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Abstract

This thesis deals with the issue of expressing structures on degree 2 graded manifolds
(such as homological vector fields and Poisson brackets) in classical geometrical terms.
We take as a starting point the equivalence, established by H. Bursztyn et al in [6], of
the category of degree 2 manifolds with the category of certain exact sequences of vector
bundles that we call involutive. Building on this equivalence, we describe various objects
on degree 2 manifolds in terms of the corresponding vector-bundle information.

First, we characterize degree 3 functions as certain pairs of vector-bundle morphisms.
Then we give a characterization of Q-structures (degree 1 homological vector fields) on
degree 2 manifolds which leads to a geometric object, defined by maps and brackets on
certain sequences of vector bundles, that we call a Lie 2-algebroid; upon an additional
choice of splittings, these correspond to the existing notion of Lie 2-algebroid defined on a
graded vector bundle (also known as 2-term L∞-algebroid). We also clarify the connection
between Lie 2-algebroids, VB-Courant algebroids (due to D. Li-Bland) and exact V-twisted
Courant algebroids (introduced by M. Grutzmann and T. Strobl).

We also describe degree -2 Poisson brackets in terms of a (degenerate) metric and
a Lie algebroid structure on the vector-bundle side, which intertwine through a metric
preserving representation of the Lie algebroid. By means of the double realization functor,
we establish an equivalence with a certain category of double vector bundles endowed
with an additional structure, we call involutive, and describe degree -2 Poisson brackets
on degree 2 manifolds in terms of double linear Poisson structures on the corresponding
double vector bundle, invariant under the involutive structure, which are shown to be
equivalent to a metric VB -algebroid structure on the dual (as defined by M. Jotz). Finally,
we characterize integrable degree 3 functions on a degree 2 Poisson manifold, that is, a
degree 3 function θ satisfying {θ, θ} = 0, which appears naturally in the quotient of a
Courant algebroid by symmetries, in terms of vector bundle morphisms that relate the Lie
2-algebroid corresponding to the hamiltonian vector field Q = {θ, ·} and the VB-algebroid
corresponding to {·, ·}. The resulting object generalizes Courant algebroids, which are
recovered when the Poisson bracket is symplectic.
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ao Abú e à Marina, que sempre me fizeram sentir em famı́lia, me acompanhando e
dando força ao longo do mestrado e doutorado,

a todos os meus amigos, em particular aqueles que me acompanharam mais de perto
ao longo desses anos do mestrado e o doutorado, aqueles com os que morei no mesmo
apartamento, fiz disciplinas junto, estudei pros exames de qualificação, divid́ı sala, fizemos
coisas extra-curriculares no Rio, não vou nomear a cada um aqui, porque já estão nomeados
no coração,
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Chapter 1

Introduction

1.1 Poisson, Lie and Courant brackets

Poisson brackets were introduced independently in the 19th century by the French
mathematicians, J. L. Lagrange and S. D. Poisson, in their study of mechanics, fluids and
elasticity. Afterwards the geometric, local structure of Poisson manifolds was studied by
the Norwegian mathematician S. Lie, motivated by his study of continuous symmetries
and differential equations.

In 20th century, Poisson brackets were considered by the physicist P. A. Dirac in his
effort of quantizing mechanical systems with constraints, and more generally of finding a
mathematical formulation of mechanics suitable to perform quantization. This program
was followed, among others, by J.-M. Souriau, A. Lichnerowicz, B. Kostant, S. Sternberg
and A. Weinstein with several remarkable contributions (see e.g. [43],[70]).

The infinitesimal invariants of a Poisson structure are encoded by a structure which
belongs to the differential geometric generalization of a Lie algebra, and is called Lie
algebroid ([55],[46]). A Lie algebroid generalizes simultaneously Lie algebras, tangent
bundles and (infinitesimal) actions of Lie groups on manifolds. It comprises a Lie bracket
[·, ·] on the sections of a vector bundle A //M , and a vector bundle map ρ : A // TM
over the identity, such that

[X, fY ] = f [X,Y ] + ρ(X)(f)Y, ∀X,Y ∈ Γ(A), f ∈ C∞(M).

For the case of a Poisson structure (M,π), we have the cotangent Lie algebroid ([15],[13]),
(T ∗M, [·, ·]π, π]), where π] : T ∗M //TM is the map induced by the bivector πΛ2TM and
the bracket is determined by the condition

[df, dg]π = d(π(df, dg)) = d{f, g}, ∀f, g ∈ C∞(M).

Usually in a mechanical system, given by a hamiltonian function on a symplectic man-
ifold, there appear constraints, which restrict the system to a submanifold, that inherits
a presymplectic structure; on the other hand a mechanical system usually has symme-
tries, that leads naturally to work in a quotient manifold which inherits a Poisson struc-
ture. Therefore it raises the interest of having a unified setting that comprises both
structures. In the late 1980’s, T. J. Courant [14], discovered such unifying structure by

1



1.2. THE SUPERGEOMETRIC VIEWPOINT 2

means of a new bilinear skew-symmetric map on sections of the generalized tangent bundle
TM = TM ⊕ T ∗M ,

[[(X,α), (Y, β)]] =

(
[X,Y ],LXβ − LY α−

1

2
d(〈X,β〉 − 〈Y, α〉)

)
. (1.1)

Independently, in the context of two dimensional variational problems, I. Ya. Dorfman
introduced a non skew-symmetric version of this bracket,

[[(X,α), (Y, β)]] = ([X,Y ],LXβ − ιY dα). (1.2)

As it is readily seen, the bracket (1.1) is the skew-symmetrization of (1.2). This bracket (or
equivalently its skew-symmetrization) is the key concept to encode in a common setting the
integrability conditions for Poisson brackets and presymplectic forms, namely, the former
is given by [π, π] = 0, where π ∈ Γ(Λ2TM) is the Poisson bivector and [·, ·] is the Schouten
bracket, and the latter is given by dω = 0, where ω ∈ Γ(Λ2T ∗M) is the 2-form, and d is
the de Rham exterior differential. The geometrical structure that comprises both cases,
called a Dirac structure, is a subbundle of TM maximally isotropic with respect to the
natural symmetric non-degenerate pairing on TM , whose space of sections is closed with
respect to the Courant-Dorfman bracket (1.2), and turns out to be a Lie algebroid. Dirac
structures interpolate many of the classical geometries besides symplectic and Poisson
geometry, for example the geometry of foliations and complex geometry are encompassed
by this structure.

Later it was raised the question of what would be the corresponding concept of double
of a Lie bialgebroid, in analogy with the so-called Drinfel’d doubles for Lie bialgebras.
This was achieved in a joint work by A. Weinstein, Z.-J. Liu and P. Xu [44], in which
they axiomatized the general notion of a Courant algebroid (see Def. 5.1 of the present
work), which has as a particular case the standard Courant algebroid (TM, [[·, ·]], ρ, 〈·, ·〉),
where TM = TM ⊕ T ∗M , [[·, ·]] is the bracket given by Eq. (1.2), ρ : TM // TM is the
projection, and 〈·, ·〉 is the natural duality pairing 〈(X,α), (Y, β)〉 = α(Y ) + β(X).

1.2 The supergeometric viewpoint

That rich geometric structures can be encoded by very simple objects on graded su-
per manifolds is known since at least back to the works of Y. Kosmann-Scwarzbach, F.
Magri [37], M. Rothstein [57] and A. Yu. Vǎintrob [67]. At a first level we have the
correspondence of degree 1 manifolds with vector bundles, which leads to the following
further correspondences:

Classical geometric structures Geometry on degree 1 manifolds

Lie algebroid (A, [·, ·], ρ) degree 1 homological (Q2 = 0) vector field Q

Lie algebroid (A∗, [·, ·], ρ) degree -1 Poisson brackets {·, ·}
Poisson manifold (M, {·, ·}) degree 2 function π satisfying {π, π} = 0

Lie bialgebroid on (A,A∗) degree 1, homological, Poisson vector field Q

This picture becomes even more interesting when one considers degree 2 manifolds.
Indeed, D. Roytenberg, following the ideas of A. Y. Vǎintrob [67] and Pavol Ševera [62],[63],
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obtained a super-geometric interpretation of Courant algebroids as degree 3 integrable
functions on symplectic degree 2 manifolds, bringing fruitful new insights into the geometry
of Courant algebroids [59]. So, we can extend the picture above to include the following
equivalences between classical and super sides of geometry:

Classical geometric structures Geometry on degree 2 manifolds

Pseudo-euclidean vector bundle symplectic degree 2 manifold (M, {·, ·})
(E∗, 〈·, ·〉)

Courant algebroid symplectic degree 2 manifold (M, {·, ·})
(E∗, 〈·, ·〉, [[·, ·]], a) + degree 3 function θ satisfying {θ, θ}

In particular, the super-geometric interpretation of Courant algebroids and their Dirac
structures, draws a parallel between these and Poisson manifolds and their coisotropic
submanifolds, providing new insights to their study, suggesting a certain parallel between
both theories, and it has been indeed the case in some aspects such as reduction, see e.g.
[7],[9],[10]. Also in [63] it was pointed out that a class of Courant structures, called exact
Courant algebroids, should play the role in string theory analogue to the role played by
Poisson structures in classical physics.

When a Lie group acts on a symplectic manifold preserving the structure, the corre-
sponding Poisson brackets can be naturally transported to Poisson brackets of functions
on the quotient space, which are naturally identified with those functions on the manifold
that are invariant under the action of the group. Similarly, we can define the action of
a (graded) Lie group on a degree 2 symplectic manifold, preserving the structure. Then,
as in the classical case, we can transport the Poisson brackets to the space of functions
on the quotient manifold. Moreover, if there is a degree 3, integrable function on the
manifold, invariant under the action of the group, then it corresponds to an integrable
degree 3 function on the quotient. This motivates the following questions, whose answers
are the purpose of the present work.

Question 1. What is the classical geometric counterpart for degree 2 Poisson mani-
folds?

Question 2. What is the classical geometric counterpart for integrable degree 3 func-
tions on a degree 2 Poisson manifold?

In the symplectic case, the hamiltonian vector fields generate the module of vector
fields. This allows us to understand the geometric structure of a degree 3 function just in
terms of functions of degrees 0 and 1, which give rise to the Courant algebroid structure.
When the non-degeneracy condition of the Poisson brackets is broken, we need to work
directly with the vector fields of negative degree, whose action on a degree 3 function
extract all the information about it. Whereby, in order to answer questions 1 and 2, we
need first answer three more questions:

Question 1a. What is the classical geometric counterpart for degree 2 manifolds
(without any additional structure)?

Question 2a. What is the classical geometric counterpart for degree 3 functions on a
degree 3 manifold?

Question 2b. What is the classical geometric counterpart for degree 1, homological
vector fields on a degree 2 manifold?

The answer to question 1a was given by H. Bursztyn et al in [6]. The answers to the
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remaining questions are the content of the present work, which we now describe.
After recalling preliminary facts about double vector bundles in Ch. 2, we introduce

in Ch. 3 the concept of a degree 2 manifold M, and find an answer for question 1a by
means of a subcategory of double vector bundles, which we call involutive, which consists
of pairs (D,H), where D is a double vector bundle (D;A,B;M)C , and H, called involutive
structure, is a double vector bundle morphism

H : DA
//DB

such that hA = −h−1
B : A //B, hC = IdC and H4 = Id. The morphisms of the category are

double vector bundle morphisms which commute with the respective involutive structures.
There are some remarkable facts about this structure:

• The isomorphism H induces an automorphism on C∞(D) by pull-back, which even
though does not preserve the natural bidegree of the subalgebra

C·,·(D) ⊂ C∞(D),

it does preserve the total degree1. Moreover, for functions on M of degrees 0,1 and
2, we have the following correspondences:

degree 0: these functions are isomorphic to functions on the body M , and we can pull
back them to D.

degree 1: these functions correspond to linear functions on the side bundle E, which can
be pulled back to D.

degree 2: these functions correspond to sections of the involutive bundle, which are iso-
morphic to those double linear functions on D invariant under H.

• By means of a sort of transpose of H we obtain a symmetric double vector bundle
isomorphism over the identity

Φ : (D∗B)C∗ // (D∗B)∗C∗ ,

which establishes an equivalence between involutive structures on a double vector
bundle and linear metrics on its dual, recovering the equivalence of categories be-
tween degree 2 manifolds and metric double vector bundles obtained independently
by M. Jotz in [29].

• The degree -1 and -2 vector fields on M are naturally identified with linear and
core sections, respectively, on DB (or equivalently DA, but we choose to stick with
the horizontal structure). This allows us to obtain a characterization of degree 3

functions, as pairs of morphisms (θ]1, θ
]
2) satisfying certain compatibility conditions.

The first one is a morphism between the core bundles of D and D∗B. The second
one is a morphism between the linear bundle of D and the involutive bundle of D∗B,
which is the bundle of double-linear functions on D that are H-invariant. Thus we
have an answer for question 2a.

1If a function f ∈ C·,·(D) has bidegree (p, q), then its total degree is p+ q.
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• Linear sections of DB are isomorphic to linear sections of (D∗B)C∗ and core sections
of DB are isomorphic to linear functions on the base of (D∗B)C∗ . This identifications,
together with the ones described in the last item, allows to identify the linear metric
on (D∗B)C∗ evaluated on two linear sections, with the commutator bracket on X(M)
applied to the corresponding degree -1 vector fields.

Then, in Ch. 4, in order to find the geometric structure encoded by a homological 2

degree 1 vector field, Q ∈ X(M), we apply the so-called derived brackets method, and find a
bracket-anchor structure on the vector bundles that correspond to degree -1 and -2 vector
fields, which are identified with the linear and core bundles of DB, respectively. We find
the compatibility condition these structure must satisfy in order to characterize completely
a degree 1 vector field, and call this structure a preLie 2-algebroid. Hereupon, we find the
integrability equations that are equivalent to the homological condition of Q, and call
a structure satisfying such conditions, a Lie 2-algebroid, therefore finding an answer to
question 2b. We show that when a splitting is chosen, Lie 2-algebroids correspond exactly
to split Lie 2-algebroids, which appear for example on [4] and [24], or equivalently, as
shown in [29], to Dorfman 2-representations.

Under the identifications mentioned above, between the distinguished functions and
sections of DB and (D∗B)C∗ , in Ch. 5 we are able to find an equivalence between Lie
2-algebroids and VB-Courant algebroids [41], and also with exact V-twisted algebroids
[24].

Using the natural correspondences, mentioned above, between functions of degrees 0,1
and 2 on M and functions of bidegrees (0, 0), (0, 1), (1, 0) and (1, 1) on the corresponding
involutive double vector bundle, we obtain in Ch. 6 a straight-forward characterization
of -2 Poisson on M as double linear Poisson brackets on D invariant under H, thus
obtaining an answer for question 1. Under the equivalent viewpoint of metric double
vector bundles, the double lienar Poisson brackets on D which are H-invariant, correspond
to VB -algebroid structures on D∗B compatible with the metric, in the sense that Φ is Lie
algebroid isomorphism, where (D∗B)∗C∗ is endowed with the natural dual VB -algebroid
structure associated (the structure that comes from the double linear Poisson structure
dualized with respect to fibration over A). Thus, we recover the equivalence between degree
2 Poisson manifolds and metric VB -algebroids in [29]. We also obtain a classification of
degree 2, regular Poisson manifolds in terms of certain Chevalley cohomology groups
naturally associated to them.

Finally, in Ch. 7, we put together the four answers found above to questions 1a, 1,
2a and 2b, in order to give the answer to question 2 on the geometric characterization
of integrable degree 3 functions on a degree 2 Poisson manifold. As we noted above, the
answer obtained by D. Roytenberg in the symplectic case exploits the fact that hamiltonian
fields generated by degree 0 functions span the C∞(M)-module of degree -2 vector fields,
and hamiltonian fields generated by degree 1 functions span the C∞(M)-module of degree
-1 vector fields, and these suffice in order to determine a degree 3 function θ, and the degree
4 function {θ, θ}, yielding a Courant algebroid (〈·, ·〉, [[·, ·]], a), which encode θ, satisfying
Jacobi identity, which is encoded in {θ, θ} = 0.

2Homological means Q2 = 0, which is equivalent to [Q,Q] = 0.
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In the possibly degenerate case, we must determine both θ and {θ, θ} no longer using
functions of degrees 0 and 1, but directly the vector fields of degrees -2 and -1, thus yielding
the pair of morphisms (θ]1, θ

]
2) encoding θ, as we explained above, which intertwine the

linear bundle of DB, Ê, whose sections are isomorphic to degree -1 vector fields, and the
involutive bundle on D∗B, F̃ ∗, whose sections are isomorphic to degree 2 functions. Next
we find expressions for the Lie 2-algebroid structure corresponding to the vector field
Q = {θ, ·} in terms of the pair (θ]1, θ

]
2) and of the VB -algebroid structure corresponding to

{·, ·} and finally we encode the equation {θ, θ} = 0 in terms of a curvature term measuring

the defect of the morphism θ]2 to preserve the corresponding brackets on F̃ ∗ and on Ê:

1

2
θ]2(Rθ(φ1, φ2)) = [θ]2(φ1), θ]2(φ2)]

F̃ ∗ − θ
]
2([φ1, φ2]

Ê
), ∀φ1, φ2 ∈ Γ(Ê),

where Rθ : Γ(Ê)×Γ(Ê) //Γ(Ê) is defined in terms of the metric VB -algebroid structure

of D∗B. Such a geometric structure, defined for the triple (Ê, F̃ ∗, (θ]1, θ
]
2)) we call degenerate

Courant algebroid, which is the geometric object we obtain on the quotient when we have
a group acting on a Courant algebroid.

We end this introduction with a summary of the equivalences between classical and
super geometric structures we found.
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Classical geometric structures Graded super geometric data

involutive double vector bundle (D,H)
or equivalently degree 2 manifold M

Metric double vector bundle (D∗B, 〈·, ·〉C∗)
sections of the core bundle degree 1 functions on M

E∗ ⊂ D∗B
sections of the core bundle degree -2 vector fields on M

F ⊂ D
bidegree (1, 1) functions on D

invariant under H
or equivalently degree 2 functions on M

sections of the involutive bundle

F̃ ∗ ↪→ D∗B
sections of the linear bundle degree -1 vector fields on M

Ê ↪→ DB

pairs of compatible morphisms degree 3 functions θ on M
θ]1 : F // E∗, θ]2 : Ê // F̃ ∗

Lie 2-algebroids
([·, ·]

Ê
, ρ, ∂,Ψ,Θ) homological degree 1 vector field

or equivalently Q ∈ X(M)1, Q2 = 0
VB -Courant algebroids
((D∗B)C∗ , 〈·, ·〉, [[·, ·]], a)

involutive double linear
Poisson brackets on D degree 2 Poisson manifold

or equivalently (M, {·, ·})
metric VB -algebroids
(D∗B, [·, ·]B, ρD, 〈·, ·〉C∗)

generalized degree 3 function θ on
Courant algebroids (M, {·, ·}) satisfying {θ, θ} = 0



Chapter 2

Preliminaries

2.1 Double vector bundles and morphisms

2.1.1 Definitions and examples

The concept of double vector bundle was originally introduced by J. Pradines [56].
The main references for this section are [32],[46] and [23]. For convenience of the reader,
we include in App. A all the complementary facts and details about double vector bundles
that will be used in the present work.

Definition 2.1. Consider the commutative square

D
qA−−−−→ A

qB

y yqA
B

qB−−−−→ M,

(2.1)

where each side is a vector bundle. The diagram (2.1) is called a double vector bundle, and
denoted by (D;A,B;M), if the structure maps of the vertical vector bundle structures
(projections, zero sections, addition, scalar multiplication) are vector bundle maps with
respect to the horizontal vector bundle structures. This requirement is equivalent to the
following conditions:

(a) qA(d1 +
B
d2) = qA(d1) + qA(d2)

(b) qB(d1 +
A
d3) = qB(d1) + qB(d3)

(c) (d1 +
B
d2) +

A
(d3 +

B
d4) = (d1 +

A
d3) +

B
(d2 +

A
d4),

for quadruples d1, . . . , d4 ∈ D such that qB(d1) = qB(d2), qB(d3) = qB(d4), qA(d1) =
qA(d3) and qA(d2) = qA(d4). We denote the fibration D // A by DA and the fibration
D //B by DB. The zero sections are denoted by

0A : M //A; 0A : A //DA;

0B : M //B; 0B : B //DB.

8
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A general principle that we will use frequently is that in order to verify a property
involving linearity, it suffices to verify this property only with respect to the addition,
because from there it follows that the property holds for the scalar multiplication with in-
tegers, consequently with rationals and hence with all real numbers, because of continuity.

It so happens that, because of the compatibility of the two vector bundle structures
on a DVB, the vector bundle structures on DA and DB coincide on the intersection
C := ker qA ∩ ker qB. And C is itself a vector bundle over M , with projection qC :=
qA ◦ qA|C = qB ◦ qB|C (see Prop. A.3). C is called the core bundle of D. For a double
vector bundle (D;A,B;M) we introduce the notation (D;A,B;M)C to specify that the
core bundle is C. When we describe D with a commutative square like (2.1), we will write

D

qA

��

qB // B

qB

��

C

A
qA

//M

to specify that the core bundle is C //M .

Definition 2.2. A morphism of double vector bundles, say D,D′, is a map Φ : D //D′

which is linear with respect to both fibrations. We will use sometimes the abbreviation
DVB morphism.

Because of the fiber preserving condition, any DVB morphism Φ : D //D′ preserves the
core bundle C, moreover, it induces maps ϕA : A //A′, ϕB : B //B′, ϕC , ϕM : M //M ′

such that each of (Φ, ϕB), (Φ, ϕA), (ϕA, ϕM ) (ϕB, ϕM ) and (ϕC , ϕM ) is a morphism of
the relevant vector bundles. See Props. A.1 and A.9.

Remark 2.3. Frequently we will use suffixes on the respective bundles, for example DA

and D′A′ , to indicate which fibration on D is being mapped to which fibration on D′.
When we omit this specification, it is because the context makes it sufficiently clear, so
that we chose not to overload the notation.

Example 2.4. The most fundamental example is the decomposed DVB: given three vector
bundles A,B and C over the same base manifold M , we set

D := A⊕B ⊕ C.

Define the projections over A and B in the obvious way: qA(a, b, c) = a and qB(a, b, c) = b,
and both addition operations are also obvious to define:

(a, b, c) +
A

(a, b′, c′) = (a, b+ b′, c+ c′); (a, b, c) +
B

(a′, b, c′) = (a+ a′, b, c+ c′).

It is explained in the appendix (see Cor. C.8) that, up to double vector isomorphisms,
this class covers all the examples of double vector bundles.

A double vector bundle morphism between two decomposed double vector bundles

Φ : A⊕B ⊕ C //A′ ⊕B′ ⊕ C ′,
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has the form
Φ(a, b, c) = (ϕA(a), ϕB(b), ϕC(c) + Ψ(a, b)),

where the mapping
Ψ : A⊕B // C ′

is bilinear (see the proof in the appendix, Cor. A.24). If Φ is an isomorphism, then its
inverse is given by

Φ−1(a′, b′, c′) = (ϕ−1
A (a′), ϕ−1

B (b′), ϕ−1
C (c′)− ϕ−1

C ◦Ψ(ϕ−1
A (a′), ϕ−1

B (b′))).

Given a vector bundle A //M , its tangent bundle is endowed with a double vector
bundle structure ([32],[46])

TA
qA−−−−→ A

qTM

y yqA
TM

qTM−−−−→ M,

(2.2)

where qTM := dqA, where d is the differential. Addition with respect to the vertical

structure (TA
dqA
// TM) is again given by a differential:

d+ : T (A×A) ∼= TA× TA // TA,

where + : A×A //A is the addition in A
qA
// M .

Finally, the zero section 0TM is once more given by a differential: 0TM := d(0A) :
TM // TA.

The cotangent bundle T ∗A is also endowed with a natural double vector bundle struc-
ture

T ∗A
πA−−−−→ A

πA∗

y yqA
A∗

qA
∗

−−−−→ M.

(2.3)

Its double vector bundle structure is best understood as a consequence of being the dual
(see Sec. 2.1.4 below) of the tangent bundle, we give the details in Ap. F. In particular,
there it is shown that a decomposition of TA, or equivalently T ∗A amounts to choosing
a linear connection on A. We encourage the reader to constantly consult Ap. F along
the reading of each new concept and result on double vector bundles, in order to gain
familiarity with the concrete examples studied in that appendix.

Also it is well-known ([14],[48]) that a Poisson structure on a vector bundle A is linear,
that is, the Poisson brackets of two functions linear on the fibers is again linear, if and
only if the induced morphism π] : T ∗A // TA is a double vector bundle morphism.

Definition 2.5. Given a double vector bundle D, as in (2.1), the flip of D is the double
vector bundle (A.1) (see Prop. A.2). That is, the flip of (D;A,B;M) is (D;B,A;M).
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2.1.2 Core and linear sections

A core section of DB is a section of the form

ι ◦ α ◦ qB +
A

0B,

where α : M // C is a section of C, ι is just the inclusion C ↪→ D and 0̃B is the zero
section of DB. We denote the core section corresponding to α ∈ Γ(C) by α̃, and the space
of core sections by Γcore(DB).

Analogously, we can define Γcore(DA). Of course, Γcore(DB) and Γcore(DA) are C∞(M)-
modules, and we have the obvious isomorphisms of modules:

Γcore(DB) ∼= Γ(C) ∼= Γcore(DA).

It is easy to see (Prop. A.10) that core sections are preserved by DVB morphisms
which are the identity over B. There is another distinguished kind of sections of DB that
are preserved by such morphisms, which are called linear sections. A section γ ∈ Γ(DB)
is linear if γ is a bundle morphism from B to DA, which will be necessarily over a section
α of A. The space of linear sections will be denoted by Γlin(DB).

Remark 2.6. The space of linear sections, Γlin(DB), is an R-vector space, and also a
C∞(M)-module in the natural way and it can be shown that actually Γlin(DB) ∼= Γ(Â),
for some vector bundle Â, called the linear bundle. Moreover, Â fits in the exact sequence

0 //B∗ ⊗ C ι−→ Â
p−→ A // 0,

called the linear sequence corresponding to DB. We have an explicit description for the
fibers of Â, given by

Âm := {σ ∈ Hom(Bm, Da) : a ∈ Am, qB ◦ σ = IdBm},

where Bm, Am are the fibers of B and A over m ∈M , respectively, and Da is the fiber of
DA over a ∈ A. See Prop. C.2 for more details and proofs.

Analogously, the linear bundle corresponding to Γlin(DA), denoted by B̂, fits in the
exact sequence

0 //A∗ ⊗ C ι−→ B̂
p−→ B // 0,

and its fiber over m ∈M is given by

B̂m = {ω ∈ Hom(Am, Db) : b ∈ Bm, qA ◦ ω = IdAm}.

A DVB morphism Φ : (D;A,B;M)C // (D′;A′, B′;M ′)C′ whose induced morphism
on the base side bundle ϕB : B //B′ is invertible, induces naturally a morphism between
the corresponding linear bundles

Φ̂B : Â // Â′,

given by Φ̂B(σ) := Φ ◦ σ ◦ ϕ−1
B . For more on induced morphisms on the corresponding

linear bundles see App. C, Sec. C.3.
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2.1.3 Decompositions

Definition 2.7. Let (D;A,B;M) be a double vector bundle, with core bundle C. A
decomposition of D is a double vector bundle isomorphism between

Θ : D //A⊕B ⊕ C,

inducing the identity map on A,B and C.
A horizontal lift of the linear sequence corresponding to Â above, is a linear map

ψ : A // Â such that p ◦ ψ = IdA.
To each horizontal lift ψ on Â there exists a corresponding horizontal lift, ψ on B̂, the

relation between them given by

ψ(b)(a) := ψ(a)(b).

It is easy to see that a decomposition Θ of D is equivalent to a projection qC : D //C
which is linear with respect to both structures, DA and B. The decomposition is given by

Θ = (qA, qB, qC).

Moreover, the decomposition can be shown to be equivalent to a horizontal lift of any
of its associated linear sequences, and therefore a double vector bundle always admits a
decomposition. The relation between the decomposition and the horizontal lift is given by

qC(d) =

(
d−
B
ψ(qA(d))(qB(b))

)
−
A

0B(qB(d)).

See the appendix, Sec. C.2, for more details and proofs.

2.1.4 Duality

Since a double vector bundle has two vector bundle structures, it also has two duals,
one for each structure. In principle, since D∗A has again two duals, we should obtain
a third double vector bundle, and repeating the process we would get a fourth double
vector bundle and so on. However, it so happens that the third dual is already canonically
isomorphic to D∗B, and so the story ends here. Namely, the two duals are

D∗B

πC∗

��

πB // B

qB

��

A∗

C∗
qC
∗

//M

;

D∗A

πA

��

πC∗ // C∗

qC
∗

��

B∗

A
qA

//M

,

where, for example, the projection πC∗ : D∗B
// C∗ is given by

〈πC∗(d), c〉 = 〈d, 0B(πB(d)) +
A
c〉B.

These two duals are in turn dual to each other with respect to the fibration over C∗ (see
Prop. B.11). The duality pairing is given by

(v|w) = 〈v, d〉A − 〈w, d〉B,
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where v ∈ D∗A, w ∈ D∗B have πC∗(v) = πC∗(w) = k and d is any element of D with
qA(d) = πA(v) and qB(d) = πB(w). This pairing induces isomorphisms of double vector
bundles (see Prop. B.13)

ΥA : (D∗A)C∗ // (D∗B)∗C∗ , 〈ΥA(v), w〉C∗ = (v|w)

ΥB : (D∗B)C∗ // (D∗A)∗C∗ , 〈ΥB(w), v〉C∗ = (v|w),

with (ΥA)∗ = ΥB. Both isomorphisms induce the identity on the sides C∗ // C∗. ΥA is
the identity on the cores B∗ //B∗, and induces −Id on the side bundles A //A. ΥB is
the identity on the side bundles B //B, and induces −Id on the cores A∗ //A∗.

