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Abstract

This these will be focused on the study of constant mean curvature surfaces in the homoge-
neous spaces E(κ,τ).

Uwe Abresch and Harold Rosenberg discovered a holomorphic quadratic differential
defined on any constant mean curvature surface in E(κ,τ). However, there were no a Co-
dazzi pair associated to this differential when τ 6= 0, that is, a fundamental pair that satisfies
the Codazzi equation. The importance of these kind of pairs for classifying constant mean
curvature surfaces in product spaces was showed by J. A. Aledo, J. M. Espinar and J. A.
Gálvez, among others.

This work is divided in three parts; in the first part, we will define a geometric Codazzi
pair (I, IIAR), where IIAR is a symmetric (2,0)-tensor, that we call the Abresch-Rosenberg
fundamental form, on any constant mean curvature surface in E(κ,τ) whose (2,0)-part
with respect to the conformal structure induced by I is the Abresch-Rosenberg differential.
Moreover, we will exhibit some geometric properties of this pair.

In the second part, we will compute a Simons’ type formula for constant mean curvature
surfaces in E(κ,τ) using the traceless self-adjoint operator S associated to IIAR. As appli-
cations of this Simons’ formula, first, we study the behavior of complete constant mean
curvature surfaces Σ with finite Abresch-Rosenberg total curvature immersed in E(κ,τ),
i.e., those that the L2−norm of S is finite. Observe that complete H−surfaces Σ ⊂ R3 of
finite total curvature, that is, those that the L2−norm of its traceless second fundamental
form is finite, are of capital importance on the comprehension of H−surfaces. In the case
H = 0, Osserman’s Theorem gives an impressive description of them. If Σ has constant
nonzero mean curvature and finite total curvature, then it must be compact. In our case, if
H is greater than a constant depending only on κ and τ , we extend the latter result. We also
estimate the first eigenvalue of any Schrödinger Operator L = ∆+V , V continuous, defined
on H−surfaces with finite Abresch-Rosenberg total curvature. Finally, together with the
Omori-Yau’s Maximum Principle, we classify complete H−surfaces (not necessary with
finite Abresch-Rosenberg total curvature) in E(κ,τ), τ 6= 0.

Finally, in the third part, we will use the Codazzi pair (I, IIAR) to classify constant mean
curvature immersed compact disks in E(κ,τ). In particular, we will classify immersed
compact disks that meets transversally an Abresch-Rosenberg surface in E(κ,τ) along the
boundary with constant angle. First, we will work when the boundary is a regular curve,
after, we will study the case with piece-wise smooth boundary curve.

Keywords: Constant Mean Curvature Surfaces, Homogeneous Space, Codazzi Pair, Fi-
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nite Total Curvature, Simons’ Formula, Eigenvalue Estimate, Pinching Theorem, Immersed
Compact Disk.
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Resumo

Esta tese tem o propósito de estudar superfícies de curvatura media constante nos espaços
homogêneos E(κ,τ) .

Uwe Abresch e Harold Rosenberg descobriram um diferencial quadrático holomorfo
definido em qualquer superficie de curvatura de média constante em E(κ,τ). Contudo,
não existem pares de Codazzi associados a este diferencial quando τ 6= 0, isto é, pares
fundamentais de formas quadráticas que satisfazem a equação de Codazzi. A importância
destes tipo de pares para classificar superfícies de curvatura média constante em espaços
produtos foi mostrada principalmente por J.A. Aledo, J. M. Espinar e J. A. Gálvez.

Este trabalho está divido em três partes; na primeira parte, nós definiremos um par de
Codazzi geométrico (I, IIAR), onde IIAR é um tensor, que nós chamaremos de forma funda-
mental de Abresch-Rosenberg. Ela estará definida sobre qualquer superfície de curvatura
média constante em E(κ,τ), tal que a parte (2,0) do IIAR com respeito ao parâmetro con-
forme induzido pelo I é o diferencial de Abresch-Rosenberg. Além disso, nós mostraremos
algumas propriedades geométricas importantes de este par.

Na segunda parte, nós calcularemos uma equação tipo Simons para superfícies de cur-
vatura média constante em E(κ,τ) usando o operador auto-adjunto sem traço S associado
a IIAR. Como aplicações da formula de Simons, en primeiro lugar, estudaremos o com-
portamento de superfícies de curvatura média constante com curvatura total de Abresch-
Rosenberg finita em E(κ,τ); isto é, as superfícies em que a norma L2 de S é finita. Obser-
vamos que as superfícies de curvatura total finita e com curvatura média constante, isto é,
as superfícies que a norma L2 da sua segunda forma fundamental sem traço é finita, são de
muita importância para o entendimento das superfícies de curvatura média constante. No
caso mínimo, o Teorema de Osserman dá uma descrição a elas. Se Σ tem curvatura média
constante H não zero e tem curvatura total finita, então a superfície é compacta. Em nosso
caso, se H é maior que uma constante dependendo só de κ e τ , nós estenderemos o resul-
tado anterior. Além disso, nós estimaremos o primeiro auto-valor de qualquer operador de
Schrödinger L = ∆+V , V contínuo, definido em uma superfície de curvatura média con-
stante com curvatura total de Abresch-Rosenberg finita. Finalmente, junto com o princípio
do máximo de Omori-Yau, nós classificaremos superficies completas com curvatura média
constante (não necessariamente com curvatura de Abresch-Rosenberg finita) em E(κ,τ),
τ 6= 0.

Finalmente, na terceira parte, nós usaremos o par de Codazzi (I, IIAR) para classificar
discos compactos com curvatura média constante imersos no E(κ,τ). Em particular, nós
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classificaremos discos compactos imersos que encontram transversalmente uma superfície
de Abresch-Rosenberg do E(κ,τ) ao longo do bordo com ângulo constante. Primeiro, nós
faremos isto quando a fronteira é uma curva suave e depois nós estudaremos o caso quando
a fronteira é uma curva suave por partes.

Palavras Chaves:: Superfícies de Curvatura Média Constante, Espaços Homogêneos,
Par de Codazzi, Curvatura Total Finita, Fórmula de Simons, Estimativa de Auto-valor, Teo-
rema tipo Pinching, Discos Compactos Imersos.

xiv



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Introduction xvii

1 Preliminaries 1
1.1 Basics on Riemannian Geometry . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Hypersurfaces Theory . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Codazzi Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Homogeneous Spaces E(κ,τ) . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Immersed surfaces in E(κ,τ) . . . . . . . . . . . . . . . . . . . . 8

2 Constant mean curvature surfaces in E(κ,τ) 9
2.1 Structure Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The Abresch-Rosenberg Differential . . . . . . . . . . . . . . . . . . . . . 10
2.3 The Abresch-Rosenberg shape operator . . . . . . . . . . . . . . . . . . . 11

2.3.1 H−surfaces in E(κ,τ) with τ = 0 . . . . . . . . . . . . . . . . . . 11
2.3.2 H−surfaces in E(κ,τ) with τ 6= 0 . . . . . . . . . . . . . . . . . . 12

2.4 Classification results for H−surfaces in E(κ,τ) . . . . . . . . . . . . . . . 16
2.5 Abresch-Rosenberg surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Simons’ Type Formula and Applications 25
3.1 Simons’ Type Formula in E(κ,τ) . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Finite Abresch-Rosenberg Total Curvature . . . . . . . . . . . . . . . . . . 28
3.3 First Eigenvalue of Schröndinger Operators . . . . . . . . . . . . . . . . . 32

3.3.1 Stability Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Pinching Theorems for H−surfaces in E(κ,τ) . . . . . . . . . . . . . . . . 35

3.4.1 Case κ−4τ2 > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Case κ−4τ2 < 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Immersed Compact Disks 43
4.1 Abresch-Rosenberg Lines of curvature . . . . . . . . . . . . . . . . . . . . 43
4.2 Immersed compact disks . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Immersed compact disks in E(κ,τ), τ = 0 . . . . . . . . . . . . . . 49

xv



CONTENTS

4.2.2 Immersed compact disks in E(κ,τ), τ 6= 0 . . . . . . . . . . . . . . 50
4.3 Immersed compact disks with non-regular boundary . . . . . . . . . . . . . 51

Bibliography 55

xvi



Introduction

The study of constant mean curvature surfaces (CMC) in R3 has been an important research
field in differential geometry from the XIX century until today. In particular, the study of
minimal surfaces, i.e., those of zero mean curvature, constitutes itself a fundamental area in
the theory of surfaces of R3. Indeed, the second half of the XIX century is considered the
first golden period of minimal surface theory in differential geometry due, fundamentally,
to the remarkable works of Deluanay [21], Lagrange [36], Legendre [37], Riemann [54],
Scherk [57] or Schwarz among others. These authors constructed a variety of different
minimal and constant mean curvature surfaces in R3 however, until the first half of the XX
century, the sphere was the only known example of a closed and embedded non zero constant
mean curvature surface in R3.

Around 1950, A.D. Alexandrov [4] and Heinz Hopf [34] gave the most important clas-
sification results of CMC surfaces in R3. Namely:

1. Alexandrov: The round sphere is the only compact, closed, embedded CMC surface
in R3.

2. Hopf: The round sphere is the only closed, genus zero, immersed CMC surface in
R3.

Eberhard Hopf (cf. [52]) extended the Maximum Principle for harmonic functions, that
is, a harmonic function can not have an interior maximum unless it is constant, to more gen-
eral elliptic partial differential equations. This was a fundamental observation that led A.D.
Alexandrov to prove the above theorem. Alexandrov’s idea was to compare the original
surface with its reflection through planes, today, such a method is known as the Alexan-
drov Reflection Method. Recall that reflections with respect to totally geodesic planes are
isometries in R3 and therefore, the reflection preserves the constancy of the mean curvature.

Heinz Hopf in [34] gave two proofs of his theorem, and both used the fact that any
surface admits (locally) a conformal parametrization. In the first proof, Hopf defined a
quadratic differential, today known as the Hopf differential, with respect to the conformal
parametrization. Such differential encodes important geometric information, the most re-
markable is that the zeroes of the Hopf differential coincide with the umbilical points of the
surface; the Hopf differential is the (2,0)-part of the second fundamental form with respect
to the conformal structure given by the first fundamental form. Then, he observed that the
Hopf differential is holomorphic if, and only if, the mean curvature of the surface is con-
stant; this equivalence is given by the Codazzi equations that must satisfy any immersed
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surface in R3. Therefore, taking into account that in any Riemann surface with genus zero
the only holomorphic quadratic differential is the trivial one, the Hopf differential must
vanish identically and hence, all points of the surface are umbilical. The classification of
umbilical surfaces in R3 and the hypothesis that the mean curvature is non zero yield the
result. The second proof is based on the existence of line fields on any CMC surface with
isolated singularities, such singularities coincide with the umbilical points, whose index is
negative. The line fields are defined using the Hopf differential. Thus, the Poincaré-Hopf
Index Theorem asserts that such field can not exists on a topological sphere, which implies
that the Hopf differential must vanish identically.

The existence of a holomorphic quadratic differential on a CMC surface is a powerful
tool. For example, this was used by J.C.C Nistche [47] to study free boundary immersed
compact CMC disks in the Euclidean unit ball. He showed that the boundary condition
implies that the imaginary part of the Hopf differential vanishes along the boundary. Geo-
metrically, this means that the boundary curve of the CMC disk is a line of curvature. Then,
we can use complex analysis techniques to infer that the Hopf differential must vanish iden-
tically on the CMC disk, therefore, it must be a totally umbilical disk.

After, J. Choe [13] extended Nistche’s Theorem when the boundary is smooth except for
a finite number of points, the vertices, and conditions on the angles of the vertices. Other
generalization has been made by R. Schoen and A. Fraser [30], they extended the Nitsche
Theorem for free boundary immersed two-dimensional disks in Bn defining a complex quar-
tic differential obtained by squaring the Hopf differential.

The underlying idea for the construction of the Hopf differential on surfaces relies on
an abstract structure, the Codazzi pairs, that is, pairs of quadratic symmetric forms that sat-
isfy the Codazzi equation. For example, in the above situation for CMC surfaces in R3,
the Codazzi pair consists on the first and second fundamental forms of the surface. Under
some geometrical conditions, a Codazzi pair allows us to define a holomorphic quadratic
differential on the surface that can be used to classify those surfaces under some topological
condition. Observe that in any Space Form, R3, S3 and H3, the Codazzi equation has the
same structure and we can extend the Hopf Theorem to constant mean curvature topological
spheres in any Space Form.

The Codazzi equation for an immersed surface Σ in R3 is given by

∇X AY −∇Y AX−A[X ,Y ] = 0, X ,Y ∈ X(Σ), (1)

where ∇ is the Levi-Civita connection of the first fundamental form I of Σ, A is the shape
operator associated to second fundamental form II, defined by II(X ,Y ) = I(A(X),Y ). This
Codazzi equation is, together with the Gauss equation, one of the two classical integrability
conditions for surfaces in R3, and it remains true if we substitute the ambient space R3 by
any other Space Form.

So, the above facts about the Codazzi equation led mathematicians to question which
results on surface theory are valid without the Gauss equation; that is, if Σ is a Riemannian
surface and we take a pair of quadratic symmetric forms (I, II), with shape operator S, i.e.,
S is the self-adjoint operator such that II(X ,Y ) = I(SX ,Y ), where I is definite positive on
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Σ and we suppose that S satisfies the Codazzi equation (1). The question is then, can we
classify the pair (I, II) under certain topological conditions on Σ and geometric conditions
on the pair? This is how a new research line in differential geometry started, called the
theory of Codazzi pairs.

The theory of Codazzi pairs has yielded important results and interesting consequences
that generalize theorems from surface theory and apply to others branches of mathematics
such as Partial Differential Equations. T.K. Milnor (cf. [40] to [46]), V. Oliker [48] and
U. Simon [58] developed this theory and generalized many results that depend only on the
Codazzi equation. For example, Liebmann’s Theorem, i.e., the only complete surface in R3

with constant positive Gaussian curvature is the round sphere, and Hopf’s Theorem, among
others, can be extended to the abstract setting of Codazzi pairs.

In 1968, J. Simons [59] computed the Laplacian of the norm squared of the shape oper-
ator A of a minimal surface Σ in S3;

1
2

∆Σ(|A|2) = |∇A|2 + |A|2 (2−|A|2).

The above formula is known as a Simons” formula of A and it is a useful tool to obtain
classification results for minimal surfaces in the sphere. By its importance in the theory of
surfaces in S3, this formula has been extensively generalized by many authors in different
situations (cf. [7, 15, 16, 28]).

An important issue to compute the Simons’ formula of A is that the fundamental pair
composed by the first and the second fundamental form of the minimal surface is a Codazzi
pair. In fact; Shiu Cheng and Shing-Tung Yau [14] computed an abstract version of the Si-
mons’ formula, that is, they considered a Codazzi pair (I, II) defined on Riemannian surface
and computed the Laplacian of the norm squared of II:

1
2

∆(|II|2) = ∑
i, j,k

(φi j,k)
2 +∑

i
λi(tr(II))ii +

1
2 ∑

i, j
Ri ji j(λi−λ j)

2,

where II = ∑i, j φi j ωi⊗ω j is the local expression of II in a coframe base {ω1, . . . ,ωn} asso-
ciated to a local orthonormal frame {e1, . . . ,en} of I, Ri ji j is the Curvature Tensor associated
to the metric I, tr(II) is the trace of II respect to I and λi, i = 1, . . . ,n are the eigenvalues of
II respect to the orthonormal frame.

As seen so far, the existence of a holomorphic quadratic differential on CMC surfaces in
R3 (or any other Space Form) allows us to understand the geometry of such surfaces. An-
other underlying geometric property about the ambient space for classifying constant mean
curvature surfaces is its isometry group. A Riemannian manifold whose isometry group acts
transitively on its points is called Homogeneous, for example, the simply connected Space
Forms are examples of these manifolds.

W. P. Thurston proved that the building blocks of the Geometrization Conjecture are
given by eight maximal model geometries, in other words, a maximal model geometry is a
simply connected smooth manifold M together with a transitive action of the Lie group G on
M , which is maximal among groups acting smoothly and transitively on M , with compact
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stabilizers. Such maximal model geometries can be classified according to the dimension
of its isometry group. If the dimension is 6, they correspond to the Space Forms M3(κ).
When the dimension is 3, the manifold has the geometry of the Lie group Sol3, and when the
dimension is 4, they correspond to a 2-parameter family κ,τ ∈R, κ−4τ2 6= 0, of manifolds
denoted by E(κ,τ). These manifolds correspond to the product spaces M2(κ)×R, when
κ 6= 0,τ = 0, where M2(κ) is the simply connected surface of constant curvature κ . The
Heisenberg space Nil3, when κ = 0,τ 6= 0. The covering space of the linear group PSl2(R),
when κ < 0,τ 6= 0. The Berger sphere S3

B(κ,τ), when κ > 0,τ 6= 0. It is known that E(κ,τ)
is a Riemannian submersion over M2(κ) with fiber bundle curvature τ and the fibers are
integral curves of a unit Killing field defined in E(κ,τ).

Constant mean curvature surfaces in E(κ,τ) has been an active field in differential ge-
ometry in the last years. U. Abresch and H. Rosenberg [1, 2] showed the existence of a
holomorphic quadratic differential, the Abresch-Rosenberg differential QAR, on any con-
stant mean curvature surface. Then, they extended Hopf’s Theorem and classified the topo-
logical spheres with constant mean curvature as the rotationally symmetric surfaces in these
spaces. Furthermore, they classified the complete CMC surfaces in E(κ,τ) such that the
Abresch-Rosenberg differential vanishes identically, called Abresch-Rosenberg surfaces, in
particular, they are invariant surfaces by a one parameter group of isometries of E(κ,τ) (cf.
[24]).

As we pointed out above, when a surface is immersed in a Space Form, it is well-known
that its second fundamental form defines a bilinear symmetric tensor that satisfies the Co-
dazzi equation and the Codazzi equation is fundamental to ensure that the usual Hopf dif-
ferential is holomorphic on any CMC surface in a Space Form; nevertheless, the above fact
is no longer true when the surface is isometrically immersed in a homogeneous 3-manifold
E(κ,τ). However, J.A. Aledo, J.M. Espinar and J.A. Gálvez [3] obtained a geometric Co-
dazzi pair (I, IIS) for any CMC surface in M2(κ)×R so that the (2,0)-part of IIS with
respect to a conformal parameter given by the first fundamental I, is the Abresch-Rosenberg
differential. As it was observed by S. Cheng and S.T. Yau, the properties of being a Codazzi
pair allows us to compute a Simons’ type formula of the shape operator S associated to IIS.
In fact; this property of (I, IIS) was used by M. Batista [7] to compute the Simons’ formula
for CMC surfaces in M2(κ)×R and, in this way, he classified certain complete CMC sur-
faces in M2(κ)×R. Moreover, M. Do Carmo and I. Fernández [19] used the properties
of the Codazzi pair (I, IIS) to classify certain immersed compact disks in product spaces
M2(κ)×R.

But, despite the existence of a holomorphic quadratic differential on any CMC surface in
E(κ,τ), τ 6= 0, there was no geometric Codazzi pair (I, IIS) defined on the surface such that
the (2,0)-part of IIS with respect to a conformal parameter induced by I, were the Abresch-
Rosenberg differential.

Now, we proceed to describe the contents of this work.

