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Abstract. The solutions of the linear ill-posed problems are frequently obtained

by approximation using the regularization functions. In the present work, bounds

of the noise-free part of the regularization error of a certain class of functions

are obtained through the norm bound functions that decreasing to zero along the

regularization parameter, the so called profile functions. Using the properties of such

class and assuming apriori smoothness of the true solution, in terms of sourcewise

representations, the profile functions are obtained. We verify that qualification

property of the regularization class is a consequence of the properties of such

functions. We present a method of construction of a regularization class through

conjugation technique by using Julia’s functional equation. The conjugation procedure

allows incorporating the properties of the operator into the regularization class.

Some properties of the Julia’s equation solution are obtained which are useful

to construct filters for the discrete regularization. Other examples of application

consist of generating the classical Tikhonov-Phillips regularization and the non-

smooth regularization methods as Landweber and spectral cut-off are embedding in a

regularization class by using a mollification process. Numerical examples are presented

showing the robustness of the regularization by conjugation developed here.
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1. Introduction

We consider the ill-posed problem

Kx = y, (1)

where K is an injective bounded linear operator between Hilbert spaces X and Y with

norm || · || and the range R(K) is not a closed in Y . Then the linear operator equation

Kx = y has unique solution x† ∈ {x ∈ X : Kx = y} for each y ∈ R(K) with the

property ||x†|| = inf{||x|| : Kx = y}, but notice that since R(K) is not closed, then the

formal inverse mapping y → x = K−1y exists for each y ∈ R(K) and it is discontinuous.

This problem is solved by using the Moore-Penrose (generalized) inverse operator K†,

see [7] for details. For the bounded linear operator K : X → Y , K† is defined as the

unique linear extension of K̂−1 with the domain D(K†) := R(K) + R(K)⊥ and kernel

N(K†) = R(K)⊥, where K̂ := K|N(K)⊥ : N(K)⊥ → R(K), and N(K) = {x ∈ D(K) :

Kx = 0}. In [7] the uniqueness of the best-approximate solution x† = K†y is proved.

Assuming that the right side of Eq. (1) is contaminated with error, we consider

yδ ∈ Y instead of y, such that ||y − yδ|| ≤ δ, where the noise level δ is known. In

order to obtain approximated solution depending continuously on yδ it is necessary to

apply some sort of regularization. The goal of this paper consists in recovering x†,

which is related to the data yδ by yδ = Kx† + δξ, for ||ξ|| ≤ 1 by using an alternative

regularization schemes.

The general linear regularization schemes are usually based on a family of piecewise

continuous functions sα(τ) depending on a parameter α ∈ (0, ᾱ ], τ ∈ [0, a ] and

a = ||K∗K||. Once the regularization sα is chosen, the regularization method is defined

and the regularized solution is obtained by using xδα = sα(K∗K)K∗yδ, where K∗ is the

adjoint operator of K. The error bound e(x†, α, δ) for this approximation satisfies

e(x†, α, δ) = ||xδα − x†|| ≤ ||xα − x†||+ δ||sα(K∗K)K∗||, (2)

where xα = sα(K∗K)K∗y. In the present text, the same framework is used but we

assume that sα(τ) are of class Cn[0, a] with n >= 1. This assumption permits to use

the functional equation solutions to built a broad class of regularization schemes. Also,

we can show in this case the regularization can be obtained by a conjugation process

that improving the behavior of the spectrum of the operator K∗K which is hidden in

the analysis of the ill-posed problems.

In [7], a broad theoretical exposition of regularization methods, as well as numerous

examples of practical utility are presented. At the same time leaves open the possibility

of finding new regularization functions with the properties exposed in such work and

that was tackled in several works, see for example [15, 29, 15, 14, 17, 12]. It is because

the purposes of our work is to find other alternatives of regularization functions that

with certain adjustments include or reproduce the most popular such as Tikhonov-

Phillips, Landweber and cut-off regularization methods. In turn, provide us with a

constructive method to obtain another kind of these regularization functions. In its

turn, the formalism exposed by the new regularization parameter and the property of
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conjugation leaves open the possibility of comparing each other and classifying them

which is open for future work.

In order to simplify the calculations without of generality, the regularization family

sα is defined as sα := 1/gα where gα 6= 0). In this notation the residual of the

regularization method gα is denoted by

rgα(τ) = 1− τsα(τ), (3)

with sα(τ) = 1/gα(τ) for τ ∈ [0, a], where lim
τ→0

(τ/gα(τ)) < ∞. Using the spectral

decomposition of K∗K it is possible to check that

||xα − x†|| = ||rgα(K∗K)x†||. (4)

In order to guarantee the convergence of the approximate solution, the regularization

gα needs to be chosen to control the norm bound of the residual rα.

Without loss of generality, we substitute the regularization parameter α for an

arbitrary index i ∈ I. The convergence of the regularized solution

xδgi = rgi(K
∗K)K∗yδ (5)

is studied for a sequence of functions {gi} such that εgi → 0, where

εgi =

√
(gi(0))2 + (g

′
i(0)− 1)2 + (g

′′
i (0))2 + . . .+ (g

(n)
i (0))2, (6)

and g
(j)
i denotes the jth derivative of gi.

Now εgi plays the role of α from the classical regularization formalism, see

[24, 26, 30]. The difference between both formulations consists in that parameter α

in the later is used in the construction of the family of regularization functions although

εgi depends on the properties of the regularization family at the origin. One of the

advantages of such choice is that it allows to measure different regularization functions.

The properties of regularization class exposed here are similar those exposes in

Definition of regularization in [16], but the particular inequality gα(τ) > γ∗
√
α
√
τ is

replaced for a more general condition, i.e. gα(τ) ≥ Ψ(τ)Θ(εgα) where Ψ and Θ are

index functions, i.e. continuous, strictly increasing function that tends to zero when

the argument go to zero. These bound index functions allow us to construct some

profile functions and to choose an appropriate smoothness for the true solution, which

we shall describe in terms of sourcewise representations. Also, this inequality lead to

a more general definition of qualification property and to include other examples of

regularization which are not studied previously.

In Section 2 the Definition of the regularization class is proposed and it includes

classical Tickonov’s regularization [30]. The convergence and convergence rate of

regularized solutions to the best approximate solution x† are verified, assuming that x†

satisfy apriori smoother condition similar to ones presented in [7, 16]. The qualification

property of this regularized method is also addressed. The convergence of such method
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is optimal and based on the topological properties on the functions of the regularization

class.

The continuously differentiable hypothesis in the Definition of regularization class

can be relaxed for embedding some kind of piece continuous regularization functions

into a regularization class by means a mollification process, which is studied in Section

3.

Section 4 is developed a method for the construction of the presented class of

regularization functions through conjugation using Julia’s functional equation [18, 19].

This type of approach reminds the Dynamical System Method (DSM) explained in [27],

which proposes to solve the ill-posed problem by rewriting it in the equivalent form that

can be studied by using dynamical systems techniques.

Although there is a notable relation between the behavior of the eigenvalues close

to the accumulation point and dynamical systems there is a lack of literature addressing

this issue applied to the functional equations with ill-posed problems. The present

article addresses this problem relating the functional equation theory and the regularized

solutions of the operational equation (1). To do so, we study a family of equivalent

operational equation g(K)x = y, where g is a function belonging to a regularization

class, such that the corresponding solutions converge to the best approximate solution

when the function g approximates identity. The function g is obtained though a process

of conjugation with a diffemeorphism. This approach was used a long time ago (see

[1, 5]) in similar problems to understand the Newton’s method using conjugation (see

[2]) by studying the associated discrete dynamical system in new coordinates. It was

also used to study the normal form and spectrum of matrices [6] and more recently in

[20].

In Section 5 a numerical examples is presented. We show how to use the

regularization class to solve a discrete version of a linear compact operator equation.

Although the proof that solution g of the Julia’s equation g(D(τ)) = D′(τ)g(τ) for

a given D with some properties constitutes a regularization class is quite long and

technical, the numerical calculation itself is simple and depends only on the selection of

a function D satisfying a set of properties easily verifiable. Therefore, regularization by

conjugation offers a practical and robust method to obtain regularization functions.

2. Regularization class

Using the presented results, we prove the main tool of this work that enables to obtain

a regularized solution to the operational equation with a bounded linear operator. As

in [16], we use the following definition of index function.

Definition 1. A real function φ(t), with (0 < t ≤ t̄ ) is called an index function if it is

continuous, strictly increasing and satisfies the condition lim
t→0+

φ(t) = 0.

Definition 2. Define the family of functions F as a union of the null function with

the subset of index functions {Φ : [0, ε̄]→ R} such that ε/Φ(ε) is an index function and
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there exist constants β1 ≤ 1, β2 ≥ 1, r1 ≥ 0, r2 ≥ 0, ε̄ > 0 such that r1ε
β1 ≤ Φ(ε) ≤ r2ε

β2

for ε ∈ [0, ε̄].