A decomposition Θ : D // A⊕ B ⊕ C naturally induces a decomposition on its dual
Θ̃A : D∗A

//A⊕B∗⊕C∗ (and, of course, also on D∗B). The relation between them is Θ∗A =

Θ̃−1
A . The corresponding horizontal lift ψ̃ : C∗ // Ĉ∗ is given by ψ̃(κ)(a) = (qA, qC)∗(a, κ)

for every κ ∈ C∗, a ∈ A.
The horizontal lift ψ : A //Â induces an isomorphism K : Â //A⊕Hom(B,C), given

by K(σ) = (a, qC ◦ σ), and the corresponding induced horizontal lift ψ∗ := (ψ̃) : A // Â∗,
where Â∗ is the linear bundle corresponding to Γlin(C∗, (D∗A)C∗), induces the isomorphism

H : Â∗ // A ⊕ Hom(C∗, B∗), given by H(ω) = (a, πB∗ ◦ ω). One can see that we obtain
a well-defined isomorphism

T : Â // Â∗,

given by T := H−1 ◦∆ ◦K, where ∆ : A⊕ Hom(B,C) // A⊕ Hom(C∗, B∗) is given by
∆(a, σ1) = (a,−σ∗1), for every a ∈ A, σ1 ∈ Hom(B,C). See Prop. C.17.

It is also useful the isomorphism Z : Ĉ∗A // Ĉ∗B, given by

Z = T−1 ◦ Υ̂A,

where Ĉ∗A is the linear bundle corresponding to the linear sections of D∗A and Ĉ∗B is the

linear bundle corresponding to the linear sections of D∗B. Υ̂A is the morphism induced
isomorphisms between the linear bundles induced from the DVB isomorphism ΥA intro-
duced above. Here, the isomorphism T is taken between Ĉ∗B and Ĉ∗B∗ , so that (D∗B)∗C∗
is playing the role of D, and we are identifying D∗B with ((D∗B)∗C∗)

∗
C∗ . See App. C, Sec.

C.5, for more details.

Lemma 2.8. A section γ ∈ Γ(DA) is linear if and only if

a) 〈γ, φ〉A is a fiberwise linear function for every φ ∈ Γlin(D∗A), and

b) 〈γ, ξ̃〉A is fiberwise constant for every ξ̃ ∈ Γcore(D
∗
A).

A section β̃ ∈ Γ(DA) is core if and only if

c) 〈β̃, φ〉A is fiberwise constant for every φ ∈ Γlin(D∗A) and

d) 〈β̃, ξ̃〉A = 0 for every ξ̃ ∈ Γcore(D
∗
A).

For the proof, see Lem. C.28.
An important consequence we can draw of the above lemma, is a characterization of

linear sections of a DVB in terms of pairs of certain linear functions satisfying a compati-
bility condition.
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Corollary 2.9. There is a canonical 1:1 correspondence between sections in Γlin(D∗B) ∼=
Γ(Ĉ∗B) and pairs of linear maps

f
Â

: Â //B∗ and fC : C // R,

such that satisfy the following compatibility condition

f
Â

(τ) = fC ◦ τ, ∀τ ∈ Hom(B,C) ⊂ Â.

For the proof, see Cor. C.29. Notice that, under this identification, the inclusion
ι : B∗⊗A∗ // Ĉ∗B is given by ι(η) = η∗ ◦p : Â //B∗, where p : Â //A is the projection.

A direct consequence of Cor. 2.9 is a description of the fibers of the dual linear bundle
Ĉ∗B (the one that corresponds to Γlin(D∗B)), in terms of the fibers of the linear bundle Â
(the one that corresponds to Γlin(DB)).

(Ĉ∗B)m = {µ ∈ Hom(Âm, B
∗
m)|∃κ ∈ C∗m s.t. µ(τ) = ικ(τ), ∀τ ∈ B∗m ⊗ Cm ⊂ Âm}. (2.4)

2.1.5 Double realization

An exact sequence of vector bundles over the manifold M ,

0 // C // Ω //A⊗B // 0

over the identity IdM is called a double vector sequence or briefly, a DVB sequence, and is
denoted by (Ω //A⊗B;M)C . Our interest in this class of objects relies on the fact that
the natural category they form is equivalent to the category of double vector bundles, and
has the advantage that its constituent elements are plain vector bundles over the same
manifold M . The morphisms between DVB sequences, which we call DVS morphisms, are
4-tuples of maps

(Φ;ϕA, ϕB;ϕM ) : (Ω
p
// A⊗B;M)C // (Ω′

p′
// A′ ⊗B′;M ′)C′ ,

where Φ : Ω // Ω′, ϕA : A // A′ and ϕB : B // B′ are vector bundle morphisms over
ϕM : M //M ′ such that the diagram

Ω
p−−−−→ A⊗B

Φ

y yϕA⊗ϕB
Ω′

p′−−−−→ A′ ⊗B′

commutes. Because of this commutativity condition, Φ preserves C, so it induces a fourth
vector bundle morphism ϕC : C // C ′ over ϕM .

DVB sequences together with the above morphisms form a category. Given a double

vector sequence (Ω
p
// A ⊗ B;M)C , we can form its double realization, which is the
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double vector bundle

D(Ω)

qA

��

qB // B

qB

��

C

A
qA

//M,

where D(Ω) is given by D(Ω) = {(ω, a, b) ∈ Ω⊕A⊕B|p(ω) = a⊗ b}. The projections are
given by qA(ω, a, b) = a and qB(ω, a, b) = b.

Analogously, to a DVS morphism (Φ;ϕA, ϕB;ϕM ) between two double vector se-
quences, se can associate a DVB morphism (D(Φ), ϕA, ϕB;ϕM ) between the corresponding
double realizations D(Ω) and D(Ω′), by

D(Φ)(ω, a, b) = (Φ(ω), ϕA(a), ϕB(b)).

This defines a functor from the DVS category to the DVB category, which happens
to be an equivalence of categories. See App. D for all the details, where, in particular,
the functor from the DVB category to the DVS category that furnishes the equivalence of
categories is described.

2.2 VB algebroids and representations up to homotopy

2.2.1 VB-algebroids

Definition 2.10. A VB-algebroid is a double vector bundle (D;A,B;M) equipped with
a Lie algebroid structure on DB such that the anchor map ρD : D // TB is a bundle
morphism over ρA : A // TM and where the bracket [·, ·]D is such that

1. [Γlin(DB),Γlin(DB)]D ⊂ Γlin(DB),

2. [Γlin(DB),Γcore(DB)]D ⊂ Γcore(DB),

3. [Γcore(DB),Γcore(DB)]D = 0.

Remark 2.11. Since ρD is a vector bundle morphism with respect to the structure over
B, it follows that the condition on ρD is equivalent to say that it is a double vector bundle
morphism from D to TB.

Remark 2.12. The Lie brackets [·, ·]D and the anchor ρD are completely determined by
their action on linear and core sections, and on linear and basic functions. This can be
seen for example by considering the induced Poisson brackets on D∗B, and recalling that
they are completely determined by their action on coordinate functions. Now, an adapted
coordinate system {xi, βb, αa, κc} in D∗B

∼= B ⊕A∗ ⊕C∗ is such that the functions on the
xi are basic and βb are linear. The functions on the fibers κc correspond to core sections
on DB

∼= B ⊕ C ⊕A, and αa correspond to linear sections on DB.

A VB -algebroid structure induces in a natural way Lie algebroid structures on each
term of the linear sequence

B∗ ⊗ C // Â //A, (2.5)
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in such a way that it turns into a Lie algebroid exact sequence. See App. E for details.
The induced core map, that comes from the restriction of the anchor ρD|C : C //B ⊂ TB
with opposite sign is called the core-anchor, denoted by ∂ := −ρD|C .

2.2.2 Representations up to homotopy

If A is a Lie algebroid, and E a vector bundle over the same base, an A-connection on
E is an R-bilinear map ∇ : Γ(A)× Γ(E) // Γ(E), (α, ε) //∇αε, such that

∇fαε = f∇αε, ∇αfε = f∇αε+ ρ(α)(f)ε, ∀f ∈ C∞(M).

The A-curvature of ∇ is the tensor given by

R∇(α, β)(ε) := ∇α∇βε−∇β∇αε−∇[α,β]ε.

When the A-connection is flat, that is, R∇ = 0, ∇ is called a Lie algebroid representation
of A on E. There is a canonical 1:1 correspondence between A-connections on E, ∇
and degree 1 operators d∇ on Ω(A;E), the space of E-valued A-differential forms, which
satisfy the derivation rule: d∇(fω) = fd∇ω + dAf ∧ ω, where dA is the de-Rham exterior
derivative on Γ(Λ·A∗) associated to the Lie algebroid structure on A, and the space Ω(A;E)
is naturally endowed with a Ω(A)-module structure. It can be seen that ∇ is flat, i.e. a
representation on E, if and only if d2

∇ = 0. See the details in App. E.
Now let E =

⊕
nE

n be a graded vector bundle. Then the space of E-valued A-
differential forms, Ω(A;E) is graded by total degree:

Ω(A;E) =
⊕
i+j=p

Ωi(A;Ej).

Moreover, if E and F is a graded vector bundle, then Ω(A; Hom(E,F )) is also endowed
with the graded structure that comes from the natural grading on Hom(E,F ), the space
of degree-preserving morphisms. Also we can extend d∇ to an operator Ω(A; End(E)) by
demanding the following Leibniz type rule:

d∇(T (ε)) = (d∇T )(ε) + (−1)|T |Td∇ε,

where, as usual, |T | denotes the degree of T .
A representation up to homotopy of A on E is given by an operator, called the structure

operator,
D : Ω(A;E) // Ω(A;E),

which increases the total degree by one and satisfies D2 = 0 and the graded derivation
rule:

D(ωη) = dA(ω)η + (−1)kωD(η),

for all ω ∈ Ωk(A) and η ∈ Ω(A;E).
A morphism Φ : (E,DE) // (F,DF ) between two representations up to homotopy of

A is a degree zero linear map Φ : Ω(A;E) //Ω(A;F ) which is Ω(A) linear and commutes
with the structure operators DE and DF (warning: we use the same notations D, DE or
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DF to denote double vector bundles; we hope the context will make it clear which concept
we refer in each situation).

There is a canonical 1:1 correspondence between representations up to homotopy
(E,D) of A concentrated in two consecutive degrees, say 0 and 1 (so that E is zero
in all the other degrees), and the following data:

1. Two vector bundles C and B and a vector bundle map ∂ : C //B

2. A-connections on C and B, ∇C and ∇B, compatible with ∂, which means that
∇B∂ = ∂∇C .

3. A 2-form K ∈ Ω2(A; Hom(B,C)), called the curvature form such that

R∇C = −K ◦ ∂, R∇B = −∂ ◦K,

and
d∇K = 0,

where we are considering ∇ := ∇C +∇B as an A-connection on E := C ⊕ B, and
viewing Hom(B,C) naturally seated in End(E), so that we consider the extension
d∇ to Ω(A; End(E)), and view K as an element in Ω2(A; End(E)).

This kind of representations up to homotopy are called 2-term representations, and we
write D = ∂ +∇+K, where ∇ := (∇C ,∇B) is the A-connection on E = C ⊕ E[1].

If we choose a horizontal lift, ψ : A // Â, for the Lie algebroid sequence (2.5), we
obtain A-connections on C and B, given respectively by

∇̃CXc := [X̂, c̃]; 〈∇BXb, β〉 := ρA(X)(〈b, β〉)− 〈ρD(X̂)(β),b〉,

where, for any X ∈ Γ(A), we denote by X̂ := ψ(X) ∈ Γ(Â) ∼= Γlin(DB) its corresponding
horizontal lift, and for any c ∈ Γ(C), we denote by c̃ ∈ Γcore(DB) its corresponding core
section.

Defining a curvature form K ∈ Ω2(A; Hom(B,C)) by

K(X,Y ) := ̂[X,Y ]A − [X̂, Ŷ ]
Â
, ∀X,Y ∈ Γ(A),

it can be shown that this 2-form, together with the core-anchor ∂ : C // B and the two
A-connections ∇C and ∇B defined above define a 2-term representation up to homotopy
of A on E = C ⊕ B[1], and actually it can be proven that every 2-term representation
comes from a VB -algebroid and the choice of a horizontal lift.

For more details, see App. E.3 and [23].

2.2.3 Duality

From the axioms defining a VB -algebroid, it can be seen that its corresponding linear
Poisson structure on D∗B is actually double-linear, that is, it is also linear with respect

to the vector bundle structure D∗B
π∗C
// C∗. Therefore, dualizing with respect to this
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structure we obtain a second VB -algebroid structure on (D∗B)∗C∗
∼= D∗A. If we choose a

horizontal lift on (2.5), then the induced horizontal lift on the dual linear sequence

C∗ ⊗B // Â∗ //A,

which is also a Lie algebroid sequence for what we just observed, gives rise to a 2-term
representation up to homotopy D∗ on E∗ = B∗ ⊕C∗, which happens to coincide with the
dual to the representation D on E = C ⊕ B (corresponding to the initial VB -algebroid
DB) in the sense that the following product rule is satisfied :

dA(ν ∧ η) = D∗(ν) ∧ η + (−1)|ν|ν ∧D(η), ∀η ∈ Ω(A;E), ν ∈ Ω(A;E∗),

where ∧ : Ω(A;E∗) ⊗ Ω(A;E) // Ω(A) is the wedge product formed using the duality
pairing between E and E∗. It can be seen that in this case we have D∗ = ∂∗ +∇∗ −K∗.

For more details, see App. E.3 and [23].



Chapter 3

Degree 2 manifolds and
involutivity

Roughly speaking, a graded manifold is, following Ševera [63], a sheaf of graded alge-
bras over a manifold that locally is spanned by a finite number of generators, and only
non-negative degrees are allowed, which is why the are called graded N -manifolds, where
N stems from the natural numbers to mean that negative degrees are not allowed. The
degree of a graded N manifold is the highest degree of the generators. A degree 1 manifold
is seen to correspond exactly to a vector bundle, both categories being equivalent. There-
fore, a graded N -manifold can be seen as a non-linear generalization of a vector bundle
(an insight explicitly suggested for the first time by T. Voronov [69], up to our knowledge).
As explained in the Introduction (Ch. 1), the interest in graded manifolds lies in the fact
that we can extend many of the classical geometric structures (e.g. functions, vector fields,
differential forms, Poisson brackets, etc.) to the graded setting, and it turns out that these
graded structures usually encode in a very simple fashion some classical structures that
are not so easy to handle, providing a powerful source of intuition on how those somewhat
complicated classical structures should behave.

In Sec. 3.3 we establish the equivalence between the category of degree 2 manifolds
and that of involutive double vector bundles. This geometric characterization bridges
degree 2 manifolds to all the geometric structures we can associate to a double vector
bundle. However, it is not always evident how to associate to an object of one category
the corresponding one in the other category, often some non-trivial work is needed. Then
we show that through a transpose operation, the involutive structure is equivalent to a
linear metric on the dual, a result obtained by D. Li-Bland [41], and with a different
method by M. Jotz [29]. We end this section building from any DVB D, an involutive
one, by taking the Whitney sum D ⊕

A
D∗A. This procedure in particular applies to TA,

providing one of the most fundamental examples of involutive DVB’s. Then we describe
the geometric counterpart of vector fields on M of negative degree, that is, of degrees -1
and -2, which allow to give an interpretation of the commutator of two degree -1 vector
fields in terms of the metric, and to characterize geometrically functions on M of degree
3 in terms of a pair of morphisms of certain vector bundles.

19



3.1. GRADED MANIFOLDS 20

3.1 Graded manifolds

In this section we give a very general description of graded manifolds. The main
references we used are [63],[59], [67] and [68].

Definition 3.1. A graded N-manifold,M of dimension (p|q1| . . . |qk) is a differential man-
ifold M , called the body of the manifold, endowed with a structure sheaf OM of graded
commutative algebras locally isomorphic to

C∞(U)⊗ S·(V ∗),

where U ⊂ Rp and V =
⊕

i>0 Vi is a N-graded vector space, with dim Vi = qi for
i = 1, . . . , k, and Vi = {0} for other i. S·(V ∗) denotes the graded symmetric algebra over
V ∗ =

⊕
i>0 V

∗
i , so that in particular the parity of each vector space Vi is compatible with

its degree. The sheaf morphisms are asked to preserve (total) degree. We will denote by
Ai the set of homogeneous functions of degree i.

Remark 3.2. Notice that the local trivializations of the structure sheaf, together with
the degree preserving condition, provides us with k vector bundles, such that the space
of sections of the i-th vector bundle is Ai. In the following sections, we will describe in
detail in the cases of degree 1 and degree 2 manifolds —the ones that are of our interest
in this work— how we can recover the structure sheaf from these vector bundles.

Often we omit the label N , and refer to a graded N -manifold simply as a graded
manifold, or else we will omit the adjective graded and refer simply as degree k manifolds,
hopefully without causing any trouble.

Example 3.3 ([59]). Let A be a vector bundle over a manifold M . We can attach a
grading to the functions on A such that fiberwise constant functions get degree 0 and
fiberwise linear functions get degree 1 (see subsec. 3.1.1 below for more details), obtaining
in this way the degree 1 manifold we denote by A[1], whose space of degree 1 functions
A1 coincides with the space of sections of the dual Γ(A∗). A particular example of these
manifolds is obtained by starting with a manifold M and taking (TM)∗[1], which we prefer
to denote in the more standard fashion T ∗[1]M . The space of degree 1 functions A1 is
isomorphic to the space of vector fields X(M). Of course we can also obtain the manifold
T [1]M whose space of degree 1 functions is isomorphic to the space of 1-forms Ω1(M).

We can go a step further to obtain, for a given vector bundle A //M , the two degree
2 manifolds T [1]A[1] and T ∗[2]A[1] (see [59] for details). From the coordinate description
it is clear that the degree 1 functions of T [1]A[1] are sections of A ⊕ T ∗M , whereas the
degree 1 functions of T ∗[2]A[1] are the sections of A⊕A∗.

In the appendix (see Sec. F) we describe the double vector bundle structures of TA∗

and T ∗A∗. Now, the algebra of functions on a double vector bundle, D, admits a sub-
algebra C ·,·(D) which comes with a bi-graded structure (see lemma E.34), and actually
the adapted coordinate systems belong to this subalgebra. So we obtain, starting from
a double vector bundle, a bi-graded manifold. Now, from a bi-graded manifold, that is,
a manifold endowed with an atlas of bigraded fuctions, like the atlas of adapted coordi-
nate systems in lemma E.34, we obtain a graded atlas (of degree 2) simply by assigning
degree r + s to a function with bi-degree (r, s). Therefore, given a double vector bundle
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(D;A,B;M), there is a degree 2 manifold naturally attached, whose structure sheaf is
generated locally by an adapted coordinate atlas shifting the coordinates of the side bun-
dles by 1 and the coordinates of the core bundle by 2. The degree 1 submanifold is given
by M1 = A[1]⊕B[1].

3.1.1 Example: degree 1 manifolds

Let M be a 1-manifold. Picking coordinates θ1, . . . , θq for V1, the structure sheaf is
locally isomorphic to Γ(Λ·Rq). Since morphisms preserve degree, we see that a change of
coordinates (x, θ) // (x̃, θ̃) must have the form

x̃i = fi(x); θ̃i = gji (x)θj .

This means that we obtain a vector bundle, where the body M of the 1-manifoldM is the
base of the vector bundle A, with fiber isomorphic to V1, so that the degree 1 functions
are the fiberwise linear functions of A, and hence sections of A∗. The cocyles for the
change of trivializations are given by the maps in the change of odd variables. Under this
identification we have

OM ∼= Γ(Λ·A∗),

where the symbol of the right-hand side stands for the sheaf of sections of Λ·A∗.
Conversely, consider a vector bundle A over M . The fiberwise linear functions give

rise to the sheaf of sections of A∗. Attaching degree 1 to these functions we obtain a
1-manifold by taking M for the body, and the structure sheaf OM being given by, for U
open in M ,

O(U) = Γ(Λ·(A∗|U )).

In this case we say that the degree 1 manifold M is A[1], meaning that the fiberwise
linear functions (which are sections of A∗) are attached degree 1. So there is a canonical
1:1 correspondence between degree 1 manifolds and vector bundles.

Definition 3.4. A degree k Poisson manifold is a k-manifold endowed with a degree −k
Poisson bracket, which is a R-bilinear mapping

{·, ·} : OM ×OM −→ OM

which satisfies the Poisson brackets axioms taking in account the grading, that is, for every
U ⊂ M , and f, g, h ∈ OM(U), we have, using the notation | · | to denote the degree of
homogeneous functions,

• |{f, g}| = |f |+ |g| − k

• {f, g} = −(−1)(|f |+k)(|g|+k){g, f}

• {f, gh} = {f, g}h+ (−1)(|f |+k)|g|g{f, h}

• {f, {g, h}} = {{f, g}, h}+ (−1)(|f |+k)(|g|+k){g, {f, h}}.

Example 3.5. Given a degree 1 Poisson manifold (M, {., .}), consider the corresponding
vector bundle A, so that M ∼= A[1]. Then {., .} induces a Lie algebroid structure on A∗

by the following data:
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• {s, f} = ρ(s)(f), for f, s ∈ Γ(Λ·A∗) with |f | = 0, |s| = 1

• {s1, s2} = [s1, s2]A∗ , for s1, s2 ∈ Γ(Λ·A∗) with |s1| = |s2| = 1.

Conversely, starting with a Lie algebroid (A∗, ρ, [., .]) over M , consider the degree 1 man-
ifold A[1], so that C∞(A[1]) = Γ(Λ·A∗), and set

• {f, g} = 0, for f, g ∈ C∞(A[1]) with |f | = |g| = 0

• {s, f} = ρ(s)(f), for f, s ∈ C∞(A[1]) with |f | = 0, |s| = 1

• {s1, s2} = [s1, s2], for s1, s2 ∈ C∞(A[1]) with |s1| = |s2| = 1.

Extending this product to any s1, s2 ∈ C∞(A[1]) via linearity and (graded) Leibniz’s rule,
we obtain a degree 1 Poisson structure on A[1].

The bracket on Γ(Λ·A∗) that correspond to the Poisson bracket {·, ·} on M is called
Schouten bracket.

3.2 The categories of degree 2 manifolds and involutive struc-
tures

Now we get into describing the main object of this thesis, namely degree 2 manifolds.
In this section we limit ourselves to recall the basic results about the structure of degree
2 manifolds, which are found in [6]. The main result we borrow from that work, is the
fundamental equivalence between the category of degree 2 manifolds and a certain category
formed by pairs of vector bundles together with a surjective map between one of these
vector bundles and the second exterior power of the other, a category that we chose to
call “involutive sequence” category (see Thm. 3.12 below).

A morphism Ψ : N //M between two degree 2 manifolds is a pair (ψ,ψ]), where
ψ : N //M is a smooth map and

ψ] : OM // ψ∗ON

is a morphism of sheaves over M ; in particular, for each open subset U ⊂M ,

ψ]U : OM (U) //ON (ψ−1(U))

is a morphism of graded algebras.

Proposition 3.6 ([6]). Let U ⊂ Rp be an open set, and denote by U the degree 2 man-
ifold with body U and structure sheaf C∞(U) ⊗ Λ·Rq1 ⊗ S·Rq2, described by coordinates
{xi, εµ, αν}. If N is any degree 2 manifold, then any morphism N // U is completely
determined by the choice of a map ψ : N // U as well as elements fµ, βν ∈ ON (N), of
degrees 1 and 2, respectively; indeed, the conditions

ψ](xi) = xi ◦ ψ, ψ](εµ) = fµ, ψ](αν) = βν , (3.1)

uniquely determine a morphism of sheaves ψ] : OU // ψ∗ON .
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Locally, a degree 2 manifoldM is isomorphic to U , and the structure sheaf is described
by coordinates {xi, εµ, αν}. By Prop. 3.6, and since the morphisms preserve degree, a
change of coordinates (xi, εµ, αν) // (x̃i, ε̃µ, α̃ν) must have the form

x̃i(x) = ψi(x), ε̃µ(x) = aµλ(x)ελ, α̃ν(x) = bνκ(x)ακ +
1

2
cνλη(x)ελεη, (3.2)

where the functions cνλη are skew-symmetric on the lower indexes, since the coordinates
εµ are odd.

Proposition 3.7 ([6]). There is a 1:1 correspondence, up to isomorphisms, between degree
2 manifolds, with body M , and the following data:

• A pair of vector bundles (E, F̃ ) over M .

• A surjective bundle map p : F̃ // Λ2E over IdM .

So that we obtain an exact sequence of vector bundles

0 −→ F −→ F̃ −→ Λ2E −→ 0, (3.3)

where F := ker p.

Remark 3.8. If follows from the proof of the proposition above (see [6]) that under this
correspondence, degree 0 functions f ∈ A0 correspond to functions on the base M ; degree
1 functions ε ∈ A1 correspond to sections of E∗ and degree 2 functions correspond to
sections of F̃ ∗.

Proposition 3.9 ([6]). Let N ,M be two degree 2 manifolds with sheaf structure ON and
OM , respectively. Denote by AiN and AiN the sets of homogeneous functions of degree i

on N and M, respectively, and by (EN , F̃N ) and (EM , F̃M ) the pairs of vector bundles
corresponding to N and M, respectively, given by Prop. 3.7, and the corresponding sur-
jective bundle maps pN : F̃N // Λ2EN and pM : F̃M // Λ2EM . Given a smooth map
ψ : N //M , a morphism ψ] : OM // ψ∗ON is completely determined by either of the
following data:

a) a pair of morphisms of sheaves of C∞(M)-modules ψ]i : AiM //ψ∗AiN , i = 1, 2, such

that ψ]2(A1
M · A1

M ) = ψ]1(A1
M ) · ψ]1(A1

M ).

b) a pair of vector bundle morphisms ψ1 : EN // EM , ψ2 : F̃N // F̃M , covering ψ,
such that Λ2ψ1 ◦ pN = pM ◦ ψ2.

Definition 3.10. A involutive DVB sequence, or simply an involutive sequence, is given
by a pair of vector bundles (E, F̃ ) over a manifold M , together with a surjective bundle
map p : F̃ //Λ2E over IdM , so that we obtain the exact sequence (3.3), with F := F̃ /Λ2E.

A morphism of involutive sequences, or simply an involutive morphism, is given by a
triple of maps (ψ2, ψ1, ψ) satisfying item b) of Prop. 3.9.

The involutive sequence category consists of involutive sequences as objects, and the
corresponding morphisms between them.
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Remark 3.11. The reason for the choice of the name “involutive” is that such sequences
are completely determined by a natural extension of them to a double vector sequence
(this objects are studied in App. D) endowed with an involution. F̃ is precisely the
fixed set point of the involution, and the morphisms are precisely the restriction of those
DVS morphisms that commute with the involution. We will see all this in detail next in
subsection 3.2.1.

The next theorem summarizes the previous results.

Theorem 3.12 ([6]). The category of degree 2 manifolds is equivalent to the category of
involutive sequences.

3.2.1 The category of extended involutive sequences

Noting the resemblance of involutive sequences, introduced above in Def. 3.10, with
DVB-sequences, described in appendix D, Thm. D.8 suggests already that there should
be a geometric characterization of degree 2 manifolds in terms of a certain class of double
vector bundles. Since we have a functor linking double vector bundles to double vector
sequences (Thm. D.8), in order to link the category of involutive sequences to some
category of double vector bundles, we need an intermediate, equivalent, category, which is
the “double vector sequence equivalent” of the category of double vector bundles we want
to find, which will be obtained by extending involutive sequences in the natural way to
obtain objects in the double vector sequence category.

Definition 3.13. Let (E,Ω) be two vector bundles and p : Ω // E ⊗ E a projection. A
involutive structure on the corresponding double vector sequence

0 // F
ι
// Ω

p
// E ⊗ E // 0, (3.4)

where F = ker p, is an automorphism (over the identity on M) I : Ω // Ω that is
involutive, i.e. I2 = Id, and such that the following diagram commutes

F

Id
��

ι // Ω

I
��

p
// E ⊗ E

−∗
��

F
ι // Ω

p
// E ⊗ E

, (3.5)

where −∗ is the negative of the transpose: − ∗ (φ) = −φ∗.
The pair (Ω // E ⊗ E, I) of such sequence and involution will be called an extended

involutive sequence. We will comprise the data of an extended involutive sequence by
(Ω, E, F ; I).

A DVS morphism (Φ;ϕA, ϕB;ϕ) (see Def. D.2), between two extended involutive
sequences

(Ω, E, F ; I)
Φ
// (Ω′, E′, F ′; I ′),

is called an extended involution preserving morphism, or simply an extended involutive
morphism, if

Φ ◦ I = I ′ ◦ Φ. (3.6)
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The extended involutive sequences together with the extended involutive morphisms
form the extended involutive sequence category.

Proposition 3.14. If (Φ;ϕA, ϕB;ϕ) is an extended involutive morphism, then ϕA = ϕB.

Proof. Let (Φ;ϕA, ϕB;ϕ) be an extended involutive morphism. Then, for every a, b ∈ E
we have

Φ ◦ I(a⊗ b) = Φ(−b⊗ a) = −ϕA(b)⊗ ϕB(a), (3.7)

and
I ′ ◦ Φ(a⊗ b) = I ′(ϕA(a)⊗ ϕB(b)) = −ϕB(b)⊗ ϕA(a). (3.8)

Since Φ ◦ I = I ′ ◦ Φ holds by (3.6), we conclude from Eqs. (3.7) and (3.8) that

−ϕA(b)⊗ ϕB(a) = −ϕB(b)⊗ ϕA(a), ∀a, b ∈ E,

hence, in particular, ϕA(b) = ϕB(b) for every b ∈ E, which means that ϕA = ϕB.
�

An extended involutive morphism will be denoted by (ψ2, ψ1, ψ), where

ψ2 : Ω // Ω′; ψ1 : E // E′; ψ : M //M ′.

Remark 3.15. Consider the transpose of an extended involutive sequence (Ω, E; I):

0 // E∗ ⊗ E∗
p∗
// Ω∗

ι∗
// F ∗ // 0. (3.9)

Then the following diagram commutes

E∗ ⊗ E∗

−∗
��

p∗
// Ω∗

It
��

ι∗ // F ∗

Id
��

E∗ ⊗ E∗ p∗
// Ω∗

ι∗ // F ∗ .

(3.10)

Indeed, observe first that the dual of A⊗B is A∗ ⊗B∗, with the duality pairing given by

〈a⊗ b, α⊗ β〉 = 〈a, α〉〈b, β〉.

