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1 Introduction

A large portion of the world’s hydrocarbon reserves is in carbonate reservoirs. Such
reservoirs may be fractured and the wetting properties are often oil-to-mixed wet. These
two characteristics usually result in low hydrocarbon recovery rates. Indeed, the current
production of oil occurs under increasingly difficult conditions; for example, oil recovered
from deep deposits with high pressure and temperature conditions. Recovery methods
for fractured reservoirs comprise [63] [64] supercritical gas injection, thermal methods
[93] [106] [35] [104] and polymer [97] water injection. Our interest is in the injection
of water with dissolved minerals into calcite reservoir. The application that we have in
mind is in recovery from the presal formation [30], (Campos, Baumgartner et al. 2010),
the deep ”pre-salt discovery, which extends over 800 km off the Brazilian coast, from
the state of Esṕırito Santo to Santa Catarina, below a thick salt layer that covers the
sedimentary basins. The deposits consist of an aggregation of oil reservoirs that each
contain of the order of ten billion barrels of oil in place. The reservoirs lie below a
water depth of more than 2,000 m, a layer of sand sediment of 1,000 m and a layer
of salt of 2,000 m. For example the oil in the Tupi basin has to be extracted from a
depth of 5,000 to 7,000 m below sea surface. The high pressures (∼700 bars) make
these reservoirs excellent candidates for high pressure miscible gas injection, e.g., CO2

injection or carbonated water injection.
Recently much research has been done on low salinity water injection [6] [9] [54] [59]

[89] [90] [98] [114] [113] [115] [110] and there is an increased interest in the effect of
dissolved minerals on oil recovery. For example, the presence of sulfate ions, which are
naturally present in sea water can improve the oil recovery by 5-18% [36], but the effect
of sulfate [100] depends on the chalk type and on the wettability of the rock [38]. There
is a vast literature on low salinity injection in oil reservoirs and we refer the interested
reader to the overview paper by Morrow and Buckley [69] [70] as a starting point.

There is also an increasing interest in the effect of injection of water minerals on
the recovery efficiency [98]. Mixed-wet or weakly water-wet are often considered as
optimum wetting conditions for oil recovery [50] [70]. The theory of wetting behavior is
clearly explained in [48]. Contrary to sandstones, the majority of carbonate petroleum
reservoirs are oil-wet [119]. The presence of asphaltenes [16] [17] [18] and their adsorption
on kaolinite can render even a sandstone reservoir oil-wet [24]. The presence of a water
film on the mineral surface may reduce the asphaltene adsorption [27], and induce more
water-wet behavior. The presence of carboxylic acids [40] [41] [81] and amines in the oil
determines the acid and base number [26]. Carboxylic acids and amines bind with other
ions in the solution to form charged surface complexes, which determine the average
charge on the oil. Brady and Krumhansl [13], [12]. point out that reservoirs with a
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stable water film between the calcite and the oil are likely to have a favorable recovery.
In this paper our interest is in the effect of minerals on the carbon dioxide concen-

tration. We leave the effect of surface complexes and relative permeability change for
future work. The dissolution of carbon dioxide in the oleic phase depends on the min-
eral content and can in itself reduce the amount of oil left behind and thus increase the
recovery of oil.

The calculation of the concentration of carbon dioxide requires the determination of
the activity coefficients of all chemical species in the aqueous phase, which thus determine
the ratio of carbon dioxide dissolved in the aqueous phase and the carbon dioxide in
the oleic phase. To simplify the calculations we assume that no oil (decane) dissolves
in the aqueous phase and vice versa. For the equilibrium calaculations we use as an
intermediate step that we consider the equilibrium between the liquid (aqueous or oleic
phase) and the gas phase. We ignore the presence of decane and water in the gaseous
phase. Carbon dioxide concentrations in the oleic phase and aqueous phase for the same
pressure are also in equilbrium with each other. For the equilibrium in the aqueous phase
with gaseouss phase we can use a modified Henry’s law, i.e., with corrections for non-
ideal behavior. For the carbon dioxide equilibrium in the oleic phase and gaseous phase
we need more sophisticated models as the carbon dioxide concentration can increase to
100%. We compute the decane -carbon dioxide equilibrium , using Racketts model for
density calculations, Redlich Kwong EOS, the two suffix Margules rules [82] model for
activity coefficients. Some experimental methods are described in , [53] ). The theory
behind the calculations performed in ASPEN are summarized in chapter 8 of [82]. These
experimental data can be used in ASPEN plus to obtain an optimal description of the
phase behavior [117].

Part of the parameters that determine the activity coefficients for the aqueous so-
lutions (i.e., relations between activities and concentrations) and the concentration-
dependent partial molar volumes can be found in [23] [65] [79] [80] [95] [105]. An excellent
data-base can be found in [37] and references cited therein (see also. Ananthaswamy and
Atkinson [1]. Correct values are required if one extends geochemical behavior to other
pressure and temperature regimes [10] [11]. An excellent overview of geochemistry can
be found in [2] [56] and [103]. The general geochemical background is well explained
in [4] [3] in combination with the accompanying software (PHREEQC) [76] [75] [92].
An overview of existing software for saturated and unsaturated transport problems in
groundwater flow can be found in [108]. The solubility of carbon dioxide in electrolyte
solutions can be found in [21] [87] [86] [85]. Extending Henry’s law [91] requires the
pressures to be replaced by fugacities [77] and the mole fractions to corrected for the
activity coefficient [22] [109] .
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Non-electrolyte solutions depend on the ionic strength as to their solubility [62]. The
same coefficients can be used to determine the ionic strength dependence of the partial
molar volume [46] [47] [68] [78]. Relevant coefficients can also be found in [75] [76].
Both Helgeson and Parkhurst also give the partial molar volume at infinite dilution; the
found parameter values are often more or less equal but there can be a large discrepancy
between parameters values found in the literature. Comparison of the parameter values
allows the usage of specific data bases [43] [52].

Various aspects that are relevant to oil recovery must be studied with comprehensive
modeling, i.e., with a model that describes two-phase flow and dissolution in phases com-
bined with the geochemistry [34]. Noh et al. [73], use fractional flow theory in order to
give a mathematical formalism of combined geochemical and multiphase flow. Holstadt
[49] gives a general framework for multi-species, multiphase and non-isothermal flow,
focusing on chemical reactions and transport. Evje et al. [32] propose a mathematical
model for the weakening of chalk reservoirs due to chemical reactions. It consists of
convection-diffusion transport coupled to dissolution/precipation processes. Evje and
Hiorth [31], include in their model the rock chemistry and its effect on the wetting state.
More precisely they include the fact that the rock surface becomes more water-wet where
dissolution of calcite takes place and incorporate it in the relative permeability and capil-
lary pressure behavior. Relative permeabilities depend on the pore size distribution [20].
In another paper [33], Evje and Hiorth use an extended version of the Buckley-Leverett
model that is coupled to a system of reaction-diffusion equations.

Mathematical aspects of the model equations in terms of precipitation and dissolution
waves provide important insights as to the effect of ions on the recovery of oil [14] [15]
[45].

It is the purpose of the paper to provide the complete geochemical background for
the modeling of carbonated water and carbon dioxide injection in a calcite reservoir.
Section 2 describes a typical model for carbonated low salinity water injection in a calcite
reservoir. It includes all equilibrium reactions and constants in the bulk, the formation
of surface complexes and cation exchange modeling. Appendix A gives the definitions of
activities and the equations for the activity coefficients. It also describes how to convert
activities to molalities. Appendix 3 describes the partition of carbon dioxide between
the oleic and aqueous phase, using Henry’s law. Appendix C gives the data base and
procedure to calculate partial molar volumes of the dissolved components in water. The
expressions can be used to calculate the density of the solutions. Appendix D gives the
Langmuir adsorption isotherms of the surface complexes. Appendix F gives a few basic
programs to obtain the limiting expressions for the Debye-Hückel theory as a function
of pressure to 1000 bars and temperatures to 200◦ C. Appendix E derives the charge
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balance from mass balance considerations. It contains both an engineering example of
this derivation and a general mathematical derivation.
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2 Model description

We consider a calcite rock filled with an oleic phase that contains both oil and dissolved
carbon dioxide as well as an aqueous phase with dissolved solutes like ions, minerals and
carbon dioxide. The oil consists of an alkane (e.g., decane). We assume that all species
are in chemical equilibrium in both phases. Carbon dioxide can be present both in the
oleic phase and the aqueous phase. Calcium carbonate can occur both in the aqueous
phase and in the solid phase. All other minerals and ionic species only occur in the
aqueous phase. Dissolution of decane in the aqueous phase is disregarded. Initially, the
pores of the rock are filled with the oleic phase and an aqueous phase with a range of
pH values, sodium chloride concentrations and other minerals. The injected fluid has
also a high carbon dioxide content, which is determined by the pH values and sodium
chloride concentration. Our main interest is the oil recovery ensuing form these injection
conditions. The flow is governed by Darcy’s law and conservation laws for chemical
species. For simplicity we consider one dimensional incompressible flow.

2.1 Gibbs phase rule

Before stating the governing equations, we apply Gibbs rule to determine the number of
chemical degrees of freedom. Gibbs phase rule states (see, e.g., [66]) that the number
of degrees of freedom is given by

Nf = Ns −Nr −Nc + 2− p, (1)

where Ns is the number of different chemical species, Nr is the number of possible
equilibrium reactions (in the aqueous phase), Nc is the number of constraints, e.g., the
charge balance. We call the charge balance a constraint as opposed to a mass balance
equation, which involves accumulation, convection and diffusion terms; it can be stated
as an algebraic equation satisfied everywhere. The number 2 represents the temperature
and pressure and p the number of phases. Hence there are p equations of state (EOS).

As there is some judgment in enumerating the relevant aqueous species; we follow
Appelo and Parkhurst [75] and [3] and use the geochemistry program PHREEQC to
analyze phenomena in the aqueous phase. PHREEQC makes a choice to disregard certain
components, of which the concentration is negligible when we add water, CaCO3 (solid)
and NaCl. The programme tells us that there are fifteen different relevant chemical
species, (Ns = 15), twelve that occur only in the aqueous phase, one, i.e. carbon dioxide,
that occurs both in the aqueous phase and one, alkane, that occurs only in the oleic
phase. Calcium carbonate occurs both in the solid phase and in the aqueous phase. The
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species that occur in the aqueous phase have fourteen concentrations denoted by ca,i
where i = CO2, CO

2−
3 , HCO−3 , CaHCO

+
3 , CaCO3, NaCO

−
3 , NaHCO3, H2O, H

+,
OH−, CaOH+, Ca2+, Cl−, Na+. The concentration of carbon dioxide in the oleic
phase is denoted by co,CO2 . The concentration of alkane (A) in the oleic phase is denoted
by co,A in the oleic phase. The concentration of CaCO3 in the solid phase is denoted by
cr,CaCO3 , which is constant.

2.2 Equilibrium concentrations in the aqueous phase

We consider the following eight (Nr = 8) equilibrium reactions in the aqueous phase [55],
[75].

(CO2)aq +H2O 
 HCO−3 +H+

HCO−3 
 CO2−
3 +H+

H2O 
 OH− +H+

(CaCO3)aq 
 Ca2+ + CO2−
3

Ca2+ +H2O 
 CaOH+ +H+

CO2−
3 + Ca2+ +H+ 
 CaHCO+

3

Na+ + CO2−
3 
 NaCO−3

Na+ +HCO−3 = NaHCO3 (2)

We dropped the subscript (aq) on all compounds except for CaCO3 and CO2 as
we assume that all other compounds only occur in the aqueous phase. All possible
equilibrium reactions can be found by linear combinations of these eight equilibrium
equations. The equilibrium constants are expressed in activities for which the reference
state is an ideal solution with concentration of one molal. So the molal concentration is
given by the activities divided by the activity coefficients (see Appendix A).

