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Chapter 1

Introduction

During the last decades intense research has been devoted to the study of dynamical

systems subjected to random perturbations. Considerable effort has been dedicated to

investigate exit times and exit locations from given domains and how they relate to the

respective deterministic dynamical system. The theory of large deviations provides the

usual mathematical framework for tackling these problems in case of Gaussian perturba-

tions, for details see M. Freidling & A. Wentzell [18] and W. Siegert [26]. We will study

the relation to the respective deterministic dynamical systems from a different point of

view.

We study the so-called cut-off phenomenon for a family of stochastic small pertur-

bations of a given dynamical system. We will focus on the semi-flow of a deterministic

differential equation which is perturbed by adding to the dynamics a Brownian forcing of

small variance. Under suitable hypotheses on the vector field we will prove that the one-

parameter family of perturbed stochastic differential equations presents a profile cut-off

in the sense of J. Barrera & B. Ycart [14].

The term “cut-off” was introduced by D. Aldous and P. Diaconis in [6] to describe the

phenomenon of abrupt convergence of Markov chains introduced as models of shuffling

cards. Since the appearance of [6] many families of stochastic processes have been shown

to have similiar properties. For a good introduction to the different definitions of cut-off

and the evolution of the concept in discrete time, see J. Barrera & B. Ycart [14] and P.

Diaconis [19]. In [11], L. Saloff-Coste gives an extensive list of random walks for which

the phenomenon occurs.

How to describe the “cut-off” phenomenon? Before a certain “cut-off time” those

processes stay far from equilibrium in the sense that the distance in some sense between

the distribution at time t and the equilibrium measure is far from 0; after that instant,
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the distance decays exponentially fast to zero.

Consider a one-parameter family of stochastic processes in continuous time {xε}ε>0

indexed by ε > 0, xε := {xεt}t≥0, each one converging to a asymptotic distribution µε

when t goes to infinity. Let us denote by dε(t) the distance between the distribution at

time t of the ε-th processes and its asymptotic distribution, where the “distance” can be

taken to being the total variation, separation, Hellinger, relative entropy, Wasserstein, Lp

distances, etc. Following J. Barrera & B. Ycart [14], the cut-off phenomenon for {xε}ε>0

can be expressed at three increasingly sharp levels. Let us denoted by M the “maximum

of the distance”. In general, M could be infinite. In our case, we will focus on the total

variation distance so M = 1.

Definition 1.1 (Cut-off). The family {xε}ε>0 has a cut-off at {tε}ε>0 if tε → +∞ as

ε→ 0 and

lim
ε→0

dε(ctε) =


M if 0 < c < 1,

0 if c > 1.

Definition 1.2 (Window Cut-off). The family {xε}ε>0 has a window cut-off at {(tε, wε)}ε>0,

if tε → +∞ as ε→ 0, wε = o (tε) and

lim
c→−∞

lim inf
ε→0

dε(tε + cwε) = M,

lim
c→+∞

lim sup
ε→0

dε(tε + cwε) = 0.

Definition 1.3 (Profile Cut-off). The family {xε}ε>0 has profile cut-off at {(tε, wε)}ε>0

with profile G, if tε → +∞ as ε→ 0, wε = o (tε),

G(c) := lim
ε→0

dε(tε + cwε)

exists for all c ∈ R and

lim
c→−∞

G(c) = M,

lim
c→+∞

G(c) = 0.

Sequences of stochastic processes for which an explicit profile can be determine are

scarce. Explicit profiles are usually out of reach, in particular for the total variation
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distance; in many cases of interest only cut-off or window cut-off has been obtained so

far.
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Chapter 2

Stochastic Perturbations:

One-Dimensional Case

On this chapter, let x0 ∈ R \ {0} be fixed and let us consider the semi-flow {ψt}t≥0

associated to the solution of the following deterministic differential equation

dxt = −V ′(xt)dt (2.1)

for t ≥ 0. The hypothesis made in Theorem 2.1 on the potential V guarantees existence

and uniqueness of solutions of (2.1), as well as all the other (stochastic or deterministic)

equations defined below.

Our main Theorem in the one-dimensional case is the following:

Theorem 2.1 (General Case). Let V : R → R be a one-dimensional potential that

satisfies the following:

i) V ∈ C3.

ii) V (0) = 0.

iii) V ′(x) = 0 if only if x = 0.

iv) There exists δ > 0 such that V ′′(x) ≥ δ for every x ∈ R.

Let us consider the family of Markov processes indexed by ε > 0, xε = {xεt}t≥0 which are

given by the the semi-flow of the following stochastic differential equation,

dxεt = −V ′(xεt)dt+
√
εdWt,

xε0 = x0
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for t ≥ 0, where x0 is a deterministic point in R\{0} and {Wt}t≥0 is a standard Brownian

motion. This family presents profile cut-off in the sense of the Definition 1.3 with respect

to the total variation distance when ε goes to zero. The profile function G : R → R is

given by

G(b) :=
∥∥N (c̃e−b, 1)−N (0, 1)

∥∥
TV ,

where c̃ is the non-zero constant given by

lim
t→+∞

eV
′′(0)tψt = c̃.

The cut-off time tε and window time wε are given by

tε :=
1

2V ′′(0)
(ln (1/ε) + ln (2V ′′(0))) ,

wε :=
1

V ′′(0)
+ εγ,

for some 0 < γ < 1/4.

This Theorem will be proved at the end of this chapter.

2.1 The Linearized Case

Let us take µ ∈ R and σ2 ∈]0,+∞[. We denote by N (µ, σ2) the Normal distribution with

mean µ and variance σ2. Given two probability measures µ and ν which are defined in

the same measurable space (Ω,F), we denote the total variation distance between µ and

ν by ‖µ− ν‖TV := sup
A∈F
|µ(A)− ν(A)|.

Definition 2.2. We say that V is a regular potential if V : R→ R satisfies

a) V is C3.

b) V (0) = 0.

c) V ′(x) = 0 iff x = 0.

d) V ′′(0) > 0.

e) lim
|x|→+∞

V (x) = +∞.

In order to prove Theorem 2.1 we will prove the analogous result for a “linear approx-

imation” of the vector field V .
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Theorem 2.3 (The Linearized Case). Let us consider the one-parameter family of Markov

processes indexed by ε > 0, yε = {yεt}t≥0 which are given by the the solution of the following

linear stochastic differential equation,

dyεt = −V ′′(ψt)yεtdt+
√
εdWt,

yε0 = y0

(2.2)

for t ≥ 0, where y0 is a deterministic point in R \ {0}, {Wt}t≥0 is a standard Brownian

motion and V is a regular potential. This family presents profile cut-off in the sense of

the Definition 1.3 with respect to the total variation distance when ε goes to zero. The

profile function G : R→ R is given by

G(b) :=
∥∥N (ce−b, 1)−N (0, 1)

∥∥
TV ,

where c is the non-zero constant given by

lim
t→+∞

eV
′′(0)tΦt = c,

where Φ = {Φt}t≥0 is the fundamental solution of the non-autonomous system

dΦt = −V ′′(ψt)Φtdt

for every t ≥ 0 with initial condition Φ0 = 1. The cut-off time tε and window time wε are

given by

tε :=
1

2V ′′(0)

(
ln (1/ε) + ln

(
2V ′′(0)y2

0

))
,

wε :=
1

V ′′(0)
,

respectively.

Notice that choosing V (x) = αx2

2
we see that the Ornstein-Uhlenbeck process presents

profile cut-off. In what follows, we call the solutions {yε}ε>0 of (2.2) the “linear approxi-

mations”.

In order to prove Theorem 2.3, we will find the qualitative behavior of the semi-flow

ψ = {ψt}t≥0 at infinity.

The following lemma tells us the asymptotic behavior of the expectation and variance

of the “linear approximations”.
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Lemma 2.4. Leu us assume the hypothesis of Theorem 2.3. Let us assume that there

exists a C2 function V : R→ R such that

a) V (0) = 0.

b) V ′(x) = 0 iff x = 0.

c) V ′′(0) > 0.

d) lim
|x|→+∞

V (x) = +∞.

Then it follows that

i) lim
t→+∞

ψt = 0.

ii) lim
t→+∞

Φt = 0.

In addition, let us assume that V is a C3 function. Then it follows that

iii) There exist constants c 6= 0 and c̃ 6= 0 such that

lim
t→+∞

eV
′′(0)tΦt = c,

lim
t→+∞

eV
′′(0)tψt = c̃,

where Φ = {Φt}t≥0 is the fundamental solution of the nonautonomous system

dΦt = −V ′′(ψt)Φtdt

for every t ≥ 0 with initial condition Φ0 = 1.

iv)

lim
t→+∞

Φ2
t

t∫
0

(
1

Φs

)2

ds =
1

2V ′′(0)
.

For the proof of this lemma, see Appendix C.

The following lemma characterizes the distribution of the “linear approximations”.
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Lemma 2.5. Under the hypothesis of Theorem 2.3, we have

yεt = Φty0 +
√
εΦt

t∫
0

1

Φ(s)
dWs (2.3)

for every t ≥ 0, where Φ = {Φt}t≥0 is the fundamental solution of the non-autonomous

system

dΦt = −V ′′(ψt)Φtdt

for every t ≥ 0 with initial condition Φ0 = 1.

Proof. It follows from Itô’s formula. For details check [13] and [20].

Using the decomposition (2.3) of the process yε into a deterministic part and a mean-

zero martingale with respect to the natural filtration of the Brownian motion and using

Itô’s isometry for Wiener’s integral, we obtain

E [yεt ] = y0Φt,

V [yεt ] = εΦ2
t

t∫
0

(
1

Φs

)2

ds.

By Lemma 2.5 we have that for each ε > 0 and t > 0 fixed, yεt is a random variable

with Normal distribution with mean

νεt := E [yεt ] = Φty0

and variance

ηεt : = V [yεt ] = εΦ2
t

t∫
0

(
1

Φs

)2

ds.

Corollary 2.6. Let us assume the hypothesis of Theorem 2.3 and let ε > 0 be fixed. Then

the random variable yεt converges in distribution as t→∞ to a Gaussian random variable

N ε with mean zero and variance ε
2V ′′(0)

.

Proof. It follows from Lemma 2.4.

Now we have all the tools in order to prove Theorem 2.3.
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Proof of Theorem 2.3. For each ε > 0 and t > 0, we define

dε(t) =

∥∥∥∥N (νεt , η
ε
t)−N

(
0,

ε

2V ′′(0)

)∥∥∥∥
TV
,

Dε(t) =

∥∥∥∥∥N
(√

2V ′′(0)

ε
y0Φt, 1

)
−N (0, 1)

∥∥∥∥∥
TV

.

Using triangle’s inequality and Lemma A.1, for each ε > 0 and t > 0 we obtain

dε(t) ≤ Dε(t) +
∥∥N (0, 2V ′′(0)Φt

2It
)
−N (0, 1)

∥∥
TV ,

|dε(t)−Dε(t)| ≤
∥∥N (0, 2V ′′(0)Φt

2It
)
−N (0, 1)

∥∥
TV ,

where It =
t∫

0

(
1

Φs

)2

ds. For each ε > 0 let us define

tε :=
1

2V ′′(0)
(ln (1/ε) + b0)

and

wε :=
1

V ′′(0)

with b0 := ln (2V ′′(0)y2
0). For every b ∈ R, we define t̃ε(b) = tε + bwε. Using Lemma A.4,

we obtain

lim
ε→0
|dε(t̃ε(b))−Dε(t̃ε(b))| = 0

for every b ∈ R. Let us consider the function G : R→ [0, 1] defined by

G(b) :=
∥∥N (ce−b, 1)−N (0, 1)

∥∥
TV ,

where c 6= 0 is the constant of item iii) in Lemma 2.4. Observe that

Dε(t̃ε(b)) =
∥∥∥N(eV ′′(0)t̃ε(b)Φt̃ε(b)e

−b, 1
)
−N (0, 1)

∥∥∥
TV

for every b ∈ R. Therefore, by item iii) of Lemma 2.4 and by Lemma A.3, we have

lim
ε→0

Dε(t̃ε(b)) = G(b)
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for every b ∈ R. By Lemma A.2, we have lim
b→+∞

G(b) = 0 and lim
b→−∞

G(b) = 1. Conse-

quently, the theorem is proved.

Corollary 2.7 (The First Order Approximation). Let us consider the Markov processes

y = {yt}t≥0 which is given by the solution of the following linear stochastic differential

equation,

dyt = −V ′′(ψt)ytdt+ dWt,

y0 = 0

for t ≥ 0, where {Wt}t≥0 is a standard Brownian motion and V is a regular potential.

For every ε > 0 fixed, let us define zεt = ψt +
√
εyt for every t ≥ 0. Then the family

zε = {zεt}t≥0 presents profile cut-off in the sense of Definition 1.3 with respect to the total

variation distance when ε goes to zero. The profile function G : R→ R is given by

G(b) :=
∥∥N (c̃e−b, 1)−N (0, 1)

∥∥
TV ,

where c̃ is the non-zero constant given by

lim
t→+∞

eV
′′(0)tψt = c̃.

and the cut-off time tε and window time wε are given by

tε =
1

2V ′′(0)
(ln (1/ε) + ln (2V ′′(0)))

and

wε =
1

V ′′(0)

respectively.

The proof of Theorem 2.3 can be adapted in order to prove this corollary in a straight-

forward way, so we omit it.

Remark 2.8. The constants c and c̃ obtained in Lemma 2.4 depend on the initial condition

of the semi-flow ψ = {ψt}t≥0. Theorem 2.3 and Corollary 2.7 remain true if we take as

window time w′ε = wε+δε for each ε > 0, where {δε}ε>0 is any sequence of positive numbers

such that lim
ε→0

δε = 0.
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2.2 The Gradient Case

From now on and up to the end of this chapter we will use the following notations and

names.

Definition 2.9.

a) The stochastic Markov process xε := {xεt}t≥0 defined in Theorem 2.1 is called the Itô

diffusion.

a) The semi-flow ψ := {ψt}t≥0 defined by the differential equation (2.1) is called the

zeroth order approximation of xε.

c) The stochastic Markov process zε := {zεt}t≥0 defined in Corollary 2.7 is called the

first order approximation of xε.

The following lemma will give us the existence of a stationary probability measure for

the Itô diffusion xε = {xεt}t≥0.

Lemma 2.10. Let V be a regular potential and for every ε > 0, let us consider the Itô

diffusion xε = {xεt}t≥0 which is given by the following stochastic differential equation,

dxεt = −V ′(xεt)dt+
√
εdWt,

xε0 = x0

for t ≥ 0, where x0 is a deterministic point in R\{0} and {Wt}t≥0 is a standard Brownian

motion. Let us assume that

lim
|x|→+∞

|V ′(x)| = +∞.

Then for every ε > 0 fixed, when t → ∞ the probability distribution of xεt converges in

distribution to the probability µε given by

µε(dx) =
e−

2
ε
V (x)dx

M ε
,

where M ε =
∫
R
e−

2
ε
V (z)dz.

Proof. For details see [23] and [26].

Now we will restrict our potential to the class of coercive regular potentials.
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Definition 2.11 (Coercive Regular Potential). Let V be a regular potential. We say that

V is a coercive regular potential if there exists δ > 0 such that V ′′(x) ≥ δ for every x ∈ R.

In the class of coercive regular potentials, we restrict ourselves to the class of potentials

with bounded second and third derivatives.

Definition 2.12 (Smooth Coercive Regular Potential). Let V be a coercive regular po-

tential. We say that V is a smooth coercive regular potential if

κ2 := ‖V ′′‖∞ := sup
x∈R
|V ′′(x)| <∞,

and

κ3 := ‖V ′′′‖∞ := sup
x∈R
|V ′′(x)| <∞.

