m—+n—2 g

fT v d‘/g - (100,7 dr — N nt2 43
B, n 6né(m,n) 2

T 2(m+n) +2[~8

_2n(n +2)é(m,n) s ?

FO(rTmm TS dm2meny 4 O (p A TS
3.51)

—~

where

H ~m—1 - AQ ~m—1 A .
A, = (Hess0™™%, Ric)  A®0 . R;
3 1 10 (3.52)
C(Br* 43— 1R 20— T)|T1* Wik Wik '
180n(n — 1) 45(n — 2) 60

Now, we analyze the behavior of V. when 7 is near to zero
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~ ~ 2(m+n) 2(m+n) 2(m+n)
. m-+n—2 m+n—2 m4+n—2 ~m
V- _/ ¥Yo,r d&?—F(/ Po,r dx — 0,7 v d‘/g)
Rn\Bze Ae

Ae
2(m+n) 2(m+n) N
+(/ Com 2d:c—/ P dV;).

(3.53)
For the first integral in the right hand side of (3.53)) we have
2(m+n) "
/ gpgl:n 2d :7_—2/ ( ( )| |> m+n
R"\Bze R"\BQG
= E(W,“)Q/ (1+ |y~ dy - (3.54)
R™\B,, /e
o

< QCen2memts,

Using the expansion for the volume form (3.3)) and that ¢ is bounded we
have in the second integral in the right hand side of (3.53)) that

2(m+n)

< C(1+Ce)/ nind g
Ac (3.55)

< C(1 + Ce)en2mym+s,

2(m+n2) 2(m+7l2)

m—+n— m+n—2 ~Mm
900,7— dx — 0,7 v d‘/g
Ae

€

By the expansion for the volume form ({3.3)), the Taylor expansion around
p for v and the symmetries of the ball in the third integral in the right hand

side of (3.53) we get

2(m+n% 2(m+n) Rg 2(m+n§ 9

m-+n m—+n— ~m _ m—+n—

Yo,r dx — Yo,r d‘/ﬁ - % Yo,r |$| dx
n n B'en

Lz Lo »2»51”:”) i3k 0
E(R (0™ )t — 5(0 )ijki) SOOT vl aFatlda
1 ~ 1 ~ 2(m+"% i ! 2(m+n2) 6
+(ERiJ7kl + 180erstrkls)/ 906’?” x]x d.T—F/ Spénjn (‘ZL’| )dﬂf

(3.56)
To analyze (3.56)), we consider the first integral on its right hand side
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2(m+n) =
| i s =t 21+ P i g
B B T

T 2 2\—(m+n)
— 37 ylr(L+ly dy
= [ WPa 3.57)

c(m,n) 2 ST
\/;

T - n
= s+ O<€2_2m_n7_m+§)
c(m,n) 2

where
Li= [ JyPL+]yf)~ . (3.58)
Rn

For the last integral in the right hand side of (3.56)), recalling that € < 1
and ¢ < min{2m —n — 4,1}, we obtain

2(m+n) " -~
[ e s <ot [ e L) o,
Br B T
< CTHg/ |11+ [y )"y (3.59)
Be é(m,n)
VT
< Or2ts,

Equalities (3.53), (3.56), (3.57)); inequalities (3.54)), (3.55)), (3.59) and
similar arguments like we used in (3.40) to (3.51)) lead to

—Vr = nte 14

a 6né(m,n) = n(n+ 2)é(m,n)"s (3.60)
+O(Tm+g€—2m—n) + O(T2+%).

‘~/ ~ TRg ~ TQjQAl

Follows that the terms V. are uniformly bounded away from zero. Using
m+n—2 _m+4n—1

estimate (3.60) and Taylor expansion for the functions = m+n and x~ m+n
we obtain
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tn—2 — -
[T pomins T(m+n —2)R; .
T - nt2 -~ 2m+2n—2 4

6n(m+n)é(m,n) =z V' min
T (m+n— )[2141
2n(n + 2)(m + n)é(m, n)n#f/mf& :
2 (m+n —2)(m+n — 1)R2(1,)?

9= +0 TmEG c—2m—n +0 7_2—1—%
36n2(m + n)?¢(m, n)”“V3 e ( ) ( )

(3.61)
and
~ _min—1 ~  min—1 T(m+n ) ~
‘/T m+n — V mtn . 2m+2n 14
6n(m+n)é(m,n) 2z V. min
T (m +n— 1)[2141
2n(n + 2)(m + n)é(m, n) Ay (3.62)

T2 (m+n —1)(2m + 2n — 1) R2(1,)?
3mt3n_1

72n2(m + n)2(m, n)" 2V min
+O(Tm e 2m=n) L O(72+1),

On the other hand, we get

n|v<p0,’r’2dx —nimtn=2)
j(ént—Z)? S o) 2C(m,n)2/ l2|*(1+ Am )| )~
m+n— ¢

n__1
Tmtn (m+n
o) / [y (1 + Jy*) = dy
clm,n 6@
ey
c¢(m,n) 2

(3.63)

Using equalities 7 = 7V QTZJQM, (13-33), (3.61)) and (3.63) it follows that
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m m