In Chapter 1, we introduce the basic concepts on Riemannian Manifolds and Hypersur-
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face Theory. Next, we continue by defining the most important concepts of the abstract
theory of Codazzi pairs on Riemannian surfaces. We finalize this chapter by describing the
geometric properties of the Riemaniann homogeneous manifolds E(κ,τ), and we list the
structure equations that must satisfy any constant mean curvature surfaces in E(κ,τ).

In Chapter 2, we will study constant mean curvature surfaces in E(κ,τ), for this, we
begin by defining the Abresch-Rosenberg differential on any constant mean curvature sur-
face, this definition will take us to the Codazzi pair interpretation of the Abresch-Rosenberg
differential and its geometric properties. First, we discuss the known case of constant mean
curvature surfaces in a product space M2(κ)×R. Later, we obtain a geometric Codazzi pair
associated to the Abresch-Rosenberg differential on any constant mean curvature surface
immersed in E(κ,τ). Specifically, Lemma 2.2 says

Lema 2.2. Given a H−surface Σ⊂ E(κ,τ), H2+τ2 6= 0, consider the symmet-
ric (2,0)−tensor given by

IIAR(X ,Y ) = II(X ,Y )−α〈Tθ ,X〉〈Tθ ,Y 〉+
α |T|2

2
〈X ,Y 〉,

where

• α =
κ−4τ2

2
√

H2 + τ2
,

• e2iθ =
H− iτ√
H2 + τ2

and

• Tθ = cosθ T+ sinθ JT.

Then, (I, IIAR) is a Codazzi Pair with constant mean curvature H. Moreover,
the (2,0)−part of IIAR with respect to the conformal structure given by I agrees
(up to a constant) with the Abresch-Rosenberg differential.

We will continue this chapter with some classification results of constant mean curva-
ture surfaces in E(κ,τ) and the remainder of this chapter will be devoted to the Abresch-
Rosenberg surfaces in E(κ,τ), that is, the constant mean curvature surfaces whose the
Abresch-Rosenberg differential vanishes identically.

In Chapter 3, we compute the Simons’ formula for constant mean curvature surfaces in
E(κ,τ). To do so, we use the Codazzi pair (I, IIAR) defined in Chapter 2. Hence, we will ob-
tain a formula for the Laplacian of the square norm of the Abresch-Rosenberg fundamental
form:

Theorem 3.2. Let Σ be a H−surface in E(κ,τ). Then, the traceless Abresch-
Rosenberg shape operator satisfies

1
2

∆|S|2 = |∇S|2 +2K|S|2,
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or, equivalently, away from the zeroes of |S|,

|S| ∆ |S|−2K |S|2 = |∇ |S||2 .

We are now in position to do some applications to the theory of constant mean curvature
surfaces in E(κ,τ). First, we will study constant mean surfaces in E(κ,τ), H2 + τ2 6= 0,
with finite Abresch-Rosenberg total curvature, i.e.,∫

Σ

|S|2 dvg < ∞.

We must point out here that the family of complete constant mean curvature surfaces
with finite Abresch-Rosenberg total curvature is large. We focus on H = 1/2 surfaces in
H2×R to show this fact. Recall the following result of Fernández-Mira:

Theorem [26, Theorem 16]. Any holomorphic quadratic differential on an
open simply connected Riemann surface is the Abresch-Rosenberg differential
of some complete surface Σ with H = 1/2 in H2×R. Moreover, the space of
noncongruent complete mean curvature one half surfaces in H2×R with the
same Abresch-Rosenberg differential is generically infinite.

We will see that, if we take the disk D as our open Riemann surface and a holomorphic
quadratic differential on D that extends continuously to the boundary, then the H = 1/2
surface Σ constructed in [26, Theorem 16] has finite Abresch-Rosenberg total curvature.

Then using the Simons’ formula and the Sobolev inequality, we can show:

Theorem 3.3. Let Σ⊂E(κ,τ) be a complete H−surface such that H2+τ2 6= 0.
If Σ has finite Abresch-Rosenberg total curvature, that is,∫

Σ

|S|2 dvg <+∞,

then |S| goes to zero uniformly at infinity.

Despite what happens in R3, a H−surface Σ ⊂ E(κ,τ) with finite Abresch-Rosenberg
total curvature is not necessarily conformally equivalent to a compact surface minus a finite
number of points, in particular, Σ is not necessarily parabolic. The simplest case is a slice
H2 in H2×R. However, we can obtain:

Theorem 3.4. Let Σ be a complete surface in E(κ,τ), H2 + τ2 6= 0, with finite
Abresch-Rosenberg total curvature. Suppose one of the following conditions
holds

1. κ−4τ2 > 0 and H2 + τ2 > κ−4τ2

4 .

2. κ−4τ2 < 0 and H2 + τ2 >− (
√

5+2)
4 (κ−4τ2).
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Then, Σ must be compact.

As a second application of the Simons’ formula, we extend the Simons’ first stability
eigenvalue estimate given in [59] for compact minimal surfaces in S3 to Schrödinger Op-
erators L = ∆+V defined on a complete H−surface with finite Abresch-Rosenberg total
curvature and H2 + τ2 6= 0 immersed in E(κ,τ),

Theorem 3.5. Let Σ be a complete H-surface in E(κ,τ) with finite Abresch-
Rosenberg total curvature and H2 + τ2 6= 0. Let λ1(L) be the first eigenvalue
associated to the Schrödinger operator L := ∆ +V , V ∈ C0(Σ). Then, Σ is
either invariant by a one a parameter group of isometries of E(κ,τ), or a Hopf
cylinder or

λ1(L)<−infΣ {V +2K} ,
where K is the Gaussian curvature of Σ.

Remind that E(κ,τ) is a Riemannian submersion π : E(κ,τ) → M2(κ). Given γ a
regular curve in M2(κ), π−1(γ) is a surface in E(κ,τ) that has ξ as a tangent vector field,
in this case ν = 0. So, ξ is a parallel vector field along π−1(γ) and hence π−1(γ) is a flat
surface and its mean curvature is given by 2H = kg, where kg is the geodesic curvature of γ

in M2(κ) (cf. [25]). We will call π−1(γ) a Hopf cylinder of E(κ,τ) over curve γ . If γ is
a closed curve, π−1(γ) is a flat Hopf cylinder and additionally, if π is a circle Riemannian
submersion, π−1(γ) is a Hopf torus.

In particular, when L is the Stability (or Jacobi) operator defined on a complete H−surface
with finite Abresch-Rosenberg total curvature and H2 + τ2 6= 0 immersed in E(κ,τ), i.e.,

L = ∆+(|A|2 +Ric(N)),

where, Ric(N) is the Ricci curvature of the ambient manifold in the normal direction. We
obtain the following:

Theorem 3.6. Let Σ be a complete two sided H−surface with finite Abresch-
Rosenberg total curvature and H2 + τ2 6= 0 in E(κ,τ).

• If κ − 4τ2 > 0. Then, Σ is either invariant by a one parameter group of
isometries of E(κ,τ), or a Hopf cylinder, or

λ1 <−(4H2 +κ).

• If κ − 4τ2 < 0. Then, Σ is either invariant by a one parameter group of
isometries of E(κ,τ), or a Hopf cylinder, or

λ1 <−(4H2 +κ)− (κ−4τ
2).

Finally, we apply Simons’ formula for classifying complete constant mean curvature
surfaces in E(κ,τ) under natural geometric conditions using the Omori-Yau’s Maximum
Principle. We can summarize Theorem 3.8 and Theorem 3.9 as follows:
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Theorems 3.8 and 3.9.

Let Σ be a complete immersed H−surface in E(κ,τ), H2 + τ2 6= 0.

• If κ−4τ2 > 0, assume that 4(H2 + τ2)> κ−4τ2 and

sup
Σ

|S|< 4(H2 + τ2)− (κ−4τ2)

2
√

2
√

H2 + τ2
.

where S is the traceless Abresch-Rosenberg shape operator. Then, Σ is an
Abresch-Rosenberg surface in E(κ,τ). Moreover, if

sup
Σ

|S|= 4(H2 + τ2)− (κ−4τ2)

2
√

2
√

H2 + τ2
.

and there exists one point p ∈ Σ such that |S(p)| = supΣ |S|, then Σ is a
Hopf cylinder.

• If κ−4τ2 < 0, assume that (H2 + τ2)>
∣∣κ−4τ2

∣∣ and

sup
Σ

|S|<
√

2
√
(H2 + τ2)+(κ−4τ2)

where S is the traceless Abresch-Rosenberg shape operator. Then, Σ is an
Abresch-Rosenberg surface of E(κ,τ).
Moreover, if

sup
Σ

|S|=
√

2
√
(H2 + τ2)+(κ−4τ2)

and there exists one point p ∈ Σ such that |S(p)| = supΣ |S|, then Σ is a
Hopf cylinder.

In Chapter 4, we will study constant mean curvature immersed compact disks (H−
disks) in E(κ,τ) using the Codazzi pair (I, IIAR). We first study AR-lines of curvature
of the H−surface Σ in E(κ,τ), H2 + τ2 6= 0, that is, curves Γ = γ(−ε,ε) on Σ that satisfies
the following condition:

SAR(γ
′(t)) = λ (t)γ ′(t) for some smooth function λ : (−ε,ε)→ R.

Then, as our main result in this chapter is a Joachimstahl’s type Theorem for constant
mean curvature surfaces in E(κ,τ):

Lemma 4.1. Let Σi ⊂ E(κ,τ), i = 1,2, be Hi−surfaces so that Σ1∩Σ2 6= /0. Let
Γ ⊂ Σ1∩Σ2 be a regular curve of transversal intersection. Assume that along
Γ one has

a) 〈N1,N2〉 is constant and
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b)
√

H2
1 + τ2〈T2

θ2
,N1〉〈J2T2

θ2
,N1〉=

√
H2

2 + τ2〈T1
θ1
,N2〉〈J1T1

θ1
,N2〉,

where αi =
κ−4τ2

2
√

H2
i +τ2

, Ti
θi
= cosθiTi + sinθiJiTi and JiX = Ni∧X for i = 1,2.

Then, Γ is an AR-line of curvature for Σ1 if, and only if, Γ is an AR-line of
curvature for Σ2.

With this preliminary result, we can now classify immersed compact disks in E(κ,τ)
with regular boundary. For immersions in product spaces, we have:

Theorem 4.1. Let φ : D→M2(κ)×R be a non-minimal H1−disk with regular
boundary Γ. Suppose that φ meets transversally an Abresch-Rosenberg H2-
surface Ω along Γ at a constant angle. Assume also that Γ is of one of the
following types:

1. Γ is an horizontal or vertical curve of Ω

2. If H1 = H2, the angle function ν1 is opposite to the angle function ν2.

Then, φ(D) is a part of an Abresch-Rosenberg surface in M2(κ)×R.

We continue by obtaining a classification result for immersed compact disks in E(κ,τ),
τ 6= 0.

Theorem 4.2. Let φ : D→E(κ,τ), τ 6= 0, be a H1−disk with regular boundary,
suppose the boundary is parametrized by a regular curve γ and it is of one of
the following types

1. γ is the tangent intersection of the immersion φ with an Abresch-Rosenberg
surface Ω with the same mean curvature vector.

2. γ is the transverse intersection with constant angle of the immersion φ

with an Abresch-Rosenberg surface Ω with the same mean curvature and
whose angle function is opposite to the angle function of the immersion φ

along γ .

Then, φ(D) is a part of an Abresch-Rosenberg surface in E(κ,τ).

We remark that the above theorem extends a previous result given by M. Do Carmo and
I. Fernández in [19]. Finally, we extend Theorem 4.1 and Theorem 4.2, when the boundary
is a piece-wise regular curve. First, we will do this for H- disks in product spaces.

Corollary 4.3. Let φ : D→M2(κ)×R be a H1− disk, with H1 6= 0 and piece-
wise differentiable boundary Γ. Assume also that the following conditions are
satisfied:

1. φ(D) is contained as an interior set in a smooth H1− surface Σ̂ in E(κ,τ)
without boundary.

xxv



2. The number of vertices in Γ with angle < π is less than or equal to 3.

3. Every regular component γ of Γ is a one of the following types:

• γ is contained in a horizontal slice.
• γ is a transverse intersection with constant angle of φ(D) with an

Abresch-Rosenberg surface Ω of constant mean curvature H2 6= 0.

Then, φ(D) is a part of an Abresch-Rosenberg surface in M2(κ)×R.

Finally, we consider the case τ 6= 0.

Corollary 4.4. Let φ : D→ E(κ,τ), τ 6= 0, be a H1− disk with piece-wise dif-
ferentiable boundary Γ. Assume also that the following conditions are satisfied:

1. φ(D) is contained as an interior set in a smooth H1-surface Σ̂ on E(κ,τ)
without boundary.

2. The number of vertices in Γ with angle < π is less than or equal to 3.

3. Every regular component γ of Γ is one of the following types:

• γ is a tangent intersection of φ(D) with an Abresch-Rosenberg sur-
face Ω with the same mean curvature vector.
• γ is a transverse intersection with constant angle of φ(D) with an

Abresch-Rosenberg surface Ω with the same constant mean curvature
and whose angle function is opposite to the angle function of φ(D)
along γ .

Then, φ(D) is a part of an Abrech-Rosenberg surface in E(κ,τ), τ 6= 0.

xxvi



Chapter 1

Preliminaries

In this chapter we fix the notation, give the definitions and state some results which will
be use through this work. In Section 1.1, we will list the usual definitions of Riemannian
geometry and the theory of hypersurfaces in Riemannian manifolds. In Section 1.2, we
recover the abstract theory of Codazzi pairs on surfaces and we state the abstract version of
Hopf Theorem. In Section 1.3, we will resume the basic facts of homogeneous 3-manifolds
with isometry group of dimension 4, E(κ,τ), and some results about immersed surfaces in
these manifolds (see [18, 20, 40, 56, 61]).

1.1 Basics on Riemannian Geometry
Let M be a smooth oriented manifold. Now, we assume that the manifold M is provided
with a metric, this means a symmetric and positive definite (2,0)-tensor, denoted by g. So,
for each p ∈M , one has gp : TpM × TpM → R. For an arbitrary local chart (U,ϕ) at
p ∈U , gp can be written as

g =
n

∑
i, j=1

gi jdxi⊗dx j,

where gi j ∈C∞(U) so that gi j = g ji and ⊗ is the tensorial product. Hence, the pair (M ,g),
a manifold M provided with a metric g, is called a Riemannian manifold.

The functions gi j, i, j = 1, . . . ,n, are the coefficients of the metric g in the local chart
(U,ϕ).

For a Riemannian manifold (M ,g), it is not necessary to distinguish between X(M )
and X(M )∗. In fact, we can identify each element X ∈ X(M ) with an unique 1-form
ω ∈ X(M )∗ using the equality

ω(Y ) = g(Y,X), ∀Y ∈ X(M ) . (1.1)

We will use the word tensor when valued in X(M ) and form when valued in C∞(M ).
We will denote the Lie bracket of the vector fields in X(M ) by [ , ], that is,

[X ,Y ] = XY −Y X for all X ,Y ∈ X(M ).
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1.1. BASICS ON RIEMANNIAN GEOMETRY

Given a Riemannian manifold (M ,g), there exists a unique affine connection ∇ such
that

(i) ∇ is symmetric, i.e.,
∇X Y −∇Y X = [X ,Y ];

(ii) ∇ is compatible with g, i.e.,

Xg(Y,Z) = g(∇X Y,Z)+g(Y,∇X Z),

for all X ,Y,Z ∈X(M ). This leads us to define such unique connection ∇ as the Levi-Civita
connection on M associated to g.

Let ∇ be the Levi-Civita connection associated to a Riemannian metric g and { ∂

∂xi
}n

i=1

be the basis associated to a local chart (U,ϕ ≡ (x1, . . . ,xn)). Consider the functions Γk
i j ∈

C∞(U), i, j,k = 1, , . . . ,n, given by the relations

∇ ∂

∂xi

∂

∂x j
=

n

∑
k=1

Γ
k
i j

∂

∂xk
, (1.2)

then, the coefficients Γk
i j are called the Christoffel symbols of the connection ∇ on U asso-

ciated to the metric g.
Associated to the Levi-Civita connection ∇ on a Riemannian manifold (M ,g), we in-

troduce the Curvature Tensor R defined by

R(X ,Y )Z = ∇Y ∇X Z−∇X ∇Y Z + ∇[X ,Y ]Z . (1.3)

It is well-known that R is C∞(Σ)-linear with respect to X ,Y,Z and skew-symmetric with
respect to X ,Y .

Definition 1.1. Let (M ,g) be a Riemannian manifold with Curvature Tensor R. Given
Xp,Yp ∈ TpM linearly independent, we define the sectional curvature, K p(Xp,Yp), related
to g at p ∈M for the plane generated by

{
Xp,Yp

}
is given by

K p(Xp,Yp) =
g(R(Xp,Yp)Xp,Yp)

‖Xp∧Yp‖2 , (1.4)

where
‖Xp∧Yp‖=

√
‖Xp‖2‖Yp‖2−g(Xp,Yp)2 .

The definition of K p(Xp,Yp) does not depend on the choice of the vectors Xp, Yp, just
on the plane generated by them. Moreover, the curvature tensor R is completely determined
by the sectional curvature when K is constant at every point and any plane, and we can
recovered it as

R(X ,Y )Z = K (g(X ,Z)Y −g(Y,Z)X) . (1.5)

We will see now other curvature tensors one can define in a Riemanniann manifold
(M ,g).
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1.1. BASICS ON RIEMANNIAN GEOMETRY

Ricci and Scalar curvature
Let {ei} ∈ X(U), U ⊂M open and connected, be a local orthonormal frame of the tangent
bundle TU ⊂ TM . Let us establish our definition for the Ricci Curvature and Scalar
Curvature in M , i.e,

Ricg(X ,X) =
n

∑
i=1

R(X ,ei,X ,ei),

R(g) =
n

∑
i=1

Ricg(ei,ei),

respectively, here X ∈ X(M ).

1.1.1 Hypersurfaces Theory
Here, we will remind the most important concepts on hypersurface theory. Along these
section we denote by (M ,〈,〉) a (m+1)-dimensional connected Riemannian manifold, and
let Σ ⊂M be an immersed, two-sided hypersurface in M . Let us denote by N the unit
normal vector field along Σ. Moreover, 〈,〉 is the metric on M and g the first fundamental
form of Σ, that is, the induced metric on Σ by 〈,〉. Let ∇ and ∇ be the Levi-Civita connection
associated to 〈,〉 and g, respectively. Denote by X(Σ) and X(M ) the linear spaces of smooth
vector fields along Σ and M respectively. We also denote by I the induced metric on Σ, that
is, I ≡ g.

Remark 1.1. We will identify I, g and 〈,〉 when no confusion occurs.

From (1.3), set

R(X ,Y )Z := ∇Y ∇X Z−∇X ∇Y Z +∇[X ,Y ]Z, X ,Y,Z ∈ X(M ),

the Riemann Curvature Tensor of M . Let {ei}m+1
1 ∈ X(U), U ⊂M open and connected,

be a local orthonormal frame of the tangent bundle TU ⊂ TM , then we denote

Ri jkl = 〈R(ei,e j)ek,el〉

and, from Definition 1.1, the sectional curvatures in M are given by

Ki j := 〈R(ei,e j)ei,e j〉= Ri ji j.