Now, the transpose of the map −∗ : E ⊗ E // E ⊗ E given in (3.5) is also −∗ :
E∗ ⊗E∗ //E∗ ⊗E∗, the negative of the transpose, since, for η = ε1 ⊗ ε2 ∈ E∗ ⊗E∗ and
τ = e1 ⊗ e2 ∈ E ⊗ E we have

〈η, τ∗〉 = 〈ε1 ⊗ ε2, e2 ⊗ e1〉 = 〈ε1, e2〉〈ε2, e1〉
= 〈ε2, e1〉〈ε1, e2〉 = 〈ε2 ⊗ ε1, e1 ⊗ e2〉
= 〈η∗, τ〉,

from which it follows in general 〈η, τ∗〉 = 〈η∗, τ〉 for every η ∈ E∗ ⊗ E∗ and τ ∈ E ⊗ E.
Therefore,

〈(−∗)t(η), τ〉 = 〈η, (−∗)(τ)〉 = 〈η,−τ∗〉 = 〈−η∗, τ〉,
which means that (−∗)t(η) = −η∗. Thus we have (3.10).

Therefore, the sequence (3.4) admits an involution I satisfying (3.5) if and only if the
transposed sequence (3.9) admits an involution It satisfying (3.10).
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Proposition 3.16. A double vector sequence like (3.4) admits an involution I satisfying
(3.5) if and only if Ω∗ comes with a decomposition

Ω∗ ∼= S2E∗ ⊕ F̃ ∗, (3.11)

where F̃ ∗ := {ϑ ∈ Ω∗|It(ϑ) = ϑ}.

Proof. We just saw in Rmk. 3.15 that (3.4) with an involution I satisfying (3.5) is equiv-
alent to (3.9) with an involution It satisfying (3.10). Now notice that, if It is an extended
involution, then

P :=
1

2
(Id− It)

is a projection, that is P
2

= P . Therefore, we obtain the decomposition

Ω = imP ⊕ kerP ,

and kerP = F̃ ∗. So in order to obtain (3.12) it remains to show that S2E∗ = imP . Given
η ∈ S2E∗, we have P (η) = η, thus

S2E∗ ⊂ imP .

On the other hand, for ϑ ∈ Ω∗,

ι∗(P (ϑ)) =
1

2
ι∗(ϑ)− ι∗(ϑ) = 0,

whereby P (ϑ) ∈ E∗ ⊗ E∗, whence, by (3.10) we have

−(P (ϑ))∗ = It(P (ϑ)) = It(ϑ)− ϑ = −P (ϑ),

whence
P (ϑ)∗ = P (ϑ),

that is, P (ϑ) ∈ S2E∗, which means that

imP ⊂ S2E∗,

thereby, imP = S2E∗, as we needed to obtain the decomposition (3.12).
Conversely, given the decomposition (3.11), we define an extended involution

It : Ω∗ // Ω∗

by
It(η + ζ) = −η + ζ, ∀η ∈ S2E∗, ζ ∈ F̃ ∗.

Using the decomposition E∗ ⊗E∗ = S2E∗ ⊕Λ2E∗, it follows immediately that It defined
this way makes diagram (3.10) commute.

�
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Proposition 3.17. The decomposition (3.11) is equivalent to the decomposition

Ω ∼= A⊕Ann(S2E∗), (3.12)

where A := {φ ∈ Ω|I(φ) = −φ} and Ann(S2E∗) is the annihilator of S2E∗ ⊂ Ω∗, the
relation between them given by A = Ann(F̃ ∗) and F̃ = Ann(S2E∗).

Proof. We already have the decomposition (3.11). Then we will show that this induces
the decomposition (3.12), with A = Ann(F̃ ∗). Indeed, given φ ∈ A, ϑ ∈ F̃ ∗,

〈φ, ϑ〉 = 〈φ, It(ϑ)〉 = 〈I(φ), ϑ〉 = −〈φ, ϑ〉,

thus, 〈φ, ϑ〉 = 0, which means that

A ⊂ Ann(F̃ ∗).

Conversely, given φ ∈ Ann(F̃ ∗) and any ϑ ∈ Ω∗, then there exist unique η ∈ S2E∗ and
ζ ∈ F̃ ∗ such that ϑ = η + ζ, and thus we have

〈I(φ), ϑ〉 = 〈I(φ), η + ζ〉 = 〈φ, It(η + ζ)〉
= 〈φ,−η〉+ 〈φ, ζ〉 = 〈−φ, η〉
= 〈−φ, ϑ〉,

which means that I(φ) = −φ, that is φ ∈ A, which implies that

Ann(F̃ ∗) ⊂ A,

from which we conclude that A = Ann(F̃ ∗).
�

Corollary 3.18. In the situation of Prop. 3.16, the subsets A ⊂ Ω and F̃ ∗ ⊂ Ω∗ are
vector bundles, and

A ∼= Ω/Ann(S2E∗), F̃ ∗ ∼= Ω∗/S2E∗.

We also have the natural isomorphisms

A ∼= S2E and Ann(S2E) ∼= F̃ ∗.

Also we have
S2E∗ = {ϑ ∈ Ω∗|It(ϑ) = −ϑ}

and
Ann(S2E∗) = {φ ∈ Ω|I(φ) = φ}.

The restriction of p : Ω // E ⊗ E to F̃ projects onto Λ2E ⊂ E ⊗ E:
The vector bundle F̃ is the fixed set point of I and fits in the exact sequence

0 // F // F̃ // Λ2E // 0, (3.13)

with
F := ker p = ker p|

F̃
,

and of course the dual vector bundle F̃ ∗ fits in the transposed exact sequence

0 // Λ2E∗ // F̃ ∗ // F ∗ // 0. (3.14)
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Definition 3.19. We call F̃ ∗ the linear involutive bundle, or just the involutive bundle;
the sections of F̃ ∗ will be called simply involutive sections, omitting the adjective “linear”.

Observe that the sequence (3.13) is exactly an involutive sequence, as defined in Def.
3.10. Actually, as we already claimed in the beginning of this subsection, the category of
involutive sequences is equivalent to the category of extended involutive sequences.

Proposition 3.20. The involutive DVS category is equivalent to the IS category.

Proof. We will define a functor

Ξ :


involutive sequences

+
involutive morphisms

 


extended involutive sequences
+

extended involutive morphims,

 (3.15)

and show that is essentially surjective and fully faithful, thus establishing the desired
equivalence of categories.

In order to define Ξ, set

Ξ : {(F̃
p
// Λ2E)} 


(Ω := S2E ⊕ F̃

(Id,p)
// S2E ⊕ Λ2E = E ⊗ E)
+

I := (−Id, Id) : S2E ⊕ F̃ // S2E ⊕ F̃
( ς , σ ) // ( −ς , σ ).

 (3.16)

and
Ξ : (ψ2, ψ1, ψ) ((S2ψ1, ψ2);ψ1, ψ1;ψ).

It is evident that ((S2ψ1, ψ2);ψ1, ψ1;ψ) is a DVS morphism and commutes with the
corresponding involutions I and I ′, so that the functor Ξ is well-defined, and it is routine
to check that is actually functorial.

Now let’s prove that Ξ is essentially surjective. If we have an involutive sequence
(Ω, E; I) then, by Prop. 3.16 we obtain the decomposition (3.12) from which we obtain

the involutive DVS (F̃
p
// Λ2E).

Now, given an involution preserving morphism

(ψ2, ψ1, ψ) : (Ω // E ⊗ E;M ; I) // (F̂ ′ // (E′)⊗ (E′);M ′; I ′),

then, for ζ ∈ F̃ , I(ζ) = ζ, whence

I ′(ψ2(ζ)) = ψ2(I(ζ)) = ψ2(ζ),

which implies that ψ2(ζ) ∈ F̃ ′, that is

ψ2(F̃ ) ⊂ F̃ ′,

and therefore we obtain a morphism

ψ̃2 := ψ2|F̃ : F̃ // F̃ ′.
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Moreover, since (ψ2, ψ1, ψ) is a DVS morphism, we have p′ ◦ψ2 = (ψ1⊗ψ1) ◦ p, which
implies

p′ ◦ ψ̃2 = Λ2ψ1 ◦ p,

so that (ψ̃2, ψ1, ψ) is an involutive morphism.

Therefore, we have found (F̃
p
// Λ2E) and ψ̃2 such that Ξ(F̃

p
// Λ2E) = (Ω, E; I)

and Ξ(ψ̃2, ψ1, ψ) = (ψ2, ψ1, ψ), that is, Ξ is essentially surjective.
Fully faithfulness follows immediately from the observation that because of the com-

patibility condition p′ ◦ ψ2 = (ψ1 ⊗ ψ1) ◦ p, ψ is completely determined by its restriction
ψ̃2 = ψ2|F̃ .

�

Corollary 3.21. An exact sequence of the form

E∗ ⊗ E∗ // Ω // F ∗

is involutive if and only if Ω admits a subbundle F̃ ∗ ⊂ Ω that fits in the exact sub-sequence

Λ2E∗ // F̃ ∗ // F ∗

.

3.3 The category of involutive double vector bundles

The functor between double vector bundles and double vector sequences (Thm. D.8)
suggests that there should be a structure defined on double vector bundles that is the
double realization of an extended involutive structure defined on a double vector sequence.
This is what we achieve by means of the notion of a involutive structure on a double
vector bundle, given by a pair (D,H), where D is a double vector bundle and H is a DVB
morphism of a particular kind between D and its flip, which is reminiscent of a complex
structure, and we show that is equivalent to a linear metric on its dual. After describing
the morphisms that preserve involutive structures we show that such morphisms, together
with involutive DVB’s as objects, form a category –the involutive DVB category–, which
turns out to be equivalent to the category of (extended) involutive sequences, and thereby
to the category of degree 2 manifolds.

Definition 3.22. An involutive double vector bundle is a pair (D,H), where D is a double
vector bundle (D;A,B;M)C and H : DA

//DB is a double vector bundle morphism such
that

hC = IdC , hA = −h−1
B : A //B, and H4 = Id. (3.17)

An involutive DVB morphism is a double vector bundle morphism between two involu-
tive double vector bundles Φ : (D,H) // (D′, H ′) that preserves the respective involutive
structures:

Φ ◦H = H ′ ◦ Φ. (3.18)
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Remark 3.23. Considering as sets, we have DA = DB. But if we consider them with
their double vector bundle, their are not equal any more. Nonetheless, we have the map
Flip : DB

// DA (already introduced in Prop. C.34), that is the identity as a map of
sets, but the double vector bundle structures get flipped. Then, more precisely, we should

write the last condition in (3.17) as H
4

= Id, where H = Flip ◦H : DA
//DA.

The sets of involutive DVB’s and involutive morphisms form the involutive DVB cat-
egory.

Remark 3.24. Notice that the conditions of H on the induced morphisms on sides and
core bundle imply that H is an isomorphism.

Remark 3.25. In terms of a decomposition Θ : D //A⊕B⊕C, we have the expression

H(a, b, c) = (−h−1
A (b), hA(a), c+ Ψ(a, b)). (3.19)

By the equality (3.18) we have

ϕB ◦ hA = h′A′ ◦ ϕA. (3.20)

Since hA = −h−1
B and h′A′ = −h−1

B′ , it follows that

ϕA = (h′A′)
−1 ◦ ϕB ◦ hA = h′B′ ◦ ϕB ◦ h−1

B = −h′B′ ◦ ϕB ◦ hA.

Proposition 3.26. Let D be a DVB, and let Θ : D //A⊕B⊕C be a decomposition. If H
is a DVB morphism that has the expression (3.19), then it is a DVB involutive structure,
i.e. H4 = Id holds, if and only if Ψ is “hA-symmetric”, that is,

Ψ(a, b) = Ψ(h−1
A (b), hA(a)) ∀a ∈ A, b ∈ B. (3.21)

Proof. Let’s compute H4 using the decomposition:

H4(a, b, c) = H3(−h−1
A (b), hA(a), c+ Ψ(a, b))

= H2(−a,−b, c+ Ψ(a, b)−Ψ(h−1
A (b), hA(a))) (3.22)

= H(h−1
A (b),−hA(a), c+ 2Ψ(a, b)−Ψ(h−1

A (b), hA(a)))

= (a, b, c+ 2Ψ(a, b)− 2Ψ(h−1
A (b), hA(a))).

Hence, H4(a, b, c) = (a, b, c) if and only if Ψ(a, b) = Ψ(h−1
A (b), hA(a)).

�

Proposition 3.27. Let H : DA
// DB be a DVB morphism such that its induced core

morphism is the identity on C. Then H is a DVB involutive structure if and only if

H2 = (−1A) ◦ (−1B),

where −1A is the multiplication by -1 using the DA structure, and −1B is the multiplica-
tion by -1 using the DB structure (both operations commute because of the compatibility
conditions of a double vector bundle).
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Proof. Using a decomposition, we can write

H(a, b, c) = (hB(b), hA(a), c+ Ψ(a, b)),

whence

H2(a, b, c) = (hB(hA(a)), hA(hB(b)), c+ Ψ(a, b) + Ψ(hB(b), hA(a)).

Then, H2(a, b, c) = (−a,−b, c) if and only if hB = −h−1
A and Ψ(a, b) = Ψ(h−1

A (b), hA(a)),
which is equivalent to be involutive, as follows from the definition and Prop. 3.26.

�

Remark 3.28. Again, as in the beginning of Rmk. 3.23, we should actually state that

H
2
(a, b, c) = (−a,−b, c), with H = Flip ◦H : DA

//DA.
The corollary above shows that if the core bundle C is zero, then H is equivalent to a

complex structure on the fibers of D ∼= A⊕B over M .

3.3.1 Self-conjugate double vector bundles

In this subsection we will show that in the category of involutive double vector bun-
dles, there is a particular subcategory that is actually equivalent, in a similar way that
the involutive sequence category was shown to be equivalent to the extended involutive
sequence category.

Proposition 3.29. The set of involutive double vector bundles (D,H) such that the side
bundles coincide A = B, and hA = −Id, with their respective involutive morphisms, forms
a subcategory that is equivalent to the whole category of involutive double vector bundles.

Proof. Given any involutive double vector bundle

D

qA

��

qB // B

qB

��

C ,

A
qA

//M

together with the involutive structure H, then we use hA to obtain the pull-back bundle

h∗A(D)

qhA

��

pA // A

qA

��

C ,

A
qA

//M

given by Prop. B.16. Then we have a DVB isomorphism

Φ̃ := p2 : h∗A(D) //D.

We claim that H̃ := Φ̃−1 ◦ H ◦ Φ̃ is an involutive structure. Let’s compute the induced
morphisms on the side and core bundles, which we denote by h̃v, h̃h and h̃C , where the
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suffixes v and h mean vertical and horizontal, respectively. By (the proof of) Prop. B.16,
we have ϕ̃v = IdA, ϕ̃h = hA and ϕ̃C = IdC , then

hh = ϕ̃−1
v ◦ hB ◦ ϕ̃h = hB ◦ hA = −Id,

h̃v = ϕ̃−1
h ◦ hA ◦ ϕ̃v = h−1

A ◦ hA = Id,

and
h̃C = ϕ̃C ◦ IdC ◦ ϕ̃−1

C = IdC .

The condition H̃4 = Id follows immediately, since

H̃4 = Φ̃−1 ◦H4 ◦ Φ̃ = Φ̃−1 ◦ Φ̃ = Id.

By construction, Φ̃ : h∗A(D) // D is an involutive DVB morphism. Thus, we have
showed that the inclusion functor is essentially surjective. Fully faithfullness is obvious.

�

Definition 3.30. The subcategory of Prop. 3.29 will be called self-conjugate DVB cat-
egory, its objects will be called self-conjugate double vector bundles and its morphisms
self-conjugate DVB morphisms.

When a double vector bundle (D;A,B;M)C is self-conjugate we will denote its com-
mon side bundle by E, so that E := A = B, and its core bundle by F , and we will comprise
the whole data by (D;E,F ;H).

Remark 3.31. If (Φ, ϕA, ϕB;ϕM ) : (D;E,F ;H) // (D′, E′, F ′;H ′) is a self-conjugate
morphism, then Eq. (3.20) implies that ϕA = ϕB. Thus we will comprise the data of a
self-conjugate morphism by (Φ, ϕE , ϕ).

Remark 3.32. If we choose a decomposition of (D;E,F ;H), then H has the form

H(a, b, c) = (b,−a, c+ Ψ(a, b), a, b ∈ E, c ∈ F, (3.23)

and Ψ : E ⊕ E // F is a symmetric bilinear map.

3.3.2 Metric double vector bundles

In this section we introduce linear metrics (already treated in [41] and also in [29]),
and provide a nice characterization for them (Prop. 3.34) already stated in [41]. Next we
prove that an involutive structure on D is equivalent to a linear metric on (D∗B)C∗ .

Definition 3.33. Given a double vector bundle (D;A,B;M)C , a metric 〈·, ·〉DA on DA

is linear if

1. 〈γ1, γ2〉DA is a fiberwise linear function on A for every pair γ1, γ2 ∈ Γlin(DA);

2. 〈γ, β̃〉DA is fiberwise constant for every γ ∈ Γlin(DA) and β̃ ∈ Γcore(DA);

3. 〈β̃1, β̃2〉DA = 0, ∀β̃1, β̃2 ∈ Γcore(DA).

A double vector bundle endowed with a linear metric is called metric double vector bundle.
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Proposition 3.34. Let (D;A,B;M)C be a double vector bundle. Then a metric on DA,
〈·, ·〉DA, is linear if and only if, the induced symmetric isomorphism Φ : DA

//D∗A, defined
by

〈Φ(d1), d2〉A = 〈d1, d2〉DA , (3.24)

is a DVB morphism.

Proof. Since Φ is a vector bundle morphism over the identity on A, we can apply the
characterization of DVB morphisms given by Prop. C.27. So we need to prove that
〈·, ·〉DA is linear if and only if Φ defined by Eq. (3.24) satisfies Φ(Γlin(DA)) ⊂ Γlin(D∗A)
and Φ(Γcore(DA)) ⊂ Γcore(D

∗
A). But this is a direct consequence of properties 1,2 and 3

of Def. 3.33 together with lemma 2.8 above.
�

Proposition 3.35. Let (D;A,B;M)C be a double vector bundle endowed with a linear
metric 〈·, ·〉DA. Then the corresponding symmetric isomorphism

D

qA

��

qB // B

qB

��

C

A
qA

//M

Φ //

D∗A

πA

��

πC∗ // C∗

qC
∗

��

B∗

A
qA

//M

(3.25)

induces isomorphisms ϕB : B // C∗ and ϕC : C //B∗ such that

ϕC = (ϕB)∗.

Proof. We already saw in Prop. A.25 that a DVB isomorphism induces isomorphisms be-
tween the corresponding side and core bundles, in particular ϕB and ϕC are isomorphisms.

Considering the restriction

Φ|ker qA : B ⊕ C // C∗ ⊕B∗,

the symmetry of Φ implies, for every b1, b2 ∈ B and every c1, c2 ∈ C,

〈ϕB(b1), c2〉+ 〈ϕC(c1), b2〉 = 〈Φ(b1, c1), (b2, c2)〉A
= 〈Φ(b2, c2), (b1, c1)〉A
= 〈ϕB(b2), c1〉+ 〈ϕC(c2), b1〉,

in particular, taking (b1,= c1) = (b, 0) and (b2, c2) = (0, c), we get

〈ϕB(b), c〉 = 〈ϕC(c), b〉,

that is, ϕC = (ϕB)∗.
�

Proposition 3.36. Given a decomposed DVB, D = A⊕B ⊕C, there is a 1:1 correspon-
dence between linear metrics 〈·, ·〉DA on a DVB (D;A,B;M)C and pairs of vector bundle
morphisms

ϕ : B // C∗, and τ : A // S2B∗.



3.3. THE CATEGORY OF INVOLUTIVE DOUBLE VECTOR BUNDLES 34

Proof. We already have a 1:1 correspondence between linear metrics and symmetric DVB
morphisms Φ : D //D∗A over the identity. By Cor. A.24,

Φ(a, b, c) = (a, ϕB(b), ϕC(c) + Ψ(a, b)), Ψ : A⊕B //B∗

and by Prop. 3.35, ϕC = ϕ∗B. Define ϕ := ϕB and τ(a) := Ψa = Ψ(a, ·) : B // B∗, then
it remains to show that Φ is symmetric if and only if τ(a) is symmetric. We compute

〈Φ(a, b1, c1), (a, b2, c2)〉A = 〈(a, ϕ(b1), ϕ∗(c1) + τ(a)(b1)), (a, b2, c2)〉A
= 〈ϕ(b1), c2〉+ 〈ϕ∗(c1), b2〉+ 〈τ(a)(b1), b2〉. (3.26)

Now Φ is symmetric if and only if

〈Φ(a, b1, c1), (a, b2, c2)〉A = 〈Φ(a, b2, c2), (a, b1, c1)〉A,

which in view of (3.26) turns out to be equivalent to

〈τ(a)(b1), b2〉 = 〈τ(a)(b2), b1〉,

hence Φ is symmetric if and only if τ(a) : B //B∗ is symmetric.
�

Remark 3.37. From the proof of Prop. 3.36 it follows immediately that the linear metrics
on a double vector bundle are actually sections of a vector bundle over M , denoted by
S2

lin(D∗A), with the isomorphism

S2
lin(D∗A) ∼= B∗ ⊗ C∗ ⊕A∗ ⊗ S2B∗.

Analogously as we did with linear metrics, we can define linear 2-forms on a double
vector bundle over, say, the horizontal side bundle B, and likewise we also have linear
bivectors. The linearity property again can be characterized in terms of the induced
morphism between a double vector bundle and its dual; for example in the case of linear
bivectors, we can characterize them as those elements of Π ∈ Γ(Λ2DB) such that the
induced morphism Π] : D∗B

//D is a double vector bundle morphism. The sets of linear 2-
forms and linear bivectors are denoted by Γlin(Λ2D∗B) and Γlin(Λ2DB), respectively, which
are sections of vector bundles over M , denoted by Ω2

lin(DB) and Λ2
lin(DB), respectively,

which are isomorphic to

Ω2
lin(DB) ∼= A∗ ⊗ C∗ ⊕B∗ ⊗ Λ2A∗

and
Λ2

lin(DB) ∼= C ⊗A⊕B∗ ⊗ Λ2C,

respectively.
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3.3.3 Equivalence between involutive structures and linear metrics on
double vector bundles

Proposition 3.38. Let (D;A,B;M)C be a double vector bundle. Then there is a 1:1
correspondence between involutive structures on D and linear metrics on the dual (D∗B)C∗,
that is, a symmetric double vector bundle isomorphism

Φ : (D∗B)C∗
∼=
// (D∗B)∗C∗ . (3.27)

Proof. Suppose first that D is involutive, so that we have the involutive structure H :
DA

//DB. Introducing a decomposition, we have

H(a, b, c) = (hA(a),−h−1
A (b), c+ Ψ(a, b))

whereby
H∗A(b, κ, α) = (h−1

A (b), κ,−(h−1
A )∗(α) + Ψ∗

h−1
A (b)

(κ)),

where Ψa : B // C is given by Ψa(b) = Ψ(a, b). Then, we claim that the isomorphism

Φ = ΥA ◦H∗A : (D∗B)C∗ // (D∗B)∗C∗ (3.28)

is symmetric. Indeed, the decomposed form of Φ is given by

Φ(κ, b, α) = ΥA ◦H∗A(b, κ, α) = ΥA(h−1
A (b), κ,−(h−1

A )∗(α) + Ψ∗
h−1
A (b)

(κ))

= (κ,−h−1
A (b),−(h−1

A )∗(α) + Ψ∗
h−1
A (b)

(κ)),

whence
Φ∗C∗(κ, b, α) = (κ,−h−1

A (b),−(h−1
A )∗(α) + Ψ̃∗κ(b)),

where Ψ̃κ : B //B∗ is given by Ψ̃κ(b) = Ψ∗h−1(b)(κ), whereby, for every b, b′ ∈ B,

〈Ψ̃∗κ(b), b′〉 = 〈Ψ̃κ(b′), b〉 = 〈Ψ∗
h−1
A (b′)

(κ), b〉

= 〈Ψh−1
A (b′)(b), κ〉 = 〈Ψ(h−1

A (b′), b), κ〉.

While,
〈Ψ∗

h−1
A (b)

(κ), b′〉 = 〈Ψh−1
A (b)(b

′), κ〉 = 〈Ψ(h−1
A (b), b′), κ〉,

hence, Φ∗C∗ = Φ if and only if

Ψ(h−1
A (b′), b) = Ψ(h−1

A (b), b′), ∀b, b′ ∈ B,

which, since h−1
A is an isomorphism, is equivalent to

Ψ(a, b) = Ψ(h−1
A (b), hA(a)), ∀a ∈ A, b ∈ B,

which, by Prop. 3.26 is equivalent to H4 = Id.
Conversely, if there exists a symmetric isomorphism (3.27), then we define

H : DA
//DB
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by the condition that its transpose H∗A satisfies (3.28), so that

H := Φ∗A ◦ (Υ∗A)−1 : D //D.

By what we have done above, if the decomposed form of Φ is given by

Φ(κ, b, α) = (κ, ϕB(b), ϕA∗(α) + Ψ̃(κ, b)),

then just reversing the steps we conclude that the decomposed form of H is given by

H(a, b, c) = (b,−a, c+ Ψ(a, b)),

with 〈Ψ(a, b), κ〉 = −〈Ψ̃(κ, a), b〉. And we already saw that in this case H4 = Id if and only
if Φ is symmetric. Therefore, H is a skew-statomorphism, and thereby D is involutive.

�

Remark 3.39. In [29] M. Jotz defines a morphism between two metric double vector
bundles

(D, 〈·, ·〉A) 99K (D′, 〈·, ·〉A′)

as an isotropic relation
Ω ⊂ D ×D′

that is dual to a double vector bundle morphism ω : D∗B
// (D′)∗B′ . With this definition,

she proves in [29] that the category of degree 2 manifolds is equivalent to the category of
metric double vector bundles.

It can be verified that morphisms of metric double vector bundles defined in this
way, correspond exactly to involutive morphisms between the respective involutive double
vector bundles given by Prop. 3.38. Hence, we actually have an equivalence of categories.

3.3.4 Equivalence between involutive sequences and involutive DVB’s

Now we establish the connection between the category of involutive sequences (already
shown to be equivalent to the category of degree 2 manifolds) and the category of involutive
double vector bundles.

Theorem 3.40. The category of involutive sequences and the involutive DVB category
are equivalent.

Proof. In view of propositions 3.29 and 3.20, it is enough to have an equivalence functor

A : {self-conjugate DVB’s} {Extended involutive sequences} (3.29)

{self-conjugate morphisms} {Extended involutive morphisms}.

For the construction of this functor and the proof that it is indeed an equivalence of
categories, we will rely upon the double realization functor and its inverse, given in Thm.
D.8.

Given a self-conjugate DVB (D;E,F ;H) we define

A(D;E,F ;H) := (S(D), E, F ; (Flip∗)t ◦S(H)),
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where S(D) = C∞lin(D)∗
p
// E ⊗ E and S(H) = Ĥ are given in Thm. D.8, and (Flip∗)t

comes from transposing diagram (C.59)

C

Id

��

p∗
// C∞lin(DB)∗

(Flip∗)t

��

ι∗B // B ⊗A

∗
��

C
p∗

// C∞lin(DA)∗
ι∗A // A⊗B

, (3.30)

where in our case, the top sequence, for example, is given by

F
p∗
// C∞lin(Dh)∗

ι∗h
// E ⊗ E,

the suffix h meaning, as usual, that we are considering the horizontal vector bundle struc-
ture.

We claim that (S(D), E, (Flip∗)t ◦S(H)) is an extended involutive sequence. Indeed,
taking into account Eq. (3.23) and Prop. C.38, it follows that Ĥ satisfies diagram (3.5).
Moreover, from Rmks. 3.28 and C.39, and again using Prop. C.38, we see that ((Flip∗)t ◦
Ĥ)2 = Id.

Given a self-conjugate DVB morphism (Φ, ϕE , ϕ) : (D;E,F ;H) // (D′;E′, F ′;H ′),
we define

A(Φ, ϕE , ϕ) = S(Φ;ϕE , ϕE ;ϕ),

where, again, S(Φ;ϕE , ϕE ;ϕ) = (Φ̂;ϕE , ϕE ;ϕ) is given in Thm. D.8. So functoriality of
A follows from functoriality of D. Also, It follows from (3.18) and Rmk. C.39 that

Φ̂ ◦ Ĥ = Ĥ ′ ◦ Φ̂,

thus (Φ̂;ϕE , ϕE ;ϕ) is indeed an involution preserving morphism, and therefore we have a
well-defined functor A, as we claimed in (3.29).

Now, let’s prove that A is essentially surjective. Given an extended involutive sequence

(Ω, E, F ; I),

consider the pair
(D(Ω // E ⊗ E;M)F ;D(I;−IdE , IdE ; IdM )),

where D(Ω //E ⊗E) = D(Ω) and D(Ĩ;−IdE , IdE ; IdM ) = D(Ĩ) are given in Thm. D.8.
The morphism Ĩ is given, using the natural isomorphism Ω ∼= C∞lin(D(Ω))∗ and diagram
(3.30) upside down:

F

Id
��

p∗
// C∞lin(D(Ω)v)∗

I
��

Ĩ

��

ι∗v // E ⊗ E

−∗
��

−IdE⊗IdE

��

F

Id
��

p∗
// C∞lin(D(Ω)v)∗

(Flip∗)t

��

ι∗v // E ⊗ E

∗
��

F
p∗

// C∞lin(D(Ω)h)∗
ι∗h // E ⊗ E

, (3.31)



3.3. THE CATEGORY OF INVOLUTIVE DOUBLE VECTOR BUNDLES 38

so that the double realization of Ĩ is a DVB morphism

D(Ĩ) : D(Ω) //D(Ω), (3.32)

where D(Ω) stands for the flip of D(Ω).
Now we claim that (D(Ω);E,F ;D(Ĩ)) is self-conjugate DVB. For this it is enough to

show that H := D(Ĩ) is an involution structure that satisfies the condition of Prop. 3.29.
By construction, we already have that H is a DVB morphism between D(Ω) and its flip,

and that hA = −IdA, hB = IdB and hC = IdC . So it remains only to show that H
4

= Id,
where H = Flip ◦H (see Rmk. 3.23). Observe that we have a natural identification Flip
in this case is given by

Flip : D(Ω)
∼=
// D(Ω)

(φ, e1, e2) // (φ, e2, e1).