'f'm«kn %m+n
W/ IV 2dV; = —5= | Vo dx
‘/7' mn BZs V m+n Ben
4 T(m +n— 2)3R§<I4)2

6n(m + n)é(m,n)"V G Gy T

7'2<m +n— 2)3[~4I~2A1
Qn(n + 2)(m + n)é(m, n)”+117(m+n§$m+n)+2mvﬁ7:2
2 (m+n—2)3(m+n — 1)R2(Iy)°

T(m+n—2)2R;1

o n 2m m4n—2

6”6(7’71, 7’1,) 2 |/ (m+n)(@m+n) R

TQ(m + n — 2)3R§]~2f4
72n2(m + n)é(m, n)r 1V ey + A2
7—2(m +n— 2)2I~7A1

2 + 2)8(m, ) 2V T

+O(rm 2 e 2mm) 4 O(12F3),

+

(3.64)
Similarly equalities 7 = Tf/ﬁ, (3.13) and (3.61)) yield

T mtn TR

m £2~m _ g1
m/ REfro"dVy = - P TTR—ETE
V;_ m+n o C(m’ n)?V(m‘Fn)(Qm-HL) m4n

TQ(m +n — 2)R§i1[~4
- ~ 2m +2m+2n—2
6n(m + n)é(m, n)n 1V ntmEntn) T min

T*(ARY — 3 R2)Is

_|_

n—2

~ n+2 -~ 2m m+
2né(m,n) 2 Vimmenty SR

+O(Tm+%€—2m—n) + 0(72+%)‘

(3.65)

Now, we obtain
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)

2(m+n—1) n(m+n—1) C
/ S007‘;_1+7172 dr = 7 2m+m / (1 + C(T';Lj TL) |x’2)7(m+n71)dw

€ €

Tm —(m+n—
= W/ (14 [y[*) "Dy (3.66)
) Bem
\/777
mn n) ¥ —9m—n R CR—Y n—2
= 2(21;’2—)%) _[5 +O(€2 2 7—2(m+n)+ +73 )
where

1},:/ (1+ |y>)~mHn=Day. (3.67)

Also, equalities 7 = Tf/?n:in, (3.62) and (3.66]) imply that

2(m+n—1) 2(m+n—1)
Th2 ~m—1 min—2
m f‘l‘ m+n o d% m (’0077 d!E
BQe — Bg
n _ m+4n—1 - =51 n 5 ~ m4+n—1
~ Sy + 2(m+n +
T 2(m+n) VT mTn T V omtn

n rm(m +n — 1)RyL1I;
6n(m + n)é(m,n)" v G T
+ TP m(m +n — DIs A
2n(n + 2)(m + n)&(m, )2V GG e

rAm(m 4+ n = 1)@m + 20— DEADL)* T

3n - —n 3m—+3n—1
72n2(m + n)2(m,n) "2 V GEm @ T

TmRg I 3

2 ~ —n m+4+n—1
2n6(m7 n) % V (m+n)(2m+n) + m+n

?m(m +n — 1)R§f3[~4

~ ~ —n + 2m+42n—1
36n2(m + n)é(m, n) 2V tmEn)@mtn) T mtn
T2’I7’L18A2
m+n—1

27’L(n —+ 2)6(7’)17 n)nTHV (m+n)7(gm+n) +
+O(Tm+nT_26_2m_n) + 0(7_24-%).
(3.68)

The equality (2.22) and the estimates (3.64)), (3.65) and (3.68)) imply that
(3.2) takes the form
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WIM™, G, v™dV,)((v(p))~ "2 f,, 7) +m < D[R", da2, dV, m] +m (3.60)
7 A3+ T2A, 4 O(7m T e 2y 4 O(72+4) '
where
~ 2m _m+4n—2
A L V (m+n)(2m+n) m+n Rg < m + n — 2 ~ B (m + n — 2)
3T E(m’n)% 4(m—|—n—1) !
m - (m +n — 2)3(Iy)? (m+n— IV
—— Is + = T o
6né(m,n) 6n(m +n)é(m,n)zV  6n(m +n)é(m,n) =V
(3.7
and
A o V(m+n;(gm+n)+mrjz_z;1 (m + n — 2)3]~4j2A1
b é(m,n) = 2n(n + 2)(m + n)c(m, n)%f/

(m+n—22%m+n—DRAL)>  (m+n-2°RhLI,
36n2(m +n)?(m,n)"V2  36n(m +n)e(m,n)iV
(m+n—2)%I: A (m+n—2)°R2L 1,
T 2n(n+2) 24n(m + n)(m +n — 1)é(m,n)2V
. (m+n—2)(ART — §R2) L mmtn— 1) ;1A
8n(m+n—1) on(n +2)(m +n)é(m,n)*= V
m(m +n — 1)(2m + 2n — 1)R2(I1y)*I;
72n2(m + n)2¢(m, n)" V2
m(m+n — 1)R2I;1,) mlsAy
_36n2(m—|— n)é(m,n) =V ~ 2n(n +2)é(m ”))

(3.71)

We analyze the coefficients A3 and A, in order to obtain the strict ine-

quality in @ For this purpose, we compare the integrals L, L, I, I, I, I,

I;, Iy and V. This kind of comparison appeared for example in [I] and [8].
For this purpose, using polar coordinates we obtain