The following lemma tells us that the stationary probability measure of the Itô diffu-

sion {xεt}t≥0 is well approximated in total variation distance by the Normal distribution

with mean zero and variance ε
2V ′′(0)

.

Lemma 2.13. Let V be a coercive regular potential, then

lim
ε→0
‖µε −N ε‖TV = 0,

where N ε is a normal distribution with mean zero and variance ε
2V ′′(0)

.

Proof. Let 0 < η < V ′′(0) be fixed. By Lemma 2.10 the µε(dx) = e−
2
ε V (x)dx
Mε is a well

defined probability measure on (R,B (R)). Then

‖µε −N ε‖TV =
1

2

∫
R

∣∣∣∣∣e−
2
ε
V (x)

M ε
− e−

2
ε
V ′′(0)x2

2

N ε

∣∣∣∣∣ dx,
where M ε =

∫
R
e−

2
ε
V (x)dx and N ε =

∫
R
e−

2
ε
V ′′(0)x2

2 dx =
√

πε
V ′′(0)

.
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By triangle’s inequality, we have

‖µε −N ε‖TV ≤ 1

2

∫
R

∣∣∣∣∣e−
2
ε
V (x)

M ε
− e−

2
ε
V (x)

N ε

∣∣∣∣∣ dx+
1

2

∫
R

∣∣∣∣∣e−
2
ε
V (x)

N ε
− e−

2
ε
V ′′(0)x2

2

N ε

∣∣∣∣∣ dx
=
|M ε −N ε|

2N ε
+

1

2N ε

∫
R

∣∣∣∣e− 2
ε
V (x) − e−

2
ε
V ′′(0)x2

2

∣∣∣∣ dx
≤ 1

N ε

∫
R

∣∣∣∣e− 2
ε
V (x) − e−

2
ε
V ′′(0)x2

2

∣∣∣∣ dx.
Recall that V is coercive, that is, there exists δ > 0 such that V ′′(x) ≥ δ > 0 for every

x ∈ R. Then, it follows that

lim
ε→0

1

N ε

∫
{x:|x|≥β}

∣∣∣∣e− 2
ε
V (x) − e−

2
ε
V ′′(0)x2

2

∣∣∣∣ dx = 0

for every β > 0. By the continuity of V ′′ at zero, there exists δη > 0 such that

|V ′′(x)− V ′′(0)| < η

for every |x| < δη.

Also, by Taylor’s Theorem with Lagrange remainder, we have that V ′′(x) = V ′′(ξx)x2

2

for every |x| < δη where |ξx| < |x|. Then,

1

N ε

δη∫
−δη

∣∣∣e− 2
ε
V (x)−e−

2
ε
V ′′(0)x2

2

∣∣∣dx =
1

N ε

δη∫
−δη

∣∣∣∣e− 2
ε
V ′′(ξx)x2

2 − e−
2
ε
V ′′(0)x2

2

∣∣∣∣ dx
≤ 1

εN ε

δη∫
−δη

x2e−
2
ε
λx2

2 |V ′′(ξx)− V ′′(0)| dx

≤ η

εN ε

δη∫
−δη

x2e−
2
ε
λx2

2 dx ≤
η
√
V ′′(0)√

π(2λ)3/2

δη
√

2λ
ε∫

−δη
√

2λ
ε

x2e−
x2

2 dx

≤
η
√
V ′′(0)√

π(2λ)3/2

∫
R

x2e−
x2

2 dx,

where λ := min{δ, V ′′(0)} > 0. Consequently, first taking ε → 0 and then η → 0 we
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obtain the result.

The following proposition will give us a quantitative estimation of the distance between

the Itô diffusion and the zeroth order and first order approximations.

Proposition 2.14 (Zero Order & First Order Approximation). Let us assume that V is

a smooth coercive regular potential. Let us denote Bt = sup
0≤s≤t

|Ws| for every t ≥ 0.

i) For every t ≥ 0, we have |xεt − ψt| ≤
√
εBt(κ2t+1). We call this estimate the zeroth

order estimate.

ii) For every t ≥ 0, it follows that |xεt − ψt −
√
εyt| ≤ εB2

t κ3(κ2t + 1)2t. We call this

estimate the first order estimate.

Proof. First we prove item i). Let ε > 0 and t ≥ 0 be fixed. It follows that

xεt − ψt = −
t∫

0

(V ′(xεs)− V ′(ψs)) ds+
√
εWt

= −
t∫

0

V ′′(θεs) (xεs − ψs) ds+
√
εWt

= −
√
ε

t∫
0

V ′′(θεs)Wse
−

t∫
s
V ′′(θεr)dr

ds+
√
εWt,

where the second inequality follows from the Intermediate Value Theorem, θεs is between

ψs and xεs and the third inequality follows from the variation of parameters method.

Therefore, using Gronwall’s inequality we obtain |xεt − ψt| ≤
√
εBt(κ2t+ 1).
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Now we prove item ii). Let ε > 0 and t ≥ 0 be fixed. It follows that

xεt − ψt −
√
εyt = −

t∫
0

[
V ′(xεs)− V ′(ψs)− V ′′(ψs)

√
εys
]
ds

= −
t∫

0

[
V ′′(θεs) (xεs − ψs)− V ′′(ψs)

√
εys
]
ds

= −
t∫

0

V ′′(ψs)(x
ε
s − ψs −

√
εyt)ds−

t∫
0

(V ′′(θεs)− V ′′(ψs)) (xεs − ψs)ds,

where the second identity comes from the Intermediate Value Theorem and θεs is be-

tween ψs and xεs. Let us define et :=
t∫

0

(V ′′(θεs)− V ′′(ψs)) (xεs − ψs)ds. Again using the

Intermediate Value Theorem and the zeroth order estimate already proved, we have

|et| ≤
t∫

0

κ3(xεs − ψs)2ds ≤ εB2
t κ3(κ2t+ 1)2t

for every t ≥ 0. Consequently, using the variation of parameters method and Gronwall’s

inequality we obtain

∣∣xεt − ψt −√εyt∣∣ ≤ εB2
t κ3(κ2t+ 1)3t.

This proposition will permit us to prove that two first order approximations with

random initial conditions that are “near” are close in total variation distance. This

statement is made rigorousin the following proposition.

Proposition 2.15 (Linear Coupling). Let us assume the same hypothesis of Corollary

2.7 and in addition let us assume that V is a smooth coercive regular potential. Take

{δε := εγ}ε>0, where 0 < γ < 1. Let us denote by zε(X) := {zεt (X)}t≥0 the first order
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approximation with initial random condition X. Then, for every b ∈ R it follows that

lim
ε→0

∥∥∥zεbδε (xεt̃ε(b))− zεbδε (zεt̃ε(b))∥∥∥TV = 0,

where for each ε > 0, tε and wε are defined in Corollary 2.7 and for each b ∈ R, εb > 0 is

small enough so that t̃ε(b) := tε + bwε ≥ 0 for every 0 < ε < εb.

Proof. By Itô’s formula we obtain

zεbδε

(
xεt̃ε(b)

)
= Φbδεx

ε
t̃ε(b)

+
√
εΦbδε

bδε∫
0

1

Φ(s)
d
(
Wt̃ε(b)+s −Wt̃ε(b)

)
,

zεbδε

(
zεt̃ε(b)

)
= Φbδεz

ε
t̃ε(b)

+
√
εΦbδε

bδε∫
0

1

Φ(s)
d
(
Wt̃ε(b)+s −Wt̃ε(b)

)
for every 0 < ε < εb, where Φ = {Φt}t≥0 is the fundamental solution of the non-

autonomous system

dΦt = −V ′′(ψt)Φtdt

for every t ≥ 0 with initial condition Φ0 = 1. Applying Lemma B.6 with X := Φbδεx
ε
t̃ε(b)

,

Y := Φbδεz
ε
t̃ε(b)

and Z :=
√
εΦbδε

bδε∫
0

1
Φ(s)

d
(
Wt̃ε(b)+s −Wt̃ε(b)

)
, G = σ (X, Y ) and (Ω,F ,P)

the canonical probability space of the Brownian motion, we obtain∥∥∥zεbδε (xεt̃ε(b))− zεbδε (zεt̃ε(b))∥∥∥TV ≤ 1√
2πε

bδε∫
0

(
1

Φ(s)

)2

ds

E
[∣∣∣xεt̃ε(b) − zεt̃ε(b)∣∣∣].

Using Proposition 2.14, we obtain

∥∥∥zεbδε (xεt̃ε(b))− zεbδε (zεt̃ε(b))∥∥∥TV ≤
√√√√√ ε

2π
bδε∫
0

(
1

Φ(s)

)2

ds

×

κ3

(
κ2t̃ε(b) + 1

)3
t̃ε(b)E

[
B2
t̃ε(b)

]
.

Using the fact that for each ε > 0, δε = εγ for some 0 < γ < 1, Φ0 = 1, the Intermediate
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Value Theorem for integrals, Lemma D.1 and Lemma D.3 we obtain the result.

The following proposition will permit us to change the probability measure in a small

interval of time in order to compare the total variation distance of the Itô diffusion and

the first order approximation with a random initial condition.

Proposition 2.16 (Short Time Change of Measure). Let us assume the same hypothesis

of Proposition 2.15 and also let us follow the same notation. Then for each b ∈ R

lim
ε→0

∥∥∥xεbδε (xεt̃ε(b))− zεbδε (xεt̃ε(b))∥∥∥TV = 0.

Proof. We will use Cameron-Martin-Girsanov Theorem and Novikov’s Theorem. For the

precise statements of these theorems we use here, see [1] and [12]. Let ε > 0, t ≥ 0 and

b ∈ R be fixed. Let us define γεt :=
V ′(xεt)√

ε
and Γεt :=

(V ′(ψt)−V ′′(ψt)ψt+V ′′(ψt)zεt )√
ε

. Then, for

every ε > 0 and t > 0 it follows that

(γεt )
2 ≤ 2κ2

2

(xεt − ψt)
2

ε
+ 2κ2

2

(ψt)
2

ε

≤ 4κ2
2B

2
t

(
κ2t

2 + 1
)

+ 2κ2
2

(ψt)
2

ε

and

(Γεt)
2 ≤ 2κ2

2 (yt)
2 + 2κ2

2

(ψt)
2

ε

≤ 4κ2
2B

2
t

(
κ2t

2 + 1
)

+ 2κ2
2

(ψt)
2

ε
.

Let us define Iε(b) :=
[
t̃ε(b), t̃ε(b) + bδε

]
. Then, for every ε > 0 it follows that

∫
I(ε)

(γεt )
2 ≤ 4bκ2

2δε

(
κ2

(
t̃ε(b) + bδε

)2
+ 1
)

sup
t∈Iε(b)

B2
t + 2bκ2

2δε

sup
t∈Iε(b)

(ψt)
2

ε
.
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and

∫
I(ε)

(Γεt)
2 ≤ 4bκ2

2δε

(
κ2

(
t̃ε(b) + bδε

)2
+ 1
)

sup
t∈Iε(b)

B2
t + 2bκ2

2δε

sup
t∈Iε(b)

(ψt)
2

ε
.

Using Lemma C.3, there exists a constant c > 0 such that∫
I(ε)

(γεt )
2 ≤ 4bκ2

2δε

(
κ2

(
t̃ε(b) + bδε

)2
+ 1
)

sup
t∈Iε(b)

B2
t + 2bcκ2

2δε

and ∫
I(ε)

(Γεt)
2 ≤ 4bκ2

2δε

(
κ2

(
t̃ε(b) + bδε

)2
+ 1
)

sup
t∈Iε(b)

B2
t + 2bcκ2

2δε

for ε > 0 small enough. Consequently, for any constant ρ > 0 it follows that

E

exp

ρ t̃ε(b)+bδε∫
t̃ε(b)

(γεs)
2 ds


 < +∞

and

E

exp

ρ t̃ε(b)+bδε∫
t̃ε(b)

(Γεs)
2 ds


 < +∞

for ε > 0 small enough. From Novikov’s Theorem it follows that

dP1
t̃ε(b)+bδε

dPt̃ε(b)+bδε
:= exp


t̃ε(b)+bδε∫
t̃ε(b)

γεsdWs −
1

2

t̃ε(b)+bδε∫
t̃ε(b)

(γεs)
2 ds

 ,

dP2
t̃ε(b)+bδε

dPt̃ε(b)+bδε
:= exp


t̃ε(b)+bδε∫
t̃ε(b)

ΓεsdWs −
1

2

t̃ε(b)+bδε∫
t̃ε(b)

(Γεs)
2 ds

 ,

are well defined and they define true probability measures Pi
t̃ε(b)+bδε

, i ∈ {1, 2}. From now
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on and up to the end of this proof we will use the notation Pi := Pi
t̃ε(b)+bδε

, i ∈ {1, 2} and

P := Pt̃ε(b)+bδε . Under the probability measure P1, W 1
t := Wt −

t∫
t̃ε(b)

γεsds is a Brownian

motion on the time interval t̃ε(b) ≤ t ≤ t̃ε(b) + bδε. Also, under the probability measure

P2, W 2
t := Wt−

t∫
t̃ε(b)

Γεsds is a Brownian motion on the time interval t̃ε(b) ≤ t ≤ t̃ε(b)+ bδε.

Consequently,

dP1

dP2
=

exp

{
t̃ε(b)+bδε∫
t̃ε(b)

γεsdWs − 1
2

t̃ε(b)+bδε∫
t̃ε(b)

(γεs)
2 ds

}

exp

{
t̃ε(b)+bδε∫
t̃ε(b)

ΓεsdWs − 1
2

t̃ε(b)+bδε∫
t̃ε(b)

(Γεs)
2 ds

}

= exp


t̃ε(b)+bδε∫
t̃ε(b)

(γεs − Γεs) dWs −
1

2

t̃ε(b)+bδε∫
t̃ε(b)

(
(γεs)

2 − (Γεs)
2) ds


= exp


t̃ε(b)+bδε∫
t̃ε(b)

(γεs − Γεs) dW
1
s +

1

2

t̃ε(b)+bδε∫
t̃ε(b)

(Γεs − γεs)
2 ds

 .

By Pinsker’s inequality and the mean-zero martingale property of the stochastic integral,

we have for every t̃ε(b) ≤ t ≤ t̃ε(b) + bδε

∥∥∥xεbδε (xεt̃ε(b))− zεbδε (xεt̃ε(b))∥∥∥TV ≤ EP1

 t̃ε(b)+bδε∫
t̃ε(b)

(Γεs − γεs)
2 ds


= EP

dP1

dP

t̃ε(b)+bδε∫
t̃ε(b)

(Γεs − γεs)
2 ds

 .
By Cauchy-Schwarz’s inequality and the mean-one Doléans exponential martingale prop-
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erty, we have

EP

dP1

dP

t̃ε(b)+bδε∫
t̃ε(b)

(Γεs − γεs)
2 ds

 ≤

√√√√√√EP

exp


t̃ε(b)+bδε∫
t̃ε(b)

(γεs)
2 ds


 t̃ε(b)+bδε∫

t̃ε(b)

(Γεs − γεs)
2 ds


2

≤

√√√√√√EP

exp

2

t̃ε(b)+bδε∫
t̃ε(b)

(γεs)
2 ds


×

√√√√√√EP


 t̃ε(b)+bδε∫

t̃ε(b)

(Γεs − γεs)
2 ds


4

It follows for ε > 0 small enough that

exp


t̃ε(b)+bδε∫
t̃ε(b)

(γεs)
2 ds

 ≤ exp

{
4bκ2

2δε

(
κ2

(
t̃ε(b) + bδε

)2
+ 1
)

sup
t∈Iε(b)

B2
t + 2bcκ2

2δε

}
,

where the last expression is P-integrable for ε > 0 small enough. Using the scaling property

of Brownian motion and the distribution of the maximum of the Brownian motion in a

compact interval, the last inequality implies that

lim
ε→0

EP

exp

ρ
t̃ε(b)+bδε∫
t̃ε(b)

(γεs)
2 ds


 = 1.

for any constant ρ > 0. Also, it is true that t̃ε(b)+bδε∫
t̃ε(b)

(Γεs − γεs)
2 ds


4

≤

(
bδε sup

s∈Iε(b)
(Γεs − γεs)

2

)4

≤ Cb4δ4
ε

(
sup
s∈Iε(b)

(xεs − ψs)
16

ε4
+ sup

s∈Iε(b)

|xεs − ψs −
√
εyt|

8

ε4

)
,

where C = C(κ2, κ3) > 0 is a constant. Using the last inequality and Proposition 2.14,
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we obtain that

lim
ε→0

EP


 t̃ε(b)+bδε∫

t̃ε(b)

(Γεs − γεs)
2 ds


4 = 0.