Thermodynamic equilibrium between phases requires that the chemical potential of
(CaCO3)r in the solid phase is equal to the chemical potential of (CaCO3)aq in the
aqueous phase. This can be represented as

(CaCO3)r 
 (CaCO3)aq . (3)

In the same way the chemical potential of carbon dioxide in the aqueous phase is equal
to the chemical potential in the oleic phase. This can be represented as

(CO2)o 
 (CO2)aq . (4)
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As we consider a solid, an aqueous and an oleic phase, the number of phases is p = 3.
There is one (Nc = 1) constraint, viz., the charge balance equation, which can be

written as (
2ma,CO2−

3
+ma,HCO−3

+ma,OH− +ma,NaCO3− +ma,Cl−

= 2ma,Ca2+ +ma,H+ +ma,Ca(HCO3)+ +ma,Na+ +ma,CaOH+

)
, (5)

The molal concentrations can be converted to molar concentrations as explained in
Eq. (91) in Appendix A. Such conversions couple each concentration to all others.

The charge balance equation can be derived from the mass balance equations (see
Appendix E). We are therefore allowed to replace one balance equation by the charge
balance equation. Note that the charge balance equation is an algebraic equation. Al-
ternatively, we can combine the hydrogen and oxygen balance equations into a single
equation, in such a way that the water concentration is eliminated, and use the charge
balance equation (5) together with the combination of the hydrogen and oxygen bal-
ance equation to complete the system of equations. This replacement is considered to
be helpful to enhance stability as the water concentration (∼55.5 mole/liter) is much
higher than the other concentrations, causing numerical problems in simulations.

3 Partition of carbon dioxide into the aqueous and

oleic phases

By comparing the Henry coefficient of carbon dioxide between the oleic phase and the
gas phase to the Henry coefficient between the aqueous and the gas phase it is possible to
derive the equilibrium of carbon dioxide between an oleic phase and the aqueous phase.

Extended Henry’s law, where the pressure is replaced by the fugacity and the con-
centration by the activity, describes the ratio between the activity of carbon dioxide in
the gas phase and the activity in the liquid (o/w) phase. We obtain for the aqueous
phase

HH
w−g = ag,CO2/aw,CO2 = fg,CO2/ (xa,CO2γa,CO2) , (6)

where xa,CO2 is the mole fraction of carbon dioxide in the water phase, γa,CO2(aq) the
activity coefficient, and fCO2(g) is the fugacity of carbon dioxide in the gas phase. Henry
coefficients as a function of temperature are tabulated in [91], [118]. The Henry’s law
reads P = kx, with P the pressure and x the mole fraction. They give for the inverse
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Henry constant kH [mole/atm] , where kH = ca/P,

ln kH/k
0
H = −∆Hw

R

(
1

T
− 1

T0

)
,

where for carbon dioxide dissolution in water we have k0H = 34
[
mole/m3/atm

]
at tem-

perature T0 = 298.15 [K] and ∆Hw/R = 2400 [K] with R denoting the gas constant.
The positive value arises as the inverse Henry theory gives the conversion of the dissolved
phase to the gas phase and this reaction is endothermic. Conversion of kH to HH

w−g uses

the equation HH
w−g = (ρw/Mw) /kH and

lnHH
w−g/H

H,0
w−g =

∆Hw

R

(
1

T
− 1

T0

)
, (7)

and HH,0
w−g = (ρw/Mw)

[
mole/m3

]
/34

[
atm/

(
mole/m3

)
= atm

]
. Indeed, the density of

water ρw is expressed in
[
kg/m3

]
and Mw is the molar weight expressed in [kg/mole].

At low pressures th fugacity is equal to the pressure and this allows us to determine
HH
w−g at low pressures. However, at high pressure we use the same value of the Henry

coefficient, but it is now given by Eq. (6). The calculation of activity coefficients of
neutral molecules (CO2 (aq), SiO2 (aq), H2S(aq)) is usually much simpler than the
calculation of activity coefficients of ions [2], [87]. To obtain an approximate value of
the activity coefficient γa,CO2 in electrolyte solutions we use the Setchénow coefficient

kS > 0 [88] [87] [86] [85], with γa,CO2 = exp (kSµ) , where µ =
1

2

N∑
i=1

cjZ
2
j is the ionic

strength, with the consequence that the mole fraction of carbon dioxide decreases for
increasing salt concentration (salting out effect). Here cj denotes the molar concentration
of component i. For single salt solutions, values can be found in [102]. Byrne et al. [21]
use a more general equation, which takes into account the ionic species dependence

log γa,CO2 =
∑
i

kSiµi := µkS, (8)

where kSi are the Setchénow coefficients contribution of a certain neutral species S due
to ionic component i and µi is the contribution of ions i to the ionic strength. This
procedure is implemented in PHREEQC [75]. However, to add the individual values is
cumbersome and we can approximate the values using that kS = 0.1 ([62]) ([101]), even
if these values can vary, admitting that it is an approximation.
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In the same way we can also relate the equilibrium of carbon dioxide in the gas phase
[116] [71] and oleic phase by (see chapter 8 of [82])

HH
o−g = ag,CO2/ao,CO2 = fg,CO2/ (xo,CO2γo,CO2) . (9)

We ignore the pressure dependence in the liquid phase of the Henry coefficient, i.e.,
and in this case the Krichevsky-Ilinskaya equation [82] becomes equivalent to Eq. (9).
Indeed, we verified that the pressure correction can be disregarded. Using literature data
of the carbon dioxide-decane equilibrium [72] For the activity coefficient we use the one
parameter (A) twosuffix Margules equation [82]

ln γo,CO2 =
A

RT
(1− xo,CO2)

2 . (10)

The word two-suffix indicates that the excess free energy is quadratic. The value of Ȧ
and the Henry coefficient are obtained by substituting experimental data into Eq. (9)
and Eq. (10) and we obtain

lnHH
o−g/H

H,0
o−g =

∆Ho

R

(
1

T
− 1

T0

)
, (11)

We obtain that HH,0
o−g = exp (16.31) [Pa]=119.54[atm] at temperature T0 = 344.3

[K] and ∆H0/RT = 770.2. The coefficient A = 1870 [J/mol] at 344.3 [K] .This can be
compared with the value109.38 [atm] found in [112].

Therefore the ratio of the Henry coefficients give the ratio of the molalities

HH
w−g

HH
o−g

=
fg,CO2/ (xa,CO2γa,CO2)

fg,CO2/ (xo,CO2γo,CO2)
=
xo,CO2γo,CO2

xa,CO2γa,CO2

(12)

No salt dissolves in the oleic phase.

3.1 Density of mixtures

3.2 Water density

The volume of a solution is given in terms of the molar composition ni by

V =
N∑
i=1

V ini, (13)
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where the partial molar volumes are defined by

V i =

(
∂V

∂ni

)
nj 6=i,T,P

. (14)

This leads to the equation of state

N∑
i=1

V ici =
N∑
i=1

V iρwxi = 1, (15)

where ci is the concentration and ρw is the molar density of water. It follows that the
molar density of water is given by

ρw =
1∑N

i=1 V ixi
(16)

PHREEQC gives the partial molar volumes at infinite dilution by

V i,inf = 41.84

(
a1/10 +

100a2
2600 + Pb

+
a3

TK − 228
+

10000a4
(2600 + Pb) (TK − 228)

−WQBorn

)
,

(17)
where QBorn = −∂P (1/εr) = 0.615e-06(/bar). The coefficient εr refers to the dielectric
coefficient of the pure water phase. The reason to cast this equation in this form is
that the coefficients a1, a2, a3, a4, W depend on the component i can be found in the
literature. The constants are such that the term in brackets is in cal/mol/bar, with
pressures Pb in bar and temperature TK in Kelvin. The values of the constants a1, a2,
a3, a4, W, å i1, i2, i3, i4 are a1 = 8.615, a2 = 0, a3 = −12.21, a4 =0 W = 0, å = 1.667,
i1 = 0. i2 = 264, i3 = 0 and i4 =1 for the reaction CO2−

3 + H+ → HCO−3 . Using the
factor 41.84, leads to a volume V i,inf of cm3/mol., where we recall that the factor 4.184
converts calorie to Joule.

The volume in a salt mixture with ionic strength µ is given by [10] [47] [52] [105] [92]
[80] [79] [67] [68] is split in a ionic species dependent term V i,inf and a correction due
to its presence in a solution of ionic strength µ

V̄i − V i,inf =
ψiAV

√
µ

Λ
+
ψiAγ åBV µ

Λ2
+
νibV,iµ

2
, (18)

where alternatively to Eq. (18) we can also write

V i = V i,inf +
1

2
z2iAV

√
µ

1 + åBγ
√
µ

+ βiµ
i4 , (19)

13



Figure 1: The Debye Huckel parameter (−1.63521E − 15T 3 + 1.66821E − 12T 2 −
0.000000000587862T + 0.0000000664581)P 3 + (9.26251E − 13T 3 − 9.12623E − 10T 2 +
0.000000341581T−0.00004174)P 2+(5.53046E−11T 3−1.01197E−7T 2+0.000023077T−
0.001447951)P+(−0.0000000716544T 3+0.0000929356T 2−0.027716004T+2.530009631).
Comparison between observed and regression values.

where βi = i1 + i2/ (TK − 228) + i3 (TK − 228) . The various alternatives for i1, i2 and i3
are useful because literature data are presented in various forms. The value å is set to
zero for anions in some data sets. Note that some books use 1/4z2iAV , but we stick to
this formulation.

Alternatively Helgeson and Kirkham [46] write

V i = V i,inf +
1

2
νz2iAV

√
µ

1 + åBγ
√
µ

+
1

2

νz2iAγ åBV µ(
1 + åBγ

√
µ
)2 +

νbV µ

2
, (20)

but it becomes nowhere clear what bV is. Fortunately in another paper Helgeson and
Kirkham write

Λ = 1 + åBγ
√
µ (21)

V i = V i,inf +
1

2
z2iAV

√
µ

1 + åBγ
√
µ
− 1

2

z2iAV
√
µ(̊

aBγ
√
µ
)3 (Λ− 1

Λ
− 2 ln Λ

)
+
z2iAγBV

å3B4
γµ

(
Λ2

2
− 3Λ +

1

Λ
+ 3 ln Λ +

3

2

)
+
νBV µ

4
(22)
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where ν is the number of moles of ions,

BV = ln(100)RT∂PBγ and bV = ln(100)RT∂P bγ (23)

The constant AV , the Debye limiting slope, can be expressed as

AV = − ln(100)RT∂PAγ = ln(10)RTAγ (3∂P log ε− κ0)
[
(cm3/mol)(mol/kg)0.5

]
,

(24)
where

Bγ =

(
8πNAq

2
eρo

1000εrkBT

)1/2

=
50.29158649ρ

1/2
0

(εrT )1/2
(25)

where NA is the Avogadro number (6.225× 1023) molecules per mole, qe = 4.803× 10−10

esu (electrostatic unit of charge), ρ0 is the density of pure water water in
[
g/cm3

]
, εr is

the relative dielectric coefficient, kB = 1.38054×10−16 erg/K is the Boltzmann constant,
T is the temperature in K, P is the pressure in atmosphere. and the compressibilty κ0
=
(
atm−1

)
. For the definition of B in Eq. (25) we need to express å in Ångstrom.

Moreover we can express the Debye-Hückel parameter for the activity coefficients as
[95]

Aγ =
(2πNA)1/2 q3e

√
ρ0

√
1000 (εkBT )3/2

=
1824829.238

√
ρ0

(εT )3/2
[
(mol/kg)0.5

]
(26)

where νi is the stoichiometric number of moles of ions in one mole of the ith thermo-
dynamic component of an electrolyte solution. Here Λ = 1+ å Bγ

√
µ. Furthermore

ψk = Z2
k/2 where Zk is the charge on the kth ion.
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The parameters to obtain the partial molar volume are obtained from the data base
PHREEQC.DAT and Pitzer.DAT. For the reaction aA + bB = cC + dD , with ∆v =
cVm (C) + dVm (D) −aVm(A)− bVm(B), where Vm (Q) denotes the partial molar volume
of pure Q in cm3/mol. To account for the pressure dependence of the equilibrium
constants we write logK = logK0 + ∆V (P − 1) / (2.3RT )), where P is the pressure in
atmosphere, R is the gas constant in

[
cm3atm/mole/K

]
, T is the temperature in K.

