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Instituto de Matemática Pura e Aplicada

Mauricio Poletti Merlo

SIMPLE LYAPUNOV SPECTRUM FOR LINEAR COCYCLES
OVER CERTAIN PARTIALLY HYPERBOLIC MAPS

Thesis presented to the Post-graduate Program in Mathe-
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Abstract

Criteria for the simplicity of the Lyapunov spectra of linear cocycles have
been found by Guivarc’h-Raugi, Gol’dsheid-Margulis and, more recently,
Bonatti-Viana and Avila-Viana. In all the cases, the authors consider cocy-
cles over hyperbolic systems, such as shifts or Axiom A diffeomorphism.

In this thesis we propose to extend such criteria to situations where
the base map is just partially hyperbolic. This raises a lot of new issues
concerning, among others, the recurrence of the holonomy maps and the
(lack of) continuity of the disintegrations of u-states.

Our first results are stated for partially hyperbolic skew-products whose
iterates have bounded derivatives along center leaves. They allow us, in
particular, to exhibit non-trivial examples of stable simplicity in the partially
hyperbolic setting.

The second result is when we consider SL(2,R) cocycles over partially
hyperbolic diffeomorphisms. Under a hypothesis over the behavior of the
cocycles over a compact center leaf of the diffeomorphism, we prove that
the cocycle is accumulated by open sets where the Lyapunov exponents are
non-zero.

Keywords: Linear cocycles, Lyapunov exponents, fiber bunched cocycles,
partially hyperbolic diffeomorphism, skew-product.
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CHAPTER 1

Introduction

The theory of linear cocycles is a classical and rather developed field of Dy-
namics and Ergodic Theory, whose origins go back to the works of Fursten-
berg, Kesten [16, 14] and Oseledets [21]. The simplest examples are the
derivative transformations of smooth dynamical systems. However, the no-
tion of linear cocycle is a lot more general and flexible, and arises naturally in
many other situations, such as the spectral theory of Schrödinger operators.

Among the outstanding issues is the problem of simplicity: when is it
the case that the dimension of all Oseledets subspaces is equal to 1. This
was first studied by Guivarc’h-Raugi [18] and Gol’dsheid-Margulis [17], who
obtained explicit simplicity criteria for random i.i.d. products of matrices.
Bonatti-Viana [9] and Avila-Viana [3] have much extended the theory, to
include a much broader class of (Hölder continuous) cocycles over hyperbolic
maps.

Our purpose in this work is to initiate the study of simplicity in the con-
text of cocycles over partially hyperbolic maps. The study of partially hy-
perbolic systems was introduced in the works of Brin-Pesin [11] and Hirsch-
Pugh-Shub [19] and has been at the heart of much recent progress in this
area. While sharing many of the important features of uniformly hyperbolic
systems, partially hyperbolic maps are a lot more flexible and encompass
many new interesting phenomena.

As we are going to see, the study of linear cocycles over partially hyper-
bolic maps introduces a host of new issues. We will deal with these issues
in the context when the partially hyperbolic map is given by a partially
hyperbolic skew-product.

The case when the map is non-uniformly hyperbolic, that is, when all
center Lyapunov exponents are non-zero, is better understood. Indeed, the
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case of 2-dimensional cocycles is covered by Viana [24] and for general di-
mension d ≥ 2 it should be possible to combine a symbolic description as in
Sarig [23] with the main result of Avila-Viana [3], that deals with cocycles
over countable shifts.

For this reason, we focus on the opposite case: namely, we take the skew-
product to be mostly neutral along the center direction, meaning that its
iterates are have bounded derivatives along the vertical leaves {x̂} ×K.

Concerning the linear cocycle, we take it to admit strong-stable and
strong-unstable holonomies, in the sense of Bonatti-Gomez-Mont-Viana [8]
and Avila-Santamaria-Viana [2]. The simplicity conditions in our main re-
sult, that we are going to state next, may be viewed as extensions of the
pinching and twisting conditions in Bonatti-Viana [9] and Avila-Viana [3]
to the present partially hyperbolic setting.

Firstly, we call the linear cocycle uniformly pinching if there exists some
fixed (or periodic) vertical leaf ` = {p̂} ×K such that the restriction to ` of
every exterior power of the cocycle admits an invariant dominated decom-
position

`× Λk(Cd) = Ek,1 ⊕ · · · ⊕ Ek,dim Λk(Cd)

into 1-dimensional subbundles. In particular, this decomposition is contin-
uous and the Lyapunov exponents along the factor subbundles Ej are all
distinct.

Secondly, we say that the linear cocycle is uniformly twisting if, for any
su-path γ connecting points (p̂, t) ∈ ` and (p̂, s) ∈ `, the push-forward of the
decomposition

E1,1(t)⊕ · · · ⊕ E1,d(t)

at (p̂, t) under the concatenation of strong-stable and strong-unstable holonomies
over γ is in general position with respect to the decomposition

E1,1(s)⊕ · · · ⊕ E1,d(s)

at (p̂, s). By the latter, we mean that the image of any sum of k subspaces
E1,i(t) is transverse to the sum of any d − k subspaces E1,j(s), for any
1 ≤ k ≤ d− 1.

We say that the linear cocycle is uniformly simple if it is both uniformly
pinching and uniformly twisting.

Theorem A. Every uniformly simple linear cocycle over a partially hy-
perbolic skew-product with mostly neutral center direction has simple Lya-
punov spectrum relative to any invariant probability measure with local
partial product structure.

The notion of local partial product structure will be recalled in Chap-
ter 3, where we will also give a more precise version of the theorem. Indeed,
as we will see, the conclusion holds under weaker (non-uniform) versions of
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the pinching and twisting conditions. Moreover, already in the form given in
Theorem A, our simplicity criterion holds for a subset of Hölder continuous
cocycles with non-empty interior.

If we deal with SL(2,R) cocycles there are more results about genericity
and stability of simple or not simple spectrum. In this case simplicity is
equivalent to non-zero Lyapunov exponents.

Results about genericity of zero Lyapunov exponents were announced
by Mañe and proved by Bochi [7], they proved that C0 generically SL(2,R)
cocycles are uniformly hyperbolic or have zero Lyapunov exponents. Also
Avila [5] proved in a very general setting (including the previous case) that
there exist a dense set of cocycles with non-zero Lyapunov exponents.

On the other hand, the situation changes radically in the context of
(Hölder) fiber bunched cocycles. Viana [24], Avila-Viana [4], Avila-Viana-
Santamaria [1] proved that in this class generically the Lyapunov exponents
are non-zero. In particular, theorem A [1], gives examples of cocycles with
stably non-zero exponents when the base dynamics is partially hyperbolic,
volume preserving and accessible.

Here, we provide a new construction that does not require volume pre-
serving nor accessiblility. Under certain conditions we prove, in Chapter 9
that the cocycle is acumulated by open sets where the Lyapunov exponents
are non-zero. We prove the next theorem:

Theorem B. Let µ be a f -invariant ergodic measure with zero center Lya-
punov exponent and projective product structure.

Let A : M → SL(2,R) be a fiber bunched cocycle, such that the restric-
tion to some periodic center leave of f is non-uniformly hyperbolic and is
a weak continuity point of Lyapunov exponent. Then A is accumulated by
stably non-zero cocycles.

By non-uniformly hyperbolic we mean that the Lyapunov exponents are
non-zero and the concept of weak continuity is a type of continuity of Lya-
punov exponents, for non-ergodic measures, that we introduce in Chapter 9.

In the proof of this fact we use an equivalence condition between con-
tinuity of Lyapunov exponents and Oseledets decomposition in the case of
SL(2,R) cocycles. Actually we prove a much more general version, that is
an interesting result by itself.

We prove this equivalence in the case of semi-invertible cocycles of any
dimension, this means that the base map is invertible but the matrices may
not be invertible.

Theorem C. A is a continuity point for the Lyapunov exponents if and
only if it is a continuity point for the Oseledets subspaces with respect to
the measure µ.

Instituto de Matemática Pura e Aplicada 3 2016
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1.1 Structure of the work

This work is divided in 3 parts.

• The first one, from Chapter 3 to 7, is devoted to prove Theorem A.
Actually we prove a stronger result that gives a condition for simple
Lyapunov spectrum for cocycles A : M → GL(d,C) with f a partially
hyperbolic skew-product.

• In the second part, chapter 8, we prove the equivalence between con-
tinuity of Lyapunov Exponents and Oseledets decomposition, wich
correspond to Theorem C. As mentioned before, a particular case of
this result will be used in chapter 9.

• The third part, chapter 9, is devoted to prove Theorem B.

These 3 results are relatively independent, and can be read separate.
In chapter 2 we give the precise definitions and preliminary results that

will be used in the whole thesis.
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CHAPTER 2

Definitions and Preliminary Results

Let (M,B, µ) be a measurable space and f : M →M an invertible measur-
able map that preserves µ. Fixed d ∈ N, every measurable matrix valued
map A : M →M(d,K) (K = R or C) defines a linear cocycle over f ,

FA : M ×Kd →M ×Kd, FA(x, v) = (f(x), A(x)v).

Its iterates are given by

FnA(x, v) = (fn(x), An(x)v),

Were

An(x) =

{
A(fn−1(x)) . . . A(f(x))A(x) if n > 0
id if n = 0

It was proved in [13] that, if
∫

log+ ‖A‖dµ <∞, for µ-almost every point
x ∈ M , there exist measurable functions λ1(x) > . . . > λl(x) ≥ −∞, and

a direct sum decomposition Rd = E1,A
x ⊕ . . . ⊕ El,Ax into vector subspaces,

such thatfor every 1 ≤ i ≤ l,

• dim(Ei,Ax ) is constant on orbits,

• An(x)Ei,Ax ⊆ Ei,Afn(x) with equality when λi > −∞

and

• λi(x) = limn→+∞
1

n
log ‖ An(x)v ‖ for every non-zero v ∈ Ei,Ax .

The λi’s are called Lyapunov exponents and the bundles x 7→ Ei,Ax are
called Lyapunv spaces. If µ is ergodic the λi’s and the dimensions are
constant. Denote by

γ1(A) ≥ γ2(A) ≥ · · · ≥ γd(A)

5
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the Lyapunov exponents of (f,A) counted with multiplicities.
This result extends the multiplicative ergodic theorem of Oseledets [21]

in the case where the matrices may not be invertible. We call this cocycles
semi-invertible.

In the case of maps A : M → GL(d,C) such that log
∥∥A−1

∥∥ and log ‖A‖
are µ-integrable (Oseledets Theorem), the results are also true for n < 0
and λl > −∞.

By Kingman’s subadditive ergodic Theorem λ1 = lim 1
n

∫
log ‖An‖.

We say that A has simple Lyapunov spectrum if all Oseledets sub spaces
have dimEi(x) = 1. This gives a much more simple behavior of the dynamic
of the cocycle. For example if we call

PFA : M × CP d−1 →M × CP d−1, PFA(x, [v]) = (f(x), [A(x)v])

every PFA-invariant measure that projects on µ is concentrated in the bundle
{E1

x, · · · , Edx}, this is proved in Proposition 8.2.1. By Poincare’s Recurrence
the complement of this set is contained in the set of wandering points. If
A : M → SL(2,R) we have λ1 = −λ2, then simple spectrum is equivalent
to non zero Lyapunov exponents.

When (M,d) is a metric space, we define an uniform topology in the
space C0(M) of continuous cocycles A : M →M(d,K) by the norm

‖A‖∞ = sup
x
‖A(x)‖.

An interesting case is when the cocycles have more regularity. In particular
we are interested in the α-Hölder cocycles, denoted by Hα(M). The norm

‖A‖α = sup
x∈M
‖A(x)‖+ sup

x 6=y

‖A(x)−A(y)‖
dist(x, y)α

defines a topology in Hα(M) that we call α-Hölder topology.
A cocycle A is called stably simple if, in some topology, there exists an

open set A ∈ V such that every B ∈ V has simple Lyapunov spectrum.
We say that A ∈ C0(M) is a continuity point for the Lyapunov ex-

ponents if for every sequence {Ak}k ⊂ C0(M) converging to A we have
limk→∞ γi(Ak) = γi(A) for every 1 ≤ i ≤ d. Observe that in this case for
every k sufficiently large we have

γ1(Ak) ≥ γd̃1(Ak) > γd̃1+1(Ak) ≥ γd̃2(Ak) > . . . > γd̃l−1+1(Ak) ≥ γd(Ak)

where d̃i =
∑i

j=1 dj(A) for every 1 ≤ i ≤ l. In particular, Ak has at
least l different Lyapunov exponents and the sum of the dimensions of the
Oseledets subspaces associated with γd̃j−1+1(Ak), . . . , γd̃j (Ak) coincide with

the dimension of Ej,Ax for every 1 ≤ j ≤ l where d̃0 = 0. This motivates the
following definition.

Instituto de Matemática Pura e Aplicada 6 2016
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Given a sequence {Ak}k ⊂ C0(M) converging to A ∈ C0(M) we say
that the Oseledets subspaces of Ak converge to those of A with respect to
the measure µ if for every k sufficiently large there exists a direct sum de-
composition Rd = F 1,Ak

x ⊕ . . . ⊕ F l,Akx into vector subspaces such that the
following conditions are satisfied:

i) F i,Akx = Ej,Akx ⊕ Ej+1,Ak
x ⊕ . . . ⊕ Ej+t,Akx for some j ∈ {1, . . . , lk} and

t ≥ 0;

ii) dim(F i,Akx ) = dim(Ei,Ax ) for every i = 1, . . . , l;

iii) for every δ > 0 and 1 ≤ i ≤ l we have

µ
(
{x ∈M ;](F i,Akx , Ei,Ax ) > δ}

) k→∞−−−→ 0,

where the angle ](E,F ) between two subspaces E and F of Rd is defined
as follows: given w ∈ Rd we define

dist(w,E) = inf
v∈E
‖w − v‖.

More generally, we may consider the distance between E and F given by

dist(E,F ) = sup
v∈E,w∈F

{
dist

(
v

‖v‖
, F

)
, dist

(
w

‖w‖
, E

)}
. (2.1)

Then, the angle between E and F is just ](E,F ) = sin−1(dist(E,F )). A
cocycle A is said to be a continuity point for the Oseledets decomposition
with respect to the measure µ if the above requirements are satisfied for every
sequence {Ak}k ⊂ C0(M) converging to A.

2.1 Partially hyperbolic maps

Given any x ∈ M and ε > 0, we define the local stable and unstable sets of
x̂ with respect to f by

W s
ε (x) := {y ∈M : distM (fn(x), fn(y)) ≤ ε, ∀n ≥ 0} ,

W u
ε (x) := {y ∈M : distM (fn(x), fn(y)) ≤ ε, ∀n ≤ 0} ,

respectively.

Definition 2.1.1. We say that a homeomorphism f : M →M is hyperbolic
whenever there exist constants C, ε, τ > 0 and λ ∈ (0, 1) such that the
following conditions are satisfied:

• distM (fn(y1), fn(y2)) ≤ Cλn distM (y1, y2), ∀x ∈M , ∀y1, y2 ∈W s
ε (x),

∀n ≥ 0;

Instituto de Matemática Pura e Aplicada 7 2016
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• distM (f−n(y1), f−n(y2)) ≤ Cλn distM (y1, y2), ∀x ∈ M , ∀y1, y2 ∈
W u
ε (x), ∀n ≥ 0;

• If distM (x, y) ≤ τ , then W s
ε (x) and W u

ε (y) intersect in a unique point
which is denoted by [x, y] and depends continuously on x and y.

A diffeomorphism f : M →M is called partially hyperbolic if there exist
a nontrivial splitting of the tangent bundle

TM = Es ⊕ Ec ⊕ Eu

invariant under the derivative Df , a Riemannian metric ‖ · ‖ on M , and
positive continuous functions ν, ν̂, γ, γ̂ with ν, ν̂ < 1 and ν < γ < γ̂−1 < ν̂−1

such that, for any unit vector v ∈ TpM ,

‖Df(p)v‖ < ν(p) if v ∈ Es(p), (2.2)

γ(p) <‖Df(p)v‖ < γ̂(p)−1 if v ∈ Ec(p), (2.3)

ν̂(p)−1 <‖Df(p)v‖ if v ∈ Eu(p). (2.4)

All three sub-bundles Es, Ec, Eu are assumed to have positive dimension.
A partially hyperbolic diffeomorphism f : M →M is called dynamically

coherent if there exist invariant foliations Wcs and Wcu with smooth leaves
tangent to Ec⊕Es and Ec⊕Eu, respectively. Intersecting the leaves ofWcs

and Wcu one obtains a center foliation Wc whose leaves are tangent to the
center sub-bundle Ec at every point.

The stable and unstable bundles Es and Eu are uniquely integrable
and their integral manifolds form two transverse continuous foliations W ss

and W uu, whose leaves are immersed submanifolds of the same class of
differentiability as f . These foliations are referred to as the strong-stable
and strong-unstable foliations. They are invariant under f , in the sense that

f(W ss(x)) = W ss(f(x)) and f(W uu(x)) = W uu(f(x)),

where W ss(x) and W uu(x) denote the leaves of W ss and W uu, respectively,
passing through any x ∈ M . These foliations are, usually, not transversely
smooth: the holonomy maps between any pair of cross-sections are not
even Lipschitz continuous, in general, although they are always α-Hölder
continuous for some α > 0.

Let d = dimM and F be a continuous foliation of M with k-dimensional
smooth leaves, 0 < k < d. Let F(p) be the leaf through a point p ∈M and
F(p,R) ⊂ F(p) be the neighborhood of radius R > 0 around p, relative
to the distance defined by the Riemannian metric restricted to F(p). A
foliation box for F at p is the image of an embedding

Φ : F(p,R)× Rd−k →M

Instituto de Matemática Pura e Aplicada 8 2016
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such that Φ(·, 0) = id, every Φ(·, y) is a diffeomorphism from F(p,R) to
some subset of a leaf of F (we call the image a horizontal slice), and these
diffeomorphisms vary continuously with y ∈ Rd−k. Foliation boxes exist
at every p ∈ M , by definition of continuous foliation with smooth leaves.
A cross-section to F is a smooth codimension-k disk inside a foliation box
that intersects each horizontal slice exactly once, transversely and with angle
uniformly bounded from zero.

Then, for any pair of cross-sections Γ and Γ′, there is a well defined holon-
omy map Γ → Γ′, assigning to each x ∈ Γ the unique point of intersection
of Γ′ with the horizontal slice through x.

2.2 Linear cocycles with holonomies

Let A : M → GL(d,C) be an α-Hölder continuous map for some α > 0.
We say that the cocycle admits strong-stable holonomies and strong-

unstable holonomies, in the sense of [8, 2].
By strong-stable holonomies we mean a family of linear transformations

Hss
p,q : Cd → Cd, defined for each p, q ∈ M with q ∈ W ss

loc(p) and such that,
for some constant L > 0,

(a) Hs
fj(p),fj(q)

= Aj(q) ◦Hs
p,q ◦Aj(p)−1 for every j ≥ 1;

(b) Hs
p,p = id and Hs

p,q = Hs
z,q ◦Hs

p,z for any z ∈W ss
loc(p);

(c) ‖Hs
p,q − id‖ ≤ Ldist(p, q)α.

Strong unstable holonomies Huu
p,q : Cd → Cd are defined analogously, for the

pairs (p, q) with q ∈W uu
loc (p).

It was shown in [2] that strong-stable holonomies and strong-unstable
holonomies do exist, in particular, when the cocycle is fiber bunched. By the
latter we mean that there exist C > 0 and θ < 1 such that

‖An(p)‖‖An(p)−1‖min{ν̂(p), ν(p)}nα ≤ Cθn for every p ∈M and n ≥ 0,

where ν̂(p), ν(p) are the hyperbolicity functions for f as in conditions (i)-(ii)
above.

2.3 Invariance Principle

A more general type of cocycles are the smooth cocycles over f , let us give
the definitions

Let π : E 7→ M be a fiber bundle with smooth fibers modeled on some
Riemannian manifold N . A smooth cocycle over f : M →M is a continuous
transformation F : E 7→ E such that π ◦F = f ◦π, every Fx : Ex 7→ Ef(x) is
a C1 diffeomorphism depending continuously on x, relative to the uniform

Instituto de Matemática Pura e Aplicada 9 2016
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C1 distance in the space of C1 diffeomorphisms on the fibers, and the norms
of the derivative DFx(ξ) and its inverse are uniformly bounded.

In particular, the functions

(x, ξ) 7→ log ‖DFx(ξ)‖ and (x, ξ) 7→ log
∥∥DFx(ξ)−1

∥∥
are bounded. Then (Kingman [20]), given any F -invariant probability m
on E, the extremal Lyapunov exponents of F λ+ = limn→∞

1
n log ‖DFnx (ξ)‖

and λ− = limn→∞
1
n log

∥∥DFnx (ξ)−1
∥∥−1

are well defined at m-almost every
(x, ξ) ∈ E

We call stable holonomies a family of transformations hssp,q : Ep 7→ Eq,
defined for each p, q ∈M with q ∈W ss

loc(p) and such that, for some constant
L > 0,

(a) hs
fj(p),fj(q)

= F jq ◦ hsp,q ◦ F
j
p
−1

for every j ≥ 1;

(b) hsp,p = id and hsp,q = Hs
z,q ◦ hsp,z for any z ∈W ss

loc(p);

(c) (p, q, ξ) 7→ hsp,q(ξ) varies continuously with respect to pairs (x, y) in
the same strong stable leaf;

(d) There are C > 0 and γ > 0 such that Hs
p,q is (C, γ)-Hölder continuous

for every x and y in the same local strong stable leaf.

The unstable holonomies huup,q : Ep 7→ Eq are defined analogously, for the
pairs (p, q) with q ∈W uu

loc (p).
The linear, strong stable and strong unstable holonomies defined in the

previous section are a particular case of holonomies.
Here we recall an important theorem, known as invariance principle, that

will be essential in the work, This is Theorem 4.1 of [2].

Theorem 2.3.1. Let f be a C1 partially hyperbolic diffeomorphism, F be
a smooth cocycle over f , µ be a f -invariant probability, and m be a F -
invariant probability on E such that πm = µ. Then if F admits invariant
stable and unstable holonomies and λ = λ+ = 0 then for any desintegration
mx : x ∈M of m into conditional probabilities along the fibers, there exist:

(α) A full µ-measure subset M s such that mz = (hsy,z)my for every y, z ∈
M s in the same strong-stable leaf;

(β) A µ-measure subset Mu such that mz = (huy,z)my for every y, z ∈Mu

in the same strong-unstable leaf.

A measure m is called su-state if it has the properties of the conclusion
of the previous theorem. If M s = M we say that the measure is s-invariant,
and if Mu = M we say that if is u-invariant.

Instituto de Matemática Pura e Aplicada 10 2016



Mauricio Poletti Simple Lyapunov spectrum

In the case where f̃ : M̃ 7→ M̃ is hyperbolic (Ecx = {0}) we say that
an invariant measure µ has local product structure if there exist µs and µu

measures in W s
loc and W u

loc respectively, such that locally µ ∼ µs × µu. We
recall an important Result for this type of cocycles, whose proof can be
found in [4, Proposition 4.8].

Proposition 2.3.2. Assume F̃ : M̃ → M̃ , the smooth cocycle defined over
f̃ , admits s-holonomy and u-holonomy. Assume f̃ and π∗µ have local prod-
uct structure, as described above. If m is an su-state then it admits a disin-
tegration which is s-invariant and u-invariant and whose conditional proba-
bilities mx vary continuously with x in the support of π∗µ.

Instituto de Matemática Pura e Aplicada 11 2016



CHAPTER 3

First statements

Now let us give the precise definitions of the notions involved, as well as a
refined version of Theorem A.

3.1 Partially hyperbolic skew-products

Let σ̂ : Σ̂ → Σ̂ be any two-sided finite or countable shift. By this we mean
that Σ̂ is the set of two-sided sequences (xn)n∈Z in some set X ⊂ N with
#X > 1, and the map σ̂ is given by

σ̂
(
(xn)n∈Z

)
= (xn+1)n∈Z .