Consequently, ∥∥∥xεbδε (xεt̃ε(b))− zεbδε (xεt̃ε(b))∥∥∥TV = 0.

Now we have all the tools in order to prove our result for the class of bounded coercive

regular potentials.

Theorem 2.17 (Smooth Coercive Regular Potentials). Assume the same hypothesis of

Proposition 2.15 and also let us follow the same notation. Let us consider the family

xε = {xεt}t≥0 given by the the semi-flow of the following stochastic differential equation,

dxεt = −V ′(xεt)dt+
√
εdWt,

xε0 = x0

for t ≥ 0, where x0 is a deterministic point in R\{0} and {Wt}t≥0 is a standard Brownian

motion. This family presents profile cut-off in the sense of the Definition 1.3 with respect

to the total variation distance when ε goes to zero. The profile function G : R → R is

given by

G(b) :=
∥∥N (c̃e−b, 1)−N (0, 1)

∥∥
TV ,

where c̃ is the non-zero constant given by

lim
t→+∞

eV
′′(0)tψt = c̃.

and the cut-off time tε and window time wε are given by

tε :=
1

2V ′′(0)
(ln (1/ε) + ln (2V ′′(0)))
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and

wε :=
1

V ′′(0)
+ εγ,

where 0 < γ < 1/4

Proof. Let ε > 0 and t > 0 be fixed. We define

Dε(t) := ‖xεt − µε‖TV

and

dε(t) := ‖zεt −N ε‖TV ,

where µε and N ε are given by Lemma 2.10 and Lemma 2.13. For each b ∈ R, take εb > 0

such that t̂ε(b) := tε + b(wε + δε) = t̃ε(b) + bδε ≥ 0 for every 0 < ε < εb. By Corollary 2.7

and Remark 2.8 we know that for each b ∈ R

lim
ε→0

dε
(
t̂ε(b)

)
= G(b). (2.4)

By definition,

Dε(t̂ε(b)) =
∥∥∥xεt̂ε(b) − µε∥∥∥TV

≤
∥∥∥xεbδε (xεt̃ε(b))− zεbδε (xεt̃ε(b))∥∥∥TV +

∥∥∥zεbδε (xεt̃ε(b))− zεbδε (zεt̃ε(b))∥∥∥TV +∥∥∥zεt̂ε(b) −N ε
∥∥∥
TV

+ ‖N ε − µε‖TV .

Using Proposition 2.15, Proposition 2.16, Lemma 2.10, the relation (2.4) and the item i) of

Lemma D.2, we have lim sup
ε→0

Dε(t̂ε(b)) ≤ G(b). In order to obtain the converse inequality,

we observe that

dε(t̂ε(b)) =
∥∥∥zεt̂ε(b) −N ε

∥∥∥
TV

≤
∥∥∥zεbδε (zεt̃ε(b))− zεbδε (xεt̃ε(b))∥∥∥TV +

∥∥∥zεbδε (xεt̃ε(b))− xεbδε (xεt̃ε(b))∥∥∥TV +∥∥∥xεt̂ε(b) − µε∥∥∥TV + ‖µε −N ε‖TV .

Again using Proposition 2.15, Proposition 2.16, Lemma 2.10, the relation (2.4) and the
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item ii) of Lemma D.2 we have lim inf
ε→0

Dε(t̂ε(b)) ≥ G(b). Consequently,

lim
ε→0

Dε(t̂ε(b)) = G(b).

The following proposition will permit us to approximate a coercive regular potential

by a smooth coercive regular potential.

Proposition 2.18 (Removing Boundedness for V ′′ and V ′′′). Let us assume that V is a

coercive regular potential. For every M ∈]0,+∞[, there exists a smooth coercive regular

potential VM(x) which is an approximation of V in the following way: VM(x) = V (x) for

every |x| ≤
√

2M .

Proof. By hypothesis there exists δ > 0 such that V ′′(x) ≥ δ for every x ∈ R. Let

g ∈ C∞ (R, [0, 1]) be an increasing function such that g(u) = 0 for u ≤ 1
2

and g(u) = 1 if

u ≥ 1. Let M ∈ [1,∞[ be a fixed number. Let RM : R→ R be a function defined by

RM(x) = g

(
x2

4M2

)
δ +

(
1− g

(
x2

4M2

))
V ′′(x).

Since V ∈ C3 (R,R) and g ∈ C∞ (R, [0, 1]), we have RM ∈ C1 (R,R). We also have that

RM(x) = V ′′(x) for every |x| ≤
√

2M , RM(x) = δ for every |x| ≥ 2M , RM(x) ≥ δ for

every x ∈ R, ‖RM‖∞ < ∞ and ‖R′M‖∞ < ∞. Let us define SM(x) :=
x∫
0

RM(y)dy for

every x ∈ R and let us define VM(x) :=
x∫
0

SM(y)dy. Then VM is a smooth δ-coercive

regular potential such that VM(x) = V (x) for every |x| ≤
√

2M .

The next proposition will tell us that the approximation of the coercive regular po-

tential by a smooth coercive regular potential also implies an approximation in the total

variation distance of the invariant measures associated to the potential V and VM and the

total variation distance for the processes at the “cut-off time” associated to the potentials

V and VM .

Proposition 2.19. Let V be a coercive regular potential and for every M > 0 let VM

be the approximation of V obtained from Proposition 2.18. Let xε,M =
{
xε,Mt

}
t≥0

be the

Itô diffusion associated to the smooth coercive potential VM and let µε,M be the invariant

probability measure associated to the stochastic process xε,M defined in Lemma 2.10. Let

us denote by xε = {xεt}t≥0 the Itô diffusion associated to the coercive potential V and let
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us denote by µε the invariant probability measure associated to the stochastic process xε

defined in Lemma 2.10.

It follows that

i) For every M > 0

lim
ε→0

∥∥µε − µε,M∥∥TV = 0

ii) Using the same notation as in Theorem 2.17, we have

lim
ε→0

∥∥∥xεtε(b) − xε,Mtε(b)∥∥∥TV = 0

for every M > |x0| and every b ∈ R.

Proof. Let us prove item i). Notice that V ′′M(0) = V ′′(0). By triangle’s inequality and

Lemma A.1, we have

∥∥µε − µε,M∥∥TV ≤ ‖µε −N ε‖TV +
∥∥N ε − µε,M

∥∥
TV.

Taking ε→ 0 and using Lemma 2.13 we obtain

lim
ε→0

∥∥µε − µε,M∥∥TV = 0

for every M > 0. Now let us prove item ii). Let ε > 0 and M > |x0| > 0 be fixed. Let us

define τ ε,M := inf
{
s ≥ 0 :

∣∣xε,Ms ∣∣ > M
}

. By the variational definition of total variation

distance in terms of couplings, see (4.12) of [7],∥∥∥xεtε(b) − xε,Mtε(b)∥∥∥TV ≤ Px0

(
τ ε,M ≤ tε(b)

)
.

Let us define σε,M := inf
{
s ≥ 0 : |xε,Ms − ψMs | > M − |x0|

}
, where ψM :=

{
ψMt
}

is the

semi-flow associated to the autonomous differential equation

dψMt = −V ′M
(
ψMt
)

for every t ≥ 0 and ψM0 := x0. Using the coercivity hypothesis of VM we see that the

semi-flow ψM is decreasing in norm, and |ψMt | ≤ |x0| for every t ≥ 0. In particular,

σε,M ≤ τ ε,M . Consequently. Px0

(
τ ε,M ≤ tε(b)

)
≤ Px0

(
σε,M ≤ tε(b)

)
.
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Therefore it is enough to prove that lim
ε→0

Px0

(
σε,M > tε(b)

)
= 1. For every s ≥ 0, let

us define zε,Ms := xε,Ms −ψMs√
ε

. Then σε,M = inf
{
s ≥ 0 : |zε,Ms | >

M−|x0|√
ε

}
. We note that

Px0

(
σε,M ≥ tε(b)

)
= Px0

(
sup

0≤s≤tε(b)

∣∣zε,Ms ∣∣ ≤ M − |x0|√
ε

)
.

Let us define cM := M − |x0| > 0. We have

Px0

(
sup

0≤s≤tε(b)

∣∣zε,Ms ∣∣ > cM√
ε

)
= Px0

(
sup

0≤s≤tε(b)

(
zε,Ms

)2
>
c2
M

ε

)
.

Using Itô’s formula and the coercivity of VM , we have(
zε,Mt

)2

≤ t+ Πε,M
t

for every t ≥ 0, where the process Πε,M
t := 2

t∫
0

zε,Ms dWs is a martingale. Then

E
[(
zε,Mt

)2
]
≤ t

for every t ≥ 0. Using Itô’s isometry, we obtain

E
[(

Πε,M
t

)2
]
≤ 2t2

for every t ≥ 0. Let us take εM,b > 0 such that for every 0 < ε < εM,b, we have

c2
M − εtε(b) > 0. Using Doob’s inequality, we have

Px0

(
sup

0≤s≤tε(b)

(
zε,Ms

)2
>
c2
M

ε

)
≤ Px0

(
sup

0≤s≤tε(b)

∣∣Πε,M
s

∣∣ > c2
M − εtε(b)

ε

)

≤ ε2

(c2
M − εtε(b))

2E
[(

Πε,M
tε(b)

)2
]

≤ 2ε2 (tε(b))
2

(c2
M − εtε(b))

2 .

Letting ε→ 0 we obtain the desired limit.

Now we are ready to prove Theorem 2.1. To stress the fact that Theorem 2.1 is just
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a consequence of what we have proved up to here, let us state this as a Lemma:

Lemma 2.20 (From the Smooth Coercive Case to the General Case). Let VM be the

approximation of V obtained in Proposition 2.18. Profile cut-off for {xε,Mt }t≥0 implies

profile cut-off for {xεt}t≥0 with the same cut-off time, cut-off window and profile function.

Proof. Recall the notation introduced in Proposition 2.15. Let ε > 0 and t > 0 be fixed.

Let us take M > max {|x0|, ‖ψ‖∞}. We define

Dε,M(t) :=
∥∥∥xε,Mt − µε,M

∥∥∥
TV

and

Dε(t) := ‖xεt − µε‖TV .

By triangle’s inequality we have

Dε,M(t) ≤
∥∥∥xε,Mt − xεt

∥∥∥
TV

+Dε(t) +
∥∥µε − µε,M∥∥TV .

Recall that tε = 1
2V ′′(0)

(ln (1/ε) + ln (2V ′′(0))) and wε = 1
V ′′(0)

+ δε respectively. Let b ∈ R
be fixed. Recall that tε(b) = tε + bwε. Take εb > 0 such that for every 0 < ε < εb we have

tε(b) > 0. Consequently,

Dε,M(tε(b)) ≤
∥∥∥xε,Mtε(b) − xεtε(b)∥∥∥TV +Dε(tε(b)) +

∥∥µε − µε,M∥∥TV .
Therefore, using Proposition 2.19 and Lemma D.2 we have

lim sup
ε→0

Dε,M(tε(b)) ≤ lim sup
ε→0

Dε(tε(b)).

By Theorem 2.17, we know that lim
ε→0

Dε,M(tε(b)) = G(b). Therefore

G(b) ≤ lim sup
ε→0

Dε(tε(b)).

It also follows that

Dε(tε(b)) ≤
∥∥∥xεtε(b) − xε,Mtε(b)∥∥∥TV +Dε,M(tε(b)) +

∥∥µε,M − µε∥∥TV .
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Therefore, using Lemma D.2, Proposition 2.19 and Theorem 2.17 we have

lim inf
ε→0

Dε(tε(b)) ≤ G(b).

We conclude that

lim
ε→0

Dε(tε(b)) = G(b).
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Chapter 3

Stochastic Perturbations:

m-Dimensional Case

In this chapter we consider stochastic perturbations of a dynamical system evolving on

Rm with m ≥ 2. The assumptions and notations we will made on the potential V are

the analogous ones made for the one-dimensional case. For the reader’s convenience, we

repeat them here. Let us consider the semi-flow {ψ(t)}t≥0 associated to the solution of

the following deterministic differential equation

dx(t) = −∇V (x(t))dt (3.1)

for t ≥ 0 and let x(0) ∈ Rm \ {0} be a fixed initial condition. The hypothesis made in

Theorem 3.1 on the potential V guarantees existence and uniqueness of solutions of (3.1),

as well as all the other (stochastic or deterministic) equations defined below. Our main

result for m-dimensional potentials is the following:

Theorem 3.1 (Gradient Case). Let V : Rm → [0,+∞[ be a m-dimensional potential

satisfying:

i) V ∈ C2 and V (0) = 0.

ii) ∇V (x) = 0 if and only if x = 0.

iii) There exist 0 < δ ≤ ∆ such that

δ‖y‖2 ≤ y∗HV (x)y ≤ ∆‖y‖2
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for every x, y ∈ Rm, where y∗ is the transposed vector of y and HV is the Hessian

matrix of V .

Let us consider the family of processes xε = {xε(t)}t≥0 which are given by the the semi-flow

of the following stochastic differential equation,

dxε(t) = −∇V (xε(t))dt+
√
εdW (t),

xε(0) = x0

for t ≥ 0, where x0 is a deterministic vector in Rm \ {0} and {W (t)}t≥0 is a standard

Brownian motion. This family presents profile cut-off in the sense of Definition 1.3 with

respect to the total variation distance when ε goes to zero. Let α1 be the smallest eigenvalue

of HV (0). For Lebesgue-almost every x0, the profile function Gx0 : R→ [0, 1] is given by

Gx0(b) :=
∥∥G(e−bv(x0), Im

)
− G(0, Im)

∥∥
TV ,

where v(x0) ∈ span(v1) is the unique non-zero vector in Rm such that

lim
t→+∞

eα1tψ(t) = v(x0),

where v1 is the eigenvector associated to the eigenvalue α1 and the cut-off time tε and

window time wε are given by

tε =
1

2α1

ln (1/ε)

and

wε =
1

α1

respectively.

Remark 3.2. Since the potential V is coercive, we have α1 ≥ δ > 0.

The assumptions made in Theorem 3.1 on the potential V are the m-dimensional

counterpart of what we called smooth coercive potentials. At present time, we can not

extend Theorem 3.1 potentials satisfying only the coercive bound δ ≤ y∗HV (x)y for any

x, y ∈ Rm. The following Theorem explains to which kind of potentials we are able to

extend Theorem 3.1.
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Theorem 3.3. Let V : Rm → R be a potential satisfying i), ii) and the lower bound

δ ≤ y∗HV (x)y for any x, y ∈ Rm of Theorem 3.1. Let us suppose that there exists a

potential Ṽ satisfying i), ii) and iii) of Theorem 3.1 and such that there exists r > 0 such

that V (x) = Ṽ (x) for every ‖x‖ ≤ r. Then, profile cut-off for {xε,M(t)}t≥0 implies profile

cut-off for {xε(t)}t≥0 with the same cut-off time, cut-off window and profile function, for

Lebesgue-almost every initial condition x0 with ‖x0‖ < r.