Unfortunately the data base of PHREEQC in their data base (e.g., phreeqc.dat) are
incorrect as to the calculation of molar volumes. Using data from the papers in Helgeson
[47] [46] [52] [95] [105] leads to results that agree within 10% with the calculations using
PHREEQC. Hence we assume that we can use the results of PHREEQC to substitute
in Eq. (44) to obtain the molar aqueous phase density as the main contribution is from
water and the presence of the other ions constitute a correction on this.

3.3 Density of oleic phase

The density in the oleic phase is obtained from experimental data of carbon dioxide
decane mixtures. We used the data set at 71,11 oC, because at that temperature many
measurements were obtained and reported in the literature [72]. Near the critical point
we used a critical pressure of 12800 [kPa] as opposed to the value 12740 [kPa] chosen by
[72] and a value of the critical density ρc of 568

[
kg/m3

]
instead of the value in of 590.5[

kg/m3
]

used in [72]. We note that the authors also modified their measured critical
pressure Pc to 12740 [kPa] , as their measured value 12760 [kPa] was considered not
reliable. Using these values we obatain a smooth behavior near the crirical point when
we use

A =
ρ− ρc

(Pc − P )0.325
,

where A has a value 20.44 near the critical point. If we denote ρ−ρc by y and (Pc − P )0.325

by x and use polynomial regression we obtain

y = 6.8416× 10−5x6 − 3.8214× 10−3x5 + 0.082894x4 − 0.85533x3 + 3.1352x2 + 17.120x

We used the data set of [72], as it shows less scatter than other data sources and it
reports both the compositions and the densities and moreover gievs data for a relevant
temperature value, i.e., t=71.11oC. Unfortunately the dataset of [72] do not show any
results for pressures below 63.85 bar. The data presented by other authors are not
of sufficient quality. Instead we used the Krichevsky-Ilinskaya equation, which is also
quoted in [82] and reads
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ln
f

x2
= lnHH

og +
A

RT
x21 +

v∞2
RT

(P − P s
1 ) ,

where P s
1 is the vapor pressure of decane, which is much less than the ambient pres-

sures P and can thus be disregarded. Polling uses for the activity coefficient γo,CO2 =
A
(
x22 − 1

)
/RT. The index ”2” indicates carbon dioxide and the index ”1” indicates de-

cane. The mole fractions are indicated by xi.The pressure term is not included in Eq.
(9) and is indeed small. The activity coefficient uses the two suffix (having quadratic
terms) Margules equation γo,CO2 = Ax21/RT, where A is a parameter. The fugacity is
obtained from the equation

∆G = RT ln
f

pref
=

P∫
pref

V dp,

where it is easily verified that for an ideal gas (V = RT/P ), the fugacity f is equal to
the pressure P . Also at low pressures the fugacity is equal to the pressure; pref is a
reference pressure for which this is satisfied. We obtain V = ZRT/P, where we obtain
the compressibility factor Z (P, T ) from the Span-Wagner equation of state [99] and
use the integration routine ”qtrap” in Numerical Recipes [84], which uses the extended
trapezoidal rule. If the integration with twice the number of points gives a difference
less than ε =0.00001, the required accuracy is reached. We obtain HH

og and A, by
minimizing the variance of 18 data points between 63.8 and 117 bar. The standard
deviation s = 0.026 being the square root of the variance is for the logarithm of the
Henry coefficient (ln HH

og = 16.044). Using this procedure we get a smooth transition
between the measured high pressure data and the interpolated low pressure data.

4 Ionic Carbon Dioxide-Oil-Water (ICDOW) model

In this section we present a model that focuses on the effects of carbon dioxide without
brine. We study the transport of chemical reactions that occur in this process. Also,
knowing that the injection of water saturated with carbon dioxide at high pressure
and medium temperature improves the efficiency of oil recovery, we will quantify these
improvements. For simplicity we consider one dimensional incompressible flow that is
governed by balance laws for chemical species and Darcy’s law.

We consider the following three (Nr = 3) equilibrium reactions in the aqueous phase.

(CO2)aq +H2O 
 HCO−3 +H+ (27)
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HCO−3 
 CO2−
3 +H+ (28)

H2O 
 OH− +H+ (29)

All possible equilibrium reactions can be found by linear combinations of these three
equilibrium equations. The equilibrium constants are defined in Eqs. (?? - ??).

The relevant equilibrium constants are given by

Ka =
aa,HCO3 aa,H
aa,CO2aa,H2O

,

log10 (Ka) = −356.309−0.06092T+21834.37/T+126.8339 log (T )/ log (10)− 1684915/T 2,

Kb=
aa,CO3aa,H
aa,HCO3

,

log10 (Kb) =−107.8871− 0.03252849T + 5151.79/T+38.92561 log (T )/ log (10)− 563713.9/T 2

Kw=
aa,OHaa,H
aa,H2O

,

log10 (Kw) =293.29227 + 0.1360833T − 10576.913/T−123.73158
log (T )

log(10)

−6.996455 ∗ 10−5 ∗ (T 2).

The equilibrium constants are expressed in activities for which the reference state is
an ideal solution with concentration of one molal. So the molal concentration is given
by the activities divided by the activity coefficients (see Apppendix A).

There is one (Nc = 1) constraint, viz., the charge balance equation, which can be
written as (

2ma,CO2−
3

+ma,HCO−3
+ma,OH− = ma,H+

)
, (30)

The molal concentrations can be converted to molar concentrations as explained in
Eq. (91) in Appendix A. Such conversions couple each concentration to all others. The
number of degrees of freedom (as we disregard surface complexes) is given by

Nf = Ns −Nr −Nc + (T, P )− p, (31)

There are now six species (Ns = 6), viz. CO2−
3 , CO2, OH

−, H2O, HCO−3 , H+. There
are three equilibrium reactions (Nr = 3) . There is one constraint, i.e., the charge balance
(Eq (30)) ,i.e., Nc = 1. For a given temperature and pressure and considering one phase,
i.e. p = 1, we have Nf = 6 − 3 − 1 − 1 = 1, thus one degree of freedom for which we
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choose H+. To obtain the composition one first uses the equilibrium relations Eq. (27),
Eq. (28), Eq. (29) and the charge balance equation Eq. (30). Another relationship to
be used is the equation of state, which gives the density ρw of the solution as a function
of the concentrations. The equation of state is derived using the partial molar volumes.
The data base Appelo gives the partial molar volumes of many compounds, and if not the
clains to use the method of Millero, which also requires input parameters. Unfortunately
these parameters are not explicitly stated in his program.

There are three total balance equations, viz., the total carbon, the total hydrogen
and the total oxygen balance. We are using the output by Appelo to obtain the con-
centrations of CO2, HCO

−
3 , CO2−

3 , OH−, H2O as a function of the H+ concentration,
using regression on the output data of a compositional simulation. The simulations of
the programme by Appelo and Parkhurst satisfy the charge balance. It can also be
shown that the charge balance is a consequence of the mass balance equations, provided
that initial and boundary conditions satisfy the charge balance. Therefore we only need
two our of the three balance equations, which we take to be the total carbon and the
(oxygen - 2 * hydrogen). The latter equation eliminates the water from the equation,
which would otherwise be the dominating term.

The total moles [mol] of carbon per kilogram of water can be expressed in terms of
molalities ma,j as follows

ma,C(4)

[
mol

kg water

]
= ma,CO2 +ma,CO3 +ma,HCO3. (32)

In the same way the total moles of hydrogen is given by

ma,H(1) = ma,HCO3 +ma,H +ma,OH + 2ma,H2O. (33)

The total moles of oxygen is given by

ma,O(−2) = 2ma,CO2 + 3ma,CO3 + 3ma,HCO3 +ma,OH +ma,H2O. (34)

Taking the difference between Eq. (33) minus twice Eq. (34) leads to

ma,O−H = ma,H − 4ma,CO2 − 6ma,CO3 − 5ma,HCO3 −ma,OH , (35)

an equation from which the water has been eliminated usingma,O−H = ma,H(1)−2ma,O(−2)
The total molar concentration in the aqueous phase is given by

ma,tot = ma,CO2 +ma,CO3 +ma,HCO3 +ma,H +ma,OH +ma,H2 (36)
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and we find the aqueous phase mole fractions xi as

xa,C(4) =
ma,C(4)

ma,tot

xa,Ca,H(1)
=
ma,H(1)

ma,tot

xa,O(−2) =
ma,O(−2)

ma,tot

xa,O−H =
ma,O−H

ma,tot

(37)

The total molar concentration in the oleic phase is given by

ρo,tot = ρo,CO2 + ρo,C10H22 , (38)

The mole fraction of CO2 and decane (C10H22) is given by

xo,CO2 =
ρo,CO2

ρo,tot

xo,C10H22 =
ρo,C10H22

ρo,tot
(39)

All of them will be functions only of xa,H+ .

4.1 Two-phase simple model equations

When we describe the equations in two phase, we include the saturation and add an
equation that describes in addition one component oil flow. Moreover we denote the
product of the molar density ρw and the mole fractions xa,i by ρa,i and obtain the
product of the oil molar density ρo and the mole fractions xo,i by ρo,i. Note that ρa,i and
ρo,i are only dependent of the single degree of freedom of choice, for instance the H+.

For the total carbon we have

∂t
(
ϕSwρa,C(4)

)
+ ∂t (ϕSoρo,CO2) + ∂x

(
ufwρa,C(4)

)
+ ∂x (ufoρo,CO2) =

∂xϕDwSw∂xρa,C(4). + ∂xϕDwSo∂xρo,CO2. + ∂xDcρa,C(4).∂xSw + ∂xDcρo,CO2.∂xSo (40)

For the total hydrogen we have

∂t
(
ϕSwρa,H(1)

)
+ ∂x

(
ufwρa,H(1)

)
= ∂xϕDwSw∂xρa,H(1). + ∂xDcρa,H(1).∂xSw (41)
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For the total oxygen we have

∂t
(
ϕSwρa,O(2)

)
+ 2∂t (ϕSoρo,CO2) + ∂x

(
ufwρa,O(2)

)
+ ∂x (ufoρo,CO2) =

∂xϕDwSw∂xρa,O(2). + ∂xDcρa,O(2).∂xSw + 2∂xϕDoSo∂xρa,O(2). + 2∂xDcρo,O(2).∂xSo (42)

For the total organic carbon we have

∂t
(
ϕSoρo,C(−4)

)
+ ∂x

(
ufoρo,C(−4)

)
= ∂xϕDoSo∂xρo,C(−4). + ∂xDcρo,C(−4).∂xSo (43)

Here ρw,j and ρo,j are the mole fractions times the molar density ρw in the water and ρo
oleic phase respectively. The molar density of water is given by

ρw =
1

6∑
i=1

xiV i

, (44)

where xi is the mole fraction in the solution of component i, and V i is the molar volume
of component i.

V i,inf = 41.84

(
a1/10 +

100a2
2600 + Pb

+
a3

TK − 228
+

10000a4
(2600 + Pb) (TK − 228)

−WQBorn

)
,

(45)
where QBorn = −∂P (1/εr) = 0.615e-06(/bar). The constants are such that the term in
brackets is in cal/mol/bar, with pressures Pb in bar and temperature TK in Kelvin. Using
the factor 41.84, leads to a volume V i,inf of cm3/mol., where we recall that the factor
4.184 converts calorie to Joule. The molar density of the aqueouus phase is obtained
from symbolic regression (EUREQA)

ρw = 7.80736561756858× 10−6 exp(sinh(10.0623537260726 + x))− 29426.3880030756

− 29481.5059857005 tanh(1.25155492484017 + x),

ρw = 7.25664915670081× 10−7 exp(sinh(10.2710874945997 + x))

− 353329.945742431− 4.50333572865423× 10−5x− 353385.063109827 tanh(x),

where x = ln
(
H+
)
. For the molar density of the oleic phase we obtain

ρo = 5.08860409653381 + 0.0012873299795674x+ 43541853141.7085/

(1 + exp(−3.20371179817114x)),

where again x = ln
(
H+
)
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The regression expression of the molar concentration of decane is

ρo,C(−4) = ρoxC(−4) = 2.52613380627472 erf c(951.675792766272

+ 132.737013788747x) erf c(10076103.4203491 exp(2.5883061564501x

+ 1073.23321331289 (2.5883061564501)x)),

The parameters to obtain the partial molar volume are displayed in the data base
PHREEQC.DAT and Pitzer.DAT. For the reaction aA + bB = cC + dD , with ∆v =
cVm (C) + dVm (D) −aVm(A)− bVm(B), where Vm (Q) denotes the partial molar volume
of pure Q in cm3/mol. To account for the pressure dependence of the equilibrium
constants we write log k = log k0 + ∆V (P − 1) / (2.3RT )), where P is the pressure in
atmosphere, R is the gas constant in

[
cm3atm/mole/K

]
, T is the temperature in K.