Using this identification, from the definition of H we have

H
4
(φ, e1, e2) = H

3
(Ĩ(φ), e2,−e1)

= H
2
(φ,−e1,−e2)

= H(Ĩ(φ), e2,−e1)

= (φ, e1, e2),

that is, H
4

= Id, as we wanted. Therefore, we have obtained an involutive DVB

(D(Ω), E, F ;H),

and because of the way it was built, it is evident that A(D(Ω), E, F ; H̃) is canonically
isomorphic to (Ω // E ⊗ E;M ; I).

Fully faithfulness of A follows directly from Thm. D.8 and the functoriality of D.
�

3.3.5 Some immediate consequences of the equivalence of categories

We have seen in Thm. 3.40 that, given a self-conjugate DVB, there corresponds in a
natural way an involutive sequence. In view of Prop. 3.38, we would like to see how the
involutive sequence relates to the symmetric Φ : DF ∗

// D∗F ∗ , where DF ∗ := D∗h is the
dual of the self-conjugate DVB D with respect to the horizontal fibration. This is what
we do in the next proposition.

Proposition 3.41. Consider an involutive DVB (D;E,F ;H). Consider its corresponding

involutive sequence (F̂ ∗ // E ⊗ E, I), where, according to (the proof of) Thm. 3.40,

F̂ ∗ = C∞lin(DA)∗ and I = (Flip∗)t ◦ Ĥ.

Consider the isomorphism

Z̃B := ZB ◦ Flip∗ : C∞lin(Dv) // Ĉ∗h, (see diagram C.60),
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where, as usual, v and h mean, respectively, the vertical and horizontal vector bundle
structures (remember that the side bundles are equal).

Then
Z̃B ◦ It ◦ Z̃−1

B = T−1 ◦ Φ̂h, (3.33)

where T : Ĉ∗h //(Ĉ∗h)∗ is the isomorphism introduced in Prop. C.17, and Φ̂h : Ĉ∗h //(Ĉ∗h)∗
is the induced morphism given in Prop. C.18.

Proof. By Prop. C.36 we have

T−1 = Z ◦ Υ̂A
−1
,

whereby, using Eq. (3.28) and Rmk. C.39,

T−1 ◦ Φ̂h = Z ◦ Υ̂A
−1
◦ Υ̂A ◦ Ĥ∗v = Z ◦ Ĥ∗v . (3.34)

On the other hand, by Prop. C.40,

C∞lin(Dh)

ZB
��

H∗ // C∞lin(Dv)

ZA
��

Ĉ∗h
Ĥ∗A // Ĉ∗v

, (3.35)

thus, taking into account that H∗ = Ĥt, and using (C.60),

Z̃B ◦ It ◦ Z̃−1
B = ZB ◦ Flip∗ ◦H∗ ◦ Flip∗ ◦ (Flip∗)−1 ◦ Z−1

B

= ZB ◦ Flip∗ ◦ Z−1
A ◦ ZA ◦H

∗ ◦ Z−1
B

= Z ◦ Ĥ∗v ◦ ZB ◦ Z−1
B

= Z ◦ Ĥ∗v ,

whence, from (3.34), it follows (3.33).
�

Now we want to compute the symmetric morphism Φ in terms of a special kind of
decomposition of DF ∗ , the ones that come from splittings of the corresponding involutive
sequence. First we observe that these splittings actually yield decompositions of the
corresponding metric double vector bundle. We put this observation as a remark for
future reference.

Remark 3.42. If Ω∗ is decomposed as in (3.11), so that the exact sequence

0 // E∗ ⊗ E∗ // Ω∗ // F ∗ // 0 (3.36)

becomes
0 // Λ2E∗ ⊕ S2E∗ // S2E∗ ⊕ F̃ ∗ // F ∗ // 0, (3.37)

then any horizontal lift of the involutive subsequence (3.14) yields an horizontal lift of
(3.36). Indeed, since, by definition, the projection p : F̃ ∗ // F ∗ is just the restriction of
p : Ω∗ // F ∗, if we compose a horizontal lift ψ of (3.14) with the inclusion F̃ ∗ ↪→ Ω∗ we
get a horizontal lift of (3.36).
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Proposition 3.43. Let (D;E,F ;H) be a self-conjugate DVB, and denote by (DF ∗ , E; Φ)
its corresponding dual metric DVB. Then

Φ = Θ̃−1 ◦Θ, (3.38)

where Θ and Θ̃ are the decompositions of DF ∗ and D∗F ∗, respectively, induced by some hori-

zontal lift ψ : F ∗ //F̃ ∗ of (3.14) (see Rmk. 3.42), where F̃ ∗ comes from the decomposition
(3.11).

Proof. If Θ, Θ̃ are decompositions corresponding to an arbitrary horizontal lift ψ : F ∗ //F̂ ∗

of (3.36), then by Cor. A.24

Θ̃ ◦ Φ ◦Θ(ξ, e, ε) = (ξ, e, ε+ Ψ(ξ, e)), Ψ ∈ Γ(F ⊗ E∗ ⊗ E∗).

Therefore, we must show that if the decompositions come from a horizontal lift ψ :
F ∗ // F̃ ∗ of (3.14), then Ψ = 0, or equivalently,

Θ̃ ◦ Φ ◦Θ = IdF ∗⊕E⊕E∗ .

From Eq. (C.51) and diagram (3.10), and since F̃ ∗ is the fixed point set of It, it follows
that a horizontal lift ψ taking values on F̃ ∗ yields the following decomposed expression
for the left-hand side of (3.33):

Z̃B ◦ It ◦ Z̃−1
B (η, f) = (ξ,−η∗), ∀ξ ∈ Γ(F ), η ∈ E∗ ⊗ E∗.

From Eqs. (C.25) and (3.33) we conclude that, from an horizontal lift taking values on
F̃ ∗, the decomposed form of Φ̂ is given by

Φ̂(ξ, η) = (ξ, η).

Finally, from Eq. (C.29) we conclude that Ψ = 0, and therefore the decomposed form of
Φ is the identity, as we wanted.

�

3.3.6 Examples

Proposition 3.44. Let (D;A,B;M)C be a double vector bundle. D and D∗A have one side
bundle in common, namely A, so that Prop. C.42 applies, so that we obtain the double
vector bundle

D ⊕
A
D∗A.

Then
(D ⊕

A
D∗A)∗B⊕C∗ −−−−→ B ⊕ C∗y y

B ⊕ C∗ −−−−→ M

(3.39)

is a self-conjugate double vector bundle, with core bundle A∗.
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Proof. Notice that

((D ⊕
A
D∗A)∗B⊕C∗)

∗
B⊕C∗

∼= D ⊕
A
D∗A,

and we have a symmetric isomorphism

(D ⊕
A
D∗A)∗A = D∗A ⊕

A
D ∼= D ⊕

A
D∗A,

which preserves A, B⊕C∗ and C⊕B∗, then it gives a linear metric dual to a self-conjugate
structure.

Involutivity also can be seen as a consequence of Cor. C.44.
�

Example Let A be a vector bundle. Consider the double vector bundles

TA
qTM−−−−→ TM

qA

y yqTM
A

qA−−−−→ M

and

T ∗A
πA∗−−−−→ A∗

πA

y yqA∗
A

qA−−−−→ M ;

Then, by Prop. C.42, we obtain the double vector bundle

TA⊕
A
T ∗A

(qTM ,πA∗ )−−−−−−−→ TM ⊕A∗

qA

y yqTM⊕A∗
A

qA−−−−→ M

(3.40)

and by Prop. 3.44, dualizing we get the self-conjugate double vector bundle

(TA⊕
A
T ∗A)∗TM⊕A∗ −−−−→ TM ⊕A∗y y

TM ⊕A∗ qA−−−−→ M

(3.41)

with core bundle A∗.

3.4 The dual sequence of an involutive DVB

Since we want to determine a 1-vector field Q without splitting the degree 2 manifold,
we need a notion of dual contraction for functions of degrees 1, 2 and 3, so that we can
imitate formulas (H.3) to determine the action of Q on functions of degrees 0,1 and 2. The
characterization of a degree 2 manifold in terms of certain double vector bundles allows
the notion of duality for double vector bundles come to our aid.
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Let D be a self-conjugate double vector bundle, so that DF ∗ = D∗h (h stems for the
horizontal bundle structure) is the double vector bundle

DF ∗

qF∗

��

qE // E

qE

��

E∗ ,

F ∗
qF
∗

//M

(3.42)

with some symmetric isomorphism Φ : DF ∗
Φ∼= D∗F ∗ . We want to explore the structure of

D

q2

��

q1
// E

qE

��

F

E
qE

//M ,

(3.43)

particularly we want to describe a symmetric pairing on the linear bundle Ê, taking values
on F .

Definition 3.45. Let D be a self-conjugate double vector bundle. Then the linear bundle
Ê, corresponding to linear sections of Dh fits in the exact sequence

E∗ ⊗ F
ι
// Ê

π
// E, (3.44)

which will be called the dual sequence of (3.14).

Remark 3.46. In Cor. 3.53 we give an intrinsic characterization of the dual sequence, in
the sense that it is defined just in terms of the involutive sequence data.

Definition 3.47. Let F̃ ∗ be the linear involutive bundle corresponding to a self-conjugate
DVB D (which is a vector sub-bundle of the linear bundle corresponding to linear sections
of the dual DF ∗ over E), and let Ê be the linear bundle corresponding to Γlin(D). Then
there is a tensor T ∈ Γ((Ê)∗ ⊗ (Ê)∗ ⊗ F̃ ), given by

〈T (φ1, φ2), γ〉 := 〈〈γ, φ1〉, φ2〉, (3.45)

for φ1, φ2 ∈ Γ(Ê) ∼= Γlin(D) and γ ∈ Γ(F̃ ∗) ⊂ Γ(F̂ ∗) ∼= Γlin((DF ∗)E), where, for a function
ε on E, linear in the fibers (in our case 〈γ, φ1〉), we consider the core section ε inside DF ∗ ,
thanks to the identification C∞lin(E) ∼= Γ(E∗). Thus, the duality pairings in (3.45) make
sense.

Proposition 3.48. Let W ∈ Γ(S2(Ê)∗ ⊗ F̃ ) be the symmetrization of T , that is

W (φ1, φ2) := T (φ1, φ2) + T (φ2, φ1). (3.46)

Then W takes values on F which is viewed inside F̃ (see the exact sequence (3.13). There-
fore, W ∈ Γ(S2(Ê)∗ ⊗ F ).
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Actually, if we choose a horizontal lift ψ : F ∗ // F̃ ∗, we obtain decompositions in DF ∗

and D, and we can write
φi = ηi + ei, i = 1, 2, (3.47)

where ηi ∈ Γ(E∗ ⊗ F ) ∼= Γ(Hom(E,F )) and ei ∈ Γ(E). Then

W (φ1, φ2) = η1(e2) + η2(e1) (3.48)

holds. In particular, the expression on the right-hand side of (3.48) doesn’t depend on the
horizontal lift ψ.

Proof. Let γ ∈ Γ(F̃ ∗). The horizontal lift ψ allows us to write

γ = ζ + λ,

with ζ ∈ Γ(F ∗) and λ ∈ Γ(Λ2E∗). Then

〈γ, φ1〉 = η∗1(ζ) + λ(e1),

where we are viewing η1 ∈ Γ(Hom(E,F )), so that η∗1 ∈ Γ(Hom(F ∗, E∗)), and λ ∈
Γ(Λ2E∗) ⊂ Γ(Hom(E,E∗)). Then we have

〈T (φ1, φ2), γ〉 = 〈〈γ, φ1〉, φ2〉 = 〈η∗1(ζ), e2〉+ 〈λ, e1 ∧ e2〉
= 〈ζ, η1(e2)〉+ 〈λ, e1 ∧ e2〉.

Likewise
〈T (φ2, φ1), γ〉 = 〈ζ, η2(e1)〉+ 〈λ, e2 ∧ e1〉

holds. Therefore,

〈W (φ1, φ2), γ〉 = 〈T (φ1, φ2) + T (φ2, φ1), γ〉 = 〈η1(e2) + η2(e1), ζ〉, (3.49)

that is
W (φ1, φ2) = η1(e2) + η2(e1).

�

Remark 3.49. In order to get the expression

η1(e2) + η2(e1) (3.50)

invariant it is crucial the involutivity of DF ∗ , for, in order to arrive to Eq. (3.49), we
needed the skew-symmetry of λ.

We can check also directly that (3.50) doesn’t depend on the horizontal lift, in order
to see more clearly that this independence strongly relies on the involutivity of DF ∗ . Let
ψ′, be another horizontal lift, then according to this splitting we can write

φi = η′i + ei, i = 1, 2,

and by Prop. (C.15), we get

η′i = ηi −Ψ∗ei , i = 1, 2,
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where Ψ : E ⊕ F ∗ // E∗ is given by

Ψ(e, ζ) = (ψ′ − ψ)(ζ)(e),

and Ψe(ζ) := Ψ(e, ζ), so we conclude that

〈Ψ∗ei(ej), ζ〉 = 〈Ψ(ei, ζ)〉ej〉 = 〈(ψ′ − ψ)(ζ)(ei), ej〉.

Since (ψ′ − ψ)(ζ) ∈ Λ2E∗ (and here is entering the fact that DF ∗ is involutive), we get

〈Ψ∗ei(ej), ζ〉 = −(ψ′ − ψ)(ζ)(ej), ei〉 = −〈Ψ∗ej (ei), ζ〉, (3.51)

whence,

η′1(e2) + η′2(e1) = η1(e2)−Ψ∗e1(e2) + η2(e1)−Ψ∗e2(e1) = η1(e2) + η2(e1). (3.52)

Corollary 3.50. Let (D;E,F ;H) be a self-conjugate DVB, so that its dual DF ∗ is en-
dowed with a linear metric Φ, given by Eq. (3.24). Then, after identifying F ∼= C∞lin(F ∗),
we have

〈γ1, γ2〉DF∗ = W (Z ◦ Φ̂F ∗(γ1), Z ◦ Φ̂F ∗(γ2)), ∀γ1, γ2 ∈ Γlin(DF ∗), (3.53)

where W : S2Ê // F is the pairing introduced in Prop. 3.48 and Z : F̂ ∗∗ // Ê is the
isomorphism given in Prop. C.33, and

〈γ, ε〉DF∗ = 〈π ◦ Z ◦ Φ̂F ∗(γ), ε〉, ∀γ ∈ Γlin(DF ∗), ε ∈ Γcore(DF ∗), (3.54)

where π : Ê // E is the projection.

Proof. Let’s denote ÊF ∗ the linear bundle corresponding to Γlin(DF ∗). To prove (3.53),
let’s choose a horizontal lift ψ : F ∗ // F̃ ∗, which induces the corresponding lift ψ̃ :
E // ÊF ∗ , and also a horizontal lift ψ̃∗ : E // Ê, on the linear bundle corresponding to
Γlin(D), where D = (DF ∗)

∗
E (see Rmk. 3.42). Denote by Θ : DF ∗

// F ∗ ⊕ E ⊕ E∗ the

corresponding decomposition. Then, recalling that the induced morphism of Θ on ÊF ∗ is
given by K : ÊF ∗ // Hom(F ∗, E∗) ⊕ E (see Prop. C.10), and writing K(γi) = (ηi, ei)
with ηi ∈ Hom(F ∗, E∗) ∼= F ⊗ E∗ ∼= E∗ ⊗ F and ei ∈ E, we have, denoting by K ′ :
Ê //Hom(E,F )⊕ E the morphism induced by ψ̃∗,

K ′(Z ◦ Φ̂F ∗(γi)) = (ηi, ei),

which follows from (C.55) and the fact that Φ is a statomorphism. Thus, using Prop. 3.43

〈Φ(γ1), γ2〉F ∗ = 〈Θ(γ1),Θ(γ2)〉 = 〈K(γ1),K(γ2)〉
= η1(e2) + η2(e1)

= W (Z ◦ Φ̂F ∗(γ1), Z ◦ Φ̂F ∗(γ2)).

Analogously, to prove (3.54), writing γ = η + ê, we have

〈γ, ε〉DF∗ = 〈e, ε〉 = 〈π ◦ Z ◦ Φ̂F ∗(γ), ε〉.

�
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Remark 3.51. If we consider the induced metric on the dual D∗F ∗ , which is also linear,
given by

〈w1, w2〉D∗
F∗

:= 〈Φ−1(w1), w2〉F ∗ ,

then we have the following formulas:

〈ω1, ω2〉D∗
F∗

= W (Z(ω1), Z(ω2)), ∀ω1, ω2 ∈ Γlin(D∗F ∗), (3.55)

〈ω, ε〉D∗
F∗

= 〈Z(ω), ε〉E = 〈π ◦ Z(ω), ε〉, ∀ω ∈ Γlin(D∗F ∗), ε ∈ Γcore(D
∗
F ∗). (3.56)

3.5 The GLA of vector fields on a degree 2 manifold

In this section we describe the GLA (graded Lie algebra) of vector fields on a degree
2 manifold with the (graded) commutator bracket. We will see that core sections of the
corresponding involutive DVB D coincide with -2 vector fields on M and linear sections
on D coincide with -1 vector fields.

Consider the graded vector space A = X(M) of graded vector fields on a degree 2
manifold M, which are by definition operators on the sheaf OM such that, if X ∈ X(M)
is a (homogeneous) degree k vector field, then X(f) has degree k+r for every homogeneous
degree r element f ∈ OM , that is,

|X(f)| = |X|+ |f |

and satisfies graded Leibniz rule

X(fg) = X(f)g + (−1)|X||f |fX(g),

for every homogeneous functions f, g ∈ OM .
Locally, X(M) is an O(U)-module spanned by

{
∂
∂xi
, ∂
∂εµ ,

∂
∂αν

}
, where {xi, εµ, αν} are

local coordinates spanning O(U). The vector fields ∂
∂εµ are dual to εµ and are assigned

degree -1 by the usual convention of graded duality. The vector fields ∂
∂αν are dual to αν

and hence are assigned degree -2. Therefore, X(M) is a graded vector space

∞⊕
k=−∞

X(M)k,

which actually is endowed with an OM -module structure. In particular, since the degrees
of OM are non-negative, we see that X(M)−2 is C∞(M)-spanned by

{
∂
∂αν

}
and X(M)−1

is C∞(M)-spanned by
{

∂
∂εµ , ε

µ ⊗ ∂
∂αν

}
. Now, from Eq. (3.2), it follows that if we choose

another coordinate system {xi, εµ, αν} for O(U), then

∂

∂αν
=
∂(bjκ(x)ακ)

∂αν
∂

∂αj
= bjν(x)

∂

∂αj
, (3.57)
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and

∂

∂εµ
=
∂(aλj (x)εj)

∂εµ
∂

∂ελ
+
∂
(
bνκ(x)ακ + 1

2c
ν
λη(x)ελεη

)
∂εµ

∂

∂αν

= aλµ(x)
∂

∂ελ
+

1

2
cνλη(x)

(
∂ελ)

∂εµ
εη − ελ ∂ε

η

∂εµ

)
∂

∂αν

= aλµ(x)
∂

∂ελ
+ cνµη(x)εη

∂

∂αν
, (3.58)

from which we conclude that X(M)−2
∼= Γ(F ) (recall that F = ker p ∼= F̃ /Λ2E, see Eq.

(3.3)), and there is a vector bundle G such that X(M)−1
∼= Γ(G), and G fits in the exact

sequence
0 // E∗ ⊗ F //G // E // 0. (3.59)

This local analysis suggests the following result.

Proposition 3.52. Consider a degree 2 manifold M, and its corresponding involutive
DVB D. Then, there are canonical isomorphisms of C∞(M)-modules

X(M)−2
∼= Γcore(D) ∼= Γ(F ) and X(M)−1

∼= Γlin(D) ∼= Γ(Ê).

We will denote these isomorphisms by

ξ // ιξ ∈ X(M)−2 and φ // ιφ ∈ X(M)−1, (3.60)

for ξ ∈ Γ(F ), and φ ∈ Γ(Ê).

Proof. We begin by establishing a canonical identification X(M)−2
∼= Γcore(D). First

observe that any section ξ̃ ∈ Γcore(D) is canonically identified with a linear functional

fξ ∈ Hom(F̂ ∗,R) such that E∗ ⊗ E∗ ⊂ ker fξ. In fact, these functionals are precisely
the ones that descend to the quotient F ∗, and therefore are canonically identified with
the elements in Γ(F ). Then take any X ∈ X(M)−2. Since X has degree -2, it follows
that, for any ζ ∈ A2 ∼= Γ(F̃ ∗), X(ζ) ∈ A0 ∼= C∞(M), and by Leibniz rule, and again
degree reasons, we have, for any f ∈ C∞(M), X(fζ) = fX(ζ). Then, X defines a linear
functional fX on F̃ ∗,

fX(ζ(m)) := X(ζ)(m),

which satisfies, by Leibniz rule, and once more relying on degree reasons, we conclude that

fX(ε1 ∧ ε2) = fX(ε1)ε2 − ε1fX(ε2) = 0, ∀ε1 ∧ ε2 ∈ Λ2E∗,

which implies that Λ2E∗ ⊂ ker fX . We can extend fX to a functional fξ ∈ Hom(F̂ ∗,R)
by setting fξ(ς) := 0 for every ς ∈ S2E∗, so that E∗ ⊗ E∗ ⊂ ker fξ, and therefore we can
associate to X the corresponding core section to fξ. And conversely, given fξ, we just
define X(f) = X(ε) := 0 and X(ζ) := fξ(ζ), and then we can extend it by Leiniz rule to
the whole space of functions A obtaining a vector field X ∈ X(M)−2. Therefore we have

X(M)−2
∼= Γcore(D) ∼= Γ(F ).
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As for X(M)−1, we want to find a canonical correspondence of vector fields X ∈
X(M)−1 with linear sections of D. By the characterization of linear sections given in Cor.
2.9, it is enough to associate to X a pair of linear functions

f
F̂ ∗

: F̂ ∗ // E∗ and fE∗ : E∗ // R,

satisfying f
F̂ ∗

(τ) = fE∗ ◦ τ , for every τ ∈ E∗ ⊗ E∗ ⊂ F̂ ∗. So, using the canonical

decomposition F̂ ∗ = S2E∗ ⊕ F̃ ∗ given by the involutivity structure, and the canonical
identifications Γ(E∗) ∼= A1 and Γ(F̃ ∗) ∼= A2, we set

fE∗(ε) := X(ε), ∀ε ∈ Γ(E∗)

and
f
F̂ ∗

(ς + ζ) := fE∗ ◦ ς +X(ζ), ∀ς ∈ Γ(S2E∗), ζ ∈ Γ(F̃ ∗).

Since X has degree -1, derivation rule implies that fE∗ and f
F̂ ∗

are tensorial with respect to
C∞(M). Also by degree reasons we have that X(ε) ∈ C∞(M) and X(ζ) ∈ Γ(E∗). There-

fore fE∗ ∈ Hom(E∗,R) and f
F̂ ∗
∈ Hom(F̂ ∗, E∗). It remains to verify the compatibility

condition. First observe that, from Leibniz rule we have, for ε1 ∧ ε2 ∈ Γ(Λ2E∗),

X(ε1 ∧ ε2) = X(ε1)ε2 − ε1X(ε2)

= fE∗(ε1)ε2 − ε1fE∗(ε2)

= fE∗ ◦ ε1 ∧ ε2.

By C∞(M)-linearity, it follows that X(λ) = fE∗ ◦ λ for every λ ∈ Γ(Λ2E∗). Then, take
τ ∈ Γ(E∗ ⊗ E∗). We can write τ = ς + λ, with ς ∈ Γ(S2E∗) and λ ∈ Γ(Λ2E∗)

f
F̂ ∗

(τ) = f
F̂ ∗

(ς + λ) = fE∗ ◦ ς + fE∗ ◦ λ = fE∗ ◦ τ.

Conversely, given such a pair of linear maps f
F̂ ∗
, fE∗ , we define

X(f) := 0, X(ε) := fE∗(ε) and X(ζ) := f
F̂ ∗

(ζ),

and observe that we can extend X to the whole space of functions (which is generated as
a graded algebra by A0,A1 and A2) by Leibniz rule, observing that the definitions given
above are consistent with this rule because of the linearity of fE∗ , fF̂ ∗ and the compatibility
condition they satisfy.

�

Corollary 3.53. Given an involutive sequence (E, F̃ , F̃
p
// Λ2E), then the sections of

the dual sequence E∗⊗F // Ê //E, defined in Def. 3.45, are canonically identified with
pairs of linear functions

f
F̃ ∗ : F̃ ∗ // E∗ and fE∗ : E∗ // R,

satisfying f
F̃ ∗(τ) = fE∗ ◦ τ , for every τ ∈ Λ2E∗ ⊂ F̃ ∗.

As a consequence, the fibers of the dual bundle Ê are given by

Êm = {µ ∈ Hom(F̃ ∗m, E
∗
m)|∃e ∈ Em s.t. µ(λ) = ιeλ, ∀λ ∈ Λ2Em}.
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Corollary 3.54. With the identifications of Prop. 3.52, we have, for every φ ∈ Γ(Ê), ξ ∈
Γ(F ), ε ∈ Γ(E∗) and γ ∈ Γ(F̃ ∗),

ιφ(γ) = 〈φ, γ〉E , ιφ(ε) = 〈φ, ε〉E , and ιξ(γ) = 〈ξ, γ〉E .

Remark 3.55. In the degree 1 case, that is, when we are given a 1-manifold M, there is
a vector bundle A //M such that A1 ∼= Γ(A∗) and M∼= A[1]. In this case, we have

X(M)−1
∼= Γ(A),

since, by degree reasons, X(s) ∈ C∞(M), ∀s ∈ Γ(A∗), X ∈ X(M)−1, and from Leibniz
rule, and again by degree reasons, X(fs) = fX(s) for all f ∈ C∞(M) and s ∈ Γ(A∗),
therefore, we canonically associate to any X ∈ X(M)−1 an element in Γ(A). And con-
versely, given φ ∈ Γ(A), we define X := ιφ ∈ X(M)−1 by

ιφ(f) := 0 and ιφ(s) := 〈φ, s〉, ∀f ∈ C∞(M), s ∈ Γ(A∗),

and extend X to the whole space A by Leibniz rule, observing that the definition of X(fs)
is consistent with this rule because 〈φ, fs〉 = f〈φ, s〉.

The above proposition has, as we will see, some powerful consequences. The first one is
that it provides a nice interpretation of the symmetric pairing W : S2(Ê) //F introduced
in Prop. 3.48.

Proposition 3.56. The tensor W ∈ S2(Ê)∗⊗F introduced in Prop. 3.48, is given by the
commutator of the corresponding vector fields:

W (φ1, φ2) = [ιφ1 , ιφ2 ] ∈ X(M)−2
∼= Γ(F ). (3.61)

Proof. From Cor. 3.54 and Eq. (3.45), we get

〈T (φ1, φ2), γ〉 = ιφ2ιφ1(γ), ∀φ1, φ2 ∈ Γ(Ê), γ ∈ F̃ ∗,

from which, and taking Cor. 3.54 into account once more, Eq. (3.46) casts

〈W (φ1, φ2), γ〉 = 〈T (φ1, φ2) + T (φ2, φ1), γ〉
= ιφ2ιφ1(γ) + ιφ1ιφ2(γ) = [ιφ1 , ιφ2 ](γ),

where, for the last equality, we also used that the degree of ιφ1 and ιφ2 is -1.
�

3.6 Metric sequences

Inspired in the work of M. Grutzmann and T. Strobl [24], we introduce yet another
class of geometric objects, which are in 1:1 correspondence (up to ismorphisms) with
degree 2 manifolds. This time the structure is placed on the dual sequence (3.44).

Definition 3.57. A metric sequence is defined by the following data
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• a triplet of vector bundles, which we denote by (F, Ê, E),

• a non-degenerate surjective symmetric product (·, ·) : S2Ê //F taking values in F .

• a surjective vector bundle morphism π : Ê // E, such that

• π ◦ π∗ = 0, where π∗ : E∗ ⊗ F // Ê is the adjoint of π with respect to (·, ·):

(π∗(η), φ) := η(π(φ)), ∀η ∈ E∗ ⊗ F, φ ∈ Ê.

We have the following result.

Theorem 3.58. An exact sequence of the form

E∗ ⊗ E∗ // Ω // F ∗

is involutive if and only if the dual sequence

E∗ ⊗ F // Ê // E

is metric.

Proof. If we have an involutive sequence, we obtained a symmetric product W : S2Ê //F
in Prop. 3.56.

Conversely, let
E∗ ⊗ F // Ê // E

be a metric sequence. Then, by Cor. 2.9, we can obtain the dual sequence

E∗ ⊗ E∗ // Ω // F ∗. (3.62)

By Cor. 3.21, the sequence (3.62) corresponds to an involutive sequence (in the sense
that it comes from an involutive sequence extended by S2E∗) if and only if we can find a
subbundle F̃ ∗ ⊂ Ω that fits in the exact subsequence of (5.33)

0 // Λ2E∗
ι
// F̃ ∗

p
// F ∗ // 0. (3.63)

So we will obtain such subbundle F̃ ∗. We begin by observing that axiom 1 of Def. 5.20
implies that E∗ ⊗ F , viewed inside Ê through the injection π∗, is isotropic with respect
to (·, ·). Next we observe that we can find an isotropic horizontal lift of (5.29) by first
choosing any horizontal lift ψ0 : E∗ // Ê, and then defining ψ : E // Ê by

ψ := ψ0 − π∗ ◦Bψ0 , (3.64)

where Bψ0 : E // E∗ ⊗ F is defined by

Bψ0(e1)(e2) :=
1

2
(ψ0(e1), ψ0(e2)), ∀e1, e2 ∈ E.