Let dist : Σ̂× Σ̂→ R be the distance defined by

dist(x̂, ŷ) =

∞∑
k=−∞

1

2|k|
|xk − yk| (3.1)

where x̂ = (xk)k∈Z ∈ Σ̂ and ŷ = (yk)k∈Z ∈ Σ̂. Then Σ̂ is a compact
metric space. Moreover, σ̂ is a hyperbolic homeomorphism, as we are going
to explain.

Given any x̂ ∈ Σ̂ and ε > 0, we define the local stable and unstable sets
of x̂ with respect to σ̂ by

W s
loc (ŷ) = {x̂ : xk = yk for every k ≥ 0} and

W u
loc (ŷ) = {x̂ : xk = yk for every k ≤ 0}.

Observe that, taking λ = 1/2 and τ = 1/2,
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(i) dist(σ̂n(ŷ1), σ̂n(ŷ2)) ≤ λn dist(ŷ1, ŷ2) for any ŷ ∈ Σ̂, ŷ1, ŷ2 ∈ W s
loc(ŷ)

and n ≥ 0;

(ii) dist(σ̂−n(ŷ1), ˆ̂σ−n(ŷ2)) ≤ λn dist(ŷ1, ŷ2) for any ŷ ∈ Σ̂, ŷ1, ŷ2 ∈W u
loc(ŷ)

and n ≥ 0;

(iii) if dist(x̂, ŷ) ≤ τ , then W s
loc(x̂) and W u

loc(ŷ) intersect in a unique point,
which is denoted by [x, y] and depends continuously on x and y.

By partially hyperbolic skew-product over the shift map σ̂ we mean a
homeomorphism f̂ : Σ̂×K → Σ̂×K of the form

f̂(x̂, t) =
(
σ̂(x̂), f̂x̂(t)

)
where K is a compact Riemann manifold and the maps f̂x̂ : K → K are
diffeomorphisms satisfying

λ‖df̂x̂(t)‖ < 1 and λ‖df̂−1
x̂ (t)‖ < 1 for every (x̂, t) ∈ Σ̂×K, (3.2)

where λ is a constant as in (i) - (ii). We also assume the following Hölder
condition: there exist C > 0 and α > 0 such that the C1-distance between
f̂x̂ and f̂ŷ is bounded by C dist(x̂, ŷ)α for every x̂, ŷ ∈ Σ̂.

We say that f̂ has mostly neutral center direction if the family of maps
f̂nx̂ : K → K defined for n ∈ Z and x̂ ∈ Σ̂ by

f̂nx̂ =


f̂σ̂n−1(x̂) ◦ · · · ◦ f̂x̂ if n > 0

id if n = 0

f̂−1
σ̂n(x) ◦ · · · ◦ f̂

−1
σ̂−1(x̂)

if n < 0.

have bounded derivatives, that is, if there exists C > 0 such that∥∥∥Df̂nx̂ ∥∥∥ ≤ C for every x̂ ∈ Σ̂ and n ∈ Z.

Remark 3.1.1. Clearly, this implies that the {f̂nx̂ : n ∈ Z and x̂ ∈ Σ̂} is

equi-continuous. When the maps f̂ŷ are C1+ε, equi-continuity alone suffices
for all our purposes (see Remark 4.2.5).

A few comments are in order concerning the scope of the notion of par-
tially hyperbolic skew-product. To begin with, the shift σ̂ : Σ̂ → Σ̂ may
be replaced by a sub-shift σ̂T : Σ̂T → Σ̂T associated to a transition matrix
T = (Ti,j)i,j∈X . By this we mean that Ti,j ∈ {0, 1} for every i, j ∈ X and σ̂T
is the restriction of the shift map σ̂ to the subset Σ̂T of sequences (xn)n∈Z
such that Txn,xn+1 = 1 for every n ∈ Z. One way to reduce the sub-shift
case to the full shift case is through inducing. Namely, fix any cylinder
[i] = {(xn)n∈Z ∈ Σ̂T : x0 = i} with positive measure and consider the first
return map g : [i] → [i] of σ̂T to [i]. This is conjugate to a full countable
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shift (with the return times as symbols) and it preserves the normalized re-
striction to the cylinder of the σ̂T -invariant measure. All the conditions that
follow are not affected by this procedure. Moreover, every linear cocycle F
over σ̂T gives rise, also through inducing, to a linear cocycle over g whose
Lyapunov spectrum is just a rescaling of the Lyapunov spectrum of F . In
particular, simplicity may also be read out from the induced cocycle.

Moreover, although we choose to formulate our approach in a symbolic
set-up, for skew-products over shifts, it is clear that it extends to other
situations that are more geometric in nature. For example, take g : N → N
to be a partially hyperbolic diffeomorphism on a compact 3-dimensional
manifold N and assume that there exists an embedded closed curve γ ⊂ N
such that g(γ) = γ and some connected component of W s

loc(γ)∩W u
loc(γ) \ γ

is a closed curve. By [10], g is conjugate up to finite covering to a skew-
product over a linear Anosov diffeomorphism of the 2-torus. Thus, using
a Markov partition for the Anosov map, one can semi-conjugate g to a
partially hyperbolic skew-product over a sub-shift of finite type. In this
way, the conclusions of this work can be adapted to linear cocycles over
such a diffeomorphism.

3.2 Stable and unstable holonomies

Property (3.2) is a condition of domination (or normal hyperbolicity, in the
spirit of [19]): it means that any expansion and contraction of f̂x̂ along the
fibers {x̂}×K are dominated by the hyperbolicity of the base map σ̂. For our
purposes, its main relevance is that it ensures the existence of strong-stable
and strong-unstable “foliations” for f̂ , as we explain next.

Let the product M̂ = Σ̂×K be endowed with the distance defined by

distM̂ ((x̂1, t1), (x̂2, t2)) = distΣ̂(x̂1, x̂2) + d(t1, t2),

where d is the distance induced by the Riemannian metric on K (on the
right-hand side, dist denotes the distance (3.1) on Σ̂).

We consider the stable holonomies

hsx̂,ŷ : K → K, hsx̂,ŷ = lim
n→∞

(
f̂nŷ
)−1 ◦ f̂nx̂ ,

defined for every x̂ and ŷ such that x̂ ∈W s
loc(ŷ), and unstable holonomies

hux̂,ŷ : K → K, hux̂,ŷ = lim
n→−∞

(
f̂nŷ
)−1 ◦ f̂nx̂

defined for every x̂ and ŷ such that x̂ ∈W u
loc(ŷ). That these families of maps

exist follows from the assumption (3.2), using arguments from [8]; see for
instance [6] which deals with a similar setting.
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Then we define the local strong-stable set and the local strong-unstable
set of each (x̂, t) ∈ M̂ to be

W ss
loc (x̂, t) = {(ŷ, s) ∈ M̂ : ŷ ∈W s

loc(x̂) and s = hsx̂,ŷ(t)} and

W uu
loc (x̂, t) = {(ŷ, s) ∈ M̂ : ŷ ∈W u

loc(x̂) and s = hux̂,ŷ(t)},

respectively. It is easy to check that

(ŷ, s) ∈W ss
loc(x̂, t) ⇒ lim

n→+∞
distM̂ (f̂n(ŷ, s), f̂n(x̂, t)) = 0

and analogously on strong-unstable sets for time n→ −∞.

3.3 Measures with partial product structure

Throughout, we take µ̂ to be an f̂ -invariant measure with partial product
structure, that is, a probability measure of the form µ̂ = ρµs×µu×µc where:

• ρ : M̂ → (0,+∞) is a continuous function;

• µs is a probability measure supported on Σ− = XZ<0 ;

• µu is a probability measure supported on Σ+ = XZ≥0 ;

• µc is a probability measure on the manifold K.

We also assume the following boundedness condition: there exists κ > 0
such that

1

κ
≤ ρ̃(xs, xu)

ρ̃(xs, zu)
≤ κ and

1

κ
≤ ρ̃(xs, xu)

ρ̃(zs, xu)
≤ κ (3.3)

for every xs, zs ∈ Σ− and xu, zu ∈ Σ+, where ρ̃ : Σ→ R is defined by

ρ̃(xs, xu) =

∫
ρ(xs, xu, t)dµc(t).

Observe that when Σ̂ is a finite shift space this is an immediate consequence
of compactness and the continuity of ρ.

For each x̂ ∈ Σ̂, let µ̂cx̂ denote the normalization of ρ(x̂, ·)µc. The family

{µ̂cx̂ : x̂ ∈ Σ̂} is a Rokhlin disintegration of µ̂ along the vertical fibers.

The assumption that µ̂ is invariant under f̂ , together with the fact that µ̂cx̂
depends continuously on x̂, implies that

(f̂x̂)∗µ̂
c
x̂ = µ̂cσ̂(x̂) for every x̂ ∈ Σ̂. (3.4)

We will also see in Chapter 4.2 that this disintegration is holonomy invari-
ant :

(hsx̂,ŷ)∗µ̂
c
x̂ = µ̂cŷ whenever ŷ ∈W s(x̂) and

(hux̂,ŷ)∗µ̂
c
x̂ = µ̂cŷ whenever ŷ ∈W u(x̂).

(3.5)
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Remark 3.3.1. In particular, if p̂ is a fixed point of the shift map then
µ̂cp̂ is invariant under f̂p̂. Clearly, it is equivalent to µc. Moreover, if ẑ is
a homoclinic point of p̂, that is, a point in W s(p̂) ∩ W u(p̂), then (hsẑ,p̂ ◦
hup̂,ẑ)∗µ̂

c
p̂ = (huẑ,p̂ ◦ hsp̂,ẑ)∗µ̂cp̂ = µ̂cp̂.

We assume that our cocycle admits strong stable and strong unstable
holonomies as defined in section 2.2

For 1 ≤ l ≤ d− 1, let Sec(K,Grass(l, d)) denote the space of measurable
maps V from (some full µc-measure subset of) K to the Grassmannian
manifold of all l-dimensional subspaces of Rd. For each x̂ ∈ Σ̂, consider the
following push-forward maps

Sec(K,Grass(l, d))→ Sec(K,Grass(l, d)) :

(a) V 7→ Fx̂V given by

Fx̂V (t) = Â(x̂, s)V (s) with s = (fx̂)−1(t);

(b) V 7→ Hsx̂,ŷV given, for ŷ ∈W s
loc(x̂), by

Hsx̂,ŷV (t) = Hs
(x̂,s),(ŷ,t)V (s) with s = hsŷ,x̂(t);

(c) V 7→ Hux̂,ŷV given, for ŷ ∈W u
loc(x̂), by

Hux̂,ŷV (t) = Hu
(x̂,s),(ŷ,t)V (s) with s = huŷ,x̂(t).

3.4 Pinching and twisting

Now we state our refined criterion for simplicity of the Lyapunov spectrum.
We call the cocycle F̂ pinching if there exists some fixed (or periodic)

vertical leaf ` = {p̂}×K such that the restriction to ` of every exterior power
ΛkF̂ has simple Lyapunov spectrum, relative to the f̂p̂-invariant measure µ̂cp̂
(Remark 3.3.1). In other words, the Lyapunov exponents λ1, · · · , λd are
such that, for each 1 ≤ k ≤ d− 1 and µ̂cp̂-almost every t ∈ K, the sums

λi1(p̂, t) + · · ·+ λik(p̂, t), 1 ≤ i1 < · · · < ik ≤ d

are all distinct. It is clear that F̂ is pinching if it is uniformly pinching.
Take F̂ to be pinching and let TK = E1(t) ⊕ · · · ⊕ Ed(t) denote the

Oseledets decomposition of F̂ restricted to `. The maps t 7→ Ei(t) are
defined on a full µ̂cp̂-measure set. Now let ẑ be some homoclinic point of p̂
and ı ≥ 1, such that

ẑ ∈W u
loc(p̂) and σ̂ı(ẑ) ∈W s

loc(p̂).

Define
V i = (Huẑ,p̂ ◦ F−ıẑ ◦ H

s
p̂,σ̂ı(ẑ))E

i for i = 1, . . . , d. (3.6)
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Note that V i is also defined on a full µ̂cp̂-measure set since the maps f̂x̂ and
the holonomies hsx̂,ŷ and hux̂,ŷ preserve µ̂cp̂ (Remark 3.3.1).

Now let B(t) = (βi,j(t))i,j be the d× d-matrix defined by

V i(t) =
d∑
j=1

βi,j(t)E
j(t), for i = 1, . . . , d.

We call the cocycle F̂ twisting if, some choice of the homoclinic point ẑ,
all the algebraic minors mI,J(t) of B(t) decay sub-exponentially along the

orbits of f̂p̂, meaning that

lim
n→∞

1

n
log |mI,J(f̂np̂ (t))| = 0 for µ̂cp̂-almost every t ∈ K (3.7)

and every I, J ⊂ {1, . . . , d} with #I = #J .
It is clear that this holds if F̂ is uniformly twisting, because in this

case the algebraic minors are uniformly bounded. More generally (see for
instance [25, Corollary 3.11]), the property (3.7) holds whenever the function
log |mI,J | ◦ f̂p̂ − log |mI,J | is µ̂cp̂-integrable.

3.5 Main statements and outline of the proof

We say that the cocycle F̂ is simple if it is both pinching and twisting, in
the sense of the previous section. That is the case, in particular, if F̂ is
uniformly pinching and uniformly twisting. Thus Theorem A is contained
in the following result:

Theorem D. If F̂ : M̂×Cd → M̂×Cd is a simple cocycle then its Lyapunov
spectrum is simple.

Let Hα(M̂) denote the space of all α-Hölder continuous maps A : M̂ →
SL(2,R). We are going to prove in Section 7.2 that the uniform pinching and
uniform twisting conditions are open with respect to this topology. Thus
Theorem A implies

Theorem E. There is a non-empty open subset of A ∈ Hα(M̂) such that
the associated linear cocycle F̂ over f̂ has simple Lyapunov spectrum.

In many contexts of linear cocycles over hyperbolic systems, simplicity
turns out to be a generic condition: it contains an open and dense subset
of cocycles (precise statements can be found in Viana [25]). This is related
to the fact that, in the hyperbolic setting, the pinching and twisting condi-
tions are just transversality conditions, they clearly hold on the complement
of suitable submanifolds with positive codimension. At present, it is un-
clear how this can be extended to the partially hyperbolic setting. Uniform
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pinching is surely not a generic condition, in general, but it might be locally
generic in some special situations, for instance when f̂p̂ is quasi-periodic.

We close this section by outlining the overall strategy of the proof of
Theorem 8.1.1. For every 1 ≤ ` < d, we want to find complementary
F̂−invariant measurable sections

ξ : M̂ → Grass(l, d) and η : M̂ → Grass(d− l, d) (3.8)

such that the Lyapunov exponents of F̂ along ξ are strictly larger than those
along η.

The starting point is to reduce the problem to the case when the maps f̂x̂
and the matrices Â(x̂, t) depend on x̂ only through its positive part xu. This
we do in Section 4.1, using the stable holonomies to conjugate the original
dynamics to others with these properties. Then f̂ : M̂ → M̂ projects to
a transformation f : M → M on M = Σ+ × K which is a skew-product
over the one-sided shift σ : Σ+ → Σ+ and, similarly, the linear cocycle
F̂ : M̂ × Cd → M̂ × Cd projects to a linear cocycle F : M × Cd → M × Cd
over the transformation f̂ .

We also denote by F̂ and F the actions

F̂ : M̂ ×Grass(l, d)→ M̂ ×Grass(l, d) and

F : M ×Grass(l, d)→M ×Grass(l, d)

induced by the two linear cocycles on the Grassmannian bundles. Still in
Section 4.1, using very classical arguments, we relate the invariant measures
of f̂ and F̂ with those of f and F , respectively.

In Section 4.2 we study u-states, that is F̂ -invariant probability measures
m̂ whose Rokhlin disintegration {m̂x̂ : x̂ ∈ Σ̂} are invariant under unstable
holonomies, as well as the corresponding F -invariant probability measures
m. Here we meet the first important new difficulty arising from the fact
that f̂ is only partially hyperbolic.

Indeed, in the hyperbolic setting such measures m are known to ad-
mit continuous Rokhlin disintegration {mx : x ∈ M} along the fibers
{x}×Grass(l, d) and this fact plays a key part in the arguments of Bonatti-
Viana [9] and Avila-Viana [3].

In the partially hyperbolic setting, the situation is far more subtle: the
disintegration {mx : x ∈ Σ} along the sets {x}×K ×Grass(l, d) is still con-
tinuous, but there is no reason why this should extend to the disintegration

{mx,t : (x, t) ∈M}

along fibers K × Grass(l, d), which is what one really needs. The way we
make up for this is by proving a kind of L1-continuity: if (xi)i → x in Σ then
(mxi,t)i → mx,t in L1(µc). See Proposition 4.3.5 for the precise statement.

This also leads to our formulating the arguments in terms of measurable
sections K → Grass(l, d) of the Grassmannian bundle, which is perhaps
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another significant novelty in this paper. The properties of such sections
are studied in Section 5.1. The key result (Proposition 5.1.1) is that, under
pinching and twisting, the graph of every invariant Grassmannian section
has zero mx-measure, for every x ∈M and any u-state m̂.

These results build up to Section 5.3, where we prove that every u-state
m̂ has an atomic Rokhlin disintegration. More precisely (Theorem 5.3.1),
there exists a measurable section ξ : M̂ → Grass(l, d) such that, given any
u-state m̂ on M̂ ×Grass(l, d), we have

m̂x̂,t = δξ(x̂,t) for µ̂-almost every (x̂, t) ∈ M̂ . (3.9)

Thus we construct the invariant section ξ : M̂ → Grass(l, d) in (3.8).
To find the complementary invariant section η : M̂ → Grass(d− l, d), in

Section 6.1 we apply the same procedure to the adjoint cocycle F̂ ∗, that is,
the linear cocycle defined over f̂−1 : M̂ → M̂ by the function

x̂ 7→ Â∗(x) = adjoint of Â(f̂−1(x̂)).

We check (Proposition 6.1.1) that this cocycle F̂ ∗ is pinching and twisting
if and only if F̂ is. So, the previous arguments yield a F̂ ∗-invariant section
ξ∗ : M̂ → Grass(l, d) related to the u-states of F̂ ∗. Then we just take

η =
(
ξ∗
)⊥

.
Finally, in Chapter 7 we check that the eccentricity, or lack of confor-

mality, of the iterates Ân goes to infinity µ̂-almost everywhere (see Propo-
sition 7.1.1 for the precise statement) and we use this fact to deduce that
every Lyapunov exponent of F̂ along ξ is strictly larger than any Lyapunov
exponents of F̂ along η. At this stage the arguments are again very classical.
This concludes the proof of Theorem 8.1.1.

Theorem E is proven in Section 7.2. The appendix contain material that
seems to be folklore, but for which we could not find explicit references. In
Appendix A.1 we check that the Lyapunov spectra of a linear cocycle and its
adjoint coincide. In Appendix A.2 we show that continuous maps are dense
in the corresponding L1 space, whenever the target space is geodesically
convex.
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CHAPTER 4

Projective measures

In this chapter we prove some results about measure m̂ on M̂ ×Grass(l, d)
that projects on µ̂. We also introduce the concept of u-states, that will be
very useful in the rest of the text.

4.1 Convergence of measures

Recall that Σ̂ = Σ− × Σ+. Accordingly, we write every x̂ ∈ Σ̂ as (xs, xu).
For simplicity, we also write Σ = Σ+ and x = xu. Let P : Σ̂ → Σ be the
canonical projection P (x̂) = x and σ : Σ → Σ be the one-sided shift. We
also consider M = Σ×K.

Our first step is to show that, up to conjugating the cocycle in a suitable
way, we may suppose that:

(a) the base dynamics fx̂ along the center direction depends only on x;

(b) the matrix Â(x̂, t) depend only on (x, t).

Let us explain how such a conjugacy may be defined using the stable holonomies.
Let xs ∈ Σ− be fixed. Por any ŷ ∈ Σ̂, let φ(ŷ) = (xs, y) and then define

h(ŷ, t) =
(
ŷ, hsϕ(ŷ),ŷ(t)

)
.

Then f̃ = h−1 ◦ f ◦ h is given by

f̃(ŷ, t) =
(
σ̂(ŷ), f̃ŷ(t)

)
, with f̃ŷ(t) = hsσ̂(φ(ŷ)),φ(σ̂(ŷ))fφ(ŷ)(t).

Notice that f̃ŷ does depend only on y (because φ does).

20
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Assume that (a) is satisfied. Define φ̂(ŷ, t) = (φ(ŷ), t) and then let

H(ŷ, t) = Hs
φ̂(ŷ,t),(ŷ,t)

.

Define Ã(ŷ, t) = H(f̂(ŷ, t))−1 ◦A(ŷ, t) ◦H(ŷ, t). Then

Ã(ŷ, t) = Hs
f̂(φ̂(ŷ,t)),φ̂(f̂(ŷ,t))

◦ Â(φ̂(ŷ, t)),

which only depends on (y, t). Clearly, this procedure does not affect the
Lyapunov exponents.

For each 1 ≤ l < d, the linear cocycle F̂ : M̂ × Cd → M̂ × Cd induces a
projective cocycle F̂ : M̂ ×Grass(l, d)→ M̂ ×Grass(l, d) through

F̂ (q̂, V ) = (f̂(q̂), Â(q̂)V ). (4.1)

From now on, we assume that both (a) and (b) are satisfied. Then, there
exists

f : M →M, f(x, t) = (σ(x), fx(t))

such that
(P × idK) ◦ f̂ = f ◦ (P × idK)

and there exists A : M → GL(d,C) such that Â = A ◦ (P × idK). Then the
map

F : M ×Grass(l, d)→M ×Grass(l, d), F (p, V ) = (f(p), A(p)V )

satisfies (
P × idK × idGrass(l,d)

)
◦ F̂ = F ◦

(
P × idK × idGrass(l,d)

)
.

Define π : M̂ × Grass(l, d) → M̂ to be the canonical projection on the
first coordinate. Let m̂ be any Borel probability measure on M̂ ×Grass(l, d)
that projects down to µ̂ under π. Denote

µ = (P × idK)∗ µ̂ and m =
(
P × idK × idGrass(l,d)

)
∗ m̂.

Proposition 4.1.1. Let (N,B, η) be a Lebesgue probability space and g :
N → N be a measurable map that preserves µ. Let {ηx : x ∈ N} be
the Rokhlin disintegration of η with respect to the partition into pre-images
g−1(x). Let

G : N × L→ N × L, G(x, y) = (g(x), Gx(y))

be a skew-product over g and, given any probability measure m on N × L
that projects down to η, let {mx : x ∈ N} be its Rokhlin disintegration with
respect to the partition into vertical fibers {x} × L. Then m is invariant
under G if and only if

mx =

∫
(Gz)∗mzdηx(z) for η-almost every x ∈ N .
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Proof. Let P = {{x} × L, for x ∈ N}. Define

m̃x =

∫
Gz∗mzdηx(z)

we have that

m̃x ({x} × L) = 1∫
m̃x(A)dµ =

∫ ∫
mz

(
G−1
z (A)

)
dηx(z)dη(x).

Let π : N → P be the projection to the partition space, it is easy to see
that π(x) = g−1 (g(x)), then we can write ηπ(x) = ηg(x).

We have that for any measurable function ϕ : N → C,∫ ∫
ϕ(z)dηx(z)π∗µ(x) =

∫
ϕ(x)dµ.

Then ∫
ϕ(x)dη =

∫ ∫
ϕ(z)dηπ(x)(z)dη(x)

=

∫ ∫
ϕ(z)dηg(x)(z)dη(x)

=

∫ ∫
ϕ(z)dηx(z)dη(x)

So we have that∫
m̃x(A)dη =

∫
mx

(
G−1
x (A)

)
dη(x) = m

(
G−1(A)

)
Then, by the uniqueness of the Rokhlin disintegration, m̃x is a disinte-

gration of m if and only if m(G−1(A)) = m(A).