T,nfl

I, = wvol(S™1) /000 (—_dr, (3.72)

1 + r2)m+n 2
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n+3

Iy =wvol(S™) /0 h (Hrrmdr, (3.73)
5 o0 pntl
I3 = vol(S"_l)/O Wdr, (3.74)
N oo ntl
I = vol(S”_l)/O Wdr, (3.75)

rn—l

Is = vol(S™ 1) /000 (—dr (3.76)

1+ r2)m+n71 ’

~ . 00 rn—i—l
Ig = vol(S™ ———d 3.77
6 UO( )/0 (1 +T2)m+n_2 T, ( )

~ ) 0o 7”"+5
I; = vol(S™ ——d 3.78
7 = vol( )/0 (1 + r2)m+n " ( )

_ . o0 Tn+3
Ig = vol(S™~ ———d 3.79
s = vol( )/0 (1 + r2)m+n-1 " ( )

and

_ UOZ(S"_l) /oo Tn_l
V= _ dr. 3.80
dmon)t Jo (Lt r2me (3.80)

Integrating by parts we obtain for every £ > 1 and [ > 1
00 7"l+1 l o) Tl_l

dr = d 3.81
/0 @+ r2)r" 2(k—1)/0 (1+ 21" (3.81)
which 1mphes j4 = m[;, INQ = 2(77?_:;12_1)13 and I~7 = Q(mn—i-t?—l)jg' To

compare I3 with I, we write

fe’e) Tn—f—l o] T’n—&-l [ee) 7’”+3
/0 (1+T2)m+n1drz/o (1_{_r2)m+ndr+/0 (1+r2)m+ndr' (3.82)

Using equality (3.81)) in (3.82)) yields

2 —4 00 n—+1 [e's] n+1
mrn / - 1dr:/ . (383
A+ n—1)Jy Q1 = J, Tr e

Hence, Iy = MU and [, =

n+2 T .
2min—4 — [y, Similarly

2m+n
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oo rn+3 00 T‘n+3 0o ’I“n+5
/0 (1—+ r2>m+n—1 d’r‘ = /0 Wd?“ —+ /0 Wdr (384)

Using equality (3.81) in (3.84) yields

2 _ 6 o] n+3 [e'e) n+3
mtn / r dr = / LA (3.85)
2m+n—1) J, (14 r2)mtn-1 o (14 r2)mtn
7 2(m+n—1) 7 2(m4+n—1)(n+2) 7 T o (n+2)(n+4) 7
Hence 18 2m+n 6 12 (2m+n—4)(2m+n—6) [4 and I7 T (2m+n—4)(2m+n—6) [4'

To compare I, with V, we write

LAY Y R NPT
/O (1 + p2ymrn1 7ﬂ_/o (11 r2)mn T+/0 (14 r2)men (3.86)

Using equality (3.81)) in equality above we get

2m+n—2 [ rntl o 1
dr = —————dr
T A (T A (e

Therefore

L _ né(m,n)% (3.87)
vV o 2m4+n-—2

Now, we compare I; with I, for this purpose observe that

0 rn—l p 00 ,r.n—l p 0 rn+1 p
/0 (1 4 72)mtn-2 T_/o (1 4 r2)mtn-1 r+/o (1 4 r2)mtn-1 "
(3.88)

It remains to

4(m+n—1)(m+n— 2)[

Hence Iy = I + I3. Therefore I, = n(2m+n—4)

compare Ig with I,. We have

[e%e) Tn+1 d [ee] 7’"+1 d o] 7’”+3 d
/0 (1 4 72)mtn=2 T_/o (1 + r2)mtn-1 r+/o (1 4 r2)mtn-1 "

(3 89)
It follows from by equalities (3.89) and ( - ) that Is = )[1 + Ig.

4(m+n 1)(m+n—2) I
(2m+n—4)(2m+n—6) "4

As a consequence, we get Iy =

We are able to analyze the term Ajz. Using the above comparisons for

integrals and the equality ¢(m,n) = (TZLJ:? 212 which imply
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2m m4n—2 ~
A B V_(m+n)(2m+n)_ m+n (m + n — 2)2R§(0)[4 ( 1
S é(m,n)? n(2m+n —4)
B n+2 B m (3.90)
6n(2m+n—4) 3n(2m+n —4)
m—+n—2 m(m+mn—1)
- =0

6(m+n)2m+n—2) 3n(m+n)2m+n—2)

Next, we analyze A,. Using the fact that

m—>5 _ (m-+n—2)
n(2m+n—4)(2m+n—6) = 2(m+n)(2m+n—2)(2m+n—4)
B (n+4) + m(m+n—1) (391)
2n(2m+n—4)(2m+n—6)

n(m+n)(2m+n—2)(2m+n—4)
we get

A, — Iy(m+n— 2)2‘7<m+n)‘(gm+n)+m;ﬁ;1 < (m—5)4,

&(m,n)"z" n(2m+n —4)(2m+n — 6)
(m+n—2)(m+n—1)R: (m+n—2)(n+2)R;
36(m+n)?(2m+n—2)2  36n(m+n)2m+n—2)2m+n —4)

B (m+n—2)R? N ARY — 3 1%
6n(m+n)(2m+n—2)2m+n—4)
m(m +n —1)(2m + 2n — 1)R2

36n(m +n)?(2m + n — 2)?
m(m+n — l)Rg mAsy )
Bn(m+n)2m+n—-2)2m+n—4) n2m+n—4)2m+n—6)/"

(3.92)
On the other hand, we get

2n(2m +n —4)(2m +n — 6)

(Hessv™, Ricg) = m(m — 1)Riczg(Vv, V) + m(Hessv, Ricg)
= m(Hessv, Tj) + T R;AD
=m

(3.93)
(Hess v, Tj).