V i = V i,inf +
1

2
z2iAV

√
µ

1 + åBγ
√
µ

+ βiµ
i4 , (46)

where AV = 1.927, åBγ = 0.3281 and βi = i1+ i2/ (TK − 228)+ i3 (TK − 228) . The value
å is set to zero for anions in some data sets. Note that some books use 1/4z2iAV , but we
stick to this formulation. Note that the additional contribution of the ionic strength for
neutral molecules in this model V i − V i,inf is zero.

Unfortunately the data base of PHREEQC in their data base (e.g., phreeqc.dat) are
incorrect as to the calculation of molar volumes. Using data from the papers in Helgeson
leads to results that agree within 10% with the calculations using PHREEQC. Hence we
assume that we can use the results of PHREEQC to substitute in Eq. (44) to obtain the
molar aqueous phase density as the main contribution is from water and the presence
of the other ions constitute a correction on this.

4.2 Numerical calculation of terms

The activity coefficients can be given by the Davies equation, which does not depend on
any other properties of the ion than its charge

ln γj (µ) = −
Aγ|zj|2

√
µ

1 +Bγ
√
µ

+ 0.3µ, (47)

where at ambient temperatures Aγ =1.1708 and Bγ =0.3281. The derivative towards
the ionic strength is given by

∂µ ln γj (µ) =
−Aγ|zj|2

2
√
µ(1 +Bγ

√
µ)2

+ 0.3 (48)
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The ionic strength 2µ ≈
∑
i

miz
2
i =

∑
i

ai/γiz
2
i and reads

2µ = (4.0 ∗ aCO3/γ2(µ) + aHCO3(aH , aCO3 , Tzero)/γ1(µ) + aOH(aH , Tzero)/γ1(µ)+

aH/γ1(µ)), (49)

where ai is the activity of component i and γi is the activity coefficient and ci = ai/γi is
the concentration.

Note that the concentrations c are related to the molalities m by c = ρwm, where
ρw is the density of water. However this water density is always close to one. In high
concentration salt solutions this no longer valid. The charge balance equation reads

charge = −2aCO3/γ2(µ)− aHCO3(aH , aCO3 , Tzero)/γ1(µ)− aOH(aH , Tzero)/γ1(µ)+

aH/γ1(µ)) = 0. (50)

We can, without approximations and using Eqs. (49) and (50), even get the exact
expression

µγ1 (µ) =
3

2
aH −

1

2
(aOH + aHCO3)

We can use the charge balance equation to get an explicit expression for aCO3

For all practical cases the concentration cCO3 = aCO3/γ2(µ) of carbonate is much
smaller than the concentration of the hydrogen plus ion. Therefore by adding the equa-
tions and observing that the charge is zero we find

µ = aH/γ1(µ) ≈ mH

and
dµ

d [H+]
= 1.

4.3 Using equilibrium constants to express results in molalities

mOH =
10Kww(T )

γ21 (µ)mH

,

where mi is the molality of species i. Note that the concentration ci = ρwmi.

mCO2 = mCO3m
2
Hγ2 (µ) γ21 (µ) 10Kab(T )

where we use that the activity coefficient of carbon dioxide is one, and
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mHCO3 = mCO3mHγ2 (µ) 10Kbb(T )

The equilibrium coefficients are given as functions of the temperature T expressed in K
by

Kaa (T ) = −356.309− 0.06091964T +
21834.37

T
+ 126.8339

log(T )

log(10)
− 1684915

T 2

and

Kbb (T ) = 107.8871 + 0.03252849T − 5151.79

T
− 38.92561 ∗ log(T )

log(10)
+

563713.9

T 2

and

Kab (T ) = 464.1965 + 0.09344813T − 26986.16

T
− 165.75951

log(T )

log(10)
+

2248628.9

T 2

and

Kww = 293.29227+0.1360833T−10576.913

T
−123.73158

log(T )

log(10)
+

0.0

T 2
−6.996455×10−5T 2

We use for the temperature 100oF = 301.78K = 37.62oC because the oil data are given
at that temperature and we do not need to

Using the charge balance (Eq. (50)) we can derive an equation for aCO3 , i.e., (a = γc)

mCO3 = −1

2
mHCO3(mH ,mCO3 , Tzero)−

1

2
mOH(mH , Tzero) +

1

2
mH or

mCO3 = −1

2
mCO3mHγ2 (µ) 10Kbb(T ) − 1

2

10Kww(T )

γ21 (µ)mH

+
1

2
mH

mCO3γ2 (µ)

(
1 +

1

2
mHγ2 (µ) 10Kbb(T )

)
= −1

2

10Kww(T )

γ21 (µ)mH

+
1

2
mHor

mCO3 =
−1

2
10Kww(T )

γ21(µ)γ2(µ)mH
+ 1

2
mH

γ2(µ)
)(

1 + 1
2
mHγ2 (µ) 10Kbb(T )

)
Hence all the concentrations can be expressed in terms of the hydrogen ion concentration
only.
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The activity coefficients are given by the Davies expression, i.e.,

ln γj (µ) = −
Aγ|zj|2

√
µ

1 +Bγ
√
µ

+ 0.3µ, (51)

The mole fraction of carbon dioxide in the aqueous phase is given by

xa,CO2 =
mCO2

mCO2 +mH +mOH +mHCO3 +mCO3 + cH2O

and the molality of water is mH2O = (1000/18.01528) = 55.508 [mol/kg-water] .
The activity of the carbonate ion aCO3 is given by

aCO3/γ2(µ) = −1

2
aHCO3(aH , aCO3 , Tzero)/γ1(µ)− 1

2
aOH(aH , Tzero)/γ1(µ) +

1

2
aH/γ1(µ)) or

aCO3

(
1 +

1

2
aH10ˆ(Kbb(T ))

γ2(µ)

γ1(µ)

)
= −1

2
10Kww(T )

1

aH

γ2(µ)

γ1(µ)
+

1

2
aH

γ2(µ)

γ1(µ)
)or

aCO3 =

(
−1

2
10Kww(T ) 1

aH
+ 1

2
aH

)
γ2(µ)
γ1(µ)

)(
1 + 1

2
aH10ˆ(Kbb(T ))γ2(µ)

γ1(µ)

)
cCO3 =

−1
2
10Kww(T ) 1

cH

γ2(µ)

γ21(µ)
+ 1

2
cH

1 + 1
2
cH10ˆ(Kbb(T ))γ2(µ)

Substitution of the equilibrium expressions leads to

aCO3 =
1
2
aH − 1

2aH
10(Kww(T ))(

γ1(µ)
γ2(µ)

+ 1
2
aH10(−Kbb(T ))

)

mtot = (10(Kww(T ))/aH/γ1(µ) + 10(−Kaa(T )−Kbb(T ))aCO3aHaH/γco2(µ)

+ aCO3aH10(−Kbb(T ))/γ1(µ) + aCO3/γ2(µ) + aH2O + aH/γ1(µ)), (52)

which can be reduced by simplified notation and using that γco2(µ (x)) = 1.Also we use
that T = Tzero.
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For the density mole fraction products we find

ca,H(1) = ρw
(
10(Kww(T ))/aH/γ1(µ) + aCO3aH10(−Kbb(T ))/γ1(µ) + 2aH2O + aH/γ1(µ (x, y))

)
/mtot (AH) ,

and

ca,O(−2) = ρw

 10(Kww(T ))/aH/γ1(µ) + 3aCO3aH10(−Kbb(T ))/γ1(µ)

+2× 10(−Kaa(T )−Kbb(T ))aCO3aHaH/γco2(µ)
+aH2O + 3aCO3/γ2(µ)

 /mtot (AH) ,

It is convenient to subtract the total hydrogen from twice the oxygen and to obtain

4.4 Eliminating H2O

In our ionic model (ICDOW) we employ equations of zero diffusion coefficients. We do
so because it is well known that for upscaled equations the convection terms dominate
the diffusion terms. The Riemann solution for this model can therefore be applied for
upscaled transport processes in enhanced oil recovery involving geochemical aspects.

Leaving out the diffusion terms, we reformulate the system (40)- (43) in three con-
servation equations, in which we substitute regression expressions that are obtained by
geochemical software PHREEQC. To do so, we use that one can verify that the bal-
ance equations (40)- (43) imply the charge conservation equation: xa,CO2−

3
+ xa,HCO−3 +

xa,OH− − xa,H+ = 0. We are therefore allowed to replace one balance equation by the
charge conservation equation, which is an algebraic equation. Alternatively, we can
combine the hydrogen and oxygen balance equations into a single equation, in such a
way that the water concentration is eliminated, and use the charge conservation equa-
tion together with the combination of the hydrogen and oxygen balance equation to
complete the system of equations. This replacement may to enhance stability in numer-
ical simulations as the water concentration (∼55.5 mole/liter) is much higher than the
other concentrations, causing instability problems in the simulations. Thus, denoting by
ρa,O−H = 2ρa,O(2) − ρa,H(1), we reduce (40)- (43) without diffusion to a system of three
conservation laws for total organic carbon, oxygen plus hydrogen and decane as

∂t
(
ϕswρa,C(4)

)
+ ∂x

(
ufwρa,C(4)

)
= 0, (53)

∂t (ϕ(swρa,O−H + 4soρo,CO2)) + ∂x (u(fwρa,O−H + 4foρo,CO2)) = 0, (54)

∂t
(
ϕsoρo,C(−4)

)
+ ∂x

(
ufoρo,C(−4)

)
= 0, (55)

where the unknowns are the water saturation, the y = pH and Darcy velocity, i.e.,
(sw, y, u). We have that ρa,C(4), ρa,O−H , ρo,C(−4) and ρo,CO2 are differentiable positive
functions that depend only on the pH.
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5 Riemann problem for ICDOW model

The system of conservation laws (53)-(55), disregarding diffusion terms can be rewritten
as:

∂G(sw, y)

∂t
+
∂(uF̂ (sw, y))

∂x
= 0, (56)

where the accumulation and flux functions can rewritten as G(sw, y) and uF̂ (sw, y), with

(G1, G2, G3)
T = ϕ(swρa,C(4), swρa,O−H + 4soρo,CO2 , soρo,C(−4))

T , (57)

(F̂1, F̂2, F̂3)
T = (fwρa,C(4), fwρa,O−H + 4foρo,CO2foρo,C(−4))

T . (58)

To simulated the injection of CO2 in a reservoir, we are interested in to solve the
Riemann-Goursat problem associated with (56), i.e. the solution of (56) with piece-
wise constant initial and boundary data{

(swl, yl, ul) if x = 0, t > 0,
(swr, yr, .) if x > 0, t = 0.

(59)

We do not impose conditions on the downstream total velocity ur because this quantity
is obtained from the other variables and the solution of the system. In equation (59) the
side r represents the initial conditions of the reservoir, while the side l represents the
conditions of injection in the reservoir.

The method of characteristics (MOC) is appropriate for seeking analytical solutions
of compositional models (see e.g. [111, 28, 25, 44, 83, 51]). The analytical solution is
obtained by the concatenation of rarefaction and shock waves satisfying certain admis-
sibility conditions. This method is the primary basis of the Buckley-Leverett theory
([58, 19]), which is the foundation work for Mathematical Modeling of Oil Recovery. In
this paper, we obtain the analytic solution in the form of a Riemann solver by employ-
ing the Oleinik entropy condition, Liu’s and Lax’s criteria to ensure the existence of a
unique solution of the Riemann-Goursat problem ([57, 74, 42, 60, 61]). In addition, the
application of such a method allows to obtain loci in state space where the Riemann
solution changes structure, such as the coincidence and inflection loci. These structures
are useful both to build the analytical solution, and to determine the bifurcation curves
where abrupt changes of the behavior of the solution are expected, which has significance
in mathematical modeling of oil recovery. We, also provide the numerical solution by
two numerical solvers.