For every q̂ ∈ M̂ , define qn = (P × idK)(f̂−n(q̂)). Next, we are going to
prove the following proposition:

Proposition 4.1.2. For µ̂-almost every q̂ ∈ M̂ ,

(a) An(qn)∗mqn → m̂q̂ in the weak∗ topology

(b) for any k ≥ 1 and any choice of points yn,k with fk(yn,k) = qn and
such that yn,k stay in a compact set

lim
n→∞

An(qn)∗mqn = lim
n→∞

An+k(yn,k)∗myn,k .
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Proof. Let g : Grass(l, d)→ C be any continuous function. Define

În : M̂ → C, În(q̂) =

∫
g ◦An(qn)dmqn

and

In : M → C, In(q) =

∫
g ◦An(q)dmq.

Note that În(q̂) = In ◦ (P × idK) ◦ f̂−n(q̂).
For each n ≥ 1, let Cn be the σ-algebra generated by the measurable

sets of the form [−n : A−n, . . . , Ak] × B with k ≥ 0, A−n, . . . , Ak ⊂ X and
B ⊂ K. Moreover, let C0 be the Borel σ-algebra of M . Observe that In
is Cn-measurable, since Cn = f̂n((P × idK)−1(C0)). Moreover, the Borel
σ-algebra of M̂ is generated by ∪n∈NCn.

We need the next Lemma:

Lemma 4.1.3. For each k ≥ 1, let {µkq : q ∈ M} be the Rokhlin disin-

tegration of µ with respect to the partition into pre-images f−k(q). Then
In(q) =

∫
In+k(z)dµ

k
q (z)

Proof. By Proposition 4.1.1

In(q) =

∫
g An(q)d

(∫
Ak(z)∗mzdµ

k
q

)
=

∫ ∫
g An(q)d

(
Ak(z)∗mzdµ

k
q

)
=

∫ ∫
g An+k(z)dmzdµ

k
q (z)

=

∫
In+k(z)dµ

k
q (z),

which proves the claim.

Then for any ψ : M̂ → C, Cn measurable function, i.e: ψ = ψn ◦ (P ×
idK) ◦ f̂ , for some ψn : M → C measurable∫

În(q̂)ψ(q̂)dµ̂(q̂) =

∫
In(q)ψn(q)dµ(q)

=

∫ ∫
In+k(z)dµ

k
q (z)ψn(q)dµ(q)

=

∫ ∫
In+k(z)ψn(fk(z))dµkq (z)dµ(q)

=

∫
În+k(q̂)ψ(q̂)dµ̂(q̂).

So În is a martingale. Then for almost every q̂ ∈ M̂ there exist limn→∞ În =
Î(g).
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Define the linear functional

I : C (Grass(l, d),C)→ C, Î(g) = lim
n→∞

În(g)

where C(Grass(l, d),C) is the space of continuous functions from the Grass-
manian Grass(l, d) to C. By the Riesz-Markov theorem there exist a prob-
ability measure m̃q̂ in Grass(l, d) such that

∫
gdm̃q̂ = I(g)(q̂) for every g.

To see that m̃q̂ = m̂q̂, let ψ be any Cn-measurable function. Taking the
limit as n→∞, we get that∫

Î(q̂)ψ(q̂)dµ̂(q̂) =

∫
În(q)ψ(q̂)dµ̂(x̂).

This may be rewritten as∫
ψ(q̂)

∫
g(ξ)dm̃q̂(ξ)dµ̂(q̂) =

∫
ψ(q̂)

∫
g(An(qn)ξ)dmqn(ξ)dµ̂(q̂).

Using the invariance of µ̂ and the invariance of m̂, we get that∫ ∫
ψ(q̂)g(ξ)dm̃q̂(ξ)dµ̂(q̂) =

∫ ∫
ψ(q̂)g(η)dm̂q̂(η)dµ̂(q̂).

These relations extend immediately to linear combinations of functions ψ×g.
Since these form a dense subset of all bounded measurable functions on
M̂ ×Grass(l, d), this implies that m̃q̂ = m̂q̂ for µ̂-almost every q̂.

This proves the claim (a) of Proposition 4.1.2.
To prove part (b), observe that

µkq =
∑

y:fk(y)=p

1

Jµfk(y)
δy.

For any n ≥ 0 and k ≥ 1, define

Sn,k =

∫ ∫
(In+k(y)− În(q̂))2 dµkq (y) dµ̂(q̂),

by [9, Lemma 3.4] we have that

Sn,k =

∫
În+k(q̂)

2 dµ̂(q̂)−
∫
În(q̂)2 dµ̂(q̂)

then, for every s ≥ 1

s∑
n=1

∫ ∫
(In+k(y)− În(q̂))2 dµkq (y) dµ̂(q̂) =

s∑
n=1

Sn,k ≤ 2k(sup ‖g‖)2.

Consequently,∫
(In+k(y)− În(q̂))2 dµkq (y) =

∑
fk(y)=qn

1

Jµfk(y)
(In+k(y)− În(q̂))2
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converges to zero when n→∞, for µ̂ almost every q̂ ∈ M̂ . Since yn,k stays
in a compact set and the Jacobian is continuous it follows that

(In+k(yn,k)− În(q̂))2

converges to zero for µ̂ almost every q̂ ∈ M̂ . In other words, there exist a
total measure subset such that

|
∫
An(qn)∗mqn −An+k(yn,k)∗myn,k |

converges to zero as n → ∞. Claim (b) follows again considering a dense
subset of continuous functions.

We have a similar, but stronger result for the disintegration of µ̂ with
respect to the partition in central manifolds. In order to state it, let

µ̂cx̂ =
ρ(x̂, ·)∫

ρ(x̂, t)dµc(t)
µc

for x ∈ M̂ and

µcx =

∫
ρ(xs, x, ·)dµs(xs)∫ ∫

ρ(xs, x, t)dµs(xs)dµc(t)
µc

for x ∈M . It is easy to see that {µ̂cx̂ : x̂ ∈ Σ̂} is a (continuous) disintegration

of µ̂ with respect to the partition P̂ = {{x̂}×K : x̂ ∈ Σ̂} and {µcx : x ∈ Σ} is
a continuous disintegration of µ with respect to the partition P = {{x}×K :
x ∈ Σ}. It is important to observe that the next statement is for every x̂ ∈ Σ̂.

Proposition 4.1.4. There exist continuous functions ρn : M̂ → R such
that (

fnP (σ̂−nx̂)

)
∗
µcP (σ̂−nx̂) = ρnµ

c and ρn →
ρ∫

ρ(·, t)dµc(t)

at every point. In particular, for every x̂ ∈ Σ̂,(
fnP (σ̂−nx̂)

)
∗
µcP (σ̂−nx̂) → µ̂cx̂.

in the weak∗ topology.

Proof. Let us define

%̂(x̂, · ) =
ρ(x̂, · )∫

ρ(x̂, t)dµc(t)
and %(x, t) =

∫
%̂(xs, x, t)dµs(xs).

Let n ≥ 1. By the invariance of µ̂,(
f̂nx̂

)
∗
µ̂cx̂ = µ̂cσ̂n(x̂)
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for µ̂-almost every x̂ and, by continuity, the equality extends to every x̂ ∈ Σ̂.
In other words,∫

ϕ ◦ f̂nx̂ (t)%̂(x̂, t)dµc(t) =

∫
ϕ(t)%̂(σ̂n(x̂), t)dµc(t)

for any continuous ϕ : K → R and every x̂. Also, by a change of variables,∫
ϕ ◦ f̂nx̂ (t)%̂(x̂, t)dµc(t) =

∫
ϕ(s)%̂

(
x̂, f̂−nσ̂n(x̂)(s)

)
Jf̂−nσ̂n(x̂)dµ

c(s)

for any continuous ϕ : K → R and every x̂. Comparing the right-hand side
of these two relations, we conclude that

%̂
(
x̂, f̂−nσ̂n(x)(s)

)
Jf̂−nσ̂n(x) = %̂(σ̂n(x̂), t) (4.2)

on the support of µc. Analogously,∫
ϕ(t)d

(
fnP (σ̂−nx̂)∗

µcP (σ̂−nx̂)

)
(t)

=

∫
ϕ ◦ fnP (σ̂−nx̂)(t)%(P

(
σ̂−nx̂

)
, t) dµc(t)

=

∫
ϕ(s)%

(
P
(
σ̂−nx̂

)
, f̂−nx̂ (s)

)
Jf̂−nx̂ (s)dµc(s)

(4.3)

for every continuous ϕ : K → R and any x̂. Define,

ρn(x̂, s) = %
(
P
(
σ̂−nx̂

)
, f̂−nx̂ (s)

)
Jf̂−nx̂ (s).

The definition of % gives that

ρn(x̂, s) =

∫
%̂
(
x−, P

(
σ̂−nx̂

)
, f̂−nx̂ (s)

)
Jf̂−nx̂ (s)dµs(x−).

Combining this with (4.2), we obtain that

ρn(x̂, s) =

∫
%̂
(
σ̂n
(
x−, P

(
σ̂−nx̂

))
, s
)
dµs(x−).

By continuity of %̂, the expression %̂ (σ̂n (xs, P (σ̂−nx̂)) , t) converges to
%̂ (x̂, t) at every point. So, by dominated convergence, the previous identity
yields

ρn(x̂, s)→ %̂ (x̂, s) .

at every point. In view of (4.3), this completes the argument.
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4.2 Existence and properties of u-states

A probability measure m̂ in M̂ × Grass(l, d) is an u-state if there exists a
total measure set M̃ ⊂ M̂ such that m̂q = Hu

b,q∗m̂p for every b, q ∈ M̃ with

b ∈W uu
loc (p).

Proposition 4.2.1. There exist some F̂ -invariant u-state measure m̂ that
projects on µ̂.

This entirely analogous to Proposition 4.2 of [3], and so we only outline
the proof. The idea is to fix some x̂ ∈ Σ̂ and define a homeomorphism
between the measures in {x̂} × W s

loc(x̂) × K that projects to µs and the
u-states. Since this space is compact we have that the space of u-states
measures is also compact and F̂∗-invariant, so we have that any accumulation
point of n−1

∑n−1
j=0 F̂

j
∗ m̂ is also a u-state.

4.2.1 Bounded distortion

Let π1 : M̂ → Σ̂ be the canonical projection π1(x̂, t) = x̂ and denote ν̂ =
π1∗µ̂. Equivalently,

ν̂(E) =

∫
E×K

ρ(xs, x, t) dµs(xs) dµu(x) dµc(t)

for any measurable set E ⊂ Σ̂. For each x ∈ Σ, define ν̂x to be the normal-
ization of

µs
∫
ρ(·, x, t) dµc(t).

Then {ν̂x : x ∈ Σ} is a continuous Rokhlin disintegration of ν̂ with respect
to the partition into local stable sets W s

loc(x̂).
The measure ν̂ satisfies the properties of local product structure, bound-

edness and continuity in [3, Section 1.2]. In what follows, we recall a few
results about this type of measures that we will use later.

For each xu ∈ Σ+ and k ≥ 1 let the backward average measure µuk,xu of
the map σ be defined by

µuk,xu =
∑

σk(z)=xu

1

Jσk(z)
δz

where Jσk : Σ+ → R is the Jacobian of µu with respect to σk.

Lemma 4.2.2. Given any cylinder Iu = [ι0, . . . , ιk−1] ⊂ Σ+ and any zu ∈
Iu,

σ̂k∗ ν̂zu = Jσk(zu)(ν̂σk(zu) | Is)

where {ν̂zu : zu ∈ Σ+} is the disintegration of ν̂ with respect to the partition
{Σ− × {zu} : zu ∈ Σ+}.
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Proof. Analogous to [3, Lemma 2.6].

Lemma 4.2.3. For every xu ∈ Σ+ and every cylinder [J ] ⊂ Σ+,

κµu([J ]) ≥ lim sup
n

1

n

n−1∑
k=0

µuk,xu([J ]) ≥ lim inf
n

1

n

n−1∑
k=0

µuk,xu([J ]) ≥ 1

κ
µu([J ])

Proof. Analogous to [3, Lemma 2.7].

As a direct consequence, for every cylinder [J ] ⊂ Σ+ and every xu ∈ Σ+,

lim sup
k

µuk,xu([J ]) ≥ 1

κ
µu([J ]) (4.4)

4.2.2 Estimating the Jacobians

We call the extremal center Lyapunov exponents of f̂ the limits

λc+ = lim
n

1

n
log
∥∥∥Df̂nx̂ (t)

∥∥∥ and λc− = lim
n
− 1

n
log
∥∥∥Df̂nx̂ (t)

−1
∥∥∥.

The Oseledets theorem [21] ensures that these numbers are well defined at
µ̂-almost every point.

Since we assume that the maps f̂nx̂ have uniformly bounded derivatives,
in our case we have

Lemma 4.2.4. λc+ = λc− = 0.

Remark 4.2.5. When the maps f̂nx̂ are C1+ε, equi-continuity alone suffices
to get the conclusion of Lemma 4.2.4. This can be shown using Pesin theory,
as follows.

Suppose that λc+ > 0. Then we have a Pesin unstable manifold defined
µ̂-almost everywhere. This implies that there exist x̂ ∈ Σ̂ and t 6= s ∈ K
such that

distK
(
f̂−nx̂ (t), f̂−nx̂ (s)

)
→ 0.

Then, given points t and s in the unstable manifold and given any δ > 0,
there exists n such that distK(f̂−nx̂ (t), f̂−nx̂ (s)) < δ. This implies that the
family is not equi-continuous. The proof for λc− is analogous.

Recall that we also assume that f̂ : M̂ → M̂ admits s-holonomies and
u-holonomies and µ̂ has partial product structure. As explained before, this
implies that (π1)∗µ̂ has local product structure.

Lemma 4.2.6. The disintegration {µcx : x ∈ Σ} is f -invariant, in the sense
that fx∗µ

c
x = µσ(x) for every x ∈ Σ.
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Proof. For every x ∈ Σ we have(
f−1
x

)
∗ µ

c
σ(x) = J(x, ·)µcx + ηx

where ηx is singular respect to µcσ(x). Define h =
∫
− log Jdµ. By [4, Propo-

sition 3.1] we have that zero Lyapunov exponent implies h = 0 this implies
J = 1 at µ-almost every point. Then

(
f−1
x

)
∗ µ

c
σ(x) = µcx, which is the same

as fx∗µ
c
x = µσ(x), almost everywhere. The continuity of the disintegration

implies that the equality is true everywhere.

Corollary 4.2.7. µcx = µ̂cx̂ for every x̂ ∈ Σ̂, where x = P (x̂).

Proof. We have that f−1
σ(x)∗

µcσ(x) = µcx, and by Proposition 4.1.4

µ̂cx̂ = lim fnσ−n(x̂)µ
c
P (σ−n(x̂)).

Then the sequence in the 4.1.4 is constant and equal to µcx.

We also have

Lemma 4.2.8. The map x̂ 7→ µ̂cx̂ is continuous. Moreover, the disintegra-
tion is both u- and s-invariant:

(a)
(
hux̂,ŷ

)
∗
µ̂cx̂ = µ̂cŷ for every x̂ ∈W u(ŷ) and

(b)
(
hsx̂,ẑ

)
∗
µ̂cx̂ = µ̂cẑ for every x̂ ∈W u(ẑ).

Proof. By Theorem 2.3.1 and Proposition 2.3.2 there exist some Rokhlin
disintegration {µ̃cx̂ : x̂ ∈ Σ̂} which is continuous, u-invariant and s-invariant.
By essential uniqueness, µ̃cx̂ = µ̂cx̂ for µ̂-almost every x. Since both disinte-

grations are continuous, it follows that they coincide, and so {µ̂cx̂ : x̂ ∈ Σ̂}
is continuous, u-invariant and s-invariant, as claimed.

Remark 4.2.9. If we define Jf jx : K → R, as the Jacobian of f jx with respect

to µc we have that Jf jx(t) = %(σj(x),t)
%(x,t) . This implies that the Jacobians with

respect to µc are bounded from above and below. The same argument
shows that that the Jacobians of the holonomies Jh∗x̂,ŷ with respect to µc

are bounded.

For every x ∈ Σ let

Fx : K ×Grass(l, d)→ K ×Grass(l, d), Fx(t, V ) = (fx(t), A(x, t)V )

and for every x̂, ŷ ∈ Σ̂ in the same unstable set let

Hx̂,ŷ : K ×Grass(l, d)→ K ×Grass(l, d)

Hx̂,ŷ(t, V ) = (hx̂,ŷ(t), H
u
(x̂,t)(ŷ,hx̂,ŷ(t))V ).
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Corollary 4.2.10. If {m̂x̂ : x̂ ∈ Σ̂} is a disintegration of an invariant
u-state m̂ with respect to the partition {x̂×K ×Grass(l, d) : x̂ ∈ Σ̂} then

m̂σ̂n(x̂) = Fnx ∗m̂x̂

for every n ≥ 1, every x ∈ Σ, and ν̂x-almost every x̂ ∈W s
loc(x).

Proof. Since m̂ is F̂ -invariant, the equality is true for all n ≥ 1 and ν̂-almost
all ẑ ∈ Σ̂ or, equivalently, for ν̂z-almost every ẑ ∈W s

loc(z) and ν-almost every
z ∈ Σ. Consider an arbitrary point x ∈ Σ. Since ν is positive on open sets,
x may be approximated by points z such that

m̂σ̂n(ẑ) = Fnz ∗m̂ẑ

for every n ≥ 1 and µ̂z-almost every ẑ ∈ W s
loc(z). Since the conditional

probabilities of m̂ are invariant under unstable holonomies, it follows that

m̂σ̂n(x̂) = (Hσ̂n(z),σ̂n(x))∗F
n
z ∗m̂ẑ = Fnx ∗(Hẑ,x̂)∗m̂ẑ = Fnx ∗m̂x̂

for µ̂z-almost every ẑ ∈ W s
loc(z), where x̂ is the unique point in W s

loc(x) ∩
W u
loc(ẑ). Since the measures µ̂x and µ̂z are equivalent, this is the same

as saying that the last equality holds for µ̂x-almost every x̂ ∈ W s
loc(x), as

claimed.

4.3 L1-continuity of conditional probabilities

Let m̂ be a u-state on M̂×Grass(l, d) that projects to µ̂ under the canonical
projection π : M̂ ×Grass(l, d)→ M̂ . As before, denote

µ = (P × idK)∗ µ̂ and m =
(
P × idK × idGrass(l,d)

)
∗ m̂.

Let {mx : x ∈ Σ} be a Rokhlin disintegration of m with respect to the
partition {{x} × K × Grass(l, d), x ∈ Σ}. Thus each mx is a probability
measure on K ×Grass(l, d).

Also, let {mx,t : (x, t) ∈ M} be a Rokhlin disintegration of m with
respect to the partition {{(x, t)} ×Grass(l, d), (x, t) ∈ Σ×K}: each mx,t is
a probability measure on Grass(l, d).

It is easy to check that x 7→ mx may be chosen to be continuous with
respect to the weak∗ topology, indeed, we will do that in a while. The
corresponding statement for x 7→ mx,t is false, in general. However, the
main point of this section is to show that the family {mx,t : (x, t) ∈ M}
does have some continuity property:

Proposition 4.3.1. Let (xn)n be a sequence of elements of Σ converging to
some x ∈ Σ. Then there exists a sub-sequence (xnk)k such that

mxnk ,t
→ mx,t as k →∞

in the weak∗ topology, for µc-almost every t ∈ K.
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We will deduce this proposition from a somewhat stronger L1-continuity
result, whose precise statement will be given in Proposition 4.3.5. The key
ingredient in the proofs is a result about maps on geodesically convex metric
spaces that we are going to state in Lemma 4.3.3 and which will also be useful
at latter stages of our arguments.

Definition 4.3.2. We say that a metric space N is geodesically convex if
there exist τ > 0 such that for every u, v ∈ N there exist a continuous path
λ : [0, 1]→ N , with λ(0) = u, λ(1) = v and

distN (λ(t), λ(s)) ≤ τ distN (u, v) for every s, t ∈ [0, 1].

Examples of geodesically convex spaces are: convex subset of a Banach
space, path connected compact metric spaces, complete connected Rieman-
nian manifolds. The spaces of maps with values on a geodesically convex
space are analyzed in Appendix A.2.

Lemma 4.3.3. Let L be a geodesically convex metric space and (K,BK , µK)
be a probability space such that K is a normal topological space, BK is the
Borel σ-algebra of K and the measure µK is regular.

Let Hj,t : L→ L and hj : K → K, with j ∈ N and t ∈ K, be such that(
Hj,t(x)

)
j
→ x and

(
hj(t)

)
j
→ t,

uniformly in t ∈ K and x ∈ L and, moreover, the Jacobian Jhj(t) of each
hj with respect to µK is uniformly bounded. Then

lim
j

∫
distL

(
ψ(t), Hj,t ◦ ψ ◦ hj(t)

)
dµK(t) = 0

for every bounded measurable map ψ : K → L.

Proof. Take j ∈ N to be sufficiently large that dL(Hj,t(x), x) < ε/4 for every
t and x. Then,∫

distL(ψ,Hj,t ◦ ψ ◦ hj) dµK ≤
∫ (

distL(ψ,ψ ◦ hj)

+ distL(ψ ◦ hj , Hj,t ◦ ψ ◦ hj)
)
dµK

≤
∫

distL(ψ,ψ ◦ hj) dµK +
ε

4
.

Let C > 1 be a uniform bound for Jhj(t). By Theorem A.2.1, given ε > 0
there exists a continuous map ψ̃ : K → L such that∫

distL(ψ̃, ψ) dµK <
ε

4C
.
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Then, by change of variables,∫
distL(ψ̃ ◦ hj , ψ ◦ hj) dµK ≤ C

∫
distL(ψ̃, ψ) dµK <

ε

4
.

Hence∫
distL(ψ,ψ ◦ hj) dµK

≤
∫ (

distL(ψ, ψ̃) + distL(ψ̃, ψ̃ ◦ hj) + distL(ψ̃ ◦ hj , ψ ◦ hj)
)
dµK

≤
∫

distL(ψ̃, ψ̃ ◦ hj) dµK +
ε

2
.

By the continuity of ψ̃, increasing j if necessary,

distL(ψ̃(t), ψ̃ ◦ hj(t)) <
ε

4
for every t ∈ K.

The conclusion follows from these inequalities.

Lemma 4.3.4. Let (xn)n be a sequence of elements of Σ converging to some
x ∈ Σ, also let f jnxn converge uniformly to g : K → K, and σjn(xn) → z.
Then g is absolutely continuous with respect to µc and has bounded Jacobian.

Proof. By Lemma 4.2.6 we have that

(f jnxn)∗µ
c
xn = µcσjn (xn)

making n→∞ we get
g∗µ

c
x = µcz

this implies that Jgµc = %(z,t)
%(x,t) is uniformly bounded.

Proposition 4.3.5. For every continuous ϕ : Grass(l, d) → R, if xn ∈ Σ
is a sequence such that limn→∞ xn = x, also let f jnxn converge uniformly to
g : K → K. Then

∫
ϕdm

xn,f
jn
xn (t)

converges in L1(µc) to
∫
ϕdmx,g(t).

Proof. Let ϕ : Grass(l, d)→ R be a continuous function. For simplicity call
tn = f jnxn(t)

Fixed xs ∈ Σ−, let

hun,xs(t) = hu(xs,xn),(xs,x)(tn)

and
Hu(

xs,x,hun,xs (t)
)
,(xs,xn,tn)

= Hu
n,xs,t.

We have that
m̂xs,xn,tn =

(
Hu
n,xs,t

)
∗ m̂xs,x,hun,y(tn).
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So applying the lemma 4.3.3 with L = M, the space of Grass(l, d)

probability measures (that is a compact metric space), Hj,t =
(
Hu
j,xs,t

)
∗
,

hj = huj,xs(tj) and

ψ : K →M, ψ(t) = m̂xs,x,g(t)

we have that
∫
ϕdm̂

xs,xn,f
jn
xn (t))

converges in L1
µc to

∫
ϕdm̂y,x,g(t).