The following set of auxiliary functions is defined in order to include different types

of regularization classes in a single formalism.

Definition 3. Define the auxiliary set of functions Ga = {g ∈ Cn([0, a],R)} with εg
defined in Eq. (6) satisfying the properties

(a1) ∃ Q > 0 and n ≥ 1, such that ∀g ∈ Ga, |g(n)(τ)| ≤ Qεg, ∀τ ∈ [0, a]; and there

exists at least one derivative g(m)(0) 6= 0 for 1 ≤ m ≤ n.

(a2) ∃R1 constant, such that εg ≤ R1 for all g ∈ Ga.
(a3) g(τ) > 0 for τ 6= 0 and g(τ) is a non-decreasing function.

(a4) ∃R2 constant, such that |τ/g(τ)| < R2, ∀τ ∈ [0, a], ∀g ∈ Ga and

lim
τ→0

(τ/g(τ)) <∞.

The main regularization class is defined using previous set of functions as follows.

Definition 4. Given a ∈ R and εg defined in Eq. (6) the regularization class Ga is

defined as Ga = {ḡ(τ) ∈ Cn([0, a],R); ḡ(0) 6= 0; ḡ(τ) = g(τ) + Φ(εg); g ∈ Ga; Φ ∈ F},
satisfying the property

i) There exist index functions Ψ and Θ, such that ε/Θ(ε) is also an index function for

ε ∈ (0, ε̄ ] and ḡ(τ) ≥ Ψ(τ)Θ(εg), τ ∈ (0, a].

The next proposition follows immediately from the definition.

Proposition 2.1. The functions ḡ in the regularization class Ga satisfy

ii) ∃ Q > 0 and n ≥ 1, such that ∀ḡ ∈ Ga, |ḡ(n)(τ)| ≤ Qεg and there exists at least one

derivative ḡ(m)(0) 6= 0 for 1 ≤ m ≤ n.

iii) ∃R1 constant, such that εg ≤ R1 for all ḡ ∈ Ga.
iv) ḡ(τ) > 0 for τ 6= 0 and ḡ(τ) is non-decreasing function.

v) ∃R2 constant, such that |τ/ḡ(τ)| < R2 for all ḡ ∈ Ga and lim
τ→0

(τ/ḡ(τ)) <∞.

Remark 1. The application εg : Ga → [0, ε̄] defined by Eq. (6) is surjective. Consider

some increasing continuous differentiable function υ(α) going onto the interval [0, ε̄].

Notice that the function hα(τ) = τ + υ(α) is of class G and εh assumes all values in the

interval [0, ε̄].

The following lemma is required to prove convergence of the regularized solutions.

Lemma 2.2. Let K be a bounded linear operator. Consider n ∈ N, n ≥ 1, a = ||K∗K||
and the function ḡ ∈ Ga, with ḡ = g + Φ. The error rḡ in (3) satisfies the following

conditions

(a) If Φ is not a null function then there exists a constant M1 such that

|rḡ(τ)| ≤M1
εg

Φ(εg)
, for τ ∈ (0, a]. (7)
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(b) The error rḡ is uniformly bounded in Ga.

(c) For Θ and Ψ from Def. 4 there exists a constant M2 such that

|rḡ(τ)| ≤M2
εg

Θ(εg)

1

Ψ(τ)
, for τ ∈ (0, a]. (8)

Proof. Let ḡ = g + Φ(εg) ∈ Ga. Notice that

|rḡ(τ)| =
∣∣∣∣1− τ

ḡ(τ)

∣∣∣∣ =

∣∣∣∣ ḡ(τ)− τ
ḡ(τ)

∣∣∣∣ . (9)

Using Taylor’s formula it follows that

g(τ) = g(0) +
g
′
(0)

1!
τ +

g
′′
(0)

2!
τ 2 + . . .+

g(n−1)(0)

(n− 1)!
τn−1 +

g(n)(ξ)

(n)!
τn, (10)

for some ξ ∈ (0, a). Substituting (10) into (9) yields

|rḡ(τ)| = 1

|g(τ) + Φ(εg)|
×∣∣∣∣Φ(εg) + g(0) + (g

′
(0)− 1)τ +

g
′′
(0)

2!
τ 2 + . . .+

g(n−1)(0)

(n− 1)!
τn−1 +

g(n)(ξ)

(n)!
τn
∣∣∣∣. (11)

From (ii) and (iv) of Proposition 2.1 and |g(0)| ≤ εg, |g′(0)−1| ≤ εg, |g(j)(0)| ≤ εg, with

j = 2, . . . , n− 1 for τ ≤ a, it follows that

|rḡ(τ)| ≤ 1

Φ(εg)

(
|Φ(εg)|+ εg

(
1 + a+

a2

2!
+ . . .+

an−1

(n− 1)!
+Q

an

(n)!

))
. (12)

Using from Def. 2 that Φ(τ) ≤ r2τ
β2 (i.e. Φ ∈ F) inequality (12) can be rewritten as

|rḡ(τ)| ≤ εg
|Φ(εg)|

(
r2ε

β2−1
g + 1 + a+

a2

2!
+ . . .+

an−1

(n− 1)!
+Q

an

(n)!

)
. (13)

Taking M1 = (r2R
β2−1
1 + 1 +a+ a2

2!
+ . . .+ an−1

(n−1)!
+Q an

(n)!
) we obtain (a). Item (b) follows

from the item (v) of Prop. 2.1. In order to prove item (c) substitute (i) from Def. 4 into

(11) obtaining

|rh(τ)| ≤ 1

|Ψ(τ)Θ(εg)|

(
|Φ(εg)|+ εg

(
1 + a+

a2

2!
+ . . .+

an−1

(n− 1)!
+Q

an

(n)!

))
. (14)

Using Def. 2 again, Eq. (8) follows.

Remark 2. It is possible to check that Lemma 2.2 still valid if instead of to use the

condition |g(n)(τ)| ≤ Qεg, ∀τ ∈ [0, a] we use that the following condition: there exist

a constant Q1 > 0 such that |(g(n)(ξ)τn)|/(n!) ≤ Q1εg holds, ∀ξ < τ and τ ∈ (0, a].

This condition will be used when we study the mollification of non-smooth regularization

functions in Section 3.
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In order to prove the convergence of the regularized solutions to x† and to evaluate

the convergence rate it is necessary to introduce the concepts of qualification and

smoothness. In this work it is used a more general concept of qualification than that

found in the literature, see [7, 16, 21, 22, 23].

Definition 5. Let Ψ and Π be two index functions on the interval (0, a]. A function

ḡ = g + Φ(εg) of the regularization class Ga has qualification (Ψ,Π) with constant

γ > 0 if the error rḡ defined in Eq. (3) satisfies

sup
0<τ≤a

|rḡ(τ)|Ψ(τ) ≤ γΠ(εg). (15)

Notice that from the items (a) and (c) of Lemma 2.2 follows that functions of class

Ga have qualifications (τβ, εg/Φ(εg)) with 0 < β < 1 and (Ψ, εg/Θ(εg)). Substituting εg
for the parameter α and considering Π = Ψ the above definition is equivalent to one

presented in [16]. Following [16] we introduce the definitions:

Definition 6. Given constant c > 0, bounded linear operator between Hilbert spaces

K : X → Y and index function Λ the regularized solution possesses smoothness

property when x† ∈ HΛ(c) = {x ∈ X : x = Λ(K∗K)w, ||w|| ≤ c}.
For M ⊂ HΛ(c) and ḡ ∈ Ga an index function F : (0, c] → (0,∞) (see [16] for

details) is called profile function for (M, ḡ) when

sup
x∈M
||rḡ(K∗K)x|| ≤ F (εg). (16)

Lemma 2.3. Let K : X → Y be a bounded linear operator between Hilbert spaces X

and Y . If ḡ ∈ Ga with a = ||K∗K|| then ||s̄(K∗K)K∗|| ≤ µ/Ψ(εg) with s̄ := 1/ḡ, for

some constant µ and some index function Ψ.

Proof. By the spectral theory, see [7], we have

||s̄(K∗K)K∗y||2 =

∫ a

0

(τ/(g(τ) + Φ(εg)))
2d||Eλy||2, (17)

where y ∈ R(K). Using (i) from Def. 4 we obtain

||s̄(K∗K)K∗y||2 ≤ sup
τ∈(0,a]

{(τ/Θ(τ))2}(1/Ψ(εg))
2||y||2. (18)

Taking µ = a
√

supτ∈(0,a]{(τ/Θ(τ))2}, that is limited because of Def. 4 (i), the result

follows.

Next we prove the main result about the convergence of the regularized solutions.
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Lemma 2.4. Let K : X → Y be a bounded linear operator between Hilbert spaces X

and Y . Let ḡ ∈ Ga, with a = ||K∗K||. If F is a profile function for (M, ḡ), where M is

some compact subset of HΛ(c) for some constant c. Then the error (defined in Eq. (2))

satisfies

e(x†, εg∗ , δ) ≤ (1 + µ)F (εg∗) (19)

for certain ḡ∗ ∈ Ga. This implies that it is possible to construct the sequence of

regularized solutions converging to x† as in Eq. (5).