The Gauss Formula (see [18]) of a hypersurface Σ is given by

∇XY = ∇XY + 〈A(X),Y 〉N for all X ,Y ∈ X(Σ),

where A : X(Σ)→ X(Σ) is the Weingarten (or Shape) operator defined as

A(X) :=−(∇X N)T ,

3



1.1. BASICS ON RIEMANNIAN GEOMETRY

that is, A(X) is the tangential component of −∇X~N. In fact, we do not need to take the
tangential part in the above definition when we are dealing with orientable hypersurfaces in
orientable manifolds, but we use the general definition for the sake of completeness.

Since A : X(Σ)→X(Σ) is a self-adjoint endomorphism, we denote the mean curvature
and extrinsic curvature as

H =
1
m

Tr(A) and Ke = det(A),

where Tr and det denote the trace and determinant respectively.
Let X(Σ)⊥ be the orthogonal complement of X(Σ) in X(M ). Let us denote B : X(Σ)×

X(Σ)→ X(Σ)⊥ the Vector second fundamental form of Σ, that is,

B(X ,Y ) := (∇XY )⊥, X ,Y ∈ X(Σ),

here (·)⊥ means the normal part. Therefore, B induces the self-adjoint endomorphism A on
Σ, that is,

〈B(X ,Y ),N〉= 〈A(X),Y 〉, X ,Y ∈ X(Σ),

which is called the second fundamental form, and we also write it as

II(X ,Y ) = I (A(X),Y ) , X ,Y ∈ X .

The mean curvature vector of Σ is given by

m ~Hp = Tr(Bp) =
m

∑
i=1

Bp(vi,vi),

where {v1, . . . ,vm} is a orthonormal basis of TpΣ.
Since A : X(Σ)→ X(Σ) is self-adjoint, it is diagonalizable and hence let {e1, . . . ,em} be

principal directions, i.e.,
A(ei) =−∇eiN = κiei,

where κi are the principal curvatures, i = 1, . . . ,m, in other words, {e1, . . . ,em} are the
eigendirections of S and κi, i = 1, . . . ,m, its eigenvalues.

We say that a point p∈ Σ is an umbilic point if κ1(p) = . . .= κm(p), which is equivalent
to say that II is proportional to I at p.

Let R and R denote the Riemann Curvature tensors of M and Σ respectively. Then, by
the Gauss Equation we can relate R and R as

R(X ,Y )Z = R(X ,Y )Z + 〈A(Y ),Z〉A(X)−〈A(X),Z〉A(Y ) for all X ,Y,Z,W ∈ X(Σ). (1.6)

There is another important equation that Σ ⊂M must verify, the Codazzi Equation.
Given X ,Y ∈ X(Σ), recall that AX =−∇X N ∈ X(Σ), the Gauss formula yields

R(X ,Y )N = ∇Y ∇X N−∇Y ∇X N +∇[X ,Y ]N

= ∇X AY −∇Y AX−A[X ,Y ]
= ∇X AY −∇Y AX−A[X ,Y ]−〈AX ,AY 〉N + 〈AY,AX〉N
= ∇X AY −∇Y AX−A[X ,Y ],
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1.2. CODAZZI PAIRS

that is, R(X ,Y )N ∈ X(Σ) and the following Codazzi Equation holds

R(X ,Y )~N = ∇X AY −∇Y AX−A[X ,Y ], X ,Y ∈ X(Σ). (1.7)

Assume that the ambient manifold is a Space Form M = Mm+1(κ), κ ∈ R, that is, a
complete simply connected (m+ 1)−manifold of constant sectional curvature κ for every
point p ∈Mm+1(κ) and any tangent plane. So, by Cartan Theorem (see [18]), we have

Mm+1(κ) =


Sm+1(κ) if κ > 0,

Rm+1 if κ = 0,

Hm+1(κ) if κ < 0.

Hence, from (1.5), the Riemann curvature tensor R can be recovered as

R(X ,Y )Z = κ(g(X ,Z)Y −g(Y,Z)X), X ,Y,Z ∈ X(Mm+1(κ)).

Therefore, for surfaces in Σ in the Spaces Forms of dimension 3, the Gauss Equation
becomes:

K = Ke +κ, (1.8)

where Ke is the extrinsic curvature and the Codazzi equation remind as

∇X AY −∇Y AX−A[X ,Y ] = 0, X ,Y ∈ X(Σ), (1.9)

respectively.

1.2 Codazzi Pairs
One important tool in this work is the theory of Codazzi pairs. In this section, we resume
the basic concepts of this theory, we follow [3, 40] and references therein. We shall denote
by Σ an orientable (and oriented) smooth surface. Otherwise we work with its oriented
two-sheeted covering.

Definition 1.2 ([3, 40]). A fundamental pair on Σ is a pair of real symmetric quadratic forms
(I, II) on Σ, where I is a Riemannian metric.

Associated with a fundamental pair (I, II) we define the shape operator S of the pair as:

II(X ,Y ) = I(S(X),Y ) for any X ,Y ∈ X(Σ). (1.10)

Conversely, it is clear from (1.10) that the quadratic form II is totally determined by I
and S. In other words, to give a fundamental pair on Σ is equivalent to give a Riemannian
metric on Σ together with a self-adjoint endomorphism S.
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1.2. CODAZZI PAIRS

We define the mean curvature, the extrinsic curvature and the principal curvatures
of (I, II) as one half of the trace, the determinant and the eigenvalues of the endomorphism
S, respectively.

In particular, given local parameters (x,y) on Σ such that

I = E dx2 +2F dxdy+Gdy2, II = edx2 +2 f dxdy+gdy2,

the mean curvature and the extrinsic curvature of the pair are given, respectively, by

H(I, II) =
Eg+Ge−2F f

2(EG−F2)
, Ke(I, II) =

eg− f 2

EG−F2 ,

moreover, the principal curvatures of the pair are H(I, II)±
√

H(I, II)2−Ke(I, II).
We shall say that the pair (I, II) is umbilical at p ∈ Σ if II is proportional to I at p, or

equivalently:

• If both principal curvatures coincide at p, or

• if S is proportional to the identity map on the tangent plane at p, or

• if H(I, II)2−Ke(I, II) = 0 at p.

We define the Hopf differential of the fundamental pair (I, II) as the (2,0)-part of II for
the Riemannian metric I. In other words, if we consider Σ as a Riemann surface with respect
to the metric I and take a local conformal parameter z, then we can write

I = 2λ |dz|2,

II = Qdz2 +2λ H |dz|2 +Qdz̄2.
(1.11)

The quadratic form Qdz2, which does not depend on the chosen parameter z, is known
as the Hopf differential of the pair (I, II). We note that (I, II) is umbilical at p ∈ Σ if, and
only if, Q(p) = 0.

Remark 1.2. All the above definitions can be understood as natural extensions of the cor-
responding ones for isometric immersions of a Riemannian surface in a 3−dimensional
ambient space, where I plays the role of the induced metric and II the role of its second
fundamental form.

A specially interesting case happens when the fundamental pair satisfies the Codazzi
equation, that is,

Definition 1.3 ([3, 40]). A fundamental pair (I, II) on Σ, with shape operator S, is a Codazzi
pair if

∇X SY −∇Y SX−S[X ,Y ] = 0, X ,Y ∈ X(Σ), (1.12)

where ∇ stands for the Levi-Civita connection associated with the Riemannian metric I and
X(Σ) is the set of smooth vector fields on Σ.
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Let us also observe that, by (1.11) and (1.12), a fundamental pair (I, II) is a Codazzi pair
if and only if

Qz̄ = λ Hz. (1.13)

Thus, the equation (1.13) shows the following

Lema 1.1 ([40], Lemma 6). Let (I, II) be a fundamental pair on Σ. Then, any two of the
conditions (i), (ii), (iii) imply the third:

(i) (I, II) is a Codazzi pair.

(ii) H(I, II) is constant.

(iii) The Hopf differential of the pair is holomorphic.

Remark 1.3. We observe that Hopf Theorem [34, p. 138], on the uniqueness of round
spheres among immersed constant mean curvature spheres in Euclidean 3-space, can be
easily obtained from this result.

1.3 Homogeneous Spaces E(κ,τ)
We consider simply connected homogeneous Riemannian 3-manifolds whose isometry group
has dimension 4.According to standard notation, we embrace these spaces as E(κ,τ), where
κ and τ are constants so that κ−4τ2 6= 0 (see [27]).

They can be classified as M2(κ)×R if τ = 0, with M2(κ) = S2(κ) if κ > 0 (S2(κ)
the sphere of curvature κ), and M2(κ) = H2(κ) if κ < 0 (H2(κ) the hyperbolic plane of
curvature κ). If τ 6= 0, E(κ,τ) is a Berger sphere if κ > 0, a Heisenberg space if κ = 0
(of bundle curvature τ), and the universal cover of PSL(2,R) if κ < 0. Henceforth we will
suppose κ ∈ {−1,0,1} (see [27]).

The homogeneous space E(κ,τ) is a Riemannian submersion π : E(κ,τ)→M2(κ) over
a simply connected surface of constant sectional curvature κ . The fibers are the inverse
image of a point at M2(κ) by π . The fibers are the trajectories of a unitary Killing field ξ ,
called the vertical vector field.

Denote by ∇ the Levi-Civita connection of E(κ,τ), then for all X ∈ X(E(κ,τ)), the
following equation holds [56]:

∇X ξ = τX ∧ξ ,

where τ is the bundle curvature. Note that τ = 0 implies that E(κ,τ) is a product space
(see [27]).

Let R the Riemann curvature tensor of E(κ,τ) associated to connection ∇. Then,

Lema 1.2 ([20]). Let E(κ,τ) be a homogeneous space with unit Killing field ξ . For all
vector fields X ,Y,Z,W ∈ X(E(κ,τ)), we have:

7



1.3. HOMOGENEOUS SPACES E(κ,τ)

〈R(X ,Y )Z,W 〉= (κ−3τ
2)(〈X ,Z〉Y −〈Y,Z〉X)

+(κ−4τ
2)(〈ξ ,Y 〉〈ξ ,Z〉X−〈ξ ,X〉〈ξ ,Z〉Y )

− (κ−4τ
2)(〈Z,Y 〉〈ξ ,X〉ξ + 〈Z,X〉〈ξ ,Y 〉ξ )

(1.14)

1.3.1 Immersed surfaces in E(κ,τ)
Let Σ⊂ E(κ,τ) be an oriented immersed connected surface. We endow Σ with the induced
metric of E(κ,τ), the first fundamental form, which we still denote by 〈,〉 and N the unit
normal vector field along Σ.

Denote by J the oriented rotation of angle π

2 on T Σ,

JX = N∧X for all X ∈ X(Σ).

Set ν = 〈N,ξ 〉 and T = ξ −νN, that is, ν is the normal component of the vertical vector
field ξ , called the angle function, and T is the tangent component of the vertical vector
field ξ .

Note that, in a product space M2(κ)×R, we have a natural projection onto the fiber
σ : M2(κ)×R→ R, hence we can define the restriction of σ to the surface Σ, that is,
h : Σ→ R, h = σΣ. The function h is called the height function of Σ. So, in M2(κ)×R,
one can easily observes that ∇σ = ξ and hence, T is the projection of ∇σ onto the tangent
plane, ∇h = T. Next, we list the structure equations satisfied by any immersed surface Σ in
E(κ,τ).

Lema 1.3 ([20]). Let Σ ⊂ E(κ,τ) be an immersed surface with unit normal vector field N
and shape operator A. Let T and ν the tangent component of the vertical vector field and
the angle function respectively. Then, given X ,Y ∈ X(Σ), the following equations hold:

K = Ke + τ
2 +(κ−4τ

2)ν2, (1.15)
TS(X ,Y ) = (κ−4τ

2)ν(〈Y,T〉X−〈X ,T〉Y ), (1.16)
∇X T = ν(AX− τJX), (1.17)

dν(X) = 〈τJX−AX ,T〉, (1.18)
‖T‖2 + ν

2 = 1, (1.19)

where K denotes the Gauss curvature of Σ, Ke the extrinsic curvature and TS is given by:

TS(X ,Y ) = ∇X AY −∇Y AX−A([X ,Y ]),

for all X ,Y ∈ X(Σ).
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Chapter 2

Constant mean curvature surfaces in
E(κ,τ)

In this chapter, we will define a Codazzi pair (I, IIAR) on any H−surface in E(κ,τ) such that
the (2,0)-part of IIAR with respect to a conformal parameter induced by I is the Abresch-
Rosenberg differential (up to a constant in the case τ 6= 0), and we will study the geomet-
ric properties of this Codazzi pair. Moreover, we will resume the classification results of
H−surfaces in E(κ,τ) with constant Abresch-Rosenberg function and finally, we show an
interesting Lemma which help us to get important results about H−surfaces in E(κ,τ) in
Chapter 3.

This chapter is organized as follows; in Section 2.1, we will recall the structure equations
that satisfies any constant mean curvature surface in E(κ,τ) in terms of a local conformal
parameter induced by the first fundamental form. In Section 2.2, we will define the Abresch-
Rosenberg differential on any H−surface and the Abresch-Rosenberg map. In Section 2.3,
we will define the Abresch-Rosenberg shape operator, first we will recover the case τ = 0,
second, we will define an Abresch-Rosenberg shape operator when τ 6= 0. Then, we will
obtain a fundamental pair (I, IIAR) and we study geometric properties of this pair, as the
mean curvature or the extrinsic curvature. Moreover, we will compute the square norm
of the shape operator of the second fundamental form in terms of the square norm of the
Abresch-Rosenberg shape operator. Also, we will show the pair (I, IIAR) is a Codazzi pair
on Σ whose (2,0)−part (with respect to a conformal parameter induced by I) is the Abresch-
Rosenberg differential.

In Section 2.4, we will state the classification results for H−surfaces on E(κ,τ) with
constant Abresch-Rosenberg map qAR. First, we will study the case qAR ≡ 0 on Σ. Next,
we will give an alternative proof for the classification result when qAR ≡ c 6= 0. In fact, the
above result will follow since we are able to show that if two special vector fields defined
on any H−surface Σ are the principal directions of the traceless shape operator associated
to IIAR, then Σ is invariant by a one parameter group of isometries of E(κ,τ). Finally, in
Section 2.5, we will define the Abresch-Rosenberg surfaces and we will describe constant
mean curvature surfaces whose Abresch-Rosenberg differential vanishes.
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2.1. STRUCTURE EQUATIONS

2.1 Structure Equations
Let Σ be an orientable, connected, complete H- surface in E(κ,τ) and let N be a unit normal
to Σ. We assume Σ orientable, otherwise we pass to the double cover. In terms of a local
conformal parameter z, the first fundamental form I = 〈,〉 and the second fundamental form
are given by

I = 2λ |dz|2 (2.1)
II = Qdz2 +2λH|dz|2 +Qdz2, (2.2)

where Qdz2 =−〈∇∂zN,∂z〉dz2 is the usual Hopf differential of Σ. Hence, in this conformal
coordinate, Lemma 1.3 reads as:

Lema 2.1 ([23, 24]). Given an immersed H- surface Σ ⊂ E(κ,τ), the following equations
are satisfied:

K = Ke + τ
2 +(κ−4τ

2)ν2 (2.3)
Qz = λ (κ−4τ

2)νt (2.4)

tz =
λz

λ
t+Qν (2.5)

tz = λ (H + iτ)ν (2.6)

νz = −(H− iτ)t− Q
λ

t (2.7)

|t|2 =
1
2

λ (1−ν
2), (2.8)

where t = 〈T,∂z〉, t = 〈T,∂z〉, Ke is the extrinsic curvature and K is the Gaussian curvature
of I.

2.2 The Abresch-Rosenberg Differential
One of the main points in the work of Abresch-Rosenberg [1, 2] is to prove that certain
quadratic differential QAR is holomorphic when Σ has constant mean curvature. From being
holomorphic, and the Poincaré-Hopf Index Theorem, it is easy to see that such quadratic
differential must vanish on a topological sphere. we proceed recalling the definition of this
differential.

For an immersed surface Σ ⊂ E(κ,τ), there is a globally defined quadratic differential,
called the Abresch-Rosenberg differential.

Definition 2.1 ([1, 2]). Given a local conformal parameter z for I, the Abresch-Rosenberg
differential is defined by:

QAR = QARdz2 = (2(H + iτ)Q− (κ−4τ
2)t2)dz2,

10
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moreover, associated to the Abresch-Rosenberg differential we define the Abresch-Rosenberg
map qAR : Σ→ [0,+∞) given by:

qAR =
4|QAR|2

λ 2 .

Note that QAR and qAR do not depend on the conformal parameter z, hence QAR and
qAR are globally defined on Σ.

Then, we can show the following

Theorem 2.1 ([1, 2]). Let Σ be a H- surface in E(κ,τ), then the Abresch-Rosenberg dif-
ferential QAR is holomorphic for the conformal structure induced by the first fundamental
form.

Proof. Using Lemma 2.1, we have the following

QAR
z = 2(H + iτ)Qz−2(k−4τ

2)ttz

= 2(H + iτ)λ (k−4τ
2)νt−2(k−4τ

2)tλ (H + iτ)ν
= 0.

Then QARdz2 is a holomorphic quadratic differential on Σ.

2.3 The Abresch-Rosenberg shape operator
Lemma 1.1 tells us that, from the existence of a holomorphic quadratic differential, we
should be able to find a Codazzi pair on any H−surface in E(κ,τ). The pair of real quadratic
forms that satisfies the Codazzi condition in the case that τ = 0, i.e., when E(κ,τ) is a
product manifold, was found a long time ago (cf. [3]). Our goal here is to obtain a pair of
real quadratic forms on any H−surface that satisfies the Codazzi condition and the Abresch-
Rosenberg differential appears as its Hopf differential.

2.3.1 H−surfaces in E(κ,τ) with τ = 0

Consider a complete immersed H−surface Σ ⊂M2(κ)×R. According to the notation in-
troduced above, in [3] and [7] were defined a self-adjoint endomorphism S along Σ given
by

SX = 2H AX−κ〈X ,T〉T+
κ

2
|T|2 X−2H2X , X ∈ X(Σ). (2.9)

Consider the bilinear symmetric form IIS associated to S given by (2.9). In [3], it was
shown that (I, IIS) is a Codazzi pair on Σ when H is constant. Moreover, it is traceless,
i.e., tr(S) = 0 = H(I, IIS), and the Hopf differential associated to (I, IIS) is the Abresch-
Rosenberg differential QAR in M2(κ)×R.

11
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2.3.2 H−surfaces in E(κ,τ) with τ 6= 0

The main point in this section is to see that the Abresch-Rosenberg differential has an inter-
pretation in terms of Codazzi pairs on any H−surface in E(κ,τ) when τ 6= 0. In this case,
we have that H2 + τ2 > 0. Define θ ∈ [0,2π) by

e2iθ =
H− iτ√
H2 + τ2

.

Let Σ ⊂ E(κ,τ) be a H−surface and z be a local conformal parameter. Then, up to the
complex constant H + iτ , we can re-define the Abresch-Rosenberg differential as:

QARdz2 =

(
Q− κ−4τ2

2(H + iτ)
t2
)

dz2

=

(
Q− κ−4τ2

2
√

H2 + τ2
(eiθ t)2

)
dz2.