By Rokhlin disintegration we know that

mx,t =

∫
m̂xs,x,tρ(xs, x, t)dµs(xs)

so ∫
|
∫
ϕ(v)dmxn,tn −

∫
ϕ(v)dmx,g(t)|dµc ≤∫ ∫

|
∫
ϕρ(xs, xn, tn)dm̂xs,xn,tn −

∫
ϕρ(xs, x, g(t))dm̂xs,x,g(t)|dµcdµs

as the integrand goes to zero for every xs ∈ Σ−, by dominated convergence

lim
n→∞

∫
|
∫
ϕ(v)dmxn,tn −

∫
ϕ(v)dmx,g(t)|dµc = 0

Corollary 4.3.6. The disintegration mx, x ∈ Σ, is continuous.

Proof. Let ϕ : K ×Grass(l, d)→ R be a continuous function, and ρ′(z, t) =∫
ρ(xs, z, t)dµs.

Then if xn → x we have that

|
∫
ϕdmxn −

∫
ϕdmx| =

|
∫ ∫

ϕ(t, v)dmxn,tρ
′(xn, t)dµ

c −
∫ ∫

ϕ(t, v)dmx,tρ
′(x, t)dµc| ≤∫

|
∫
ϕ(t, v)ρ′(xn, t)dmxn,t −

∫
ϕ(t, v)ρ′(xn, t)dmx,t|dµc

and a small modification of the argument of the previous proposition shows
that ∫

ϕ(t, v)ρ′(xn, t)dmxn,t →L1
µc

∫
ϕ(t, v)ρ′(xn, t)dmx,t.

So the conclusion follows integrating in t.

Given xn → x, for every ϕ continuous, there exist a sub-sequence such
that that ∫

ϕdmxn,t →
∫
ϕdmx,t in µc almost every t.
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Taking a subset {ϕj : K → R, j ∈ N} dense in the space of continuous
functions with norm 1 and constructing a diagonal sequence we have a sub-
sequence such that∫

ϕjdmxnk ,t
→
∫
ϕjdmx,t for every ϕj

in a set of total µc measure.
If ψ : Grass(l, d) → R is a continuous function with norm 1, for every

ε > 0 there exists ϕj such that
∥∥ψ − ϕj∥∥ < ε, then

lim sup
k→∞

∫
ψdmxnk ,t

≤ lim sup
k→∞

∫
| ψ − ϕj | dmxnk ,t

+ lim

∫
ϕjdmxnk ,t

< ε+

∫
ϕdmx,t.

Analogously

lim inf
k

∫
ψdmxnk ,t

>

∫
ϕdmx,t − ε.

Hence, for every continuous function limk

∫
ϕdmxnk ,t

=
∫
ϕdmx,t for µc-

almost every t.
This proves Proposition 4.3.1.
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CHAPTER 5

Finding the Oseledets subspaces

In this chapter we prove that our u-states are actually Dirac measures. This
will allow us to find the Oseledets subspace more expanded by the cocycle.

5.1 Graphs of Grassmanians

Using Rokhlin disintegration we have that mx =
∫
mx,t%(x, t)dµc. Remem-

ber that mx is a probability measure on K ×Grass(l, d) and mx,t is a prob-
ability measure on Grass(l, d).

We embed Grass(l, d) ↪→ PΛl
(
Cd
)
, where PΛl

(
Cd
)

is the projectiviza-
tion of the exterior product Λl

(
Cd
)
. The image under this embedding is a

closed set called l-vectors.
This set can be seen as the projectivization of

Λlv(Cd) = {w1 ∧ w2 ∧ · · · ∧ wl ∈ Λl
(
Cd
)

, such that wi ∈ Cd for 1 ≤ i ≤ l}.

that we denote by PΛlv(Cd).
Every linear transformation B : Cd → Cd induce an action in Λl

(
Cd
)
,

that we also denote by B : Λl
(
Cd
)
→ Λl

(
Cd
)
, this action preserves Λlv(Cd).

For a more clear picture about l vectors see of [3, Section 2].
Given V ∈ Grass(d − l, d), a (d − l) subspace, we define the geometric

hyperplane HV

HV = {W ∈ Grass(l, d), such that W ∩ V 6= {0}}

namely this are the d-dimensional subspaces that have non-trivial intersec-
tion with V .
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Taking v ∈ Λd−lv (Cd) an (d − l)-vector that represents V , and for every
W ∈ Grass(l, d) calling w ∈ Λlv(Cd) a l-vector that represents W , it is easy
to see that

HV = {W ∈ Grass(l, d), such that w ∧ v = 0}

The space of hyperplanes could be seen as a subset of Grass(d − l, d) (by
V → HV ). Denote by HSec the space of sections V : K → Grass(d− l, d).

If V ∈ HSec is a measurable section, his

graphH (V ) = {(t, v) ∈ K ×Grass(l, d), with v ∈ HV (t)}

has measure mx (graphH(V )) =
∫
mx,t (HVt) %(x, t)dµc.

5.1.1 Graphs have measure zero

The purpose of this section is to prove the next proposition

Proposition 5.1.1. For every x ∈M any measurable V ∈ HSec, of dimen-
sion l < d, has mx(graphH(V )) = 0 measure.

Fix x and consider the next function

G : K ×Grass(d− l, d) 7→ R, G (t, V ) = mx,t(HV ).

This is a measurable function.
Let

g : K → R, g(t) = sup
V
G(t, V )

this function is also measurable.
Also, it is easy to see that for every fix t ∈ K there exist some Vt

such that g(t) = G (t, Vt), and the set Bt ⊂ Grass(d − l, d) of Vt such that
g(t) = G (t, Vt) is compact.

Now we use the next result whose proof can be found in [12]
Let (X,B, µ) be a complete probability space and Y be a separable

complete metric space. Denote by B(Y ) the Borel σ−algebra of Y .

Proposition 5.1.2. Let κ(Y ) be the space of compact subsets of Y , with
the Hausdorff topology. The following are equivalent:

• a map x→ Kx from X to κ(Y ) is measurable;

• its graph {(x, y) : y ∈ Kx} is in B⊗B(Y );

• {x ∈ X : Kx ∩ U 6= ∅} ∈ B for any open set U ⊂ Y

Moreover, any of these conditions implies that there exist a measurable map
η : X → Y such that η(x) ∈ Kx for every x ∈ X
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Applying this proposition we have that there exists some measurable
section, W : K → Grass(d− l, d) such that Wt ∈ Bt for every t ∈ K.

So there exists a measurable W ∈ Sec(K,Grass(l, d)) such that g(t) =
G (t,Wt).

Given V ∈ HSec we have

mx (graphH(V )) =

∫
mx,t (HVx) %(x, t)dµc

≤
∫

sup
Z
mx,t (HZ) %(x, t)dµc

=

∫
mx,t (HWt) %(x, t)dµc.

As x ∈ Σ was arbitrary, we proved that for every x ∈ Σ there exists
W x ∈ HSec measurable such that

sup
V ∈Sec(K,Grass(d−l,d))

mx (graphH(V )) = mx (graphH(W x))

and the section reaches the supreme, if and only if, mx,t (HW x
t ) = g(t) for

µc-almost every t ∈ K.
Now let

γ = sup
x∈Σ

sup
V ∈HSec

mx (graphH(V )) ,

we are going to prove that for every x ∈ Σ there exists a section W x that
attains the supreme.

Proposition 5.1.3. For every x ∈ Σ there exist some W x section such that
mx(graphH(W x)) = γ.

Proof. Fix a cylinder [J ] ⊂ Σ and a positive constant c < µ([J ])
κ , where κ

is the constant given in equation (4.4). Let z ∈ Σ and V ∈ HSec with
mz(graphH(V )) > 0. For each y ∈ σ−k(z), let V y = F−kŷ V . Then

mz(graphH(V )) =

∫
my(graphH(Vy)dµk,z(y)

≤ µk,z([J ]) sup{my(graphH(Vy) : y ∈ [J ]}
+ (1− µk,z([J ]))γ

By (4.4), there exist arbitrary large values of k such that µk,z([J ]) ≥ c. Then

mz(graphH(V )) ≤ c sup{my(graphH(Vy)) : y ∈ [J ]}+ (1− c)γ

Varying the point z ∈ Σ and V , we can make the left hand side arbitrarily
close to γ. It follows that

sup{my(graphH(Vy) : y ∈ [J ]} ≥ γ, .
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This proves that the supremum over any cylinder [J ] coincides with
γ. Then given any x ∈ Σ we may find a sequence xn → x such that
mxn (graphH(W xn)) → γ, by proposition 4.3.1 we may assume that there
exists a set X ⊂ K of total µc measure such that mxn,t ⇀

∗ mx,t.

γ = lim

∫
mxn,t (HW xn

t ) %(xn, t)dµ
c

≤
∫

lim supmxn,t (HW xn
t ) %(xn, t)dµ

c.

Now for every fixed t ∈ X we have that there exist a sub-sequence xnk
and V ∈ Grass(d− l, d) such that W

xnk
t → V . Taking a neighborhood of Vε

of V
lim supmxn,t (HW xn

t ) ≤ mx,t (HVε) .

Then making ε→ 0

lim supmxn,t (HW xn
t ) ≤ mx,t (HV )

≤ mx,t (HW x
t ) .

So

γ ≤
∫
mx,t (HW x

t ) %(x, t)dµc.

Lemma 5.1.4. For any x ∈ Σ and any V ∈ HSec, we have that

mx(graphH(V )) = γ

if and only if my(graphH(F−1
ŷ V )) = γ for every y ∈ σ−1(x).

Proof. By the continuity of the disintegration mx and the F invariance of
m we have that mx =

∑
σ(y)=x

1
Jσ(y)Fy∗my, with

∑
σ(y)=x

1
Jσ(y) = 1. Then

mx(graphHV ) =
∑

σ(y)=x

1

Jσ(y)
my(graphHF−1

ŷ V ). (5.1)

Since the maximum is γ we get that mx(graphHV ) = γ if and only if
my(graphHF−1

ŷ V ) = γ.

Lemma 5.1.5. For any x ∈ Σ and any W ∈ HSec we have that

m̂x̂(graphH(W )) ≤ γ for ν̂x almost every x̂ ∈W s
loc(x).

Hence, mx (graphH(W )) = γ if and only if m̂x̂(graphH(W )) = γ for µs-
almost every x̂ in W s

loc(x).
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Proof. Suppose there is y ∈ Σ, any V ∈ HSec, a constant γ1 > γ, and
a positive ν̂-measure subset X of W s

loc(y) such that m̂ŷ(graphH(V )) ≥ γ1

for every ŷ ∈ X. For each m < 0, consider the partition of W s
loc(y) ≈ Σ−

determined by the cylinders [I]s = [ιm, . . . , ι−1]s, with ιj ∈ N. Since these
partitions generate the σ-algebra of the local stable set, given any ε > 0 we
may find m and I such that

ν̂y(X ∩ [I]s) ≥ (1− ε)ν̂y([I]s).

Observe that [I]s ≈ [I]s×{y} coincides with σ̂n(W s
loc(x)), where x = σ−nI (y).

So, using also Lemma 4.2.2,

ν̂x
(
σ̂−n(X) ∩W s

loc(x)
)

= (σ̂n∗ ν̂x)(X ∩ [I]s) = Jµσ
n(x) ν̂y

(
X ∩ [I]s).

By the previous inequality and Lemma 4.2.2, this is bounded below by

(1− ε) Jµσn(x) ν̂y
(
[I]s) = (1− ε) (σ̂n∗ ν̂x)

(
[I]s
)

= ν̂x
(
W s
loc(x)

)
= 1− ε.

In this way we have shown that

ν̂y
(
σ̂−n(X) ∩W s

loc(x)
)
≥ (1− ε).

Fix ε > 0 small enough so that (1 − ε)γ1 > γ0. Using Corollary 4.2.10, we
find that

m̂x̂(graphH(F−nx V )) = m̂ŷ(graphH(V )) ≥ γ1

for ν̂x-almost every x̂ ∈ σ̂−n(X) ∩W s
loc(x). It follows that

mx(graphH(F−nx V )) =

∫
m̂x̂(graphH(F−nx V )) dν̂x(x̂) ≥ (1− ε)γ1 > γ,

which contradicts the definition of γ0. This contradiction proves the first
part of the lemma. The second one is a direct consequence, using the fact
that mx(graphH(V )) is the ν̂x-average of all m̂x̂(graphH(V )).

5.2 Sections over the periodic point

From now on, denote by p = P (p̂), and z = P (ẑ) where p̂ is the fixed point
and ẑ is the homoclinic point given in the definition of pinching and twisting.
Recall that ı ∈ N such that σ̂ı(ẑ) ∈W s

loc(p̂).
By the pinching condition the Oseledets decomposition of the restriction

of F to the periodic leaf p̂ × K, {E1
t , . . . , E

d
t }, gives, at µc-almost every

t ∈ K, a linear basis of Cd.
This defines a linear base of Λ(d−l) (Cd) and Λl

(
Cd
)

at µc-almost every
t ∈ K given by

{EIt = Ei1t ∧ E
i2
t ∧ . . . E

id−l
t , for I = {i1 < i2 < · · · < id−l}}
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and
{EJt = Ej1t ∧ E

j2
t ∧ . . . E

jl
t , for J = {j1 < j2 < · · · < jl}}.

This basis are invariant by the action of A in Λ(d−l) (Cd) and Λl
(
Cd
)

A(p, t)EJt ⊂ CEJfp(t).

Remark 5.2.1. If V ∈ sec (K,Grass(l, d)) has a base (can be completed to
a base of Cd) that is sufficiently far away of the invariant subspaces, then
denoting by

V =
∑

I=i1,i2,...,il

vI(t)E
i1
t ∧ E

i2
t ∧ · · · ∧ E

il
t

for every multi-index I, limn→∞
1
n log vI (f qnp (t)) = 0 for µc-almost every t.

Let W p ∈ HSec be the section such that mp (graphHW p) = γ.

Let W j = F−jp W p then also mp

(
graphHW j

)
= γ.

In the invariant base we can express W by

W p
t =

∑
I=i1,i2,...,id−l

wI(t)E
i1
t ∧ E

i2
t ∧ . . . E

id−l
t

with |wI | ≤ 1 and
∑
w2
I = 1.

Then

W j
t =

∑
I=i1,i2,...,id−l

wI(f
j
p (t))

(
Aj(p, t)

)−1
Ei1
fjp(t)
∧ · · · ∧

(
Aj(p, t)

)−1
E
id−l

fjp(t)

and the invariance of the Oseledets subspaces implies that

W j
t =

∑
I=i1,i2,...,id−l

wI(f
j
p (t))aji1(t) . . . ajid−l(t)E

i1
t ∧ E

i2
t ∧ . . . E

id−l
t ,

where
ajk(t) = |Aj(p, t)−1

Ek
fjp(t)
|.

We should order the multi-index I such that the sums λi1+λi2+· · ·+λid−l
are in decreasing order.

Let wĨ be the first non-zero wI .
Let us assume first that fp is ergodic, since the non-ergodic case will be

reduced to the first one by ergodic decomposition

lim
1

n

n−1∑
j=0

|wĨ |
(
f jp (t)

)
=

∫
|wĨ |dµ

c
p.

So for almost every t, lim
1

n

∑n−1
j=0 |w|

(
f jp (t)

)
> δ > 0, for some δ > 0. Also

for almost every t, mp,t

(
W j
t

)
= supW mp,t (W ). Then fixing t in that total
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measure set and using a sub-sequence such that |wĨ(f
jkq)| > δ > 0 we have

that
W jk
t → Ej1t ∧ E

j2
t ∧ · · · ∧ E

jl
t = E Ĩt

and mp,t(E
J
t ) = supW mp,t (W ) for almost every t.

So we can assume from the beginning that the section W p is one of the
invariant sections.

Define W ′ = F−ız W p. We got that mz (graphHW ′) = γ and by corollary
5.1.5 m̂(zu,ẑ) (graphHW ′) = γ for µs-almost every (zu, ẑ) ∈W s

loc(ẑ).
For each (xs, p) ∈ W s

loc(p̂), define W(xs,p) = Hu(xs,z),(xs,p) (W ′), where

(xs, z) is the unique point in W u
loc((x

s, p)) ∩W s
loc(ẑ).

Since m̂ is an u-state, and huẑ,p̂∗µ
c
ẑ = µcp̂, this implies that m̂η(W(xs,p)) =

γ, for µs-almost every η ∈W s
loc(p).

5.2.1 Intersection of hyperplane sections

Let us denote by W j
(xs,p) = F−j

σ̂j(xs,p)
Wσ̂j(xs,p). For (xs, p) = p̂, W j

p̂ = F−jp̂ Wp̂.

We are going to prove that for a large set of j’s the W j
p̂ have no inter-

section.
Let v(t) be the (d− l)-vector that represents Wp̂. We can write it

v(t) =
∑
I

vI(t)E
i1
t ∧ E

i2
t ∧ · · · ∧ E

id−l
t

for I = {i1 < i2 < . . . id−l}, 0 < ik ≤ l. Let J = {j1 < j2 < · · · < jd−l} be
the complement J = {1, 2, . . . , l} − I.

We have that

F−jp̂ v(t) = Aj(p̂, t)
−1
v
(
f jp (t)

)
=

∑
I

vI
(
f jp (t)

)
a−jI (t)EIt

where a−jI (t) =
(
aji1(t) . . . ajid−l(t)

)−1
.

Let N = dimΛl
(
Cd
)
. Given m1 < m2 < · · · < mN if Wm1

t ∩· · ·∩W
mN
t 6=

∅ there will exists some ω : K → Λl
(
Cd
)
, ω(t) 6= 0 such that

ω(t) ∧ F−mkp̂

∗
v(t) = 0 (5.2)

Let ω(t) =
∑

I ωI(t)E
J
t . Then (5.2) means∑
I

a−mkJ (t)vI (fmk(t))ωI(t)$I = 0

for every mk. ($I is 1 or −1 accordingly to the sign of Ei1t ∧ · · · ∧ E
id−l
t ∧

Ej1t ∧ · · · ∧ E
jd−l
t ).
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This gives a system of equations

B(t)x = 0

B(t) =

 a−m1
I1

(t)vI1 (fm1(t)) . . . a−m1
IN

(t)vIN (fm1(t))
...

...
...

a−mNI1
(t)vI1 (fmN (t)) . . . a−mNIN

(t)vIN (fmN (t))


x = ($I1ωI1 , . . . , $INωIN )T

So we need to prove that for some large sequence m1 < · · · < mN , the
det (B(t)) 6= 0

Lemma 5.2.2. Let anj : K → C for 1 ≤ j ≤ d and n ∈ N be measurable

functions such that lim 1
n log |anj (t)| = λj, µ

c-almost everywhere and λ1 <
λ2 < · · · < λd.

Then for every M ∈ N and δ > 0 there exist n1 < n2 < · · · < nM and
K̃ ⊂ K with µ(K̃) > 1− δ such that for any choice of nk1 < nk2 < · · · < nkd
the matrix B(t) ∈ Cd×d, Bi,j(t) =

(
a
nkj
i (t)

)
has non-zero determinant for

every t ∈ K̃

Proof. Let m1 < m2 < · · · < md be natural numbers, then we have the
determinant

det(B(t)) =

 am1
1 (t) . . . am1

d (t)
... . . .

...
amd1 (t) . . . amdd (t)


if am1

i (t) 6= 0 we can write

det(B)(t) = am1
1 (t) . . . am1

d (t)


1 . . . 1

a
m2
1 (t)

a
m1
1 (t)

. . .
a
m2(t)
d

a
m1
d (t)

...
...

...
a
md
1 (t)

a
m1
1 (t)

. . .
a
md
d (t)

a
m1
d (t)


subtracting the first column from on the others columns we end up with

det(B(t)) = am1
1 (t) . . . am1

d (t)

 a′m2,m1
2 (t) . . . a′m2,m1

d (t)
...

...
...

a′md,m1
2 (t) . . . a′md,m1

d (t)


where

a′k,ji (t) =
aki (t)

aji (t)
− ak1(t)

aj1(t)
.
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Doing this again we define inductively in l

a
(l)kl+1,kl,...,k1
j (t) =

a
(l−1)kl+1,kl−1,...,k1
j (t)

a
(l−1)kl,...,k1
j (t)

−
a

(l−1)kl+1,kl−1,...,k1
l (t)

a
(l−1)kl,...,k1
l (t)

for j > l if a
(l−1)kl,...,k1
j (t) 6= 0 for every j.

By induction is easy to see that given k1 < k2 < . . . kl we have that

lim 1
n log a

(l)n,kl,...,k1
j (t) = λj .

So let us define n1 such that an1
j (t) 6= 0 for every j in a set K1 ⊂ K with

µ(K1) > 1− δ
M . Then define n2 > n1 such that an2

j (t) 6= 0 and a′n2,n1
j (t) 6= 0

in a set K2 ⊂ K1 with µ(K2) > 1− 2δ
M .

So inductively, given n1 < n2 < . . . nl and Kl we define nl+1 such that

a
(k)nl+1,nik ,...ni1
j (t) 6= 0 for every choice of {ni1 < . . . nik} ⊂ {n1 < n2 <

· · · < nl} in a set Kl+1 ⊂ Kl with µ(Kl+1) > 1− (l+1)δ
M . So for every choice

of nk1 < nk2 < · · · < nkd we have that

det(B(t)) = a
nk1
1 (t) . . . a

(d)nkd ,nkd−1
,...,nk1

d (t)

Using this Lemma, we prove that the matrix B(t) is invertible, so the
only solution is the trivial one.

Proof of Theorem 5.1.1. Now to prove the theorem let 2δ < γ and C > 0
such that C(γ−2δ) > 1 and take the sequence of integers I = {n1, n2, . . . , nCN}
given by the Lemma 5.2.2. Then we have that any intersection of any N
combination of the W k

t , k ∈ I is empty for every t ∈ K̃, with µc(K) > 1− δ.
It is easier to look first the case when m̂p̂(graphHW j

p̂ ) = γ. For this we
have

m̂p̂

(⋃
j∈I

graphHW j
p̂

)
≥ 1

N

∑
I

m̂p̂

(
graphHW j

p̂ |K̃
)
≥ C(γ − δ).

A contradiction because the measure is a probability.
If not, as almost every (xs, p) ∈ W s

loc(p̂) have m̂(xs,p)(W
nj
η ) = γ we can

take a sequence of (xsk, p)→ p̂ with such property.
We also can find a system of equations Bk(t) as above with the coeffi-

cients of Wni
(xs,p)k

. Using that Hu(xsk,z),(xsk,p) converges uniformly to Huẑ,p̂, and

using the lemma 4.3.3 we can find a sub-sequence such that limk→∞W
ni
(xsk,p)

(t) =

Wni
p̂ (t) for µc-almost every t ∈ K. This proves that the coefficients of Bk

converges almost everywhere to B.
As det(B(t)) 6= 0 in K̃, taking β > 0 small enough we can reduce K̃ a

little such that |det(B(t))| > β > 0. Then reducing K̃ a little more, with
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measure still µc(K̃) > 1 − 2δ, such that the convergence of Bk is uniform
(Egorof theorem), we have that in K̃ the intersection of N of the Wni

(xsk,p)
(t)

is empty. So we have as before

m̂(xsk,p)

(⋃
j∈I

graphHW j
(xsk,p)

)
≥ 1

N

∑
I

m̂(xsk,p)

(
graphHW j

(xsk,p)
|K̃
)

≥ C(γ − 2δ).

Again a contradiction because the measure is a probability.

5.3 Convergence to Dirac measures

The goal of this section is to prove the following theorem:

Theorem 5.3.1. There exists a measurable map ξ : M̂ → Grass(l, d) such
that, given any u-state m̂ on M̂ ×Grass(l, d), we have

m̂x̂,t = δξ(x̂,t) for µ̂-almost every (x̂, t) ∈ M̂ .

In particular, there exists an unique u-state.

5.3.1 Quasi-projective maps

We begin by recalling the notion of quasi-projective map, which was intro-
duced by Furstenberg [15] and extended by Gol’dsheid-Margulis [17]. See
also see Section 2.3 of [3] for a related discussion.

Let v 7→ [v] be the canonical projection from Cd minus the origin to the
projective space CP d−1. We call P# : CP d−1 → CP d−1 a projective map if
there is some P ∈ GL(d,C) that induces P# through P#([v]) = [P (v)]. The
space of projective maps has a natural compactification, the space of quasi-
projective maps, defined as follows. The quasi-projective map Q# induced
in CP d−1 by a non-zero, possibly non-invertible, linear map Q : Cd → Cd is
given by

Q#([v]) = [Q(v)].