Proof. The proof proceeds in a similar way as in [16]. From Lemma 2.3 it follows

e(x†, εg, δ) ≤ F (εg) + δµ(1/Ψ(εg)). (20)

Take the index function Ω(τ) = Ψ(τ)F (τ) and choose the function g∗ ∈ Ga such that

εg∗ = Ω−1(δ). The existence of such ḡ∗ is guaranteed by Remark 1. Substituting δ into

Eq. (20) yields Eq. (19). The result about convergence follows.

One sequence of regularized solutions converging to x† is given in

Theorem 2.5. Consider a bounded linear operator K : X → Y between Hilbert spaces

and the sequence (ḡi) in the regularization class Ga from Def. 4. Here a = ||K∗K||,
i ∈ I, where I denotes some set of indexes. Let y ∈ R(K) and s̄i := 1/ḡi,

xḡi = (s̄i(K
∗K)K∗)y, xδḡi = (s̄i(K

∗K)K∗)yδ, with ||y − yδ|| < δ. Let x† ∈ HΨ(R) as in

Def. 6, where the index function Ψ is given in Def. 4(i) and εgi defined in Eq. (6). Then

there exists an index function F such that

||xḡi − x†|| < F (εgi), (21)

with e(x†, εgi , δ) from Eq. (2) satisfying

e(x†, εg∗i , δ) ≤ (1 + µ)F (εg∗i ), (22)

where εg∗i = Ω−1(δ) for some ḡ∗i ∈ Ga with Ω(τ) = Ψ(τ)F (τ).

Proof. Notice that xḡi − x† = (s̄i(K
∗K)K∗)y − x† = (s̄i(K

∗K)K∗K)x† − x† =

(s̄i(K
∗K)K∗K − I)x† = (s̄i(K

∗K)K∗K − I)Ψ(K∗K)w, with ||w|| ≤ R. Using spectral

theory, see [7], we obtain

||xḡi − x†||2 =

∫ ||K||2
0

(
1− λ

ḡi(λ)

)2

Ψ2(λ)d||Eλw||2 =

∫ ||K||2
0

r2
ḡi

(λ)Ψ2(λ)d||Eλw||2.

From inequality (8) in Lemma 2.2, we have

||xḡi − x†|| ≤M2(εgi/Θ(εgi))

∫ ||K||2
0

d||Eλw||2 := F (εgi). (23)

Notice that (from Def. 4-i) εgi/Θ(εgi) is an index function following that F (εgi) defined

in Eq. (23) is a profile function. Finally, by using (21) in Lemma 2.4 follows (22), where

εg∗i = Ω−1(δ) for some ḡ∗i ∈ Ga with Ω(τ) = Ψ(τ)F (τ).

Notice that Eq. (22) guarantees that the error is bounded by F (Ω−1(δ)) leading to

the optimal rate of convergence in the sense of [9], i.e. the regularization functions xδḡi
to x† as δ → 0.
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2.1. Properties of the regularization class Ga

From Definition 5 and inequality (8) in Lemma 2.2 it follows that the family ḡi ∈ Ga

(a = ||K∗K||) possesses qualification (Ψ, F ) with Ψ given in Def. 4-(i) and F defined in

Eq. (23).

It is possible to prove Theorem 2.5 using (7) instead of (8) and different smoothness

condition x† = (K∗K)βw, with ||w|| ≤ R for the parameter 0 < β < 1. This is

equivalent to consider the function Ψ(τ) = τβ for τ ∈ [0, a], with 0 < β < 1 in the

proof of Theorem 2.5. The corresponding profile function will be F (εg) = M3εg/Φ(εg)

resulting in different convergence rate.

Another important property of the regularization class is compactness in the

following sense: The set of continuous differentiable functions satisfying condition (a1),

(a2) and (a3) of Definition 3 constitute a compact subset of Cn([0, a],R) with the infinite

norm. This is a consequence of the Helly’s Theorem (see [13], page 45). Also, the limit

of sequence in Ga satisfy condition (i) of Definition 4 and (a4) of Definition 3.

The class Ga (a = ||K∗K||) is not empty. One possible construction is presented

in Section 4 by using a solution of a Julia’s functional equation.

3. About the hypotheses of continuous differentiable

Def. 4 assumed that the regularization functions are continuously differentiable up to

order n ≥ 1. In this section, the regularization class will be enriched with some piecewise

continuous regularization functions by means of mollification process. This procedure

allows to include the regularization functions described in the literature, see [7, 22].

Following [8] the following C∞(R) mollifiers are defined:

η(x) =

 C exp

{
1

x2 − 1

}
|x| < 1;

0 |x| ≥ 1,
ηε(x) =

1

ε
η
(x
ε

)
, (24)

where the constant C is such that
∫ +∞
−∞ η(x)dx =

∫ +∞
−∞ ηε(x)dx = 1 and the support of

ηε is the closed ball B[0, ε] = {x ∈ R : |x| ≤ ε}.

Definition 7. For ε > 0 the ε-mollification of a locally integrable function f : R→ R
is the convolution f ε = ηε ∗ f on R given by f ε(x) =

∫∞
−∞ ηε(x− s)f(s)ds, for all x ∈ R.

Theorem 3.1 (See [8]). (a) For all ε > 0, the ε-mollification f ε is C∞(R) and its nth

derivative is given by (f ε)(n)(x) =
∫∞
−∞ η

(n)
ε (x− s)f(s)ds, for all x ∈ R.

(b) If f is C0(R), then f ε converges to f uniformly on compact sets for ε→ 0+.

The next definition of the regularization functions is similar to the one used in

[7, 16], it is adjusted to the presented formalism by working only with positive functions.

Definition 8. A family of positive non-decreasing gα(τ) (0 ≤ τ ≤ a), defined for

parameters 0 ≤ α ≤ ᾱ, is called regularization if they are piecewise continuous in α

and the following properties are valid:
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(i) For each τ ∈ [0, a], |rα(τ)| → 0 as α→ 0, where rα(τ) = 1− τ/gα(τ).

(ii) There exist constants γ1 and γ2, such that |rα(τ)| ≤ γ1 and |gα(τ)| ≤ γ2 for all

α ∈ [0, ᾱ] and for all τ ∈ [0, a].

(iii) There exists a constant γ∗, such that gα(τ) ≥ γ∗
√
α
√
τ for all α ∈ [0, ᾱ].

The following Lemma (proved in Section 3.1) summarize the properties of the

mollifier of the regularization function in Def. 8.

Lemma 3.2. Let gα be a regularization as in Def. 8, such that gα(τ)→ τ when α→ 0

and

ḡα(τ) =


0 τ > a;

gα(τ) τ ∈ [0, a];

−gα(−τ) τ ∈ [−a, 0);

0 τ < −a.

(25)

Then the functions given by

f εα(τ) = ηε ∗ ḡα(τ) =

∫ ε

−ε
ηε(τ − s)ḡα(s)ds, (26)

for each fixed ε > 0 satisfy

i) lim
α→0

f εα(τ) = τ , ii) lim
α→0

(f εα)′(τ) =

∫ +ε

−ε
η′ε(τ − s)sds = 1,

iii) For n ≥ 2, lim
α→0

(f εα)(n)(τ) =

∫ +ε

−ε
η(n)
ε (τ − s)sds = 0.

Remark 3. From Lemma 3.2 it is possible to deduce that εfεα, defined in equation (6),

tends to zero when α→ 0.

The following Lemma is used to find mollification parameters.

Lemma 3.3. Consider the function f ∈ C1[0, ε̄] such that, f(0) = 0 and |f ′| < N < 1

for some constant N . Let f εα(τ) as in (26), gα from Def. 8, ḡα(τ) as in (25) such that,

ess sup
z∈[0,a]

|ḡα(−ε1z)− ḡα(−ε2z)| ≤ Lα|ε1 − ε2|, (27)

for any ε1, ε2 ∈ (0, ε̄] and some positive constant Lα. Let γ = (1 + Lα)−1. Then the

equation

σ(α, ε) := γff εα(0) = ε, (28)

possesses a unique fixed point ε∗ = ε∗(α) for each α, i.e. σ(α, ε∗) = ε∗.

Lemma 3.4. Let f εα(τ) as in (26), gα from Def. 8, ḡα(τ) as in (25) such that,

ess sup
τ∈[0,a]

|ḡα1(τ)− ḡα2(τ)| ≤ L|α1 − α2|, (29)

for any α1, α2 ∈ (0, ᾱ] and some positive constant L. Given ε, let us define

χj =

∫ +ε

−ε
η(j)
ε (−s)ds, Lε = 2L|χ1|+ 2Lγ2

n∑
j=0

|χj|2, γε = (1 + Lε)
−1. (30)
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Then, for each ε, the equation

γε(εfεα)2 = α, (31)

possesses a unique fixed point α∗ = α∗(ε) with εfεα defined in (6).