(2.10)

Given the tangential vector field T, define Tθ = cosθT+ sinθJT, then

〈Tθ ,∂z〉= eiθ t,

hence,

QARdz2 =

(
〈A∂z,∂z〉−α〈Tθ ,∂z〉2

)
dz2,

where α =
κ−4τ2

2
√

H2 + τ2
, and A is the shape operator asociated to N, that is, II(X ,Y ) =

〈AX ,Y 〉, X ,Y ∈ X(Σ). This leads us to the following definition:

Definition 2.2. Given a H−surface Σ⊂ E(κ,τ), the Abresch-Rosenberg quadratic form
IIAR is defined as:

IIAR(X ,Y ) = II(X ,Y )−α〈Tθ ,X〉〈Tθ ,Y 〉+
α |T|2

2
〈X ,Y 〉, (2.11)

or equivalently, the Abresch-Rosenberg shape operator SAR is defined by:

SARX = A(X)−α〈Tθ ,X〉Tθ +
α |T|2

2
X , (2.12)

in particular, the traceless Abresch-Rosenberg shape operator S is given by:

SX = SARX−HX = A(X)−α〈Tθ ,X〉Tθ +
α |T|2

2
X−HX , (2.13)

where X ,Y ∈ X(Σ).
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First, we shall study the geometric properties of the above quadratic form and its rela-
tionship with the Abresch-Rosenberg differential:

Proposition 2.1. The following equations hold for the fundamental pair (I, IIAR):

(1.) IIAR(∂z,∂z)dz2 = QARdz2, where z is a local conformal parameter for I.

(2.) H(I, IIAR) = H.

(3.) |S|2 = 2qAR.

(4.) Ke(I, IIAR) = Ke(I, II)+α〈STθ ,Tθ 〉+
α2 |T|4

4
.

Moreover, the square norm of the shape operator |A|2 and the square norm of the trace-
less Abresch-Rosenberg shape operator |S|2 are related by

|A|2 = |S|2 +2α〈STθ ,Tθ 〉+
α2

2
|T|4 +2H2, (2.14)

and, it holds
|T|4

2
− 〈STθ ,Tθ 〉2

|S|2
=
〈STθ ,JTθ 〉2

|S|2
. (2.15)

Proof. Take a local conformal parameter z for 〈,〉. Then, from the definition of IIAR and
〈∂z,∂z〉= 0, we have that

IIAR(∂z,∂z) = II(∂z,∂z)−α〈Tθ ,∂z〉2 +
α |T|2

2
〈∂z,∂z〉

= II(∂z,∂z)−α〈Tθ ,∂z〉2

= QAR.

Hence IIAR(∂z,∂z)dz2 = QARdz2 and this shows (1.).
To show (2.), let p ∈ Σ a fixed point and {e1,e2} an orthonormal base of TpΣ, therefore

using that |Tθ |= |T|, we have the following

H(I, IIAR) =
1
2

tra(SAR)

=
1
2

2

∑
i=1
〈SAR(ei),ei〉

=
1
2

2

∑
i=1

II(ei,ei)−α〈Tθ ,ei〉2 +
α |T|2

2
〈ei,ei〉

= H− α

2
|Tθ |2 +

α

2
|T|2

= H.

(2.16)
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To show (3.), Take a local conformal parameter z = u+ iv for metric 〈,〉, that is 〈,〉 =
2λ |dz|2. On the one hand, from (1.) and the equation 〈∂z,∂z〉= 0 we have:

QAR = 〈S∂z,∂z〉=
ê− ĝ

4
− i

f̂
2
,

where ê = 〈S∂u,∂u〉, ĝ = 〈S∂v,∂v〉 and f̂ = 〈S∂u,∂v〉, observe that 〈S∂u,∂u〉 = −〈S∂v,∂v〉
since S is a traceless operator. Therefore

∣∣∣QAR
∣∣∣2 = ( ê− ĝ

4

)2

+

(
f̂
2

)2

=
ê2

4
+

f̂ 2

4
. (2.17)

On the other hand, consider the orthonormal base { 1√
λ

∂u,
1√
λ

∂v}, then we compute |S|2

in the above base

|S|2 = 1
λ 2

(
〈S∂u,∂u〉2 + 〈S∂v,∂v〉2 +2〈S∂u,∂v〉2

)
=

2
λ 2

(
ê2 + f̂ 2

)
. (2.18)

Hence, using the equations (2.17) and (2.18), we get

|S|2 =
8
∣∣QAR

∣∣2
λ 2 = 2qAR.

To show (4.), we use the Abresch-Rosenberg quadratic form (2.11). It is clear that
|Tθ |= |JTθ |= |T|, then;

IIAR(Tθ ,Tθ ) = II(Tθ ,Tθ )−
α |T|4

2
.

IIAR(Tθ ,JTθ ) = II(Tθ ,JTθ ).

IIAR(JTθ ,JTθ ) = II(JTθ ,JTθ )+
α |T|4

2
.

(2.19)

Thus, we have

IIAR = II on the set U = {p ∈ Σ : |T|2 (p) = 0}.

Then, take p ∈ Σ\U and consider the orthonormal basis in TpΣ defined by:

e1 =
Tθ

|T|
and e2 =

JTθ

|T|
. (2.20)

From (2.19), we obtain:

IIAR(e1,e1)− IIAR(e2,e2) = II(e1,e1)− II(e2,e2)−α |T|2 , (2.21)
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and, since {e1,e2} is orthonormal at p and the equations (2.19), we have

Ke(I, IIAR) = IIAR(e1,e1)IIAR(e2,e2)− IIAR(e1,e2)
2

= II(e1,e1)II(e2,e2)− II(e1,e2)
2

+
α

2
(II(e1,e1)− II(e2,e2)) |T|2−

α2

4
|T|4 .

On the one hand, replacing the formula (2.21) in the last formula for Ke(I, IIAR) and
simplifying terms, we get at p:

Ke(I, IIAR) = Ke(I, II)+
α

2
(IIAR(Tθ ,Tθ )− IIAR(JTθ ,JTθ ))+

α2 |T|4

4
(2.22)

On the other hand, recall that S is traceless and hence at a point p ∈ Σ, we can consider
an orthonormal basis {E1,E2} of principal directions for S, i.e,

SE1 = λE1, SE2 =−λE2 and |S|2 = 2λ
2.

Then, there exists β ∈ [0,2π) such that

Tθ = |T|(cosβ E1 + sinβE2),

and hence, one can easily check

〈STθ ,Tθ 〉=−〈SJTθ ,JTθ 〉, (2.23)

hence from (2.13) and (2.23), we have

IIAR(Tθ ,Tθ )− IIAR(JTθ ,JTθ ) = 〈STθ ,Tθ 〉−〈SJTθ ,JTθ 〉

= 2〈STθ ,Tθ 〉,
(2.24)

thus, joining the equations (2.22) and (2.24) we obtain the expression for Ke(I, IIAR).
The equation (2.23) and a straightforward shows that

|T|4

2
− 〈STθ ,Tθ 〉2

|S|2
=
〈STθ ,JTθ 〉2

|S|2
,

which shows (2.15).
Finally, the equation (2.14) can be easily obtained observing that |A|2 = 4H2−2Ke and

|S|2 = 2qAR = 2(H2−Ke(I, IIAR)).

Hence, Lemma 1.1 implies:

Theorem 2.2. Given any H-surface in E(κ,τ), H2 + τ2 6= 0, it holds:
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QAR is holomorphic if, and only if, (I, IIAR) is a Codazzi pair.

Proof. This follows from properties (1.) and (2.) of pair (I, IIAR) in Proposition 2.1, Theo-
rem 2.1 and Lemma 1.1.

So, we can summarize the above in the following

Lema 2.2. Given a H−surface Σ⊂E(κ,τ), H2+τ2 6= 0, consider the symmetric two tensor
given by

IIAR(X ,Y ) = II(X ,Y )−α〈Tθ ,X〉〈Tθ ,Y 〉+
α |T|2

2
〈X ,Y 〉,

where

• α =
κ−4τ2

2
√

H2 + τ2
,

• e2iθ = H−iτ√
H2+τ2 and

• Tθ = cosθT+ sinθJT.

Then, (I, IIAR) is a Codazzi Pair with constant mean curvature H. Moreover, the (2,0)−part
of IIAR with respect to the conformal structure given by I agrees (up to a constant) with the
Abresh-Rosenberg differential.

Having disposed the equation (2.14), we have the following

Corollary 2.1. Let Σ be a H−surface on E(κ,τ), H2 + τ2 6= 0 and S the traceless Abresch-
Rosenberg shape operator defined on Σ. Then, it is equivalent

• |S| is bounded,

• |A| is bounded,

• |K| is bounded.

Proof. On the one hand, from equation (2.14) is clear that |A| is bounded if, and only if, |S|
is bounded on Σ. On the other hand, 4H2−2Ke = |A|2 and the Gauss equation, then |K| is
bounded if, and only if, |A| is bounded.

2.4 Classification results for H−surfaces in E(κ,τ)
The purpose of this section is to give the principal classification result for complete H−surfaces
in E(κ,τ) when the Abresch-Rosenberg map qAR is constant. First, we recall the classifica-
tion theorem when qAR vanishes.
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Theorem 2.3 ([1, 2, 24]). Let Σ ⊂ E(κ,τ) be a complete H− surface whose Abresch-
Rosenberg differential vanishes. Then Σ is invariant by a one parameter group of isometries
of E(κ,τ). Moreover, Σ is either a slice in S2×R or H2×R if H = 0 = τ and in the case
H2 + τ2 6= 0 the Gauss curvature K of these examples satisfies:

16(H2 + τ
2)K = 16(H2 + τ

2)2 +16(H2 + τ
2)(κ−4τ

2)ν2− (κ−4τ
2)2(1−ν

2)2

and it holds:

• If either 4(H2 + τ2) > κ − 4τ2 when κ − 4τ2 > 0 or H2 + τ2 > −(κ − 4τ2) when
κ−4τ2 < 0, then K > 0, i.e, Σ is a rotationally invariant sphere. In particular, 4H2+
κ > 0 .

• If 4H2 + κ = 0 and ν = 0, then K = 0, i.e Σ is either a vertical plane in Nil3 or a
vertical cylinder over a horocycle in H2×R or ˜PSL(2,R).

• There exists a point with negative Gauss curvature in the rest of examples.

Remind that E(κ,τ) is a Riemannian submersion π : E(κ,τ)→M2(κ). Given γ a reg-
ular curve in M2(κ), π−1(γ) is a surface in E(κ,τ) that has ξ as a tangent vector field, in
this case ν = 0. So, ξ is a parallel vector field along π−1(γ) and hence π−1(γ) is a flat
surface and its mean curvature is given by 2H = kg, where kg is the geodesic curvature of
γ in M2(κ) (cf. [25, Proposition 2.10]). We will call π−1(γ) a Hopf cylinder of E(κ,τ)
over curve γ . If γ is a closed curve, π−1(γ) is a flat Hopf cylinder and additionally, if π

is a circle Riemannian submersion, π−1(γ) is a Hopf torus. The latter case occurs when
E(κ,τ) is a Berger sphere (see, [64, Theorem 1]), i.e., κ = 1 and τ 6= 0. If kg is constant,
we call it Hopf H−torus.

Now, with the definition of Hopf cylinders, we classify H-surfaces in E(κ,τ) with con-
stant non-zero Abresch-Rosenberg map qAR.

Theorem 2.4. Let Σ ⊂ E(κ,τ) be a complete H−surface and suppose qAR is a positive
constant map on Σ, then Σ is a Hopf cylinder over a complete curve of curvature 2H on
M2(κ).

Proof. We can assume, without loss of generality, that Σ is simply-connected by passing to
the universal cover.

Since qAR is a positive constant, by the one hand from (cf. [24, Lemma 2.2]) we have
0 = ∆ lnqAR = 4K, that is, the Gaussian curvature vanishes identically on Σ. Then, using
Gauss equation for Σ, we have:

Ke =−τ
2− (κ−4τ

2)ν2. (2.25)

By the other hand, we can work as in the proof of [24, Theorem 2.3] to consider a con-
formal parameter z for 〈,〉, such that 〈,〉= |dz|2 and then the differential QAR is holomorphic
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with constant norm, thus we conclude QAR = c, where c ∈ R is a real constant such that

qAR = H2−Ke(I, IIAR) = 4
∣∣∣QAR

∣∣∣2 = 4c2,

and we obtain that
Ke(I, IIAR) = H2−4c2 is constant on Σ. (2.26)

Moreover, since QAR is a real constant along Σ, we obtain

4c = 4QAR = IIAR

(
Tθ

|T|
,

Tθ

|T|

)
− IIAR

(
JTθ

|T|
,
JTθ

|T|

)

= 2
〈STθ ,Tθ 〉
|T|2

,

or, equivalently
2c |T|2 = 〈STθ ,Tθ 〉. (2.27)

Then, from property (4.) of Proposition 2.1, equation (2.25), equation (2.26) and equa-
tion (2.27), we obtain

H2−4c2 =−τ
2− (κ−4τ

2)(1−|T|2)+ α2 |T|4

4
+2αc |T|2 ,

that is,
A |T|4 +B |T|2 +C = 0, (2.28)

where

A =
α2

4
, B = 2αc+κ−4τ

2 and C = 4c2−H2− τ− (κ−4τ
2).

Since A 6= 0, (2.28) tells us that |T| is constant along Σ and hence ν is constant along Σ,
which implies that Σ is a vertical cylinder (cf. [23, Theorem 2.2]).

2.5 Abresch-Rosenberg surfaces
In this section, we define the Abresch-Rosenberg surfaces, next, we describe them.

Definition 2.3. A constant mean curvature surface Σ ⊂ E(κ,τ) is an Abresch-Rosenberg
surface if the Abresch-Rosenberg differential QAR vanishes on Σ. In particular by Theorem
2.3, Σ must be invariant by a one parameter group of isometries of E(κ,τ).

Now, we give some examples of Abresch-Rosenberg surfaces in E(κ,τ), as we know
from [1, 2], we have a complete description of the Abresch-Rosenberg surfaces in product
spaces. Despite that in the case τ 6= 0, we do not have a complete description of the Abresch-
Rosenberg surfaces in E(κ,τ), here we give some examples of these surfaces. We follow
the references [1, 2, 29, 35, 49, 50, 63] and the references therein.
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• H2×R.

Consider H2×R as submanifold of Lorentzian 4-space L4, given by

H2×R= {(x1,x2,x3,x4) :−x2
1 + x2

2 + x2
3 = 1,x1 > 0}.

1. Rotationally invariant spheres [1, 2]. One has embedded constant mean cur-
vature spheres that are rotationally invariant. These examples are parametrized
as follows: set H > 1

2 and I = [−1,1]. Consider

r(u) = 2arcsinh
(√

1−u2

4H2−1

)
h(u) =

4H√
4H2−1

arcsin
(

u
2H

)
and the curve α : I →P given by

α(u) = (coshr(u),sinhr(u),0,h(u)),

where P = {(x1,x2,x3,x4) ∈ H2×R : x2 ≥ 0,x3 = 0}. Then, the rotationally
invariant surface Σ ⊂ H2 ×R associated to curve α , can be parametrized as
follows:

ψ(u,v) = (coshr(u),sinhr(u)cosv,sinhr(u)sinv,h(u)),

for (u,v) ∈ I × R
2π

. This surface is rotationally invariant sphere with constant
mean curvature H.

2. Convex rotationally invariant graphs D2
H over horizontal leaves H2×{ξ0} (cf.

[1, 2]), which are asymptotically conical whenever 4H2−1 < 0.

3. Rotationally invariant embedded annulus C2
H with two asymptotically conical

ends (cf. [1, 2]). It is generated by rotating a strictly concave curve with asymp-
totic slopes ± tan(arccos2H).

4. Embedded constant mean curvature surfaces which are orbits under a two
dimensional solvable subgroup of Iso(H2×R) [1, 2].

• S2×R.

Consider S2×R as submanifold of R4, defined as

S2×R= {(x1,x2,x3,x4) : x2
1 + x2

2 + x2
3 = 1}.

Here R4 denotes the usual 4-dimensional Euclidean Space.
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2.5. ABRESCH-ROSENBERG SURFACES

1. Rotationally invariant spheres [1, 2]. There exists embedded constant mean
curvature spheres that are rotationally invariant. These examples are parametrized
as follows: Set H > 1

2 and I = [−1,1]. Consider

r(u) = 2arcsin
(

4H2−1+2u2

4H2 +1

)
h(u) =

4H√
4H2 +1

arcsinh
(

u
2H

)
.

and the curve α : I →P given by:

α(u) = (cosr(u),sinr(u),0,h(u)),

where P = {(x1,x2,x3,x4) ∈ S2×R : x2 ≥ 0,x3 = 0}. Then, the rotationally
invariant surface Σ⊂ S2×R associated to curve α can be parametrized as:

ψ(u,v) = (cosr(u),sinr(u)cosv,sinr(u)sinv,h(u)),

for (u,v) ∈I × R
2π

. This sphere has constant mean curvature H.

• Heisenberg space Nil3.
Set k = 0 and τ = 1/2, then Nil3 = E(0,1/2) ts the Heisenberg space and we can
describe it as Nil3 = (R3,ds2), where

ds2 = dx2 +dy2 +
(y

2
dx− x

2
dy+dz

)
. (2.29)

Now, if we introduce cylindrical coordinates in Nil3, that is, we parametrize

R3 \{(0,0,z) ∈ R3 : z ∈ R}

by parameters r > 0 and θ ∈ R/2π . We change coordinates as x = r cosθ , y = r sinθ

and the z-coordinate. Then, the metric ds2 in equation (2.29) takes the form

ds2 = dr2 +
(
r2 +

r4

4
)
dθ

2 +dz2− r2dθdz.

1. Rotationally invariant spheres [29].
Consider the curve in Nil3, α : I ⊂ R→P , where
P = {(r,θ ,z) ∈ Nil3 : r > 0,θ = 0}, given by:

α(u) = (r(u),0,z(u)).

Fix H > 0, r as a parameter and define:

z(r) =
1

4H

√
(4+ r2)(4−H2r2)+

1+H2

H2 arcsin

√
4−H2r2

2
√

1+H2
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here r ∈ (0, 2
H ). Then, the rotationally invariant surface Σ⊂Nil3 associated to α

can be parametrized as:

ψ(u,v) = (r(u)cosθ ,r(u)sinθ cosv,sinθ ,z(u)),

for (u,θ) ∈ I × R
2π

(see [29]). This gives us the rotationally invariant sphere
with constant mean curvature H in Nil3.

2. Surfaces invariant under translations [29].
The H−surfaces in Nil3 invariant under translations are:

a. The minimal vertical planes.
b. The minimal surfaces given by the graph of

z =
xy
2
− c
(

y
√

1+ y2

2
+

1
2

ln(y+
√

1+ y2)

)
c ∈ R.

c. The H-surfaces given by the graph of

z =
xy
2
± 1

2H

(√
1+ y2

√
1−H2y2 +

1+H2

H
arcsin

√
1−H2y2

1+H2

)
,

where − 1
H ≤ y≤ 1

H .

3. Catenoids and Horizontal Umbrellas [2]: These are minimal surfaces in Nil(3)
that are invariant under the group of rotations around some vertical axis.

• Berger Spheres.