Observe that Q# is well defined and continuous on the complement of the
kernel KerQ# = {[v] : v ∈ KerQ}.

More generally, one calls P# : Grass(l, d)→ Grass(l, d) a projective map
if there is P ∈ GL(d,C) that induces P# through P#(ξ) = P (ξ). Further-
more, the quasi-projective map Q# induced in Grass(l, d) by a non-zero,
possibly non-invertible, linear map Q : Cd → Cd is given by

Q#ξ = Q(ξ).

Observe that Q# is well defined and continuous on the complement of the
kernel KerQ# = {ξ ∈ Grass(l, d) : ξ ∩KerQ 6= {0}}.
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The space of quasi-projective maps inherits a topology from the space of
non-zero linear maps, through the natural projection Q 7→ Q#. Clearly,
every quasi-projective map Q# is induced by some linear map Q such
that ‖Q‖ = 1. It follows that the space of quasi-projective maps on any
Grass(l, d) is compact for this topology.

The following two lemmas are borrowed from Section 2.3.

Lemma 5.3.2. The kernel KerQ# of any quasi-projective map is contained
in some hyperplane of Grass(l, d).

Lemma 5.3.3. If (Pn)n is a sequence of projective maps converging to some
quasi-projective map Q of Grass(l, d), and (νn)n is a sequence of proba-
bility measures in Grass(l, d) converging weakly to some probability ν with
ν(KerQ) = 0, then (Pn)∗νn converges weakly to Q∗ν.

5.3.2 Convergence

Recall that, given 1 ≤ l ≤ d− 1 and 1 ≤ i1 < · · · < il ≤ d, we write

Ei1,...,il(t) = Ei1(t) ∧ · · · ∧ Eil(t) ∈ Λl
(
Cd
)

for every t ∈ K such that the Oseledets subspaces Eit are defined. We give
ourselves the right to denote by Ei1,...,ilt also the direct sum

Ei1(t)⊕ · · · ⊕ Eil(t) ∈ Grass(l, d).

Thus each Ei1,...,il is an element of Sec(K,Grass(l, d)).
Let p̂ ∈ Σ̂ be the fixed point of σ̂ and ẑ ∈ Σ̂ be a homoclinic point of

p̂ with ẑ ∈ W u
loc(p̂). Fix ı ∈ N such that σ̂ı(ẑ) ∈ W s

loc(p̂). For each k ≥ 0,

denote ẑk = σ̂−k(ẑ) and zk = P (ẑk). Observe that f̂ẑk = fzk and, similarly,
Â(p̂, t) = A(p, t). We take advantage of this fact to simplify the notations a
bit in the arguments that follow.

Proposition 5.3.4. Let η = Hup̂,ẑE1,...,l ∈ Sec(K,Grass(l, d)). For every
sequence (kj)j →∞ there exists a sub-sequence (k′i)i such that

lim
i→∞

Ak
′
i
(
zk′i , tk′i

)
∗mzk′

i
,tk′
i

= δη(t), where tk = (fkzk)−1(t),

for µc-almost every t ∈ K.

Proof. We have that

fkzk = hup̂,ẑ ◦ fkp ◦ huẑk,p̂ and

Ak(zk, tk) = Hu
(p̂,huẑ,p̂(t)),(ẑ,t)A

k(p, huẑk,p̂(tk))H
u
(ẑk,tk),(p̂,huẑk,p̂

(tk)).

So
(
Akzk,tk

)
∗mzk,tk is equal to(

Hu
(p̂,huẑ,p̂(t)),(ẑ,t)A

k(p, huẑk,p̂(tk))
)(
Hu

(ẑk,tk),(p̂,huẑk,p̂
(tk))

)
∗mzk,tk .
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Note that Hu
(ẑk,tk),(p̂,huẑk,p̂

(tk)) converges uniformly to the identity map id,

because ẑk converges to p̂.
Let K0 ⊂ K be a full µc-measure such that the conclusion of the Os-

eledets theorem holds at (p̂, t) for every t ∈ K0. We claim that for any
t ∈ K0 and every sub-sequence of

Ak(p, huẑk,p̂(tk))

that converges, the limit is a quasi-projective transformation Q# that maps
every point outside KerQ# to E1,...,l(huẑk,p̂(tk)) ∈ Grass(l, d). This can be
seen as follows.

Given w ∈ Λl
(
Cd
)

and k ≥ 1, we may write

w =
⊕

1≤i1<···<il≤d
wi1,...,ilk Ei1,...,il

(
(fkp )−1hẑ,p̂(t)

)
with coefficients w1

k, . . . , w
N
k ∈ C. It follows from the Oseledets theorem that

k 7→ wik is sub-exponential for every i = 1, . . . , N . Recall that (fkp )−1(h(t)) =

hk(tk). Then, the action of Ak(p, hk(tk)) in the projectivization of the exte-
rior power is given by

Ak(p, hk(tk))w =
N⊕
j=1

wjk

∥∥∥Ak(p, (fkp )−1(h(t))E
Ij
(fkp )−1(h(t)

∥∥∥∥∥Ak(p, (fkp )−1(h(t))
∥∥ E

Ij
h(t).

The quotient of the norms converges to zero for any j > 1. Thus, either
Ak(p, hk(tk))w → EI1h(t) or Ak(p, hk(tk))w → 0. The latter case means that w
is in the kernel of the limit. Thus, any limit quasi-projective transformation
does map the complement of the kernel to EI1h(t), as claimed.

As an immediate consequence we get that for any t ∈ K0 and every
sub-sequence of

Hu
(p̂,h(t))),(ẑ,t)A

k(p, hk(tk))

that converges, the limit is a quasi-projective transformation that maps
every point outside the kernel to Hu

(p̂,h(t))),(ẑ,t)E
I1
h(t).

By Remark 3.1.1, the family {fnzk : n, k ≥ 1} is equicontinuous. Us-
ing Arzela-Ascoli, it follows that we can find a sub-sequence of (kj)j along
which the family (fkzk)−1 converges to some g : K 7→ K. Then, by Proposi-
tion 4.3.5, there exists a further subsequence (k′i)i and a full µc-measure set
K1 ⊂ K such that

mzk′
i
,tk′
i
→ mp,g(t)

for every t ∈ K1.
By Proposition 5.1.1 and Lemma 4.3.4, there exists a full µc-measure set

K2 ⊂ K such that mp,g(t) gives zero weight to every hyperplane of Grass(l, d)
for every t ∈ K2. Then, by Lemma 5.3.3 and the previous observations,

lim
k→∞

Ak(zk, tk)∗mzk,tk = δη(t)
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along any sub-sequence such that Ak(zk, tk) converges. This yields the claim
of the proposition.

Remark 5.3.5. Actually, the same argument shows that this proposition
is true for every w ∈W u(p̂).

It follows from Proposition 4.1.2 that there is a full (µs × µu)-measure
subset of points x̂ ∈ Σ̂ such that

lim
n→∞

An(xn, t
x̂
n)∗mxn,tx̂n

= m̂x̂,t (5.3)

for µc-almost every t ∈ K, xn = P
(
σ̂−n(x̂)

)
and tx̂n = (fnxn)−1(t). Since

the shift is ergodic with respect to the projection of µ̂ on Σ̂, one may also
require that

lim
j→∞

σ̂−nj (x̂) = ẑ

for some sub-sequence (nj)j →∞.
Fix any x̂ ∈ Σ̂ such that both conditions hold. Let k ≥ 1 be fixed, for

the time being. Then (5.3) implies that

lim
j→∞

Anj (xnj , t
x̂
nj )∗mxnj ,t

x̂
nj

= lim
j→∞

Anj+k(xnj+k, t
x̂
nj+k

)∗mxnj+k,t
x̂
nj+k

= lim
j→∞

Anj (xnj , t
x̂
nj )∗A

k(xnj+k, t
x̂
nj+k

)∗mxnj+k,t
x̂
nj+k

.

(5.4)

Note also that, by definition,

tx̂nj = fkxnj+k(t
x̂
nj+k

).

We use once more the fact that {f̂nx̂ : n ∈ Z and x̂ ∈ Σ̂} is equi-
continuous (Remark 4.2.5). Using Ascoli-Arzela, it follows that there exists
a sequence (nj)j → ∞ such that (f

nj
xnj

)−1
j converges to some g : K → K.

Up to further restricting to a sub-sequence if necessary, Proposition 4.3.5
ensures that

mxnj+k,t
x̂
nj+k

converges to mzk,g(t)
ẑ
k

for µc-almost every t.

Fix any t ∈ K such that the previous claims are fulfilled. Let (n′i)i be
any sub-sequence of (nj)j such that An

′
i
(
xn′i , t

x
n′i

)
converges to some quasi-

projective map Q : Grass(l, d) → Grass(l, d). Then (5.4) may be written
as

Q∗A
k
(
zk, g(t)ẑk

)
∗mzk,g(t)

ẑ
k

If η(g(t)) /∈ KerQ then, making k → ∞, we may use Lemma 5.3.3 and
Proposition 5.3.4 to conclude that m̂x,t = δQη(g(t)). This gives the conclusion
of Theorem 5.3.1 under this assumption.
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Figure 5.1: Proof of Theorem 5.3.1: avoiding the kernel KerQ

Let us prove that we can always reduce the proof to this case. Recall
that ı ∈ Z was chosen such that σ̂ı(ẑ) ∈W s

loc(p̂). Define ŷ ∈ Σ̂ by

σ̂−nj−k(ŷ) ∈W u
loc(σ̂

ı(ẑ)) ∩W s
loc(xnj+k)

σ̂ı(ŵ) ∈W u
loc(σ̂

ı(ẑ)) ∩W s
loc(zk).

Note that ŷ depends on k and j and ŵ just depends on k. We denote
y = P (ŷ) and w = P (ŵ). Moreover, yn = P (σ̂−n(ŷ)) and wn = P (σ̂−n(ŵ))
for each n ≥ 0. Let m ∈ N be fixed, for the time being. We have that
xi = yi with 0 ≤ i ≤ nj + k. So,

σ̂ı+m
(
P (σ̂−nj−k−ı−m(ŷ))

)
= ynj+k = xnj+k.

Also σ̂−nj−k(y)→ σ̂ı(ŵ), and so

σ̂−nj−k−ı−m(y)→ σ̂−m(ŵ) when j →∞.

Therefore, by Proposition 4.1.2 part (b),

m̂x̂,t = lim
j→∞

Anj+k
(
xnj+k, t

x
nj+k

)
∗mxnj+k,t

x
nj+k

= lim
j→∞

Amj
(
ymj , t

ŷ
mj

)
∗mymj ,t

ŷ
mj

where mj = nj + k + ı+m. The last expression may be rewritten as

Anj
(
xnj , t

x̂
nj

)
∗A

k+ı
(
ynj+k+ı, t

ŷ
ynj+k+ı

)
∗A

m
(
ymj , t

ŷ
mj

)
∗mymj ,t

ŷ
mj
.
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Making j →∞,(
f
nj+k+ı
ynj+k+ı

)−1 →
(
fk+ı
ŵ

)−1 ◦ g

Ak+ı
(
ynj+k+ı, t

ŷ
ynj+k+ı

)
→ Ak+ı

(
w,
(
fk+ı
w

)−1
g(t)

)
Am
(
ymj , t

ŷ
mj

)
→ Am

(
wm,

(
fk+ı+m
wm

)−1
g(t)

)
and, restricting to a sub-sequence if necessary,

m
ymj ,t

ŷ
mj
→ m

wm,
(
fk+ı+mwm

)−1
g(t)

for µc-almost every t.

Lemma 5.3.6. Denote η̃(s) = Hu
(p̂,h̃(s)),(ŵ,s)

EI1
h̃(s)

with h̃(s) = huŵ,p̂(s). Then

there exists a full µc-measure set K̃ ⊂ K such that for every t ∈ K̃ there
exists a sub-sequence of (nj)j(t) such that

Anj
(
xnj , t

x̂
nj

)
◦Ak+ı

(
ynj+k+ı, t

ŷ
ynj+k+ı

)
converges to some quasi-projective transformation Q̃ such that the point
η̃
(
(fk+ı
w )−1g(t)

)
is not in Ker Q̃ for any k = k(t) sufficiently large.

Proof. As before denote by h = huẑ,p̂ and hk = huẑk,p̂.

Observe that (fk+ı
w )−1 =

(
f ıw
)−1(

fkzk
)−1

, and ŵ → ẑ when k →∞. First

let us take a sub-sequence of k such that
(
fkzk
)−1

converges uniformly to

some φ, and observe that (fkp )−1h = hk(f
k
zk

)−1 converges uniformly to some
φ, again by lemma 4.3.4 the φ is absolutely continuous with respect to µc.

Remember that

η̃
(
(fk+ı
w )−1g(t)

)
= Hu

(p̂,h̃((fk+ıw )−1)),(ŵ,(fk+ıw )−1)
EI1
h̃((fk+ıw )−1)

with h̃(s) = huŵ,p̂(s).
Now, using Lemma 4.3.3, take a sub-sequence and a total µc measure

subset by such that

η̃
(
(fk+ı
w )−1g(t)

)
converges to η

((
f ız
)−1

φg(t)
)

and
E((fkp )−1hg(t)) converges to E(φg(t))

)
(5.5)

in a total µc-measure subset.
Moreover, the twisting condition implies that

Huẑ,p̂F ızE
I1
t ∩

(
E
jl+1

t + · · ·+ Ejdt
)

= {0} (5.6)

for any jl+1, . . . , jd ∈ {1, . . . , d} and a full µc-measure set of values of t ∈ K.
In other words, Aı(η(h(t)) does not belong to any of the the hyperplanes of
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Grass(l, d) determined by the Oseledets decomposition at the point (p̂, t).
Take a total measure subset such that (5.6) is satisfied for φ(g(t)).

Take K̃ ⊂ K as the intersection of the two full µc-measure sets in the
previous paragraph.

Fix any t ∈ K̃ such that in addition (p̂, hg(t)) satisfies the conclusion of
the Oseledets theorem. As before, consider any sub-sequence (n′i)i of (nj)j
such that An

′
i(xn′i , t

x̂
n′i

) converges to some quasi-projective transformation Q

when i→∞. Then

An
′
i
(
xn′i , t

x̂
n′i

)
◦Ak+ı

(
yn′i+k+ı, t

ŷ
yn′
i
+k+ı

)
converges to Q̃ = Q ◦Ak+ı

(
w,
(
fk+ı
w

)−1
g(t)

)
when i→∞. Moreover,

Ker Q̃ = Ak+ı
(
w,
(
fk+ı
w

)−1
g(t)

)−1
KerQ

= Aı
(
w,
(
fk+ı
w

)−1
g(t)

)−1
Ak
(
zk,
(
fkzk
)−1

g(t)
)−1

KerQ.

Next, observe that

Ak
(
zk,
(
fkzk
)−1

g(t)
)−1

= Θk A
−k(p, hg(t)) Θ (5.7)

where h = hup̂,ẑ and

Θ = Hu
(ẑ,g(t)),(p̂,hg(t)) and Θk = Hu

(p̂,(fkp )−1hg(t)),(ẑk,(fkzk
)−1(g(t)).

By Lemma 5.3.2, the kernel of Q is contained in some hyperplane Hv
of Grass(l, d). Hence, Θ(KerQ) is contained in the hyperplane Θ(Hv), of
course. Since we take t ∈ K to be such that the Oseledets theorem holds at
(p̂, t), the backward iterates A−k(p, hg(t))Θ(Hv) are exponentially asymp-
totic to some hyperplane section HE that is defined by a (d− l)-dimensional
sum E of Oseledets subspaces. This remains true for ΘkA

−k(p, hg(t))Θ(Hv)
because Θk converges exponentially fast to to the identity map, since ẑk
converges to p̂. In other words, using (5.7),

distGrass(l,d)

(
Ak
(
zk,
(
fkzk
)−1

g(t)
)−1

Hv,HE((fkp )−1hg(t))
)

goes to zero exponentially fast as k → ∞. Then by (5.5) we have that

Ak
(
zk,
(
fkzk
)−1

g(t)
)−1

Hv converges to E(φg(t)). Then we have that Ker Q̃ ⊂
Aı
(
z, (f ız)

−1φg(t)
)−1

HE(φg(t)).
Recall (Section 5.2) that ẑ was chosen in W u

loc(p̂) and ı ∈ N is such that
σ̂ı(ẑ) ∈ W s

loc(p̂). Recall also (from Section 4.1) that in the present setting
all the local stable holonomies hs and Hs are trivial. In particular, (3.6)
means that

V i(t′) = Hu
(ẑ,t1),(p̂,t′)Â

−ı(σ̂ı(ẑ), s)Ei(s) = Hu
(ẑ,t1),(p̂,t′)Â

ı(ẑ, t1)−1Ei(s)
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with t′ = φg(t), t1 = hup̂,ẑ(t
′) and s = f̂ ıẑ(t1), then by the twisting condition

⊕j∈JV j and any sum ⊕i∈IEi with #I + #J = d do not intersect. In
particular, the distance between

Hu
(ẑ,t1),(p̂,t′)Â

−ı(σ̂ı(ẑ), s)E(s) and EI1(s)

is positive. Equivalently, the distance between

Â−ı(σ̂ı(ẑ), s)E(s) and η(t1) = Hu
(p̂,t′),(ẑ,t1)E

I1(s)

is positive. Then η
((
f ız
)−1

φg(t)
)

does not intersect

Â−ı(σ̂ı(ẑ),
(
φg(t)

)
)E
(
φg(t)

)
= Aı

(
z, (f ız)

−1φg(t)
)−1

E(φg(t)),

which implies that η
((
f ız
)−1

φg(t)
)
/∈ Ker Q̃.

So for every k sufficiently large and the observations at the beginning of
the proof the results follows.

Having established Lemma 5.3.6, we can now use the same argument
as previously, to conclude that m̂x̂,t = δQ̃η at µc-almost every point also in
this case. To do this, observe that for every m and k fixed there exist a
sub-sequence and a subset of total measure, such that

m
ymj ,t

ŷ
mj
→ m

wm,
(
fk+ı+mwm

)−1
g(t)

for µc-almost every t. (5.8)

Then intersecting these sets with the ones given by Lemma 5.3.6 and Propo-
sition 5.3.4 (for every ŵ as in the remark) we get a total measure subset
K ′ ⊂ K and using a diagonal argument a sub-sequence of j, such that (5.8)
is true for every t ∈ K ′, k and m, that we fix from now on.

Taking t ∈ K ′ and using Lemma 5.3.6 a further sub-sequence j′ → ∞
and k we get

m̂x̂,t = Q̃∗
(
Am(wm, (f

k+ı
wm )−1g(t))

)
∗mwm,(f

k+ı
wm )−1g(t).

Then making m→∞ by Lemma 5.3.3 and Proposition 5.3.4 we get

m̂x̂,t = δξ(x̂,t),

where ξ(x̂, t) = Q̃η̃((fk+ı
w )−1g(t).

To finish the proof of Theorem 5.3.1, let M̃ ⊂ M̂ be the set of (x̂, t) ∈
M̂ such that m̂(x̂,t) is a Dirac measure. Observe that (x̂, t) 7→ m̂(x̂,t) is
measurable and the set of Dirac measures in the weak∗ topology is closed,
then M̃ is measurable.

Thus we proved that m̂x̂,t is a Dirac measure for ν̂-almost every x̂ ∈ Σ̂
and µ̂cx̂-almost every t ∈ K . This implies that M̃ has total µ̂ measure. So,
we have completed the proof of Theorem 5.3.1.

Instituto de Matemática Pura e Aplicada 51 2016



CHAPTER 6

Eccentricity

We use the following notation: given V ∈ Grass(l, d) and ε > 0 we call
Cε(V ) the cone of size ε with axis V . Given δ > 0 and a hyperplane section
H we call Hδ ⊂ Grass(l, d) the δ-neighborhood of H.

We will need to use the next lemma, which proof is in [3]:

Lemma 6.0.1. Given C ≥ 1 and δ > 0 there exists ε > 0 such that, for any
V ∈ Grass(l, d) and any diagonal operator D with eccentricity E(l,D) ≤ C,
one may find a hyperplane section H of Grass(l, d) such that D−1(Cε(V )) ⊂
Hδ.

Lemma 6.0.2. Let N be a family of measures with the property that there
exists δ > 0 such that, for every hyperplane H, the δ-neighborhood Hδ has
ν(Hδ) ≤ 1

2 for every ν ∈ N . Let Ln be a sequence of linear transformations
such that there exist νn ∈ N that Ln∗νn → δξ, then

• The eccentricity of Ln E(l, Ln)→∞

• The image Lnξn of the most expanding direction ξn of Ln converges to
ξ

Proof. First lets see we can assume that the Ln are diagonal operators.
Using the polar decomposition we can find Kn and K̃n unitary operators
such that Ln = KnDnK̃n where Dn is a diagonal operator.

By definition E(l, Ln) = E(l,Dn). Let U(l, d) be the group of unitary
operators, this group is compact. Then it is easy to see that the family
U(l, d)∗N also satisfies the hypothesis, maybe with a smaller δ. So we can
replace νn by ν̃n = (K̃n)∗νn.

Hence (KnDn)∗ν̃n → δξ. So, passing to a sub-sequence if necessary, we
can assume that Dn∗ν̃n → δξ̃.
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So, from now on, we assume that Ln are diagonal operators. For every
ε > 0

νn
(
Ln
−1(Cε(ξ))

)
= Ln∗νn(Cε(ξ))→ 1,

where Cε(ξ) is the cone of width ε around ξ then there exist an n such that
Ln
−1(Cε(ξ)) is not contained in any Hδ.
By lemma 6.0.1 we have that E(l, Ln)→∞.
For the second statement, using the first part, we know that the eccen-

tricity goes to ∞. Then given any fixed width ε > 0 we can find βn → ∞
such that

Ln
(
Cβn(ξn)

)
⊂ Cε(Ln(ξn))

This implies that the Ln∗νn mass of the ε−neighborhood of Lnξn converges
to 1 as n→∞. Since Ln∗νn → δξ, this implies that Ln(ξn)→ ξ

For almost every (x̂, t) ∈ M̂ we know that mP (x̂,t)(H) = 0 for every

hyperplane H, then for (x̂, t) there exists δ > 0 such that mx,t(Hδ) ≤ 1
2 .

Now let Mδ be the set of points in M such that the last property is realized
by δ0 ≥ δ. Then µ(Mδ) → 1 as δ → 0. Taking M̂δ = (P × idK)−1Mδ we
have the next corollary.

Corollary 6.0.3. For every 0 < c < 1, there exists a set Mc ⊂ M̂ with
µ̂(M̂c) > c such that E

(
l, An(f̂−n(x̂, t))

)
→ ∞, and the image of the most

expanded subspace by An(f̂−n(x̂, t)) converges to ξ(x̂, t), restricted to the
iterates f̂−n(x̂, t) ∈Mc.

6.1 Adjoint cocycle

Let us fix a continuous Hermitian form in Cd 〈· , · 〉(x̂,t), (x̂, t) ∈ M̂ .

Let F̂Â∗ : M × Cd → M × Cd be the adjoint cocycle defined over f̂−1 :

M̂ → M̂ , by

Ân∗ (q̂) =


Â(f−n(x̂, t))∗ . . . Â(f−1(x̂, t))∗ if n > 0
Id if n = 0

Â(fn−1(x̂, t))∗
−1
. . . Â(x̂, t)∗

−1
if n < 0

for (x̂, t) ∈ M̂ . We have that W ss
f−1(x̂, t) = W uu

f (x̂, t) and W uu
f−1(x̂, t) =

W ss
f (x̂, t). Also, it is easy to see that

Hu,Â∗
(x̂,t),(ŷ,s) = (Hs,A

(ŷ,s),(x̂,t))
∗ and Hs,Â∗

(x̂,t),(ẑ,r) = (Hu,A
((ẑ,r)),(x̂,t))

∗

for every (x̂, t), (ŷ, s) in the same f−1-unstable set and every (x̂, t), (ẑ, r) in
the same stable set.