Next theorem proves that it is possible to construct a regularization class from

regularization functions given in Def. 8.

Theorem 3.5. Under the hypotheses of Lemmas 3.3 and 3.4 there exists ε(α), such that

the family of functions fα = ηε(α) ∗ ḡα belongs to the regularization class Ga in the sense

that it satisfies conditions (i) in Def. 4 and (a1)− (a4) in Def. 3.

3.1. Technical proofs

Proof. (Lemma 3.2) For fixed ε > 0, using Dominated Convergence Theorem, follows

that

lim
α→0

f εα(τ) =

∫ +ε

−ε
ηε(τ − s)sds =

∫ +1

−1

η1(z)(τ − εz)dz. (32)

Since η1(z)z is an odd function yields limα→0 f
ε
α(τ) = τ . In a similar way is obtained

lim
α→0

(f εα)′(τ) =

∫ +ε

−ε
η′ε(τ − s)sds = 1, (33)

and for n ≥ 2, it follows that

lim
α→0

(f εα)(n)(τ) =

∫ +ε

−ε
η(n)
ε (τ − s)gα(s)ds =

∫ +ε

−ε
η(n)
ε (τ − s)sds = 0. (34)

Proof. (Lemma 3.3) Changing variables z = (τ − s)/ε, Eq. (26) can be rewritten as

f εα(τ) = ηε ∗ ḡα(τ) =

∫ +1

−1

η(z)ḡα(τ − εz)dz, (35)

The function σ(α, ε) is a contraction for each α. Indeed, consider ε1, ε2 in [0, ε̄], then

using (35), (28) and applying the Mean Value Theorem to f results in

|σ(α, ε2)− σ(α, ε1)| < γN

∫ +1

−1

η(z)|ḡα(−ε2z)− ḡα(−ε1z)|dz. (36)

Substituting Eq. (27) into (36) and using
∫ +1

−1
η(s)ds = 1 follows that

|σ(α, ε2)− σ(α, ε1)| ≤ (Lαγ|f ′|) |ε2 − ε1|. (37)

Substituting γ yields that σ is a contraction and the result follows from the Fixed Point

Theorem (see [32]).
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Proof. (Lemma 3.4) Consider j = 1, . . . , n− 1. Since ḡα are uniformly bounded almost

everywhere, applying the Dominated Convergence Theorem on the integrals

f εα(0) = ηε ∗ ḡα(0) =

∫ +1

−1

η(z)ḡα(−εz)dz, (38)

and

(f εα)(j)(0) = η(j)
ε ∗ ḡα(0) =

∫ +ε

−ε
η(j)
ε (−s)ḡα(s)ds, (39)

we obtain that f εα(0) and (f εα)(j)(0) are continuous functions in α. Let us define the

functions ϕj : [0, ᾱ]→ R as ϕ0(α) := f εα(0), ϕ1(α) := (f εα)′(0)−1 and ϕj(α) := (f εα)(j)(0)

for j > 1. It follows that

(εfεα)2 =
n∑
j=0

ϕ2
j(α). (40)

Notice that for j 6= 1 |ϕj(α1) + ϕj(α2)| ≤ 2|χj|γ2, where χj is given in (30) and

|ϕ1(α1) + ϕ1(α2)| ≤ (2 + 2|χ1|γ2). Using (29) and (38)–(39) yields

|ϕj(α1)− ϕj(α2)| ≤ |χj| ess sup
τ∈[0,a]

|ḡα1(τ)− ḡα2(τ)| ≤ L|χj||α1 − α2|. (41)

It follows that |ϕ2
j(α1)− ϕ2

j(α2)| ≤ |ϕj(α1) + ϕj(α2)||ϕj(α1)− ϕj(α2)| yielding

|(εfεα1 )2 − (εfεα2 )2| ≤

(
2L|χ1|+ 2Lγ2

n∑
j=0

|χj|2
)
|α1 − α2| ≤ Lεα1 − α2|, (42)

where Lε was given in (30). Taking γε = (1 +Lε)
−1 we obtain from (42) that γε(εfεα)2 is

a contraction and the result follows from the Fixed Point Theorem.

Next we prove that it is possible to construct the regularization class from

regularization functions given in Def. 8.

Proof. (Theorem 3.5) [Def. 4 (i)] Consider ε = ε(α) > 0 and ḡα as in (25). After

changing variable t = −s it follows that

fα(τ) =

∫ 0

ε

ηε(τ + t)gα(t)dt+

∫ ε

0

ηε(τ − s)gα(s)ds ≥ γ∗
√
αH(τ, ε), (43)

where (iii) from Def. 8 was used in the last inequality and the function H(τ, ε) =∫ 0

+ε
ηε(τ + t)

√
tdt+

∫ +ε

0
ηε(τ − s)

√
sds is an index function. Notice that H(0, ε) = 0, and

∂H(τ, ε)

∂τ
= −

∫ +ε

0

∂

∂τ
(ηε(τ + s)− ηε(τ − s))

√
sds = −

∫ +ε

0

∂2ηε
∂τ 2

(θ) 2s
√
sds, (44)

where the Mean Value Theorem (see [28]) was used with θ ∈ [τ − s, τ + s]. From (24)

it follows that ∂2
τη(θ) < 0, then ∂2

τH(τ, ε) > 0 and H(τ, ε) is an index function. Using

(31) in (43) yields

fα(τ) > γ∗
√
γε(εfεα)H(τ, ε). (45)
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Finally, taking the index functions Θ(ε) = γ∗
√
γεε and Ψ(τ) = H(τ, ε) the conditions

(i) of Def. 4 follows.

[Def. 3 (a1)] Following Remark 2 we prove condition |f (n)
α (ξ)τn/(n)!| ≤ Q1(εfεα)2.

Applying Taylor formula to fα results in

fα
(n)(ξ)

(n)!
τn = (fα(τ)− τ)− fα(0) + (1− fα′(0))τ − fα

′′(0)

2!
τ 2− . . .− fα

n−1(0)

(n− 1)!
τn−1. (46)

From Lemma 3.2 we have fα(τ) → τ , when α → 0. Then |fα(τ) − τ | < ε(α) for small

α, where ε(α) is the solution of Equation (28). From Lemma 3.3 it is easy to check

that ε∗(α) < f εα(0). Using that |fα(0)| ≤ εfα , |1 − fα
′(0)| ≤ εfα and |fα(j)(0)| ≤ εfα

(j = 2, . . . , n− 1), where εfα is defined in (6), from (46) follows∣∣∣∣∣fα(n)(ξ)

(n)!
τn

∣∣∣∣∣ ≤ Q1εfα , (47)

where Q1 = 3 + (1/2!) + . . .+ (1/(n− 1)!).

[Def. 3 (a2)] From Def. 8 (ii) gα and fα
(n)(0) are uniformly bounded by γ2 since

|fα(n)(0)| =
∣∣∣∣∫ +ε

−ε
η(n)
ε (−s)ḡα(s)ds

∣∣∣∣ ≤ ∣∣∣∣∫ +ε

−ε
η(n)
ε (−s)ds

∣∣∣∣ sup
s∈[0,a]

|ḡα(s)|. (48)

It follows that εfα ≤ R1, where

R1 = sup
1≤j≤n

∣∣∣∣∫ +ε

−ε
η(j)
ε (−s)ds

∣∣∣∣ γ2.

[Def. 3 (a3)] Notice that fα > 0. From (43) if τ1 > τ2, then ḡα(τ1−εz) > ḡα(τ2−εz)

implying fα(τ1) > fα(τ2). So fα(τ) is an increasing function for τ ∈ [0, a].

[Def. 3 (a4)] From Def. 8, |τ/gα(τ)| < R2 uniformly for α ∈ (0, ᾱ) and

lim
τ→0

(τ/gα(τ)) <∞. Using (43) fα is also uniformly bounded for α ∈ (0, ᾱ).

3.2. Examples of the regularization classes obtained by mollification

Well known regularization functions presented in the form of Def. 8 can be written in

the form of the proposed formalism. Although they are not continuously differentiable

everywhere, it is possible to verify that these functions satisfy the conditions of the

Def. 8 and hypothesis of Lemma 3.3.

Example 1. The regularization function known as spectral cut-off, see [16], is

gα(τ) =

{
0 if 0 < x < α,

τ if α ≤ τ ≤ a.
(49)

This function is not differentiable at τ = α, however, it satisfies the properties in Def. 8,

where the upper bound ᾱ can be selected arbitrarily.
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Example 2. The Landweber iteration (see [7, 16]) produces the regularization

method gα = hα + Φ with Φ ≡ 0 and hα(0) = 0 and hα(τ) = τ/(1 − (1 − µτ)1/α) for

τ ∈ (0, a] with a = ||K∗K||. It is not differentiable at τ = 0 and gα(τ) ≥ (1/
√
µ)
√
τ
√
α

for τ ∈ [0, a] with µ < 1/a.