A Berger sphere, denoted by S3
B(k,τ) is the usual three dimensional sphere in C2,

S3 = {(z,w) ∈ C2 : |z|2 + |w|2 = 1}, endowed with the metric

〈X ,Y 〉(k,τ) =
4
τ

(
〈X ,Y 〉+

(4τ2

k
−1
)
〈X ,V 〉〈Y,V 〉

)
.

Here 〈,〉 denotes the standard round metric on S3, V : S3 → S3 is given V (z,w) =
(iz, iw) and k > 0 and τ 6= 0 are constants. S3

B(k,τ) is a model for the homogeneous
space E(κ,τ) when k > 0 and τ 6= 0.

1. Rotationally invariant spheres [63]. Let α : I ⊂ R→ S2 be the curve given
by:

α(u) = (cosx(u)eiy(u),sinx(u)), cosx(u)> 0

Let Σ ⊂ S3
B(k,τ) be a rotationally invariant surface associated to α which is

parametrized as (see [63]):

ψ(u,v) = (cosx(u)eiy(u),sinx(u)eiv).
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If H = 0, then Σ is a the great 2-sphere given (up to isometries) by:

Σ = {(z,w) ∈ C2 : Im(z) = 0}.

If H > 0, Consider x ∈ (0,arctan
√

k
2H ) as a parameter, the function:

y(x) =−arctan
(

τ

H
λ (x)

)
−δ

H
√
|k−4τ2|

τ
√

4H2 + k
arctan

(
|k−4τ2|√

4H2 + k
λ (x)

)
,

where δ = sign(k−4τ2) and

λ (x) =

√
1− 4H2

τ
tan2(x)√

1+ 4τ2

k tan2(x)
.

The aboves formulas gives us a parametrization of a half rotationally invariant
sphere in S3

B. The other half is obtained by reflecting the solution along the line
x = 0.

• ˜PSL(2,R).

Set
˜PSL(2,R) : {(z,w) ∈ C2 : |z|2−|w|2 = 1}

endowed with the metric

g(Ei,E j) =−
4
k

δi j,g(V,V ) =
16τ2

k2 ,g(V,Ei) = 0, i, j = 1,2.

Where k and τ are real numbers such that k < 0 and τ 6= 0 and {E1,E2,V} is a global

frame on X( ˜PSL(2,R)) defined by

E1(z,w) = (w,z),E2(z,w) = (iw, iz),V (z,w) = (iz, iw).

Then ( ˜PSL(2,R),g) is a model for an homogeneous space E(κ,τ) with k< 0. ˜PSL(2,R)
is a fibration over H2 with fibers generated by unit Killing vector field ξ =− k

4τ
V .

1. Rotationally invariant spheres [63]. Let α : I →P be the curve given by:

α(u) = (coshx(u)eiy(u),sinhx(u)),

where P = {(z,a) ∈C×R : |z|2−a2 = 1}. Let Σ⊂ ˜PSL(2,R) be a rotationally
invariant surface associated to α , which is parametrized as (see [63]):

ψ(u,v) = (coshx(u)eiy(u),sinhx(u)eiv).
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Fix H > 0, so that 4H2 + k > 0 and consider x ∈
(
− arctanh

√
−k

2H ,0
)

as a pa-

rameter, define the function:

y(x) =−arctan
(

τ

H
λ (x)

)
− H

√
|4τ2− k|

τ
√

4H2 + k
arctan

(
4τ2− k√
4H2 + k

λ (x)
)
,

where

λ (x) =

√
1+ 4H2

τ
tanh2(x)√

1− 4τ2

k tanh2(x)
.

The above formulas gives us a parametrization of a half rotationally invariant
sphere in ˜PSL(2,R). The other half is obtained by reflecting the solution along
the line x = 0.
When τ = −1 and 1− 4H2 > 0 in the model of disk for H2 we can construct
invariant surfaces in ˜PSL(2,R). In this model the surface has the parametrization

ϕ(ρ,θ) = (tanh
ρ

2
cosθ , tanh

ρ

2
sinθ ,u(ρ)),

where ρ is the hyperbolic distance measure from the origin to D2, θ ∈ [0,2π]
and

u(ρ) =
4
√

2H√
1−4H2

ln
(√

coshρ +

√
1+4H2

1−4H2 + coshρ

)

+2arctan
(
−

√
8H2

1−4H2

√
coshρ√

1+4H2

1−4H2 coshρ

)
.

2. Minimal rotational invariant graphs [50] . Consider the surface given by the
parametrization

ϕ(ρ,θ) = (tanh
ρ

2
cosθ , tanh

ρ

2
sinθ ,u(ρ))

where ρ is the hyperbolic distance measure from the origin to D2, θ ∈ [0,2π]
and

u(ρ) =
∫

ρ

sinh−1 d

d
√

1+4τ2 tanh2 r
2√

sinh2 r−d2
dr.

Then, if d = 0 the surface is the slice in ˜PSL(2,R). Now, if d > 0 the parametriza-
tion ϕ describes a rotational surface called the catenoid, which is embedded and
homeomorphic to an annulus.
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3. H- surfaces invariant by parabolic isometries of ˜PSL(2,R) [50]. We will take
the half-plane model for the hyperbolic space H2. Consider a curve α(y) =
(0,y,u(y)) in this model and apply to α a one-parameter group of parabolic
isometries Γ. Denote as Σ = Γ(α) the invariant H- surface by Γ generated by α .
Then Σ has a parametrization as

ϕ(x,y) = (x,y,u(y)) y > 0.

where, if H = 0, then

u(y) =
√

1+4τ2arcsin(dy).

If H = 1
2 , then

u(y) =
√

1+4τ2arcsin(dy−1)+
2
√

1+4τ2

tan(arcsin(dy−1)
2 )+1

.

If H > 1
2 , then

u(y) =
√

1+4τ2arcsin(dy−2H)

− 4H
√

1+4τ2
√

4H2−1
arctan

(
2H tan(arcsin(dy−2H)

2 +1)
√

4H2−1

)
.
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Chapter 3

Simons’ Type Formula in E(κ,τ) and
applications

In this chapter, we obtain a Simons’ type formula for the traceless Abresch-Rosenberg shape
operator S given on a H−surface Σ ⊂ E(κ,τ), H2 + τ2 6= 0, defined by (2.13). Using this
Simons’ formula, we will study the behaviour of complete H- surfaces with finite Abresch-
Rosenberg total curvature, we also get an estimate for the first eigenvalue of a Schrödinger
operator in any complete H- surface with finite Abresch-Rosenberg total curvature. Finally,
we use the Simons’ formula together with the Omori-Yau Maximum principle to obtain
pinching theorems for complete H-surfaces immersed in E(κ,τ).

This chapter is organized as follows; in Section 3.1, we will obtain a Simons’ Type
Formula on any H−surface in E(κ,τ), H2 + τ2 6= 0, using the Abresch-Rosenberg shape
operator defined in Chapter 2. In Section 3.2, we will focus on complete H−surfaces Σ

with finite Abresch-Rosenberg total curvature immersed in E(κ,τ) and we study its be-
havior. In Section 3.3, we will estimate the first eigenvalue of any Schrödinger Operator
L = ∆+V , V continuous, defined on H−surfaces with finite Abresch-Rosenberg total cur-
vature. Finally, in Section 3.4, using the Simons’ Type Formula together with the Omori-
Yau’s Maximum Principle, we will classify complete H−surfaces (not necessary with finite
Abresch-Rosenberg total curvature) in E(κ,τ), H2 + τ2 6= 0.

3.1 Simons’ Type Formula in E(κ,τ)

Let ω1, . . . ,ωn be a local dual frame associated to a frame field defined in a neighbor-
hood of a point p on a manifold Σ and φ be a symmetric bilinear (2,0)-tensor defined
on X(Σ)×X(Σ), so φ can be expressed like φ = ∑i, j φi jωi×ω j in this neighborhood.
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The structure equations of Σ are given by

dωi = ∑
j

ωi j∧ω j, ωi j +ω ji = 0

dωi j = ∑
k

ωik∧ωk j +Ωi j.
(3.1)

Where
Ωi j =−

1
2 ∑Ri jklωk∧ωl.

The first covariant derivative of φi j is defined by

∑
k

φi jkωk = dφi j +∑
k

φk jωki +∑
k

φikωk j. (3.2)

The second covariant derivative of φi j is defined by

∑
l

φi jklωl = dφi jk +∑
m

φm jkωmi +∑
m

φimkωm j +∑
m

φi jmωmk. (3.3)

S. Y. Cheng and S. T. Yau used the structure equations of Σ and the covariant derivatives
of a tensor to compute the Laplacian of the norm squared of any symmetric tensor that
satisfies the Codazzi equation.

Theorem 3.1 ([65]). Let be a symmetric bilinear (2,0)- tensor defined on a manifold Σ,
suppose that φ can be expressed locally around of one point p ∈ Σ like ∑i, j φi jωi×ω j and
satisfies a Codazzi equation φi j,k = φik, j. Then in the point p, we have

1
2

∆(|φ |2) = ∑
i, j,k

(φi j,k)
2 +∑

i
λi(tr(φ))ii +

1
2 ∑

i, j
Ri ji j(λi−λ j)

2, (3.4)

where λ1, . . . ,λn are the eigenvalues of tensor φ in the point p.

Proof. The exterior differential of the first covariant derivative to be:

∑
l,k

φi jklωl ∧ωk = ∑
k

φk jΩki +∑
k

φikΩk j, (3.5)

Hence the structure equations combined with equation (3.5) gives the relationship:

φi jkl−φi jlk =−∑
m

φm jRmilk−∑
m

φimRm jlk. (3.6)

The Laplacian of φi j is defined like ∑k φi jkk and so using equation (3.6), we have:

∆φi j = ∑
k

φi jkk

= ∑
k
(φi jkk−φik jk)+∑

k
(φik jk−φikk j)+∑

k
(φikk j−φkki j)+∑

k
φkki j

= ∑
k
(φi jkk−φik jk)+∑

k
(φikk j−φkki j)+∑

k
φkki j−∑

m,k
φmkRmi jk−∑

m,k
φimRmkk j,

, (3.7)
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from hypothesis φi j,k = φik, j, consequently we can reduces the above formula of Laplancian
as

∆φi j = ∑
k

φkki j−∑
m,k

φmkRmi jk−∑
m,k

φimRmkk j. (3.8)

Now |φ |2 = ∑i, j φ 2
i j, then the Laplacian of |φ |2 is given by:

∆ |φ |2 = ∑
k

(
∑
i, j

φ
2
i j
)

kk = 2
[
∑
i, j,k

φ
2
i j,k +∑

i, j
φi j∆φi j

]
(3.9)

Denotes tra(φ) as trace of φ , then replaces equation (3.8) in equation (3.9), we get

1
2

∆ |φ |2 = ∑
i, j,k

(φi j,k)
2 +∑

i, j
φi j(tra(φ))i j− ∑

i, j,k,m
φi jφmkRmi jk− ∑

i, j,k,m
φi jφimRmkk j. (3.10)

So the equation (3.10) in the point p we obtain the equation (3.4).

Corollary 3.1. Let (I,A) be a Codazzi pair on a manifold Σ and II(X ,Y ) = I(AX ,Y ) the
bilinear symmetric (2,0)- tensor associated to pair (I,A). Suppose that II can be expressed
around of one point p as ∑i, j φi jωi×ω j, then in the point p, we have:

1
2

∆(|A|2) = |∇A|2 +∑
i

λi(tra(A))ii +
1
2 ∑

i, j
Ri ji j(λi−λ j)

2, (3.11)

Where e λ1, . . . ,λn are the eigenvalues of A in the point p.

Proof. Choose around of point p a geodesic neighbourhood {e1, . . . ,en}, then in the point
p, we have:

(φi j)k(p) = ek(I(A(ei),e j))(p) = I(∇ekA(ei)(p),e j(p))+ I(A(ei)(p),∇eke j(p)),

therefore ∑i, j,k((φi j)k)
2(p) = |∇A|2 (p), hence we get the equation (3.11).

Now, we will obtain a Simons’ type formula for the traceless Abresch-Rosenberg shape
operator S defined on a H−surface Σ⊂ E(κ,τ), τ 6= 0.

Theorem 3.2. Let Σ be a H−surface in E(κ,τ). Then, the traceless Abresch-Rosenberg
shape operator satisfies

1
2

∆|S|2 = |∇S|2 +2K|S|2, (3.12)

or, equivalently, away from the zeroes of |S|,

|S| ∆ |S|−2K |S|2 = |∇ |S||2 . (3.13)
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Proof. Since (I, IIAR) is a Codazzi pair on Σ, from Lemma 1.1 we get that (I, IIAR−H I)
is also a Codazzi pair on Σ, observe that IIAR−H I is nothing but the traceless Abresch-
Rosenberg fundamental form. Hence, from equation (3.11), we obtain

1
2

∆ |S|2 = |∇S|2 +2K |S|2 ,

as claimed. Here, we have used that Ri ji j = K since we are working in dimension two. Also,
since S is traceless, the two eigenvalues, λi, are opposite signs so (λi−λ j)

2 = 4λ 2
i = 2 |S|2.

To obtain (3.13), using ∆ |S|2 = 2 |S|∆ |S|+2 |∇ |S||2, we get

|S|∆ |S|+ |∇ |S||2 = |∇S|2 +2K |S|2

Thus, since Σ has dimension two and S is traceless and Codazzi, it holds (cf. [10])

|∇S|2 = 2 |∇ |S||2 ,

and we finally obtain (3.13).

3.2 Finite Abresch-Rosenberg Total Curvature
Complete H−surfaces Σ⊂R3 of finite total curvature, that is, those that the L2−norm of its
traceless second fundamental form is finite, are of capital importance on the comprehension
of H−surfaces. If Σ has constant nonzero mean curvature and finite total curvature, then it
must be compact. In the case H = 0, Osserman’s Theorem gives an impressive description
of them.

When we move to H−surfaces in E(κ,τ), the traceless part of the second fundamen-
tal form encodes less information about the surface. In this case, the traceless part of the
Abresch-Rosenberg form gives a better analog to finite total curvature.

Definition 3.1. Let Σ⊂ E(κ,τ) be a complete H−surface, H2 + τ2 6= 0. We say that Σ has
finite Abresch-Rosenberg total curvature if the L2−norm of the traceless Abresch-Rosenberg
form is finite, i.e, ∫

Σ

|S|2 dvg <+∞.

where dvg is the volume element of Σ.

We must point out here that the family of complete constant mean curvature surfaces
with finite Abresch-Rosenberg total curvature is large, as a first observation, any Abresch-
Rosenberg surface has finite Abresch-Rosenberg total curvature. We focus on H = 1/2
surfaces in H2×R to show this fact. Recall the following result of Fernández-Mira:

Theorem [26, Theorem 16]. Any holomorphic quadratic differential on an
open simply connected Riemann surface is the Abresch-Rosenberg differential
of some complete surface Σ with H = 1/2 in H2×R. Moreover, the space of
noncongruent complete mean curvature one half surfaces in H2×R with the
same Abresch-Rosenberg differential is generically infinite.
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Then, we take the disk D as our open Riemann surface and a holomorphic quadratic
differential Q on D that extends continuously to the boundary. Let Σ be the H = 1/2 surface
constructed in [26, Theorem 16]. Now, we will see that Σ has finite Abresch-Rosenberg total
curvature.

For a conformal parameter z ∈ D, we have I = 2λ |dz|2 and hence Q = f (z)dz2, for a
holomorphic function f :D→C that extends continuously to the boundary. Then, the square

norm of the traceless Abresch-Rosenberg operator is given by |S|2 = 4| f |2
λ 2 and dvg = λ 2 |dz|2.

Thus, we have ∫
Σ

|S|2 dvg = 4
∫
D
| f (z)|2 |dz|2 <+∞,

as claimed.
The study of constant mean curvature surfaces with finite Abresch-Rosenberg total cur-

vature is complementary to study of surfaces with finite total curvature in [32].
Note that we are assuming H2 + τ2 6= 0, otherwise we consider the usual Abresch-

Rosenberg operator given by (2.9). In [8], the authors studied complete H−surfaces of
finite Abresch-Rosenberg total curvature in product spaces M2(κ)×R. The fundamental
tool in [8] is the Simons’ Type Formula for |S| developed in [7] when τ = 0. Hence, using
our Simons’ Type Formula (Theorem 3.2), we can extend to the case τ 6= 0. We begin with:

Proposition 3.1. Let Σ be an immersed H-surface, H2 + τ2 6= 0 in E(κ,τ) and let u = |S|,
where S is the traceless Abresch-Rosenberg form in (2.13). Then

−∆u≤ au3 +bu, (3.14)

where a, b are constants depending on κ−4τ2 and H.

Proof. First, from (2.14) and 4H2−|A|2 = 2Ke, we have

Ke = H2− 1
2
|S|2−α〈STθ ,Tθ 〉−α

2 |T|
4

4
. (3.15)

Using the Gauss equation K = Ke+τ2+(κ−4τ2)ν2 in (3.15), we can rewrite the Gaus-
sian curvature K as follows

K = (κ−4τ
2)(1−|T|2)+ τ

2 +H2− 1
2
|S|2−α〈STθ ,Tθ 〉−α

2 |T|
4

4
. (3.16)

Next, replacing (3.16) into (3.13), we obtain:

∆ |S| ≥ 2 |S|
(
(κ−4τ

2)ν2 + τ
2 +H2− 1

2
|S|2−α〈STθ ,Tθ 〉−α

2 |T|
4

4

)
≥−|S|3−|S|

(
−2min{0,κ−4τ

2}−2τ
2−2H2 +

1
2

α
2 +2α〈STθ ,Tθ 〉

)
.

(3.17)
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3.2. FINITE ABRESCH-ROSENBERG TOTAL CURVATURE

Since S is a traceless operator, we have that |STθ |= 1√
2
|S| |Tθ |, and using the Schwarz

inequality |〈STθ ,Tθ 〉| ≤ |Tθ | |STθ |, we see that

−|S|(2α〈STθ ,Tθ 〉)≥−
2√
2
|α| |S|2 ≥−|α|√

2
|S|3− |α|√

2
|S| . (3.18)

Finally, we replace (3.18) into (3.17) and this yields

∆ |S| ≥ −
(

1+
|α|√

2

)
|S|3−

(
−2min{0,κ−4τ

2}−2τ
2−2H2 +

1
2

α
2 +
|α|√

2

)
|S| ,

and this shows (3.14).

Any constant mean curvature surface Σ in E(κ,τ) satisfies a Sobolev inequality of the
form

| f |2 ≤C0 |∇ f |1 +C1 | f |1 , (3.19)

for each f ∈C0(Σ), where | f |p denotes the Lp(Σ)-norm of f and C0, C1 are constants that
depends only on the mean curvature H of surface (cf. [33]).

Now, let p be a fixed point of Σ. Consider the intrinsic distance function d(x, p) to p and
define the open sets

B(R) = {x ∈ Σ : d(p,x)< R} and E(R) = {x ∈ Σ : d(x, p)> R},

then with the above notations, we can show the following:

Theorem 3.3. Let Σ ⊂ E(κ,τ) be a complete H−surface such that H2 + τ2 6= 0. If Σ has
finite Abresch-Rosenberg total curvature, that is,∫

Σ

|S|2 dvg <+∞,

then |S| goes to zero uniformly at infinity. More precisely, there exist positive constants A, B
and a positive radius RΣ determined by condition B

∫
E(RΣ)

|S|2 ≤ 1 such that for u = |S| and
for all R≥ RΣ,

‖u‖∞,E(2R) = sup
x∈E(2R)

u(x)≤ A
(∫

E(R)
|S|2dvg

) 1
2 (3.20)

and, there exist positive constants D and E such that the inequality
∫

Σ
|S|2 dvg ≤ D implies

‖u‖∞ = sup
x∈Σ

u(x)≤ E
∫

Σ

|S|2 dvg.