To compute A;@m we will use the Ricci formula v;;; = 055 + R

k o, which
imply

Jjij
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Agf;m(p) =m(m —1)(m —2)(m — 3)|V; U\4+2m(m —1)(m —2)|Vv|*Agv
+4m(m — 1)(m — 2)Hess 9(V50, V0) +2m( — 1)[Hess 0|2 +m(m — 1)(A;0)?
+4m(m — 1)(Vo, VAD) + mA2v + 2m(m — 1) Ricz(Vv, VD)
=2m(m — 1)|Hessv|2—|—mA2
(3.94)
Now,

AgRg(p) = AZR; — 2m(m — 3)|Vgu[*Agv + 2m(A;0)?
—2m(m — 3)(Vo, VAD) — 2mAZo — 6m(m — 1)|Vgul;
+8m(m — 1)Hess 0(V0, Vzv) — 2m(m — 1)[Hess 03 (3.95)
—2m(m — 1)Ricz(V0, VD)
= AgRg —2m(m — 1)|Hess 17|£2~7.

Then, A, takes the form

< 5|W 2+ 9(n 7 =T, |2— sm(T,, Hess 0) + 0 3) As
Ay = =R
n(2m+n —4)(2m +n — 6) 36 Y
(3.96)
where
A = — (n—7)(n—2) + (m4+n—1)(m+n—2) (m+n—2)(n+8)
5 n(2m+n—4)(2m+n—6) (m+n)?(2m+n—2)2 n(m+n)(2m+n—2)(2m+n—4)
+m(m+n—1)(2m+2n—1) _ 2m(m+n—1)
n(m+n)2(2m+n—2)2 n(m+n)(2m+n—2)(2m+n—4)
(3.97)
and we used to compute A5 that
N (n—7)(n—2) _ 1
36n(2m+n—4)(2m-+n—6) 6n(2m+n—4)(2m+n—6)
(m—>5)(5n2+3n—14) m(5n2+3n—14)

180n2(n—1)(2m4n—4)(2m+n—6)  180n2(n—1)(2m+n—4)(2m—+n—6)

and

(m+n—2)(n+8) o (m+n—2)(n+2)
n(m+n)(2m+n—2)(2m+n—4) = n(m+n)(2m+n—2)(2m+n—4)

6(m+n—2)
n(m+n)(2m+n—2)(2m+n—4) "

+

On the other hand, for n > 7 and m > 0 we get

(n—"7)(n—2)
“n(2m+n—4)(2m+n —6) =0
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Sincen+8>n,m+n>m+n—1and 2m+n—2 > 2m+n —4 we get

(m4n—1)(m+n—2) (m+n—2)(n+8)

(m+n)2(2m+n—2)2 n(m+n)(2m+n—2)(2m+n—4)

_ (m4n=2)(n(m+n—1)(2m+n—4)—(n+8)(m+n)(2m+n—2)) <0.
n(m+n)2(2m+n—2)2(2m+n—4)

Similarly, we obtain

m(m+n—1)2m+2n—-1) 2m(m+n—1)

n(m+n)2(2m+n—2)2 n(m+n)(2m+n—2)(2m+n—4)

_ m(mtn—1)((2m+n—1)(2m+n—4)—2(m+n)(m+n)(2m+n—2)) <0
n(m+n)2(2m+n—2)2(2m+n—4) —=

The inequalities above imply that A5 < 0 for n > 7 and m > 0. )

Next, we consider the case 0 < m < 1. Let g = eﬁg and 0 = em 2
be such that in the point p we have ¢ such that in p satisfy 6 =0, V36 =0
and 0,; = m:{” 2TZJ Since TZ] is trace free we get in the point p that A ;0=0

and also in this point p we have

» 3 n—2 A n— NN Ao
Rij = Rij — m+n2—20ij T (m+n32)2 i0j + ((m+1gm—2) - 2)2 IVl >
3 n—2
=R m+n—20ij’
% 2(n—=1) . (n—=1)(n-2)
Ry = e iz (Ry+ 1~ N5 Vo
§=¢ <g+m+n—2 97 (m+n—2)2 val;) =
and
. ~ n—2
Ty =ty = g0 =0

On the other hand, using that in p we have V50 = 0, Aj0 =0, A;
transformations rules and . yield