Observe that, for an isotropic lift we have

(φ1, φ2) = (η1 + ê1, η2 + ê2) = η1(e2) + η2(e2). (3.65)
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Now we define
F̃ ∗ := ψ̃(F ∗)⊕ ι(Λ2E∗) ⊂ Ω, (3.66)

where ψ̃ : F ∗ // Ω is the dual horizontal lift given by Cor. C.9 corresponding to any
isotropic horizontal lift ψ : E∗ // Ê. We must show that F̃ ∗ doesn’t depend on the
isotropic horizontal lift chosen ψ. Indeed, if ψ′ : E // Ê is another isotropic horizontal
lift, then by Eq. (3.65) we have, for every φ1, φ2 ∈ Ê,

η1(e2) + η2(e1) = (φ1, φ2) = η′1(e2) + η′2(e1)

= η1(e2)−Ψe1(e2) + η2(e1)−Ψe2(e1),

which implies that
Ψe1(e2) = −Ψe2(e1), ∀e1, e2 ∈ E,

which in turn, by Prop. C.15, implies that

ψ̃(ζ)− ψ̃′(ζ) = Ψ∗ζ ∈ Λ2E∗, ∀ζ ∈ F ∗.

Thus, ψ̃′(ζ) = ψ̃(ζ) + Ψ∗ζ ∈ F̃ ∗, whence,

ψ̃′(F ∗)⊕ ι(Λ2E∗) = F̃ ∗,

that is, F̃ ∗ doesn’t depend on the isotropic horizontal lift ψ chosen. Therefore, we have

found an involutive sequence Λ2E∗
ι
// F̃ ∗.

�

3.7 Geometric description of degree 3 functions on a degree
2 manifold

One of our main aims is to describe a Q-structure on a degree 2 manifold, without the
choice of a splitting. To achieve this, the notion of duality is instrumental, which enables
us to obtain a geometric characterization of degree 3 functions on a degree 2 manifold
in terms of a pair of vector bundle morphisms. This can be seen as a by-product of our
characterization of degree 2 manifolds as involutive double vector bundles.

Now we go onto describing a degree 3 function on a degree 2 manifold in terms of
its corresponding involutive double vector bundle. More precisely, in terms of the pairs
of bundles (F̃ , E) and (Ê, F ), but we use the whole structures of DF ∗ = D∗h and of
(DF ∗)

∗
E = D as an auxiliary tool, and also as a geometric guide (recall that the suffix h

indicates that we perform the dual using the horizontal structure).
We encourage the reader to consult Sec. 6.4.2 in order to see the concrete example

when the degree 3 function comes from a Courant algebroid.

Theorem 3.59. Let M be a degree 2 manifold. There is a 1:1, canonical, correspondence
between degree 3 functions on M, θ, and pairs (θ]1, θ

]
2) of vector bundle morphisms

θ]1 : F // E∗; θ]2 : Ê // F̃ ∗,

which intertwine in the following way:
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1. 〈θ]1(ξ), φ〉 = 〈θ]2(φ), ξ〉, ∀ξ ∈ F, φ ∈ Ê.

2. For η ∈ E∗ ⊗ F ,
θ]2 ◦ ι(η) = (θ]1 ◦ η)∗ − θ]1 ◦ η ∈ Λ2E∗

holds, where ι : E∗ ⊗ F // Ê is the inclusion.

3. The symmetric part of θ]2 is given by

〈θ]2(φ1), φ2〉+ 〈θ]2(φ2), φ1〉 = θ]1(W (φ1, φ2)),

where W : S2(Ê) // F was introduced in Eq. (3.48).

Proof. We will describe two processes, one inverse of the other, the first one to obtain the
pair (θ]1, θ

]
2) from a degree 3 function θ onM, and the other to obtain a degree 3 function

from a pair (θ]1, θ
]
2) satisfying the three conditions of the theorem.

Let’s introduce provisionally a horizontal lift, which also induces a splitting of the
degree 2 manifold. Thus, the space of degree 3 functions is decomposed

A3 ∼= Γ(E∗ ⊗ F ∗ ⊕ Λ3E∗).

Again because of the horizontal lift we have the inclusion

Γ(E∗ ⊗ F ∗ ⊕ Λ3E∗) ⊂ Γ(Λ2(DF ∗)E),

given through

Γ(E∗ ⊗ F ∗ ⊕ Λ3E∗) ⊂ Γ(E∗ ⊗ F ∗ ⊕ E∗ ⊗ Λ2E∗) ∼= Γlin(Λ2(DF ∗)E),

where the set of the right-hand side is the set of linear 2-sections on (DF ∗)E , see Rmk.
3.37. It is important to notice that the space Γ(E∗ ⊗ F ∗ ⊕ Λ3E∗), viewed as a subspace
in Γ(Λ2(DF ∗)E), is not invariant under a change of horizontal lift, because an element in
Γ(E∗ ⊗F ∗) will change to an element in Γ(E∗ ⊗F ∗ ⊕E∗ ⊗Λ2E∗) * Γ(E∗ ⊗F ∗ ⊕Λ3E∗).
Thus, the embedding

A3 ⊂ Γ(Λ2(DF ∗)E)

θ ↪→ θ̂ (3.67)

depends strongly on the horizontal lift. For a function θ ∈ A3, the corresponding 2-section
θ̂ ∈ Λ2(DF ∗)E decomposes as

θ̂ = θ̂1 + θ̂2,

with θ̂1 ∈ Γ(E∗ ⊗ F ∗) and θ̂2 ∈ Γ(Λ3E∗). Then we define

θ]1(ξ) := 〈ξ, θ̂〉 = 〈ξ, θ̂1〉 ∈ Γ(E∗), (3.68)

where ξ ∈ Γ(F ), and the pairing on the right-hand side stands for the insertion operator
of the section ξ ∈ Γcore((DF ∗)

∗
E) = Γcore(D) ⊂ Γ(D) in the 2-section θ̂1 ∈ Γ(Λ2(DF ∗)E),

which is simply the evaluation
〈ξ, θ̂1〉 := −θ̂1(ξ), (3.69)
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after identifying Γ(E∗⊗F ∗) ∼= Γ(Hom(F,E∗)). Notice that θ̂1 is well-defined, in the sense
that it doesn’t depend on the horizontal lift we chose. It is only θ̂2 that varies with the
choice of the horizontal lift.

Now, for φ = η + e ∈ Γ(Ê) ∼= Γ(E∗ ⊗ F ⊕ E), we define

θ]2(φ) = λ+ ζ ∈ Γ(F̃ ∗) ∼= Γ(Λ2E∗ ⊕ F ∗), (3.70)

where
ζ := (θ]1)∗(e), (3.71)

and
λ := (θ]1 ◦ η)∗ − θ]1 ◦ η − 〈ê, θ̂2〉, (3.72)

where, again, the pairing in the last term on the right-hand side stands for the insertion
operator, provided by duality contraction.

It is worth making explicit here the inclusion Λ3E∗ ⊂ Λ2(DF ∗)E for an element of
the form ε1 ∧ ε2 ∧ ε3 in order to understand what’s going on. Denoting the inclusion by
ι : Λ3E∗ // Λ2(DF ∗)E , we have

ι(ε1 ∧ ε2 ∧ ε3) = ε1 ∧ ε2 ⊗ ε3 − ε1 ∧ ε3 ⊗ ε2 + ε2 ∧ ε3 ⊗ ε1, (3.73)

where, as usual, for a section ε ∈ Γ(E∗), ε is the corresponding section in Γcore((DF ∗)E),
so that, for θ2 = ε1 ∧ ε2 ∧ ε3 we have explicitly

〈ê, θ̂2〉 = 〈e, ε1〉ε2 ⊗ ε3 − 〈e, ε2〉ε1 ⊗ ε3 − 〈e, ε1〉ε3 ⊗ ε2 + 〈e, ε3〉ε1 ⊗ ε2

+ 〈e, ε2〉ε3 ⊗ ε1 − 〈e, ε3〉ε2 ⊗ ε1

= 〈e, ε1〉ε2 ∧ ε3 − 〈e, ε2〉ε1 ∧ ε3 + 〈e, ε3〉ε1 ∧ ε2. (3.74)

Now we go onto proving the well definition of θ]2. Since θ̂1 nor e change with the change
of horizontal lift, if follows that ζ doesn’t depend on the horizontal lift. So we only need
to check that λ is well-defined, namely, that it transforms appropriately under a change
of horizontal lift.

So, choose a second horizontal lift, and denote the transition map by Ψ : F ∗ //Λ2E∗.
Under this second horizontal lift we have the decompositions

θ̂ = θ̂1 + θ̂′2, φ = η′ + e, and θ]2(φ) = λ′ + ζ,

with

η′ = η −Ψ∗ε (Prop. C.15), λ′ = λ+ Ψ
(θ]1)∗(e)

and θ̂′2 = θ̂2 − Ψ̃
(θ]1)∗(·), (3.75)

where Ψ̃
(θ]1)∗(·) ∈ Γ(Λ3E∗) is given by

Ψ̃
(θ]1)∗(·)(e1, e2, e3) = Ψ

(θ]1)∗(e1)
(e2, e3)−Ψ

(θ]1)∗(e2)
(e1, e3)−Ψ

(θ]1)∗(e3)
(e2, e1). (3.76)

Now, computing λ′ with the corresponding expressions for η′ and θ̂′2, we get

λ′ = (θ]1 ◦ η
′)∗ − θ]1 ◦ η

′ − 〈ê, θ̂′2〉

= η∗ ◦ (θ]1)∗ −Ψe ◦ (θ]1)∗ − θ]1 ◦ η + θ]1 ◦Ψ∗e − 〈ê, θ̂2 − Ψ̃
(θ]1)∗(·)〉. (3.77)
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Computing from the definitions, we have

(−Ψe ◦ (θ]1)∗ + θ]1 ◦Ψ∗e)(e1, e2) = −Ψe((θ
]
1)∗(e1), e2) + Ψe((θ

]
1)∗(e2), e1)

= −Ψ
(θ]1)∗(e1)

(e, e2)−Ψ
(θ]1)∗(e2)

(e1, e),

whence we obtain

λ′(e1, e2) = η∗ ◦ (θ]1)∗(e1, e2)− θ]1 ◦ η(e1, e2)− 〈ê, θ̂2〉(e1, e2) + Ψ
θ]1(e)

(e1, e2)

= λ(e1, e2) + Ψ
θ]1(e)

(e1, e2),

which is precisely the corresponding value for λ′ under the change of horizontal lift (see
Eq. (3.75)).

Thus, θ]2 is well-defined. It remains to check that the pair (θ]1, θ
]
2) satisfies the relations

1, 2, and 3, from the theorem. The first two properties follow directly from the way we
defined θ]2. So let’s check property 3, about the symmetric part of θ]2.

By the definitions we have the following, for φi = ηi + ei, i = 1, 2:

〈θ]2(φ1), φ2〉+ 〈θ]2(φ2), φ1〉 = 〈ê2, λ1〉+ η∗2(ζ1) + 〈ê1, λ2〉+ η∗1(ζ2)

= θ]1 ◦ η1(e2)− η∗1 ◦ (θ]1)∗(e2)− 〈ê2, 〈ê1, θ̂2〉〉+ η∗2 ◦ (θ]1)∗(e1)

+ θ]1 ◦ η2(e1)− η∗2 ◦ (θ]1)∗(e1)− 〈ê1, 〈ê2, θ̂2〉〉+ η∗1 ◦ (θ]1)∗(e2)

= θ]1(η1(e2) + η2(e1)) = θ]1(W (φ1, φ2)).

In order to establish the canonical 1:1 correspondence we need now an inverse procedure,
that assigns a degree 3 function –which remitting always to the fixed horizontal lift can be
written θ = θ1 + θ2 ∈ Γ(E∗ ⊗ F ∗ ⊕ Λ3E∗)– from a given pair (θ]1, θ

]
2) satisfying the three

conditions of the theorem. We take the obvious option:

θ1 := θ]1, where we view Γ(Hom(F,E∗)) ∼= Γ(E∗ ⊗ F ∗) ⊂ A3 ∼= Γ(E∗ ⊗ F ∗ ⊕ Λ3E∗),

namely 〈ξ, θ1〉 := −θ]1(ξ);

〈e1 ∧ e2, θ2〉 := −〈ê2, θ
]
2(ê1)〉. (3.78)

We need to verify that θ2 is well-defined, that is, that (3.78) actually defines an element
in Γ(Λ3E∗) and that it transforms correctly with a change of horizontal lift, so that the
definition of θ = θ1 + θ2 doesn’t depend on the horizontal lift chosen.

In order to see that θ2 is in Γ(Λ3E), observe that the right-hand side of (3.78) is skew-
symmetric in e1, e2, as follows directly from property 3 in the statement of the theorem.
Indeed, from Eq. (3.48) follows that W (ê1, ê2) = 0. On the other hand, since θ]2 takes

values on F̃ ∗ ∼= Λ2E∗ ⊕ F ∗, we have

〈ê3, 〈ê2, 〈θ]2(ê1)〉〉〉 = −〈ê2, 〈ê3, 〈θ]2(ê1)〉〉〉.

Therefore, it follows that the expression

〈ê3, 〈ê2, 〈θ]2(ê1)〉〉〉
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is fully skew-symmetric in e1, e2, e3, which means precisely that θ2 ∈ Γ(Λ3E∗).
Now let’s see that (3.78) transforms appropriately with a change of horizontal lift. As

before, we denote the transition map by Ψ : F ∗ // Λ2E∗. If we denote by êi
′, i = 1, 2

the horizontal lift of ei according to the second choice, so that êi
′ = êi − Ψ∗ei , and if we

denote θ′2 the corresponding element of Γ(Λ3E∗) according to the new horizontal lift, then
we have

〈e1 ∧ e2, θ
′
2〉 = −〈ê2

′, θ]2(ê1
′)〉 = −〈ê2 −Ψ∗e2 , θ

]
2(ê1 −Ψ∗e1)〉

= −〈ê2, θ
]
2(ê1)〉+ 〈Ψ∗e2 , θ

]
2(ê1)〉+ 〈ê2, θ

]
2(Ψ∗e1)〉

= 〈e1 ∧ e2, θ2〉+ 〈Ψ∗e2 , (θ
]
1)∗(e1)〉+ 〈ê2, (Ψ

∗
e1)∗ ◦ (θ]1)∗ − θ]1 ◦Ψ∗e1〉

= 〈e1 ∧ e2, θ2〉+ 〈Ψ∗e2 , (θ
]
1)∗(e1)〉+ 〈Ψ∗e1(e2), (θ]1)∗(·)〉 − 〈Ψ∗e1 , (θ

]
1)∗(e2)〉

= 〈e1 ∧ e2, θ2〉 −Ψ
(θ]1)∗(·)(e1, e2) + Ψ

(θ]1)∗(e1)
(·, e2) + Ψ

(θ]1)∗(e2)
(e1, ·)

=
〈
e1 ∧ e2, θ2 − Ψ̃

(θ]1)∗(·)

〉
,

which shows that θ2 transforms according to (3.75), as we wanted.

Thus, we have obtained the two processes we were seeking: θ ! (θ]1, θ
]
2). By con-

struction, it is evident that they are mutually inverse.
�

Remark 3.60. We saw in Prop. C.24 how to obtain a DVB morphism from a pair of vector
bundle morphisms, one between the corresponding linear bundles and the other between
the corresponding core bundles. In Thm. 3.59 we have a pair of such morphisms, (θ]1, θ

]
2),

however they don’t give rise to a DVB morphism Θ : D // DF ∗ , since the pair (θ]1, θ
]
2)

does not fulfill the compatibility condition (C.37). Indeed, the compatibility condition
demands to have

θ]2(η) = θ]1 ◦ η,

however, the intertwining condition 2 tells us that

θ]2(η) = (θ]1 ◦ η)∗ − θ]1 ◦ η,

which is somehow the compatibility condition skew-symmetrized. Actually, a pair which
is closer to satisfy the compatibility condition is (θ]1,−θ

]
2), in this case the defect being

given by −(θ]1 ◦ η)∗.

The two morphisms (θ]1, θ
]
2) have a very nice –and useful– interpretation in terms of

the identifications of Prop. 3.52.

Proposition 3.61. Let θ ∈ A3 be a degree 3 function on a degree 2 manifold M. Then
the corresponding pair of morphisms (θ]1, θ

]
2) satisfy

θ]1(ξ) = −ιξ(θ), and θ]2(φ) = −ιφ(θ).

Proof. The identities follow from (the proofs of) Prop. 3.52 and Cor. 2.9, together with
Eqs. (3.68), (3.70), (3.69), (3.71), (3.72) and (3.74) in the proof of Thm. 3.59.

�



Chapter 4

Degree 2 NQ-manifolds

Integrable 1-vector fields on an N -manifold were considered by Ševera [63], who called
these structures NQ-manifolds. In this chapter we address the geometric description of
a degree 1 vector field on a degree 2 manifold, and the conditions on these geometric
data that characterize the integrability of such vector fields. We arrive in this way to
the concept of a Lie 2-algebroid, a geometric structure made up of brackets and vector
bundle morphisms, which after introducing a splitting unfolds into the so-called split Lie
2-algebroids, or 2-term L∞-algebroids, which are objects already studied, cf. [4], [65], [66]
and the references therein, also for the case that the base is a point, [3].

Definition 4.1. An NQ-manifold is a graded manifoldM together with a degree 1 vector
field Q satisfying [Q,Q] = 0, i.e. a linear operator Q on OM that raises the degree by one
and satisfies Q2 = 0 and, for each U ⊂M ,

Q(fg) = Q(f)g + (−1)|f |fQ(g), ∀f, g ∈ OM(U).

We will refer to an NQ-manifold also as an N -manifold endowed with a Q-structure.

Remark 4.2. Recall that a vector field is homogeneous of degree k if

|Q(f)| = k + r, ∀f ∈ OM , with |f | = r,

and
Q(fg) = Q(f)g + (−1)k|f |fQ(g).

Example 4.3. As we already observed, a 1-manifold is just a vector bundle A, so that OM
is isomorphic to ΓΛ·A∗ , the sheaf of sections of Λ·A∗. It is well-known that a Q-structure
on M is equivalent to a Lie algebroid structure on A, the correspondence being

• ρ(X)(f) := 〈Q(f), X〉, for X ∈ ΓA = (A1)∗ and f ∈ C∞(M) = A0

• 〈[X,Y ], α〉 := ρ(X)(〈Y, α〉)− ρ(Y )(〈X,α〉)− 〈Q(α), X ∧ Y 〉,
for X,Y ∈ ΓA and α ∈ ΓA∗ = A1.

55
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4.1 PreLie 2-algebroids

We aim to characterize a Q-structure on a degree 2 manifold in terms of vector bundle
morphisms and brackets on the sections of the dual sequence (3.44) of the corresponding
involutive sequence (3.14), in a spirit similar to the characterization of V B-algebroids
given in Prop. E.9.

In order to gain the intuition of what is happening in the general case, we refer the
reader to Sec. 6.32 in order to see the particular case of a Q-structure coming from
a Courant algebroid and the description of its corresponding Lie 2-algebroid, called the
“cotangent” Lie 2-algebroid.

First we characterize geometrically 1-vector fields on degree 2 manifolds, without the
integrability condition. Only then, in the next section, we address the characterization of
integrability.

Lemma 4.4. Consider an involutive sequence as the one in Eq. (3.14). Then we have
the dual sequence (3.44) (see also Cor. 3.53). Let ∂ : F //E and Θ : Ê //CDO(F ) be
vector bundle morphisms such that

Θ(η) = η ◦ ∂, (4.1)

for η ∈ E∗ ⊗ F ⊂ Ê.
Introduce a horizontal lift of (3.14), which induces a horizontal lift of (3.44) too. Define

∇ :E //CDO(F )

e // ∇e

by
∇eξ := Θ(ê)(ξ), (4.2)

for e ∈ E and ξ ∈ Γ(F ), where ê ∈ Ê is the horizontal lift of e. Then the operator

δ : Γ(F ) // Γ(Ê)

given by

δ(ξ) := ∇·ξ + ∂̂(ξ) (4.3)

is well-defined, i.e. it doesn’t depend on the chosen horizontal lift.

Proof. If we choose another horizontal lift, then

ê′ = ê−Ψ∗e,

where, as usual, Ψ : F ∗ //Λ2E∗ is the transition of map between the two horizontal lifts.
Then, according to this second horizontal lift, we have

∇′eξ = Θ(ê′)(ξ) = Θ(ê−Ψ∗e)(ξ) = ∇eξ −Ψ∗e ◦ ∂(ξ),

whence, since Ψ∗e1(e2) = −Ψ∗e2(e1) (notice that here is entering the involutivity structure
of D),

∇′ξ = ∇ξ + Ψ∗∂(ξ).
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Therefore

δ′(ξ) = ∇′ξ + ∂̂(ξ)
′

= ∇ξ + Ψ∗∂(ξ) + ∂̂(ξ)−Ψ∗∂(ξ)

= δ(ξ).

�

Lemma 4.5. Again consider the dual sequence (3.44). Let ρ : E // TM and Ψ :
Ê //Diff1(E∗) be vector bundle morphisms such that

Ψ(φ)(fε) = fΨ(φ)(ε) + ρ̂(φ)(f)ε− ρ∗(df)〈φ, ε〉, (4.4)

for φ ∈ Ê, ε ∈ Γ(E∗) and f ∈ C∞(M), where ρ̂ : Ê // TM is given by

ρ̂ := ρ ◦ π.

Then the equation

〈∆Ψ(φ, e), ε〉 := ρ̂(φ)(〈e, ε〉)− ρ(e)(〈φ, ε〉)− 〈Ψ(φ)(ε), e〉, (4.5)

for φ ∈ Γ(Ê), ε ∈ Γ(E∗), e ∈ Γ(E), gives a well-defined first-order bidifferential operator

∆Ψ : Γ(Ê)× Γ(E) // Γ(E),

called the dualization of Ψ. Actually, the adjoint maps adlφ : Γ(E) // Γ(E) and adre :

Γ(Ê) // Γ(E), given by

adlφ := ∆Ψ(φ, ·), and adre := ∆Ψ(·, e)

are covariant differential operators, in the sense that the corresponding symbol maps are
given by

σlφ = ρ̂(φ)⊗ IdE , σre = ρ(e)⊗ π.

Proof. In order to see that Eq. (4.5) gives an element ∆Ψ(φ, e) ∈ Γ(E), we need to check
that the pairing of the left-hand side is tensorial in ε. So, let f ∈ C∞(M), then

〈∆Ψ(φ, e), fε〉 = ρ̂(φ)(〈e, fε〉)− ρ(e)(〈φ, fε〉)− 〈Ψ(φ)(fε), e〉
= f〈∆Ψ(φ, e), ε〉 − ρ̂(φ)(f)〈e, ε〉 − ρ(e)(f)〈φ, ε〉
− 〈ρ̂(φ)(f)ε− ρ∗(df)〈φ, ε〉, e〉

= f〈∆Ψ(φ, e), ε〉.

Now, it is easy to see that ∆Ψ is a first-order bidifferential operator if the last assertion of
the lemma, about the symbol maps, is true. But this follows immediately from Eq. (4.5)
and the derivation property of the anchor maps ρ and ρ̂ acting on functions.

�
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Definition 4.6. Consider an involutive sequence like (3.14)

0 // Λ2E∗ // F̃ ∗ // F ∗ // 0 (4.6)

and its associated bundle Ê (see Cor. 3.53), which fits in the exact sequence

0 // E∗ ⊗ F // Ê // E // 0. (4.7)

A preLie 2-algebroid consists in the following structure data

• an anchor map ρ : E // TM ,

• a pseudoalgebra structure ([·, ·], ρ̂) on Γ(Ê),

• a core map ∂ : F // E,

• two vector bundle morphisms

Ψ :Ê //Diff(E∗) and Θ :Ê //CDO(F ) ⊂ Diff(F )

φ // Ψ(φ) φ // Θ(φ)

taking values on the bundle of first-order differential operators of E∗ and F , respec-
tively (see Cor. I.5 in the appendix).

These structure data are related by:

1. ρ̂ = ρ ◦ π,

2. Θ(φ)(fξ) = fΘ(φ)(ξ) + ρ̂(φ)(f)ξ,

3. Ψ(φ)(fε) = fΨ(φ)(ε) + ρ̂(φ)(f)ε− ρ∗(df)〈φ, ε〉,

4. Θ(η) = η ◦∂ and ∆Ψ(η, ·) = ∂ ◦ η, where ∆Ψ is the dualization of Ψ, introduced
in Lemma 4.5,

5. π([φ1, φ2]) = ∆Ψ(φ1, π(φ2)),

6. [φ, η] = Θ(φ) ◦ η − η ◦∆Ψ(φ, ·),

7. [φ1, φ2] + [φ2, φ1] = δ(W (φ1, φ2)), where W : S2(Ê) // F was introduced in Prop.
3.48 and δ is the map given in Eq. (4.3).

for all φ, φ1, φ2 ∈ Γ(Ê), ξ ∈ Γ(F ), ε ∈ Γ(E∗) and η ∈ Γ(E∗ ⊗ F ) ∼= Γ(Hom(E,F )) ⊂ Γ(Ê).

Remark 4.7. Notice that properties 7 and 2 already determine the left generalized anchor
map ϕ : Ê // TM ⊗ End(Ê), for

[fφ1, φ2] = −[φ2, fφ1] + δ(W (fφ1, φ2))

= −f [φ2, φ1]− ρ̂(φ2)(f)φ1 + fδ(W (φ1, φ2)) + ρ∗(df)⊗W (φ1, φ2)

= f [φ1, φ2]− ρ̂(φ2)(f)φ1 + ρ∗(df)⊗W (φ1, φ2).

Therefore,
ϕ(φ1)(df)(φ2) = ρ̂(φ2)(f)φ1 − ρ∗(df)⊗W (φ1, φ2). (4.8)



4.1. PRELIE 2-ALGEBROIDS 59

Remark 4.8. Property 1 implies that ρ̂ is determined by ρ. More important is the
fact that, by property 5, Ψ is completely determined by ([·, ·], ρ̂). Indeed, for every φ ∈
Γ(Ê), ε ∈ Γ(E∗), e ∈ Γ(E), we have

〈Ψ(φ)(ε), e〉 = ρ̂(φ)(〈e, ε〉)− ρ(e)(〈φ, ε〉)− 〈∆Ψ(φ, e), ε〉
= ρ̂(φ)(〈e, ε〉)− ρ̂(ê)(〈φ, ε〉)− 〈[φ, ê], ε〉,

where ê ∈ Γ(Ê) is any horizontal lift of e.

The following theorem justifies the preceding definition.

Theorem 4.9. Consider a degree 2 manifold with associated exact sequence (3.14), so
that its dual sequence is given by (3.44).

There is a canonical 1:1 correspondence between degree 1 vector fields Q (not necessarily
homological) on a degree 2 manifold and preLie 2-algebroid structures on (3.44).

Proof. The equivalence between 1 vector fields, Q, and preLie 2-algebroid structures is
given through the following items:

• the anchor map ρ : E∗ // TM is given by

ρ(ε)(f) := −〈Q(f), ε〉, f ∈ C∞(M), ε ∈ Γ(E∗), (4.9)

• the core map ∂ : F // E is given by

〈∂(ξ), ε〉 := 〈ξ,Q(ε)〉, ξ ∈ Γ(F ) ∼= Γcore(D), ε ∈ Γ(E∗), (4.10)

• the vector bundle morphism Ψ : Ê //Diff1(E∗) is given by

Ψ(φ)(ε) := −〈φ,Q(ε)〉, φ ∈ Ê, ε ∈ Γ(E∗) ∼= A1, so that Q(ε) ∈ A2 ∼= Γ(F̃ ∗),
(4.11)

• the vector bundle morphism Θ : Ê //CDO(F ) is given by

〈Θ(φ)(ξ), γ〉 := ρ̂(φ)(〈ξ, γ〉) + 〈∂(ξ), 〈φ, γ〉〉 − 〈ξ,Q(γ)]2(φ)〉, (4.12)

where ρ̂ : Ê // TM is given by
ρ̂ := ρ ◦ π. (4.13)

Here φ ∈ Γ(Ê), ξ ∈ Γ(F ) and γ ∈ Γ(F̃ ) ∼= A2, so that Q(γ) ∈ A3. For the definition

of the morphism Q(γ)]2 : Ê // F̃ , see Thm. 3.59.

• the (non skew-symmetric) bracket [·, ·] on Ê is given by

〈[φ1, φ2], γ〉 := Ψ(φ1)(〈φ2, γ〉)−Ψ(φ2)(〈φ1, γ〉)

+ ρ∗(d(〈T (φ2, φ1), γ〉))− 〈φ2, Q(γ)]2(φ1)〉, (4.14)

〈[φ1, φ2], ε〉 := ρ̂(φ1)(〈φ2, ε〉)− ρ̂(φ2)(〈φ1, ε〉) + 〈T (φ1, φ2), Q(ε)〉, (4.15)

for φ1, φ2 ∈ Γ(Ê), γ ∈ Γ(F̃ ) and ε ∈ Γ(E∗), where ε is the corresponding section in
Γcore(DF ∗) (see Def. 3.47), and T was defined in Eq. (3.45) (again, see Def. 3.47).
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In order to establish the canonical 1:1 correspondence, we need to show that:

Q // preLie 2-algebroid: if we begin with a 1 vector field, then the structure maps and
brackets satisfy the compatibility equations (1 - 7 ) from Def. 4.6.

preLie 2-algebroid //Q: and conversely, if we begin with a preLie 2-algebroid, then
Q(f), Q(ε) and Q(γ)]2 defined in the equations above, actually determine a 1 vector
field on the corresponding degree 2 manifold.

Proof of Q // preLie 2-algebroid. The fact that ρ, ρ̂, ∂,Ψ and Θ are actually vector
bundle morphisms together with properties 1, 2 and 3, follows directly from the
definitions and Leibniz property for Q. From the same reasons also follows the well-
definition of the brackets, i.e., tensoriality with respect to γ and ε on the left-hand
side of (4.14) and (4.15).

In order to check property 4, observe that for φ = η, the first term on the right-hand
side of Eq. (4.12) is zero. Recalling property 2 of Q(γ)]2 given in Thm. 3.59, we see
that the third term on the right-hand side of Eq. (4.12) is zero too. Also observe
that we don’t lose generality taking η = ε0 ⊗ ξ0, ε0 ∈ Γ(E∗), ξ0 ∈ Γ(F ). With these
considerations, we have

〈Θ(η)(ξ), γ〉 = ρ̂(η)〈ξ, γ〉+ 〈∂(ξ), 〈η, γ〉〉 − 〈ξ,Q(γ)]2(η)〉
= 〈ξ0, γ〉〈∂(ξ), ε0〉
= 〈η ◦ ∂(ξ), γ〉,

for all ξ ∈ Γ(F ), γ ∈ Γ(F̃ ∗). Similarly, for φ = η the first two terms on the right-hand
side of Eq. (4.5) are zero, so that

〈∆Ψ(η, e), ε〉 = 〈e, 〈ε0 ⊗ ξ0, Q(ε)〉〉
= 〈ξ0, Q(ε)〉〈e, ε0〉 = 〈∂(ξ0), ε〉〈e, ε0〉
= 〈∂ ◦ η(e), ε〉,

for all ε ∈ Γ(E∗), e ∈ Γ(E), thus obtaining property 4.