Further, an exhaustive construction of a regularization class is given

4. Construction of a regularization class

The regularization by conjugation formalism presented in Theorem 2.5 is based on

the existence of the family Ga of functions satisfying hypotheses of Definition 4. In

this section one form of constructing is presented. The construction is based on the

conjugation technique widely used in Dynamical Systems, see [2].

Definition 9. Auxiliary set of real valued functions Da is defined. Consider a > 0 and

n ≥ 1, then Da = {D ∈ Cn+1([0, a])}, such that

(a) D(0) = 0; 0 < λ := D′(0) < 1; |D(τ)| < |τ |, ∀τ ∈ [0, a]\{0}.
(b) ((D′(τ))2τ −D(τ)(D′(τ)τ))′ > 0, ∀τ ∈ [0, a]\{0}.

Using the set of auxiliary functions D, the class Ga can be build as follows.

Theorem 4.1. Let D ∈ Da such that D
′′
(0) < 0 and εD < Rd uniformly, where εD is

defined as

εDi =

√
(D
′′
i (0))2 + (D

′′′
i (0))2 + (D

(iv)
i (0))2 + . . .+ (D

(n+1)
i (0))2. (50)

Then the solutions g : [0, a]→ R of Julia’s equation

g(D(τ)) = D′(τ)g(τ) (51)

satisfy the conditions (a1)-(a4) of the auxiliary class Ga of Def. 3.

The proof of Theorem 4.1 is given in Section 4.6. Although some properties of

Julia’s equation are known (see [3, 18, 19] and references therein), other are obtained

here to show its relation with the theory of regularization.

Theorem 4.2. Let g be the solution of (51) with D ∈ Da. Assuming

(a) There exist constants k1 and 0 < γ ≤ 2 such that

g(τ) ≥ k1τ
γ. (52)

(b) There exists an index function Θ, such that ε/
√

Θ(ε) is also an index function for

ε ∈ (0, ε̄].

Then the family ḡ = g + Θ(εg), with εg from (6) defines a regularization class Ga.

Proof. From Theorem 4.1 function g ∈ Ga as in Def. 3. We need to prove that

ḡ = g(τ) + Θ(εg) satisfies condition (i) of Def. 4 for τ ∈ [0, a]. Using (g(τ) + Θ(εg)) ≥√
2(g(τ))1/2(Θ(εg))

1/2, together with (a) and (b) yields

(g(τ) + Θ(εg)) ≥ (
√

2k1)τ γ/2(Θ(εg))
1/2,

which is the condition (i) from Def. 4, because εg/
√

Θ(εg) is an index function.



Regularization class for bounded linear operators 15

4.1. Examples of regularization class

Two examples are presented next.

Example 1. A relevant particular case corresponds to the family Da of functions

D(τ) = aτ + α(a − 1), with a < 1 and α ∈ (0, ᾱ). It satisfies Def. 9 for small α and

the set Ga of corresponding solution of Julia’s equation is the Tikhonov’s regularization

function g(τ) = τ + α.

Example 2. Consider the monotone decreasing sequence {λn}n=1,2,... of the eigenvalues

of a self-adjoint operator K. For the moment assume λ1 < 1. Define a real smooth

interpolation function θ : [0, ||K||] → R, such that θ(τn) = λn, n ∈ N, where

τn = (1 − 1/n)||K||. Let us define the family Da of functions D : [0, ||K||] → R
as

D(τ) =

∫ τ

0

θ(τ)dτ. (53)

In the case when λ1 ≥ 1, instead of the sequence {λn}, one can use the sequence

{λn/(1 + λ1)} to define function θ. Notice that if θ is Cn[0, ||K||] then the function D

is Cn+1[0, ||K||] and always satisfies the item (i) in Def. 9. In case it satisfies the item

(ii) then the presented theory is applicable.

In this example Theorem 2.5 guarantees the bounds for the error based on the

proposed function D, which includes information about the eigenvalues of the operator.

In Corollary 4.5 this idea is shown with more details.

4.2. Technical proofs

We use some of the results presented in [3, 19] about the solution of Eq. (51), however,

we obtain other properties needed to construct the regularization class addressed in this

text.

Definition 10. A local diffeomorphism h : (−a, a)→ (−c, d), with a, c, d > 0, such that

D(τ) = h−1(λh(τ)), ∀τ ∈ (−a, a) is called a conjugation between function D and its

linear part L(τ) = λτ , where λ is a positive parameter.

Next proposition proves the existence of conjugation diffeomorphism for certain

class of functions D.

Proposition 4.3. Assume a > 0 and D : (−a, a)→ R, D ∈ C1+ε for some ε > 0 such

that (a) D(0) = 0, (b) 0 < λ := D′(0) < 1 and (c) |D(τ)| < |τ |, ∀τ ∈ (−a, a)\{0}. Then

there is a unique conjugation h as in Def. 10, such that h′(0) = 1. Such diffeomorphism

h is of class C1+ε and its derivative is given by

h′(τ) =
∞∏
i=0

D′(Di(τ))

λ
, (54)

where D0(τ) = x and Di+1(τ) = D(Di(τ)), ∀i ≥ 0.
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Proof. Since the function h satisfies h(D(τ)) = λh(τ) and, for τ = 0, h(0) =

λh(0), it follows that h(0) = 0. Moreover, h(Dn(τ)) = λnh(τ), ∀n ∈ N, yielding

h′(Dn(τ))(Dn)′(τ) = λnh′(τ), and thus

h′(τ) = h′(Dn(τ))
(Dn)′(τ)

λn
= h′(Dn(τ))

n−1∏
j=0

D′(Dj(τ))

λ
. (55)

Using Remark 4 we get Dn(τ) ≤ bn|τ | → 0, when n→∞. Since h′(0) = 1 and h ∈ C1

it follows that h′(τ) satisfies equation (54). This implies the uniqueness of h.

Next we prove that the product in equation (54) converges, it is equivalent to prove

that

f(τ) =
∞∑
j=0

(logD′(Dj(τ))− log λ) (56)

converges and so the function f is well defined. Since D′ ∈ Cε, it follows that logD′ ∈ Cε

thus there exists k > 0 such that | logD′(z)− logD′(y)| ≤ k|z − y|ε, ∀y, z ∈ (−a, a). In

particular, | logD′(z)− log λ| ≤ k|z|ε, ∀z ∈ (−a, a).

Since |Dj(τ)| ≤ bj|τ | ≤ a · bj, ∀τ ∈ (−a, a), | logD′(Dj(τ)) − log λ| ≤ k|Dj(τ)|ε ≤
k · aε · bjε, ∀j ≥ 0, yielding the absolute and uniform convergence of the series in

equation (56). Moreover, since |Dj(x)−Dj(y)| = |(Dj)′(ξ)||x− y|, for some ξ ∈ (x, y),

and |(Dj)′(ξ)| =
∏j−1

j=0 |D′(Dj(ξ))| ≤ bj, we have, for every x, y ∈ (−a, a),

|f(y)− f(x)| ≤
∞∑
j=0

| logD′(Dj(y))− logD′(Dj(x))| (57)

≤ k
∞∑
j=0

|Dj(y)−Dj(x)|ε (58)

≤ k
∞∑
j=0

bjε|x− y|ε =
k

1− bε
|x− y|ε, (59)

yielding f ∈ Cε. Thus,

ef(τ) =
∞∏
j=0

D′(Dj(τ))

λ
(60)

is also of class Cε. Notice that

ef(D(τ)) =
∞∏
j=0

D′(Dj(D(τ)))

λ
=
∞∏
j=1

D′(Dj(τ))

λ
=

λ

D′(τ)

∞∏
j=0

D′(Dj(τ))

λ

=
λ

D′(τ)
ef(τ).

(61)

Defining

h(τ) =

∫ τ

0

ef(t)dt, (62)

we have h(0) = 0, h′(τ) = ef(τ), and thus (h(D(τ)))′ = h′(D(τ))D′(τ) =

ef(D(τ))D′(τ) = λef(τ) = λh′(τ), ∀τ ∈ (−a, a). Since h(D(0)) = h(0) = 0 = λh(0), we
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have h(D(τ)) = λh(τ),∀τ ∈ (−a, a). Since h′(τ) = ef(τ) > 0, ∀τ ∈ (−a, a) then h is a

diffeomorphism over its image (−c, d). From h′(τ) = ef(τ) ∈ Cε it follows that h ∈ C1+ε.

Since h(D(τ)) = λh(τ), we have D(τ) = h−1(λh(τ)), ∀τ ∈ (−a, a). Finally, notice that

f(0) =
∞∑
j=0

(log(D′(Dj(0)))− log λ) = 0, (63)

yielding h′(0) = ef(0) = 1.

Remark 4. Under the hypotheses of the proposition above, taking smaller a, if

necessary, there are b̄ and b such that 0 < b̄ < D′(τ) < b < 1, ∀τ ∈ (−a, a) and

|D(τ)| ≤ b|τ | < |τ |, ∀τ ∈ (−a, a)\{0}.