The proposed model taking into account non constant Darcy velocity is important.
It can be used for preliminary investigations of the behavior of injection of water of CO2
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with brine water with two-phase homogeneous systems. The Riemann solver presented
can be used to verify numerical solutions for compositional models; moreover the numer-
ical method presented here also verified the accuracy of the Riemann solution. In this
solver we described all the low and fast wave paths present in the solution in a unified
manner.

5.1 Solving the Riemann-Goursat problem by MOC

The basis for MOC for Riemann problems is to assume that the independent variables
(sw, y, u) are functions of the variable ξ = x/t, which is possible because the Rie-
mann solution are scale invariant under the map (t, x) → (αt, αx); then we can take
(sw, y, u)(x, t) = (sw, y, u)(x(ξ), t(ξ)) = (sw, y, u)(ξ) with characteristic lines ξ = x/t.

5.2 Characteristic analysis

MOC allows to calculate the velocity at which the waves propagate through the porous
medium. The basis of the method is to assume that the independent variables W =
(sw, y, u) are functions of the variable ξ = x/t. Along the characteristic curves we have

dW =
∂W

∂t
dt+

∂W

∂x
dx.

Using the system of conservation law (56-58), we obtain along characteristic curves for
i = 1, 2, 3

∂Gi

∂W

dW

dt
+
∂Fi
∂W

dW

dx
= 0, (60)

where

∂Gi

∂W
=
∂Gi

∂sw

dsw
dξ

+
∂Gi

∂y

dy

dξ
+
∂Gi

∂u

du

dξ
,

∂Fi
∂W

=
∂Fi
∂sw

dsw
dξ

+
∂Fi
∂y

dy

dξ
+
∂Fi
∂u

du

dξ
.

In matrix format equation (60) can be rewritten as(
−ξ ∂G

∂W
+
∂F

∂W

)
dW

∂ξ
= 0, (61)

where A =
∂F

∂W
and B =

∂G

∂W
with W = (sw, y, u) are obtained as

∂G

∂W
=

 ϕρa,C(4) ϕswρ
′
a,C(4) 0

ϕρa,O−H ϕswρ
′
a,O−H + 4ϕ(1− sw)ρ′

o,CO2
0

−ϕρo,C(−4) ϕ(1− sw)ρ′o,C(−4) 0

 , and
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∂F1

∂sw
= u

∂fw
∂sw

ρa,C(4),
∂F1

∂y
= ufwρ

′
a,C(4) + uρa,C(4)

∂fw
∂y

,
∂F1

∂u
= fwρa,C(4),

∂F2

∂sw
= u

∂fw
∂sw

(ρa,O−H − 4ρ
o,CO2

),
∂F2

∂u
= fwρa,O−H + 4(1− fw)ρ

o,CO2
,

∂F2

∂y
= ufwρ

′
a,O−H + 4u(1− fw)ρ′

o,CO2
+ u(ρa,O−H − 4ρ

o,CO2
)
∂fw
∂y

,

∂F3

∂sw
= −u∂fw

∂sw
ρo,C(−4),

∂F3

∂y
= u(1− fw)ρ′o,C(−4) − uρo,C(−4)

∂fw
∂y

,

∂F3

∂u
= (1− fw)ρo,C(−4).

Let us denote
ρ1 = ρa,C(4), ρ4 = ρo,C(−4), ρ5 = ρ

o,CO2
, ρ6 = ρa,O−H , and

α1 = fwρ
′
1 + ρ1

∂fw
∂y

, α2 = swρ
′
1, (62)

β1 = fwρ
′
6 + 4(1− f)ρ′5 + (ρ6 − 4ρ5)

∂fw
∂y

, β2 = swρ
′
6 + (1− sw)ρ′5, (63)

θ1 = (1− fw)ρ′4 − ρ4
∂fw
∂y

, θ2 = (1− sw)ρ′4, Λ =
φ

u
λ. (64)

To obtain the eigenvalues of (61), we solve det(A− λB) = 0, i.e.,

det


u

(
∂fw
∂sw
− Λ

)
ρ1 u (α1 − Λα2) fwρ1

u

(
∂fw
∂sw
− Λ

)
(ρ6 − 4ρ5) u (β1 − Λβ2) fwρ6 + 4(1− fw)ρ5

−u
(
∂fw
∂sw
− Λ

)
ρ4 u (θ1 − Λθ2) (1− fw)ρ4

 = 0. (65)

Substituting in (65), the second row by the sum of the first row multiplied by (ρ6−4ρ5)
with second row multiplied by −ρ1. Similarly, we substitute the third row by the sum
of the first row multiplied by ρ4 with second third row multiplied by ρ1. Also, denoting
γ2 = (ρ6 − 4ρ5), we obtain that det(A− λB) is

u2det


(
∂fw
∂sw
− ϕ

u
λ

)
ρ1

(
α1 −

ϕ

u
λα2

)
F̂1

0 γ2

(
α1 −

ϕ

u
λα2

)
− ρ1

(
β1 −

ϕ

u
λβ2

)
γ2F̂1 − ρ1F̂2

0 ρ1

(
α1 −

ϕ

u
λα2

)
+ ρ4

(
θ1 −

ϕ

u
λθ2

)
ρ4F̂1 + ρ1F̂3

 (66)
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The third column in (66) can be rewritten in terms of

γ2F̂1 − ρ1F̂2 = −4ρ1ρ5, and ρ4F̂1 + ρ1F̂3 = ρ1ρ4.

Now, we substitute the second row by the sum of the third row multiplied by 4ρ1ρ5 with
the second row multiplied by ρ1ρ4 in (66), we obtain that det(A− λB) is

u2det


(
∂fw
∂sw
− ϕ

u
λ

)
ρ1

(
α1 −

ϕ

u
λα2

)
F̂1

0 γ3 0

0 ρ4

(
α1 −

ϕ

u
λα2

)
+ ρ1

(
θ1 −

ϕ

u
λθ2

)
ρ4ρ1

 , (67)

where

γ3 = ρ1ρ4

(
γ2

(
α1 −

ϕ

u
λα2

)
− ρ1

(
β1 −

ϕ

u
λβ2

))
+ 4ρ1ρ5ρ4

(
α1 −

ϕ

u
λα2

)
+

4ρ1ρ5ρ1

(
θ1 −

ϕ

u
λθ2

)
. (68)

Then equation (67) leads to the eigenvalues. One of the eigenvalues satisfies
∂fw
∂sw
− ϕ
u
λ =

0, which implies that

λsw =
u

ϕ

∂fw
∂sw

.

From (68) the second eigenvalue is given by γ3 = 0. Using (62), (63) and (64), we obtain
the second eigenvalue as

λH = −u
ϕ

(
ρ1γ2ρ4α1 − ρ21ρ4β1 + 4ρ1ρ5ρ4α1 + 4ρ21ρ5ρ

′
4(1− fw)− ρ21ρ5ρ4(∂fw/∂y)

−ρ1γ2ρ4α2 + ρ21ρ4β2 − 4ρ1ρ5ρ4α2 − 4ρ21ρ5ρ
′
4(1− sw)

)
.

λH =
u

ϕ

(
−4ρ1ρ4ρ

′
5 + 4ρ1ρ5ρ

′
4 + (ρ4ρ6ρ

′
1 − ρ1ρ4ρ′6 + 4ρ1ρ4ρ

′
5 − 4ρ1ρ5ρ

′
4)fw

−4ρ1ρ4ρ′5 + 4ρ1ρ5ρ′4 + (ρ4ρ6ρ′1 − ρ1ρ4ρ′6 + 4ρ1ρ4ρ′5 − 4ρ1ρ5ρ′4)sw

)
.

Using Equations (62) and (63), Equations (5.2) can be rewritten in a more understand-
able way. Let us introduce

∆1 = ρ4ρ6ρ
′
1 − ρ1ρ4ρ′6 + 4ρ1ρ4ρ

′
5 − 4ρ1ρ5ρ

′
4 and ∆2 = −4ρ1ρ4ρ

′
5 + 4ρ1ρ5ρ

′
4. (69)

Then we have

λH =
u

ϕ

∆1fw + ∆2

∆1sw + ∆2
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The first eigenvalue is associated to the eigenvector ~rs = (1, 0, 0)T (saturation wave) and
the second eigenvector ~r = (r1, r2, r3) (chemical composition waves) from (61) and (67)
for ξ = λH and dW/dξ = ~r holds

u

(
∂fw
∂ss
− ϕ

u
λH

)
ρ1r1 + u

(
α1 −

ϕ

u
λHα2

)
r2 + F̂1r3 = 0, (70)

and (
uρ4

(
α1 −

ϕ

u
λHα2

)
+ uρ1

(
θ1 −

ϕ

u
λHθ2

))
r2 + ρ1ρ4r3 = 0. (71)

Taking r3 = u, and denoting dρ1 = ρ
′

1/ρ1, dρ4 = ρ
′

4/ρ4 we obtain from (70)-(71) that

r1 =
−fw − (dρ1(fw − ΛHsw) + ∂fw

∂y
)r2

(∂fw
∂sw
− ΛH)

, r2 = − 1

(fw − ΛHsw)(dρ1 − dρ4) + dρ4(1− ΛH)
.

(72)
Multiplying r3, r1 and r2 in (72), by a product of its denominators a, we obtain the
eigenvector rH = a(r1, r2, r3) = (r1H , r

2
H , r

3
H)

r1H = ((−fw((fw − ΛHsw)(dρ1 − dρ4) + dρ4(1− ΛH)))− dρ1(fw − ΛHsw)− ∂fw
∂y

,

r2H = −(
∂fw
∂sw
− ΛH) , r3H = u(

∂fw
∂sw
− ΛH)((fw − ΛHsw)(dρ1 − dρ4) + dρ4(1− ΛH)),

where ΛH = (ϕ/u)λH .
Eigenvalues and eigenvector, can rewritten in original variable as

λs =
u

ϕ

∂fw
∂sw

, and λH =
u

ϕ

∆1fw + ∆2

∆1sw + ∆2

, (73)

where

∆1 = ρo,C(−4)ρa,O−Hρ
′
a,C(4) − ρa,C(4)ρo,C(−4)ρ

′
a,O−H −∆2, (74)

∆2 = −4ρa,C(4)ρo,C(−4)ρ
′
o,CO2

+ 4ρa,C(4)ρo,CO2
ρ′o,C(−4). (75)

Here ∆i with i = 1, 2 depend only on y. Another solution of (61) is ξ equal to infinity,
which is associated to perturbations of variable u. The eigenvector of system (61) for
ξ = λs is ~rsw = (1, 0, 0)T (saturation wave) while the eigenvector for ξ = λH is ~rH =
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(r1H , r
2
H , r

3
H) (chemical composition wave), i.e.:

r1H = ((−fw((fw − ΛHsw)(dρa,C(4) − dρo,C(−4)) + dρo,C(−4)(1− ΛH)))

− dρo,C(4)(fw − ΛHsw)− ∂fw
∂y

, r2H = −(
∂fw
∂sw
− ΛH),

r3H = u(
∂fw
∂sw
− ΛH)((fw − ΛHsw)(dρa,C(4) − dρo,C(−4)) + dρo,C(−4)(1− ΛH)),

where ΛH = (ϕ/u)λH , dρa,C(4) = ρ
′

a,C(4)/ρa,C(4) and dρa,C(−4) = ρ
′

a,C(−4)/ρa,C(−4).
The saturation rarefaction curves then are obtained by solving the ordinary differ-

ential equation dRS/dξ = ~rsw and dRH/dξ = ~rH . Thus such waves are represented by
curves with constant hydrogen concentration and it is possible to verify that along such a
wave the velocity u is constant also. In this case, we reach the classical Buckley-Leverett
rarefaction waves, which can also be obtained by the fractional flow method. It rarefac-
tion curve in which only the saturation varies is denoted by Rsw ; it are associated to
(λsw , ~rsw). The rarefaction curves in which, generically, all variables change are denoted
as RH ; they are associated to (λH , ~rH). The final step to obtain the chemical rarefaction
wave consists of integration of the first order differential equations

dsw/dξ = r1H(sw, y) dy/dξ = r2H(sw, y) and du/dξ = r3H(sw, y, u). (76)

Equations (76a) and (76b) must be solved before solving (76c) to find sw(ξ) and y(ξ).
This decomposition is very useful from the numerical point of view as well. Notice that
along such a compositional curve both saturation and hydrogen vary, so this wave is not
trivial and it cannot be obtained by the fractional flow method.