Next, we need to check compatibility of Eqs. (4.15) and (4.14), when we take
γ = ε1 ∧ ε2 = ε1 ⊗ ε2 − ε2 ⊗ ε1 in (4.14). On one hand we have from Eq. (4.15)

〈[φ1, φ2], ε1 ∧ ε2〉 = 〈[φ1, φ2], ε1〉ε2 − 〈[φ1, φ2], ε2〉ε1

= ρ̂(φ1)(〈φ2, ε1〉)ε2 − ρ̂(φ2)(〈φ1, ε1〉)ε2 + 〈T (φ1, φ2), Q(ε1)〉ε2

− ρ̂(φ1)(〈φ2, ε2〉)ε1 + ρ̂(φ2)(〈φ1, ε2〉)ε1 − 〈T (φ1, φ2), Q(ε2)〉ε1.
(4.16)

On the other hand, from Eq. (4.14) we have

〈[φ1, φ2], ε1 ∧ ε2〉 =Ψ(φ1)(〈φ2, ε1 ∧ ε2〉)−Ψ(φ2)(〈φ1, ε1 ∧ ε2〉)

+ ρ∗(d(〈T (φ2, φ1), ε1 ∧ ε2〉))− 〈φ2, Q(ε1 ∧ ε2)]2(φ1)〉. (4.17)

Now, using property 3, we have
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a)

Ψ(φ1)(〈φ2, ε1 ∧ ε2〉) = Ψ(φ1)(〈φ2, ε1〉ε2 − 〈φ2, ε2〉ε1)

= Ψ(φ1)(ε2)〈φ2, ε1〉+ ρ̂(φ1)(〈φ2, ε1〉)ε2 − ρ∗(d(〈φ2, ε1〉))〈φ1, ε2〉
−Ψ(φ1)(ε1)〈φ2, ε2〉 − ρ̂(φ1)(〈φ2, ε2〉)ε1 + ρ∗(d(〈φ2, ε2〉))〈φ1, ε1〉.

Analogously,

b)

Ψ(φ2)(〈φ1, ε1 ∧ ε2〉) = Ψ(φ2)(ε2)〈φ1, ε1〉+ ρ̂(φ2)(〈φ1, ε1〉)ε2 − ρ∗(d(〈φ1, ε1〉))〈φ2, ε2〉
−Ψ(φ2)(ε1)〈φ1, ε2〉 − ρ̂(φ2)(〈φ1, ε2〉)ε1 + ρ∗(d(〈φ1, ε2〉))〈φ2, ε1〉.

Next,

c)

ρ∗(d(〈T (φ2, φ1), ε1 ∧ ε2〉)) = ρ∗(d(〈φ2, ε1〉〈φ1, ε2〉 − 〈φ2, ε2〉〈φ1, ε1〉))
= ρ∗(d(〈φ2, ε1〉))〈φ1, ε2〉+ ρ∗(d(〈φ1, ε2〉))〈φ2, ε1〉
− ρ∗(d(〈φ2, ε2〉))〈φ1, ε1〉 − ρ∗(d(〈φ1, ε1〉))〈φ2, ε2〉.

Finally, since Q(ε1 ∧ ε2) = Q(ε1)ε2 − ε1Q(ε2),

d)

〈φ2, Q(ε1 ∧ ε2)]2(φ1)〉 = 〈φ2, ε2〉〈φ1, Q(ε1)〉 − 〈φ1, ε2〉〈φ2, Q(ε1)〉 − 〈T (φ1, φ2), Q(ε1)〉ε2

− 〈φ2, ε1〉〈φ1, Q(ε2)〉+ 〈φ1, ε1〉〈φ2, Q(ε2)〉+ 〈T (φ1, φ2), Q(ε2)〉ε1.

Putting items a), b) c) and d) into Eq. (4.17), we see that the two ways of computing

〈[φ1, φ2], ε1 ∧ ε2〉,

given by (4.16) and (4.17), coincide.

Property 5 follows immediately from Eqs. (4.5) and (4.15).

In order to check property 6, again we observe that it suffices to prove it for η = ε⊗ξ,
since both sides of that equation behave the same way with respect to the product
by functions f ∈ C∞(M).

On one hand, taking property 4 into account, we have

〈[φ, η], γ〉 = Ψ(φ)(〈η, γ〉)−Ψ(η)(〈φ, γ〉) + ρ∗(d(〈φ, 〈η, γ〉〉))− 〈η,Q(γ)]2(φ)〉

= Ψ(φ)(〈ξ, γ〉ε) + 〈∂(ξ), 〈φ, γ〉〉ε+ ρ∗(d(〈ξ, γ〉〈φ, ε〉))− 〈ξ,Q(γ)]2(φ)〉ε.
(4.18)

On the other hand, using property 2, we can perform the following calculations:

〈Θ(φ) ◦ η(e), γ〉 = 〈Θ(φ)(〈ε, e〉ξ), γ〉
= ρ̂(φ)(〈ε, e〉)〈ξ, γ〉+ 〈Θ(φ)(ξ), γ〉〈ε, e〉,
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for every ε ∈ Γ(E∗), whence

〈Θ(φ) ◦ η, γ〉 = 〈ξ, γ〉ρ̂(φ)(〈·, ε〉) + 〈Θ(φ)(ξ), γ〉ε

= 〈ξ, γ〉ρ̂(φ)(〈·, ε〉) + ρ̂(φ)(〈ξ, γ〉)ε+ 〈∂(ξ), 〈φ, γ〉〉ε− 〈ξ,Q(γ)]2(φ)〉ε.
(4.19)

Now, from (4.5) we have

−〈η ◦∆Ψ(φ, ·), γ〉 = −〈ξ, γ〉〈∆Ψ(φ, ·), ε〉
= −〈ξ, γ〉ρ̂(φ)(〈·, ε〉) + ρ∗(d(〈φ, ε〉))〈ξ, γ〉+ 〈ξ, γ〉Ψ(φ)(ε). (4.20)

Putting together (4.19) and (4.20), and comparing with (4.18), using property 3, we
conclude

〈[φ, η], γ〉 = 〈Θ(φ) ◦ η, γ〉 − 〈η ◦∆Ψ(φ, ·), γ〉,
which is property 6.

Finally, we check property 7. Computing from Eq. (4.14) and using property 3 of

Q(γ)]2, given in Thm. 3.59, we obtain

〈[φ1, φ2] + [φ2, φ1], γ〉 = ρ∗(d(〈W (φ1, φ2), γ〉))−Q(γ)]1(W (φ1, φ2)). (4.21)

Now, let’s introduce a horizontal lift. Taking property 1 from Thm. 3.59, we have

〈Q(γ)]1(W (φ1, φ2)), ê〉 = 〈W (φ1, φ2), Q(γ)]2(ê)〉
= ρ̂(ê)(〈W (φ1, φ2), γ〉) + 〈∂(W (φ1, φ2)), 〈ê, γ〉〉
− 〈∇Fe W (φ1, φ2), γ〉

= ρ̂(ê)(〈W (φ1, φ2), γ〉)− 〈〈∂(W (φ1, φ2)), γ〉, ê〉
− 〈∇Fe W (φ1, φ2), γ〉,

whence

(Q(γ)]1)∗(W (φ1, φ2)) = ρ∗(d(〈W (φ1, φ2), γ〉))− 〈δ(W (φ1, φ2), γ〉. (4.22)

Putting together Eqs. (4.21) and (4.22), we obtain property 7.

Proof of preLie 2-algebroid //Q. First we observe that Eqs. (4.9)-(4.15) actually

give elements Q(f) ∈ Γ(E∗), Q(ε) ∈ Γ(F̃ ∗) and Q(γ)]2(φ) ∈ Γ(F̃ ∗) because of tenso-
riality of the pairings that are defining these elements, and this is so thanks to the
fact that ρ, ∂,Ψ,Θ are vector bundle morphisms, to the derivation property of the
anchor map ρ with respect to functions, and to properties 2,3 of Def. 4.6.

Observe that the definition of Q(γ)]1 is missing. To solve this, define

〈Q(γ)]1(ξ), φ〉 := 〈Q(γ)]2(φ), ξ〉, ∀γ ∈ Γ(F̃ ∗), ξ ∈ Γ(F ), φ ∈ Γ(Ê). (4.23)

In order to check that this definition indeed gives an element Q(γ)]1(ξ) in Γ(E∗),
observe that, from Eq. (4.12) and properties 1 and 4 of Def. 4.6, we have

〈ξ,Q(γ)]2(η)〉 = ρ̂(η)(〈ξ, γ〉) + 〈∂(ξ), 〈η, γ〉〉 − 〈Θ(η)(ξ), γ〉
= 〈∂(ξ), 〈η, γ〉〉 − 〈∂(ξ), 〈η, γ〉〉 = 0, (4.24)
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for every η ∈ Γ(E∗ ⊗ F ), ξ ∈ Γ(F ). This implies that Q(γ)]1(ξ) ∈ Γ(E∗).

Next, we need to show that the pair (Q(γ)]1, Q(γ)]2) satisfies properties 1, 2 and 3 of
Thm. 3.59. Since property 1 is already satisfied by definition, it remains to verify
only properties 2 and 3 of Thm. 3.59. Let’s begin with property 2. As usual, it is
enough to consider η of the form ε⊗ ξ. Also observe that Eq. (4.24) already implies

that Q(γ)]2(η) ∈ Γ(Λ2E∗), therefore, property 2 is equivalent to

〈e1 ∧ e2, Q(γ)]2(η)〉 = 〈ε1 ∧ ε2, (Q(γ)]1 ◦ η)∗ −Q(γ)]1 ◦ η〉. (4.25)

On one hand we have

〈e1 ∧ e2, (Q(γ)]1 ◦ η)∗ −Q(γ)]1 ◦ η〉 = 〈Q(γ)]2(ê2), ξ〉〈e1, ε〉 − 〈Q(γ)]2(ê1), ξ〉〈e2, ε〉
= ρ(e2)(〈γ, ξ〉)〈e1, ε〉+ 〈∂(ξ), 〈γ, ê2〉〉〈e1, ε〉 − 〈∇Fe2ξ, γ〉〈e1, ε〉

(4.26)

− ρ(e1)(〈γ, ξ〉)〈e2, ε〉 − 〈∂(ξ), 〈γ, ê1〉〉〈e2, ε〉+ 〈∇Fe1ξ, γ〉〈e2, ε〉.

On the other hand,

〈e1 ∧ e2, Q(γ)]2(η)〉 = 〈e2,Ψ(η)(〈ê1, γ〉)−Ψ(ê1)(〈η, γ〉)− 〈[η, ê1], γ〉〉
= −〈∂(ξ), 〈ê1, γ〉〉〈e2, ε〉 − 〈ξ, γ〉Ψ(ê1)(ε)− ρ(e1)(〈ξ, γ〉)〈e2, ε〉+ ρ(e2)(〈ξ, γ〉)〈e1, ε〉

− 〈ê2, 〈η ◦∆Ψ(ê1, ·)−∇Fe1 ◦ η +∇F· η(ε1) + ∂(η(ε1)), γ〉〉. (4.27)

Developing the last term in the equality above, we have

〈ê2, 〈η ◦∆Ψ(ê1, ·)−∇Fe1 ◦ η +∇F· η(e1) + ∂(η(e1)), γ〉〉 = 〈ξ, γ〉(ρ(e1)(〈e2, ε〉)− ρ(e2)(〈e1, ε〉))
− 〈e2,Ψ(ê1)(ε)〉)− ρ(e1)(〈e2, ε〉)〈ξ, γ〉 − 〈e2, ε〉〈∇Fe1ξ, γ〉+ ρ(e2)(〈e1, ε〉)〈ξ, γ〉
+ 〈e1, ε〉〈∇Fe2ξ, γ〉 − 〈e1, ε〉〈∂(ξ), 〈e2, γ〉〉. (4.28)

Putting (4.28) into (4.27) and after some cancellations we get

〈e1 ∧ e2, Q(γ)]2(η)〉 = −〈∂(ξ), 〈ê1〉〉〈e2, ε〉+ ρ(e2)(〈ξ, γ〉)〈e1, ε〉
− 〈e1, ε〉〈∇Fe2ξ, γ〉+ 〈e2, ε〉〈∇Fe1ξ, γ〉 − 〈e1, ε〉〈∂(ξ), 〈e2, γ〉〉.

(4.29)

Comparing (4.29) with (4.26), we get (4.25), as we wanted.

Finally, property 3 follows from the same calculations done to obtain Eqs. (4.21)
and (4.22). Thus, Thm. 3.59 supplies us, for any γ ∈ Γ(F̃ ∗) ∼= A2, a well-defined

element Q(γ) ∈ A3 corresponding to the pair (Q(γ)]1, Q(γ)]2).

To end the proof, we need to check that the definitions of Q(f), Q(ε) and Q(γ) are
compatible with the Leiniz rule, in the sense that the following identities should
hold:

a) Q(fε) = fQ(ε) +Q(f) ∧ e,
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b) Q(fγ) = fQ(γ) +Q(f)γ,

c) Q(ε1 ∧ ε2) = Q(ε1)ε2 − ε1Q(ε2).

Let’s prove item a). On one hand we have

〈ξ,Q(fε)〉 = 〈∂(ξ), fε〉 = f〈ξ,Q(ε)〉,

and
〈φ,Q(fε)〉 = −Ψ(φ)(fε) = −fΨ(φ)(ε)− ρ̂(φ)(f)ε+ ρ∗(df)〈φ, ε〉.

On the other hand
〈ξ, fQ(ε) +Q(f) ∧ ε〉 = f〈ξ,Q(ε)〉,

and

〈φ, f(Q(ε) +Q(f) ∧ e〉 = f〈φ,Q(ε)〉+ 〈φ,Q(f) ∧ ε〉
= −fΨ(φ)(ε) + 〈φ,Q(f)〉ε−Q(f)〈φ, ε〉
= −fΨ(φ)(ε)− ρ̂(φ)(f)ε+ ρ∗(df)〈φ, ε〉.

Comparing, we get item a).

For item b) let’s begin computing 〈ξ,Q(fγ)]2(φ)〉 and 〈φ2, Q(fγ)]2(φ1)〉.

〈ξ,Q(fγ)]2(φ)〉 = ρ̂(φ)(f〈ξ, γ〉) + f〈∂(ξ), 〈φ, γ〉〉 − f〈Θ(φ)(ξ), γ〉

= f〈ξ,Q(γ)]2(φ)〉+ ρ̂(φ)(f)〈ξ, γ〉;

〈φ2, Q(fγ)]2(φ1)〉 = Ψ(φ1)(f〈φ2, γ〉)−Ψ(φ2)(f〈φ1, γ〉) + ρ∗(d(f〈T (φ2, φ1), γ〉))
− 〈[φ1, φ2], fγ〉

= f〈φ2, Q(γ)]2(φ1)〉+ ρ̂(φ1)(f)〈φ2, γ〉 − ρ∗(df)〈T (φ2, φ1), γ〉
− ρ̂(φ2)(f)〈φ1, γ〉+ ρ∗(df)〈T (φ1, φ2), γ〉+ ρ∗(df)〈T (φ2, φ1), γ〉

= f〈φ2, Q(γ)]2(φ1)〉+ ρ̂(φ1)(f)〈φ2, γ〉 − ρ̂(φ2)(f)〈φ1, γ〉
+ ρ∗(df)〈T (φ1, φ2), γ〉.

Now let’s compute 〈ξ, (fQ(γ) + Q(f)γ)]2(φ)〉 and 〈φ2, (fQ(γ) + Q(f)γ)]2(φ1)〉, and
then compare with the preceding results.

〈ξ, (fQ(γ) +Q(f)γ)]2(φ)〉 = f〈ξ,Q(γ)]2(φ)〉+ 〈φ,Q(f)〉〈ξ, γ〉

= f〈ξ,Q(γ)]2(φ)〉+ ρ̂(φ)(f)〈ξ, γ〉;

〈φ2, (fQ(γ) +Q(f)γ)]2(φ1)〉 = f〈φ2, Q(γ)]2(φ1)〉+ 〈φ2, Q(f)〉〈φ1, γ〉
− 〈φ1, Q(f)〉〈φ2, γ〉 − 〈T (φ1, φ2), γ〉Q(f)

= f〈φ2, Q(γ)]2(φ1)〉 − ρ̂(φ2)(f)〈φ1, γ〉
+ ρ̂(φ1)(f)〈φ2, γ〉+ ρ∗(df)〈T (φ1, φ2), γ〉.
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Comparing with the results above, we get

Q(fγ)]2 = (fQ(γ) +Q(f)γ)]2,

which is equivalent to the equality of item b).

Finally, let’s prove item c), again computing separately both sides of the pretended
equality and then comparing.

On one hand we have

〈ξ,Q(ε1 ∧ ε2)]2(φ)〉 = ρ̂(φ)(〈ξ, ε1 ∧ ε2〉) + 〈∂(ξ), 〈φ, ε1 ∧ ε2〉〉 − 〈Θ(φ)(ξ), ε1 ∧ ε2〉
= 〈∂(ξ), ε2〉〈φ, ε1〉 − 〈∂(ξ), ε1〉〈φ, ε2〉.

To compute 〈φ2, Q(ε1 ∧ ε2)]2(φ1)〉 we use the calculations already performed in the
first part of the proof in Eqs. (4.16), (4.17) and items a), b), and c) that follow to
these equations. We obtain the following:

〈φ2, Q(ε1 ∧ ε2)]2(φ1)〉 = Ψ(φ1)(ε2)〈φ2, ε1〉 −Ψ(φ1)(ε1)〈φ2, ε2〉
−Ψ(φ2)(ε2)〈φ1, ε1〉+ Ψ(φ2)(ε1)〈φ1, ε2〉
+ 〈T (φ1, φ2), Q(ε1)〉ε2 − 〈T (φ1, φ2), Q(ε2)〉ε1.

On the other hand, we have

〈ξ, (Q(ε1)ε2 − ε1Q(ε2))]2(φ)〉 = −〈φ, ε2〉〈ξ,Q(ε1)〉+ 〈φ, ε1〉〈ξ,Q(ε2)〉
= −〈φ, ε2〉〈∂(ξ), ε1〉+ 〈φ, ε1〉〈∂(ξ), ε2〉;

in order to compute 〈φ2, (Q(ε1)ε2−ε1Q(ε2))]2(φ1)〉 we use item d) of the calculations
done in the (Q // preLie 2-algebroid) part of the proof of this theorem. We get

〈φ2, (Q(ε1)ε2 − ε1Q(ε2))]2(φ1)〉 = 〈φ2, ε2〉〈φ1, Q(ε1)〉 − 〈φ1, ε2〉〈φ2, Q(ε1)〉
− 〈T (φ1, φ2), Q(ε1)〉ε2

− 〈φ2, ε1〉〈φ1, Q(ε2)〉+ 〈φ1, ε1〉〈φ2, Q(ε2)〉
+ 〈T (φ1, φ2), Q(ε2)〉ε1.

Comparing with the calculations above for Q(ε1 ∧ ε2)]2 we see that the results are
the same, which implies item c), and the proof of the theorem is complete.

�

4.2 The derived brackets

Now we aim to describe the derived brackets method developed by Y. Kosmann-
Schwarzbach in [34] and, following [24], we will show how to apply the method to the
setting of NQ degree 2 manifolds in order to obtain a proof of the geometric characteri-
zation of these manifolds in terms of Lie 2-algebroids.
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To achieve this M. Grutzmann and T. Strobl apply the derived brackets method to
the DGLA of vector fields on a degree 2 manifold with the (graded) commutator bracket,
and degree 1 differential given by d = [Q, ·]. From this viewpoint, for a degree 3 function

θ ∈ A3, the corresponding pair of morphisms (θ]1, θ
]
2), given in Thm. 3.59, are, up to sign,

nothing but the action of -1 and -2 vector fields on θ. More precisely, if we denote by
ξ // ιξ ∈ X(M)−2 the correspondence between core sections of D and -2 vector fields on
M, and by φ // ιφ ∈ X(M)−1 the correspondence between linear sections of D and -1
vector fields on M, then

θ]1(ξ) = −ιξ(θ) ∈ A1 ∼= Γ(E∗), and θ]2(φ) = −ιφ(θ) ∈ A2 ∼= Γ(F̃ ∗).

At last, the Lie 2-algebroid data turns out to be nothing but the brackets and anchor that
the derived brackets method provides.

As a by-product of this insight, we will obtain in Sec. 7.1 an alternative formula for
the Lie 2-algebroid brackets [·, ·] in the case that Q is exact in a Poisson degree 2 manifod,

i.e. Q = {θ, ·} for some θ ∈ A3, which involves the pair (θ]1, θ
]
2) and the VB -algebroid

structure corresponding to the Poisson degree 2 manifod given by Thm. 6.14. As another
application we will characterize, in Se. 7.2, the integrability of a degree 3 function θ ∈ A3

on a Poisson degree 2 manifold, i.e. the equation {θ, θ} = 0, in terms of the pair (θ]1, θ
]
2),

the corresponding Lie 2-algebroid and a Lie algebroid structure on F̃ ∗ induced by the
Poisson brackets.

We describe the derived bracket method in the appendix, see Sec. G.3 where we
describe the method in general before specializing to the degree 1 case, so we refer to that
section for the general concepts, and also to get the basic intuition, since the degree 1 case
is much simpler, so that the main ideas appear in a more transparent fashion. However,
we chose to recall again the essential concepts in the beginning of this section, in order to
make the reading more fluent.

Definition 4.10. A graded vector space A endowed with a graded bracket [·, ·], of degree
f ∈ Z is called a Loday algebra if its bracket satisfies graded Jacobi identity

[a, [b, c]] = [[a, b], c] + (−1)(f+a)(f+b)[b, [a, c]]. (4.30)

We will refer to a bracket coming from a Loday algebra as a Loday bracket. If the bracket
satisfies

[a, b] = −(−1)(f+a)(f+b)[b, a], (4.31)

then it is called a graded Lie bracket, and the corresponding Loday algebra is called a
graded Lie algebra.

Now consider a derivation d of degree |d| of the Loday algebra (A, [·, ·]), that is

d[a, b] = [da, b] + (−1)d(f+a)[a, db], (4.32)

where we write the degree exponents without the bars | · | for sake of simplicity
We notice that when we have a Loday bracket, [·, ·], then for each a0 ∈ A, da0 := [a0, ·]

is a degree |f |+ |a0| derivation of [·, ·].
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Assume that d is of square 0,
d2 = 0, (4.33)

then we have a degree |f |+ |d| bracket [·, ·]d given by

[a, b]d = (−1)d(f+a)[da, b]. (4.34)

We say that d is odd if |d| is odd.

Definition 4.11. A graded Lie algebra (A, [·, ·]) endowed with a derivation d of its Lie
bracket, is called a differential graded Lie algebra, and denoted by DGLA. The derived
bracket of a given DGLA, denoted by [·, ·]d is the bracket defined by fd in Eq. (4.34)
above.

Roughly, the derived brackets procedure consists in encoding the action of Q on the
set of functions that generate the whole algebra (and thereby determine completely the
vector field Q) by a series of anchor maps and derived brackets. The most simple and
enlightening case is when we have a degree 1 manifold, to which we associate a vector
bundle A, as explained in Ex. 4.3. This case was worked out in Sec. G.3, and we recall
here the principal aspects. In this case the vector field Q is completely determined by its
action of functions of degrees 0 and 1, and we can encode these actions by the anchor map

ρQ(φ)(f), ∀f ∈ C∞(M) ∼= A0, φ ∈ Γ(A),

and the bracket

〈Q(α), φ1 ∧ φ2〉 = ρQ(φ1)(〈φ2, α〉)− ρQ(φ2)(〈φ1, α〉)− 〈[φ1, φ2]Q, α〉,

for every α ∈ Γ(A∗) ∼= A1, φ1, φ2 ∈ Γ(A). Now, the key-point is that Γ(A) ∼= X(M)−1,
and the bracket above is precisely the derived bracket

ι[φ1,φ2]Q(α) = [[ιφ1 , Q], ιφ2 ](α), (4.35)

where the DGLA is the graded vector space X(M), the Lie bracket is the commutator
of graded vector fields and d is given by [Q, ·], which is a degree 1 derivation, since Q is
a degree 1 element (see the observation after Def. 4.10). Observe that the anchor map
admits also the expression

ρQ(φ)(f) = ιφ(Q(f)). (4.36)

Given a graded NQ degree 2 manifold (M, Q), consider the DGLA where the graded
vector space A = X(M) consists of the set of graded vector fields onM endowed with its
natural vector space structure, the Lie bracket [·, ·] is given by the (graded) commutator,
which is actually a degree 0 Lie bracket (satisfies Eq. (4.31)), and d is given by [Q, ·],
which is a degree 1 derivation as noticed just after Def. 4.10, since Q is a degree 1 element
in X(M).

For the degree 2 case, since the module is spanned by functions of degrees 0, 1 and
2, we need three anchor maps, and two derived brackets. The anchor maps we define in
analogy (up to sign) with (4.36),

ρQ(φ)(f) := −ιφ(Q(f)), ρQ(ξ)(f) := 0,

ρQ(φ)(ε) := −ιφ(Q(ε)), ρQ(ξ)(ε) := −ιξ(Q(ε)), (4.37)
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where φ ∈ Γ(Ê) ∼= X(M)−1, ξ ∈ Γ(F ) ∼= X(M)−2, f ∈ C∞(M) ∼= A0 and ε ∈ Γ(E∗) ∼= A1.
Now, for φ1, φ2, φ ∈ Γ(Ê) ∼= X(M)−1 and ξ, ξ1, ξ2 ∈ Γ(F ) ∼= X(M)−2, the vector

field [[ιφ1 , Q], ιφ2 ] is in X(M)−1
∼= Γ(Ê), the vector fields [[ιξ, Q], ιφ] = −[[ιφ, Q], ιξ] are in

X(M)−2
∼= Γ(F ) and the vector field [[ιξ1 , Q], ιξ2 ] is in X(M)−3 = 0. Therefore, we have

well defined sections

[φ1, φ2]Q ∈ Γ(Ê), [ξ, φ]Q = −[φ, ξ]Q ∈ Γ(F ) and [ξ1, ξ2] = 0,

such that

ι[φ1,φ2]Q := −[[ιφ1 , Q], ιφ2 ], ι[ξ,φ]Q := −[[ιξ, Q], ιφ],

ι[φ,ξ]Q := −[[ιφ, Q], ιξ] ι[ξ1,ξ2]Q : −[[ιξ1 , Q], ιξ2 ] = 0, (4.38)

where .
Now we need to find out the relation between ρQ, [·, ·]Q and the structure data of the

preLie 2-algebroid of Def. 4.6, given by Eqs. (4.9) - (4.15).

Proposition 4.12. Let Q be a 1-vector field on a degree 2 manifold. Consider its corre-
sponding involutive sequence (3.14), and the respective dual sequence (3.44). Consider the
structure data defined by Q through Eqs. (4.9) - (4.15), ρ, ρ̂, ∂, Ψ, Θ, and [·, ·]. These
data are related to (ρQ, [·, ·]Q), given in Eqs. (4.37) and (4.38), in the following way:

1. ρQ(φ)(f) = ρ̂(φ) = ρ(π(φ))(f),

2. ρQ(ξ)(ε) = −〈∂(ξ), ε〉,

3. ρQ(φ)(ε) = Ψ(φ)(ε),

4. [φ, ξ]Q = Θ(φ)(ξ) = −[ξ, φ]Q,

5. [φ1, φ2]Q = [φ1, φ2].

Proof. Items 1, 2 and 3 follow immediately from Eq. (4.37) and Eqs. (4.9), (4.13), (4.10)
and (4.11). So let’s prove item 4. First observe that, using Cor. 3.54, Prop. 3.61 and item
1 of Thm. 3.59, we have for every γ ∈ Γ(F̃ ∗) ∼= A2

ι[ξ,φ]Q(γ) = −[[ιφ, ιξ], Q](γ)− [ιξ, [ιφ, Q]](γ)

= −ιφιξQ(γ) + ιξιφQ(γ) + [[ιφ, Q], ιξ](γ)

= 〈φ,Q(γ)]1(ξ)〉 − 〈ξ,Q(γ)]2(φ)〉 − ι[φ,ξ]Q(γ)

= −ι[φ,ξ]Q(γ).

Therefore, item 4 is equivalent to

ι[φ,ξ]Q(γ) = 〈Θ(φ)(ξ), γ〉. (4.39)
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Taking into account Cor. 3.54, Prop. 3.61 and the fact that a degree -1 function on M is
automatically zero, we have, after comparing to Eq. (4.12),

ι[φ,ξ]Q(γ) = −[[ιφ, Q], ιξ](γ)

= −[ιφQ+Qιφ, ιξ](γ)

= −ιφQιξ(γ)−Qιφιξ(γ) + ιξιφQ(γ) + ιξQιφ(γ)

= ρ̂(φ)(〈ξ, γ〉)− 〈ξ,Q(γ)]2(φ)〉+ 〈∂(ξ), 〈φ, γ〉〉
= 〈Θ(φ)(ξ), γ〉.

Finally, it remains to prove item 5, which is equivalent to show the identities

ι[φ1,φ2]Q(ε) = 〈[φ1, φ2], ε〉 and ι[φ1,φ2]Q(γ) = 〈[φ1, φ2], γ〉. (4.40)

As in the preceding item, we compute

ι[φ1,φ2]Q(ε) = −[[ιφ1 , Q], ιφ2 ](ε) = −[ιφ1Q+Qιφ1 , ιφ2 ](ε)

= −ιφ1Qιφ2(ε)−Qιφ1ιφ2(ε) + ιφ1ιφ2Q(ε) + ιφ2Qιφ1(ε)

= ρ̂(φ1)(〈φ2, ε〉) + 〈T (φ1, φ2), Q(ε)〉 − ρ̂(φ2)(〈φ1, ε〉)
= 〈[φ1, φ2], ε〉;

ι[φ1,φ2]Q(γ) = −[[ιφ1 , Q], ιφ2 ](γ) = −[ιφ1Q+Qιφ1 , ιφ2 ](γ)

= −ιφ1Qιφ2(γ)−Qιφ1ιφ2(γ) + ιφ2ιφ1Q(γ) + ιφ2Qιφ1(γ)

= Ψ(φ1)(〈φ2, γ〉) + ρ∗(d(〈T (φ2, φ1), γ〉))− 〈φ2, Q(γ)]2(φ1)〉 −Ψ(φ2)(〈φ1, γ〉)
= 〈[φ1, φ2], γ〉.