Remark 5. If in the hypothesis of the Proposition above, we choose D defined on the

interval [0,M ], the proposition is still valid in the case when function D is differentiable

at zero.

Remark 6. • If b 6= 0, the unique conjugation h̃ of class C1 between D and its linear

part with h̃′(0) = b is defined by h̃(τ) = bh(τ).

• There exists the function D of the class C1, such that the product in equation (54)

does not converge, ∀τ 6= 0, and a conjugation h of class C1 in the sense of Definition 10

does not exist.

Definition 11. Two functions f(w) and f̃(w) are similar (denoted by f(w) ∼ f̃(w))

when

lim
w→0

f(w)

f̃(w)
= 1. (64)

Remark 7. The function h of the Proposition 4.3 is such that ∀n ∈ N, Dn(τ) =

h−1(λnh(τ)). From h′(0) = 1 it follows that h−1(y) ∼ y, yielding Dn(τ) ∼ λnh(τ). Thus

h(τ) can be obtained through the expression

h(τ) = lim
n→∞

λ−nDn(τ). (65)

Given the functions D and h as in Proposition 4.3 it will be checked that the

function g := h/h′ satisfies Julia’s equation studied in [19]:

g(D(τ)) = D′(τ)g(τ). (66)

If the function D satisfies Def. 9 (a) and the derivatives of D possess uniform

limitation than the solution gD of the functional equation (66) satisfies the hypotheses

of Theorem 2.5.

Let us assume that g : (−a, a) → R possesses derivative at 0. First, notice that

∀n ≥ 1, g(Dn(τ)) = (Dn)′(τ)g(τ). We prove it using induction. For n = 1, this is the

initial functional equation. Assuming the equation valid for n, we have g(Dn+1(τ)) =

g(D(Dn(τ))) = D′(Dn(τ))g(Dn(τ)) = D′(Dn(τ))(Dn)′(τ)g(τ) = (D ◦ Dn)′(τ)g(τ) =

(Dn+1)′(τ)g(τ).
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From limn→∞D
n(τ) = 0 it follows that g(Dn(τ)) ∼ g′(0)Dn(τ). From D(τ) =

h−1(λh(τ)) it follows that Dn(τ) = h−1(λnh(τ)) and

(Dn)′(τ) = (h−1)′(λnh(τ))λnh′(τ) ∼ λnh′(τ) (since h′(0) = 1), so g(Dn(τ)) ∼
g′(0)Dn(τ) = g′(0)h−1(λnh(τ)) ∼ g′(0)λnh(τ), and thus

g′(0)λnh(τ) ∼ (Dn)′(τ)g(τ) ∼ λnh′(τ)g(τ). This yields

g(τ) = g′(0)
h(τ)

h′(τ)
. (67)

Next we prove that for all b̃ ∈ R, the function g(τ) = b̃h(τ)/h′(τ) is a solution of

the functional equation (66) even in the case when g does not admit derivative in 0. We

have

g(D(τ)) =
b̃h(D(τ))

h′(D(τ))
. (68)

From h(D(τ)) = λh(τ) follows h′(D(τ))D′(τ) = λh′(τ) and

h(D(τ))

h′(D(τ))
=
λh(τ)D′(τ)

λh′(τ)
=
h(τ)

h′(τ)
D′(τ). (69)

Substituting (69) into (68) yields g(D(τ)) = b̃h(τ)D′(τ)/h′(τ) = g(τ)D′(τ). Thus g in

(67) satisfies the functional equation (66).

In order to define the regularization class it is necessary to study the regularity of

the class of functions g depending on the regularity of functions D. When D ∈ C1+ε for

some ε > 0 this construction determines all continuous solutions g admitting derivatives

in 0 (there are other solutions that are only continuous). If h is of class Ck, then h′ is of

class Ck−1 and thus g is of class Ck−1. Since h ∈ C1 it is easy to prove (by induction in

s) from the expression g(τ) = g′(0)h(τ)/h′(τ) that if g 6= 0 and g ∈ Cs then h ∈ Cs+1.

Proposition 4.4. Consider h satisfying (65), D ∈ Ck, k ≥ 2, if and only if h ∈ Ck.

Proof. If h ∈ Ck then D(τ) = h−1(λh(τ)) is a composition of functions of class Ck and

thus D ∈ Ck.

Reciprocally, if D ∈ Ck with k ≥ 2, we may assume, by reducing the interval

diameter a if necessary, that D(j) is bounded in (−a, a) for 1 ≤ j ≤ k. We have

log(h′(τ)) = f(τ) defined by equation (56) and h ∈ Ck, if and only if, log h′ ∈ Ck−1, if

and only if, h′′/h′ = (log h′)′ ∈ Ck−2. We have

f ′(τ) =
∞∑
j=0

(logD′(Dj(τ))− log λ)′ =
∞∑
j=0

D′′(Dj(τ))

D′(Dj(τ))
(Dj)′(τ), (70)

where this series of continuous functions converges uniformly in (−a, a), because

Dj(τ) = h−1(λjh(τ)), and so (Dj)′(τ) = (h−1)′(λjh(τ)) · λj · h′(τ), thus

∞∑
j=0

D′′(Dj(τ))

D′(Dj(τ))
(Dj)′(τ) =

∞∑
j=0

D′′(Dj(τ))

D′(Dj(τ))
· λj · (h−1)′(λjh(τ)) · h′(τ). (71)
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It follows ‡ that h ∈ C2.

We will show by induction on r, for 2 ≤ r ≤ k that h ∈ Cr. Indeed, we will prove

that
∑∞

j=0(logD′(Dj(τ))− log λ)(r−1) can be written as

∞∑
j=0

λjPr((D
(s)(Dj(τ)))1≤s≤r, (h

(s)(τ))1≤s≤r−1, ((h
−1)(s)(λjh(τ)))1≤s≤r−1, λ

j)

(D′(Dj(τ)))r−1
, (72)

where Pr is a polynomial in 4 variables (which depends on r).

By the induction hypothesis according to which h ∈ Ck−1, the functions

D(s)(Dj(τ)), 1 ≤ s ≤ r, h(s)(x), 1 ≤ s ≤ r − 1 and (h−1)(s)(λjh(τ)), 1 ≤ s ≤ r − 1

are continuous and uniformly bounded in (−a, a). It follows that the series in equation

(72) converges uniformly to (log h′)(r−1), which is a continuous function (since it is given

by a series of continuous functions which converges uniformly). The claim follows by

induction using the following formula

(D(s)(Dj(τ)))′ = D(s+1)(Dj(τ)) · (Dj)′(τ) =

= D(s+1)(Dj(x)) · (h−1)′(λjh(τ)) · λj · h′(τ), (73)

(hs(τ))′ = hs+1(τ), (74)

((h−1)(s)(λjh(τ)))′ = (h−1)(s+1)(λjh(τ)) · λj · h′(τ), (75)

(λj)′ = 0 (76)

and

(D′(Dj(τ))r−1)′ = (77)

= (r − 1)D′(Dj(τ))r−2 ·D′′(Dj(τ)) · (Dj)′(τ) (78)

= (r − 1)D′(Dj(τ))r−2 ·D′′(Dj(τ)) · (h−1)′(λjh(τ)) · λj · h′(τ). (79)

Remark 8. From Proposition 4.4 it follows that g ∈ C1, if and only if, D ∈ C2. More

generally, g ∈ Ck, k ≥ 1, if and only if, D ∈ Ck+1. It is possible to prove that g 6≡ 0 is

derivable at 0, if and only if, ∃D′′(0).

Remark 9. If D is a real analytic function, then h is also a real analytic function since

D can be extended analytically to some disk B ⊂ C with center at the origin, where

∞∏
j=1

D′(Dj(τ))

λ
(80)

is the limit of a sequence of analytic functions in B which converges uniformly. In this

case, if g possesses derivative at 0 then g is a real analytic function. The analyticity is

important for the investigation of stability properties of the function g depending of the

function D, see [3].

‡ Since D′′(Dj(τ)), 1/(D′(Dj(τ))), (h−1)′(λjh(τ)) and h′(τ) are continuous functions which are

uniformly bounded in (−a, a), and the series
∑∞

j=0 λ
j converges absolutely.
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It is proved next that the uniform bound of the parameters εgi depends on the

uniform bound of the parameters εDi .

Corollary 4.5. Consider the sequence Di ∈ Da, with i ∈ I, and the corresponding

sequence of solutions gDi of Julia’s equation (66). If εDi defined in Eq. (50) converges

to zero with i → ∞ then εgDi = [(g
′′
Di

(0))2 + (g
′′′
Di

(0))2 + (givDi(0))2 + . . . + (g
(n)
Di

(0))2]1/2

converges to zero. Moreover there is a constant M > 0 such that εgi < MεDi.