The proof of this theorem is exactly the same of Lemma 2.20, so we omit it.

3.1 The Symmetric Ornstein-Uhlenbeck Case

For the reader convenience, we state and prove here a simple particular case of Theorem

3.1, namely when the potential V is quadratic.

Let us take µ ∈ Rm and let Σ ∈ Sm be a symetric and positive definite square m-

dimensional matrix. We denote by G(µ,Σ) the Gaussian distribution with mean µ and

covariance matrix Σ.

Proposition 3.4 (Symmetric Ornstein-Uhlenbeck Process). Let us consider the one-

parameter family of processes xε = {xε(t)}t≥0 which are given by the solution of the

following stochastic differential equation,

dxε(t) = −αxε(t)dt+
√
εdW (t),

xε(0) = x(0)

for t ≥ 0, where x(0) is a deterministic point in Rm \ {0}, α is a constant symmetric

matrix with eigenvalues 0 < α1 ≤ . . . ≤ αm and {W (t)}t≥0 is an m-dimensional standard

Brownian motion. This family presents profile cut-off in the sense of the Definition 1.3

with respect to the total variation distance when ε goes to zero. Let us write x(0) =
m∑
k=1

xkvk

where {v1, . . . , vm} is an ordered orthonormal basis of Rm that conjugates the matrix α

with the diagonal matrix diag(α1, . . . , αm). The profile function G : R→ R is given by

G(b) :=
∥∥∥G(√2e−bxτα

1
2vτ , Im

)
− G(0, Im)

∥∥∥
TV
,

where τ := min {i ∈ {1, . . . ,m} : xi 6= 0}, and where the cut-off time tε and window time

wε are given by

tε :=
1

2ατ
ln (1/ε)
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and

wε :=
1

ατ
.

Proof. Since our process is linear, it is Gaussian. We have that its mean vector and

covariance matrix are given by

µε(t) := E [xε(t)] = e−αtx(0),

Σε(t) := V [xε(t)] = ε

t∫
0

e−2α(t−s)ds =
ε

2
α−1

(
Im − e−2αt

)
,

respectively. Again, for each ε > 0 fixed, when t goes to infinity we obtain that xε(t)

converges in distribution to a random variable xε(+∞) which has Gaussian distribu-

tion with mean vector µε := 0 and variance matrix Σε := ε
2
α−1. For each t > 0,

we denote by G(µε(t),Σε(t)) the law of the random variable xε(t) and by G(µε,Σε) the

law of the random variable xε(+∞). For every ε > 0 and t > 0, we write dε(t) :=

‖G(µε(t),Σε(t))− G(µε,Σε)‖TV . Using triangle’s inequality for the total variation distance

and Lemma B.1, for each ε > 0 and t > 0, we obtain

dε(t) =

∥∥∥∥∥G
(√

2

ε
e−αtx(0), α−1

(
Im − e−2αt

))
− G

(
0, α−1

)∥∥∥∥∥
TV

≤

∥∥∥∥∥G
(√

2

ε
e−αtx(0), α−1

(
Im − e−2αt

))
− G

(√
2

ε
e−αtx(0), α−1

)∥∥∥∥∥
TV

+

∥∥∥∥∥G
(√

2

ε
e−αtx(0), α−1

)
− G

(
0, α−1

)∥∥∥∥∥
TV

≤
∥∥G(0, α−1

(
Im − e−2αt

))
− G

(
0, α−1

)∥∥
TV

+

∥∥∥∥∥G
(√

2

ε
α

1/2e−αtx(0), Im

)
− G(0, Im)

∥∥∥∥∥
TV

,

where in the last inequalities we use several times Lemma B.1. For each ε > 0 and t > 0,

let us define

Dε(t) :=

∥∥∥∥∥G
(√

2

ε
α

1/2e−αtx(0), Im

)
− G(0, Im)

∥∥∥∥∥
TV

.
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Let us consider the function G : R→ [0, 1] defined by

G(b) :=
∥∥∥G(√2e−bcτα

1
2vτ , Im

)
− G(0, Im)

∥∥∥
TV
,

where cτ := 〈vτ , x(0)〉 6= 0 since xτ 6= 0. It follows that that G(−∞) = 1 and G(+∞) = 0

by Lemma B.4 and Lemma B.2, respectively. For each ε > 0 let us define tε := 1
2ατ

ln (1/ε)

and wε := 1/ατ . Note that for any ε > 0 and b ∈ R we have

Dε(tε + bwε) =

∥∥∥∥∥G
(√

2

ε
α

1/2e−α(tε+bwε)x(0), Im

)
− G(0, Im)

∥∥∥∥∥
TV

.

Using Lemma B.3, we obtain that

lim
ε→0

Dε(tε + bwε) = G(b).

Now we will prove that lim
ε→0
|Dε(t̃ε(b))− dε(t̃ε(b))| = 0, where t̃ε(b) = tε + bwε. Using

triangle’s inequality for the total variation distance, we have

|Dε(t̃ε(b))− dε(t̃ε(b))| ≤
∥∥∥G(0, α−1

(
Im − e−2αt̃ε(b)

))
− G

(
0, α−1

)∥∥∥
TV
.

By the last inequality and Lemma B.5, we conclude that

lim
ε→0

(
Dε(t̃ε(b))− dε(t̃ε(b))

)
= 0

for any b ∈ R. Consequently, for any b ∈ R

lim
ε→0

dε(t̃ε(b)) = G(b),

which is what we wanted to prove.

3.2 The Linearized Case

Recall the strategy of proof of the one-dimensional case, Theorem 2.1. As an important

intermediate step we prove profile cut-off for a family of processes satisfying a linear, non-

homogeneous stochastic differential equation, stated in Corollary 2.7. In what follows we

prove the m-dimensional version of this Corollary.

This result holds for a more general class of potentials that Theorem 3.1, which we
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define as follows.

Definition 3.5 (Regular Coercive Potential). We say that V is a coercive regular potential

if V : Rm → R satisfies

a) V (0) = 0 and V ∈ C2.

b) ∇V (x) = 0 if and only if x = 0.

c) There is δ > 0 such that y∗HV (x)y ≥ δ‖y‖2 for every x, y ∈ Rm, where HV is the

Hessian matrix of V .

The following theorem tells us that the “linear approximations” have profile cut-off.

Theorem 3.6 (The Linearized Case). Let V be a coercive regular potential. Let us

consider the family of processes yε = {yε(t) := ψ(t) +
√
εy(t)}t≥0, where {y(t)}t≥0 is

the solution of the following linear stochastic differential equation,

dy(t) = −HV (ψ(t))y(t)dt+ dW (t),

y(0) = 0

for t ≥ 0, where {W (t)}t≥0 is a standard Brownian motion, HV is the Hessian matrix

of V and {ψ(t)}t≥0 is the semi-flow associated to (3.1) with initial condition x0. Let α1

be the smallest eigenvalue of HV (0) and let V1 be its eigenspace. Let v(x0) be the unique

vector in V1 such that

lim
t→+∞

eα1tψ(t) = v(x0).

Assume that v(x0) 6= 0 and define the cut-off profile Gx0 : R→ [0, 1] as

Gx0(b) :=
∥∥∥G(√2e−bHV (0)

1
2v(x0), Im

)
− G(0, Im)

∥∥∥
TV
.

Then the family {yε}ε>0 presents profile cut-off in the sense of [14] with respect to the

total variation distance when ε goes to zero with profile function Gx0 and cut-off time tε

and window time wε given by

tε =
1

2α1

ln (1/ε)
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and

wε =
1

α1

.

Remark 3.7. By item ii) of Lemma 3.8 below, v(x0) is well defined and nonzero for

Lebesgue-almost every x0. In particular, Theorem 3.6 holds for Lebesgue-almost every

initial condition x0 ∈ Rm \ {0}.

We can see that the Ornstein-Uhlenbeck case is covered by

V (x) = x∗diag(α1, . . . , αm)x,

x ∈ Rm and αk > 0 for every k ∈ {1, . . . ,m}. In order to prove Theorem 3.6 we need to

find the qualitative behavior of the semi-flow ψ = {ψ(t)}t≥0 at infinity.

Lemma 3.8. Under the hypothesis of Theorem 3.6, we have

i) For any initial condition x0, ψ(t) goes to zero as t goes to infinity. Moreover,

‖ψ(t)‖ ≤ ‖x0‖e−δt for every t ≥ 0.

ii) For Lebesgue-almost every x0,

lim
t→+∞

eα1tψ(t) = v(x0) ∈ Rm \ {0},

where v(x0) ∈ V1 and V1 is the eigenspace associated to the eigenvalue α1.

iii) Let us consider the following matrix differential equation,

dΛε(t) = −HV (0)Λε(t)− Λε(t)HV (0) + εIm,

Λε(0) = M0,

where M0 is a square matrix of dimension m. We have

lim
t→∞

Λε(t) =
ε

2
(HV (0))−1 .

iv) Let us define the covariance matrix ∆ε(t) := εE [y(t) (y(t))∗]. This matrix satisfies

the following matrix differential equation,

d∆ε(t) = −HV (ψ(t))∆ε(t)−∆ε(t)HV (ψ(t)) + εIm,

∆ε(0) : = 0.
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We have

lim
t→∞

∆ε(t) =
ε

2
(HV (0))−1 .

For the proof, see Appendix C.

For each ε > 0 and t > 0 fixed, yε(t) is a Gaussian random variable so it is characterized

by its mean vector and covariance matrix. The mean vector is given by

νε(t) := E [yε(t)] = ψ(t)

and the covariance matrix is given by

ηε(t) := V [yε(t)] = εV [y(t)] = εE [y(t) (y(t))∗] .

Corollary 3.9. Let us assume the hypothesis of Theorem 3.6. Let ε > 0 be fixed, then the

random variable yε(t) converges in distribution as t goes to infinity to a Gaussian random

variable yε(+∞) with mean zero vector and covariance matrix ε
2
(HV (0))−1.

Proof. It follows by item i) and item iv) of Lemma 3.8.

Now, we have all the tools in order to prove Theorem 3.6.

Proof. Let us call α := HV (0). For each ε > 0 and t > 0, we define

dε(t) :=
∥∥∥G (νε(t), ηε(t))− G

(
0,
ε

2
(HV (0))−1

)∥∥∥
TV

=

∥∥∥∥∥G
(√

2

ε
ψ(t), η(t)

)
− G

(
0, α−1

)∥∥∥∥∥
TV

,

where η(t) := 2V [y(t)] and

Dε(t) :=

∥∥∥∥∥G
(√

2

ε
α

1
2ψt, Im

)
− G(0, Im)

∥∥∥∥∥
TV

.
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Using triangle’s inequality and Lemma B.1, for each ε > 0 and t > 0, we obtain

dε(t) ≤

∥∥∥∥∥G
(√

2

ε
ψ(t), η(t)

)
− G

(√
2

ε
ψ(t), α−1

)∥∥∥∥∥
TV

+∥∥∥∥∥G
(√

2

ε
ψ(t), α−1

)
− G

(
0, α−1

)∥∥∥∥∥
TV

,

=
∥∥G (0, η(t))− G

(
0, α−1

)∥∥
TV +

∥∥∥∥∥G
(√

2

ε
α

1
2ψ(t), Im

)
− G(0, Im)

∥∥∥∥∥
TV

.

Therefore,

|dε(t)−Dε(t)| ≤
∥∥G (0, η(t))− G

(
0, α−1

)∥∥
TV .

Recall that 0 < α1 < . . . < αm denote the eigenvalues of the matrix α. For each ε > 0

let us define tε := 1
2α1

ln (1/ε) and wε := 1/α1. For every b ∈ R, we define t̃ε(b) = tε + bwε.

Using the last inequality and Lemma B.5, we obtain

lim
ε→0
|dε(t̃ε(b))−Dε(t̃ε(b))| = 0

for every b ∈ R. By item ii) of Lemma 3.8, for Lebesgue-almost every x0, it follows that

lim
t→+∞

eα1tψ(t) = v(x0) ∈ Rm \ {0}.

Let us consider the function Gx0 : R→ [0, 1] defined by

Gx0(b) :=
∥∥∥G(
√

2e−bα
1
2v(x0), Im)− G(0, Im)

∥∥∥
TV
.

Observe that Dε(t̃ε(b)) =
∥∥∥G(√2α

1
2
ψ(t̃ε(b))√

ε
, Im

)
− G(0, Im)

∥∥∥
TV

for every b ∈ R. Conse-

quently, we have

lim
ε→0

Dε(t̃ε(b)) = Gx0(b)

for every b ∈ R. It also follows that lim
b→+∞

Gx0(b) = 0 and lim
b→−∞

Gx0(b) = 1 by the same

facts usied in the proof of the Ornstein-Uhlenbeck Case. This proves the theorem.

Remark 3.10. In Theorem 3.6 we can take as a window time w′ε > 0 such that lim
ε→0

w′ε =

w > 0.
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3.3 The General Case

Let us fix some notations and names.

Definition 3.11. a) We call the process xε := {xε(t)}t≥0 defined in Theorem 3.1 an

m-dimensional Itô’s diffusion.

a) We call the semi-flow ψ := {ψ(t)}t≥0 defined by the differential equation (3.1) the

zeroth-order approximation of xε.

c) We call the process yε := {yε(t) := ψ(t) +
√
εy(t)}t≥0 defined in Theorem 3.6 the

first order approximation of xε.

The following lemma tells us the existence of a stationary probability measure for the

Itô’s diffusion xε = {xε(t)}t≥0.

Lemma 3.12. Let V a regular coercive potential and for every ε > 0 let us consider the

Itô’s diffusion xε = {xε(t)}t≥0 given by the following stochastic differential equation,

dxε(t) = −∇V (xε(t))dt+
√
εdW (t),

xε(0) = x(0)

for t ≥ 0, where x(0) is a deterministic point in Rm \ {0} and {W (t)}t≥0 is a standard

Brownian motion in Rm. Then, for every ε > 0 fixed, when t goes to infinity the probability

distribution of xε(t) converges in distribution to the probability µε given by

µε(dx) =
e−

2
ε
V (x)dx

M ε
,

where M ε =
∫
Rm

e−
2
ε
V (z)dz.

Proof. For the proof of this lemma and further considerations, see [23] and [26].

The following lemma tells us that the stationary probability measure of the Itô’s pro-

cess {xεt}t≥0 is well approximated in total variation distance by the Gaussian distribution

with mean zero and covariance matrix ε
2

(HV (0))−1.

Lemma 3.13. Let V be a coercive regular potential. Then

lim
ε→0
‖µε − Gε‖TV = 0,

where Gε is a Gaussian distribution with mean zero and covariance matrix ε
2

(HV (0))−1.
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Proof. Let 0 < η < 1 be fixed. By Lemma 3.12, the measure µε(dx) = e−
2
ε V (x)dx
Mε is a

well-defined probability measure. Then

‖µε − Gε‖TV =
1

2

∫
Rm

∣∣∣∣∣e−
2
ε
V (x)

M ε
− e−

2
ε

x∗HV (0)x

2

N ε

∣∣∣∣∣ dx,
where M ε =

∫
Rm

e−
2
ε
V (x)dx and N ε =

∫
Rm

e−
2
ε

x∗HV (0)x

2 dx = (πε)
m
2
(
det
(
(HV (0))−1)) 1

2 . By

triangle’s inequality, we have

‖µε − Gε‖TV ≤ 1

2

∫
Rm

∣∣∣∣∣e−
2
ε
V (x)

M ε
− e−

2
ε
V (x)

N ε

∣∣∣∣∣ dx+
1

2

∫
Rm

∣∣∣∣∣e−
2
ε
V (x)

N ε
− e−

2
ε

x∗HV (0)x

2

N ε

∣∣∣∣∣ dx
=
|M ε −N ε|

2N ε
+

1

2N ε

∫
Rm

∣∣∣e− 2
ε
V (x) − e−

2
ε

x∗HV (0)x

2

∣∣∣ dx
≤ 1

N ε

∫
Rm

∣∣∣e− 2
ε
V (x) − e−

2
ε

x∗HV (0)x

2

∣∣∣ dx.
By coercivity, we have that there exist δ > 0 such that V (x) ≥ δ

2
‖x‖2 for every x ∈ Rm.