5.3 Rankine Hugoniot conditions

Another possible type of solution for the system (53)-(55) represents discontinuities.
They are shocks that satisfy the Rankine-Hugoniot relationships

u−
(
fwρa,C(4)

)− − u+ (fwρa,C(4)

)+ − σϕ((Swρa,C(4)

)− − (Swρa,C(4)

)+)
= 0,

u−
(
fw(ρa,O−H + 4ρ

a,CO2

)−
− u+

(
fw(ρa,O−H + 4ρ

a,CO2
)
)+
−

σϕ

((
Sw(ρa,O−H + 4ρ

a,CO2
)
)−
−
(
Sw(ρa,O−H + 4ρ

a,CO2
)
)+)

= 0,

u−
(
foρo,C(−4)

)− − u+ (foρo,C(−4)
)+ − σϕ((Soρo,C(−4)

)− − (Soρo,C(−4)
)+)

= 0.
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To find a nontrivial solution for u+, u− and ϕσ the determinant∣∣∣∣∣∣∣∣
(
fwρa,C(4)

)− (
fwρa,C(4)

)+ ((
Swρa,C(4)

)− − (Swρa,C(4)

)+)
(fwρA)− (fwρA)+

(
(SwρA)− − (SwρA)+

)(
foρo,C(−4)

)− (
foρo,C(−4)

)+ ((
Soρo,C(−4)

)− − (Soρo,C(−4)
)+)

∣∣∣∣∣∣∣∣ = 0, (77)

where ρA = ρa,O−H + 4ρ
a,CO2

. or

HL(sw, y) := det

 F̂1

+
−F̂1

−
[G1]

F̂2

+
−F̂2

−
[G2]

F̂3

+
−F̂3

−
[G3]

 = 0. (78)

Let us denote by [G] = G+ −G− and [F ] = u+F̂+ − u−F̂− i.e.,

σ(G+
i −G−i )− (u− − u+)F̂i

+
− u−(F̂i

+
− F̂i

−
) = 0, with i = 1, 2, 3, (79)

whereG−i , F−i andG+
i , F+

i are the accumulation and flux evaluated at the left (s−w , y
−, u−)

and right (s+w , y
+, u+) states. Here F̂1, F̂2 and F̂3 are given in (58) and G1, G2 and G3

are given in (57).
Using (79) determinant in (78) can be rewritten as

HL(sw, y) := det

 −[F̂1] F̂1

+
[G1]

−[F̂2] F̂2

+
[G2]

−[F̂3] F̂3

+
[G3]

 = 0. (80)

This is an equation in the variables Sw and y. Notice that if the classical RH condition
is satisfied, so that the first column is proportional to the last one, then equation (80) is
also satisfied. In other words, classical shocks belong to the RH curve, but there could
be other discontinuities satisfying (80).

The curve found in (Sw, y) space gives the possible discontinuities that satisfy the
Rankine-Hugoniot conditions. The shock curves in which only the saturation varies are
denoted by Ss. Shock curves in which, generically, all variables change are denoted as
SH .

One can verified that Hugoniot locus is the union of two branches (see Figure 2 ),
i.e. Ss ∪ SH , with

Ss = {(S+
w , y

+) : y+ − y− = 0}. (81)
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Along this branch we have that u = u+ = u− and σ = u[F̂i]/[Gi], with i = 1, 2, 3. Thus
we call this curve as Buckley Leverett shock. And

SH = {(S+
w , y

+) :
∂HL

∂y
(S−w , y

−) +
∂2HL

∂y2
(S−w , y

−)(y+ − y−)+

∂3HL

∂y3
(S−w , y

−)(y+ − y−)2 +O(y+ − y−)3 = 0},

where HL is given in (80).
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Figure 2: Branches of the Hugoniot locus.

Above statement is obtained using Taylor’s Series for HL and that HL(s−w , y
−) = 0

and
∂kHL

∂skw
(s−w , y

−) = 0 hold, for k = 1, . . .. we prove here
∂HL

∂sw
(s−w , y

−) = 0, the rest is

similar.
Derivation of (78) produces

∂HL

∂sw
(s+w , y

+) = det

 ∂(F̂1

+
)/∂sw −F̂1

−
[G1]

∂(F̂2

+
)/∂sw −F̂2

−
[G2]

∂(F̂3

+
)/∂sw −F̂3

−
[G3]

+det

 F̂1

+
−F̂1

−
∂[G1]/∂sw

F̂2

+
−F̂2

−
∂[G2/∂sw

F̂3

+
−F̂3

−
∂[G3]/∂sw

 ,

(82)
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or

∂HL

∂sw
(s+w , y

+) = det


(
ρa,C(4)

)+
f ′w −F̂1

−
[G1]

(ρA)+ f ′w −F̂2

−
[G2]

−
(
ρo,C(−4)

)+
f ′w −F̂3

−
[G3]

+

det

 F̂1

+
−F̂1

− (
ρa,C(4)

)+
F̂2

+
−F̂2

−
(ρA)+

F̂3

+
−F̂3

−
−
(
ρo,C(−4)

)+
 . (83)

Summing first and second column of second determinant in (83) we obtain

∂HL

∂sw
(s+w , y

+) = det


(
ρa,C(4)

)+
f ′w −F̂1

−
[G1]

(ρA)+ f ′w −F̂2

−
[G2]

−
(
ρo,C(−4)

)+
f ′w −F̂3

−
[G3]



+det

 −[F̂1] −F̂1

− (
ρa,C(4)

)+
−[F̂2] −F̂2

−
(ρA)+

−[F̂3] −F̂3

−
−
(
ρo,C(−4)

)+
 .

Applying properties of determinant we have,

∂HL

∂sw
(s+w , y

+) = det


(
ρa,C(4)

)+ −F̂1

−
[G1]f

′
w − [F̂1]

(ρA)+ −F̂2

−
[G2]f

′
w − [F̂2]

−
(
ρo,C(−4)

)+ −F̂3

−
[G13f

′
w − [F̂3]

 , (84)

or

∂HL

∂sw
(s+w , y

+) = (λsw − σ)det


(
ρa,C(4)

)+ −F̂1

−
[G1]

(ρA)+ −F̂2

−
[G2]

−
(
ρo,C(−4)

)+
f ′w −F̂3

−
[G3]

 . (85)

From (85) is obtained
∂HL

∂sw
(s−w , y

−) = 0.

5.4 Regression expressions

In the equations below y = ln[H+], where
[
H+
]

is the concentration [mol/liter] of the
hydrogen ion (here calculated at 39oC).
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ln
[
CO2−

3

]
= 51242105.771024 ∗ exp(2.73572178786335 ∗ y) + 6.69820568753213e− 14∗
sinh(2.02342646169015 ∗ y)− 23.5002456098875 [mol/liter] ,

ln
[
CO2−

3

]
= 51242105.771024 exp(2.73572178786335y)+

6.69820568753213e− 14 sinh(2.02342646169015y)− 23.5002456098875,

ln [CO2] = 14.3412082339566 + 1.98420301521895 ∗ y + 1.42894959991698e− 13∗
sinh(1.97397032954743 ∗ y) [mol/liter] ,

ln[HCO3]= y - 3.72509519022871e-17*sinh(-2.50221714601476*y), [mol/liter]

ln [HCO3] = y − 3.72509519022871e− 17 ∗ sinh(−2.50221714601476 ∗ y),

[H2O] = 116798.454030875 + 486.844910347393*exp(y) - 116743.356027846*cosh(y*exp(y)),

[H2O] = 116798.454030875+486.844910347393exp(y)−116743.356027846 cosh(yexp(y)),

ln
[
OH−

]
=-31.2 - y, [mol/liter] ,

ln
[
OH−

]
= −31.2− y,

5.5 Bifurcation curves

Here some elements that determine the Riemann solution are presented: coincidence
and inflection loci, which are region boundaries where rarefaction wave curves change.
Moreover the procedure for building the analytical solution through admissible wave
curves is shown.

5.5.1 Coincidence locus

Rarefaction wave solutions of the Riemann problem can suffer structural modifications
along the surfaces where wave velocities coincide. In our case the coincidence locus in
the projected state space (sw, y) is given as the set where velocities λs and λH in (73)
are equal, i.e.,

C =

{
(sw, y) :

∂fw
∂sw

=
∆1fw + ∆2

∆1sw + ∆2

}
,

where ∆1 and ∆2 are given in (74) and (75), respectively. When the variables sw and
y vary, we have a coincidence surface. Choosing certain experimental data of interest
obtained with the PHREEQC program, the coincidence locus consist of two curves in
(sw, y) space for fixed u (see Figure 3).
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5.5.2 Inflection locus

Points on the inflection locus are those where genuine nonlinearity is not satisfied ([57]),
i.e., we define the inflection locus for saturation waves and for composition waves as:

Ik =

{
(sw, y, u) : Oλk · rk =

∂λk
∂sw

r1k +
∂λk
∂y

r2k +
∂λk
∂u

r3k = 0

}
,

with k = Ss,SH . It is possible to check the following fact: in the projected state space
the inflection locus for the saturation wave is the curve

Is = {(sw, y) : f
′′

w(sw) = 0},

for any fixed u, where f
′′

w is the second derivative of the flux fw relatively to sw. The
inflection locus is important because it indicates where the rarefaction curves stop. For
the examples discussed here the inflection locus for composition waves consist of four
disconnected curves: one where the pH is approximately constant, one vertical line,
where the saturation is constant and two other curves that are also coincidence curves
for the eigenvalues. On the other hand (see Figure 3), the inflection locus for rarefaction
wave consists of a line of constant saturation.

Figure 3 shows a typical example in experiments where the composition rarefaction
waves have an inflection and necessarily have to stop.
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A          A

Figure 3: For the variable oil viscosity case. Dashed lines represents the inflection locus
for the saturation wave, while the bold line represents the inflection locus for the case
of composition waves. Here the coincidence curves are denoted by A, which are also
inflection loci.
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5.6 Numerical and Analytical solutions

By means of the analytical solution we study water and CO2 flooding. Assuming that
oil viscosity is constant, the structure of the Riemann solution for the examples with left
(upstream) state (sw = 0.8, pH = 2.7) to right (downstream) state (sw = 0.15, pH = 4)
consists of two rarefaction waves separated by a chemical shock; the latter is continued
with a constant state and finally a fast Buckley-Leverett saturation shock. In the first
rarefaction wave only the saturation changes, while in the second one both saturation
and composition change. The connection point between the rarefaction waves can be
constructed from a curve of states where the two characteristic velocities coincide.

In Figure 4 the analytical and numerical solutions obtained by software COMSOL
and Riemann solver is shown. It shows that both solutions match almost indistinguish-
able. Comparing the results, we can clearly see the existence of a saturation rarefaction
wave Rs(J) connecting J to M1 then a chemical wave rarefaction wave RH(M1,M2)
connecting M1 to M2, then a chemical shock wave SH(M2,M3) connecting M2 to M3,
with the shock speed 2.99 × 10−5m/s with the analytical method, 2.9 × 10−5m/s from
COMSOL simulation. After M3 there is a constant state and then a shock saturation
wave Ss(M3, R) connecting M3 to I. This saturation shock speed is 4.37×10−5m/s with
analytical method, and 4.33× 10−5m/s with COMSOL simulation.
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Figure 4: a)- left . The saturation profile from the COMSOL simulation (solid curve)
a function of time scaled position compared with the analytical solution (dashed curve).
b)- right . The pH profile from the COMSOL simulation (solid curve) compared with
the analytical solution (dashed curve).

In the Figure 5 the hydrogen and saturation wave at different time instants is shown.
The hydrogen concentration is characterized by a constant state, a shock like behavior
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Figure 5: The saturation, inert tracer (chloride) and the hydrogen ion concentration in
the ICDOW model

and then a rarefaction. The saturation profile is a typically Buckley-Leverett profile.
In Fig. 6 we have added the decane concentration. We note that the behavior of

decane at very low pH depends on a single data point and a literature search is required
to get more data points. All the same the conclusion reached previously that the presence
of carbon dioxide is strongly affecting the results still remains.