Proof. This proof is a consequence of the proof of Proposition 4.3. Notice that the

solution of the functional equation (66) is given by gDi(τ) = hDi(τ)/h′Di(τ), where

h′Di(τ) = exp(fDi(τ)), with fDi defined in (56). It is possible to check that

g
′

Di
(τ) = 1− f ′Di(τ)gDi(τ). (81)

Deriving equation (81) and using (81) again results in

g
′′

Di
(τ) = −f ′Di(τ) + ((f

′

Di
(τ))2 − f ′′Di(τ))gDi(τ). (82)

Since gDi(0) = 0 then g
′′
Di

(0) = −f ′Di(0) and

f
′

Di
(0) =

∞∑
j=0

D
′′

i (0)(D
′

i(0))j−1 = D
′′

i (0)/λ(1− λ), (83)

implying that when D
′′
i (0) tends to zero with i→∞ so does g

′′
Di

(0). In general, deriving

Eq. (82) (k − 2) times and using Eq. (81) on the right side results in

g
(k)
Di

(τ) = Pk(f
′, . . . , f (k))(τ) +Qk(f

′, . . . , f (k))(τ)gDi(τ), (84)

where Pk and Qk are polynomials depending on derivatives f ′, . . . , f (k), k = 2, . . . , n.

Notice that g
(k)
Di

(0) = Pn(f ′, . . . , f (k))(0), thus g
(k)
Di

(0) depends on f (j)(0) for j = 1 . . . , k.

It is possible to verify from (56) that the derivative f (j)(0), with j = 1, . . . , n is the the

polynomial function of (λ,D
′′
(0), . . . , D(n+1)(0)). Therefore there is a constant M > 0

such that εgi < MεDi . The Corollary follows.

Also, we have

Corollary 4.6. Consider the sequence Di ∈ Da and satisfying conditions of Remark

4. The corresponding sequence of solutions gDi of Julia’s equation (66) are uniformly

bounded in the following sense. There exists a constant C such that ||gDi ||∞ ≤ C, ∀i ∈ I.

Moreover gDi(0) = 0 and g′Di(0) = 1.

Proof. This proof is a consequence of the proof of Proposition 4.3.

The following Proposition justifies the property (iv) in Definition 4.
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Proposition 4.7. Consider the polynomials Pj, Qj defined in the proof of Corollary 4.5

and the same sequence Di ∈ Da satisfying two more hypotheses:

a) There exists m ≥ 2 and m < n such that Pm(f ′, . . . , f (k))(0) 6= 0.

b) The sequences of polynomials are uniformly bounded, i.e., there are constants C1 and

C2 such that ||Pn(f ′, . . . , f (k))||∞ ≤ C1 and ||Qn(f ′, . . . , f (k))||∞ ≤ C2, ∀n > 2.

Then there exist a constant C4 such that ||g(n)
Di
||∞ ≤ C5|gmDi(0)|.

Proof. From (a) it follows that there is a constant C3 such that

|Pm(f ′, . . . , f (k))(0)| ≥ C3. From (84) and (a) it follows that

g
(m)
Di

(0) = Pm(f ′, . . . , f (k))(0) 6= 0 for 2 ≤ m < n and∣∣∣∣∣ g
(n)
Di

(τ)

g
(m)
Di

(0)

∣∣∣∣∣ ≤ 1

|g(m)
Di

(0)|

(
Pk(f

′, . . . , f (k))(τ) +Qk(f
′, . . . , f (k))(τ)gDi(τ)

)
. (85)

Using in (85) the hypotheses and Corollary 4.6 we obtain

|g(n)
Di

(τ)/g
(m)
Di

(0)| ≤ (C1 + C2C)/C3 =: C4, (86)

where C is a constant from Corollary 4.5.

4.3. Explicit solution of the Julia’s equation

Consider the solution g of the Julia’s equation (66), with g = h/h
′
, where h is the

solution of Abel’s equation h(D(τ)) = D
′
(0)h(τ), for similar results, see [2, 3, 19]. From

equation (55) and using that h
′
(0) = 1 we obtain

h
′
(τ) = lim

n→∞

n−1∏
j=0

D
′
(Dj(τ))

λ
. (87)

Combining equations (65) and (87) we obtain

g(τ) = lim
n→∞

Dn(τ)∏n−1
j=0 D

′(Dj(τ))
. (88)

The formula (88) guarantees g(0) = 0, it can be rewritten as an infinite product, which

is very useful for analysis and numerical calculations. Let us define

Rn =
τn∏n−1

k=0 D
′(τk)

, ρn =
D(τn)

D′(τn)τn
, τn = Dn(τ)· (89)

It follows that

Rn =
D(τn−1)τn−1

D′(τn−1)τn−1

∏n−2
k=0 D

′(τk)
=

D(τn−1)

D′(τn−1)τn−1

Rn−1 = ρn−1Rn−1 (90)

and

g(τ) = ω

∞∏
n=0

D(τn)

D′(τn)τn
. (91)

The solution (91) of the Julia’s equation (66) is unique except for a constant ω (see

[18]), which is chosen in such way that g′(0) = 1.
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4.4. Sufficient conditions for monotonicity

Next, the sufficient conditions that ensure the monotonicity of the solution of the

functional equation (66) is established implying the property (a3) of Def. 3.

Lemma 4.8. Assume that the hypotheses of Corollary 4.5 are satisfied and let D be

such that

((D′(τ))2τ −D(τ)(D′(τ)τ))′ > 0 (92)

holds for all τ ∈ (0, a]. Then the solution g of the functional equation (66) is monotone

increasing in (0, a].

Proof. We set

G(τ) = D(τ)/D′(τ)τ. (93)

Consider ξ, τ ∈ (0, a] such as τ < ξ. Let g be the solution of (66). Notice that from (91)

we have

g(τ)/g(ξ) =
∞∏
j=1

(G(τj)/G(ξj)), (94)

where τj and ξj are defined in (89c). Notice that G′(τ) is the fraction with the numerator

equal to the left side of inequality (92) and the denominator equal to (D′(τ)τ)2. Then

the inequality (92) yields G′ > 0 for all τ ∈ (0, a].

Using that τj < ξj (because function D is monotone increasing) and that the

function G in (93) is monotone increasing, we have G(τj) < G(ξj) for j = 1, 2 . . . and as

a consequence g(τ) < g(ξ) and g is monotone increasing in the interval (0, a].

4.5. Sufficient conditions for superlinearity

The sufficient conditions showing that the solution g of Eq. (66) satisfies the property

(a4) of Def. 3.

Lemma 4.9. Assume that the hypotheses of Corollary 4.5 are satisfied and let D such

that

D′′(0) < 0. (95)

Then the solution g of the functional equation (66) satisfy g(τ) ≥ τ for all τ ∈ [0, a].

Proof. To prove this inequality it is sufficient to check that the function s(τ) = g(τ)− τ
possesses a local minimum at τ = 0. Since we set g′(0) = 1 , then s′(0) = 0. Notice that

s′′(0) = g′′(0) and g(0) = 0. Using g = h/h′ and formulas (56) and (62) it is possible to

check

g′′(0) =
D′′(0)

D′(0)
lim
n→∞

n−1∏
j=0

D′(Dj(0)). (96)

Since D
′
(0) is positive and assumption (95) then g′′(0) ≤ 0 and the lemma follows.

Remark 10. It is possible verify that, if D′′(0) = 0 then Lemma 4.9 still valid assuming

that first derivative such that D(m)(0) 6= 0 is less than zero.
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4.6. Proof of Theorem 4.1

Remark 11 (Property (a2) in Def. 3.). To guarantee that the set of εgDi corresponding

to the set of solutions gDi of the functional equation (66) is uniformly bounded, we can

choose the family of functions Di such that the set εDi defined in Eq. (50) is uniformly

bounded, see Corollary 4.5.

Proof. Let us summarize the properties of the regularization class Ga from Def. 3.

Consider g the solution of Julia’s equation in (51). Using that εD are uniformly bounded

and Proposition 4.7, Remark 11 and Lemma 4.8 we obtain properties (a1) and (a2) in

Def. 3. Also using Lemma 4.8 we obtain that the solution g is monotone increasing

function, so we have (a3). The conditions (a4) of Def. 3 is satisfied because τ/ḡ are

uniformly bounded. It is easy to see it rewriting τ/ḡ = τ/(g + Φ) ≤ (τ − g)/g + 1 and

using Taylor’s formula from Eq. (10) with g in the numerator together with the uniform

bound of εgDi by Remark 11 and Corollary 4.5.

Also from Eqs. (88) and (91) we have that g(0) = 0 and g
′
(0) = 1 thus

lim
τ→0

(τ/g(τ)) < ∞ holds. Finally, since D ∈ Cn+1([0, a]) and Remark 8 we have that

g ∈ Cn([0, a]).