Then

lim
ε→0

1

N ε

∫
{x∈Rm:‖x‖>β}

∣∣∣e− 2
ε
V (x) − e−

2
ε

x∗HV (0)x

2

∣∣∣ dx = 0

for every β > 0. By the second-order Taylor’s Theorem for scalar fields, we have that

there exists 0 < ϑ < 1 such that for every ‖x‖ < ϑ,

V (x) =
x∗HV (cx)x

2
,

where c = c(x) ∈]0, 1[. By continuity, we can take 0 < δη < ϑ such that for every
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‖x‖ < ϑη, we have ‖HV (cx)−HV (0)‖ < η. Then,

1

N ε

∫
{x∈Rm:‖x‖<ϑη}

∣∣∣e− 2
ε
V (x) − e−

2
ε

x∗HV (0)x

2

∣∣∣ dx ≤
≤ 1

εN ε

∫
{x∈Rm:‖x‖<ϑη}

e−
1
ε
δ‖x‖2 ‖x∗HV (cx)x− x∗HV (0)x‖ dx

≤ η

εN ε

∫
{x∈Rm:‖x‖<ϑη}

e−
1
ε
δ‖x‖2‖x‖2dx ≤ Cη

∫
{
x∈Rm:‖x‖<ϑη

√
1
ε

}e
−δ‖x‖2‖x‖2dx

≤ Cη

∫
Rm

e−δ‖x‖
2‖x‖2dx,

where C > 0 is an explicit constant independent of ε and η. Consequently, first taking

ε→ 0 and then η → 0 we obtain the result.

The following proposition will give us the zeroth-order and first-order approximations

for Itô’s diffusion xε.

Proposition 3.14 (Zeroth-Order and First-Order Approximation). Let V be a coercive

regular potential. Let us write B(t) := sup
0≤s≤t

‖W (s)‖ for t ≥ 0.

i) For every t ≥ 0, we have E
[
‖xε(t)− ψ(t)‖2n] ≤ cnε

ntn, where cn :=
n−1∏
j=0

(m+ 2j)

for every n ∈ N.

ii) For every b ∈ R, there exists ε0 > 0 small enough such that for every 0 < ε < ε0,

E

[
exp

{
δε
‖xε(tε + bδε)− ψ(tε + bδε)‖2

ε

}]
< +∞,

where δε = εγ, γ > 0.

iii) For every b ∈ R there exists ε0 > 0 small enough such that for every 0 < ε < ε0,

E

[
exp

{
δε
‖xε(tε + bδε)− ψ(tε + bδε)‖2

ε

}]
≤ eδε(tε+bδε)m,

where δε = εγ,γ > 0.
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iv) For every r > 0 there exist a constant c(r) > 0 and ε0 > 0 such that

P
(

sup
t≤tε+bwε

‖xε(t)− ψ(t)‖2 ≥ r

)
≤ c(r)ε2 (tε + bwε)

2

for every 0 < ε < ε0.

v) Assume that there exists K > 0 such that

‖∇V (x)−∇V (y)‖ ≤ K‖x− y‖

for every x, y ∈ Rm. Let b ∈ R and let us call t∗ := tε+b (wε + δε), where lim
ε→0

δε = 0,

tε and wε are defined in Theorem 3.6. Then, there exists ε0 > 0 such that

E
[
‖xε(t∗)− ψ(t∗)−

√
εy(t∗)‖2

]
≤ Cε

3
2 (t∗)

5
2

for every 0 < ε < ε0, where C = C(K, b) > 0 is a fixed constant.

Proof.

i) Let ε > 0 and t ≥ 0 be fixed. We have

xε(t)− ψ(t) = −
t∫

0

[∇V (xε(s))−∇V (ψ(s))] ds+
√
εW (t)

= −
t∫

0

 1∫
0

HV (ψ(s) + θ (xε(s)− ψ(s)))dθ

 (xε(s)− ψ(s)) ds+

√
εW (t)

= −
t∫

0

Aε(s) (xε(s)− ψ(s)) ds+
√
εW (t),

where Aε(s) :=
1∫
0

HV (ψ(s) + θ (xε(s)− ψ(s)))dθ and where the second identity fol-

lows from the Intermediate Value Theorem for vectorial functions. Let us take

f1(x) = ‖x‖2. By Itô formula, it follows that

d‖xε(t)− ψ(t)‖2 = [−2 (xε(t)− ψ(t))∗Aε(t) (xε(t)− ψ(t)) εm] dt+

2
√
ε (xε(t)− ψ(t))∗ dW (t)

41



for every t ≥ 0. Using the coercivity hypothesis for V , we obtain

d‖xε(t)− ψ(t)‖2 ≤ εmdt+MtdW (t)

for every t ≥ 0, where M(t) := 2
√
ε (xε(t)− ψ(t))∗ for every t ≥ 0. Notice that{

N(t) :=
t∫

0

M(s)dW (s)

}
t≥0

is a local martingale. Then there exists a sequence

of increasing stopping times {τn}n∈N such that almost surely τn ↑ ∞ as n goes to

infinity and {Nn(t) := N (min{τn, t})}t≥0 is a martingale for every n ∈ N fixed.

Therefore, taking expectation, using the fact that {Nn(t)}t≥0 is a local martingale

for every n ∈ N fixed and the fact that V is coercive, we obtain

E
[
‖xε (min{τn, t})− ψ (min{τn, t}) ‖2

]
≤ εmmin{τn, t}

≤ εdt

for every t ≥ 0. Consequently, using Fatou’s Lemma, we obtain

E
[
‖xε(t)− ψ(t)‖2

]
≤ εdt

for every t ≥ 0. Let us consider fn+1(x) = ‖x‖2(n+1). By Itô formula, it follows that

d‖xε(t)− ψ(t)‖2(n+1) =
[
−2(n+ 1)‖xε(t)− ψ(t)‖2n (xε(t)− ψ(t))∗

Aε(t) (xε(t)− ψ(t))] dt

+
[
ε(m+ 2n)(n+ 1)‖xε(t)− ψ(t)‖2n

]
dt+

+ 2(n+ 1)
√
ε‖xε(t)− ψ(t)‖2n (xε(t)− ψ(t))∗ dW (t)

for every t ≥ 0. Using the local martingale property of Itô integral, the coercivity

property of V , the induction hypothesis and the Fatou’s Lemma, it follows that

E
[
‖xε(t)− ψ(t)‖2(n+1)

]
≤ cn+1ε

n+1tn+1

for every t ≥ 0. Consequently, for every n ∈ N, it follows that

E
[
‖xε(t)− ψ(t)‖2n

]
≤ cnε

ntn

for every t ≥ 0.

42



ii) Let b ∈ R be fixed. By the Monotone Convergence Theorem, it follows that

E
[
eδε
‖xε(tε+bδε)−ψ(tε+bδε)‖2

ε

]
=

∞∑
n=0

E

[
δnε ‖xε(tε + bδε)− ψ(tε + bδε)‖2n

εnn!

]
,

where δε = εγ for some γ > 0. By item ii), we have

∞∑
n=0

E

[
δnε ‖xε(tε + bδε)− ψ(tε + bδε)‖2n

εnn!

]
≤

∞∑
n=0

δnε cn (tε + bδε)
n

n!
.

Taking ε0 > 0 such that 2 (tε + bδε) δε < 1 for 0 < ε < ε0 and using the ratio test for

convergence series, we have that
∞∑
n=0

cnδnε (tε+bδε)
n

n!
< +∞ for every 0 < ε < ε0.

iii) We will use the Itô formula for the function gε(x) = eδε
‖x‖2
ε . Let κε = δε

ε
= εγ

ε
. Then,

deκε‖x
ε(t)−ψ(t)‖2 = −2κεe

κε‖xε(t)−ψ(t)‖2 (xε(t)− ψ(t))∗Aε(t) (xε(t)− ψ(t)) dt+

ε
(

2κ2
εe
κε‖xε(t)−ψ(t)‖2‖xε(t)− ψ(t)‖2 + κεme

κε‖xε(t)−ψ(t)‖2
)
dt+

2m
√
εκεe

κε‖xε(t)−ψ(t)‖2 (xε(t)− ψ(t))∗ dW (t)

for every t ≥ 0. Using the coercivity property, we obtain

deκε‖x
ε(t)−ψ(t)‖2 = −2κεδe

κε‖xε(t)−ψ(t)‖2‖xε(t)− ψ(t)‖2dt+

ε
(

2κ2
εe
κε‖xε(t)−ψ(t)‖2‖xε(t)− ψ(t)‖2 + κεme

κε‖xε(t)−ψ(t)‖2
)
dt+

2m
√
εκεe

κε‖xε(t)−ψ(t)‖2 (xε(t)− ψ(t))∗ dW (t).

Taking ε0 > 0 such that 2εγ ≤ δ for every 0 < ε < ε0, we obtain

deκε‖x
ε(t)−ψ(t)‖2 ≤ −κεδeκε‖x

ε(t)−ψ(t)‖2‖xε(t)− ψ(t)‖2dt+

εκεme
κε‖xε(t)−ψ(t)‖2dt+

2m
√
εκεe

κε‖xε(t)−ψ(t)‖2 (xε(t)− ψ(t))∗ dW (t).

For ε > 0 small enough, by item i) and iii) the stochastic integral is a true martingale

for t ∈ [0, tε + bδε]. Then,

dE
[
eκε‖x

ε(t)−ψ(t)‖2
]
≤ εκεmE

[
eκε‖x

ε(t)−ψ(t)‖2
]
dt
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for every t ∈ [0, tε + bδε]. Now using the Gronwall Inequality we obtain for ε > 0

small enough that E
[
eδε
‖xε(tε+bδε)−ψ(tε+bδε)‖2

ε

]
≤ eδε(tε+bδε)m, where δε = εγ for some

γ > 0.

iv) In the same way as in item i), using Itô’s formula and coercivity hypothesis, we

have

‖xε(t)− ψ(t)‖2 ≤ εdt+N(t)

for every t ≥ 0. By item i), we have that {N(t)}t≥0 is a true martingale. Therefore,

taking ε0 > 0 such that r
2
≤ r − ε (tε + bwε) ≤ 3r

2
for every 0 < ε < ε0, we have

P
(

sup
t≤tε+bwε

‖xε(t)− ψ(t)‖2 ≥ r

)
≤ P

(
sup

t≤tε+bwε
‖N(t)‖ ≥ r − ε (tε + bwε)

)
≤ E [‖N(t)‖2]

(r − ε (tε + bwε))
2

≤
16ε

t∫
0

E [‖xε(s)− ψ(s)‖2] ds

r2

≤ 8mε2 (tε + bwε)
2

r2
,

where the second inequality follows from Doob’s inequality, the third inequality

follows from Itô’s isometry and the fourth inequality follows by item i) of this

proposition.
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v) Let ε > 0 and t ≥ 0 be fixed. It follows that

xε(t)− ψ(t)−
√
εy(t) = −

t∫
0

[
∇V (xε(s))−∇V (ψ(s))−HV (ψ(s))

√
εy(s)

]
ds

= −
t∫

0

[
Aε(s) (xε(s)− ψ(s))−HV (ψ(s))

√
εy(s)

]
ds

= −
t∫

0

[
HV (ψ(s))(xε(s)− ψ(s)−

√
εy(s))

]
ds−

t∫
0

[(Aε(s)−HV (ψ(s))) (xε(s)− ψ(s))] ds,

where Aε(s) :=
1∫
0

HV (ψ(s) + θ (xε(s)− ψ(s)))dθ for every s ≥ 0 and the second

equality comes from the Intermediate Value Theorem. Let us define

e(t) :=

t∫
0

[(Aε(s)−HV (ψ(s))) (xεs − ψs)] ds.

It follows that

d‖xε(t)− ψ(t)−
√
εy(t)‖2 = 2

(
xε(t)− ψ(t)−

√
εy(t)

)∗
d
(
xε(t)− ψ(t)−

√
εy(t)

)
= −2

[(
xε(t)− ψ(t)−

√
εy(t)

)∗
HV (ψ(t))(

xε(t)− ψ(t)−
√
εy(t)

)]
dt−

2
[(
xε(t)− ψ(t)−

√
εy(t)

)∗
(Aε(t)−HV (ψ(t)))

(xε(t)− ψ(t))] dt

≤ −2δ‖xε(t)− ψ(t)−
√
εy(t)‖2dt+

2
[
‖xε(t)− ψ(t)−

√
εy(t)‖‖Aε(t)−HV (ψ(t)‖

‖xε(t)− ψ(t)‖] dt

≤ 2
[
‖xε(t)− ψ(t)−

√
εy(t)‖‖Aε(t)−HV (ψ(t)‖

‖xε(t)− ψ(t)‖] dt

≤ 2‖xε(t)− ψ(t)‖2‖Aε(t)−HV (ψ(t)‖dt+

2
√
ε‖xε(t)− ψ(t)‖‖y(t)‖‖Aε(t)−HV (ψ(t)‖dt
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for every t ≥ 0. In the same way as in item i), using Itô’s formula we obtain

E [‖y(t)‖2] ≤ dt for every t ≥ 0. Consequently, we obtain

dE
[
‖xε(t)− ψ(t)−

√
εy(t)‖2

]
≤ 2E

[
‖xε(t)− ψ(t)‖2‖Aε(t)−HV (ψ(t)‖

]
dt+

2
√
εE [‖xε(t)− ψ(t)‖‖y(t)‖‖Aε(t)−HV (ψ(t)‖] dt

≤ 4
√
c2εt
√

E [‖Aε(t)−HV (ψ(t)‖2]

for every t ≥ 0, where the second inequality follows using several times Cauchy-

Schwarz inequality and item i) of this proposition. Therefore,

E
[
‖xε(t)− ψ(t)−

√
εy(t)‖2

]
≤ 4
√
c2ε

t∫
0

s
√

E [‖Aε(s)−HV (ψ(s)‖2]ds

≤ 4
√
c2εt

t∫
0

√
E [‖Aε(s)−HV (ψ(s)‖2]ds

(3.2)

for every t ≥ 0.