6 Conclusions

We developed a Riemann solver to obtain solutions for oil recovery problems including
geochemical aspects. The methodology is adequate for one dimensional incompressible
two-phase flow in porous media involving several chemical components.

As there is mass transfer between phases and the partial molar volume differs be-
tween phases, a variable total Darcy velocity ensues, so that fractional flow theory does
not easily apply. For upscaled equations in reservoir flow, convection terms completely
dominate the diffusion terms; this is why Riemann solutions, which use zero diffusion
coefficients are usually better representations than numerical representations with non-
zero diffusion coefficients on the reservoir scale. The Riemann solver for this model can
therefore be applied for upscaling transport processes in enhanced oil recovery involving
geochemical aspects.

The performance of our Riemann solver is illustrated for carbonated water injection in
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Figure 6: Oil concentration and hydrogen equation in the ICDOW model

a rock containing oil and carbon dioxide. The salinity is zero everywhere. We formulate
three conservation equations, in which we substitute expressions that are obtained from
geochemical software (PHREEQC) by regression. Gibbs phase rule together with charge
balance shows that all compositions can be written in terms of the pH only.

The Riemann solution can be compared with a numerical solution, which can be
include capillary and diffusion effects. We use the initial and boundary conditions for
carbonated water injection in an oil reservoir containing connate water with some carbon
dioxide. Two numerical procedures were used (1) an in house developed upstream finite
difference simulator (IVUP) (2) implementation of the model equations into COMSOL.
There is good agreement between the numerical solutions and the Riemann solution
except that COMSOL shows a slightly lower total velocity than IVUP and the Riemann
solution.

The structure of the Riemann solution from left (upstream) to right (downstream)
consists of two rarefaction waves connected by a chemical shock; the latter is continued
with a constant state and finally a fast Buckley-Leverett saturation shock. In the first
rarefaction wave only the saturation changes, while in the second one both saturation
and composition change. The connection point between the rarefaction waves can be
constructed from a curve of states where the two characteristic velocities coincide.
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A Activity coefficients

Molalities, molarities and mole fractions
The chemical potential of a component does not depend on whether the concentra-

tions are measured in molar, molal or mole fractions. Therefore we obtain

µ = µ0
X +RT ln (γH,xX)

= µ0
m +RT ln (γH,mm)

= µ0
c +RT ln (γH,cc)

= µ0 +RT ln a

where µ0
X is the chemical potential of pure solute having the properties of an infinitely

dilute solution, µ0
m is the chemical potential of the solute in the ideal one molal solution

and µ0
c is the chemical potential (Anderson and Crerar) of the ideal one molar solution.

Anderson and Crerar show that difference between the activity coefficients γ except for
very high concentrations are extremely small, i.e.,

ln γH,x = ln γH,m + Γγ = ln γH,m + ln (1 + 0.0180153m) (86)

The unit of the activity depends on the reference state that determines µ0.
The equilibrium constants express the values with respect to a reference state, e.g.,

an ideal one molar solution with activity coefficient one, which corresponds to an activity
equal to one. The equilibrium constants tabulated in Appelo, are referring to one molal
ideal solutions, which have thus an activity equal to one. So all activities computed
from the equilibrium relations are with respect of an ideal solution of one mol/kg-water,
which has an activity one.

Division by these activities by the activity coefficients give us the value of the con-
centrations. The activity coefficients are derived in the Debye-Hückel theory, which uses
the Electrostatic Poisson equation, where the charge density is expressed in charge per
unit volume. Hence it appears that the activity coefficients are formally correct only
for concentrations expressed in mol/liter. All the same many authors still use molalil-
ties (concentrations in mol/ kg-water) based on the fact that the difference between the
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activity coefficients based on molarites, molalities or even mole fractions are extremely
small.

Activity coefficients for charged molecules; extended Debye Hückel law
The extended Debye-Hückel theory for calculating the activity coefficient of an ion

reads [1]

ln γj (µ) = −
Aγ|zj|2

√
µ

1 +Bγ åj
√
µ

+ bjµ (87)

where µ =
1

2

∑
i

(
ciz

2
i

)
[mol/liter] is the ionic strength of the solution, zi is the

charge of the ion, in water. Finally åj is the effective diameter of an ion j in Ångstrom
see Appelo and Postma, [3], page 125. For small ions we use a value of 3 Ångstrom.

Bγ =

(
8πNAq

2
eρo

1000εrkBT

)1/2

=
50.29158649ρ

1/2
0

(εrT )1/2
(88)

where NA is the Avogadro number (6.225× 1023) molecules per mole, qe = 4.803× 10−10

esu (electrostatic unit of charge),ρ0 is the density of pure water water in
[
g/cm3

]
, εr is

the relative dielectric coefficient, kB = 1.38054×10−16 erg/K is the Boltzmann constant,
T is the temperature in K, P is the pressure in atmosphere. and the compressibilty κ0
=
(
atm−1

)
. For the definition of B in Eq. (25) we need to express å in Ångström.

Moreover we can express the Debye-Hückel parameter for the activity coefficients as
[95]

Aγ =
(2πNA)1/2 q3e

√
ρ0

√
1000 (εkBT )3/2

=
1824829.238

√
ρ0

(εT )3/2
[
(mol/kg)0.5

]
(89)

At room temperature (25oC) and atmospheric pressure Aγ/ ln(10) = 0.5085 and
B = 0.3281. Finally åj is the effective diameter of an ion j in Ångstrom [4] [3], page
125. For small ions we use a value of 3 Ångstrom.The ionic strength can be written in
terms of activities as

µ =
1

2

∑
i

(
ciz

2
i

)
=

1

2

∑
i

(
ai

γi (µ)
z2i

)
(90)

Converting molalities into concentrations
For more or less dilute solutions we can take the activity of water aH2O = 1. ([56] [2]

). For sea water aH2O = 0.98. The concentrations are expressed in moles per unit mass
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of water. Indeed, if we divide the activities by activity coefficients γw,j we obtain the
concentration in molalities, simply because Appelo [4] defines the reference state as the
activity of one molal of ideal solution. The molarities are proportional to the molalities
and the conversion is given by the equation

ca,j =
ρa∑N

i=1 (mw,iMi)
mw,j = [Mwca,w]mw,j, (91)

where we have used that Mwca,w = ρa/
N∑
i=1

(mw,iMi) , and that the molality of water

mw,j = 1000/Mw.The density of the aqueous solution is ρa.

B Partition of carbon dioxide into the aqueous and

oleic phases

By comparing the Henry coefficient of carbon dioxide between the oleic phase and the
gas phase to the Henry coefficient between the aqueous and the gas phase it is possible to
derive the equilibrium of carbon dioxide between an oleic phase and the aqueous phase.

Henry’s law describes the ratio between the activity of carbon dioxide in the aqueous
phase and in the gas phase. We obtain

KH
w−g = aw,CO2/ag,CO2 = ma,CO2γa,CO2/fg,CO2 , (92)

where ma,CO2 is the molality of carbon dioxide in the water phase, γa,CO2(aq) the activity
coefficient, and fCO2(g) is the fugacity of carbon dioxide in the gas phase.

We can also relate the equilibrium of carbon dioxide in the oil phase [116] [71] and
the gas phase by

KH
o−g = ao,CO2/ag,CO2 = mo,CO2γo,CO2/fg,CO2 . (93)

The procedure to get activities in neutral molecules in the aqueous phase is given in
[87].

Therefore the ratio of the Henry coefficients give the ratio of the molalities

KH
w

KH
o

=
ma,CO2γa,CO2

mo.CO2γo,CO2

≈ ma,CO2

mo,CO2

(94)
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The approximation is valid for low ion concentrations. In practice there will be an
effect for natural brine reservoirs. For the simplified model we use that γa,CO2 = γo,CO2 .

For crude estimates we can use that the mole fraction of CO2 in oil (2,2,4-trimethyl
pentane) at 40 bar is [71] of the order of xo,CO2 = 0.2. The Henry coefficient in water is
0.034 mol/liter/atm [91] [118], which would be approximately 1.38 mol / liter at 40 bar.
This corresponds to a mole fraction of xw,CO2= 0.025. Hence the solubility ratio RCO2

between oil and water is of the order of 8, i.e.,

RCO2 =
co,CO2

ca,CO2

≈ 8 (95)

Therefore we can also relate the concentration of the carbon dioxide in oleic phase
co,CO2 to the hydrogen ion concentration and the chloride concentration as the other
concentrations. Using Eq.

ρo,C(−4)

ρO,C(−4)
+
ρo,CO2

ρO,CO2

= 1, (96)

we can also calculate co,oil and relate it to the hydrogen ion concentration and the chloride
concentration.

The calculation of activity coefficients of neutral molecules (CO2 (aq), SiO2 (aq),
H2S(aq)) is usually much simpler than the calculation of activity coefficients of ions [2].
The first ionization constant is usually small, so that species other than the neutral
substances can usually be disregarded. We will consider

CO2(g)� CO2(aq) , (97)

for which the Henry coefficient can be written as

KH = aCO2(aq)/aCO2(g) = mCO2(aq)γCO2(aq)/fCO2(g) , (98)

where fCO2 is the fugacity of carbon dioxide, γCO2 is the activity coefficient of CO2 in
the aqueous phase and mCO2 is the molality of carbon dioxide. The activity coefficient,
γCO2(aq), in pure water is usually close to one.

The Setchénow coefficient kS relates the activity coefficient of interest to the ionic
strength of the solution, e.g., for carbon dioxide

log γCO2(aq) = kSµ =
1

2
kS

N∑
i=1

ciZ
2
i . (99)

where the logarithm has base ten. Similar relations hold for the other non-charged
components (see Table ??)
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For single salt solutions, values can be found in [102]. Byrne et al. [21] use the
equation

log
m0

ms

=
∑
i

kmiI, (100)

for salt mixtures, wherem0 andms are the solubilities in distilled water and salt solutions,
at T, P and the fugacity of interest. Solubilities of methane are not much affected by
the presence of clay [101]. For an overview of activity coefficients for neutral molecules
in ionic solutions we refer to [87] [86] [85]. We will not explicitly use it, but the Eq. (??)
has already been implented in PHREEQC [75].

However, to add the individual values is cumbersome and we can approximate the
values using that ks = 0.1 ([62]) ([101]), even if these values can vary.

C Partial molar volume

The regression expressions for the density and the dielectric constant are given in Ap-
pendix A

Following Redlich and Mayer (1964), it is convenient to introduce Traube’s apparent
molal volume defined by the volume V of a solution containing n1 moles of solvent (molal
volume) v10 and n2 moles of solute according to (see Redlich and Meyer, 1964).

V = n1vl0 + n2φ (101)

Usually the apparent molal volume is computed from the molal weight of the solute
w2, its concentration c (moles/l.), and the densities s of the solution and s0 of the solvent
by

φ =
w2

s0
− 1000

(
s− s0

)
/
(
cs0
)

(102)

The theory of electrolytes furnishes the limiting relation

φ = φ0 + kw1.5c0.5 (103)

It shows the usual linear dependence on the square root of the concentration and
the influence of the valence factor w, which is given by the number νiof ions of species i
formed by one molecule of the electrolyte and the valence zi according to

w =
1

2

∑
i

νiz
2
i (104)

46



-Millero—Alternative formulation for calculating the specific volume for the aqueous
species (Millero, 2000) by convention relative to the volume of H+ at a ionic strength of
0. The specific volume for species i is calculated according to the formula , where is the
specific volume at infinite dilution; Av is the Debye-Hückel limiting slope, and I is the
ionic strength. The volume at infinite dilution is parameterized as and the coefficient is
parameterized as , where T is ◦C. If both −V m and -Millero are defined for a species,
the numbers from −V m are used. Warning: the applicability of the Millero formulas is
limited to T < 50 ◦C, and the calculated densities may be incorrect at ionic strengths >
1.0 except for NaCl solutions. Optionally, Millero or -Mi[llero]. a, b, c, d, e, f—Numerical
values for parameters a to f in the specific volume equation.