Q>
I
=

N _ 26 el fed N
vgv = e mtn-2 (em+n—2 vgv —I.— em+n—2 Vgo‘) — 0

v
m+n—2

Ay = e~ mTe (WU\V O34 =500 + Ayl + —2=5V;6V; U)
=0.
) (3.98)
Since 6(p) = 0, V;0(p) = 0, Azo(p) = 0, T;;(p) = 0, || is conformally
invariant and |W|(p) # 0 it follows that for this new metric A4 in (3.96)) takes
the form
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(—5|W|2+@|Hess@|§>
L n(2m+n—4)(2m +n —6)

f AR <0 (99)

Using A3 = 0 and A4 < 0 for 0 < m < 1 in this new smooth measure
structure, then taking € small and fixed and after choosing 7 small enough,

inequality (3.69)) yields
v[M™, g,v™dV,] < D[R", dz?, dV,m]. (3.100)
Proposition [7] implies

AM™, g, v™dV,] < A[R", dz?, dV,m). (3.101)

Theorem [2| concludes the proof for 0 < m < 1. Finally, Theorem [5| and
an inductive argument imply that

~ A[M™, g, 0™V,
Aan, g omiayy) < S0V g g2 gy )
A[R" da?,dV, m)] (3.102)

< K[R”, dx?,dV,m + 1],

which leads to our result for every m > 0. g

Remark 7. Note in the case n = 6 the proof works if A5 <0, which is false
for a general m > 0.

Remark 8. We did not use conformal normal coordinates in Theorem A’s
proof as Lee and Parker used in [10] to get a simple proof of Aubin’s Theorem.
In our proof these coordinates do not simplify calculations because the density
v™ changes conformally.
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CHAPTER 4

The Escobar type problem

In this chapter, we apply our tools for smooth measure spaces with boundary
defined in Chapter 2. We develop some properties of Dirichlet eigenvalues
and eigenfunctions to prove Theorem C by a direct compactness argument
and also we find an upper bound for the 7-energy as 7 goes to zero, Theorem
D is a consequence of this estimate.

4.1 Proof of Theorem C

All functions in the family {w.o} as in are minimizers of the weighted
Escobar problem. Note that these functions are not uniformly bounded in
H'(M) as € — 0. This fact shows that in general there is no reason to find a
minimizing function by direct arguments in the weighted Escobar quotient.
It is possible that if the weighted Escobar quotient is finite and we try to
minimize it with a sequence of functions normalized, then the terms involved
in the numerator of the weighted Escobar quotient evaluated in these functions
are not bounded uniformly. The next lemma deals with the control of one of
those terms from below.

Lemma 4. Let (M", g,v™dV,,v™do,) be a compact smooth metric measure
space with boundary and suppose that A is finite, then there exists a real
constant C' such that any volume-normalized function ¢ € H'(M) satisfies

(Lg'e, ) + (Bg'e, ) > C. (4.1)

o4
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Proof. In this proof C' is a real constant that depends only on the smooth
measure space (M", g, v™dV,,v™"do,) and possibly changing from line to line.
Suppose that there exists a sequence of functions {p;}:2; such that

2(m+n—1)

lim (Lg' i, i) + (Bg'pi, i) = —oo  and / o, " = 1. (4.2)
oM

i—00

Since A is finite there exists a real constant C' such that every volume-
normalized ¢ satisfies

2(m+n—1) #
C < A(p) = (Lg'e,9) + (Bye,9)) </ o R ) ,
M

2(m+n—1)

From the last inequality it follows that lim [, ¢, "*"=* =0 and by the
1—00

Holder inequality it follows that [,, o7 < C for any 7. Similarly, using that ¢
are volume normalized and the Holder inequality we get |, OM p? < C. Using
these L? estimate we obtain that

(L', 0i) + (B i, i) > C
contradicting the assumption (4.2]). O
In order to state the following lemma, we say that a real number p is an

eigenvalue type Dirichlet on HJ (M) = {p|¢ € H (M), p =0 on M} if p
satisfies for some ¢ € HJ (M)

Lyp=pp in M, =0 on OM. (4.3)

We also call ¢ an eigenfunction if it satisfies (4.3]). Let us denote by p;
the first eigenvalue type Dirichlet on H’O1 ’2(M ), then p; admits a variational
characterization as

m+4n—2 m
SVl +mi=s Ry e’

(4.4)

p1L= 1n
e (M) Ju
We have p; is finite and we can choose an eigenfunction ¢ associated to

this eigenvalue such that ¢ > 0. Moreover, using the maximum principle we
can take ¢ > 0in M \ OM.

Lemma 5. Let (M™", g,v™dV,,v™do,) be a compact smooth metric measure
space with boundary and m > 0. Then A = —oo if and only if p; < 0.
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Proof. As in the previous proof, C is a real constant that depends only on
the smooth measure space (M", g,v"dV,,v"do,) and possibly changing from
line to line or in the same line.

First, let us assume p; < 0. Let ¢ be a first eigenfunction of the problem
such that ¢ > 0in M \ OM. Let us define

m+n—2

tgp + 1 _ (m+n—1)
Yy = where Dz(/ e ¢da>
V) oM !

and observe that for some constant C' > 0 we have

2(m+n—1) 2(m+n—1)
P, " =1 and / P, " > C > 0. (4.5)
oM M
Claim 1.