Let us estimate the last integral in the following way:

‖Aε(t)−HV (ψ(t)‖2 =

∥∥∥∥∥∥
1∫

0

[HV (ψ(t) + θ (xε(t)− ψ(t)))−HV (ψ(t)] dθ

∥∥∥∥∥∥
2

≤
1∫

0

‖HV (ψ(t) + θ (xε(t)− ψ(t)))−HV (ψ(t)‖2 dθ,

for every t ≥ 0, where the last inequality follows from Jensen’s inequality. Let r > 0

be fixed and let us define Ω(r, ε) :=

{
ω ∈ Ω : sup

0≤t≤tε+bwε
‖xε(t)− ψ(t)‖ ≥ r

}
. By

item iv) of this proposition we know that P (Ω(r, ε)) ≤ c(r)ε2 (tε + bwε)
2. Let us
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define t∗ := tε + bwε. Following (3.2), we have

E
[
‖xε(t∗)− ψ(t∗)−

√
εy(t∗)‖2

]
≤

4
√
c2εt

∗

t∗∫
0

√√√√√E

 1∫
0

‖HV (ψ(t) + θ (xε(t)− ψ(t)))−HV (ψ(t)‖2 dθ

dt ≤
4
√
c2ε(t

∗)
3
2

√√√√√ t∗∫
0

E

 1∫
0

‖HV (ψ(t) + θ (xε(t)− ψ(t)))−HV (ψ(t)‖2 dθ

dt.
for every t ≥ 0, where the first inequality follows from the inequality from above

and the second inequality follows from the Cauchy-Schwarz inequality. By Tonelli’s

Theorem, we have

t∗∫
0

E

 1∫
0

‖HV (ψ(t) + θ (xε(t)− ψ(t)))−HV (ψ(t)‖2 dθ

dt =

E

 t∗∫
0

1∫
0

‖HV (ψ(t) + θ (xε(t)− ψ(t)))−HV (ψ(t)‖2 dθdt

 .
We can split the last integral into two parts. The first one is

E

1Ω(r,ε)

t∗∫
0

1∫
0

‖HV (ψ(t) + θ (xε(t)− ψ(t)))−HV (ψ(t)‖2 dθdt

 ≤

E

1Ω(r,ε)

t∗∫
0

ĈK2dt

 ≤

ĈK2t∗P (Ω(r, ε)) ≤

ĈK2c(r)ε2 (tε + bwε)
3 ,

where Ĉ = 2m > 0 is a constant. The first inequality comes from the fact that ∇V
is a Lipschitz function, which implies that all the eigenvalues of HV are bounded by

K and using the fact that ‖A‖2 is equal to the sum of the squares of its eigenvalues

for any symmetric matrix A. The second inequality comes from Tonelli’s Theorem

and the third inequality comes from the item iv) of this proposition. The second
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one is

E

1Ωc(r,ε)

t∗∫
0

1∫
0

‖HV (ψ(t) + θ (xε(t)− ψ(t)))−HV (ψ(t)‖2 dθdt

 ≤

E

1Ωc(r,ε)

t∗∫
0

L2‖xε(t)− ψ(t)‖2dt

 ≤

L2

t∗∫
0

E
[
‖xε(t)− ψ(t)‖2

]
dt ≤

L2

t∗∫
0

c1εtdt ≤

L2c1ε(t
∗)2,

where L := L (r, ‖ψ0‖) is the Lipschitz constant of the function g(x, y) = HV (x +

y) − HV (x) on the compact set Λ := {(x, y) : ‖x‖ ≤ ‖ψ(0)‖, ‖y‖ ≤ r}, the second

inequality follows from Tonelli’s Theorem, the third inequality follows from the item

i) of this proposition and the fourth inequality is an straightforward calculation.

Consequently,

E
[
‖xε(t∗)− ψ(t∗)−

√
εy(t∗)‖2

]
≤ 4

√
c2ε(t

∗)
3
2

√
2K2c2nε2n(t∗)2n+1 + L2c1ε(t∗)2

≤ 4
√
c2ε(t

∗)
3
2 ×(√

2K2c2nε2n(t∗)2n+1 +
√
L2c1ε(t∗)2

)
≤ 4

√
c2ε

3
2 (t∗)

5
2

(
K
√

2c2nε2n−1(t∗)2n−1 + L
√
c1

)
≤ K̂ε

3
2 (t∗)

5
2

(√
ε2n−1(t∗)2n−1 + 1

)
,

where K̂ := max
{

4L
√
c1c2, 4K

√
2c2c2n

}
. We can observe that there exists and

ε0 > 0 such that
√
ε2n−1(t∗)2n−1 < 1 for every 0 < ε < ε0. Consequently

E
[
‖xε(t∗)− ψ(t∗)−

√
εy(t∗)‖2

]
≤ 2K̂ε

3
2 (t∗)

5
2

for every 0 < ε < ε0.
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The next proposition will allows us to prove that the total variation distance of two

first-order approximations with (random or deterministic) initial conditions that are close

enough is negligible. In order to do that, we will need to keep track of the initial condition

of the solution of various equations. Let X be a random variable in Rm and let T > 0.

Let {ψ(t,X)}t≥0 denote the solution of

dψ(t,X) = −∇V (ψ(t,X))dt,

ψ(0) = X.

Let {y(t,X, T )}t≥0 be the solution of the stochastic differential equation

dy(t,X, T ) = −HV (ψ(t,X))y(t,X, T )dt+ dW (t+ T ),

y(0, X, T ) = 0

and define {yε(t,X, T )}t≥0 as yε(t,X, T ) := ψt(X) +
√
εy(t,X, T ). In what follows, we

will always take T = t̃ε(b) := tε + bwε, so we will omit it from the notation.

Proposition 3.15 (Linear Coupling). Let us assume the same hypothesis of Theorem 3.6

and in addition let us assume that ∇V is Lipschitz. For ε > 0, define δε = εγ, where

0 < γ < 1
4
. Then, for every b ∈ R it follows that

lim
ε→0

∥∥yε (bδε, xε(t̃ε(b)))− yε (bδε, yε(t̃ε(b)))∥∥TV = 0,

where for each ε > 0, tε and wε are defined in Theorem 3.6 and where for each b ∈ R,

t̃ε(b) := max{tε + bwε, 0}.

Proof. By Itô’s formula, we obtain

yε
(
bδε, x

ε(t̃ε(b))
)

= Φ(bδε)x
ε(t̃ε(b)) +

√
εΦ(bδε)

bδε∫
0

Φ−1(s)d
(
W (t̃ε(b) + s)−W (t̃ε(b))

)
,

yε
(
bδε, y

ε(t̃ε(b))
)

= Φ(bδε)y
ε(t̃ε(b)) +

√
εΦ(bδε)

bδε∫
0

Φ−1(s)d
(
W (t̃ε(b) + s)−W (t̃ε(b))

)
,
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for every ε small enough, where Φ = {Φ(t)}t≥0 is the fundamental solution of the non-

autonomous system

dΦ(t) = −HV (ψ(t+ t̃ε(b)))Φ(t)dt

for every t ≥ 0, with initial condition Φ0 = Im. Applying Lemma B.6 with X =

Φ(bδε)x
ε(t̃ε(b)), Y = Φ(bδε)y

ε(t̃ε(b)), Z =
√
εΦ(bδε)

bδε∫
0

Φ−1(s)dW (s+ t̃ε(b)), G = σ (X, Y )

and (Ω,F ,P) the canonical probability space of the Brownian motion W , we have

∥∥yε (bδε, xε(t̃ε(b)))− yε (bδε, yε(t̃ε(b)))∥∥TV ≤ Ĉ√
εδε

E
[∥∥xε(t̃ε(b))− yε(t̃ε(b))∥∥],

where Ĉ > 0 is a constant. Now, using Proposition 3.14 item v), we obtain

∥∥yε (bδε, xε(t̃ε(b)))− yε (bδε, yε(t̃ε(b)))∥∥TV ≤
√
CĈ

ε
1
4

δε
(t̃ε(b))

5
4

for ε > 0 small enough, where the constant C is the constant of item v) of Proposition

3.14. Using Lemma D.1, we obtain the result.

Proposition 3.16 (Short Time Change of Measure). Let us assume the same hypothesis

of Theorem 3.6 and assume that ∇V is Lipschitz. For each b ∈ R we have

lim
ε→0

∥∥xε (bδε, xε(t̃ε(b)))− yε (bδε, xε(t̃ε(b)))∥∥TV = 0.

Proof. We will use the Cameron-Martin-Girsanov Theorem and Novikov’s Theorem. Let

ε > 0, t ≥ 0 and b ∈ R be fixed. Let us define γε(t) := ∇V (xε(t))√
ε

and Γε(t) :=
(∇V (ψ(t))−HV (ψ(t))ψ(t)+HV (ψ(t))yε(t))√

ε
. Using the item ii) of Lemma 3.8 and the same facts

used in Proposition 2.16, for any ρ > 0, we have

E

ρ exp

 t̃ε(b)+bδε∫
t̃ε(b)

‖γε(s)‖2 ds


 < +∞

and

E

ρ exp

 t̃ε(b)+bδε∫
t̃ε(b)

‖Γε(s)‖2 ds


 < +∞
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for ε > 0 small enough. From Novikov’s Theorem, it follows that

dP1
t̃ε(b)+bδε

dPt̃ε(b)+bδε
:= exp


t̃ε(b)+bδε∫
t̃ε(b)

γε(s)dW (s)− 1

2

t̃ε(b)+bδε∫
t̃ε(b)

‖γε(s)‖2 ds

 ,

dP2
t̃ε(b)+bδε

dPt̃ε(b)+bδε
:= exp


t̃ε(b)+bδε∫
t̃ε(b)

Γε(s)dW (s)− 1

2

t̃ε(b)+bδε∫
t̃ε(b)

‖Γε(s)‖2 ds

 ,

are well-defined Radon-Nikodym derivatives and they define true probability measures

Pi
t̃ε(b)+bδε

, i ∈ {1, 2}. From now to the end of this proof we will use the notations Pi :=

Pi
t̃ε(b)+bδε

, i ∈ {1, 2} and P := Pt̃ε(b)+bδε . Under the probability measure P1, W 1(t) :=

W (t) −
t∫

t̃ε(b)

γε(s)ds, where t̃ε(b) ≤ t ≤ t̃ε(b) + bδε is a Brownian motion. Also, under the

probability measure P2, W 2(t) := W (t) −
t∫

t̃ε(b)

Γε(s)ds, where t̃ε(b) ≤ t ≤ t̃ε(b) + bδε is a

Brownian motion. Consequently,

dP2

dP1
=

exp

{
t̃ε(b)+bδε∫
t̃ε(b)

Γε(s)dW (s)− 1
2

t̃ε(b)+bδε∫
t̃ε(b)

‖Γε(s)‖2 ds

}

exp

{
t̃ε(b)+bδε∫
t̃ε(b)

γε(s)dW (s)− 1
2

t̃ε(b)+bδε∫
t̃ε(b)

‖γε(s)‖2 ds

}

= exp


t̃ε(b)+bδε∫
t̃ε(b)

(Γε(s)− γε(s)) dW (s)− 1

2

t̃ε(b)+bδε∫
t̃ε(b)

(
‖Γε(s)‖2 − ‖γε(s)‖2) ds


= exp


t̃ε(b)+bδε∫
t̃ε(b)

(Γε(s)− γε(s)) dW 2(s) +
1

2

t̃ε(b)+bδε∫
t̃ε(b)

‖Γε(s)− γε(s)‖2 ds

 .

By Pinsker’s inequality and the mean-zero martingale property of the stochastic integral,
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we have for every t̃ε(b) ≤ t ≤ t̃ε(b) + bδε∥∥P1 ◦ (xε(t))−1 − P2 ◦ (xε(t))−1
∥∥2

TV ≤
∥∥P1 ◦ (xε)−1 − P2 ◦ (xε)−1

∥∥2

TV

≤ EP2

 t̃ε(b)+bδε∫
t̃ε(b)

‖Γε(s)− γε(s)‖2 ds


= EP

dP2

dP

t̃ε(b)+bδε∫
t̃ε(b)

‖Γε(s)− γε(s)‖2 ds

 .
By Cauchy-Schwarz’s inequality and the mean-one Doléans exponential martingale prop-

erty, we have

EP

dP1

dP

t̃ε(b)+bδε∫
t̃ε(b)

‖Γεs − γεs‖
2 ds

 ≤

√√√√√√EP

exp


t̃ε(b)+bδε∫
t̃ε(b)

‖γεs‖
2 ds


 t̃ε(b)+bδε∫

t̃ε(b)

‖Γεs − γεs‖
2 ds


2

≤

√√√√√√EP

exp

2

t̃ε(b)+bδε∫
t̃ε(b)

‖γεs‖
2 ds


×

√√√√√√EP


 t̃ε(b)+bδε∫

t̃ε(b)

‖Γεs − γεs‖
2 ds


4

Let us define Iε(b) :=
[
t̃ε(b), t̃ε(b) + bδε

]
. Then, by Jensen’s inequality and the Lipschitz

condition on the gradient ∇V , we have

exp

2

t̃ε(b)+bδε∫
t̃ε(b)

‖γε(s)‖2 ds

 ≤ 1

bδε

t̃ε(b)+bδε∫
t̃ε(b)

exp
{

2bδε ‖γε(s)‖2}ds
≤ 1

bδε

t̃ε(b)+bδε∫
t̃ε(b)

exp

{
2Kbδε

‖xε(s)‖2

ε

}
ds.
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Therefore,

EP

exp

2

t̃ε(b)+bδε∫
t̃ε(b)

‖γε(s)‖2 ds


 ≤ 1

bδε

t̃ε(b)+bδε∫
t̃ε(b)

EP

[
exp

{
2Kbδε

‖xε(s)‖2

ε

}]
ds

≤ 1

bδε

t̃ε(b)+bδε∫
t̃ε(b)

exp {2Kbδεms} ds

≤ exp
{

2Kbδεm
(
t̃ε(b) + bδε

)}
ds,

where the first inequality comes from Tonelli’s Theorem, the second inequality comes from

the item v) of Proposition 3.14 and the third inequality is a straightforward calculation.

Consequently,

lim
ε→0

EP

exp


t̃ε(b)+bδε∫
t̃ε(b)

‖γε(s)‖2 ds


 = 1.

Now, we will calculate

EP


 t̃ε(b)+bδε∫

t̃ε(b)

‖Γεs − γεs‖
2 ds


4 = 0.

Let us observe that

‖Γε(s)− γε(s)‖2 ≤ 2‖HV (ψ(s))‖2‖xε(s)− ψ(s)−
√
εy(s)‖2

ε
+

2‖xε(s)− ψ(s)‖2

ε

1∫
0

‖HV (ψ(s) + θ (xε(s)− ψ(s)))−HV (ψ(s)) ‖2dθ

for every s ≥ 0. Using the last inequality, several times Jensen inequality, several times

Cauchy-Schwartz inequality, the item i), item v) of Proposition 3.14; it suffices to prove

that

EP

 t̃ε(b)+bδε∫
t̃ε(b)

1∫
0

‖HV (ψ(s) + θ (xε(s)− ψ(s)))−HV (ψ(s)) ‖4dθds

 = o(εγ)
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for some γ > 0. The proof is analogous to the proof of item v) of Proposition 3.14.

Theorem 3.17. Let V : Rm → R be a smooth coercive regular potential. Let us consider

the family of processes xε = {xε(t)}t≥0 which are given by the the semi-flow of the following

stochastic differential equation,

dxε(t) = −∇V (xε(t))dt+
√
εdW (t),

xε(0) = x0

for t ≥ 0, where x0 is an initial condition in Rm \ {0} and {W (t)}t≥0 is a standard

Brownian motion. Let α1 be the smallest eigenvalue of HV (0) and let V1 be its eigenspace.

For each x0 ∈ Rm \ {0}, let v(x0) ∈ V1 such that

lim
t→+∞

eα1tψ(t) = v(x0).

Assume that v(x0) 6= 0 and let Gx0 : R→ [0, 1] be the profile function given by

Gx0(b) :=
∥∥∥G(√2e−bHV (0)

1
2v(x0), Im

)
− G(0, Im)

∥∥∥
TV
.

Then the family {xε(t)}t≥0 presents profile cut-off with profile function Gx0, cut-off time

tε and window time wε given by

tε =
1

2α1

ln (1/ε)

and

wε =
1

α1

.

Remark 3.18. By item ii) of Lemma 3.8 above, v(x0) is well defined and nonzero for

Lebesgue-almost every x0. In particular, Theorem 3.17 holds for Lebesgue-almost every

initial condition x0 ∈ Rm \ {0}.