Proof. Since the function u = |S| satisfies the Sobolev inequality (3.19) and the inequality
(3.14), we can now work as in the proof of [9, Theorem 4.1] to show that u satisfies the
inequality (3.20), letting R to infinity shows that |S| goes to zero uniformly to infinity.
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3.2. FINITE ABRESCH-ROSENBERG TOTAL CURVATURE

Next, we study H−surfaces Σ on E(κ,τ), H2 + τ2 6= 0 with finite Abresch-Rosenberg
total curvature. Despite what happens in R3, a H−surface Σ⊂ E(κ,τ) with finite Abresch-
Rosenberg total curvature is not necessarily conformally equivalent to a compact surface
minus a finite number of points, in particular, Σ is not necessarily parabolic. However, we
obtain:

Theorem 3.4. Let Σ be a complete surface on E(κ,τ), H2 + τ2 6= 0, with finite Abresch-
Rosenberg total curvature. Suppose one of the following conditions holds

1. κ−4τ2 > 0 and H2 + τ2 > κ−4τ2

4 .

2. κ−4τ2 < 0 and H2 + τ2 >− (
√

5+2)
4 (κ−4τ2).

Then, Σ must be compact.

Proof. From (3.16), the Gaussian curvature can be written as

K = (κ−4τ
2)(1−|T|2)+ τ

2 +H2− 1
2
|S|2−α〈STθ ,Tθ 〉−α

2 |T|
4

4
.

Now, |Tθ | ≤ 1, S traceless and the Schwarz inequality imply

−α〈STθ ,Tθ 〉 ≥ −|α|
|S| |Tθ |√

2
≥−|α| |S|√

2
.

Therefore

K ≥ (κ−4τ
2)ν2 +(H2 + τ

2)− 1
2
|S|2−|α| |S|√

2
−α

2 |T|
4

4
.

If κ−4τ2 > 0, then

K ≥ (H2 + τ
2)− α2

4
− 1

2
|S|2−α

|S|√
2
.

If κ−4τ2 < 0, then

K ≥ (κ−4τ
2)+(H2 + τ

2)− α2

4
− 1

2
|S|2 +α

|S|√
2
.

In both cases, the hypothesis and the fact that |S| goes to zero uniformly says that there
exist a compact set Ω and ε > 0 (depending on the compact set) such that the Gaussian
curvature satisfies

K(p)≥ ε > 0 for all p ∈ Σ\Ω.

Therefore, Bonnet Theorem implies that d(p,∂Σ\Ω) is uniformly bounded for all p ∈
Σ\Ω. Thus, Σ must be compact.
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3.3. FIRST EIGENVALUE OF SCHRÖNDINGER OPERATORS

3.3 First Eigenvalue of Schröndinger Operators
We will use the Simons’ Type Formula for the traceless Abresch-Rosenberg shape operator
S (3.13) to estimate the first eigenvalue λ1(L) of a Schrödinger operator L defined over a
complete H−surface Σ immersed in E(κ,τ) under the assumption that Σ has finite Abresch-
Rosenberg total curvature.

Set V ∈C0(Σ) and consider the differential linear operator, called Schrödinger opera-
tor, given by

L : C∞
0 (Σ) → C∞

0 (Σ)
f → L f := ∆ f +V f ,

where ∆ is the Laplacian with respect to the induced Riemannian metric on Σ and C∞
0 (Σ), as

always, stands for the linear space of compactly supported piece-wise smooth functions on
Σ.

Given a relatively compact domain Ω⊂ Σ, it is well-known (cf. [12] and [31, Theorem
8.38]), that there exists a positive function ρ : Σ→ R such that{

−∆ρ = (V +λ1(L,Ω))ρ in Ω,
ρ = 0 on ∂Ω,

where

λ1(L,Ω) = inf

{∫
Ω
(|∇ f |2−V f 2)dvg∫

Ω
f 2 dvg

: f ∈C∞
0 (Ω)

}
,

that is, λ1(L,Ω) and ρ are the first eigenvalue and a first eigenfunction, respectively, asso-
ciated to the Schrödinger operator L on Ω⊂ Σ.

Now, we can consider the infimum over all the relatively compact domain in Σ and we
can define the infimum of the spectrum of L as

λ1(L) := inf{λ1(L,Ω) : Ω⊂ Σ relatively compact} ,

in particular,
λ1(L) := liminfi→+∞λ1(L,Ωi),

for any compact exhaustion {Ωi} of Σ.

Remark 3.1. It is standard that the regularity conditions above can be relaxed, but this is
not important in our arguments.

First, we will need an important Lemma that relates the Simons’ Formula with the first
eigenvalue of any Schrödinger operator.

Lema 3.1. Let Σ⊂ E(κ,τ) be a complete H−surface such that H2 + τ2 6= 0, and let Ω⊂ Σ

be a relatively compact domain. Let λ1(L,Ω) and ρΩ be the first eigenvalue and a first
eigenfunction, respectively, associated to the Schrödinger operator L := ∆+V on Ω, V ∈
C0(Ω). Set CΩ = |S|(V + λ1(L,Ω)) + ∆|S|, where S is the traceless Abresch-Rosenberg
shape operator on Σ and consider φ ∈C∞

0 (Ω
′), where Ω′ ⊂Ω, then∫

Ω

φ
2 |S|CΩ ≤

∫
Ω

|S|2 |∇φ |2 . (3.21)
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Proof. Denote ρΩ = ρ and λ1(L,Ω) = λ1, by the Maximum Principle we assume ρ > 0 in
Ω. Set w := lnρ in Ω′ and note that it is well defined. Moreover, it holds

∆w =−(V +λ1)−|∇w|2 .

Set ψ = φ |S|. then, by Stokes’ Theorem

0 =
∫

Ω

div
(
ψ

2
∇w
)

=
∫

Ω

ψ
2
∆w+

∫
Ω

2ψ〈∇ψ,∇w〉

=−
∫

Ω

ψ
2 (V +λ1)−

∫
Ω

ψ
2 |∇w|2 +

∫
Ω

2ψ〈∇ψ,∇w〉

≤ −
∫

Ω

ψ
2 (V +λ1)+

∫
Ω

|∇ψ|2 ,

where we have used −ψ2 |∇w|2 +2ψ〈∇ψ,∇w〉 ≤ |∇ψ|2. In other words, we have∫
Ω

ψ
2 (V +λ1)≤

∫
Ω

|∇ψ|2 . (3.22)

On the other hand, by definition of ψ

|∇ψ|2 = φ
2 |∇ |S||2 +2φ |S| 〈∇φ ,∇ |S|〉+ |S|2 |∇φ |2 ,

and, since

1
2

div
(

φ
2
∇ |S|2

)
= φ

2 |S|∆ |S|+φ
2 |∇ |S||2 +2φ |S| 〈∇φ ,∇ |S|〉,

it yields that

|∇ψ|2 = 1
2

div
(

φ
2
∇ |S|2

)
−φ

2 |S|∆ |S|+ |S|2 |∇φ |2 ,

from where, taking integrals and using again Stokes’ Theorem, we obtain∫
Ω

|∇ψ|2 =−
∫

Ω

φ
2 |S|∆ |S|+

∫
Ω

|S|2 |∇φ |2 . (3.23)

Thus, joining the equation (3.23) to the inequality (3.22), we get (3.21).

Now we can use the Lemma 3.1 to estimate the first eigenvalue λ1(L) of the Schrödinger
operator L = ∆+V defined over a complete H−surface Σ with finite Abresch-Rosenberg
total curvature.

Theorem 3.5. Let Σ be a complete two-sided H−surface in E(κ,τ) of finite Abresch-
Rosenberg total curvature and H2+τ2 6= 0. Denote by λ1(L) the first eigenvalue associated
to the Schrödinger operator L := ∆+V , V ∈C0(Σ). Then, Σ is either an Abresch-Rosenberg
surface, a Hopf cylinder or

λ1(L)<−infΣ {V +2K} . (3.24)
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Proof. Assume that |S| is not identically constant on Σ, otherwise Σ is either an Abresch-
Rosenberg H−surface or a Hopf cylinder. Then, from (3.13), we get

C = |S|(V +λ1(L))+∆|S| ≥ |S|(V +λ1(L)+2K).

Note that C > |S|(V +λ1(L)+2K) at some point since, otherwise, it would implies that
|S| is constant, which is a contradiction.

Suppose λ1(L)≥− infΣ{V +2K}, then C ≥ |S|(V +λ1(L)+2K)≥ 0. Now, take p ∈ Σ

a fixed point and R > 0. Denote by r(x) = d(x, p) the distance function from p and B(p,R)
the geodesic ball of radius R. Choose R′ < R and define φ as follows

φ(x) =


1 For x such that 0≤ r(x)≤ R′

2 .
2− 2

R′ r(x) For x such that R′
2 < r(x)≤ R′.

0 For x such that R′ < r(x)≤ R.

Observes that φ ∈C1
0(B(p,R′)), B(p,R′) ⊂ B(p,R) and B(p,R) is a relatively compact

set on Σ, then Lemma 3.1 implies∫
B(p,R)

φ
2 |S|CB(p,R) ≤

∫
B(p,R)

|S|2 |∇φ |2 ,

and, since φ = 1 on B(p, R′
2 ) and C ≥ 0 on Σ, we get∫

B(p,R′
2 )
|S|CB(p,R) ≤

∫
B(p,R)

φ
2 |S|CB(p,R) ≤

4
(R′)2

∫
{x∈Σ: R′

2 <r(x)≤R′}
|S|2.

Hence, from the hypothesis that Σ has finite Abresch-Rosenberg total curvature and
letting R′→ ∞ we obtain ∫

Σ

|S|C ≤ 0.

The above equation implies that C≡ 0 on Σ, hence |S| must be constant on Σ, which is a
contradiction since we are assuming that |S| is not constant. Therefore λ1(L) must satisfy

λ1(L)<−infΣ {V +2K} .

When Σ is a closed H− surface immersed in E(κ,τ), we have that the function |S|2 is
integrable on Σ, since |S|2 is a continuous function on Σ. Therefore any closed H−surface in
E(κ,τ) has finite Abresch-Rosenberg total curvature. Consequently, from [64, Theorem 1]
and Theorem 3.5 we get an estimate for λ1(L) on any closed surface of E(κ,τ), H2+τ2 6= 0.

Corollary 3.2. Let Σ be a closed H−surface in E(κ,τ), H2 + τ2 6= 0. Denote by λ1(L) the
first eigenvalue associated to the Schrödinger Operator L := ∆+V , V ∈C0(Σ). Then, Σ is
either a rotationally symmetric H−sphere, a Hopf H−tori or

λ1(L)<−infΣ {V +2K} . (3.25)
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3.4. PINCHING THEOREMS FOR H−SURFACES IN E(κ,τ)

3.3.1 Stability Operator
Now, we obtain estimates for the most natural Schrödinger operator of a complete H−surface
in E(κ,τ), the Stability (or Jacobi) operator

J = ∆+(|A|2 +Ric(N)),

where Ric(N) is the Ricci curvature of the ambient manifold in the normal direction. Hence,
in this case, V ≡ |A|2 +Ric(N).

Note that, since Ric(N) = (κ−4τ2)|T|2 +2τ2 and the Gauss equation (1.15), we have

V +2K = 4H2 +2(K−Ke)+(κ−4τ
2)|T|2 +2τ

2

= 4H2 +κ +(κ−4τ
2)ν2.

Hence, Theorem 3.5 and the above equality gives:

Theorem 3.6. Let Σ be a complete two sided H−surface of finite Abresch-Rosenberg total
curvature in E(κ,τ), H2 + τ2 6= 0.

• If κ−4τ2 > 0. Then, Σ is either an Abresch-Rosenberg H−surface, a Hopf cylinder,
or

λ1 <−(4H2 +κ).

• If κ−4τ2 < 0. Then, Σ is either an Abresch-Rosenberg H−surface, or

λ1 <−(4H2 +κ)− (κ−4τ
2).

Remark 3.2. These estimates were obtained by Alías-Meroño-Ortíz [5] for closed surfaces
in E(κ,τ).

3.4 Pinching Theorems for H−surfaces in E(κ,τ)
In this section we will use the Simons’ Type Formula for the traceless Abresch-Rosenberg
shape operator (3.12) together with the Omori-Yau Maximum Principle to classify complete
H−surfaces in E(κ,τ) satisfying a pinching condition on its Abresch-Rosenberg fundamen-
tal form. First, we recall the Omori-Yau Maximum Principle for the reader convenience.

Theorem 3.7 ([65]). Let M be a complete Riemannian manifold with Ricci curvature
bounded from below. If u ∈ C∞(M ) is bounded from above, then there exits a sequence
of points {p j} j∈N ∈M such that:

1. lim
j→∞

u(p j) = sup
M

u.

2. |∇u|(p j)<
1
j .
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3. ∆u(p j)<
1
j .

Second, we study the Simons’ Type Formula (3.12) in the set of non-umbilical points of
S.

Proposition 3.2. Let Σ be a H−surface in E(κ,τ). Then, away from the umbilic points of
S, it holds

1
2

∆|S|2 ≥ |∇S|2 + |S|2F(|S|), (3.26)

where F(x) =−x2 +bx+a is the second degree polynomial given by

a = 2(κ−4τ
2)+2(H2 + τ

2)−2(κ−4τ
2)|T|2−α

2 |T|
4

2
,

b =−
√

2 |α| |T|2,

where α = κ−4τ2

2
√

H2+τ2 .

Proof. From (3.16), the Gaussian curvature can be written as

K = (κ−4τ
2)(1−|T|2)+ τ

2 +H2−α
2 |T|

4

4
− 1

2
|S|2−α〈STθ ,Tθ 〉.

Since |〈STθ ,Tθ 〉|≤ |STθ | |Tθ |= 1√
2
|S| |Tθ |2, substituting the above formulas into (3.12)

yields

1
2

∆|S|2 ≥ |∇S|2 + |S|2
(
2(κ−4τ

2)(1−|T|2)+2(τ2 +H2)−α
2 |T|

4

2
−|S|2−

√
2 |α| |S| |T|2

)
,

as claimed.

So, our next step is to study the first positive root x̄ ∈R+ of F(x) so that F(x)> 0 for all
x ∈ (0, x̄). To do so, we set t = |T|2 ∈ [0,1] and hence, we can rewrite:

a(t) = 2(κ−4τ
2)+2(H2 + τ

2)−2(κ−4τ
2)t− α2

2
t2.

b(t) =−
√

2 |α| t.

In order to obtain a positive real root, the coefficients of F must hold h(t) = b(t)2 +
4a(t)> 0 and a(t)> 0 for all t ∈ [0,1]. This means that

(H2 + τ
2)+(κ−4τ

2)(1− t)> 0 for all t ∈ [0,1],

and
2(H2 + τ

2)+2(κ−4τ
2)(1− t)> 0 for all t ∈ [0,1].
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Proposition 3.3. Define G : [0,1]→ R as

G(t)=
b(t)+

√
b(t)2 +4a(t)

2
=
−
∣∣κ−4τ2

∣∣ t +4
√

H2 + τ2
√

(H2 + τ2)+(κ−4τ2)(1− t)

2
√

2
√

H2 + τ2
,

(3.27)
then, assuming h(t)> 0 and a(t)> 0 for all t ∈ [0,1], the function G(t) satisfies:

min
t∈[0,1]

G(t) = min{G(0),G(1)} (3.28)

Proof. We compute the interior critical points of G(t). To do so, we compute the derivative
of G at an interior point

G′(t) =
b′(t)

2

(
1+

b(t)√
b(t)2 +4a(t)

)
+

a′(t)√
(b(t))2 +4a(t)

=−|α|
(

b(t)+
√

b(t)2 +4a(t)√
b(t)2 +4a(t)

)
− α2t +2(κ−4τ2)√

(b(t))2 +4a(t)

=
1√

b(t)2 +4a(t)

(
−2 |α|G(t)−α

2t−2(κ−4τ
2)
)

Assume that there exists t̄ ∈ (0,1) so that G′(t̄) = 0, then the above equation implies that
the function Ψ(t) := −2 |α|G(t)−α2t− 2(κ − 4τ2) satisfies Ψ(t̄) = 0 and Ψ′(t̄) = −α2t̄.
Moreover, observe that

G′′(t) = R(t)Ψ(t)+
Ψ′(t)√

b(t)2 +4a(t)
,

for some smooth function R : (0,1)→ R+. Hence

G′′(t̄) =
Ψ(t̄)√

b(t̄)2 +4a(t̄)
=− α2t̄√

b(t)2 +4a(t)
< 0.

Therefore, G does not have an interior minimum. Therefore, in any case, mint∈[0,1]G(t)=
min{G(0),G(1)}.

Next, we compute the minimum of G. To do so, we will distinguish two cases depending
on the sign of κ−4τ2.

3.4.1 Case κ−4τ2 > 0

In this case,
(H2 + τ

2)+(κ−4τ
2)(1− t)≥ 0 for all t ∈ [0,1],

and the function a(t) is positive on [0,1], when 4(H2 + τ2)> κ−4τ2 , since

a(t)≥ 2(H2 + τ
2)− α2

2
=

16(H2 + τ2)2− (κ−4τ2)2

8(H2 + τ2)
> 0.

We start by computing the minimum of G:
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Proposition 3.4. If κ−4τ2 > 0, then

min
t∈[0,1]

G(t) =
4(H2 + τ2)− (κ−4τ2)

2
√

2
√

H2 + τ2
.

Proof. We compute the derivative of G(t):

G′(t) =
1

2
√

2
√

H2 + τ2

(
− (κ−4τ

2)− 2
√

(H2 + τ2)(κ−4τ2)√
(H2 + τ2)+(κ−4τ2)(1− t)

)
,

then G(t) is a decreasing function on the interval [0,1], so G(1) is the minimum value of
G(t).

Now, we are ready to show a pinching theorem for complete H− surfaces in E(κ,τ),
when κ−4τ2 > 0.

Theorem 3.8. Let Σ be a complete immersed H-surface in E(κ,τ), with κ − 4τ2 > 0. As-
sume that 4(H2 + τ2)> κ−4τ2 and

sup
Σ

|S|< 4(H2 + τ2)− (κ−4τ2)

2
√

2
√

H2 + τ2
,

where S is the traceless Abresch-Rosenberg shape operator defined on Σ. Then, Σ is an
Abresch-Rosenberg surface of E(κ,τ). Moreover, if there exists one point p ∈ Σ such that
|S(p)|= 4(H2+τ2)−(κ−4τ2)

2
√

2
√

H2+τ2 , then Σ is a Hopf cylinder.

Proof. Denote A2 =
4(H2+τ2)−(κ−4τ2)

2
√

2
√

H2+τ2 . First, we show:

Claim 1. There exists a positive constant d so that ∆|S|2(p)≥ d|S|2(p) for each
non umbilical point p of S.