(Lg e, i) + (BEe, ) — —o0  when ¢t — oo, (4.6)

To prove this claim, we argue as Garcia and Munoz in [9, Proposition 1].
First, we consider the case p; < 0, then

m m _ l 2 2 m+n—2 m
(Lgbe, e) + (By'e, ) = D [t <P1 /Mtp > +1 <2(m+n— D /M<pR¢) —i—E]
(4.7)
where

m+n—2 m+n—2
E= ———"" - R HT
4(m+7’t—1)/M ¢+ 2(m+n—1) / ¢
Since p; < 0, the quadratic term for ¢ on the right hand side of (4.7) is

negative. Letting ¢ — oo it follows our claim in this case.
Now, we suppose that p; = 0, then

(L) + (B ) = [t (2(”;1—’;‘_21) / ng) " E} (48)

where F is defined as in the previous case. Since ¢ =0 on OM, by Hopf’s

0
Lemma, a—(p < 0. Then, integrating by parts yields
n

m+n—2
e — A -
4(m+n—1)/¢R¢’ / = /aM <0

Then, the linear term for ¢ on the right hand side of (4.8)) is negative.
Taking t — oo we get the conclusion in this case and we finish the claim’s
proof.

Instituto de Matematica Pura e Aplicada 56 2017



Jhovanny Muiioz Yamabe-type problems on smooth metric measure spaces

Finally, from the estimates and we get that Q(¢;) — —oo as
t — o0, therefore we conclude A = —oc.

Next, we assume that A = —oo and we prove that p; < 0. This assumption
implies that R is not identically zero. Let us take a minimizing sequence of
functions {¢;}°, of A such that

2(m+n—1)
/ ¥ T = 17 ( 21907,7 SOZ) + (B;ngola S01> S 0 and lim Q(sz) = 7.
oM

1—00

2(m+4+n—1)

Claim 2. / ;" — 00 when i — oco.
M

Arguing by contradiction, we assume that there exists a constant C' > 0
2(m+n—1)

such that [} ¢, "> < C, then by the Holder inequality we get that [, 7 <

C for every i. On the other hand, we have that (L{'p;, i) +(Bg'ws, i) — —00

when i — oo since lim Q(y;) = —oo. Using this limit, the fact that R is a
71— 00

non-zero function and that ¢; is normalized we get [,, ¢ — oo when i — oo,
2(m+4n—1)
which is a contradiction with the initial assumption. Hence [,, ¢, ™"

— OQ.

Claim 3. / ©? — 0o when i — .
M

Arguing by contradiction, suppose that there exists a constant C' > 0 such
that [,, 7 < C. Then

/M!V%|2§ (Lg'ei,0) + (Bg'ei, i) + Cllleil o artHwill2.000) < C. (4.9)

On the other hand, by the Sobolev inequality we get that there exists a
constant C' such that

23:?—:::21) < C 12 2 4
P > (Vi | "+ Pi |- (4.10)
M M M

2(m+n—1)

Then inequalities (4.9) and (£.10) yield [,, ¢, "™ < C. This is a

contradiction with the Claim 1 and we conclude that [,, ¢7 — co when
17— Q.

Now we are able to conclude the proof of the lemma. For this purpose
i

103|200
Proposition 1 in Garcia and Mutioz [9] we get that ¢); converges weakly to a

function ¢ in Hg (M) such that [|¢||2.= 1 and

let us define the functions ; = Arguing as in the last part of
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m-+n—

2
< t—————RJ"p? < lim] b mo b)) < 0.
/71_/M\V1/1| +4(m+n—1)R¢¢ _hggf( ¢¢“¢2)+(3¢¢“¢1)_0

]

Proof of Theorem C'. Let {w;}32, be a sequence of positive functions
2(m+n—1)

such that [, w, "™? =1, Q(w;) <0 and Q(w;) = A when 7 — oo. Then

0> (Lgws, w) + (Byw, wy) > || Vw5 5 —C([Jwill5 ar+will3 oar)- (4.11)

First, we consider the case ||w?||2< C, then the last inequality yields
that {w;}3°, are uniformly bounded in H'(M). Recall that m > 0, then
1< 2(7;”::__21) < 2(:__21), ie. 2(7;”"__1) is less than the critical Trace’s inequality
exponent. By Sobolev’s and Trace’s embedding Theorems, there exists a

function w and a sub-sequence {w;}$2, which converges to w in L*(M),
2(m+n—1) 2(m+n—1)
L mn=2 (M) and L m+-2 (OM) and also {w;}2, converges weakly to w in

H'(M). It follows that there exist a constant C such that

2(m+n—1) -1
Mw min=2p " > (' and ||w||%,aM: L.

Then by construction, w minimizes the weighted Escobar quotient and by
Proposition [I5] w is a non-negative weak solution of

m—+n .
Ljw + clwm:rnn+—n2 vi=0 in M, (4.12)
Bj'w = cowmin-2 on OM.

Since 1 < 212:; < Z—:;, the usual elliptic regularity argument for sub-
critical equations allows us to conclude that w is in fact smooth and positive,
as we desired.