Proof of Theorem 3.17. Let ε > 0 and t > 0 be fixed. We define

Dε(t) := ‖xε(t)− µε‖TV
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and

dε(t) := ‖yε(t)− Gε‖TV ,

where µε and Gε are given in Lemma 3.12 and Lemma 3.13. For each b ∈ R take εb > 0

such that t̂ε(b) := tε + b(wε + δε) = t̃ε(b) + bδε ≥ 0 for every 0 < ε < εb. By Theorem 3.6

and Remark 3.10, we know that for each b ∈ R

lim
ε→0

dε
(
t̂ε(b)

)
= G(b). (3.3)

By definition

Dε(t̂ε(b)) =
∥∥xε (t̂ε(b))− µε∥∥TV

≤
∥∥xε (bδε, xε (t̃ε(b)))− yε (bδε, xε (t̃ε(b)))∥∥TV +∥∥yε (bδε, xε (t̃ε(b)))− yε (bδε, yε (t̃ε(b)))∥∥TV +∥∥yε (t̂ε(b))− Gε∥∥TV + ‖Gε − µε‖TV .

Using Proposition 3.15, Proposition 3.16, Lemma 3.12, the relation (3.3) and the item i) of

Lemma D.2, we have lim sup
ε→0

Dε(t̂ε(b)) ≤ G(b). In order to obtain the converse inequality

we observe that

dε(t̂ε(b)) =
∥∥yε (t̂ε(b))− Gε∥∥TV

≤
∥∥yε (bδε, yε (t̃ε(b)))− yε (bδε, xε (t̃ε(b)))∥∥TV +∥∥yε (bδε, xε (t̃ε(b)))− xε (bδε, xε (t̃ε(b)))∥∥TV +∥∥xε (t̂ε(b))− µε∥∥TV + ‖µε − Gε‖TV .

Again, using Proposition 3.15, Proposition 3.16, Lemma 3.12, the relation (3.3) and the

item ii) of Lemma D.2 we have lim inf
ε→0

Dε(t̂ε(b)) ≥ G(b). Consequently, lim
ε→0

Dε(t̂ε(b)) =

G(b).
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Appendix A

Properties of the Total Variation

Distance of Normal Distribution

Let us take µ ∈ R and σ2 ∈]0,+∞[. We denote by N (µ, σ2) the Normal distribution with

mean µ and variance σ2.

Lemma A.1. Let {µ, µ̃} ⊂ R and {σ2, σ̃2} ⊂]0,+∞[ be fixed numbers.

i) For any constant c 6= 0 we have

∥∥N (cµ, c2σ2
)
−N

(
cµ̃, c2σ̃2

)∥∥
TV =

∥∥N (µ, σ2
)
−N

(
µ̃, σ̃2

)∥∥
TV .

ii)

∥∥N (µ, σ2
)
−N

(
µ̃, σ̃2

)∥∥
TV =

∥∥N (|µ− µ̃|, σ2
)
−N

(
0, σ̃2

)∥∥
TV .

Proof. This is done using the characterization of the total variation distance between

two probability measures which are absolutely continuous with respect to the Lebesgue

measure on (R,B (R)) and using the Change of Variable Theorem.

Lemma A.2. Let µ ∈ R then

‖N (µ, 1)−N (0, 1)‖TV =
2√
2π

|µ|/2∫
0

e−
x2

2 dx ≤ |µ|√
2π
.

Proof. Also, this is done using the characterization of the total variation distance between

two probability measures which are absolutely continuous with respect to the Lebesgue

measure on (R,B (R)) and an straightforward calculations.
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Lemma A.3. Let {µε}ε>0 ⊂ R be a sequence such that lim
ε→0

µε = µ ∈ R. Then

lim
ε→0
‖N (µε, 1)−N (0, 1)‖TV = ‖N (µ, 1)−N (0, 1)‖TV .

Proof. This is done using triangle inequality, the item ii) of Lemma A.1, Lemma A.2 and

the Lemma D.2.

Lemma A.4. Let {σ2
ε}ε>0 ⊂]0,+∞[ be a sequence such that lim

ε→0
σ2
ε = σ2 ∈]0,+∞[. Then

lim
ε→0

∥∥N (0, σ2
ε

)
−N

(
0, σ2

)∥∥
TV = 0.

Proof. This is done using the item i) of Lemma A.1, the characterization of the total

variation distance between two probability measures which are absolutely continuous with

respect to the Lebesgue measure on (R,B (R)) and an straightforward calculations.

Lemma A.5 (Total Variation Bounded). Let (Ω,F ,P) be a probability space and G ⊂ F
be a sub-sigma algebra of F . Let X, Y, Z : (Ω,F) → (R,B(R)) be random variables such

that X and Y are G measurables and X, Y, Z ∈ L1 (Ω,F ,P). Let us consider the following

random variables X∗ = X+Z and Y ∗ = Y +Z. Let us suppose that E[X∗ | G] has normal

distribution N (X, σ2), E[Y ∗ | G] has normal distribution N (Y, σ2) and Z⊥G. Then,

‖X∗ − Y ∗‖TV ≤ 1√
2πσ

E[|X − Y |].

Proof. Using the the properties of conditional expectation, the item i), item ii) of Lemma

A.1 and Lemma A.2, we have

‖X∗ − Y ∗‖TV = sup
F∈F

∣∣E [1(X∗∈F ) − 1(Y ∗∈F )

]∣∣
≤ sup

F∈F
E
[∣∣E [1(X∗∈F ) − 1(Y ∗∈F ) | G

]∣∣]
≤ sup

F∈F
E
[∣∣P (N (X, σ2) ∈ F

)
− P

(
N (Y, σ2) ∈ F

)∣∣]
≤ sup

F∈F
E
[

1√
2πσ
|X − Y |

]
=

1√
2πσ

E[|X − Y |].
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Appendix B

Properties of the Total Variation

Distance of Gaussian Distribution

Let us take µ ∈ Rm and Σ ∈ Sm be a symetric and positive definite square m-dimensional

matrix. We denoted by G(µ,Σ) the Gaussian distribution with vector mean µ and covari-

ance matrix Σ.

Lemma B.1. Let {µ, µ̃} ⊂ Rm be two fixed vectors and {Σ, Σ̃} ⊂ Sm be two fixed matrices.

It follows

i) For any scalar c 6= 0 we have∥∥∥G(cµ, c2Σ
)
− G

(
cµ̃, c2Σ̃

)∥∥∥
TV

=
∥∥∥G(µ,Σ)− G

(
µ̃, Σ̃

)∥∥∥
TV
.

ii) ∥∥∥G(µ,Σ)− G
(
µ̃, Σ̃

)∥∥∥
TV

=
∥∥∥G(µ− µ̃,Σ)− G

(
0, Σ̃

)∥∥∥
TV
.

iii)

‖G(µ,Σ)− G(µ̃,Σ)‖TV =
∥∥∥G(Σ−

1
2µ, Im

)
− G

(
Σ−

1
2 µ̃, Im

)∥∥∥
TV
.

iv) ∥∥∥G(0,Σ)− G
(

0, Σ̃
)∥∥∥

TV
=

∥∥∥G(0, Σ̃−
1/2ΣΣ̃−

1/2
)
− G(0, Im)

∥∥∥
TV
.
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v) Let µ = (µ1, . . . , µm)∗ and µ̃ = (µ̃1, . . . , µ̃m)∗. Let us define µ = (µ, 0) and µ̃ =

(µ̃, 0). Then it follows that

‖G(µ, Im+1)− G(µ̃, Im+1)‖TV = ‖G(µ, Im)− G(µ̃, Im)‖TV .

Proof. The item i), ii), iii) and iv) are done using the characterization of the total

variation distance between two probability measures which are absolutely continuous with

respect to the Lebesgue measure on
(
Rd,B

(
Rd
))

, the Change of Variable Theorem and an

straightforward calculations. The item iv) is done using the characterization of the total

variation distance between two probability measures which are absolutely continuous with

respect to the Lebesgue measure on
(
Rd,B

(
Rd
))

and an straightforward calculations.

Lemma B.2. Let µ = (µ1, . . . , µm)∗ ∈ Rm then

‖G(µ, Im)− G(0, Im)‖TV ≤

m∑
i=1

|µi|
√

2π
.

Proof. This is done using the classical coupling technique. We can write

G (µ, Im) = N (µ1, 1)⊗ · · · ⊗ N (µm, 1) ,

G (0, Im) = N (0, 1)⊗ · · · ⊗ N (0, 1)︸ ︷︷ ︸
m−times

.

Then,

‖G(µ, Im)− G(0, Im)‖TV = ‖N (µ1, 1)⊗ · · · ⊗ N (µm, 1)−N (0, 1)⊗ · · · ⊗ N (0, 1)‖TV

≤
m∑
k=1

‖N (µk, 1)−N (0, 1)‖TV

≤ 1√
2π

m∑
k=1

|µk|.

Lemma B.3. Let {µε}ε>0 ⊂ Rm be a sequence such that lim
ε→0

µε = µ ∈ Rm. Then,

lim
ε→0
‖G(µε, Im)− G(0, Im)‖TV = ‖G(µ, Im)− G(0, Im)‖TV .

Proof. This is done using triangle inequality, the item ii) of Lemma B.1, Lemma B.2 and
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the Lemma D.2.

Lemma B.4. Let {µε}ε>0 ⊂ Rm be a sequence such that lim
ε→0
‖µε‖ = +∞. Then,

lim
ε→0
‖G(µε, Im)− G(0, Im)‖TV = 1.

Proof. By definition

‖G (µε, Im)− G (0, Im)‖TV =
1

2 (2π)
m
2

∫
Rm

∣∣∣∣exp

{
−(x− µε)∗(x− µε)

2

}
− exp

{
−x

∗x

2

}∣∣∣∣ dx.
Let us define f : Rm →]0,∞[ by f(x) = exp

{
−x∗x

2

}
. Then, we want to compute

‖G (µε, Im)− G (0, Im)‖TV =
1

2 (2π)
m
2

∫
Rm

|f(x− µε)− f(x)| dx.

By a classical analysis technique that

lim
ε→0

∫
Rm

|f(x− µε)− f(x)| dx =

∫
Rm

|f(x)|dx, (B.1)

when
∫
Rm
|f(x)|dx < +∞. The last statement implies the result. Now, we will prove the

relation (B.1). Let us define M :=
∫
Rm
|f(x)|dx < +∞. Let η > 0 be fixed. Then, there

exist r = r(η) > 0 large enough such that

M −
∫

B(0,r)

|f(x)|dx <
η

4
.

Therefore,

M −
∫

B(µε,r)

|f(x− µε)|dx <
η

4
.

Due to lim
ε→0
‖µε‖ = +∞, then there exists ε0 > 0 such that for every 0 < ε < ε0, we have
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B(0, r) ∩B(µε, r) = ∅. Consequently,∫
Rm

|f(x− µε)− f(x)| dx ≥
∫

B(0,r)

|f(x− µε)− f(x)| dx+

∫
B(µε,r)

|f(x− µε)− f(x)| dx

≥
∫

B(0,r)

(|f(x)| − |f(x− µε)|) dx+

∫
B(µε,r)

|f(x− µε)| − |f(x)| dx

≥ 2M − η.

Consequently, for every η > 0, we have

2M − η ≤
∫
Rm

|f(x− µε)− f(x)| dx ≤ 2M.

Now, taking η → 0, we obtain the statement.

Lemma B.5. Let {Σε}ε>0 ⊂ Sm be a sequence such that lim
ε→0

Σε = Σ ∈ Sm. Then

lim
ε→0
‖G(0,Σε)− G(0,Σ)‖TV = 0.

Proof. By item iv) of Lemma B.1, for every ε > 0, we have

‖G(0,Σε)− G(0,Σ)‖TV =
∥∥G(0,Σ−1/2ΣεΣ

−1/2
)
− G(0, Im)

∥∥
TV .

Consequently, it suffices to prove, when lim
ε→0

Σε = Im ∈ Sm. By definition, we have

‖G (0,Σε)− G (0, Im)‖TV =
1

2 (2π)
m
2

∫
Rm

∣∣∣∣∣∣
exp

{
−x∗Σ−1

ε x
2

}
(det(Σε))

1
2

− exp

{
−x

∗x

2

}∣∣∣∣∣∣ dx.

Let us define the function fε : Rm → [0,+∞[ by fε(x) =

∣∣∣∣∣ exp

{
−x
∗Σ−1
ε x
2

}
(det(Σε))

1
2
− exp

{
−x∗x

2

}∣∣∣∣∣.
For every x ∈ Rm, we have lim

ε→0
fε(x) = 0. Also, for ε > 0 small enough, it follows that

fε(x) ≤ C1 exp
{
−C2‖x‖2

}
+ exp

{
−‖x‖

2

2

}
for every x ∈ Rm, where C1 > 0 and C2 > 0 are constants. Consequently, the results

follows from the Dominated Convergence Theorem.
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Lemma B.6 (Total Variation Bounded). Let (Ω,F ,P) be a probability space and G ⊂ F
be a sub-sigma algebra of F . Let X, Y, Z : (Ω,F) → (R,B(R)) be random variables such

that X and Y are G measurables and X, Y, Z ∈ L1 (Ω,F ,P). Let us consider the following

random variables X∗ = X + Z and Y ∗ = Y + Z. Let us suppose that E[X∗ | G] has

Gaussian distribution G (X,Σ), E[Y ∗ | G] has Gaussian distribution G (Y,Σ) and Z⊥G.

Then,

‖X∗ − Y ∗‖TV ≤ C(m)‖Σ−
1
2‖E[‖X − Y ‖],

where C(m) > 0 is a constant which only depends on m.

Proof. Using the the properties of conditional expectation, the item i), the item ii), the

item iii) of Lemma B.1 and Lemma B.2, we have

‖X∗ − Y ∗‖TV = sup
F∈F

∣∣E [1(X∗∈F ) − 1(Y ∗∈F )

]∣∣
≤ sup

F∈F
E
[∣∣E [1(X∗∈F ) − 1(Y ∗∈F ) | G

]∣∣]
≤ sup

F∈F
E
[∣∣P (G(X, σ2) ∈ F

)
− P

(
G(Y, σ2) ∈ F

)∣∣]
≤ sup

F∈F
E

[
1√
2π

m∑
k=1

∣∣∣(Σ−
1
2 (X − Y )

)
k

∣∣∣]
≤ C(m)‖Σ−

1
2‖E[‖X − Y ‖],

where C(m) > 0 is a constant.
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Appendix C

Qualitative and Quantitative

Behavior

Lemma C.1. Let V : R→ R be a C1 function such that

a) V (0) = 0.

b) V ′(x) = 0 iff x = 0.

c) lim
|x|→+∞

V (x) = +∞.

Then V (x) > 0 if x 6= 0.

Proof. It can be shown that V ′(x) < 0 if x < 0 and V ′(x) > 0 if x > 0.

Lemma C.2. Leu us assume the hypothesis of Theorem 2.3. Suppose that there exists a

C2 function V : R→ R such that

a) V (0) = 0.

b) V ′(x) = 0 iff x = 0.

c) V ′′(0) > 0.

d) lim
|x|→+∞

V (x) = +∞.

Then its follows

i) lim
t→+∞

ψt = 0.

ii) lim
t→+∞

Φt = 0.
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iii) Let us assume that V is a C3 function. Then there exist constants c 6= 0 and c̃ 6= 0

such that

lim
t→+∞

eV
′′(0)tΦt = c,

lim
t→+∞

eV
′′(0)tψt = c̃,

where Φ = {Φt}t≥0 is the fundamental solution of the nonautonomous system

dΦt = −V ′′(ψt)Φtdt

for every t ≥ 0 with initial condition Φ0 = 1.

iv) Let us assume that V is a C3 function, then

lim
t→+∞

Φ2
t

t∫
0

(
1

Φs

)2

ds =
1

2V ′′(0)
.

Proof.

i) By our assumptioms V ′(0) = 0, V ′′(0) > 0 and V ′(x) 6= 0 if x 6= 0. Therefore, the

unique critical point zero is asymptotically stable, so there exists an open neigh-

boorhood N0 of zero such that for every ψ0 ∈ N0. It follows that ψt goes to zero as

t goes to infinity. Let us consider that ψ0 6∈ N0 and K := V −1 ([0, V (ψ0)]). Then

ψt ∈ K for every t ≥ 0. Also, K is a compact set because of lim
|x|→+∞

V (x) = +∞.