The same hypothesis in F̂Â are fulfills by F̂Â∗ . Indeed:
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Proposition 6.1.1. Â is simple, if and only if, Â∗ is simple.

Proof. By theorem A.1.1 we know that Â∗ is pinching, if and only if, Â is
pinching. Also the Oseledets decomposition of the restriction of Â∗ is given
by the orthogonal complements of the Oseledets subspaces for A. i.e:

Ej∗ =
[
E1 ⊕ · · · ⊕ Êj ⊕ · · · ⊕ Ek

]⊥
where Êj is the subspace which is not in the sum.

Let φp̂,ẑ = Hsẑ,p̂ ◦ Hup̂,ẑ. We have to prove that for every sum of l of the
Oseledets invariant subspaces the coefficients of the push forward by φ∗p̂,ẑ in
the Oseledets basis grows sub-exponentially.

Call g = fp̂. Take ej(t) ∈ Ej(t) and ej∗(t) ∈ Ej∗, unitary vectors.
Let us prove for the case of one dimensional Oseledets subspaces, i.e:

l = 1. Call h : K → K, h(t) = hsẑ,p̂◦hup̂,ẑ, and Hh−1(t),t = Hs
(ẑ,hup̂,ẑ◦h−1(t)),(p̂,t)◦

Hu
(p̂,h−1(t)),(ẑ,hup̂,ẑ◦h−1(t)), then

φp̂,ẑV (t) = Hh−1(t),t

(
V (h−1(t)

)
.

So we have that
φ∗p̂,ẑV (t) = Ht,h(t)

∗ (V (h(t)) . (6.1)

The twisting condition means that if

φp̂,ẑe
k(t) =

d∑
j=1

ak,j(t)e
j(t),

then

lim
n→∞

1

n
log|ak,j(gn(t))| = 0.

So we have to prove the same for the adjoint, i.e.

φ∗p̂,ẑe
k
∗(t) =

d∑
j=1

βk,j(t)e
j
∗(t).

So

βk,j(t)
〈
ej∗(t), e

j(t)
〉

=
〈
φ∗p̂,ẑe

k
∗(t), e

j(t)
〉

=
〈
ek∗(h(t)), φp̂,ẑe

j(h(t))
〉

= aj,k(h(t))
〈
ek∗(h(t)), ek(h(t))

〉
,

by definition
〈
ei∗(t), e

i(t)
〉

= cos(αi(x)) for every 1 ≤ i ≤ d, where

αi(t) = ]
(
ej∗(t), e

j(t)
)

=
π

2
− ]

(
ej∗(t), E

1
t ⊕ · · · ⊕ Êjt ⊕ · · · ⊕ Ekt

)
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so by Oseledets theorem

lim
n→∞

1

n
log|
〈
ei∗(g

n(t)), ei(gn(t))
〉
| = 0

almost everywhere. Then

lim
n→∞

1

n
log|βk,j(gn(t))| = lim

n→∞

1

n
log|aj,k(gn(h(t)))|

also as h : K → K preserves µcp̂ the equality holds in a total µcp̂-measure set.
For l > 1 the proof is exactly the same, just take the inner product

Λl
(
Cd
)

induced by 〈·, ·〉 i.e:

〈v1 ∧ · · · ∧ vl, w1 ∧ · · · ∧ wl〉Λl(Cd) = det (〈vi, wj〉)

on l vectors. Then A is pinching if and only if A∗ is.

Applying the corollary 6.0.3 to this cocycle we have that

• There exists a section ξ∗ : M̂ → Grass(l, d) which is invariant under
the cocycle FÂ∗ and under the unstable holonomies of Â∗

• Given any c > 0 there exist a Mc of µ̂
(
M̂c

)
> 0 such that re-

stricted to the sub-sequence of iterates f̂(p) in Mc, the eccentric-

ity E
(
l, Ân∗

(
f̂n(p)

))
= E (l, An (p)) goes to infinity and the image

Ân∗

(
f̂n(p)

)
ζan

(
f̂n(p)

)
of the l-subspace most expanded tends to ξ∗(p)

as n→∞

Lemma 6.1.2. For µ̂-almost every (x̂, t), the subspace ξ(x̂, t) is transverse
to the orthogonal complement of ξ∗(x̂, t).

Proof. We may take the stable holonomies of A to be trivial, this means that
the unstable holonomies of Â∗ are trivial. So ξ∗ is invariant under unstable
holonomies means that it is constant on local stable sets of f̂ .

Hence the same is true about its orthogonal complement, let us call
this subspace by H(x̂, t), as observed before this only depends on x, t were
x = P (x̂), so the graph of H(x, ·) over K has zero mx-measure.

mx(graphHHx) =

∫ ∫
δξ(x̂,t)(H(x, t))dµc(t)dµsx(x̂) =

= µc × µs ({x̂, t : ξ(x̂, t) ∈ H(x, t)}) =

= 0

for almost every x. Then µ̂ ({x̂, t : ξ(x̂, t) ∈ H(x, t)}) = 0. This proves the
lemma.
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CHAPTER 7

Proof of Theorem A

In this chapter we prove our first result, as mentioned before this will be
proved as a Corollary of Theorem D. In this chapter we also prove Theo-
rem E.

7.1 Proof of Theorem D

Let (x̂, t) ∈ M̂ , and denote by η(x̂, t) ∈ Grass(d− l, d) the orthogonal com-
plement of ξ∗(x̂, t). ξ∗ is invariant under Â∗, which means Â∗(x̂, t)ξ

∗(x̂, t) =

ξ∗
(
f̂−1(x̂, t)

)
. This implies that η is invariant under A.

According to Lemma 6.1.2, we have that Cd = ξ(x̂, t)⊕ η(x̂, t) at almost
every point p ∈ M . We want to prove that the Lyapunov exponents of A
along ξ are strictly bigger than those along η. So let

ξ(x̂, t) = ξ1(x̂, t)⊕ · · · ⊕ ξu(x̂, t) and η(x̂, t) = ηs(x̂, t)⊕ · · · ⊕ η1(x̂, t)

be the Oseledets decomposition of A restricted to the two invariant sub
bundles, where ξu corresponds to the smallest Lyapunov exponent among
ξi, and ηs is the largest among all ηj . Denote du = dim ξu and ds = dim ηs,
and let λu and λs be the Lyapunov exponents associated to these two sub
bundles, respectively. Define

∆n(x̂, t) =
det (An(x̂, t), ξu(x̂, t))

1
du

det (An(x̂, t),W (x̂, t))
1

du+ds

,

Where W (x̂, t) = ξu(x̂, t)⊕ ηs(x̂, t). Oseledets theorem gives that

lim
n→∞

1

n
log ∆n(x̂, t) =

ds
du + ds

(λu − λs) .
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The proof of the following proposition is identical to the proof of Propo-
sition 7.3 in [3]:

Proposition 7.1.1. For every 0 < c < 1 there exists a set M̂c ⊂ M with
µ̂c(M̂c) > c such that for almost every p ∈M

lim
n→∞

∆n(x̂, t) =∞

restricted to the sub-sequence of values n for which f̂n(x̂, t) ∈ M̂c.

So now fix some 0 < c < 1 and M̂c given by proposition 7.1.1. Let
g : Mc →Mc be the first return map, defined by

g (x̂, t) = f̂ r(x̂,t) (x̂, t) .

Then we can define the induced cocycle G : Mc × Cd →Mc × Cd

G ((x̂, t) , v) = (g (x̂, t) , D(x̂, t)v) ,

where D(x̂, t) = Âr(x̂,t) (x̂, t).
We also have that the Lyapunov exponents of G with respect to µ̂

µ̂(Mc)

are the products of the exponents of F̂A by the average return 1
µ̂(Mc)

.
Thus, to show that λu > λs, it suffices to prove it for G. But defining

∆̃k =
det
(
Dk(x̂, t), ξu(x̂, t)

) 1
du

det (Dk(x̂, t),W (x̂, t))
1

du+ds

.

Then ∆̃k(x̂, t) is a sub-sequence of ∆n(x̂, t) such that f̂n(x̂, t) ∈ M̂c. So
applying Proposition 7.1.1 we conclude that

lim
n→∞

k−1∑
j=0

log ∆̃
(
gj(x̂, t)

)
= lim

n→∞
log ∆̃k (p) =∞,

for µ̂-almost every (x̂, t) ∈ M̂c. We need the next well-known Lemma.

Lemma 7.1.2. Let T : X → X be a measurable transformation preserving
a probability measure ν in X, and ϕ : X → R be a ν-integrable function such
that limn→∞

∑n−1
j=0

(
ϕ ◦ T j

)
= +∞ at ν-almost every point. Then

∫
ϕdν >

0.

Applying the lemma to T = g and ϕ = log ∆̃ we find that

lim
k→∞

1

k
log ∆̃k(x̂, t) = lim

k→∞

k−1∑
j=0

log ∆̃
(
gj(x̂, t)

)
=

∫
log ∆̃

dµ̂

µ̂(M̂c)
> 0
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at µ̂-almost every point. On the other hand the relation between Lyapunov
exponents gives

lim
k→∞

1

k
log ∆̃k(x̂, t) =

ds
du + ds

(λu − λs)
1

µ̂(M̂c)
.

This means that λu > λs. So there is a gap between the first l Lyapunov
exponents and the remaining d−l ones. Since this applies for every 1 ≤ l ≤ d,
we conclude that the Lyapunov spectrum is simple. Proving the Theorem
D.

7.2 Proof of Theorem E

This section is devoted to prove Theorem E.

Lemma 7.2.1. The set of simple cocycles with strong pinching and twisting
is non-empty.

Proof. Take A ∈ GL(d,C) that has d diferent eigenvalues without resonance.
Now take the constant cocycle Â : M̂ → GL(d,C), Â(x̂, t) = A. We have
that H∗·,· = id for every ∗ ∈ {s, u}.

Let us call hup̂,ẑ(t) = hu(t) and h = hsẑ,p̂ ◦ hup̂,ẑ, denote by

HÂ
t = Hs,Â

(ẑ,hu(t)),(p̂,h(t))H
u,Â
(p̂,t),(ẑ,hu(t)),

by definition of the holonomies we have that

Hs,Â
(ẑ,hu(t)),(p̂,h(t)) = Â(p̂, h(t))

−1
Hs,Â
σ̂(ẑ,hu(t)),σ̂(p̂,h(t))Â(x̂, hu(t)).

For every δ > 0 let B(x̂, δ) be the open ball of radius δ centered at x̂.
Fix r > 0 such that σ̂(B(ẑ, r)) ∩ B(ẑ, r) = σ̂−1(B(ẑ, r)) ∩ B(ẑ, r) = ∅, and
define ψ : M̂ → R C∞ such that

ψ(x̂) =

{
1 if x̂ = ẑ
0 if x̂ /∈ B(ẑ, r).

Take a matrix r ∈M(d,C) with small norm ‖r‖ that we will choose later,
and such that all the minors of the matrix of id +r in the base of eigen-values
of A are non-zero. This matrix exists because the set of matrices that have
all the minors different from zero form an open set in the Zariski topology,
then it is also dense in the usual topology.

Now define Ã(x̂, t) = Â(id +ψ(x̂)r). We have that

Hs,Ã
(x̂,hu(t)),(p̂,h(t)) = Â(p̂, h(t))

−1
Hs,Â
σ̂(x̂,hu(t)),σ̂(p̂,h(t))Â(x̂, hu(t))(id +r)
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as the perturbation does not affect Â outside B(ẑ, r) we have

Hs,Ã
(x̂,hu(t)),(p̂,h(t)) = A−1 idA (id +r) = (id +r)

So HÃ
t = (id +r).

As the Oseledets subspaces in l are the eigen-spaces of A the strong
twisting condition is equivalent to the matrix HÃ

t , written in the eigen-
vectors basis, has all his minors different from zero.

Then Ã is strong twisting and strong pinching. Making the norm of r
smaller we can make Ã arbitrary close to Â.

We need to prove that the set of simple cocycles with strong pinching
and twisting is open.

Lemma 7.2.2. The set of strong pinching and strong twisting cocycles is
open.

Proof. First the dominated decomposition is equivalently to have a family
of stable and unstable cone fields Csl (t) and Cul (t) such that Csl (t) is l-
dimensional cone and Cul (t) is (d− l)- dimensional cone, for every 1 ≤ l < d.

So if Â is strongly pinching, let us call Esl (t) = E1
t + · · · + Elt and

Eul (t) = Elt + · · ·+ Edt . We can take the cones

Csε,l(t) = {v = vul + vsl ,
‖vul ‖∥∥vsl ∥∥ ≤ ε where vul ∈ Eul (t) and vsl ∈ Esl (t)}

and

Cuε,l(t) = {v = vul + vsl ,
‖vsl ‖∥∥vul ∥∥ ≤ ε where vul ∈ Eul (t) and vsl ∈ Esl (t)}

which are also stable and unstable cones for B close to Â.
Also this shows, that if B is sufficiently close we can choose ε very small.

This implies that the spaces Ei
Â

varies continuously with B.

Now in the topology H α̂(M̂), Âk → Â implies that Hu,s

Âk
→ Hu,s

Â
,

this can be seen in [2]. Then if Âk → Â the spaces Ei
Âk
→ Ei

Â
and

Hs
Âk

∗Hu
Âk

∗ → Hs
Â
∗Hu

Â
∗, so for k sufficiently large the transversality con-

dition, strong twisting, is also verified.

The last condition to be proved is that for B sufficiently close to Â,
the Lyapunov spectrum of B restricted to the periodic p̂×K is also simple
without resonance. For this we will prove a stronger property.

Lemma 7.2.3. If Â is strong pinching, then it is a continuous point of his
Lyapunov exponents, i.e: If Âk → Â then λki → λi, where λi is the i−th
smaller Lyapunov exponent.
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Proof. First of all, strong pinching implies simple Lyapunov spectrum. By
definition of dominated splitting there exist C > 0 and θ > 1 such that∥∥∥Ânvi+1

∥∥∥∥∥∥Ânvi∥∥∥ ≥ Cθn (7.1)

then

lim
n→∞

1

n
log
∥∥∥Ânvi+1

∥∥∥− lim
n→∞

1

n
log
∥∥∥Ânvi∥∥∥ ≥ log θ > 0.

By the previous lemma, for a fixed 1 ≤ i ≤ d, Ei
Âk
→ Ei

Â
. Also λki =∫

log
‖Âkv‖
‖v‖ dmi

k where mi
k =

∫
δEik(t)µ

c.

Then mi
k ⇀mi. So

lim
k→∞

λki = lim
k→∞

∫
log

∥∥∥Âkv∥∥∥
‖v‖

dmi
k =

∫
log

∥∥∥Âv∥∥∥
‖v‖

dmi = λi

Proof of Theorem E. By Lemma 7.2.2 and 7.2.3 the subset of simple strong
pinching and strong twisting cocycles is open.

By Theorem D every simple cocycle has simple Lyapunov spectrum.
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CHAPTER 8

Continuity Equivalence

In this chapter we prove an equivalence of continuity of Lyapunov exponents
and Oseledets subspaces. This is going to be used in Chapter 9. Actually
here we proved a more general version that the one we need in Chapter 9,
the reader interested only in that case may read only section 8.3.1 (see
remark 8.3.4).

Only in this chapter we consider semi-invertible cocycles, i.e: an in-
vertible ergodic measure preserving dynamical system f : M → M and a
measurable matrix-valued map A : M →M(d,R).

This part is a joint work with Lucas Backes.

8.1 Statements

The main result of this chapter is the next theorem:

Theorem 8.1.1. Let {Ak}k ⊂ C0(M) be a sequence converging to A ∈
C0(M). Then limk→∞ γi(Ak) = γi(A) for every 1 ≤ i ≤ d if and only if the
Oseledets subspaces of Ak converge to those of A with respect to the measure
µ.

As a simple consequence of our main theorem we get Theorem C.
It is worth noticing that the proof presented bellow also works with

obvious adjustments if we allow the base dynamics f to vary. More precisely,
if we consider a sequence of ergodic µ-measure preserving maps fk : M →M
converging uniformly to f : M → M and a sequence {Ak}k ⊂ C0(M)
converging to A ∈ C0(M), then a similar statement to the one of Theorem
8.1.1 also works for Lyapunov exponents and Oseledets subspaces of (Ak, fk)
and (A, f). We write the proof in the case when the base dynamics is fixed
just to avoid unnecessary notational complications.
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8.2 Preliminary Results

This section is devoted to present some preliminary results that are going
to be used in the proof of Theorem 8.1.1.

8.2.1 Semi-projective cocycles

Let RP d−1 denote the real (d − 1)-dimensional projective space, that is,
the space of all one-dimensional subspaces of Rd. Given a continuous map
A : M →M(d,R), we want to define an action on RP d−1 which is, in some
sense, induced by A. If (x, [v]) ∈ M × RP d−1 is such that A(x)v 6= 0 then
we have a natural action induced by A on RP d−1 which is just given by
A(x) [v] = [A(x)v]. The difficulty appears when A(x)v = 0 for some v 6= 0.
To bypass this issue, let us consider the closed set given by

Ker(A) = {(x, [v]) ∈M × RP d−1; A(x)v = 0}.

If µ(π(Ker(A))) = 0 where π : M × RP d−1 → M denotes the canonical
projection on the first coordinate, then A(x) is invertible for µ-almost every
x ∈ M and hence it naturally induces a map on RP d−1 which is defined
µ-almost everywhere and is all we need. Otherwise, if µ(π(Ker(A))) > 0 let
us consider the set

K(A) = {(x, [v]) ∈M × RP d−1; An(x)v = 0 for some n > 0}.

Observe that K(A) ∩ {x} × RP d−1 ⊂ {x} × El,Ax for every regular point
x ∈M .

Since π(K(A)) is an f -invariant set and µ is ergodic it follows that
µ(π(K(A))) = 1. Thus, we can define a mensurable section σ : M → RP d−1

such that (x, σ(x)) ∈ K(A). Moreover, we can do this in a way such that
if x ∈ π(Ker(A)) then (x, σ(x)) ∈ Ker(A). Fix such a section. We now
define the semi-projective cocycle associated to A and f as being the map
FA : M × RP d−1 →M × RP d−1 given by

FA(x, [v]) =

{
(f(x), [A(x)v]) if A(x)v 6= 0
(f(x), σ(f(x)) if A(x)v = 0.

This is a measurable function which coincides with the usual projective
cocycle outside Ker(A). In particular, it is continuous outside Ker(A). From
now on, given a non-zero element v ∈ Rd we are going to use the same
notation to denote its equivalence class in RP d−1.

Given a measure m on M ×RP d−1, observe that if m(Ker(A)) = 0 then
FA∗m does not depend on the way the section σ was chosen. Indeed, if
ψ : M × RP d−1 → R is a mensurable function then∫

M×RP d−1

ψ ◦ FAdm =

∫
M×RP d−1\Ker(A)

ψ ◦ FAdm.
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In the sequel, we will be primarily interested in FA-invariant measures on
M×RP d−1 that projects on µ, that is, π∗m = µ and such that m(Ker(A)) =
0. Our first result states if the cocycle A has two different Lyapunov ex-
ponents then any such a measure may be written as a convex combination
of measures concentrated on a suitable combination of the Oseledets sub-
spaces. An useful notation that we are going to use through the chapter is
the following:

Esi,Ax = Ei+1,A
x ⊕ · · · ⊕ El,Ax

and
Eui,Ax = E1,A

x ⊕ · · · ⊕ Ei,Ax
which denotes, respectively, the Oseledets slow and fast subspaces of ‘order
i’ associated to A and

Ei,A = {(x, v) ∈M × RP d−1; v ∈ Ei,Ax }.

Proposition 8.2.1. If γi(A) > γi+1(A) then every FA-invariant measure
projecting to µ and such that m(Ker(A)) = 0 is of the form m = amui+bmsi

for some a, b ∈ [0, 1] such that a + b = 1, where m∗ is an FA-invariant
measure projecting on µ such that its disintegration {m∗x}x∈M with respect
to µ satisfies m∗x(E∗x) = 1 for ∗ ∈ {si, ui}.

Proof. Given j ∈ N let us consider the set Bj defined by{
(x, v) ∈M × RP d−1; |sin](v,E∗x)| ≥ 1

j
|sin](Euix , E

si
x )| for ∗ = si, ui

}
.

Since γi(A) > γi+1(A) it follows that for any (x, v) ∈ Bj , the angle
between An(x)v and Euifn(x) decays exponentially fast when n goes to +∞.

Therefore, since by Oseledets’ theorem the angle ](Euix , E
si
x ) decays sub-

exponentially it follows that every (x, v) ∈ Bj leaves Bj . Consequently,
by Poincaré’s recurrence theorem m(Bj) = 0 for every j ∈ N. Hence, the
measure m is concentrated on {(x,Euix ); x ∈ M} ∪ {(x,Esix ); x ∈ M}. Let
{mx}x∈M be a disintegration of m with respect to µ. It follows then by
the previous observations that mx(Esix ) + mx(Euix ) = 1 for µ-almost every
x ∈ M . Thus, letting m∗x be the normalized restriction of mx to E∗x for
∗ ∈ {si, ui} we get that mx = a(x)mui

x + b(x)msi
x where a(x) = mx(Euix )

and b(x) = mx(Esix ). To conclude the proof, since our measure µ is ergodic,
it only remains to observe that both a and b are invariant functions and
consequently constant functions. This follows easily from the invariance of
the Oseledets spaces and the fact that, since m is FA-invariant, mf(x) =
A(x)∗mx for µ-almost every x ∈M . Indeed,

a(f(x)) = mf(x)(E
ui
f(x)) = A(x)∗mx(Euif(x))

= mx(Euix ) = a(x)

as we want.
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Our next result gives the existence of FA-invariant measures concen-
trated on Oseledets subspaces. This is going to be used in Section 8.4.

Proposition 8.2.2. For every 1 ≤ j < l, there exists an FA-invariant mea-
sure m projecting to µ and concentrated on Ej,A = {(x, v) ∈M×RP d−1; v ∈
Ej,Ax }. In particular, it satisfies m(Ker(A)) = 0.

Proof. LetMj be the space of all probability measures on M ×RP d−1 such
that m(Ej,A) = 1 and π∗m = µ. In particular, m(Ker(A)) = 0 for every
m ∈Mj .

Let us consider now the map FA∗ :Mj →Mj given by FA∗m. From the
invariance of Ej,A and the definition ofMj it follows that FA∗ is well defined
and moreover does not depend on the choice of the section σ in the definition
of the semi-projective cocycle. Furthermore, it is continuous. Indeed, let
{mk}k ⊂ Mj be a sequence converging to m in the weak∗ topology and
ψ : M × RP d−1 → R a continuous map. By Lusin’s Theorem, given ε > 0
there exists a compact set K ⊂M such that µ(M \K) < ε

4‖ψ‖ and x→ Ej,Ax

is continuous when restricted to K. Now, since Ker(A) ∩ Ej,A = ∅ and
ψ◦FA is continuous outside Ker(A), it follows from Tietze extension theorem
that there exists a continuous function ψ̂ : M × RP d−1 → R satisfying
ψ̂(p) = ψ ◦ FA(p) for every p ∈ {(x, v) ∈ K × RP d−1; v ∈ Ej,Ax } and∥∥∥ψ̂∥∥∥ ≤ ‖ψ‖. Then,∣∣∣∣∫ ψ ◦ FAdmk −

∫
ψ ◦ FAdm

∣∣∣∣ ≤ ∣∣∣∣∫ ψ̂dmk −
∫
ψ̂dm

∣∣∣∣+ ε.

Consequently, taking k sufficiently large, |
∫
ψ ◦ FAdmk −

∫
ψ ◦ FAdm| < 2ε

as we claimed.
We observe now that Mj is a closed subset of the set of all probability

measures of M ×RP d−1. In fact, let {mk}k ⊂Mj be a sequence converging
to m. As before, given ε > 0 there exists a compact set K ⊂ M such that
µ(M \K) < ε and x→ Ej,Ax is continuous when restricted to K. Thus, since
Ej,AK := {(x, v) ∈ K × RP d−1; v ∈ Ej,Ax } is a closed subset of M × RP d−1,
it follows that

m(Ej,A) ≥ m(Ej,AK ) ≥ lim sup
k→∞

mk(E
j,A
K ).