Hypothesis of Theorem 4.1 on function D provides sufficient conditions to obtain

solution g satisfying Def. 3. Notice that the existence of other classes of functions

D generating same Ga is an open problem. Given that, from the class of functions

Ga in Theorem 2.5 we can obtained other regularized solutions as can be observed in

Examples 1, 2 in Section 4.1 and Example 3 below. That is why we propose to call Da

as generating regularized class.

Example 3. If we consider the family D(τ) = (λ/l)(exp(lτ) − 1)), with λ < 1 and

l < 1, the regularization class can be obtained by using Equations (56), (62) and (67)

resulting in

gD(τ) =
1

exp(f(τ))

∫ τ

0

exp(f(s))ds, (97)

with f(τ) =
∑∞

j=1 D
j(τ) and Dj(τ) = D(Dj−1(τ)).

The possibility of creating regularization functions that are easy to implement

numerically is one of the advantages of the formulation proposed in the present article.

5. Numerical results

In this section numerical examples are shown illustrating the conjugation regularization

technique proposed in the present paper. We present this algorithm by way of example,

however a work dedicated solely to the implementation of the numerical details of the

regularization functions obtained here will be addressed in future works. Nevertheless

we are the proof of how filters can be constructed that are methods of regularization.
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Consider the operational equation Kx = y, where K is some bounded linear

operator. Consider the discrete version of this operational equation given by

Ax = b, (98)

where A is a m × n non singular matrix with m ≥ n. We use a similar method for

solving the normal equation ATAx = AT b with a MATLAB toolbox described in [10].

Let (U, V,Σ) be the singular value decomposition (SVD) of the matrix A, i.e.,

A = UΣV T =
n∑
i=1

uiσiv
T
i , (99)

where U = (u1, . . . , un) and V = (v1, . . . , vn) are matrices with orthogonal columns and

Σ = diag(σ1, . . . , σn) has non-negative singular values appearing in non-increasing order

(σ1 ≥ σ2 ≥ . . . ≥ σn). Let us consider the regularized normal equation of (98)

ḡ(ATA)x = AT bδ, (100)

with ||b − bδ|| < δ and ḡ(σi) is defined as in Definition 4 and Theorem 4.2 using g(σi),

which is the solution of (66) for given D. The discrete regularized solution of (100) is

given by

x†ḡ =
n∑
i=1

σi
ḡ(σi)

uTi b
δ

σi
vi, (101)

We use Eq. (91) to obtain the function g = gD. Details of how to implement numerically

this equation can be found in [4].

Notice that the term fi(σi) = σi/ḡ(σi) in (101) plays the role of the filter, see

[10, 17]. More exactly, taking εg as regularization parameters and using the fact that ḡ

(with Θ(ε) = ε) satisfy the Hypothesis of Theorem 4.2, we obtain that the function fi
satisfy the condition (4a)-(4c) given in [17] which guarantee that the filter-based method

is a regularization method. Also, it is possible to obtain de condition (5a)-(5b) which

assured the order optimality. Conditions (4b) and (4c) are easily verifiable. We have

that (4a) and (5a) follow of

fi(σi) ≤ (1/
√

2k1)σ
1−γ/2
i (εg)

−1/2, (102)

with 0 < γ < 2. The condition (5b) is a consequence of the qualification properties

which can be deduced of Lemma 2.2.

Thus the procedure described in Section 4 also serves for generate filters that can

be directly used to solve the discrete version of the operational equation. Since we have

that ḡ = g + Θ(εg∗), where Θ is some index function, in our numerical test we take

Θ(ε) = ε and g given in Eq. (91). The regularization parameter εg∗ is obtained solving

the equation

Ω−1(δ) = εg∗ , (103)
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with Ω is given in Theorem 2.5. In this case Ω = k1τ
(γ/2)+(3/4). In order to test the

algorithm described above the following benchmark problem is used (see [31])

Problem. Obtain the solution q(x) of the equation∫ 2π

0

K(x, y)q(x)dx = w(y), with 0 ≤ y ≤ 2π, (104)

where K(x, y) = exp(y cos(x)), the exact solution is given by q(x) = cos(x) and w(y) is

evaluated numerically.

Next, three cases are shown with different choices of the function D and the

corresponding solution gD of Julia’s equation working as the regularization class.

5.1. Case 1

In the first experiment, we select the function D which derivative D′(τ) = c1 cos(τ/c2)

where the constants c1 = 0.3 × 105 and c2 = 1500. It is possible to verify that this

function D satisfies the sufficient conditions ensuring that the solution gD of Julia’s

equation belongs to the regularization class, i.e., satisfying hypothesis of Theorem 4.2.

In Figure 1, we compare the regularized solution obtained by the Tikhonov’s filter

with parameter α determined by L-curve method [7], the regularized solution obtained

by the present method and the exact solution. Tikhonov’s filter presented a relative

error of 0.03 using l2 norm. The regularized solution by conjugation resulted in the

relative error of 0.01.

Figure 1. Regularized solutions are compared to the exact solution. Tikhonov’s

regularization implemented using the method described in [10].

5.2. Case 2

In this example the same problem was addressed with function D such that its derivative

is D′(τ) = 0.1c1 sin((τ/850)(π/2)) + c1 cos((τ/2800)(π/2)), with c1 = 0.3 × 105. Again
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the function D satisfies the sufficient conditions that ensuring that the solution gD of

Julia’s equation belongs to the regularization class. For this parameter value the solution

g of Eq. (66) satisfies Definition 4 with the condition g(τ) > 0.5× 10−7τ 1/2 (hypothesis

(52) in Theorem 4.2). In this case the regularization by conjugation converges with

relative error of 0.003.

5.3. Case 3

The last example discussed here considers the function D constructed as described

in Example 2 in Section 4.1. In Figure 2 we show the normalized eigenvalues of the

discretization of the operator K in (104). For this example the function D satisfies the

sufficient conditions that ensuring that the solution gD of Julia’s equation belongs to the

regularization class. We have convergence of regularization by conjugation with relative

error of 0.01.

Figure 2. Normalized eigenvalues of the operator in the operational equation (104).

The function D′ is a spline approximation of the profile of the normalized eigenvalues.

This experiment was also done for the case when the right side of the equation (98)

was contaminated with an error bδ = b + δ, where δ = 1.0 × 10−5, resulting in visually

indistinguishable result.

This example is interesting because the selection of the function D highlights some

known aspects of operational equation with compact linear operator. It is well known

that when the eigenvalues of the compact operator tend to zero fast it is more difficult

to obtain the regularized solution.

In this case D′ represents the decay of the eigenvalues and the convergence of the

regularized solution. It depends on the uniform limitation of the higher order derivatives

of the function D. In the case of rapid decay of the eigenvalues these limiting constants

are larger inducing slower convergence rate when searching for the regularized solution.
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6. Discussions and Conclusions

In this paper, we have shown the alternative class of regularization functions that solve

an operational equation with bounded linear operator. The presented regularization

depends on a set of topological properties of these functions and can be used to obtain

different regularization techniques. We study the properties of the regularization class

such as smoothness, profile function, qualification and optimal rate of convergence. We

believe that this formalism allows to address other properties like saturation introduced

in [21].

Another result shown in this paper consists in constructing such a class of

regularization functions using Julia’s functional equation. It is an elegant procedure

that uses Dynamical System techniques. It provides an equivalence between class of

functions Da (Def. 9), which is easy to construct, and regularization class Ga (Def. 4).

Such approach has a potential to classify the regularization techniques and to search

for the optimal regularization technique for a given operator. Some new properties of

the solutions of Julia’s equation were also presented. For example, Eq. (91), proposed

here, is easy to implement numerically and allows to calculate the solutions of Julia’s

equation efficiently which is used to obtain filters for the discrete regularization method

(see an example in numerical Section 5).

This procedure allows to incorporate, through the conjugation transformation, the

properties of the operator into the regularization class. Thus it can be used to improve

the behavior of the eigenvalues of the bounded operator in order to build a robust

regularization method. In other words, if the behavior of the eigenvalues λk of the

operator is analyzed as a discrete dynamic system (DDS), using conjugation, it becomes

a new DDS of eigenvalues g(λk) with better behavior in the regularization process. In

fact, this mechanism is hidden inside Tikhonov’s regularization.

In Def. 4 the regularization functions were considered of class Cn(R). However, in

the literature (See [7, 16]) it is common to consider regularization functions continuous

or even piecewise continuous. The formalism presented in Section 2 is generalized in

Section 3 to such cases applying mollification procedure similar to the classical one

presented in [8, 25, 11]. Thus the present method also embedding must of the non-

smooth regularization methods as Landweber and spectral cut-off.

The advantage of considering the kind of the regularization class described here is

that it facilitates the analysis of convergence and rate of convergence of the regularization

methods, since we gain as an immediate consequence the qualification and smoothness

properties from the characteristics of these functions. Also, in Lemmas 3.2 and 3.3

are given sufficient conditions to include non-smooth regularization functions in the

regularization class, however, we believe that using mechanisms similar to process

mollification we can include a large number of functions in this context facilitating

the analysis.
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