Because K is bounded, then there exist r > 0 such that K ⊂ B(0, r) where we

denote B(0, r) := {x ∈ R : |x| < r} and B(0, r) := {x ∈ R : |x| ≤ r} so we we can

choose N0 small enough such that N0 ⊂ B(0, r) ⊂ B(0, r). Let us call K̂ := B(0, r)

then ψt ∈ K̂ for every t ≥ 0. Let us define δ := inf
x∈K̂\N0

(V ′(x))2 > 0. Let us suppose

that ψt 6∈ N0 for every t ≥ 0, then dV (ψt) = − (V ′(ψt))
2 ≤ −δ for every t ≥ 0.

Therefore, 0 ≤ t ≤ V (ψ0)
δ

which is a contradiction. Consequently, there exists τ > 0

such that ψτ ∈ N0 and consequently, ψt goes to zero as t goes to infinity.

ii) By our assumptions it follows that Φt = V ′(ψt)
V ′(ψ0)

for every t ≥ 0, where ψ0 = x0 6= 0.

So by item i) and continuity of V ′ we have lim
t→∞

Φt = V ′(0)
V ′(ψ0)

= 0.
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iii) Let us define H(z) =
(
V ′′(0)
V ′(z)

− 1
z

)
1{z 6=0} +

(
−V ′′′(0)
2V ′′(0)

)
1{z=0}, where 1A denotes the

indicator function of the set A ⊂ R. Let us define h : R→ R by

h(x) := x exp

 x∫
0

H(z)dz

.
Since H is everywhere continuous, then it follows that h is well defined. Let us

define Ψt := h(ψt) for every t ≥ 0, then dΨt = −V ′′(0)Ψtdt for every t ≥ 0 and

Ψ0 = h(ψ0). Therefore,

ψt exp (V ′′(0)t) = h(ψ0) exp

− ψt∫
0

H(z)dz

 (C.1)

for every t ≥ 0. By Intermediate Value Theorem, for every t ≥ 0 there exists

ξt ∈] min{0, ψt},max{0, ψt}[ such that V ′(ψt) = V ′′(ξt)ψt. Because of relation (C.1),

we see that

V ′(ψt) exp (V ′′(0)t) = V ′′(ξt)h(ψ0) exp

− ψt∫
0

H(z)dz

 (C.2)

for every t ≥ 0. Consequently, by the relation (C.2) and item ii), we have

lim
t→+∞

V ′(ψt) exp (V ′′(0)t) = V ′′(0)h(ψ0).

Because sgn(h(x)) = sgn(x) for every x 6= 0, then V ′′(0)h(ψ0) 6= 0.

iv) By item ii), we have

Φ2
t

t∫
0

(
1

Φs

)2

ds = (V ′(ψt))
2

t∫
0

(
1

V ′(ψs)

)2

ds
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for each t ≥ 0. By item iii) and for each 0 < ε < c2, we have

lim sup
t→+∞

(V ′(ψt))
2

t∫
0

(
1

V ′(ψs)

)2

ds ≤
(
c2 + ε

c2 − ε

)
1

2V ′′(0)
,

lim inf
t→+∞

(V ′(ψt))
2

t∫
0

(
1

V ′(ψs)

)2

ds ≥
(
c2 − ε
c2 + ε

)
1

2V ′′(0)
.

Letting ε→ 0, we obtain

lim
t→+∞

(V ′(ψt))
2

t∫
0

(
1

V ′(ψs)

)2

ds =
1

2V ′′(0)
.

Lemma C.3. Using the same notation as in the proof of Theorem 2.17. It follows that

lim
ε→0

sup
t̃ε(b)≤t≤t̂ε(b)

|ψt|
√
ε

= ρ(b) ∈]0,+∞[.

for every b ∈ R.

Proof. By continuity we have

sup
t̃ε(b)≤t≤t̂ε(b)

|ψt|
√
ε

=
|ψt∗|√
ε

for some t∗ ∈ [t̃ε(b), t̂ε(b)]. Then, using the following relation and Lemma 2.4, it becomes

straightforward.

|ψt∗|√
ε

= eV
′′(0)t∗|ψt∗|

e−V
′′(0)t∗

√
ε

.

Lemma C.4. Under the hypothesis of Theorem 3.6, we have

i) For any initial condition ψ(0), it follows that ψ(t) goes to zero as t goes to infinity.

Moreover, ‖ψ(t)‖ ≤ ‖ψ(0)‖e−δt for every t ≥ 0.
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ii) Lebesgue almost surely for ψ(0), it follows that

lim
t→+∞

eα1tψ(t) = v(ψ(0)) ∈ Rm \ {0},

where v(ψ(0)) ∈ span{v1} and v1 is the eigenvector associated to the eigenvalue α1.

iii) Let us consider the following matrix differential equation,

dΛε(t) = −HV (0)Λε(t)− Λε(t)HV (0) + εIm,

Λε(0) ∈ M(m),

where M(m) is an squared matrix of dimension m. It follows that

lim
t→∞

Λε(t) =
ε

2
(HV (0))−1 .

iv) Let ∆ε(t) := εE [y(t) (y(t))∗]. It satisfies the following matrix differential equation,

d∆ε(t) = −HV (ψ(t))∆ε(t)−∆ε(t)HV (ψ(t)) + εIm,

∆ε(0) : = 0 ∈M(m),

where M(m) is an squared matrix of dimension m. It follows that

lim
t→∞

∆ε(t) =
ε

2
(HV (0))−1 .

Proof.

i) It follows that

d‖ψ(t)‖2 = 2(ψ(t))∗dψ(t)

= −2(ψ(t))∗∇V (ψ(t))

≤ −2δ‖ψ(t)‖2

for every t ≥ 0, where the last inequality follows from Lemma D.5. By the Gronwall

Inequality, we have ‖ψ(t)‖2 ≤ ‖ψ(0)‖2e−2δt for every t ≥ 0.

ii) Because all the eigenvalues of −HV (0) are reals and they are bounded for above by

−δ < 0. By Hartman-Grobman Theorem there exist neighborhoods U, Ũ of zero

such that h : U → Ũ is an homeomorphism that conjugate the flows of {ψ(t)}t≥0
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with initial condition ψ(0) ∈ U and the linear flow {e−HV (0)th(ψ(0))}t≥0. Moreover

h(x) = x + o(‖x‖) when ‖x‖ goes to zero. For details see [17] and [21]. Let

ψ(0) ∈ Rm. There exist τ > 0 such that ψ(t) ∈ U for every t ≥ τ . Therefore

h(ψ(τ + t)) = e−HV (0)th(ψτ ) for every t ≥ 0. There exists an orthonormal basis of

Rm for which the linear flow is written in the following way:
m∑
i=1

e−αit < ψ(τ), vi > vi,

where 0 < δ ≤ α1 < α2 < · · · < αm are the eigenvalues of HV (0) and v1, v2, . . . , vm

are the corresponding orthonormal eigenvectors. Then

ψ(τ + t) = h−1

(
m∑
i=1

e−αit < ψ(τ), vi > vi

)

=
m∑
i=1

e−αit < ψ(τ), vi > vi

+o

(
‖

m∑
i=1

e−αit < ψ(τ), vi > vi‖

)
.

Consequently, for Lebesgue almost every initial condition ψ(0) ∈ Rm we have

lim
t→∞

eα1(t)ψ(t) = eα1τ < ψ(τ), v1 > v1.

iii) The explicit solution is given by

Λε(t) = e−HV (0)tΛε(0)e−HV (0)t + ε

t∫
0

e−2HV (0)sds

for every t ≥ 0. Now, an straightforward calculation gives the result. For details,

see [15].

iv) By item i) of this Lemma and using the local Lipschitz condition of HV at zero with

Lipschitz constant L0 > 0, for every η > 0, we can take τη := 1
δ

ln
(
‖ψ(0)‖
η

)
such that

‖HV (ψ(t))−HV (0)‖ ≤ L0‖ψ(t)‖ ≤ L0‖ψ(0)‖e−δt ≤ L0η

for every t ≥ τη. Let us call τ := τη. Then,

dΛε(t+ τ) = − (HV (ψ(t+ τ)) Λε(t) + Λε(t)HV (ψ(t+ τ))) dt+ εIm

for every t ≥ 0 with initial condition Λε(τ). Let us consider the following matrix
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differential equation, Then,

d∆ε(t+ τ) = − (HV (0) ∆ε(t) + ∆ε(t)HV (0)) dt+ εIm,

∆ε(τ) = Λε(τ)

for every t ≥ 0. Let us define Πε(t) := Λε(t+ τ)−∆ε(t+ τ) for every t ≥ 0. Then,

dΠε(t) = − (HV (ψ(t+ τ)) Πε(t) + Πε(t)HV (ψ(t+ τ))) dt+

(HV (0)−HV (ψ(t+ τ))) ∆ε(t+ τ)dt+

∆ε(t+ τ) (HV (0)−HV (ψ(t+ τ))) dt,

Πε(τ) = 0

for every t ≥ 0. Therefore,

d‖Πε(t)‖2 =
m∑

i,j=1

2Πε
i,j(t)

(
dΠε

i,j(t)
)

for every t ≥ 0. For every i, j ∈ {1, . . . ,m}, we have

dΠε
i,j(t) = −

m∑
k=1

H i,k
V (ψ(t+ τ))Πε

k,j(t)−
m∑
k=1

Πε
i,k(t)H

k,j
V (ψ(t+ τ)) +

m∑
k=1

[
H i,k
V (0)−H i,k

V (ψ(t+ τ))
]

∆ε
k,j(t+ τ) +

m∑
k=1

∆ε
i,k(t+ τ)

[
Hk,j
V (0)−Hk,j

V (ψ(t+ τ))
]

for every t ≥ 0. Consequently, using the δ-coercivity of V , we obtain

d‖Πε(t)‖2 ≤ −4δ‖Πε(t)‖2 + I(t) + J(t)

69



for every t ≥ 0, where

I(t) :=
m∑

i,j=1

2Πε
i,j(t)

m∑
k=1

[
H i,k
V (0)−H i,k

V (ψ(t+ τ))
]

∆ε
k,j(t+ τ),

J(t) :=
m∑

i,j=1

2Πε
i,j(t)

m∑
k=1

∆ε
i,k(t+ τ)

[
Hk,j
V (0)−Hk,j

V (ψ(t+ τ))
]

for every t ≥ 0. Then, using the Lipschitz local condition, the Cauchy-Schwartz

inequality and the fact that |x| ≤ x2 + 1 for every x ∈ R, we have

|I(t)| ≤ 2L0η
(
‖Πε(t)‖2 +m

) (
‖∆ε(t+ τ)‖2 +m

)
,

|J(t)| ≤ 2L0η
(
‖Πε(t)‖2 +m

) (
‖∆ε(t+ τ)‖2 +m

)
for every t ≥ 0. By item iii) of this Lemma, we obtain that there exists C > 0 such

that ‖∆ε(t+ τ)‖2 ≤ C for every t ≥ 0. Consequently,

d‖Πε(t)‖2 ≤ (4L0κη − 4δ) ‖Πε(t)‖2 + 4L0κmη

for every t ≥ 0, where κ := C +m. A priori we can take 0 < η < 3δ
4L0κ

, so

d‖Πε(t)‖2 ≤ −δ‖Πε(t)‖2 + 4L0κmη

for every t ≥ 0. Now, using the Gronwall inequality, letting t goes to infinity and

then let η goes to zero, we obtain

lim
t→∞
‖Πε(t)‖2 = 0.

Using the last fact and the item iii) of this Lemma, we obtain the statement.
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Appendix D

Tools

Lemma D.1. lim
ε→0

εα (ln (1/ε))β = 0 for every α > 0 and β > 0.

Proof. It follows using the L’Hopital Rule of Calculus several times.

Lemma D.2. Let {aε}ε>0 ⊂ R and {bε}ε>0 ⊂ R be sequences such that lim
ε→0

bε = b ∈ R.

Then

i) lim sup
ε→0

(aε + bε) = lim sup
ε→0

aε + b.

ii) lim inf
ε→0

(aε + bε) = lim inf
ε→0

aε + b.

Proof. The proof follows from the definition of limsup and liminf.

Lemma D.3. Let W := {Wt}t≥0 is a Brownian motion and let us consider Bt :=

sup
0≤s≤t

|Ws| for each t ≥ 0. Then for each k ∈ N, E
[
Bk
t

]
has growth of the form tα

for some α > 0.

Proof. By the Donsker Theorem we can compute explicitly the distribution of Bt for every

t ≥ 0 fixed, and the result follows from an straightforward calculations.

Definition D.4. Let V : Rm → R be a function. We say that V is δ-coercive or δ-strong

convex function if there exists δ > 0 such that

V (tx+ (1− t)y) ≤ tV (x) + (1− t)V (y)− δ

2
t(1− t)‖x− y‖2

for every x, y ∈ Rm.

The following Lemma provides a characterization of coercive functions.
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Lemma D.5 (Characterizations Coercivity Functions). Let V : Rm → R be a C2-

function. The following statements are equivalents:

i) V is δ-coercive or δ-strong convex function.

ii) V (y) ≥ V (x) + (∇V (x))∗(y − x) + δ
2
‖y − x‖2 for every x, y ∈ Rm. The constant δ

is called the convexity parameter of function V .

iii) (∇V (x)−∇V (y))∗ (x− y) ≥ δ‖x− y‖2 for every x, y ∈ Rm.

iv) y∗HV (x)y ≥ δ‖y‖2 for every x, y ∈ Rm, where HV represents the Hessian matrix

associated to the scalar function V .

Proof. For details see [27].

Lemma D.6 (Liptchitz Gradient Coercivity Functions). Let V : Rm → R be a δ-coercive

C2-function such that the gradient ∇V is Lipschitz with Lipschitz constant ∆ > 0. Then,

y∗HV (x)y ≤ ∆‖y‖2 for every x, y ∈ Rm, where HV represents the Hessian matrix associ-

ated to the scalar function V .

Proof. For details see [27].

Lemma D.7 (Jensen Inequality). Let (Ω,F , µ) be a measure space such that µ(Ω) = 1.

If g is a real-valued function that is µ-integrable and if ϕ is a convex function on the real

line, then

ϕ

(∫
Ω

g dµ

)
≤
∫

Ω

ϕ ◦ g dµ.

Theorem D.8 (Pinsker Inequality). Let µ and ν be two probability measures define in

the measurable space (Ω,F). Then it follows that

‖µ− ν‖2
TV ≤ 2H (µ | ν) ,

where H (µ | ν) is the Kullback information of µ respecto to ν and it is define as fol-

lows: if µ � ν then take the Radon-Nikodym derivative f = dµ
dν

and define H (µ | ν) :=∫
Ω

f ln(f)dν, in the case µ 6� ν let us define H (µ | ν) := +∞.

Proof. For details check [3] or [9].
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[10] Franck Jedrzejewski, Modèles aléatoires et physique probabiliste (French Edition),

Springer, 2009.

[11] Laurent Saloff-Coste, Random walks on finite groups, Probability & Discrete Struc-

tures, Springer, 2004, 263-346.

73



[12] Hui-Hsiung Kuo, Introduction to Stochastic Integration, Springer, 2006.

[13] Ioannis Karatzas & Steven Shreve Brownian Motion and Stochastic Calculus,

Springer, 2004.

[14] Javiera Barrera & Bernard Ycart, Bounds for left and right window cutoffs, dedicated

to the memory of Beatrice Lachaud, 2013.

[15] Jon Davis, Foundations of Deterministic and Stochastic Control, Birkhäuser.
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