Therefore, as mk(E
j,A) = 1 and µ(M \K) < ε we get that mk(E

j,A
K ) > 1− ε

for every k and consequently, since ε > 0 was arbitrary and m is a probability
measure, m(Ej,A) = 1 and Mj is closed.

To conclude the proof, it only remains to observe that given anym ∈Mj ,
every accumulation point of 1

n

∑n−1
k=0 F

k
A∗m gives rise to an FA-invariant mea-

sure concentrated on Ej,A. This follows easily from the previous observa-
tions.
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Remark 8.2.3. Letting ϕA : M × RP d−1 → R be the map given by

ϕA(x, v) = log
‖ A(x)v ‖
‖ v ‖

,

it follows easily from the definition and Birkhoff’s ergodic theorem that,
for every FA-invariant probability measure m concentrated on Ej,A and
projecting to µ,

λj(A) =

∫
M×RP d−1

ϕA(x, v)dm.

8.2.2 The adjoint cocycle

Given x ∈ M , let A∗(x) : (Rd)∗ → (Rd)∗ be the adjoint operator of
A(f−1(x)) defined by

(A∗(x)u)v = u(A(f−1(x))v) for each u ∈ (Rd)∗ and v ∈ Rd. (8.1)

Fixing some inner product 〈 , 〉 on Rd and identifying the dual space (Rd)∗
with Rd we get the map A∗ : M →M(d,R) and equation (8.1) becomes

〈A(f−1(x))u, v〉 = 〈u,A∗(x)v〉 for every u, v ∈ Rd.

The adjoint cocycle of A is then defined as the cocycle generated by the map
A∗ : M →M(d,R) over f−1 : M →M .

An useful remark is that the Lyapunov exponents counted with multi-
plicities of the adjoint cocycle are the same as those of the original cocycle.
This follows from the fact that a matrix B and its transpose BT have the
same singular values combined with Kingman’s sub-additive theorem. More-
over, Oseledets subspaces of the adjoint cocycle are strongly related with the
ones of the original cocycle. More precisely,

Lemma 8.2.4. Esi,Ax = (Eui,A∗x )⊥ where the right-hand side denotes the
orthogonal complement of the space Eui,A∗x .

Proof. By contradiction, suppose there exist v ∈ Esi,Ax and u ∈ Eui,A∗x such
that 〈v, u〉 6= 0. We may assume i < l otherwise the lemma trivially holds. In
this case, for each n ∈ N the map An(f−n(x)) : Esi,A

f−n(x)
→ Esi,Ax is surjective

and thus we may find unitary vectors vn ∈ Esi,Af−n(x)
such that An(f−n(x))vn

are multiples of v. By definition,

〈An(f−n(x))vn, u〉 = 〈vn, (An(f−n(x)))∗u〉
= 〈vn, An∗ (x)u〉.

Now, since 〈An(f−n(x))vn, u〉 grows at an exponential rate smaller than
λi(A) while 〈vn, An∗ (x)u〉 grows at an exponential rate at least λi(A) we get
a contradiction. Therefore, Esi,Ax ⊂ (Eui,A∗x )⊥. Now, since they have the
same dimension the lemma follows.
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8.3 Continuity of Lyapunov exponents implies con-
tinuity of Oseledets subspaces

At this section we are going to prove that continuity of Lyapunov exponents
implies continuity of Oseledets subspaces. Thus, let {Ak}k ⊂ C0(M) be a
sequence converging to A ∈ C0(M) and suppose limk→∞ γi(Ak) = γi(A) for
every 1 ≤ i ≤ d. We start with an auxiliary lemma.

Lemma 8.3.1. Let mk be a sequence of FAk-invariant measures concen-
trated on E1,Ak and suppose they converge to a measure m.

Then m(Ker(A)) = 0 and moreover m is an FA-invariant measure.

Proof. We start proving that m(Ker(A)) = 0. Suppose by contradiction
that m(Ker(A)) = 2c > 0. For each δ > 0 let us consider

Kδ =

{
(x, v) ∈M × RP d−1;

∥∥∥∥A(x)
v

‖v‖

∥∥∥∥ < δ

}
.

These are open sets such that Ker(A) = ∩δ>0Kδ and m(Kδ) ≥ m(Ker(A)) >
c > 0.

Fix b ∈ R such that

b < γ1(A)− sup
k,x,‖v‖=1

log ‖Ak(x)v‖

and let δ > 0 be such that log y < b
c for every y < 2δ. Then, for every k

sufficiently large mk(Kδ) > c > 0 and
∥∥∥Ak(x) v

‖v‖

∥∥∥ < 2δ for every (x, v) ∈ Kδ

and consequently

γ1(Ak) =

∫
ϕAkdmk < b+ sup

k,x,‖v‖=1
log ‖Ak(x)v‖

contradicting the choice of b. Thus, m(Ker(A)) = 0 as we want.
To prove that m is FA-invariant one only has to show that, given a

continuous map ψ : M × RP d−1 → R,

lim
k→∞

∫
ψ ◦ FAkdmk =

∫
ψ ◦ FAdm. (8.2)

Indeed, if (8.2) is true then, since mk is FAk -invariant,∫
ψ ◦ FAdm = lim

k→∞

∫
ψ ◦ FAkdmk = lim

k→∞

∫
ψdmk =

∫
ψdm.

In order to prove (8.2) we start noticing that∣∣∣∣∫ ψ ◦ FAkdmk −
∫
ψ ◦ FAdm

∣∣∣∣ ≤ ∫ |ψ ◦ FAk − ψ ◦ FA|dmk

+

∣∣∣∣∫ ψ ◦ FAdmk −
∫
ψ ◦ FAdm

∣∣∣∣ .
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Now observing that, for every k sufficiently large, ‖Ak(x)v/‖v‖‖ > δ
2 if

(x, v) ∈ Kc
δ and recalling the definition of semi-projective cocycle it follows

that ψ ◦ FAk converges uniformly to ψ ◦ FA outside Kδ. Given ε > 0 let
δ > 0 be such that m(Kδ) <

ε
2‖ψ‖ . Then, taking k sufficiently large such

that |ψ ◦ FAk − ψ ◦ FA| < ε outside Kδ and mk(Kδ) <
ε

2‖ψ‖ we get∫
|ψ ◦ FAk − ψ ◦ FA|dmk < 2ε.

To bound
∣∣∫ ψ ◦ FAdmk −

∫
ψ ◦ FAdm

∣∣, let ψ̂ : M × RP d−1 → R be a

continuous function which is equal to ψ ◦ FA outside Kδ and
∥∥∥ψ̂∥∥∥ ≤ ‖ψ‖.

Note that the existence of such a map is guaranteed once again by Tietze
extension theorem. Then,∣∣∣∣∫ ψ ◦ FAdmk −

∫
ψ ◦ FAdm

∣∣∣∣ ≤ ∣∣∣∣∫ ψ̂dmk −
∫
ψ̂dm

∣∣∣∣+ 2ε.

Now, taking k sufficiently large such that
∣∣∣∫ ψ̂dmk −

∫
ψ̂dm

∣∣∣ < ε it follows

that ∣∣∣∣∫ ψ ◦ FAkdmk −
∫
ψ ◦ FAdm

∣∣∣∣ < 5ε

proving (8.2) and consequently the lemma.

Remark 8.3.2. Observe that in the proof of the previous lemma we did
not use the full strength of the requirement limk→∞ γi(Ak) = γi(A) for every
1 ≤ i ≤ d. Indeed, it is enough that limk→∞

∫
ϕAkdmk > −∞. This is going

to be used in Section 8.4.

8.3.1 Continuity of the fastest Oseledets subspace

Our next proposition deals with the case when d1(A) = 1. That is, the case
when the dimension of the Oseledets subspace associated with λ1(A) is 1.

Proposition 8.3.3. If A is such that γ1(A) > γ2(A) then E1,Ak
x converges

to E1,A
x with respect to the measure µ. More precisely, for every δ > 0

µ({x ∈M ; ](E1,Ak
x , E1,A

x ) < δ}) k→∞−−−→ 1.

Proof. We start observing that, since γj(Ak)
k→∞−−−→ γj(A) for every 1 ≤ j ≤

d and γ1(A) > γ2(A), for every k sufficiently large γ1(Ak) > γ2(Ak) and
thus E1,Ak

x is also one-dimensional. Let us assume without loss of generality
that this is indeed the case for every k ∈ N.

Instituto de Matemática Pura e Aplicada 67 2016



Mauricio Poletti Simple Lyapunov spectrum

For each k ∈ N, let us consider the measure

mk =

∫
M
δ

(x,E
1,Ak
x )

dµ(x)

and let mu be the measure given by

mu =

∫
M
δ

(x,E1,A
x )

dµ(x).

Observe that these are, respectively, FAk and FA-invariant measures on M×
RP d−1 concentrated on E1,Ak and E1,A and projecting to µ. Consequently,
it follows from Remark 8.2.3 that

γ1(Ak) =

∫
M×RP d−1

ϕAk(x, v)dmk (8.3)

and

γ1(A) =

∫
M×RP d−1

ϕA(x, v)dmu. (8.4)

We claim now that mk converges to mu in the weak∗ topology. Indeed,
let {mki}i∈N be a convergent subsequence of {mk}k∈N and suppose that it
converges to m. Since M × RP d−1 is a compact space it suffices to prove
that m = mu. Observing that, for each i ∈ N the measure mki is a FAki -
invariant measure projecting to µ, it follows from Lemma 8.3.1 that m is a
FA-invariant measure projecting to µ and moreover m(Ker(A)) = 0. Fur-
thermore, since

γ1(Aki)
i→+∞−−−−→ γ1(A)

and ∫
M×RP d−1

ϕAki (x, v)dmki
i→+∞−−−−→

∫
M×RP d−1

ϕA(x, v)dm

it follows from (8.3) that

γ1(A) =

∫
M×RP d−1

ϕA(x, v)dm.

Thus, from Lemma 8.3.3 we get that m = mu as claimed. In fact, otherwise
we would have m = amu1 + bms1 where a, b ∈ (0, 1) are such that a+ b = 1
and ms1 is a FA-invariant measure concentrated on {(x,Es1x ); x ∈ M}.
Therefore,

γ1(A) =

∫
M×RP d−1

ϕA(x, v)dm

= a

∫
M×RP d−1

ϕA(x, v)dmu1 + b

∫
M×RP d−1

ϕA(x, v)dms1

≤ aγ1(A) + bγ2(A) < γ1(A).

Instituto de Matemática Pura e Aplicada 68 2016



Mauricio Poletti Simple Lyapunov spectrum

Let us consider now the measurable map ψ : M → RP d−1 given by

ψ(x) = E1,A
x .

Note that its graph has full mu-measure. By Lusin’s Theorem, given ε > 0
there exists a compact set K ⊂ M such that the restriction ψK of ψ to K
is continuous and µ(K) > 1− ε. Now, given δ > 0, let V ⊂M × RP d−1 be
an open neighborhood of the graph of ψK such that

V ∩ (K × RP d−1) ⊂ Vδ

where
Vδ := {(x, v) ∈ K × RP d−1; ](v, ψ(x)) < δ}.

By the choice of the measures mk,

mk(Vδ) = µ({x ∈ K; ](E1,Ak
x , E1,A

x ) < δ}). (8.5)

Now, as mk
k→∞−−−→ mu it follows that lim inf mk(V ) ≥ mu(V ) > 1 − ε. On

the other hand, as mk(K × RP d−1) = µ(K) > 1 − ε for every k ∈ N, it
follows that

mk(Vδ) ≥ mk(V ∩ (K × RP d−1)) ≥ 1− 2ε (8.6)

for every k large enough. Thus, combining (8.5) and (8.6), we get that
µ({x ∈M ; ](E1,Ak

x , E1,A
x ) < δ}) ≥ 1−2ε for every k large enough complet-

ing the proof of the proposition.

Remark 8.3.4. In the case of SL(2,R) cocycles, we have that both Os-
eledets subspaces are one dimensional or the decomposition is trivial, then
the previous proposition gives the Theorem C in the case of SL(2,R) cocy-
cles.

8.3.2 Continuity of the Oseledets fast subspace of order i

We now prove that the Oseledets fast subspace of order i of Ak converges to
the respective Oseledets subspace of A. The idea is to consider the cocycle
induced by A on a suitable exterior power and then deduce the general case
from the previous one.

Proposition 8.3.5. For every 1 ≤ i ≤ l and δ > 0 we have that

µ({x ∈M ; ](Eui,Akx , Eui,Ax ) < δ}) k→∞−−−→ 1.

We take the Plücker embedding Φ : Grass(j, d) → PΛj
(
Rd
)
. If ρ(., .) is

a distance on P(Λj
(
Rd
)
) we may push it back to Grass(j, d) via Φ. More

precisely, the map distΛj(Rd) : Grass(j, d)×Grass(j, d)→ R given by

distΛj(Rd)(E1, E2) = ρ(Φ(E1),Φ(E2))
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is a distance on Grass(j, d) and moreover, if ρ is a distance given by an
inner product in the linear space Λj

(
Rd
)

then distΛj(Rd) is equivalent to

the distance defined in (2.1).
Recall that the Lyapunov exponents of the cocycle induced in the exterior

power are given by

{γi1(A) + . . .+ γij (A); 1 ≤ i1 < . . . < ij ≤ l}. (8.7)

and the Oseledets subspaces by

E1,A
x ∧ . . . ∧ Ei,Ax . (8.8)

Proof of Proposition 8.3.5. Observe that if i = l then there is noting to do
since Eul,Akx = Rd = Eul,Ax for every k sufficiently large. So, from now on let
us assume i < l.

Consider r = d1(A) + . . .+ di(A) and let ΛrA and ΛrAk be the cocycles
over f induced by A and Ak, respectively, on the rth exterior power. Since
we are assuming i < l it follows from (8.7) that γ1(ΛrA) > γ2(ΛrA). Thus,
from Proposition 8.3.3 we get that, for every δ′ > 0,

µ({x ∈M ; ](E1,ΛrAk
x , E1,ΛrA

x ) < δ′}) k→∞−−−→ 1

which from (8.8) is equivalent to

µ({x ∈M ; ](E1,Ak
x ∧ . . . ∧ Ei,Akx , E1,A

x ∧ . . . ∧ Ei,Ax ) < δ′}) k→∞−−−→ 1.

Consequently, from the definition of distΛr(Rd) it follows that

µ({x ∈M ; distΛr(Rd)(E
1,Ak
x ⊕ . . .⊕Ei,Akx , E1,A

x ⊕ . . .⊕Ei,Ax ) < δ′}) k→∞−−−→ 1.

Now, using the fact that the distances distΛr(Rd) and dist are equivalent it
follows that for every δ > 0,

µ({x ∈M ; ](E1,Ak
x ⊕ . . .⊕ Ei,Akx , E1,A

x ⊕ . . .⊕ Ei,Ax ) < δ}) k→∞−−−→ 1

as we want.

As a simple consequence of the previous proposition applied to adjoint
cocycles Ak∗ and A∗ combined with Lemma 8.2.4 we get that

Corollary 8.3.6. For every 0 ≤ i ≤ l − 1 and δ > 0 we have that

µ({x ∈M ; ](Esi,Akx , Esi,Ax ) < δ}) k→∞−−−→ 1.
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8.3.3 Proof of the direct implication of Theorem 8.1.1

The cone of radius α > 0 around a subspace V of Rd is defined as

Cα(V ) =
{
w1 + w2 ∈ V ⊕ V ⊥; ‖w2‖ < α‖w1‖

}
.

Observe that this is equivalent to

Cα(V ) =

{
w ∈ Rd; dist

(
w

‖w‖
, V

)
< α

}
where dist is the distance defined in (2.1).

In order to prove the direct implication of our main theorem we are going
to need the following auxiliary result.

Lemma 8.3.7. Given 1 ≤ i ≤ l, ε > 0 and δ > 0 there exist a subset
K = K(ε) ⊂M with µ(K) > 1− ε and δ′ = δ′(ε, δ) > 0, such that for every
x ∈ K,

Cδ′(E
ui,A
x ) ∩ Cδ′(E

si−1,A
x ) ⊂ Cδ(Ei,Ax ).

Proof. For every regular point x ∈ M we can define an inner product 〈, 〉x
on Rd such that {Ei,Ax }li=1 are mutually orthogonal. Moreover, this family of
inner products may be chosen to be measurable. Let K ⊂M be a compact
subset of M with µ(K) > 1 − ε and such that 〈, 〉x is continuous when
restricted to K. Then, there exists C > 1 such that 1

C ‖v‖ ≤ ‖v‖x ≤ C‖v‖.
Take δ′ := δ

4C2 > 0.

Given v ∈ Cδ′(E
ui,A
x ) ∩ Cδ′(E

si−1,A
x ), for every x ∈ K we can write

v = vi + vui−1 + v⊥ui where

vi = Proj
Ei,Ax

(v), vui−1 = Proj
E
ui−1,A
x

(v) and v⊥ui = Proj
(E

ui,A
x )⊥

(v).

Analogously v = vi + vsi + v⊥si−1
. From the definition of cone we get that∥∥v⊥ui∥∥ < δ′ and

∥∥∥v⊥si−1

∥∥∥ < δ′ and consequently,∥∥vsi − vui−1

∥∥ < 2δ′.

Now, from the definition of vsi and vui−1 and the choice of C it follows that

‖vs‖x < 2Cδ′.

Consequently,

‖vs‖ < 2C2δ′ <
δ

2

and thus, if v = vi + v⊥i then∥∥∥v⊥i ∥∥∥ ≤ ∥∥∥vsi + v⊥si−1

∥∥∥ < δ

which implies that v ∈ Cδ(Ei,Ax ) as we want.
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Given ε > 0, let K ⊂ M and δ′ > 0 be given by the previous lemma.
Proposition 8.3.5 and Corollary 8.3.6 gives us that for every 1 ≤ i ≤ l and
k sufficiently large the sets

Aui = {x ∈M ; ](Eui,Akx , Eui,Ax ) ≥ δ′}

and
Asi−1 = {x ∈M ; ](E

si−1,Ak
x , E

si−1,A
x ) ≥ δ′}

are such that µ(Aui) < ε and µ(Asi−1) < ε. Now, observing that, for
x /∈ Aui ∪Asi−1 and k sufficiently large,

Ei,Akx = Eui,Akx ∩ Esi−1,Ak
x ⊂ Cδ′(Eui,Ax ) ∩ Cδ′(E

si−1,A
x )

it follows from Lemma 8.3.7 that, for every x ∈ K \(Aui ∪Asi−1) and k suffi-
ciently large, Ei,Akx ⊂ Cδ(Ei,Ax ). Consequently, µ({x ∈M ; ](Ei,Akx , Ei,Ax ) <
δ′}) ≥ 1− 3ε for every k sufficiently large as we want.

8.4 Continuity of Oseledets subspaces implies con-
tinuity of Lyapunov exponents

This section is devoted to prove the reverse implication of Theorem 8.1.1.
So, let {Ak}k ⊂ C0(M) be a sequence converging to A ∈ C0(M) and suppose
that for every k sufficiently large there exists a direct sum decomposition
Rd = F 1,Ak

x ⊕ . . .⊕ F l,Akx into vector subspaces such that

i) F i,Akx = Ej,Akx ⊕ Ej+1,Ak
x ⊕ . . . ⊕ Ej+t,Akx for some j ∈ {1, . . . , lk} and

t ≥ 0;

ii) dim(F i,Akx ) = dim(Ei,Ax ) for every i = 1, . . . , l

and moreover that

iii) for every δ > 0 and 1 ≤ i ≤ l we have

µ
(
{x ∈M ;](F i,Akx , Ei,Ax ) > δ}

) k→∞−−−→ 0.

Given 1 ≤ i < l, we start proving that if

µ
(
{x ∈M , ](F i,Akx , Ei,Ax ) > δ}

)
→ 0

for every δ > 0 then γj(Ak)→ γj(A) for every d0(A)+d1(A)+. . .+di−1(A) <
j ≤ d1(A) + . . .+ di(A) where d0(A) = 0.

For each k ∈ N, letmk be a FAk -invariant measure supported on {(x, v) ∈
M × RP d−1; v ∈ F i,Akx } which projects to µ and such that

γj(Ak) =

∫
ϕAk(x, v)dmk. (8.9)
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The existence of such a measure is guaranteed by Proposition 8.2.2 and
Remark 8.2.3. Passing to a subsequence we may assume that mk converges
in the weak∗ topology to some measure m. From Lemma 8.3.1 it follows that
m is a FA-invariant measure projecting to µ and moreover that m(Ker(A)) =
0. To conclude the proof it suffices to observe that m is supported on
{(x, v) ∈ M × RP d−1; v ∈ Ei,Ax }. Indeed, if that is the case then invoking
Remark 8.2.3 we get

lim
k→∞

γj(Ak) = lim
k→∞

∫
ϕAkdmk =

∫
ϕAdm = γj(A)

for every d0(A) + d1(A) + . . . + di−1(A) < j ≤ d1(A) + . . . + di(A) as we
want.

Given ε > 0, let K ⊂ M be a compact set with µ(K) > 1− ε
2 and such

that Ei,Ax is continuous when restricted to K. For each δ > 0 let us consider

Gδ = {(x, v) ∈ K × RP d−1; ](v,Ei,Ax ) ≤ δ}.

This is a closed set and thus, by the weak∗ convergence of the sequence
{mk}k,

m(Gδ) ≥ lim sup
k→∞

mk(Gδ). (8.10)

Since mk projects to µ it follows by Rokhlin’s disintegration theorem that
mk can be written as mk =

∫
mk
xdµ(x) where {mk

x}x∈M are measures on

RP d−1. Moreover, from the choice of mk it follows that mk
x(F i,Akx ) = 1 for

µ-almost every x ∈M . Consequently,

mk(Gδ) =

∫
mk
x(Gδ)dµ ≥ 1− µ

(
Kc ∪ {x ∈M ; ](F i,Akx , Ei,Ax ) > δ}

)
.

(8.11)

Now, let kδ ∈ N be such that µ
(
{x ∈M ; ](F i,Akx , Ei,Ax ) > δ}

)
< ε

2 for

every k ≥ kδ. Thus, invoking (8.11) we get that mk(Gδ) ≥ 1 − ε for every
δ > 0 as far as k ≥ kδ. Hence, it follows from (8.10) that m(Gδ) ≥ 1− ε for
every δ > 0. Consequently,

m({(x, v) ∈M × RP d−1; v ∈ Ei,Ax }) ≥ m({(x, v) ∈ K × RP d−1; v ∈ Ei,Ax })
≥ lim

δ→0
m(Gδ) ≥ 1− ε.

Since ε > 0 is arbitrary we conclude that m({(x, v) ∈ M × RP d−1; v ∈
Ei,Ax }) = 1 as claimed.

It remains to consider the case when i = l. If λl(A) > −∞, then the
previous argument also works for this case. Otherwise, if λl(A) = −∞ it
suffices to prove that γj(Ak) → −∞ for j = d1(A) + . . . + dl−1(A) + 1.
Suppose that is not the case, that is, lim supk→∞ γj(Ak) > −∞. Passing to
a subsequence, if necessary, we may assume that limk→∞ γj(Ak) = a > −∞
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and moreover that the sequence of measures {mk}k given as in (8.9) converge
to some measure m. It follows then from Remark 8.3.2 that m is a FA-
invariant measure and m(Ker(A)) = 0. Proceeding as we did in the previous
case we conclude that m(El,A) = 1 and

−∞ > a = lim
k→∞

γj(Ak) = lim
k→∞

∫
ϕAkdmk =

∫
ϕAdm.

On the other hand, Birkhoff’s ergodic theorem implies that
∫
ϕAdm = −∞

which gives us a contradiction. Therefore, γj(Ak) → −∞ for j = d1(A) +
. . . + dl−1(A) + 1 and hence γj(Ak) → −∞ for every j ∈ {d1(A) + . . . +
dl−1(A) + 1, . . . , d} completing the proof of Theorem 8.1.1.
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CHAPTER 9

Two dimensional cocycles

In this chapter we prove a stronger result than Theorem D when the cocycles
are in SL(2,R). Here we deal with a more general setting for the base
dynamics that we are going to define now.