The density
The density ρw can be expressed as the inverse molar volume, i.e.,

ρw =
1

V
=

1∑
i

niV i

(105)

where

V i = V i,inf +
1

2
z2iAV

√
µ

1 + åB
√
µ

+ βiµ
i4 , (106)

where βi = i1 + i2/ (TK − 228) + i3 (TK − 228) and µ is the ionic strength. The partial
molar volume V i,inf at infinite dilution is

V i,inf = 41.84

(
a1/10 +

100a2
2600 + Pb

+
a3

TK − 228
+

10000a4
(2600 + Pb) (TK − 228)

−WQBorn

)
,

(107)
where QBorn = −∂P (1/εr)

2. The constants in cal/mole/bar are a1, a2, a3, a4, å W, i1,
i2, i3, i4 a1 = 8.615, a2 = 0, a3 = −12.21, a4 =0 å = 1.667, W = 0, i1 = 0. i2 = 264,
i3 = 0 and i4 =1 for the reaction CO2−

3 + H+ → HCO−3 . Using the factor 41.84, leads
to a volume of cm3/mol. The factor 4.184 converts calorie to Joule.

The constant AV , the Debye limiting slope, can be expressed as [10]

AV = 2RT

√
2πNAρ0

1000

(
q2e
εkT

)3/2 [(
∂ log εr
∂P

)
T

+
κ0
3

] [
(cm3/mol)(mol/kg)−0.5

]
, (108)
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where NA is the Avogadro number (6.225× 1023) molecules per mole, qe = 4.803× 10−10

esu (electrostatic unit of charge), ρ0 is the density of pure water water in
[
g/cm3

]
, εr is

the relative dielectric coefficient, kB = 1.38× 10−16 erg/K is the Boltzmann constant, T
is the temperature in K, P is the pressure in atmosphere. and the compressibility κ0 =(
atm−1

)
.

B =
8πNAq

2
eρo

εrkBT
(109)

D Sorption isotherms

In this section as we assume for the simple model, that the activity coefficients of the
surface complexes are equal to one. Indeed, the conversion of activities to concentration
of surface complexes is not easy [3] and activitiy coefficients of surface complexes are
usually taken equal to one. However, the equilibrium coeficients Ki,κ have been corrected
for charge effects. Usually in surface chemistry one uses activities for the dissolved ions.
The activity coefficients of the surface complexes are usually one, i.e., we do not discern
different values of the activity coefficients of the surface complexes.This is generally done
as currently there is no model to derive the activity coefficients of surface complexes [3].
We distinguish again weak and strong binding sites. The total charge is the charge on
the weak binding sites added to the charge on the strong binding sites. This determines
the surface potential of the sorbent phase. The number of strong binding sites are for
instance 1% of the number of weak binding sites.. From Eqs. (??) we obtain

K−11 =
mH+ (oils,N)

(oils,NH+)
=
mH+

(
mtot
oils,NH+

−moils,NH+

)
moils,NH+

(110)

where we used that the total number of surface sites of per kilogram of oil is moils,NH+ +

moils,N = mtot
oils,NH+

. Hence we obtain

moils,NH+ =
mH+mtot

oils,NH+

K−11 +mH+

(111)

moils,N = mtot
oils,NH+

−moils,NH+ (112)

The total number of binding sites of the surface complexes per mol of adsorbent,
e.g., the cationic surfactant concentration mtot

oils,NH+
per mole of oil is given. In addition
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we give the average molar weight of the surfactant molecule and the surface area of the
adsorbent in

[
m2/g − sorbent

]
· The concentration of amines and carboxylic acids in the

ioil are implicitly given by the base number and acid number respectively. It concerns
the mass of KOH that is necessary to neutralize the solution and is an indicator of the
amount of carboxylic acids. Conversely the base number the mass of perchloric / glacial
acetic acid required to neutralize the solution. It is mentioned [26] that many standard
methods are not able to determine the weak acid concentration.

In the same way we obtain

moilw,COOH
=

m tot
oilw,COOH

mH+

K−21 + mH+ + K22 mCa2+mH+

(113)

moilw,COO−
=

K−21 m tot
oilw,COOH

K−21 + mH+ + K22 mCa2+mH+

(114)

moilw,COOCa+
=

K22 mCa2+ m
tot
oilw,COOH

mH+

K−21 +mH+ +K22ma,Ca2+mH+

(115)

where we have defined mtot
oilw,COOH

=
(
moilw,COOH

)
+
(
moilw,COO−

)
+
(
moilw,COOCa+

)
. Here the

molalities are given in terms of [mol/kg-oil]

mCals,OH
=

mtot
Cals,OH

K33 mHCO−3
+ K13 mH+ + 1

(116)

mCal
s,CO−3

=
mtot

Cals,OH
K33 aHCO−3

K33 mHCO−3
+ K13 mH+ + 1

(117)

mCal
s,OH+

2

=
mtot

Cals,OH
K13 mH+

K33 mHCO−3
+ K13 mH+ + 1

(118)

mCalw,CO3H
=

mtot
Calw,CO3H(

1 + K−14mH+ + K24 mCa2+

) (119)

mCalw,CO−3
=

K−14mH+ mtot
Calw,CO3H(

1 + K−14mH+ + K24 mCa2+

) (120)

mCalw,CO3Ca+
=

K24 m
tot
Calw,CO3H

mCa2+(
1 + K−14mH+ + K24 mCa2+

) , (121)
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where the molalities are given in [moles per kg-calcite].
The molalities can be converted to concentrations using the Eq. A.
The total concentrations are given by

coilw,COOH,tot
= 1.3× 10−3 mol/m3,

coils,N ,tot = 1.3× 10−3 mol/m3,

cCas,OH,tot
= 1.1× 10−2 mol/m3,

cCaw,CO3H,tot
= 1.1× 10−2 mol/m3.

E Charge neutrality

E.1 Mathematical derivation

Remark: We did not consider the surface complexes, but the idea is similar
We consider that we have the n possible different atoms to obtain m possible chemical

species. We denote these atoms as

X1, X2, · · · , Xn.

We suppose that atom Xi, for i = 1, 2, · · ·n, has the valence θi.
The j-th chemical species is denoted as

((X1)γ1j(X2)γ2j · · · (Xn)γnj
)ξj . (122)

Here ξj is the ion charge of the j-th component; if the j-th chemical species is not a
ion, then ξj = 0. For the constant γij, the index i is associated to the particular atom
Xi, and the index j is associated to the chemical species. Moreover, it is possible that
γij = 0 if the atom is absent in chemical species.

Using the charge balance of each j − th chemical species, we have that:
n∑
i=1

γijθi = ξj. (123)

We denote the concentration of j-th chemical species as:

c
(
(X1)γ1j(X2)γ2j · · · (Xn)γnj

)ξj
)

(124)

We define the total charge as:

σ =
m∑
j=1

ξjc
(
(X1)γ1j(X2)γ2j · · · (Xn)γnj

)ξj
)
. (125)

When σ = 0 the say that there is charge neutrality.
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Theorem 1. The charge neutrality is conserved by the evolution equations, i.e., if σ = 0
for the initial value, it remains σ = 0 for all t > 0.

Proof:
The conservation law for the i-th atom in the water phase is given by the concentra-

tion of each chemical species:

∂

∂t

(
m∑
j=1

γijc
(
(X1)γ1j(X2)γ2j · · · (Xn)γnj

)ξj
))

+
∂

∂x
u

(
m∑
j=1

γijc
(
(X1)γ1j(X2)γ2j · · · (Xn)γnj

)ξj
))

=
∂

∂x

(
ϕDw

∂

∂x

(
m∑
j=1

γijc
(
(X1)γ1j(X2)γ2j · · · (Xn)γnj

)ξj
)))

(126)

To obtain the conservation of charge, notice that we can multiply the equation for the
i-th atom by his respective valence, θi. Notice that there are n equations. We add all
equations and we obtain:

n∑
i=1

θi
∂

∂t

(
m∑
j=1

γijc
(
(X1)γ1j(X2)γ2j · · · (Xn)γnj

)ξj
))

+

n∑
i=1

θi
∂

∂x
u

(
m∑
j=1

γijc
(
(X1)γ1j(X2)γ2j · · · (Xn)γnj

)ξj
))

=
n∑
i=1

θi
∂

∂x

(
ϕDw

∂

∂x

(
m∑
j=1

γijc
(
(X1)γ1j(X2)γ2j · · · (Xn)γnj

)ξj
)))

(127)

Changing the order of sum in i and j we obtain

∂

∂t

(
m∑
j=1

(
n∑
i=1

θiγij

)
c
(
(X1)γ1j(X2)γ2j · · · (Xn)γnj

)ξj
))

+

∂

∂x
u

(
m∑
j=1

(
n∑
i=1

θiγij

)
c
(
(X1)γ1j(X2)γ2j · · · (Xn)γnj

)ξj
))

=
∂

∂x

(
ϕDw

∂

∂x

(
m∑
j=1

(
n∑
i=1

θiγij

)
c
(
(X1)γ1j(X2)γ2j · · · (Xn)γnj

)ξj
)))

(128)
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Using (123), we finally obtain:

∂

∂t

(
m∑
j=1

ξjc
(
(X1)γ1j(X2)γ2j · · · (Xn)γnj

)ξj
))

+
∂

∂x
u

(
m∑
j=1

ξjc
(
(X1)γ1j(X2)γ2j · · · (Xn)γnj

)ξj
))

=
∂

∂x

(
ϕDw

∂

∂x

(
m∑
j=1

ξjc
(
(X1)γ1j(X2)γ2j · · · (Xn)γnj

)ξj
)))

. (129)

Notice that (129) is an equation for the unknown σ:

∂

∂t
(σ) +

∂

∂x
u (σ) =

∂

∂x

(
ϕDw

∂

∂x
(σ)

)
. (130)

If σ = 0 initially, from the uniqueness of solution of partial differential equation, we
prove that σ = 0 is the only solution. �

F Basic programs for calculation of the density and

dielectric properties

F.1 Program for AV obtained from Table in Donald Archer
and Pelming Wang

Function AVeps(T, P)
rem T in K and P in MPa
coef3 = -1.63521E-15 * T * T * T + 1.66821E-12 * T * T
- 0.000000000587862 * T + 0.0000000664581
coef2 = 9.26251E-13 * T * T * T - 0.000000000912623 * T * T
+ 0.000000341581 * T - 0.00004174
coef1 = 5.53046E-11 * T * T * T - 0.000000101197 * T * T
+ 0.000023077 * T - 0.001447951
coef0 = -0.0000000716544 * T * T * T + 0.0000929356 * T * T
- 0.027716004 * T + 2.530009631
AVeps = coef3 * P * P * P + coef2 * P * P
+ coef1 * P + coef0
End Function

Function rhotp(T, P)
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rem P in MPa and T in K, density in kg/mˆ3
Rem Experimental study of the p, V, T properties
Rem For temperatures in the range
’ 323.15 to 773.15 K and pressures up to 200 MPa
’ I. TANISHITA, K. WATANABE, J. K.IllMA, H. ISHII,
’ K. OGUCHI, and M. UEMATSU”
Rem J. Chem. Thermodynamics (1976) 8 pp 1-20
Rem partial molar volume
aone = 0.000768687 * T + 0.14162221
atwo = -0.692035118 * T + 1213.365007
rhotp = aone * P + atwo
End Function

F.2 Program for dielectric coefficient ε, obtained from Table in
Donald Archer and Pelming Wang

Function epsi(T, P)
rem T in K and P in Mpa
coef3 = 1.21462E-14 * T * T * T - 1.36106E-11 * T * T
+ 0.00000000512099 * T - 0.000000624514
coef2 = -0.000000000012255 * T * T * T + 0.0000000140519 * T * T
- 0.0000054587 * T + 0.000684648
coef1 = 0.00000000264951 * T * T * T - 0.00000266152 * T * T
+ 0.000859081 * T - 0.0529549
coef0 = -0.000000955266 * T * T * T + 0.00165457 * T * T
- 1.09166 * T + 282.114
epsi = coef3 * P * P * P + coef2 * P * P
+ coef1 * P + coef0
End Function
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