�

Next we introduce a few identities that will be needed.

Proposition 4.13. In the setting of Prop. 4.12, the following identities hold

a) ρ̂(φ)(f) = −[ιφ, Q](f),

b) 〈∂(ξ), ε〉 = [ιξ, Q](ε),

c) Ψ(φ)(ε) = −[ιφ, Q](ε)− ρ∗(d(〈φ, ε〉)).

Proof. Items a), b) and c), are basically another way of writing items 1, 2 and 3 of Prop.
4.12, after noticing that

Qιφ(f) = 0, Qιξ(ε) = 0 and Qιφ(ε) = ρ∗(d(〈φ, ε〉)).

�
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4.3 Lie 2-algebroids

In this section we show, following M. Grutzmann and T. Strobl [24], how to apply the
derived bracket method to the situation in which we are given a degree 2 NQ manifold.
Namely, the derived bracket method, besides providing a more conceptual understanding
of the pair of morphisms (θ]1, θ

]
2) and of the structure equations (4.9) - (4.15) defining a

(pre)Lie 2-algebroid from a Q structure, enables to prove in a very simple and direct way
the equivalence between the integrability of the Q-structure and Jacobi identity of the
corresponding derived bracket, which is given in this case by the Lie 2-algebroid bracket
[·, ·] and the map Θ (cf. the definition of these in Eqs. (4.12), (4.14) and (4.15) in the proof
of Thm. 4.9), thus providing a geometric characterization for the equation Q2 = 0. We
begin with a few preliminaries, and in particular we introduce the geometric counterpart
of degree 2 NQ manifolds, a structure for which we reserve the name Lie 2-algebroid.

Lemma 4.14. Consider a preLie 2-algebroid. Let’s introduce a horizontal lift on the
corresponding sequence (4.6), which induces a horizontal lift on its dual (3.44), then

Z(ξ1, ξ2) := ∇F∂(ξ1)ξ2 +∇F∂(ξ2)ξ1 (4.41)

gives a well-defined map, i.e. independent of the choice of horizontal lift, Z : Γ(F ) ×
Γ(F ) // Γ(F ).

Now suppose that the preLie 2-algebroid structure comes from an integrable vector field
Q, i.e. we have Q2 = 0 then (4.41) gives a tensor Z ∈ Γ(S2F ∗ ⊗ F ) that is independent
of the horizontal lift.

Proof. Choose another horizontal lift, and denote, as usual, the transition map by Ψ (do
not confuse this Ψ with the vector bundle morphism Ψ of Eq. (4.11), sadly we ended using
the same letter for those two quite different maps). Then by property 4 of Def. 4.6 we
have

(∇F )′∂ξiξj = Θ(∂̂(ξi)
′
)(ξj) = Θ(∂̂(ξi)−Ψ∗∂(ξi)

)(ξj)

= ∇F∂(ξi)
ξj −Ψ∗∂(ξi)

(∂(ξj)),

so that, taking into account the skew-symmetry Ψ∗e1(e2) = −Ψ∗e2(e1) due to the involutivity
structure,

Z ′(ξ1, ξ2) = (∇F )′∂(ξ1)ξ2 + (∇F )′∂(ξ2)ξ1

= ∇F∂(ξ1)ξ2 −Ψ∗∂(ξ1)(∂(ξ2))−∇F∂(ξ2)ξ1 −Ψ∗∂(ξ2)(∂(ξ1))

= ∇F∂(ξ1)ξ2 −Ψ∗∂(ξ1)(∂(ξ2))−∇F∂(ξ2)ξ1 + Ψ∗∂(ξ1)(∂(ξ2))

= ∇F∂(ξ1)ξ2 −∇F∂(ξ2)ξ1

= Z(ξ1, ξ2).

Thus Z doesn’t depend on the choice of horizontal lift.
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Now, if the preLie 2-algebroid structure comes from an integrable 1-vector field Q,
then property 2 of Def. 4.6 implies, for f ∈ C∞(M),

Z(ξ1, fξ2) = fZ(ξ1, ξ2) + ρ(∂(ξ1))(f)ξ2 (4.42)

= fZ(ξ1, ξ2)− 〈∂(ξ1), Q(f)〉ξ2

= fZ(ξ1, ξ2)− 〈ξ1, Q
2(f)〉ξ2

= fZ(ξ1, ξ2). (4.43)

By symmetry, we also have Z(fξ1, ξ2) = fZ(ξ1, ξ2). Thus, Z is a tensor in S2F ∗ ⊗ F .
�

Remark 4.15. Actually we will see in the proof of Thm. 4.20 that when the preLie
2-algebroid structure comes from an integrable 1-vector field Q, Z is identically zero. See
Cor. 4.21.

Corollary 4.16. If the preLie 2-algebroid structure comes from an integrable 1-vector
field Q, i.e. Q2 = 0, then

ρ ◦ ∂ = 0.

Proof. This follows from the calculation of Z(ξ1, fξ2) above, but anyway we perform the
calculation again:

ρ(∂(ξ))(f) = −〈∂(ξ), Q(f)〉 = −〈ξ,Q2(f)〉 = 0.

�

Definition 4.17. A Lie 2-algebroid structure on the dual sequence (3.44) is a preLie
2-algebroid structure such that:

1. For every φ1, φ2, φ3 ∈ Γ(Ê),

[φ1, [φ2, φ3]] = [[φ1, φ2], φ3] + [φ2, [φ1, φ3]]. (4.44)

2. ∂ ◦Θ = ∆Ψ ◦ ∂, where (∆Ψ ◦ ∂)(φ, ξ) := ∆Ψ(φ, ∂(ξ)), ∀φ ∈ Γ(Ê), ξ ∈ Γ(F ).

Remark 4.18. A Loday algebroid on a vector bundle E //M (see [40]) is a pseudoalgebra
structure ([·, ·], ρ, ϕ) on Γ(E) (see Rmk. I.11 for the meaning of ρ and ϕ) such that

[s1, [s2, s3]] = [[s1, s2], s3] + [s2, [s1, s3]].

Therefore, a Lie 2-algebroid is a particular case of a Loday algebroid structure.

There are two main examples of non-trivial Lie 2-algebroids, which we will consider
in the next chapter, since they appear naturally as VB -Courant algebroids, a structure
that we will show to be equivalent to the Lie 2-algebroid structure through an explicit
procedure to go from one structure to the other.

Proposition 4.19 (e.g. [40]). In a Lie 2-algebroid the anchor ρ̂ : Ê // TM preserves
brackets:

ρ̂([φ1, φ2]) = [ρ̂(φ1), ρ̂(φ2)], ∀ φ1φ2 ∈ Γ(Ê).
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Proof. Since ([·, ·], ρ̂) is a pseudoalgebra structure, we have, for every φ1, φ2 ∈ Γ(Ê) and
every f ∈ C∞(M),

[φ1, fφ2] = f [φ1, φ2] + ρ̂(φ1)(f)φ2.

Then, using this property repeatedly we have:

[φ1, [φ2, fφ3]] = [φ1, f [φ2, φ3]] + [φ1, ρ̂(φ2)(f)φ3]

= f [φ1, [φ2, φ3]] + ρ̂(φ1)(f)[φ2, φ3] (4.45)

+ ρ̂(φ2)(f)[φ1, φ3] + ρ̂(φ1)ρ̂(φ2)(f)φ3;

[[φ1, φ2], fφ3] = f [[φ1, φ2], φ3] + ρ̂([φ1, φ2])(f)φ3; (4.46)

[φ2, [φ1, fφ3]] = [φ2, f [φ1, φ3]] + [φ2, ρ̂(φ1)(f)φ3]

= f [φ2, [φ1, φ3]] + ρ̂(φ2)(f)[φ1, φ3] (4.47)

+ ρ̂(φ1)(f)[φ2, φ3] + ρ̂(φ2)ρ̂(φ1)(f)φ3.

Then, using property (4.44) and Eqs. (4.45), (4.46), (4.47), after cancelling terms we get:

0 = [φ1, [φ2, fφ3]]− [[φ1, φ2], fφ3]− [φ2, [φ1, fφ3]]

= f([φ1, [φ2, φ3]]− [[φ1, φ2], φ3]− [φ2, [φ1, φ3]])

+ ρ̂(φ1)ρ̂(φ2)(f)φ3 − ρ̂([φ1, φ2])(f)φ3 − ρ̂(φ2)ρ̂(φ1)(f)φ3

= ([ρ̂(φ1), ρ̂(φ2)]− ρ̂([φ1, φ2]))(f)φ3,

and since f and φ3 are arbitrary, we conclude that

ρ̂([φ1, φ2]) = [ρ̂(φ1), ρ̂(φ2)].

�

Theorem 4.20. There is a canonical 1:1 correspondence between degree 2 NQ-manifolds
and Lie 2-algebroids.

Proof. Thm. 4.9 already provides a canonical 1:1 correspondence between 1-vector fields
on a degree 2 manifold and preLie 2-algebroid structures on the corresponding dual se-
quence (3.44). So the proof of the theorem consists on proving the equivalence between
the integrability condition Q2 = 0 and axioms 1 and 2 of Def. 4.17.

Let’s prove first that Q2 = 0 implies

1) J(φ1, φ2, φ3) = 0, where φ1, φ2, φ3 ∈ Γ(Ê) and J is the Jacobiator

J(φ1, φ2, φ3) = [φ1, [φ2, φ3]]− [[φ1, φ2], φ3]− [φ2, [φ1, φ3]].

2) ∂ ◦Θ = ∆Ψ ◦ ∂, where ∆Ψ is the duality operator given in Eq. (4.5).
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Observe that Q2 = 0 is equivalent to [Q,Q] = 0. Now, using Prop. 4.12, we compute

0 = [[[Q,Q], ιφ1 ], ιφ2 ], ιφ3 ] = −[[[ιφ1 , Q], Q]− [Q, [ιφ1 , Q]], ιφ2 ], ιφ3 ]

= −[[[ιφ2 , [ιφ1 , Q]], Q]]− [[ιφ1 , Q], [ιφ2 , Q]], ιφ3 ]

+ [[[ιφ2 , Q], [ιφ2 , Q], [ιφ1 , Q]]− [Q, [ιφ2 , [ιφ1 , Q]]], ιφ3 ]

= −2[[[ιφ1 , Q], [ιφ2 , Q]]− [[[ιφ1 , Q], ιφ2 ], Q], ιφ3 ]

= 2[[ιφ3 , [ιφ1 , Q]], [ιφ2 , Q]] + 2[[ιφ1 , Q], [ιφ3 , [ιφ2 , Q]]]

+ 2[[[ιφ1 , Q], ιφ2 ], Q], ιφ3 ]

= 2
(
ι[φ2,[φ1,φ3]] − ι[φ1,[φ2,φ3]] + ι[[φ1,φ2],φ3]

)
,

thus obtaining J(φ1, φ2, φ3) = 0.
Now let’s prove axiom 2.

0 = [[[Q,Q], ιξ], ιφ] = −[[[ιξ, Q], Q] + [Q, [ιξ, Q]], ιφ]

= [[ιφ, [ιξ, Q]], Q]− [[ιξ, Q], [ιφ, Q]]

+ [[ιφ, Q], [ιξ, Q]]− [Q, [ιφ, [ιξ, Q]]]

= 2 ([[ιφ, [ιξ, Q]], Q]− [[ιξ, Q], [ιφ, Q]]) .

Then, using Prop. 4.12 and Prop. 4.13, we get

0 = [[[Q,Q], ιξ], ιφ](ε) = 2〈Θ(φ)(ξ), Q(ε)〉
+ 2〈∂(ξ),Ψ(φ)(ε) + ρ∗(d(〈φ, ε〉))〉 − 2ρ̂(φ)(〈∂(ξ), ε〉)

= 2〈∂ ◦Θ(φ)(ξ)−∆Ψ(φ, ∂(ξ)), ε〉,

hence ∂ ◦Θ−∆Ψ ◦ ∂ = 0.
In order to prove the converse, that axioms 1 and 2 of Def. 4.17 imply Q2 = 0, we will

work locally, so choose a coordinate system {xi, εµ, αν} spanning O(U), then, from what
was observed in Subsec. 3.5, and since Q2 has degree 2, it follows that its local expression
is

Q2 =(Ajνα
ν +Bj

µrµsε
µrεµs)

∂

∂xj
+ (Cµνmµmα

νmεµm +Dµ
µuµvµwε

µtεµuεµv)
∂

∂εµ

+ (Eνν1ν2α
ν1αν2 + F ννaµaµbα

νaεµaεµb +Gνµ1µ2µ3µ4ε
µ1εµ2εµ3εµ4)

∂

∂αν
. (4.48)

Our task is to prove that each coefficient of the expression above is zero. Let’s compute
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each coefficient.

Aiν =

[
Q2,

∂

∂αν

]
(xi) =

1

2

[
[Q,Q],

∂

∂αν

]
(xi)

= −1

2

([[
∂

∂ν
, Q

]
, Q

]
(xi) +

[
Q,

[
∂

∂αν
, Q

]]
(xi)

)
= −

([
∂

∂αν
, Q

]
(Q(xi)) +Q

[
∂

∂αν
, Q

]
(xi)

)
= −

[
∂

∂αν
, Q

]
(Q(xi))

= −
〈
∂

(
∂

∂αν

)
, Q(xi)

〉
= ρ

(
∂

(
∂

∂αν

))
(xi).

Now, from Eq. (4.42), we have

ρ(∂(ξ1))(f)ξ2 = Z(ξ1, fξ2)− fZ(ξ1, ξ2), ∀ ξ1, ξ2 ∈ Γ(F ), f ∈ C∞(M),

hence Aiν = 0 if Z ≡ 0. But in the proof of Thm. H.8, namely, in the computation of
J(η1, ê2, η3) we show, using only ∂ ◦Θ = ∆Ψ ◦ ∂, that Eq. (H.20),

J(η1, ê2, η3) = 0, ∀ η1, η3 ∈ Hom(E∗ ⊗ F ), e2 ∈ Γ(E),

implies
Z(ξ1, ξ2) = 0, ∀ ξ1, ξ2 ∈ Γ(F ). (4.49)

Therefore, axioms 1 and 2 of Def. 4.17 imply that Aiν = 0.
Let’s compute the next coefficient.

Bi
µr0µs0

= −
[[
Q2,

∂

∂εµr0

]
,

∂

∂εµs0

]
(xi) = −1

2

[[
[Q,Q],

∂

∂εµr0

]
,

∂

∂εµs0

]
(xi)

=
1

2

[[[
∂

∂εµr0
, Q

]
, Q

]
−
[
Q,

[
∂

∂εµr0
, Q

]]
,

∂

∂εµs0

]
(xi)

=
1

2

([[
∂

∂µs0
,

[
∂

∂µr0
, Q

]]
, Q

]
(xi) +

[[
∂

∂εµr0
, Q

]
,

[
∂

∂εµs0
, Q

]]
(xi)

)
− 1

2

([[
∂

∂εµs0
, Q

]
,

[
∂

∂εµr0
, Q

]]
(xi)−

[
Q,

[
∂

∂εmus0
,

[
∂

∂εµr0
, Q

]]]
(xi)

)
=

[[
∂

∂εµr0
, Q

]
,

[
∂

∂εµs0
, Q

]]
(xi)−

[[[
∂

∂εµr0
, Q

]
,

∂

∂εµs0

]
, Q

]
(xi)

= ρ

(
∂

∂εµr0

)(
ρ

(
∂

∂εµs0

)
(xi)

)
− ρ

(
∂

∂εµs0

)(
ρ

(
∂

∂εµr0

)
(xi)

)
− ρ

([
∂

∂εµr0
,

∂

∂εµs0

])
(xi).

Using the identity ρ(e) = ρ̂(ê) and Prop. 4.19, we conclude that Bi
µr0µs0

= 0.
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Now is the time to compute C
µp
ν0µ0 .

C
µp
ν0µ0 =

[[
Q2,

∂

∂αν0

]
,
∂

∂εµ0

]
(εµp) =

1

2

[[
[Q,Q],

∂

∂αν0

]
,
∂

∂εµ0

]
(εµp)

= −1

2

[[[
∂

∂αν0
, Q

]
, Q

]
+

[
Q,

[
∂

∂αν0
, Q

]]
,
∂

∂εµ0

]
(εµp)

=
1

2

([[
∂

∂εµ0
,

[
∂

∂αν0
, Q

]]
, Q

]
(εµp)−

[[
∂

∂αν0
, Q

]
,

[
∂

∂εµ0
, Q

]]
(εµp)

)
+

1

2

([[
∂

∂εµ0
, Q

]
,

[
∂

∂αν0
, Q

]]
(εµp)−

[
Q,

[
∂

∂εµ0
,

[
∂

∂αν0
, Q

]]]
(εµp)

)
=

〈
Θ

(
∂̂

∂εµ0

)(
∂

∂αν0

)
, Q(εµp)

〉
+

〈
Ψ

(
∂̂

∂εµ0

)
(εµp), ∂

(
∂

∂αν0

)〉

+ ρ

(
∂

(
∂

∂αν0

))(〈
∂

∂εµ0
, εµp

〉)
− ρ

(
∂

∂εµ0

)(〈
∂

(
∂

∂αν0

)
, εµp

〉)
=

〈
∂ ◦Θ

(
∂̂

∂εµ0

)(
∂

∂αν0

)
−∆Ψ

(
∂̂

∂εµ0
, ∂

(
∂

∂αν0

))
, εµp

〉
= 0.

Let’s compute now Dµ0
µaµbµc .

Dµ0
µaµbµc

=

[[[
Q2,

∂

∂εµa

]
,
∂

∂εµb

]
,
∂

∂εµc

]
(εµ0) =

1

2

[[[
[Q,Q],

∂

∂εµa

]
,
∂

∂εµb

]
,
∂

∂εµc

]
(εµ0)

= −
[[[

∂

∂εµa
, Q

]
,

[
∂

∂εµb
, Q

]]
−
[[[

∂

∂εµa
, Q

]
,
∂

∂εµb

]
, Q

]
,
∂

∂εµc

]
(εµ0)

=

[[
∂

∂εµc
,

[
∂

∂εµa
, Q

]]
,

[
∂

∂εµb
, Q

]]
(εµ0) +

[[
∂

∂εµa
, Q

]
,

[
∂

∂εµc
,

[
∂

∂εµb
, Q

]]]
(εµ0)

+

[[[[
∂

∂εµa
, Q

]
,
∂

∂εµb

]
, Q

]
,
∂

∂εµc

]
(εµ0)

=

〈[
∂̂

∂εµb
,

[
∂̂

∂εµa
,
∂̂

∂εµc

]]
−

[
∂̂

∂εµa
,

[
∂̂

∂εµb
,
∂̂

∂εµc

]]
+

[[
∂̂

∂εµa
,
∂̂

∂εµb

]
,
∂̂

∂εµc

]
, εµ0

〉
= 0,

where the brackets on the last line stand for the Lie 2-algebroid structure, while the
brackets of the preceding lines of course stand for the commutator of (graded) vector
fields.
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Next we compute Eν0νaνb .

Eν0νaνb =

[[
Q2,

∂

∂ανa

]
,
∂

∂ανb

]
(αν0) =

1

2

[[
[Q,Q],

∂

∂ανa

]
,
∂

∂ανb

]
(αν0)

= −1

2

[[[
∂

∂ανa
, Q

]
, Q

]
,
∂

∂ανb

]
(αν0)− 1

2

[[
Q,

[
∂

∂ανa
, Q

]]
,
∂

∂ανb

]
(αν0)

=
1

2

[[
∂

∂ανb
,

[
∂

∂ανa
, Q

]]
, Q

]
(αν0) +

1

2

[[
∂

∂ανa
, Q

]
,

[
∂

∂ανb
, Q

]]
(αν0)

+
1

2

[[
∂

∂ανb
, Q

]
,

[
∂

∂ανa
, Q

]]
(αν0) +

1

2

[
Q,

[
∂

∂ανb
,

[
∂

∂ανa
, Q

]]]
(αν0). (4.50)

Now observe, as we already did in the beginning of proof of Prop. 4.12, and taking into
account the identifications of Prop. 3.52, that for any X ∈ X(M)−1, Y ∈ X(M)−2 and
ζ ∈ A2, we have

X(Y (Q(ζ)))− Y (X(Q(ζ))) = 0. (4.51)

Also observe that, simply for degree reasons,

X(Y (ζ)) = Y (X(ζ)) = 0. (4.52)

Hence,

1

2

[[
∂

∂ανb
,

[
∂

∂ανa
, Q

]]
, Q

]
(αν0) +

1

2

[
Q,

[
∂

∂ανb
,

[
∂

∂ανa
, Q

]]]
(αν0)

=

[[
∂

∂ανb
,

[
∂

∂ανa
, Q

]]
, Q

]
(αν0) =

[
∂

∂ανb

[
∂

∂ανa
, Q

]
−
[

∂

∂ανa
, Q

]
∂

∂ανb
, Q

]
(αν0)

=
∂

∂ανb

[
∂

∂ανa
, Q

]
Q(αν0)−

[
∂

∂ανa
, Q

]
∂

∂ανb
Q(αν0) = 0. (4.53)

Putting (4.53) into (4.50), we obtain

Eν0νaνb =
1

2

[[
∂

∂ανa
, Q

]
,

[
∂

∂ανb
, Q

]]
(αν0) +

1

2

[[
∂

∂ανb
, Q

]
,

[
∂

∂ανa
, Q

]]
(αν0)

=

[[
∂

∂ανa
, Q

]
,

[
∂

∂ανb
, Q

]]
(αν0). (4.54)

Now, using Props. 4.12 and 4.13 and item 1 of Prop. 3.59,[
∂

∂ανa
, Q

]
◦
[

∂

∂ανb
, Q

]
(αν0) =

[
∂

∂ανa
, Q

](
ι ∂
∂ανa

Q(αν0) + ρ∗
(〈

∂

∂ανb
, αν0

〉))
=

〈
∂

(
∂

∂ανa

)
,−Q(αν0)]1

(
∂

∂ανa

)〉
+ ρ

(
∂

(
∂

∂ανa

))(〈
∂

∂ανb
, αν0

〉)
= −

〈
∂

∂ανb
, Q(αν0)]2

(
̂

∂

(
∂

∂ανa

))〉
+ ρ̂

(
̂

∂

(
∂

∂ανa

))(〈
∂

∂ανb
, αν0

〉)

=

〈
Θ

(
̂

∂

(
∂

∂ανa

))(
∂

∂ανb

)
, αν0

〉
=

〈
∇∂( ∂

∂ανa )
∂

∂ανb
, αν0

〉
. (4.55)
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Putting, (4.55) into (4.54), and taking into account Eqs. (4.41) and (4.49), we obtain

Eν0νaνb =

〈
Z

(
∂

∂ανa
,
∂

∂ανb

)
, αν0

〉
= 0.

Now let’s compute F ν0νkµkµl , using what we already calculated in the computation of

C
µp
ν0µ0 .

F ν0νkµkµl =

[[[
Q2,

∂

∂ανk

]
,
∂

∂εµk

]
,
∂

∂εµl

]
(αν0) =

1

2

[[[
[Q,Q],

∂

∂ανk

]
,
∂

∂εµk

]
,
∂

∂εµl

]
(αν0)

=

[[[
∂

∂εµk
,

[
∂

∂ανk
, Q

]]
, Q

]
−
[[

∂

∂ανk
, Q

]
,

[
∂

∂εµk
, Q

]]
,
∂

∂εµl

]
(αν0)

= −
[[

∂

∂εµl
, Q

]
,

[
∂

∂εµk
,

[
∂

∂ανk
, Q

]]]
(αν0) +

[
Q,

[
∂

∂εµl
,

[
∂

∂εµk
,

[
∂

∂ανk
, Q

]]]]
(αν0)

+

[[
∂

∂εµl
,

[
∂

∂εµk
, Q

]]
,

[
∂

∂ανk
, Q

]]
(αν0) +

[[
∂

∂εµk
, Q

]
,

[
∂

∂εµl
,

[
∂

∂ανk
, Q

]]]
(αν0).

Using Eq. (4.51), similarly as we did in (4.53), and using also item 4 of Prop. 4.12, we
have[

Q,

[
∂

∂εµl
,

[
∂

∂εµk
,

[
∂

∂ανk
, Q

]]]]
(αν0) = −

[
Q,

[
∂

∂εµl
,

[
∂

∂ανk
,
∂

∂εµk

]
Q

]]
(αν0) = 0.

Hence, using items 4 and 5 of Prop. 4.12, we get

F ν0νkµkµl = −
[[

∂

∂εµl
, Q

]
,

[
∂

∂εµk
,

[
∂

∂ανk
, Q

]]]
(αν0) +

[[
∂

∂εµl
,

[
∂

∂εµk
, Q

]]
,

[
∂

∂ανk
, Q

]]
(αν0)

+

[[
∂

∂εµk
, Q

]
,

[
∂

∂εµl
,

[
∂

∂ανk
, Q

]]]
(αν0)

=

〈
Θ

(
∂̂

∂εµl

)(
Θ

(
∂̂

∂εµk

)(
∂

∂ανk

))
, αν0

〉
+

〈
Θ

([
∂̂

∂εµk
,
∂̂

∂εµl

])(
∂

∂ανk

)
, αν0

〉

−

〈
Θ

(
∂̂

∂εµk

)(
Θ

(
∂̂

∂εµl

)(
∂

∂ανk

))
, αν0

〉
= 0.

Finally, we compute Gν0µaµbµcµd . Using the calculations we done to compute Dµ0
µaµbµc , and

the fact that ∂
∂εµ (αν) = 0, we have

Gν0µaµbµcµd =

[[[[
Q2,

∂

∂εµa

]
,
∂

∂εµb

]
,
∂

∂εµc

]
,
∂

∂εµd

]
(αν0)

=
1

2

[[[[
[Q,Q],

∂

∂εµa

]
,
∂

∂εµb

]
,
∂

∂εµc

]
,
∂

∂εµd

]
(αν0)

=
∂

∂εµd
◦
[[[

[Q,Q],
∂

∂εµa

]
,
∂

∂εµb

]
,
∂

∂εµc

]
(αν0)

= − ∂

∂εµd
◦ JQ

(
∂

∂εµa
,
∂

∂εµb
,
∂

∂εµc

)
(αν0) = 0,
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where JQ stands for the Jacobiator of the brackets [·, ·]Q, defined in (4.38).
Therefore, we have showed that each coefficient of Eq. (4.48) is zero. Thus we conclude

that axioms 1 and 2 of Def. 4.17 imply Q2 = 0, as we wanted.
�

Corollary 4.21. Consider a Lie 2-algebroid. Then the map Z introduced in Lemma 4.14
is zero.

Proof. This is what we obtained in Eq. (4.49).
�

Remark 4.22. The corollary above is precisely what Eq. 4 of Prop. H.4 tells us. We
can use that equation once we have the equivalence between the integrability equations of
a Lie 2-algebroid and those of a split Lie 2-algebroid. This equivalence is proved in Thm.
H.8.

Corollary 4.23. Consider a Lie 2-algebra, namely, a Lie 2-algebroid such that the base
manifold is a point M = {0}. Then we have the following structure, which characterizes
it:

• an involutive sequence of vector spaces

0 // Λ2E∗ // F̃ ∗ // F ∗ // 0,

so that its dual is
0 // E∗ ⊗ F // Ê // E // 0,

• linear maps

∂ : F // E,

Ψ : Ê // End(E∗),

Θ : Ê // End(F ),

• a bilinear map [·, ·] : Ê × Ê // Ê,

such that, considering the skew-adjoint Ψ∗ : Ê // End(E) given by

〈Ψ∗(φ)(e), ε〉 := −〈Ψ(φ)(ε), e〉,

the following properties hold:

1. Θ(η) = η ◦ ∂, Ψ∗(η) = ∂ ◦ η, ∀η ∈ E∗ ⊗ F .

2. π([φ1, φ2]) = Ψ∗(φ1)(π(φ2)), ∀φ1, φ2 ∈ Ê.

In particular Ψ∗(φ)(e) = π([φ, ê]), for any horizontal lift ê of e ∈ E.

3. [φ, η] = Θ(φ) ◦ η − η ◦Ψ∗(φ),

4. [φ1, φ2] + [φ2, φ1] = δ(W (φ1, φ2)), where δ : F // Ê is the linear map defined by Eq.
(4.3).
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5. ∂ ◦Θ = Ψ∗ ◦ ∂,

6. The bilinear map [·, ·] satisfies Jacobi identity, in the sense that

[φ1, [φ2, φ3]] = [[φ1, φ2], φ3] + [φ2, [φ1, φ3].

Moreover, for every Lie 2-algebra, the maps Θ and Ψ are representations, namely

Θ([φ1, φ2]) = [Θ(φ1),Θ(φ2)], (4.56)

Ψ([φ1, φ2] = [Ψ(φ1),Ψ(φ2)], (4.57)

where the brackets on the right-hand side of the two equations above stand for the
commutator bracket of endomorphisms.

Proof. Except Eq. (4.57), everything in this corollary consists simply on spelling out what
we already have obtained in the general case of Lie 2-algebroids, taking into account that
in this case we have ρ ≡ 0. So, we only need to prove Eq. (4.57).

By Thm. 4.9, Eq. (4.11) we have

Ψ(φ)(ε) = −〈φ,Q(ε)〉,

where Q is the 1 vector field that corresponds to the Lie 2-algebra structure, and by Thm.
4.20 we have Q2 = 0. Then, using also Eq. (4.14) of Thm. 4.9, and taking into account
that ρ = 0,

Ψ([φ1, φ2])(ε) = −〈[φ1, φ2], Q(ε)〉

= −Ψ(φ1)(〈φ2, Q(ε)〉) + Ψ(φ2)(〈φ1, Q(ε)〉) + 〈φ2, Q
2(ε)]2(φ1)〉

= Ψ(φ1)(Ψ(φ2)(ε))−Ψ(φ2)(Ψ(φ1)(ε)).