Proof of Claim 1. From Proposition 3.2, away from the umbilic points of S, we have

1
2

∆|S|2 ≥ |∇S|2 + |S|2F(|S|), (3.29)

where F(x) = −x2 + b(t)x+ a(t). The hypothesis says that F(0) = a(t) is positive for all
t ∈ [0,1], So for p non umbilical point of S, we define

Fp(x) =−x2 +b(t(p))x+a(t(p)).

Let p such that b(t(p)) < 2A2. In this case Fp(
1
2b(t(p))) or Fp(0) = a(t(p)) is the

maximum value of Fp(x) on the interval [0,A2]. If Fp(0) = a(t(p)) is the maximum value,
then Fp(x) is a decreasing polynomial on [0,A2]. Hence,

Fp(|S(p)|)≥ Fp(sup
Σ

|S|) = d1

2
> Fp(A2)≥ Fp(G(t(p))) = 0.
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Now, suppose Fp(
1
2b(t(p))) is the maximum value of Fp(x) on the interval [0,A2]. On

the one hand, the polynomial Fp(x) is decreasing on the interval [b(t(p))
2 ,A2], consequently

if |S(p)| ∈ [b(t(p))
2 ,A2] we have

Fp(|S(p)|)≥ Fp(sup
Σ

|S|) = d1

2
> Fp(A2)≥ Fp(G(t(p))) = 0.

On the other hand, on the interval [0, b(t(p))
2 ] the function Fp(x) is an increasing polynomial.

So, If |S(p)| ∈ [0, b(t(p))
2 ], we get

Fp(|S(p)|)≥ Fp(0) = a(t(p))>
d2

2
=

16(H2 + τ2)2− (κ−4τ2)2

8(H2 + τ2)
> 0.

Finally, let p such that b(t(p))≥ 2A2, then is clear that

Fp(|S(p)|)≥ Fp(0) =
d2

2
> 0,

since Fp(x) on the interval [0, b(t(p))
2 ] is an increasing function. Therefore, the above shows

that

Fp(|S(p)|)≥ d
2
, (3.30)

for each p non umbilical point of S, where d = min{d1,d2}. So, the inequality (3.30) in the
equation (3.29) shows that ∆|S|2 ≥ d|S|2 away from the umbilic points of S.

Thus, since |S| is bounded by hypothesis, from Corollary 2.1 the Ricci curvature of Σ is
bounded from below, then we can apply the Omori-Yau Maximum Principle to the function
|S|2. So, there exists a sequence {p j} j∈N in Σ, such that:

lim
j→∞
|S|2(p j) = sup

Σ

|S|2 and lim
j→∞

∆|S|2(p j)≤ 0.

The above Claim 1 implies that sup
Σ

|S|2 = 0, hence, |S| = 0 on Σ and Σ is an Abresch-

Rosenberg surface of E(κ,τ).
Moreover, suppose that there exists one point p ∈ Σ, such that |S(p)| = A2. So from

Claim 1, in a neighbourhood Ω of p we have that

∆ |S| ≥ 0.

Then the Interior Maximum Principle implies that |S| ≡ A2 on Ω, and hence |S| ≡ A2
on Σ. Finally, |S|2 = 2qAR, thereby, qAR is a positive constant function on Σ and from
Lemma 2.4, we conclude that Σ is a Hopf cylinder over a complete curve of curvature 2H
on M2(κ).
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3.4.2 Case κ−4τ2 < 0

In this case, if H2 + τ2 ≥−(κ−4τ2), then

(H2 + τ
2)+(κ−4τ

2)(1− t)≥ 0 for all t ∈ [0,1]

and the function a(t) is positive on [0,1], when H2 + τ2 >−(κ−4τ2)

a(t)>−2(κ−4τ
2)t− α2

2
t2 =

−16(κ−4τ2)(H2 + τ2)t− (κ−4τ2)2t2

8(H2 + τ2)
,

now from inequality H2 + τ2 >− (κ−4τ2)
16 , we obtain

8(H2 + τ
2)a(t)> (κ−4τ

2)2t− (κ−4τ
2)2t2 = (κ−4τ

2)2t(1− t)≥ 0.

For each t ∈ [0,1].
Next, we describe the minimum of G(s, t) in the case κ−4τ2 < 0.

Proposition 3.5. If κ−4τ2 < 0 and H2 + τ2 >−(κ−4τ2), then

min
(s,t)∈A

G(s, t) =
√

2
√

(H2 + τ2)+(κ−4τ2).

Proof. We compute the derivative of G(t):

G′(t) =
1

2
√

2
√

H2 + τ2

(
(κ−4τ

2)− 2(κ−4τ2)
√

(H2 + τ2)√
(H2 + τ2)+(κ−4τ2)(1− t)

)
.

For κ−4τ2 < 0, we have that

−2(κ−4τ
2)≤ −2(κ−4τ2)

√
(H2 + τ2)√

(H2 + τ2)+(κ−4τ2)(1− t)
, for all t ∈ [0,1],

then G′(t)≥ −(κ−4τ2)

2
√

2
√

H2+τ2 ≥ 0 on the interval [0,1], consequently G(t) is an increasing func-
tion on [0,1], therefore G(0) is the minimum value of G(t) in [0,1].

Now, we are ready to announce a pinching theorem for complete H−surfaces in E(κ,τ),
with κ−4τ2 < 0.

Theorem 3.9. Let Σ be a complete immersed H-surface in E(κ,τ), with κ − 4τ2 < 0. As-
sume that (H2 + τ2)>−(κ−4τ2) and

sup
Σ

|S|<
√

2
√

(H2 + τ2)+(κ−4τ2),

where S is the traceless Abresch-Rosenberg shape operator defined on Σ. Then, Σ is an
Abresch-Rosenberg surface of E(κ,τ). Moreover, if there exists one point p ∈ Σ such that
|S(p)|=

√
2
√

(H2 + τ2)+(κ−4τ2), then Σ is a Hopf cylinder.
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Proof. Denote A0 =
√

2
√
(H2 + τ2)+(κ−4τ2). As above, we show:

Claim 2. There exists a positive constant d so that ∆|S|2(p)≥ d|S|2(p) for each
non umbilical point p of S.

Proof of Claim 2. From Proposition 3.2, the Simons’ formula for |S|2 away from the umbilic
points of S is given by

1
2

∆|S|2 ≥ |∇S|2 + |S|2F(|S|), (3.31)

where F(x) = −x2 + b(t)x+ a(t), the hypothesis says that F(0) = a(t) is positive for all
t ∈ [0,1], so for p non umbilical point of S, we define

Fp(x) =−x2 +b(t(p))x+a(t(p)).

Let p such that b(t(p))< 2A0, therefore Fp(
1
2b(t(p))) or Fp(0) is the maximum value of

Fp(x) on the interval [0,A0]. If Fp(0) is the maximum value of Fp(x) on the interval [0,A0],
we have that Fp(x) is a positive decreasing function on [0,A0], then

Fp(|S(p)|)≥ Fp(sup
Σ

|S|) = d1

2
> Fp(A0)≥ Fp(G(t(p))) = 0.

Now, suppose Fp(
1
2b(t(p))) is the maximum value of Fp(x) on the interval [0,A0]. On

the one hand, Fp(x) is an increasing polynomial on [0, b(t(p))
2 ], hence, if |S(p)| ∈ [0, b(t(p))

2 ],
we obtain

Fp(|S(p)|)≥ Fp(0) = a(t(p))≥ d2

2
> 0,

where d2 = 2(H2 + τ2) + 2(κ − 4τ2). On the other hand, on the interval [b(t(p))
2 ,A0] the

function Fp(x) is decreasing, so, if |S(p)| ∈ [b(t(p))
2 ,A0], we get

Fp(|S(p)|)≥ Fp(sup
Σ

|S|) = d1

2
> Fp(A0)≥ Fp(G(t(p))) = 0.

Finally, given p such that b(t(p))≥ 2A0, then

Fp(|S(p)|)≥ Fp(0)≥
d2

2
> 0,

since Fp(x) on interval [0, b(t(p))
2 ] is an increasing function. Therefore

Fp(|S(p)|)≥ d
2
, (3.32)

for any non umbilical point p of S, where d = min{d1,d2}. So, the inequality (3.32) in the
equation (3.31) shows that ∆|S|2 ≥ d|S|2 away from the umbilic points of S.
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Thus, since |S| is bounded by hypothesis, from Corollary 2.1 the Ricci curvature of Σ

is bounded from below, then we can apply the Omori-Yau Maximum Principle to |S|2. So,
there exists a sequence {p j} j∈N in Σ, such that:

lim
j→∞
|S|2(p j) = sup

Σ

|S|2 and lim
j→∞

∆|S|2(p j)≤ 0.

The above Claim 2 implies that sup
Σ

|S|2 = 0, hence, |S| = 0 on Σ and Σ is invariant by

one parameter group of isometries of E(κ,τ).
Moreover, suppose that there exists one point p ∈ Σ, such that |S(p)| = A2. So from

Claim 2, in a neighbourhood Ω of p, we have that

∆ |S| ≥ 0.

Then the Interior Maximum Principle implies that |S| ≡ A2 on Ω, and hence |S| ≡ A2
on Σ. Finally, |S|2 = 2qAR, thereby, qAR is a positive constant function on Σ and from
Lemma 2.4, we conclude that Σ is a Hopf cylinder over a complete curve of curvature 2H
on M2(κ).
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Chapter 4

Immersed Compact Disks

In this chapter, we classify constant mean curvature compact disks immersed in E(κ,τ)
under certain geometric conditions along the boundary. First, we will classify immersed
compact disks with regular boundary. In particular, these results generalize previous clas-
sifications given in [17, 19]. Second, assuming certain differentiability conditions, we will
classify immersed compact disks whose boundary is piece-wise smooth.

This chapter is organized as follows; in Section 4.1, we will define the Abresch-Rosenberg
lines of curvature and we will exhibit the relationship between these lines and the Abresch-
Rosenberg differential. Later, we will show the Key Lemma of this chapter, such result is
a Joachimstalh’s type Theorem for H−surfaces in E(κ,τ). In Section 4.2, we will clas-
sify constant mean curvature compact disks immersed in E(κ,τ) with geometric hypothesis
along the regular boundary. First, we will study the case of compact disks in product spaces
M2(κ)×R. After, we will study compact disks in E(κ,τ) for τ 6= 0. In Section 4.3, we will
study immersed compact disk with piece-wise smooth boundary assuming that the image of
the immersion is contained in the interior of a smooth surface in E(κ,τ) and the number of
vertices with interior angle < π at the boundary is less than or equal to 3. Under the above
hypothesis, we will extend the previous results of regular case to immersed compact disks
with piece-wise smooth boundary.

4.1 Abresch-Rosenberg Lines of curvature
We begin this chapter by defining the concept of line of curvature with respect to the
Abresch-Rosenberg shape operator of a H−surface Σ in E(κ,τ) and we characterize these
curves in terms of Abresch-Rosenberg differential.

Definition 4.1. Let Σ be a H−surface in E(κ,τ), H2 + τ2 6= 0 and Γ a regular curve
parametrized by a map γ : (−ε,ε)→ Σ. We say that Γ = γ(−ε,ε) is a line of curva-
ture for the Abresch-Rosenberg shape operator SAR if there exists a smooth function
λ : (−ε,ε)→ R such that SAR(γ

′(t)) = λ (t)γ ′(t). In such case, we call Γ an Abresch-
Rosenberg line of curvature, in short, an AR-line of curvature.
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Definition 4.1 says that the tangent vector along the curve γ in Σ is an eigenvector of
SAR along γ . So, the definition is nothing but the natural extension of a line of curvature
with respect to the shape operator induced by the second fundamental form of a surface in
R3 to the case of the Abresch-Rosenberg shape operator SAR for a H−surface in E(κ,τ). In
analogy with the situation in R3 (see [13]), there exists a link between lines of curvatures
with respect to SAR and the Abresch-Rosenberg differential QARdz2.

Proposition 4.1. Let Σ be a H−surface in E(κ,τ), H2 + τ2 6= 0. Then, γ : (−ε,ε)→ Σ is a
line of curvature for SAR if, and only if, the imaginary part of QARdz2 is zero along γ .

Proof. Let z = u+ iv be a local conformal parameter of Σ with respect to the first funda-
mental form I and set

IIAR(∂u,∂u) = I(SAR(∂u),∂u) = L,
IIAR(∂u,∂v) = I(SAR(∂u),∂v) = M,

IIAR(∂v,∂v) = I(SAR(∂v),∂v) = N.

The curve γ(t) = (u(t),v(t)) is a line of curvature with respect to SAR if SAR(γ
′(t)) =

λ (t)γ ′(t). In the local coordinates (u,v) this means[
L(γ(t)) M(γ(t))
M(γ(t)) N(γ(t))

][
u′(t)
v′(t)

]
= λ (t)

[
u′(t)
v′(t)

]
. (4.1)

Hence from (4.1), we get the following linear system

L(γ(t))u′(t)+M(γ(t))v′(t) = λ (t)u′(t),
M(γ(t))u′(t)+N(γ(t))v′(t) = λ (t)v′(t).

(4.2)

On the one hand, from (4.2), we obtain

M(γ(t))(v′(t))2 +(L(γ(t))−N(γ(t)))u′(t)v′(t)−M(γ(t))(u′(t))2 = 0. (4.3)

On other hand, from the definition of the Abresch-Rosenberg differential

2QAR(γ(t))dz(γ(t))2 = (L(γ(t))−N(γ(t))−2iM(γ(t)))dz(γ(t))2, (4.4)

then, straightforward computation shows that the imaginary part is given by

2Im(QAR(γ(t))dz(γ(t))2) = M(γ(t))(v′(t))2 +(L(γ(t))−N(γ(t)))u′(t)v′(t)

−M(γ(t))(u′(t))2,
(4.5)

hence, (4.5) is nothing but the left part of (4.3). This shows that the imaginary part of (4.4)
vanishes when γ(t) is line of curvature with respect to SAR.

Reciprocally, assume that the imaginary part of QAR(γ(t))dz(γ(t))2 is zero, this condi-
tion is given by (4.5). Then, for all t ∈ (−ε,ε) so that u′(t) 6= 0 and v′(t) 6= 0 we have

M(γ(t))v′(t)+L(γ(t))u′(t)
u′(t)

=
N(γ(t))v′(t)+M(γ(t)u′(t))

v′(t)
. (4.6)
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Now, define the function λ : (−ε,ε)→ R as follows

λ (t) =


M(γ(t))v′(t)+L(γ(t))u′(t)

u′(t) , for t such that u′(t) 6= 0 and v′(t) 6= 0,

L(γ(t)) , for t such that u′(t) 6= 0 and v′(t) = 0,
N(γ(t)) , for t such that u′(t) = 0 and v′(t) 6= 0.

Therefore, (4.2) and (4.6) imply SAR(γ
′(t)) = λ (t)γ ′(t) for all t ∈ (−ε,ε), this shows

γ ′(t) is a line of curvature with respect to SAR.

Next, we will establish a Joachimstahl’s Type Theorem (see [61]) for H−surfaces in
E(κ,τ). This is a key step in this chapter.

Lema 4.1 (Key Lemma). Let Σi ⊂ E(κ,τ)„ i = 1,2, be Hi−surfaces so that H2
i + τ2 6= 0

and Σ1 ∩Σ2 6= /0 is transversal. Let Γ ⊂ Σ1 ∩Σ2 be a regular curve. Assume that along Γ

one has

a) 〈N1,N2〉 is constant and

b)
√

H2
1 + τ2〈T2

θ2
,N1〉〈J2T2

θ2
,N1〉=

√
H2

2 + τ2〈T1
θ1
,N2〉〈J1T1

θ1
,N2〉,

where αi =
κ−4τ2

2
√

H2
i +τ2

, Ti
θi
= cosθiTi+ sinθiJiTi and JiX = Ni∧X for i = 1,2. Then, Γ is an

AR-line of curvature for Σ1 if, and only if, Γ is an AR-line of curvature for Σ2.

Proof. We assume that Γ is an AR-line of curvature for Σ2, the other case is completely
analogous. First, since 〈N1(γ(t)),N2(γ(t))〉 = d is constant along Γ = γ(−ε,ε), where γ is
parametrized by arc-length, then

〈A1(γ
′(t)),N2(γ(t))〉+ 〈N1(γ(t)),A2(γ

′(t))〉= 0, (4.7)

where A1 and A2 are the shape operators of Σ1 and Σ2 respectively. Now, relating A1 and
A2 with S1

AR and S2
AR respectively and using that γ(t) is a line of curvature for S2

AR, we can
rewrite (4.7) as:

−α1〈T1
θ1
,γ ′(t)〉〈T1

θ1
,N2〉−〈S1

AR(γ
′(t)),N2〉−α2〈T2

θ2
,γ ′(t)〉〈T2

θ2
,N1〉= 0, (4.8)

where αi =
κ−4τ2

2
√

H2
i +τ2

and Ti
θi
= cosθiTi + sinθiJTi, i = 1,2.

We can orient γ so that (1− d2)N1 ∧N2 = γ ′(t), where d is the contact constant angle
between Σ1 and Σ2.

Since the intersection is transversal, {N1,N2,γ
′(t)} is an oriented basis of Tγ(t)E(κ,τ)

for each t were the intersection is transversal. Then, the following equations hold:

〈T1
θ1
,γ ′(t)〉= (1−d2)〈T1

θ1
,N1∧N2〉=−(1−d2)〈J1T1

θ1
,N2〉,

〈T2
θ2
,γ ′(t)〉= (1−d2)〈T2

θ2
,N1∧N2〉= (1−d2)〈J2T2

θ2
,N1〉,

(4.9)
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where JiTi
θi
= Ni∧Ti

θi
for i = 1,2. Therefore, (4.8) and (4.9) imply that

〈S1
AR(γ

′(t)),N2〉=
(1−d2)(κ−4τ2)√

H2
1 + τ2

〈T1
θ1
,N2〉〈J1T1

θ1
,N2〉

− (1−d2)(κ−4τ2)√
H2

2 + τ2
〈T2

θ2
,N1〉〈J2T2

θ2
,N1〉

= 0,

where we have used item b). Thus, 〈S1
AR(γ

′(t)),N2〉= 0 along Γ. Therefore, since 〈S1
AR(γ

′(t)),N1〉=
0 along Γ, we obtain that S1

AR(γ
′(t)) = λ (t)γ ′(t), that is, Γ is an AR-line of curvature for

Σ1.

Observe that we can see item b) above geometrically as follows; Let X be a unitary
vector field along Σ, not necessarily tangential. Then, {Tθ ,JTθ} is an orthogonal frame
along Σ away from the points where |T|= 0. Let ω be the (oriented) angle between Tθ and
X , that is,

〈Tθ ,X〉= |T|cosω,

and hence,
2〈Tθ ,X〉〈JTθ ,X〉= |T|2 sin(2ω).

So, coming back to the situation on the Key Lemma, let ωi denote the (oriented) angle
between Ti

θi
and N j, for i, j = 1,2 and i 6= j. Hence, item b) can be re-written as

|T1|2√
H2

1 + τ2
sin(2ω1) =

|T2|2√
H2

2 + τ2
sin(2ω2).

The remainder of this section will be devoted to study some particular cases of Lemma
4.1.

A curve Γ on a surface Σ in M2(κ)×R is horizontal if Γ is contained in a horizontal
slice M2(κ)×{ξ0}, for some ξ0 ∈ R. On the other hand, the curve Γ in Σ is said to be
vertical if it is an integral curve of the vector field T.