The notations of this chapter does not correspond to the notations of
the previous ones.

9.1 Definitions and Statements

Let f : M → M be a partially hyperbolic map, dynamically coherent with
compact center leaves, and µ an ergodic invariant probability measure.

Let M̃ = M/Wc be the quotient of M by the center foliation, and
π : M → M̃ be the quotient map. We say that the center leaves form a fiber
bundle if for any Wc(x) ∈ M̃ there is a neighborhood V ⊂ M̃ of Wc(x) and
a homeomorphism

hx : V ×Wc(x)→ π1(V )

smooth along the verticals {`}×Wc(x) and mapping each vertical onto the
corresponding center leaf `.

In this chapter we deal with cocycles α-H”older cocycles A : M →
SL(2,R) and the α-H”older topology of Hα(M), defined in Chapter 2.

Definition 9.1.1. Given an invertible measurable map g : N 7→ N an
invariant measure η and an integrable cocycle A : N → SL(2,R) we say
that A is non-uniformly hyperbolic if λ+(x) > 0 for η almost every point.

Here we will need a concept of continuity of Lyapunov exponents for non
ergodic measures.
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Definition 9.1.2. Given an invertible measurale map g : N 7→ N an invari-
ant measure η and an integrable cocycle A : N → SL(2,R) we say that A is
a weak continuity point of Lyapunov exponents if for every Ak that converges
to A implies that λ+

Ak
: N → R converges in measure to λ+

A : N → R.
Observe that as Ak → A this implies that supk ‖Ak‖ is bounded and in

consequence λ+
Ak

is bounded, also we are dealing with probability measures,

then convergence in measure is equivalent to convergence in L1
η.

Definition 9.1.3. We say that A ∈ Hα(M) is stably non-uniformly hyper-
bolic if there exist an open set A ∈ V ⊂ Hα(M) such that every B ∈ V has
L(B,µ) > 0.

Observe that as we assume that µ is ergodic L(B,µ) > 0 is equivalent
to non-uniformly hyperbolic.

The fiber bundle condition gives that the quotient M̃ = M/Wc is a
topological manifold and the induced f̃ : M̃ → M̃ is a hyperbolic homeo-
morphism (as in Definition 2.1.1).

We say that µ has projective product structure if locally π∗µ ∼ µs × µu
(this measures are equivalent).

As before, we are interested in the case where f is not hyperbolic in the
center direction, so in what follows we also assume that the extremal center
Lyapunov exponents of f are zero.

The principal result of this chapter is Theorem B, that we recall here

Theorem 9.1.4. Let µ be a f -invariant ergodic measure with zero center
Lyapunov exponent and projective product structure.

Let A : M → SL(2,R) be a fiber bunched cocycle, such that the restriction
to some periodic center leaf of f is a weak continuity point of Lyapunov
exponent and non-uniformly hyperbolic. Then A is accumulated by stably
non-uniformly hyperbolic cocycles.

9.2 Holonomies

The key concept, here again, are the holonomies. Let us define the ones that
we consider here.

Definition 9.2.1. Given x̃ ∈ M̃ and ỹ ∈ M̃ , such that ỹ ∈ W s(x̃), we can
define the stable holonomy as the holonomy given by the stable foliation, i.e:
hsx̃,ỹ : Wc(x̃) → Wc(ỹ) where hsx̃,ỹ(t) is the first intersection between Ws(t)
and Wc(ỹ).

Analogously for z̃ ∈ W u(x̃) we define the unstable holonomy hux̃,z̃ :
Wc(x̃)→Wc(z̃) changing the stable by unstable manifolds.

It is well known that there exists f̃ periodic points, that in this case
correspond to f periodic center leaves. To simplify notation lets assume
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that the center leaf p̃ is fixed, f̃(p̃) = p̃ (all the arguments and results are
not affected by taking an iterate such that p̃ is fixed).

Given a periodic center leaf p̃ ∈ M̃ , let us denote by K = Wc(p̃), and
let z̃ ∈ M̃ be homoclinic point for p̃, i.e: there exist ` > 0 such that
z̃ ∈W u

loc(p̃) ∩ f̃−`(W s
loc(p̃)). We can define h : K → K by

h = hsz̃,p̃ ◦ hup̃,z̃
As A is fiber bunched we have defined the strong stable and strong

unstable holonomies as in section 2.2.
Let HA

t : R2 → R2

HA
t = Hs,A

(z̃,hup̃,z̃(t)),(p̃,h(t))
Hu,A

(p̃,t),(z̃,hup̃,z̃(t))

9.2.1 Invariance principle

Let P : M × RP 1 →M, P (x, v) = x be the projection to the first coordi-
nate and let m be a measure in M × RP 1 such that P∗m = µ.

By Rokhlin [22] we can disintegrate the measure m with respect to the
partitions P = {{p} × RP 1, p ∈ M}, P̂ = {Wc

p × RP 1, p ∈ M}. Lets call

the first conditionals measures mx, x ∈M , and the second m̃x̃ ,x̃ ∈ M̃ .
Also we can disintegrate µ in the partition P̃ = {Wc

p̃, p̃ ∈ M̃}, we call

this disintegration µcx̃, x̃ ∈ M̃
It is easy to see that

m̃x̃ =

∫
mxdµ

c
x̃

( [26, exercise 5.2.1]).
For ỹ ∈W u(x̃) define Hux̃,ỹ :Wc(x̃)× RP 1 →Wc(ỹ)× RP 1

Hux̃,ỹ(t, v) =
(
hux̃,ỹ(t), H

u
(x̃,t),(p̃,hux̃,ỹ(t))v

)
Because π∗µ has product structure, by the invariance principle (proposi-

tion 2.3.1 and 2.3.2) there exist a continuous disintegration µcx̃ su invariant
everywhere. i.e: M̃ s = M̃u = M̃ . Then we have that h∗µ

c
p̃ = µcp̃ and

denoting by
fp̃ : K → K, fp̃ = f |Wc(p̃)

then fp̃∗µ
c
p̃.

Proposition 9.2.2. If L(A,µ) = 0, m admits a continuous disintegration
m̃x̃, x̃ ∈ M̃ with respect to P̂ that is su-invariant. Moreover, for every x̃ ∈ M̃
and ỹ ∈ M̃ in the same unstable leave

H∗(x̃,x),(ỹ,h∗x̃,ỹ(x))∗
mx = mh∗x̃,ỹ(x) for µcx̃ almost every x ∈ Wc

x̃.
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Proof. Let us prove for ∗ = u, the case ∗ = s is analogous. By proposi-
tion 2.3.1 there exist a mx, x ∈M Rokhlin disintegration su invariant.

Take x̃ ∈ M̃ and ỹ ∈ M̃ in the same unstable leave and such that for µcx̃
almost every x ∈ Wc(x̃) and for µcỹ almost every y ∈ Wc(ỹ) belongs to Mu.
Then

Hux̃,ỹ∗m̃x̃(B) =

∫
mx

(
Hu
x̃,ỹ
−1(B)

)
dµcx̃(x)

=

∫
mx

(
Hu

(x̃,x),(ỹ,hux̃,ỹ(x))
−1(Bhux̃,ỹ(x))

)
dµcx̃(x)

=

∫
Hu

(x̃,x),(ỹ,hux̃,ỹ(x))∗
mx

(
Bhux̃,ỹ(x))

)
dµcx̃(x)

=

∫
mhux̃,ỹ

(
Bhux̃,ỹ(x))

)
dµcx̃(x)

=

∫
my (By) d

(
hux̃,ỹ∗µ

c
x̃

)
(y)

=

∫
my (By) d

(
µcỹ
)

(y) = m̃ỹ(B)

so the measure m̃x̃ is u invariant, analogously we can find a total measure
set such that m̃x̃ is s invariant. Using Proposition 2.3.2 we conclude that m
admits a continuous P̂ disintegration s and u invariant.

The continuity and the su invariance implies that, for every x̃ ∈ M̃ and
ỹ ∈ M̃ in the same unstable leave

Hu
(x̃,x),(ỹ,hux̃,ỹ(x))∗

mx = mhux̃,ỹ(x) for µcx̃ almost every x ∈ Wc
x̃.

as claimed.

Then if L(A,µ) = 0 we have that HA
t ∗mt = mh(t) for µcp̃ almost every

t ∈ K.
A |K : K → SL(2,R) defines a linear cocycle over fp̃ with invariant

measure µK = µcp̃. For almost every t ∈ K we have defined R2 = Eut + Est ,
where Eut is the Oseledets subspace corresponding to λ+

µK
(t) and Est the

corresponding to λ−µK (t). In the case that λ+
µk

(t) = λ−µk(t) we have that
Eut = Est = R2.

Definition 9.2.3. We say that A ∈ Hα(M) is

• Weakly pinching if there exist a periodic center leaf K = Wc(p) such
that A |K : K → SL(2,R) is non-uniformly hyperbolic with respect to
µK .

• Weakly twisting if there exist K̃ ⊂ K with µK(K̃) > 0 such that
HA
t ({Eut , Est }) ∩ {Euh(t), E

s
h(t)} = ∅
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Proposition 9.2.4. Suppose L(A,µ) = 0, then

{HA
t E

u
t , H

A
t E

s
t } ∩ {Euh(t), E

s
h(t)} 6= ∅

for µK almost every t ∈ K.

Proof. If λ+
µK

(t) = 0 or λ+
µK

(h(t)) = 0 the result is trivial. If not, by
Proposition 8.2.1 (aplied to every ergodic component) the disintegration
of the F invariant measures are of the form mt = a(t)δEut + b(t)δEst with
a(t) + b(t) = 1, the same replacing t for h(t).

As the cocycle is fixed we denote Ht = HA
t . By proposition 9.2.2 we can

take a total measure set such that Ht∗mt = mh(t), this means that

a(t)δHtEut + b(t)δHtEst = a(h(t))δEu
h(t)

+ b(h(t))δEs
h(t)

almost every t ∈ K.
So supp(mh(t)) = supp(Ht∗mt). Then as supp(Ht∗mt) ⊂ {HtE

u
t , HtE

s
t }

and supp(mh(t)) ⊂ {Euh(t), E
s
h(t)} the result follows.

As a direct corollary we have

Corollary 9.2.5. Given f : M → M and µ f invariant with local product
structure and let A ∈ Hα(M) be weakly twisting then L(A,µ) > 0

9.3 Proof of Theorem 9.1.4

Lemma 9.3.1. Assume that A : K → SL(2,R) is non-uniformly hyperbolic
and a weak continuity point of Lyapunov exponents, then it is a continuity
point, in measure, of the Oseledets decomposition.

Proof. Take an ergodic decomposition of µK , {µE , E ∈ P}, where P is the
partition given by the ergodic decomposition, we have that if t ∈ E then
λ+
A(t) = λ+

A(E).
Suppose by contradiction that there exist δ > 0 and An → A such

that µk{t ∈ K,∠(E∗,Ant , E∗,At ) > δ} > δ for ∗ = s or u. Here we use the
convention that if dim(E) 6= dim(F ), ∠(E,F ) = π. Take a subsequence of
λ+
Ank

that converges µK almost every t ∈ K to λ+
A.

This implies that λ+
Ank

(E) → λ+
A(E) for almost every E ∈ P, then

by Theorem C aplied to every ergodic component we have that µE{t ∈
K,∠(E

∗,Ank
t , E∗,At ) > δ} → 0, For almost every E ∈ P.

Then by dominated convergence

µK{t ∈ K,∠(E
∗,Ank
t , E∗,At ) > δ} =

∫
µE{t ∈ K,∠(E

∗,Ank
t , E∗,At ) > δ} dµK

converges zero.
This contradiction proves the Lemma.
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Lemma 9.3.2. Let A : M → SL(2,R) be weakly twisting and weakly pinch-
ing, such that A |K : K → SL(2,R) is a weak continuity point of Lyapunov
exponent then it is stable weakly twisting.

Proof. Reducing K̃, given in definition 9.2.3, we can assume that there exist
ε > 0 such that

min
a,b∈{u,s}

]
(
HA
t E

a(t), Eb(h(t))
)
> ε

for every t ∈ K̃ and µc(K̃) > 2c > 0.
Take 0 < δ < ε

6 and such that ]
(
HA
t V,H

A
t W

)
< ε

6 for every V,W ∈ RP 1

with ]
(
HA
t V,H

A
t W

)
< δ.

Now by the continuity of the Oseledets spaces, given by Lemma 9.3.1
, for every B ∈ Hα(M) sufficiently close to A there exist K̂ ⊂ K with
µc(K̂) > 1− c

3 such that ] (E∗B(t), E∗A(t)) < δ, ∗ ∈ {u, s}.
As in Hα(M), HA

t varies continuously with respect to A, we have that
for B sufficiently close to A

]
(
HB
t E
∗
B(t), HA

t E
∗
B(t)

)
<
ε

6

So taking K ′ = K̂∩K̃ we have that µc(K ′) > 2c
3 , then µc(h(K̃∩K̂)∩K̂) > c

3 .

So for every t ∈ h−1
(
h(K̃ ∩ K̂) ∩ K̂

)
we have

]
(
HB
t E
∗
B(t), HA

t E
∗
A(t)

)
<
ε

3
and ] (E∗B(h(t)), E∗A(h(t))) <

ε

3
.

Then
min

a,b∈{u,s}
]
(
HB
t E

a
B(t), EbB(h(t))

)
>
ε

3
.

Lemma 9.3.3. For every A weakly pinching such that A |K : K → SL(2,R)
is a continuity point of Lyapunov exponent there exists Â ∈ Hα(M), weakly
twisting and weakly pinching, arbitrary close such that A |K= Â |K
Proof. Assume that there exist a total measure set K ′′ ⊂ K with the prop-
erty that for every t ∈ K ′′, {HA

t E
u
t , H

A
t E

s
t } ∩ {Euh(t), E

s
h(t)} 6= ∅

Lets call hup̃,z̃(t) = hu(t) then

HA
t = Hs

(z̃,hu(t)),(p̃,h(t))H
u
(p̃,t),(z̃,hu(t)).

By definition we have that

Hs
(z̃,hu(t)),(p̃,h(t)) = A(p̃, h(t))−1Hs

f(z̃,hu(t)),f(p̃,h(t))A(z̃, hu(t))

Fix r > 0 such that f(B(z̃, r)) ∩ B(z̃, r) = f−1(B(z̃, r)) ∩ B(z̃, r) = ∅,
and define a C∞ function ψ : M̃ → R such that

ψ(x̃) =

{
1 if x̃ = z̃
0 if x̃ /∈ B(z̃, r)
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Let θ > 0 be small, that we will determinate later, and multiply A by
the rotation of R : M → SL(2,R), Rψ(x)θ. So we have the new cocycle

Â = AR, with stable holonomy

Hs,Â
(z̃,hu(t)),(p̃,h(t)) = A(p̃, h(t))−1Hs

f(z̃,hu(t)),f(p̃,h(t))A(z̃, hu(t))Rθ.

So the new map HÂ
t corresponding to Â becomes

HÂ
t = A(p̃, h(t))−1Hs

f(z̃,hu(t)),f(p̃,h(t))A(z̃, hu(t))RθH
u
(p̃,t),(z̃,hu(t))

Fix set Γ ⊂ K ′′ with µcp̃(Γ) > 0 such that there exist γ > 0 and
] (EuA(t), EsA(t)) > γ for every t ∈ Γ.

Fix t ∈ Γ and denote by

Bt = A(p̃, h(t))−1Hs
f(z̃,hu(t)),f(p̃,h(t))A(z̃, hu(t))

H ′t = Hu
(p̃,t),(z̃,hu(t))

Then
BtRθH

′
tE
∗
t ∈ {Euh(t), E

s
h(t)}

if and only if
RθH

′
tE
∗
t ∈ {B−1

t Euh(t), B
−1Esh(t)}

We have two posibilities or RθHE
∗
t ⊂ {B−1Euh(t), B

−1Esh(t)}, for ∗ =

u and s, or only for s or u (supose s) and there exist a positive measure
sub-set of Γ̃ ⊂ Γ such that RθHE

u
t /∈ {B−1

t Euh(t), B
−1
t Esh(t)}.

For the first case, let h(t) ∈ Γ taking 0 < θ < γ′, where

γ′ = min
](U,V )>γ

]
(
B−1
t U,B−1

t V
)
,

we have that RθH
′
tE
∗(t) /∈ {B−1

t Euh(t), B
−1
t Esh(t)}.

For the second case, taking Γ̃ smaller if we need, there exist γ̃ such that

]
(
RθH

′
tE

u
t , B

−1
t E∗h(t)

)
> γ̃.

So just take 0 < θ < min{γ′, γ̃}.
Then for every t ∈ h−1(Γ̃) we have that

{HÂ
t E

u
t , H

Â
t E

s
t } ∩ {Euh(t), E

s
h(t)} = ∅

Making θ smaller we make Â closer to A. As the perturbation do not affect
A |K the lemma follows

Now we can prove Theorem 9.1.4

Proof of Theorem 9.1.4. By Lemma 9.3.3 there exist Â, arbitrary close to
A, with the weakly twisting and weakly pinching property, such that A |K=
Â |K . By Lemma 9.3.2 Â is stable weakly twisting then by corollary 9.2.5
Â is stably non-uniformly hyperbolic.
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APPENDIX A

Appendix

A.1 Lyapunov exponents of the adjoint cocycle

Let f : M → M be a dynamical system, A : M → GL(d,C) and FA :
M × Cd →M × Cd the induced linear cocycle.

Let FA∗ : M ×Cd →M ×Cd be the adjoint cocycle over f−1 : M →M ,
defined in 6.1

Theorem A.1.1. FA and FA∗ have the same Lyapunov exponents, also if
E1, · · · , Ek are the Lyapunov spaces corresponding to λ1, . . . , λk respectively,
then the Lyapunov spaces of the adjoint are

Ej∗ =
[
E1 ⊕ · · · ⊕ Êj ⊕ · · · ⊕ Ek

]⊥
where Êj is the space that is not in the sum.

Proof. First of all if ej∗(x) ∈ Ej∗(x) and vj ∈ Ej∗(f−1(x))
⊥

then〈
vj , A∗(x)ej∗(x)

〉
=
〈
A(f−1(x))vj , ej∗(x)

〉
= 0

then A∗(x)Ej∗(x) = Ej∗(f
−1(x)).

So we have for almost every x ∈M an Â∗ invariant decomposition.
Call ej∗(x) ∈ Ej∗(x) a unitary vector and ej(x) ∈ Ej(x). Then for k 6= j〈

ek(f−n(x)), Ân∗ (x)ej∗(x)
〉

= 0

and 〈
ej(f−n(x)), Ân∗ (x)ej∗(x)

〉
=
∥∥∥Ân∗ (x)ej∗(x)

∥∥∥ cos(αj(f−n(x)) (A.1)
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where

αj(x) = ]
(
ej∗(x), ej(x)

)
=

π

2
− ]

(
ej∗(x), E1

x ⊕ · · · ⊕ Êjx ⊕ · · · ⊕ Ekx
)

so by Oseledets theorem limn→∞
1
n log|cos(αj(f−n(x))| = 0.

On the other hand we have〈
An(fn(x))ej(f−n(x)), ej∗(x)

〉
=
∥∥An(fn(x))ej(f−n(x))

∥∥ cos(αj(x) (A.2)

Now by the A invariance we have An(fn(x))ej(f−n(x))
‖An(fn(x))ej(f−n(x))‖ = ej(x) so

−λj = lim
n→∞

1

n
log
∥∥A−n(x)ej(x)

∥∥ (A.3)

= lim
n→∞

1

n
log

∥∥∥∥ ej(f−n(x))

‖An(fn(x))ej(f−n(x))‖

∥∥∥∥
= − lim

n→∞

1

n
log
∥∥An(fn(x))ej(f−n(x))

∥∥
So by (A.1), (A.2) and (A.3)

lim
n→∞

1

n

∥∥∥Ân∗ (x)ej∗(x)
∥∥∥ = λj

A.2 Density of continuous maps in L1(M,N)

Let M be a normal topological space and N be a geodesically convex metric
space (Definition 4.3.2). Denote by F the set of measurable maps f : M →
N . Given any regular σ-finite Borel measure µ on M , fix any point 0̂ ∈ N
and define

L1
µ(M,N) = {f ∈ F :

∫
distN

(
f(x), 0̂

)
dµ(x) <∞}.

When µ is a finite measure, the choice of 0̂ ∈ N is irrelevant: different
choices yield the same space L1

µ(M,N).
The function distL1

µ(M,N) : L1
µ(M,N)× L1

µ(M,N)→ R defined by

distL1
µ(M,N)(f, g) =

∫
dN
(
f(x), g(x)

)
dµ(x)

is a distance in L1
µ(M,N). In this appendix we prove

Proposition A.2.1. The subset of continuous maps f : M → N is dense
in the space L1

µ(M,N).

Instituto de Matemática Pura e Aplicada 83 2016



Mauricio Poletti Simple Lyapunov spectrum

We call s : M → N a simple map if there exist points v1, . . . , vk ∈ N
pairwise disjoint measurable sets A1, . . . , Ak ⊂M with finite µ-measure such
that

s(x) =

{
vi if x ∈ Ai
0̂ if x /∈ ∪ki=1Ai

Lemma A.2.2. The set S of simple functions is dense in L1
µ(M,N).

Proof. Consider any f ∈ L1
µ(M,N). Given ε > 0, fix a set K0 ⊂ M with

finite µ-measure and such that∫
M\K0

distN (f(x), 0̂) dµ(x) <
ε

4
.

Let {v1, . . . , vi, . . . } be a countable dense subset of N . The family{
B
(
vi,

ε

µ(K0)

)
: i ∈ N}

covers N and, consequently,

Bi = B
(
vi,

ε

2µ(K0)

)
\
⋃
j<i

B
(
vi,

ε

2µ(K0)

)
, i ∈ N

is a partition of N . Then Ai = K0 ∩ f−1(Bi), i ∈ N is a partition of K0 into
measurable sets. Fix k ∈ N large enough that∫

K0\
⋃k
i=1 Ai

distN (f(x), 0̂) dµ(x) <
ε

4
.

Now define s : M → N by

s(x) =

{
vi if x ∈ Ai for i = 1, . . . , k

0̂ if x /∈ ∪ki=1Ai.

Then∫
M\∪ki=1Ai

distN (f(x), s(x)) dµ(x) =

∫
M\∪ki=1Ai

distN (f(x), 0̂) dµ(x) <
ε

2

and ∫
∪ki=1Ai

distN (f(x), s(x)) dµ(x) ≤ µ
(
∪ki=1 Ai)

ε

µ(K0)
<
ε

2
.

Thus distL1
µ(M,N)(f, s) < ε, which proves the lemma.

Lemma A.2.3. For every s ∈ S and ε > 0 there exists a continuous map
f : M → N such that distL1

µ(M,N)(f, s) < ε.
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Proof. Let Ai and vi, i = 1, . . . , k be as in the definition of the simple map
s. For each i = 1, . . . , k, consider a compact set set Ki ⊂ Ai such that
µ(Ai \Ki) < ε. Since the Ki are are pairwise disjoint, and M is assumed to
be normal, there exist pairwise disjoint open sets Bi ⊃ Ki, i = 1, . . . , k with
µ(Bi \Ki) < ε. By Urysohn, we can find continuous functions ψi : M → R,
i = 1, . . . , k such that

ψi(x) =

{
1 if x ∈ Ki

0 if x /∈ Bi.
(A.4)

Now we use the assumption that N is geodesically convex. For each i =
1, . . . , k, fix λi : [0, 1] → N with λi(1) = vi and λi(0) = 0̂. Then define
f : M → N by

f(x) =

{
λi(ψi(x)) if x ∈ Bi with i = 1, . . . , k

0̂ if x /∈
⋃k
i=1Bi.

It is clear that f is continuous, because the Bi are open and pairwise disjoint.
Moreover, f(x) = s(x) for every

x /∈
k⋃
i=1

Ai \Ki ∪Bi \Ki

So if C = max τ distN (vi, 0̂) then distL1
µ(M,N)(f, s) < 2Ckε.

Proposition A.2.1 is an immediate consequence of Lemmas A.2.2 and A.2.3.
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