Following, we prove that we do not have the case when ||w;||2,p— o0 is
unbounded. Arguing by contradiction, we assume that ||w;||2 ,7— 0o when

i — 0o. Consider the L? re-normalized sequence of functions w; = kufm It
3 )

follows that ||w;||2m+n-1) ,,,— 0 when i — co. Since w; satisfy the inequality
m+4n—2

(4.11)) for every i we know that {w;}°; is uniformly bounded in H%*(M).

By Sobolev’s and Trace’s embedding Theorems, there exists a function
2(m+n—1)
w and a sub-sequence {w; }$°; which converges to w in L?(M), L n=2 (M)

(mtn-1)
and L win-z (OM) and also weakly in H'(M). In consequence, ||w||g =1
and using again that ||@;||2m+n-1 ,,,— 0 when i — oo, we get that w =0 in
m+n—2 7
OM.
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On the other hand, Lemma [ yields

0> (Lglw,, wz) + (Bglwz,wl) > —(C.

Therefore (Lg'w;,w;) + (B, w;) — 0 when i — co. Using w as a test
function in (4.4]), we conclude that

m+n—2 _ o e o
Plﬁ/M’VwP—i—m ¢w§llggf(L¢wi,wi)+(3¢wi’wi):0.

But p; < 0 contradicts Lemma |5 because A is finite by hypothesis. g

4.2 Proof of Theorem D

We prove an upper estimate of the 7-energy as 7 goes to zero using Theorem B
and the family {wp ,} in as test functions in the WW-functional. Actually,
Theorem B is the reason for which the weighted Escobar constant for the
Euclidean half-space appears on the right hand side of the inequality .

Lemma 6. Let (M", g,v™dV,,v™do,) be a compact smooth metric measure
space with boundary and m € NU {0}, then

limsup v(7) < v[R, dt* + dz®, dV, do, m).
T—0
Proof. In this lemma, C' is a positive constant which depend on the smooth
measure space (M™, g,v"™dV,,v"do,) and maybe change from line to line or
in the same line. First define w,,, = V_%www; with V' as in ([2.44)).
By Theorem B we know that w,, , achieves the weighted Escobar quotient,
hence by Proposition there exits 7 > 0 such that

v(RY, dTi? +dx?,dV,do,m) +1 = W(RY, dt? + dz?,dV, do, m) (W, 7, 7) + 1

T 2(m+n—1) 9 1 1 2(m:n—21)
= T mtn—3 fR" |wa077| av + 7 2 V- IR” wxo"fT " dV.
Vm+n—1 + +

(4.13)

Then Proposition |16| yields 7 = TV mmaT
On the other hand, fix a point p € OM and let (z;,t) be the Fermi
coordinates in some fixed neighborhood U of p = (0, ...,0). Let 1 > ¢ > 0 be
such that B(p,2¢) C U. Let n: M — [0,1] be a cutoff function such that
n=1on BY, supp(n) C By and |Vn|*’< Ce™! in AT = B, \ BX. For each
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0 <7 <1,define f, : M — R by fr(x1,....xn-1,t) = nwo, (21, ..., Tp_1,1),

m+n—2

- _ +
and set f, =V, "V for

2(m+n—1)

V _ fT m+n—2
r = .

oM

Proposition [12[ implies that if w is a normalized function with the metric
v~2g, then

_ m4n—2

W[M",v_2g, dVy-2g,do,—24,m](w,7) = WM", g,v"dVy,v"do,](v T w,T),

this equality allows us to consider without loss generality that v = 1. Com-
puting as in [10, Lemma 3.4], and using that dV, = (1 + O(r))dzdt and
do, = (1 + O(r))dx we obtain

WM™, g,dV,,dog, m](fr,7) + 1

7 Ftn=T) m+n—1
S— Vi 2T Rof2Y,
P </B+| Pl 3m 0 =gy o4V

m+n_ 1 ) 1 _1/ 2(m+n:1)
+ o Hf2doy | + 72V, LTy
/B;naM 2m+n—2) 97 ) ! g

F3n D) +n—1
<(1+Ce¢ {Tmm_z </B+ IV /- ;2;+f—nRgf3d$dt
2e

(4.14)

Vm+n—1 (m +n— 2)
_ 1 2(m+n—1)
+ / %Hg Fdz | +772V0 / frm 7 dxdt
Binom 2(m+n—2) B3,
Let us recall that ¢(m,n) = #72:2)2 Fixing € < 1 and after taking

VT < y/e(m,n)2e we obtain

/ R,f?dxdt <C / wi _dxdt
By Bf

2e 2e

_(n=1)(mtn=2) dxdt
=Cr 2mn=l) c(m,n)y\1 c(m,n)
B, ((1+ (557)20) + == )2

T

:wafﬁ—wi/ : ;lydt —.
+ +5)° + mIn—
BQGW (L +s)*+[y?)