The Key Lemma gives us general conditions for Γ being an AR-line of curvature of
both surfaces Σ1 and Σ2. Nevertheless, we will see that certain geometric configurations in
M2(κ)×R imply the conditions on the Key Lemma using the vertical and horizontal curves.

Corollary 4.1. Let Σ1 and Σ2 two constant mean curvature surfaces in M2(κ)×R with
mean curvatures H1 and H2, normal vectors N1 and N2 and angle functions ν1 and ν2,
respectively. Let Γ⊂ Σ1∩Σ2 be a regular curve parametrized by γ . Suppose that Σ1 and Σ2
intersects transversally along Γ at a constant angle and Γ is a AR-line of curvature for Σ1 .
Assume along Γ one of the following conditions holds:

1. Γ is an horizontal curve of Σ1.

46



4.1. ABRESCH-ROSENBERG LINES OF CURVATURE

2. Γ is a vertical curve of Σ1 and Σ2.

3. If H1 = H2 6= 0 , the angle function ν1 is opposite to the angle function ν2.

Then Γ is an AR-line of curvature for Σ2.

Proof. Assume that Γ = γ(−ε,ε) where γ is parametrized by arc-length. In M2(κ)×R, we
have T1

θ1
= T1 and T2

θ2
= T2. In the first case, if γ is horizontal, we obtain

(1−d2)〈J1T1
θ1
,N2〉= 〈T1

θ1
,γ ′(t)〉= 〈ξ ,γ ′(t)〉= 0,

(1−d2)〈J2T2
θ2
,N1〉= 〈T2

θ2
,γ ′(t)〉= 〈ξ ,γ ′(t)〉= 0.

(4.10)

From (4.10) and Lemma 4.1, γ(t) is AR-line of curvature of Σ2.
In the second case, T2 = T1 = γ ′(t) for each t, then 〈T1,N2〉 = 〈T2,N1〉 = 0 so the

hypothesis of Lemma 4.1 holds clearly.
In the third case, suppose H1 = H2 = H and ν1 =−ν2, therefore

H〈T2,N1〉〈T2,γ
′(t)〉= H〈T2,N1〉〈ξ ,γ ′(t)〉

= H(ν2−ν1d)〈T1 +ν1N1,γ
′(t)〉

=−H(ν1−ν2d)〈T1,γ
′(t)〉

=−H〈T1,N2〉〈T1,γ
′(t)〉.

(4.11)

Hence, from (4.9) and (4.11), we can see again that the hypothesis of Lemma 4.1 hold.
Then, in any case, Γ is a AR-line of curvature of Σ2.

Next, we give certain geometric configurations for H− surfaces in E(κ,τ), τ 6= 0, that
imply the Key Lemma.

Corollary 4.2. Let Σ1 and Σ2 two H−surfaces in E(κ,τ), τ 6= 0, with normal vectors N1
and N2 respectively. Let Γ ⊂ Σ1∩Σ2 be a regular curve. Suposse that Σ1 and Σ2 intersect
along Γ at a constant angle. Assume also that:

1. If both surfaces are tangent along Γ, then N1 = N2 along Γ.

2. If the intersection between the surfaces is transversal along Γ, then their respective
angle functions satisfy 〈ξ ,N1〉=−〈ξ ,N2〉 along Γ.

Then, Γ is an AR-line of curvature for Σ1 if, and only if, Γ is an AR-line of curvature for
Σ2.

Proof. Let Si
ARX = Ai(X)−α〈Ti

θi
,X〉Ti

θi
+ α|Ti|2

2 X be the Abresch-Rosenberg shape opera-
tor of Σi, i = 1,2 and J1, J2 be the rotations on the tangent bundles of Σ1 and Σ2 respectively.

In the first case, we have that T1
θ1
≡ T2

θ2
along Γ since T1 ≡ T2 and the surfaces has the

same mean curvature. Moreover, if Γ = γ(−ε,ε), then J1γ ′ = J2γ ′ and so II1
AR(γ

′,J1γ ′) =
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II2
AR(γ

′,J2γ ′).

Suppose now that we are in case 2. Hence, θ1 = θ2 = θ and this implies α1 = α2 = α ,
so

α〈T1
θ ,γ
′(t)〉〈T1

θ ,N2〉= α〈T1,γ
′(t)〉〈T1,N2〉cos2

θ

+α cosθ sinθ〈T1,γ
′(t)〉〈JT1,N2〉

+α〈JT1,γ
′(t)〉〈T1,N2〉sinθ cosθ

+α〈JT1,γ
′(t)〉〈JT1,N2〉sin2

θ .

(4.12)

We oriented γ such that {N1,N2,γ
′(t)} is an oriented basis of Tγ(t)E(κ,τ) for each t were

the intersection is transversal, then the following equations holds

〈JT1,γ
′(t)〉= 〈N1∧T1,γ

′(t)〉= 〈N2,T1〉,
〈JT1,N2〉= 〈N1∧T1,N2〉=−〈γ ′(t),T1〉.

(4.13)

Hence, substituting (4.13) into (4.12), we obtain

α〈T1
θ ,γ
′(t)〉〈T1

θ ,N2〉= α〈T1,γ
′(t)〉〈T1,N2〉cos2

θ

−α〈T1,γ
′(t)〉2 cosθ sinθ

+α〈T1,N2〉2 cosθ sinθ

−α〈N2,T1〉〈γ ′(t),T1〉sin2
θ .

(4.14)

Analogously,

α〈T2
θ ,γ
′(t)〉〈T2

θ ,N1〉= α〈T2,γ
′(t)〉〈T2,N1〉cos2

θ

+α cosθ sinθ〈T2,γ
′(t)〉〈JT2,N1〉

+α〈JT2,γ
′(t)〉〈T2,N1〉sinθ cosθ

+α〈JT2,γ
′(t)〉〈JT2,N1〉sin2

θ .

(4.15)

Taking account the orientation {N1,N2,γ
′(t)} of Tγ(t)E(κ,τ), we get

〈JT2,N1〉= 〈N2∧T2,N1〉= 〈γ ′(t),T2〉,
〈JT2,γ

′(t)〉= 〈N2∧T2,γ
′(t)〉=−〈N1,T2〉.

(4.16)

So, we can rewrite (4.15) as:

α〈T2
θ ,γ
′(t)〉〈T2

θ ,N1〉= α〈T2,γ
′(t)〉〈T2,N1〉cos2

θ

+α〈T2,γ
′(t)〉2 cosθ sinθ

−α〈T2,N1〉2 cosθ sinθ

−α〈N1,T2〉〈γ ′(t),T2〉sin2
θ .

(4.17)
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Now, the hypothesis imply that

〈T1,N2〉= ν2−ν1d =−〈T1,N2〉,
〈T1,γ

′(t)〉= 〈T2,γ
′(t)〉= 〈ξ ,γ ′(t)〉.

(4.18)

Finally, substituting (4.18) into (4.14) and (4.17), we obtain√
H2 + τ2〈T2

θ ,N1〉〈J2T2
θ ,N1〉=

√
H2 + τ2〈T1

θ ,N2〉〈J1T1
θ ,N2〉.

Therefore, the Key Lemma (Lemma 4.1) shows that Γ is an AR-line of curvature of Σ1
if, and only if Γ is an AR-line of curvature of Σ2.

Remark 4.1. The case τ = 0 was considered by do Carmo-Fernández [19], they consider
the usual Abresch-Rosenberg shape operator and studied lines of curvature with respect to
this operator. Hence, Corollary 4.2 is an extension of those results when τ 6= 0.

4.2 Immersed compact disks
Throughout this section, we will denote by φ : D→ E(κ,τ) an immersion from the disk
D= {z∈C : |z|< 1} onto E(κ,τ) of constant mean curvature, we call it H−disk. Moreover,
we will assume that the boundary Γ is a smooth curve.

4.2.1 Immersed compact disks in E(κ,τ), τ = 0

The classification of immersed compact disks with constant mean curvature in M2(κ)×R
was studied by M. Do Carmo and I. Fernández in [19], under certain conditions on the curve
Γ, they showed that φ(D) is a part of an Abresch-Rosenberg surface in M2(κ)×R. In this
section, we will classified immersed compact disks, Assuming geometric conditions about
Γ more general than the conditions given in [19].

Let Ω be an Abresch-Rosenberg surface in M2(κ)×R. In the following theorem, we
denote by ν1 = 〈ξ ,N1〉 as the angle function defined along the immersion φ , where N1 is the
unit normal vector field defined along φ(D) and by ν2 = 〈ξ ,N2〉 the angle function defined
along Ω, where N2 is the unit normal vector field defined along surface Ω.

Theorem 4.1. Let φ : D→M2(κ)×R be a non minimal H1-disk with regular boundary
Γ, Suppose that φ meets transversally an Abresch-Rosenberg H2-surface Ω along Γ at a
constant angle. Assume also that Γ is of one of the following types:

1. Γ is an horizontal or vertical curve of Ω.

2. If H1 = H2, the angle function ν1 is opposite to the angle function ν2.

Then, φ(D) is a part of an Abresch-Rosenberg surface in M2(κ)×R.
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Proof. Set φ(S1) = Γ. Now, Γ is an AR-line of curvature of the Abresch-Rosenberg surface
Ω, then from hypothesis and Corollary 4.1, γ is an AR-line of curvature of the immersion φ .
So, from Propostion 4.1, the imaginary part of the Abresch-Rosenberg differential must be
zero along γ . Finally, the Schwarz Reflection Lemma implies that the Abresch-Rosenberg
differential must be zero on φ(D) and Lemma 2.3 gives the result.

In Corollary 4.1, we omitted two interesting cases:

1. When Ω is a slice M2(κ)×{ξ0}, this case was treated in [17, Theorem 9].

2. When the immersion φ is minimal and Γ is horizontal, one can solve this case using
the Maximum principle, comparing φ with a slice.

Remark 4.2. Theorem 4.1 generalizes the classification result given by Do Carmo and
Fernandez in [19, Corollary 4.1] for immersed compact disks with constant mean curvature.
We only assume that Γ is horizontal, without assuming that Γ is a line of curvature of the
second fundamental form of the immersion.

4.2.2 Immersed compact disks in E(κ,τ), τ 6= 0

Now, we deal with H- disks in E(κ,τ), τ 6= 0. We remember that for this class of immer-
sions, we consider the Abresch-Rosenberg shape operator on φ(D) defined as

SARX = A(X)−α〈Tθ ,X〉Tθ +
α |T|2

2
X ,

where Tθ = cosθT+ sinθJT and α = κ−4τ2

2
√

H2+τ2 . Using Corollary 4.2, we extend the above
classification result for the case τ 6= 0.

Theorem 4.2. Let φ : D→ E(κ,τ), τ 6= 0, be a H1−disk with regular boundary, suppose
the boundary is parametrized by a regular curve γ and it is of one of the following types

1. γ is the tangent intersection of the immersion φ with an Abresch-Rosenberg surface
Ω with the same mean curvature vector.

2. γ is the transverse intersection with constant angle of the immersion φ with an Abresch-
Rosenberg surface Ω with the same mean curvature and whose angle function is op-
posite to the angle function of the immersion φ along γ .

Then, φ(D) is a part of an Abresch-Rosenberg surface in E(κ,τ).
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4.3 Immersed compact disks with non-regular boundary
In this section, we will study H1−disks φ : D→ E(κ,τ) with piece-wise regular boundary.
Indeed, we suppose that φ(D) is contained in the interior set of a differentiable surface with-
out boundary in E(κ,τ).

First, we will recall a result that gives conditions for a disk type surface to be umbilical
with respect to a Codazzi pair with constant mean curvature. For sake of completeness, we
will include the proof of this result.

Theorem 4.3 ([22]). Let Σ be a compact disk with piece-wise smooth boundary. We will
call the vertices of the surface to the finite set of non-regular boundary points. Assume that
Σ is contained as an interior set in a differentiable surface Σ̂ without boundary.

Let (I, II) be a Codazzi pair with constant mean curvature H(I, II) on Σ̂. Assume also
that the following conditions holds:

1. The number of vertices in ∂Σ with an angle < π (measured with respect to the metric
I) is less than 3.

2. The regular curves in ∂Σ are lines of curvature for the pair (I, II)

Then Σ is totally umbilical for the pair (I, II).

Proof. Consider on Σ the Riemannian metric given by I, let z be a conformal parameter. Set
Q̂ the Hopf differential of the fundamental pair (I, II) and Q = Q̂|Σ. Assume, that Σ is not
totally umbilical respect to pair (I, II), that is, Q does not vanish identically on Σ.

At every non umbilical point of Σ̂ there exist two orthogonal lines of curvature. whereas
at an umbilical point the lines of curvature bend sharply. Since the imaginary part of Q̂ is
zero on these curves, if we write Q̂ = f (z)dz2 in a neighbourhood of a point z0, the rotation
index at an umbilic point z0 (see [13, 34]) is given by

I(z0) =
−1
4π

δarg f ,

where δarg f is the variation of the argument of f as we wind once around the singular point.

At an interior umbilic point of Σ, the rotation index of the lines of curvature of Σ co-
incides with the one of Σ̂. At a point z0 ∈ ∂Σ the rotation index of the lines of curvature
of Σ is defined as follows. Consider ϕ : D+ → Σ an immersion of D+ = {ξ ∈ C : |ξ | <
1, Im(ξ )≥ 0} into Σ, mapping the diameter of the half disk into ∂Σ. The lines of curvature
can be pulled back to a line field in D+. Moreover, since the regular curves of ∂Σ are lines
of curvature, they can be extended by reflection to a continuous line field with singularities
on the whole disk. Thus, we define the rotation index I(z0) of Q at z0 ∈ ∂Σ to be half of the
rotation index of the extended lines of curvature.

If all singularities are isolated, the Poincaré-Hopf Theorem gives that

∑
z∈Σ

I(z) = 1.
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Now, since H(I, II) is constant, Lemma 1.1 imply that the differential Q̂ is holomorphic
and then the zeroes of Q̂ in Σ̂ are isolated. In particular, the zeroes of Q are isolated in Σ.
Moreover, locally around a zero z0 ∈ Σ̂ of Q̂ we have that

Q̂(z) = (z− z0)
kg(z)dz2, (4.19)

where k ∈ N and g(z) is a non-vanishing continuous function. Therefore, the rotation index
is −k/2≤−1/2, in particular, it is always negative.

Claim: The boundary singular points are isolated. Moreover, let z0 ∈ ∂Σ be a
singular point, then

1. if z0 is not a vertex, its rotation index is I(z0)< 0,

2. if z0 is a vertex of angle > π , then I(z0)< 0,

3. if z0 is a vertex of angle < π , then I(z0)≤ 1/4.

Proof. Consider ϕ : D+ → Σ a conformal immersion as before, with ϕ(0) = z0. Since
Im(Q) = 0 on ∂Σ, its pull-back can be reflected through the diameter to a continuous
quadratic form on the whole unit disk D, that will be denote by Q∗. Notice that when z0
is a vertex ϕ ′ could be zero or infinite.

Let ω be the angle of ∂Σ at z0. Then ϕ ′ grows as |ξ |
ω

π
−1 at the origin. Around z0,

Q̂ is given by (4.19), although in this case k could be zero. Since, when ω = π/2, z0 is
not necessarily a zero of Q̂. In particular, z0 is an isolated singularity. Moreover there are
2(k+ 2) lines of curvature in Σ̂ emanating from z0, and meeting at an equal-angle system
of angle π/(k+2). In particular, since the curves in ∂Σ are lines of curvature, ω must be a
multiple of π/(k+2).

If we write Q∗ = f (ξ )dξ 2 for ξ ∈ D, then

f (ξ ) = (ϕ(ξ )−ϕ(0))k(ϕ ′(ξ ))2g(ϕ(ξ )), ξ ∈ D+.

Then the variation of the argument of f (ξ ) as we wind once around the origin is 2θ(k+
2)−4π and the rotation index is

I∗ = 1− ω

2π
(k+2).

In particular, i f ω ≥ π , then I∗ ≤ −k/2 < 0, whereas for ω < π we have I∗ ≤ 1/2 (as
I∗ < 1, and 2I∗ must be an integer). Since I(z0) = I∗/2, the claim is proved.

Finally taking account the above claim and since the number of vertices of angle < π is
less than or equal to 3, we can conclude that

∑
z∈Σ

I(z)≤ 3/4 < 1,

which contradicts the Poincaré-Hopf Theorem and shows that Σ must be totally umbilical.

52



4.3. IMMERSED COMPACT DISKS WITH NON-REGULAR BOUNDARY

If Σ is a constant mean curvature surface in E(κ,τ), therefore, the fundamental pair
(I, IIAR) defined on Σ is a Codazzi pair, such that its mean curvature H(I, IIAR) is constant.
Then, using Theorem 4.3 we obtain the following:

Theorem 4.4. Let Σ be a H− disk in E(κ,τ), τ 6= 0, with piece-wise differentiable boundary.
Assume also that the following conditions are satisfied:

1. Σ is contained as an interior set in a smooth H-surface Σ̂ in E(κ,τ) without boundary.

2. The number of vertices in ∂Σ with angle < π is less than or equal to 3.

3. The regular curves in ∂Σ are AR-lines of curvatures of Σ.

Then, Σ is a part of an Abresch-Rosenberg surface in E(κ,τ).

Theorem 4.1, shows that if a H− disk in M2(κ)×R with horizontal curve Γ as boundary
meets an Abresch-Rosenberg surface at a constant angle along Γ, then Γ is an AR- line of
curvature of the immersion, then using this fact with Theorem 4.4, we get the following
corollary:

Corollary 4.3. Let φ : D→M2(κ)×R be a H1- disk, with H1 6= 0 and piece-wise differen-
tiable boundary Γ. Assume also that the following conditions are satisfied:

1. φ(D) is contained as an interior set in a smooth H1-surface Σ̂ in E(κ,τ) without
boundary.

2. The number of vertices in Γ with angle < π is less than or equal to 3.

3. Every regular component γ of Γ is a one of following types:

• γ is contained in a horizontal slice

• γ is a transverse intersection with constant angle of φ(D) with an Abresch-
Rosenberg surface Ω of constant mean curvature H2 6= 0

Then, φ(D) is a part of an Abresch-Rosenberg surface in M2(κ)×R.

Theorem 4.2, shows that if a H− disk in E(κ,τ), τ 6= 0, has regular boundary, then under
certain conditions over Γ, we conclude that Γ is an AR- line of curvature of the immersion.
So, using the above fact with the Theorem 4.4, we obtain:

Corollary 4.4. Let φ : D → E(κ,τ), τ 6= 0, be a H1-disk with piece-wise differentiable
boundary Γ. Assume also that the following conditions are satisfied:

1. φ(D) is contained as an interior set in a smooth H-surface Σ̂ in E(κ,τ) without
boundary.

2. The number of vertices in Γ with angle < π is less than or equal to 3.
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3. Every regular component γ of Γ is one of the following types:

• γ is a tangent intersection of φ(D) with an Abresch-Rosenberg surface Ω with
the same mean curvature vector.

• γ is a transverse intersection with constant angle of φ(D) with an Abresch-
Rosenberg surface Ω with the same constant mean curvature and whose angle
function is opposite to the angle function φ(D) along γ .

Then, φ(D) is a part of an Abresch-Rosenberg surface in E(κ,τ), τ 6= 0.
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