(4.15)
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Similar as in [10, Lemma 3.5] we get

dyt C if 4—n—2m <0,
/ — = O(Tmfé) if n=3,%—m>0and
2 2\m+n—2 ’ 2
B;\/m ((1+9)% +[y) O(log(1)) if n =3, % m =
\/’T’
(4.16)
Then
O(Tga(m"?nl 1>+%) if4—n—2m <0,
/ R,f?drdt = E; = O(r W*m) ifn =3, m < 3 and
i o(r7 S log(7)) ifn=3-—m=0
) 2 °
(4.17)

Now, we estimate the integrals on the right hand side in the second

inequality of (4.14])

H,f?dz < C’an 1w07dx—C’7'2<m+n D f n- (1 + |y|?)~(mtn=2dy
By
< C’Tm
(4.18)

2(m+4+n—1) 2(m+n—1)
frmt? dadt S/ w7 dadt. (4.19)
R

+
BQe T—&l-

Let us estimate the gradient integral in AT = B;. \ Bf. Observe that

VI3 CIVEP< C0P[Vwo [P+ Vn|*wg ) (4.20)

Now, we get

/ Vn|*wg dxdt <Ce_2/ w3 _dxdt
AF AF

—(n—1)(m+n—2) 1 mtn=2
S 06_2’7' 2(m+n—1) + / SCEIVE) dxdt
A+ s% + |yl
Velmn)

ey/c(m,n

\/;

< Ce2—n—2m m"'m‘f'
(4.21)
and
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9 9 7(n71)(m+n72)+ﬂ_1 1 mtn—1
/ n°|Vwo . |*dedt < Cr 2mtn=1 T2 / -— dxdt
AF ’ At s s% + |yl

n—1 n—3
S CEQ_n_2me+m+T )

(4.22)
Then

/ |V dedt < Cernpma (4.23)
Al

Since for the Fermi coordinates around p we obtain ¢® = 1, ¢* = 0 and
g =05+ O(|z,t|) where 1 <i,j <n —1, it follows

|VfT|§dacdt < |Vw0,T|2dxdt+C'/ |z, t|(wo - )i(wo,r);
B,

Be Be

(4.24)
n—1
S/ ’Vwo,TPdwdt—FCTm‘
B.

We already have the second inequality of (4.24]) because

_(n=1)(m4n—-2) |z dedt
[ letltwotwor); < or a2 [ o, tle sy da
2 B (1+(

M)%t)2 + M|x‘2)m+n

< 07-72(":;3_1) ly, s dydt
- Bt ((L+8)2 + [y[>)mtn
2@

< C’T?("aii"l*l).
(4.25)
Using the inequalities (4.17)), (4.18)), (4.23) and in the inequality
(4.14) we get that

WM™, g,dV,, dog, m|(fr,7) + 1
F 20T , net
S (1 + 06) T mdn—2 / ‘VUJO’T‘ d.’L’dt + CTQ(m'HL_l)
R

VTm+n—1 i

(n—=1)(2m+n—1) +m+n=3 2(m+n—1)

(n—1@min-1) 3 1l
+C71 2mFn=1) T 2 2m+E1> +772V 1/ Wy " dadt p
R?
+

(4.26)
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Now using the inequality (4.13)) we conclude

WM™, g,dVy, doy, m}(ff,%) +1
< (14 Ce)v[RY, dt? + da?, dVy, dog, m]

_m+4n—2 (n—1)(2m+n—1)

n—1
(1—|—C€){ mv mtn—1 (CTQ(m+nl) 4+ Cr  2tm+n—D +m+— 2—n—2m

m+n—2 4n—2

LBy 4 F D (v, ety / Vo, Pdedt
R}
1 2(m+4+n—1)
+%—2(V;1—V—1)/ wor " dadt

On the other hand, we obtain

(4.27)

2(m+n—1)
m+n—2
V-V §/ (O dz
RP—1\B2~ 1

g (1+ c(m,n)
OR?\BL !

=c/ (1 + [yP)- Dy
OR?\B" !

2ey/c(m,n)
Ve

1
< Cel—n—2m7_m+%—5'

|£(]|2)_(m+n_1)d$
(4.28)

In particular, we get that the constants V, are uniformly bounded away
from zero. Using estimate (4.28) and the Taylor expansion for the functions

_m+4n—2 1

x~ m+n—1 and " we obtain
_m4n—2 mtn—2
‘/T mtn—1 —V 1 < 061 n—2m m+2—* (429)
and
Voloy-l< Clel—n—2m m+5—5 (4.30)

Additionally, the equality (4.13]) implies the following estimates

N

m 2(m+n—1)
T 20mtn=T) / |Vwo,|?drdt < C  and 7~ / wy " dadt < C.
Rn

n
R% +

(4.31)
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The substitution 7 = 7V 777, the inequalities (4.29), (4.30), (4.31) and

(4.27) yield

WIM™, g, dVy, dog,m](fr,7) + 1
< (1+ Ce)v[RY, dt? + da?, 1™ dV,, 1™do,]

n—2

+(1+ Ce) {V‘ Ty (Cr% + om0 2on-gm - (432)

m n_1
_i_7—2(m+n—1) E1> +Celfnf2m7_m+5—5 } .

Finally, taking 7 — 0 and after ¢ — 0 in (4.32)) the conclusion follows. [

Proof of Theorem D. By the definition of v and Lemma [6] we obtain
that

v[M", g,v"dVy,v"do,] < v[RY, dt* 4 dz?,dV, do, m). (4.33)
By Proposition [14] we conclude

A[M™, g, v"dV, v"do,] < AR, dt* 4+ da?, dV,do,m]. = (4.34)
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