Therefore, Ψ([φ1, φ2]) = [Ψ(φ1),Ψ(φ2)].
�

In the general case, when the base manifold is not a point, the same calculations as
above enables us to obtain the following formula for Ψ([φ1, φ2]).

Corollary 4.24. In a Lie 2-algebroid, the following identity holds:

Ψ([φ1, φ2]) = [Ψ(φ1),Ψ(φ2)] + ρ∗(d(〈φ1,Ψ(φ2)〉)), (4.58)

where the last term is the operator on Γ(E∗) defined by

ρ∗(d(〈φ1,Ψ(φ2)〉))(ε) := ρ∗(d(〈φ1,Ψ(φ2)(ε)〉)). (4.59)

Proof. Indeed, from the equivalence given by Thm. 4.20 of Lie 2-algebroids with degree 2
NQ manifolds, we can use formulas (4.11) and (4.14), and the fact that Q2 = 0, to obtain
the following:

Ψ([φ1, φ2])(ε) = −〈[φ1, φ2], Q(ε)〉
= −Ψ(φ1)(〈φ2, Q(ε)〉) + Ψ(φ2)(〈φ1, Q(ε)〉)

− ρ∗(d(〈φ1, 〈φ2, Q(ε)〉〉)) + 〈φ2, Q
2(ε)]2(φ1)〉

= Ψ(φ1)(Ψ(φ2)(ε))−Ψ(φ2)(Ψ(φ1)(ε)) + ρ∗(d(〈φ1,Ψ(φ2)(ε)〉)).

�



Chapter 5

Other viewpoints to degree 2 NQ
manifolds

In this chapter we recall the concept of VB -Courant algebroids, a structure introduced
by D. Li-Bland in his PhD thesis [41], and we study the relation of this structure to Lie
2-algebroids and consequently to degree 2 NQ-manifolds. These relations were treated
independently by M. Jotz using splittings.

In last chapter we were able to characterize geometrically an NQ structure on a degree
2 manifold in terms of brackets and maps defined on the linear sequence of the involutive
DVB D. However, we are not able any more to extend the structure maps and brackets
to define a structure on the whole double vector bundle D, for if it were the case, the least
thing we must ask is that the brackets [·, ·] satisfy Leibniz rule with respect to the second
entry when we multiply by a fiberwise linear function, as it is the case when we multiply
by a fiberwise constant function. More precisely, we should have then

[φ, ε⊗ ξ] = Ψ(φ)(ε)⊗ ξ + ε⊗Θ(φ)(ξ),

but, while on the left-hand side, taking fε ∈ Γ(E∗) in the place of ε, we have

[φ, fε⊗ ξ] = f [φ, ε⊗ ξ] + ρ̂(φ)(f)ε⊗ ξ, (5.1)

on the right-hand, for fε instead of ε, we have

Ψ(φ)(fε)⊗ ξ + fε⊗Θ(φ)(ξ) = fΨ(φ)(ε)⊗ ξ + fε⊗Θ(φ)(ξ) + ρ̂(φ)(f)ε⊗ ξ
− ρ∗(df)〈φ, ε〉 ⊗ ξ
= f [φ, ε⊗ ξ] + ρ̂(φ)(f)ε⊗ ξ − ρ∗(df)〈φ, ε〉ξ,

a result which does not coincide with (5.1), because of the extra term −ρ∗(df)〈φ, ε〉ξ.
Therefore, we have to content ourselves to define the structure just on the dual exact
sequence (3.44), with all the structure data of Def. 4.6, with no hope to extend it to D.1

1This situation is similar to the fact, explained in Rmk. 3.60, that the geometric counterpart of a
degree 3 function is a pair of vector bundle morphisms (θ]1, θ

]
2) which don’t feet to give a DVB morphism

Θ : D //DF∗ .

80
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This drawback may be seen as a manifestation of the fact that, unlike the VB-algebroid
case where one of the duals has an induced, dual, Lie algebroid structure (see [23], and
Prop. E.24 of the present work), VB -Courant algebroids do not share this property.
This turns out to be a fruitful insight, since it suggests that the somewhat awkward Lie 2-
algebroid structure defined on the sequence (3.44) could be transported to the dual double
vector bundle D∗ = DF ∗

// F ∗ to fit into a much nicer VB -Courant algebroid structure.
We will show that this is indeed the case.

In the end we recall the concept of exact V -twisted Courant algebroids, studied by M.
Grutzmann and T. Strobl [24] and explain how they are related to VB -Courant algebroids
(and hence with our Lie 2-algebroids).

5.1 VB-Courant algebroids

We begin recalling the general definition of Courant algebroids, introduced by Z.–J.
Liu, A. Weinstein and P. Xu [44]. Actually, we will work with an equivalent definition,
with a non-skew bracket, discovered by D. Roytenberg [58]. Then we give the definition
of Li-Bland’s VB -Courant algebroids and describe the main example, namely the tangent
Courant algebroid TE of a Courant algebroid.

Definition 5.1. A Courant algebroid is a pseudo-Euclidean vector bundle (E∗, 〈·, ·〉) over
a manifold M , together with a (non skew-symmetric) bracket [[·, ·]] and a bundle map
a : E // TM (the anchor), satisfying the following properties:

1. [[e1, [[e2, e3]]]] = [[[[e1, e2]], e3]] + [[e2, [[e1, e3]]]], ∀e1, e2, e3 ∈ Γ(E),

2. a([[e1, e2]]) = [a(e1), a(e2)] ∀e1, e2 ∈ Γ(E),

3. [[e1, fe2]] = f [[e1, e2]] + a(e1)(f)e2 ∀e1, e2 ∈ Γ(E), f ∈ C∞(M),

4. 〈e, [[e1, e2]] + [[e2, e1]]〉 = a(e)(〈e1, e2〉) ∀e, e1, e2 ∈ Γ(E),

5. a(e)(〈e1, e2〉) = 〈[[e, e1]], e2〉+ 〈e1, [[e, e2]]〉 ∀e, e1, e2 ∈ Γ(E).

Remark 5.2. It can be shown by a standard argument (cf. for example [40] or Prop. 4.19
above) that properties 1 and 3 of the definition above already imply property 22. Also,
Y. Kosmann-Schwarzbach [36] showed that a Courant algebroid can be characterized just
with properties 1, 4 and 5 of Def. 5.1.

Example 5.3. The most basic example, introduced in T. Courant PhD thesis [14] is the
so-called standard Courant algebroid

(TM, [[·, ·]], a),

where TM = TM ⊕ T ∗M , the anchor map is a(X,α) = X, the projection over TM , and
the brackets are defined by the formula

[[(X,α), (Y, β)]] = ([X,Y ],LXβ − ιY dα). (5.2)

2The argument consists in replacing e3 by fe3 in property 1 of Def. 5.1, and then compute using
property 3. Some terms cancel out and in the end we get a([[e1, e2]])(f)e3 = [a(e1), a(e2)](f)e3. See Prop.
4.19.
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Actually T. Courant introduced the skew-symmetric version of the brackets above. This
non-skew symmetric version was first introduced by I. Dorfman [16]. The example above
was generalized by Z.–J. Liu, A. Weinstein and P. Xu [44] to the case E = A⊕A∗, where
(A,A∗) is a Lie bialgebroid (see Def. G.2):

[[(X,α), (Y β)]] = ([X,Y ]A + (LA∗)αY − ιβdA∗X, [α, β]A∗ + (LA)Xβ − ιY dAα).

Other examples of Courant algebroids include quadratic Lie algebras, i.e. Lie algebras
endowed with a symmetric bilinear form invariant under the adjoint representation, exact
Courant algebroids, introduced by P. Ševera [62],[64], which is a twisted version of the
standard Courant algebroid by a closed 3-form H ∈ Ω3(M):

[[(X,α), (Y, β)]] = ([X,Y ],LXβ − ιY dα+ ιY ιXH),

and the Courant algebroids coming from proto-bialgebroids [58].
Now we introduce the central concept of this chapter, D. Li-Bland’s VB -Courant alge-

broids [41]. It is completely parallel to the concept of VB -algebroids of A. Gracia-Saz and
R. Mehta [23], see Def. 2.10, changing the Lie algebroid structure by a Courant algebroid
one, with the only difference that, for convenience, the structure in this case is flipped, in
the sense that the Courant algebroid is on the vertical bundle structure, rather than the
horizontal one.

Definition 5.4. A VB-Courant algebroid is a double vector bundle (D;F ∗, B;M)E∗

equipped with a Courant algebroid structure on DF ∗ such that the anchor map aD :
DF ∗

//TF ∗ is a bundle morphism over aB : B //TM , the metric 〈·, ·〉DF∗ is linear, and
where the bracket [[·, ·]]D is such that

1. [[Γlin(DF ∗),Γlin(DF ∗)]]D ⊂ Γlin(DF ∗),

2. [[Γlin(DF ∗),Γcore(DF ∗)]]D ⊂ Γcore(DF ∗),

3. [[Γcore(DF ∗),Γcore(DF ∗)]]D = 0.

Remark 5.5. Actually D. Li-Bland gives a different definition, requiring the graph of the
addition operation +

B
,

gr(+
B

) : D ×D 99K D,

is a Courant relation. However, he proves the equivalence with the definition we present
here, which seems much more natural because of its parallel with the definition of VB -
algebroids, and also more convenient, since it is easier to handle (at least for us).

Remark 5.6. As in the case of VB -algebroids (Rmk. 2.11), since aD is a vector bundle
morphism with respect to the structure over F ∗, it follows that the condition on aD is
equivalent to say that it is a DVB morphism from D to TF ∗.

Remark 5.7. Again as in the case of VB -algebroids (Rmk. 2.12), the Courant brackets
[[·, ·]]D and the anchor aD are completely determined by their action on linear and basic
functions and on linear and core sections, which span the whole ring of functions C∞(F ∗)
and the C∞(F ∗)-module of sections Γ(DF ∗), respectively. However, the argument is more
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subtle in this case, since the lack of skew-symmetry prevents us from dualizing a Courant
structure to obtain Poisson-like brackets on the dual bundle, as it is the case for Lie
algebroids. Anyway, it is possible to go around this difficulty and still determine the
Courant algebroid structure just by knowing its action on linear and core sections and
on linear and basic functions. The details are worked out in appendix A of D. Li-bland’s
thesis, to which we refer the reader. We limit ourselves to present the precise statement
for later reference.

Proposition 5.8 ([41]). Let E // M be a vector bundle, a : E // TM be a bundle
map, 〈·, ·〉 a metric on E, and let W ⊂ Γ(E) be a subspace of sections which generates
Γ(E) as a C∞(M)-module. Suppose that [[·, ·]] : W ×W //W is a bracket which satisfies
properties 1, 2, 4 and 5 of Def. 5.1 for every e, e1, e2, e3 ∈ W , and that a ◦ a∗ = 0, where
a∗ := [ ◦ at : T ∗M //E, and at : T ∗M //E∗ is the transposed map of a. Then there is a
unique extension of [[·, ·]] to a Courant bracket on all of Γ(E).

Proof. It is Prop. A.0.3 in appendix A of [41].
�

Corollary 5.9. Let (D;F ∗, B;M)E∗ be a double vector bundle. Suppose that we can define
a bracket operation [[·, ·]] on Γlin(DF ∗) and Γcore(DF ∗) satisfying properties 1,2 and 3 of
Def. 5.4. Suppose also that we can define a bilinear, non-degenerate symmetric pairing
〈·, ·〉DF∗ on Γlin(DF ∗)⊕ Γcore(DF ∗) satisfying properties 1,2 and 3 of Def. 3.33, so that it
extends by bilinearity to a unique linear metric on DF ∗. Suppose, moreover, that we can
define two maps

â : B̂ //CDO(F ), aE∗ : E∗ // F ∗,

where Γ(B̂) ∼= Γlin(DF ∗), Γ(CDO(F )) ∼= Γ(CDO(F ∗)) ∼= Γlin(TF ∗) (see Sec. F.2), which
satisfy

â(τ) = aE∗ ◦ τ ∈ F ⊗ F ∗ ∼= F ∗ ⊗ F, ∀ τ ∈ Hom(F ∗, E∗) ⊂ B̂,

then we obtain a unique extension to a DVB morphism a : DF ∗
// TF ∗ by Prop. C.24.

If a ◦ a∗ = 0 and ([[·, ·]], 〈·, ·〉DF∗ , a) satisfy properties 1,2,4 and 5 of Def. 5.1, then
there is a unique extension of a to a DVB morphism on D, a unique extension of [[·, ·]] to
a Courant bracket on Γ(DF ∗).

Proof. It follows from Prop. 5.8, with W = Γlin(DF ∗) ⊕ Γcore(DF ∗), that the structure
defined is a Courant algebroid, and we defined the bracket to satisfy the VB -algebroid
conditions.

�

Remark 5.10. Notice that because of Lem. C.26 it suffices to verify a ◦ a∗ = 0 only for
linear and core sections.

The above corollary enables to describe easily, for a given Courant algebroid ([[·, ·]], 〈·, ·〉, a)
the tangent prolonged VB -Courant algebroid on TE //TM . This structure was described
first in [5] by Boumaiza and Zaalani (see also [11] where the closely related jet bundle
Courant algebroid is described). We follow Li-Bland’s thesis [41] (see also [29]).
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Proposition 5.11 ([41]). The tangent bundle TE of a Courant algebroid E //M ,

TE

��

// E

��

E

TM //M

carries a unique VB-Courant algebroid structure over TM such that the pairing and the
bracket satisfy

〈T e1, T e2〉TE = d〈e1, e2〉, 〈T e1, e2〉TE = 〈e1, e2〉, 〈e1, T e2〉TE = 〈e1, e2〉, 〈e1, e2〉TE = 0,

[[T e1, T e2]]TE = T [[e1, e2]], [[T e1, e2]]TE = [[e1, e2]], [[e1, T e2]]TE = [[e1, e2]], [[e1, e2]]TE = 0,

and the anchor map satisfies

aTE(T e) = T a(e) aTE(e) = a(e),

for any sections e, e1, e2 ∈ Γ(E).

Proof. We define the Courant algebroid structure on sections of the form e and T e, e ∈
Γ(E) by the equations of the statement. We need to verify aTE(τ) = aTE ◦ τ, for every
τ ∈ T ∗M ⊗ E. So let’s take arbitrary f ∈ C∞(M) and e ∈ Γ(E), then

aTE(df ⊗ e) = aTE(T (fe)− fT e) = T a(fe)− fT a(e)

= df ⊗ a(e) + fT a(e)− fT a(e) = df ⊗ a(e)

= aTE ◦ (df ⊗ e).

Properties aTE ◦ a∗TE = 0, 1,2,4 and 5 of Def. 5.1 for linear and core sections follows from
these properties for E and from the fact that sections of the form T e, e ∈ Γ(E) span the
space of linear sections. Hence, Cor. 5.9 applies.

�

Next we show the other basic example of VB -Courant algebroid, which is the standard
Courant algebroid over a vector bundle. We take it from [41], see also [29].

Proposition 5.12 ([41]). Let A //M be a vector bundle. Consider the standard Courant
algebroid TA = TA ⊕ T ∗A // A, described in Ex. 5.3, whose anchor is the projection
TA // TA and the Lie bracket is given by

[[(X,α), (Y, β)]] = ([X,Y ],LXβ − ιY dα).

Then, the double vector bundle

TA

��

// TM ⊕A∗

��

A⊕ T ∗M

A //M,

endowed with the standard Courant algebroid structure, is a VB-Courant algebroid.



5.1. VB-COURANT ALGEBROIDS 85

Proof. The anchor map, which in the case of the standard Courant algebroid is just the
projection over the first factor, is a double vector bundle morphism simply because of the
way we define the double vector bundle structure on the Whitney sum of two double vector
bundles, see Sec. C.6 of App. C. Then it remains to show properties 1,2 and 3 of Def. 5.4.
To do achieve this, notice that the linear sections of TA are C∞(M)-spanned by sections
of the form (X, dα), with X ∈ Xlin(A) (linear fields on A) and α ∈ Γ(A∗) ∼= C∞lin(A).
Likewise, the core sections are C∞(M)-spanned by (av, df), where av is the vertical lift of
a ∈ Γ(A), and f ∈ C∞(M).

Observe that, from Cartan’s rule it follows, for every X,Y ∈ Xlin(A), α ∈ Γ(A∗),

LXdα = dX(α),

then

[[(X, dα), (Y, dβ)]] = ([X,Y ],LXdβ − LY dα+ d〈Y, α〉)
= ([X,Y ], dX(β)− dY (α) + dY (α))

= ([X,Y ], dX(β)).

Since
[[(X, dα), f(Y, dβ)]] = f [[(X, dα), (Y, dβ)]] + σ(X)(f)(Y, dβ),

where σ : CDO(A∗) // TM is the symbol map, and

[[f(X, dα), (Y, dβ)]] = f [[(X, dα), (Y, dβ)]]− σ(Y )(f)(X, dα) + (X(β) + Y (α))⊗ df,

we conclude that the Courant bracket of linear sections is again linear.
Noting that 〈av, dα〉 = av(α) = 〈a, α〉 and 〈X, df〉 = σ(X)(f), and using the identifi-

cation of linear vector fields with covariant differential operators Xlin(A) ∼= CDO(A∗), we
have

[X, av](β) = Xav(β)− avX(β)

= σ(X)〈a, β〉 − 〈a,X(β)〉;

since av(f) = 0 for every vertical lift av ∈ Γ(TA), we have

[X, av](f) = 0;

thus, we conclude that
[X, av] = X∗(a)v,

where X∗ ∈ CDO(A) is the dual covariant differential operator of X.
Also note that, form Cartan’s rule, we have

〈LXdf, Y 〉 = dσ(X)(f) and Lavdα = d〈a, α〉.

Then we have

[[(X, dα), (av, df)]] = (X∗(a)v, dσ(X)(f)− d〈a, α〉 − d〈a, α〉)
= (X∗(a)v, dσ(X)(f)).
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In particular, noting that

[[(X, dα), g(av, df)]] = g[[(X, dα), (av, df)]] + σ(X)(g)(av, df)

and
[[g(X, dα), (av, df)]] = g[[(X, dα), (av, df)]],

we conclude that the Courant bracket of a linear section with a core section is again a core
section. Moreover, since

[[(av, df), (X, dα)]] = −[[(X, dα), (av, df)]] + d(σ(X)(f) + 〈a, α〉),

it follows that the Courant bracket of a core section with a linear section is also a core
section.

Finally, since av(f) = 0 for every a ∈ Γ(A), f ∈ C∞(M), it is easy to conclude that
[[(av, df), (bv, dg)]] = 0. Therefore, the standard Courant algebroid over a vector bundle is
a VB -Courant algebroid.

�

5.2 Relation with Lie 2-algebroids

In this section we aim to show the relation between Lie 2-algebroids (Def. 4.17) and
VB -Courant algebroids, introduced by D. Li-Bland [41], therefore recovering the charac-
terization of degree 2 NQ manifolds in terms of VB -Courant algebroids obtained in Prop.
3.2.1 of [41], and more explicity through splittings by M. Jotz in [29].

We begin by working out some identities involving the structure of a Lie 2-algebroid
that will enable us to show that every Lie 2-algebroid yields a VB -Courant algebroid
structure on the dual D∗F ∗ of its corresponding metric VB -algebroid DF ∗ .

5.2.1 Some identities for Lie 2-algebroids

Along this subsection we are given a Lie 2-algebroid Ê.

Proposition 5.13. For every φ1, φ2, φ3, we have

W ([φ1, φ2], φ3) +W ([φ1, φ3], φ2) = W (φ1, δ(W (φ2, φ3))) = Θ(φ1)(W (φ2, φ3)).

Proof. Let’s introduce a horizontal lift, and recall the definition of the brackets on E∗

given in Eq. H.4 and the curvature form K given in Eq. H.7. Using the properties of Def.
4.6

[φ1, φ2] = [η1 + ê1, η2 + ê2]

= [η1, η2] + [η1, ê2] + [ê1, η2] + [ê1, ê2]

= η1 ◦ ∂ ◦ η2 − η2 ◦ ∂ ◦ η1 + η1 ◦ [e2, ·]−∇Fe2 ◦ η1 +∇F· η1(e2) (5.3)

+ ̂∂ ◦ η1(e2) +∇Fe1 ◦ η2 − η2 ◦ [e1, ·] + [̂e1, e2]−K(e1, e2).
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Then, using formula (3.48),

W ([φ1, φ2], φ3) = η1 ◦ ∂ ◦ η2(e3)− η2 ◦ ∂η1(e3) + η1([e2, e3])−∇Fe2η1(e3)

+∇Fe3η1(e2) +∇Fe1η2(e3)− η2([e1, e3]) (5.4)

−K(e1, e2)(e3) + η3 ◦ ∂ ◦ η1(e2) + η3([e1, e2])

and

W ([φ1, φ3], φ2) = η1 ◦ ∂ ◦ η3(e2)− η3 ◦ ∂η1(e2) + η1([e3, e2])−∇Fe3η1(e2)

+∇Fe2η1(e3) +∇Fe1η3(e2)− η3([e1, e2]) (5.5)

−K(e1, e3)(e2) + η2 ◦ ∂ ◦ η1(e3) + η2([e1, e3]),

thereby, adding (5.4)+(5.5) and cancelling terms we get

W ([φ1, φ2], φ3) +W ([φ1, φ3], φ2) = η1 ◦ ∂(W (φ2, φ3)) +∇Fe1W (φ2, φ3)

= W (φ1, δ(W (φ2, φ3)), (5.6)

where we used Eq. (4.3) in the last equality.
On the other hand, using formulas (4.1), (4.2), (3.48) and (4.3),

Θ(φ1)(W (φ2, φ3)) = Θ(η1 + ê1)(W (φ2, φ3))

= η1 ◦ ∂(W (φ2, φ3)) +∇Fe1W (φ2, φ3)

= W (φ1, δ(W (φ2, φ3))). (5.7)

�

Corollary 5.14. For every φ ∈ Γ(Ê) and ξ ∈ Γ(F ),

Θ(φ)(ξ) = W (φ, δ(ξ))

holds.

Proof. Indeed, from Eq. (3.48) it is easy to see that W : S2(Ê) //F is surjective, therefore
we can write ξ = W (φ1, φ2) for some φ1, φ2 ∈ Γ(Ê), and the corollary follows from Eq.
(5.7).

�

Proposition 5.15. For every φ1, φ2 ∈ Γ(Ê) and ε ∈ Γ(E∗),

ρ̂(φ1)(〈φ2, ε〉) = 〈[φ1, φ2], ε〉+ 〈φ2,Ψ(φ1)(ε)〉+ ρ̂(φ2)(〈φ1, ε〉). (5.8)

Proof. Using properties 1 and 5 of Def. 4.6 and Eq. (4.5), we have

〈[φ1, φ2], ε〉 = 〈π([φ1, φ2]), ε〉 = 〈∆Ψ(φ1, π(φ2)), ε〉
= ρ̂(φ1)(〈π(φ2), ε〉)− ρ̂(φ2)(π(φ1), ε〉)− 〈Ψ(φ1)(ε), π(φ2)〉.

whereby, rearranging terms, we obtain (5.8).
�
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Proposition 5.16. For every φ1, φ2 ∈ Γ(Ê) and ε ∈ Γ(E∗),

〈∂(W (φ1, φ2)), ε〉 = −〈φ1,Ψ(φ2)(ε)〉 − 〈φ2,Ψ(φ1)(ε)〉. (5.9)

Proof. In the following computations we will use Eq. (4.5), properties 5 and 7 of Def. 4.6
and Eq. (4.3):

−〈φ1,Ψ(φ2)(ε)〉 − 〈φ2,Ψ(φ1)(ε)〉 = 〈∆Ψ(Φ1, π(φ2)), ε〉 − ρ̂(φ1)(〈π(φ2), ε〉)
+ ρ̂(φ2)(〈π(φ1), ε〉) + 〈∆Ψ(Φ2, π(φ1)), ε〉
− ρ̂(φ2)(〈π(φ1), ε〉) + ρ̂(φ1)(〈π(φ2), ε〉)

= 〈[φ1, φ2] + [φ2, φ1], ε〉 = 〈∂(W (φ1, φ2)), ε〉.

�

Proposition 5.17. For every φ ∈ Γ(Ê) and f ∈ C∞(M),

Ψ(φ)(ρ∗(df)) = 0 (5.10)

holds.

Proof. Since Q2 = 0, we have from Eqs. (4.9) and (4.11),

Ψ(φ)(ρ∗(df)) = 〈φ,Q(Q(f))〉 = 0.

�

5.2.2 The correspondence: Lie 2-algebroids ! VB-Courant algebroids

In Eqs. a), b), c), d) and e) of Rmk. E.26 we saw how to “transport” the VB -algebroid
on DB to (D∗B)∗C∗ and vice versa. We will use this insight in order to transport a Lie 2-
algebroid on the linear bundle of (DF ∗)

∗
E
∼= D to a VB -Courant algebroid structure on

D∗F ∗ and vice versa.

Theorem 5.18. Lie 2-algebroid structures on a metric vector sequence Ê are equivalent
to VB-Courant algebroids on the corresponding metric double vector bundle.

Proof. Lie 2-algebroids //VB-Courant algebroids.
Suppose we have a Lie 2-algebroid structure on Ê. By Prop. 5.9, in order to obtain a

VB -Courant algebroid structure on D∗F ∗ , we only need to define the VB -Courant algebroid
structure data on linear and core sections and verify a ◦ a∗ = 0 and properties 1,2,4 and
5 of Def. 5.1 for those types of sections. Thereby we define the data ([[·, ·]], 〈·, ·〉D∗

F∗
, a) on

D∗F ∗ as follows. Consider the isomorphism Z : ÊF // Ê of Prop. C.33, where ÊF is the

linear bundle corresponding to Γlin(F,D∗F ∗) and Ê is the already introduced linear bundle
corresponding to Γlin(E,D), then we define

• The linear metric 〈·, ·〉 is the one given by Eqs. (3.55) and (3.56) of Rmk. 3.51.
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• The anchor map is given by

a(σ)(f) := ρ̂(Z(σ))(f), a(ε)(f) := 0 (5.11)

a(σ)(ξ) := Θ(Z(σ))(ξ), a(ε)(ξ) := 〈∂(ξ), ε〉,

for all σ ∈ Γ(ÊF ), ξ ∈ Γ(F ), ε ∈ Γ(E∗) and f ∈ C∞(M).

• The bracket is given by

[[σ1, σ2]] := Z−1([Z(σ1), Z(σ2)]) [[σ, ε]] := Ψ(Z(σ))(ε) + ρ∗(d〈σ, ε〉D∗
F∗

)

[[ε1, ε2]] := 0 [[ε, σ]] := −Ψ(Z(σ))(ε), (5.12)

for all σ, σ1, σ2 ∈ Γ(ÊF ) and ε, ε1, ε2 ∈ Γ(E∗).

We first verify that for every τ ∈ F ∗ ⊗ E ⊂ ÊF we have a(τ) = aE ◦ τ . For τ = ξ ⊗ ε
this is equivalent to a(ξ ⊗ ε) = ξ ⊗ a(ε). So, let’s show this equation. For f ∈ C∞(M) we
have, from property 1 of Def. 4.6,

a(ξ ⊗ ε)(f) = ρ̂(Z(ξ ⊗ ε))(f)

= ρ̂(ε⊗ ξ)(f) = 0 = ξ ⊗ a(ε)(f).

For ξ′ ∈ Γ(F ∗), we have from property 4 of Def. 4.6,

a(ξ ⊗ ε)(ξ′) = Θ(Z(ξ ⊗ ε))(ξ′)
= 〈∂(ξ′), ε〉ξ = ξ ⊗ a(ε)(ξ′).

Now we need to verify properties 1,2,4 and 5 of Def. 5.1.

Property 5. We have three cases:

a) e = σ, e1 = σ1, e2 = σ2 are linear sections.

On one hand, by Eqs. (3.53) and (5.11),

a(σ)(〈σ1, σ2〉D∗
F∗

) = Θ(Z(σ))(W (Z(σ1), Z(σ2))).

On the other hand, by Eqs. (3.53) and (5.12),

〈[[σ, σ1]], σ2〉D∗
F∗

+ 〈σ1, [[σ, σ2]]〉D∗
F∗

=W ([Z(σ), Z(σ1)], Z(σ2))

+W (Z(σ1), [Z(σ), Z(σ2)]).

Then, from Prop. 5.13 we get property 5 in this case.

b) e = σ, e1 = σ1 are linear and e2 = ε is core.

Using Eqs. (5.11), (5.12), (3.54), (4.9) and Prop. 5.15, we have

a(σ)(〈σ1, ε〉D∗
F∗

) = ρ̂(Z(σ))(〈Z(σ1), ε〉)

= 〈[Z(σ), Z(σ1)], ε〉+ 〈Z(σ1),Ψ(Z(σ))(ε)〉
+ ρ̂(Z(σ1))(〈Z(σ), ε〉)

= 〈[[σ, σ1]], ε〉D∗
F∗

+ 〈σ1, [[σ, ε]]〉D∗
F∗
.
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c) e = ε core and e1 = σ1, e2 = σ2 linear.

Using Eqs. (3.53), (3.54), (5.11), (5.12) and Prop. 5.16, we have

a(ε)(〈σ1, σ2〉D∗
F∗

= 〈∂(W (Z(σ1), Z(σ2))), ε〉

= −〈Z(σ1),Ψ(Z(σ2))(ε)〉 − 〈Z(σ2),Ψ(Z(σ1))(ε)〉
= 〈[[ε, σ1]], σ2〉D∗

F∗
+ 〈σ1, [[ε, σ2]]〉D∗

F∗
.

Property 4. First observe that property 4 is equivalent to

[[e1, e2]] + [[e2, e1]] = D(〈e1, e2〉) ∀e1, e2 ∈ Γ(E), (5.13)

where D : C∞(M) // Γ(E) is defined by

〈D(f), ε〉 := a(e)(f) = 〈a∗(df), ε〉 ∀f ∈ C∞(M), e ∈ Γ(E).

In our case we have, for f ∈ C∞(M) and ξ ∈ Γ(F ),

D(f) = ρ∗(df) and D(ξ) = Z−1(δ(ξ)). (5.14)

Indeed, the first equation follows directly from Eqs. (5.11) and (4.9):

〈D(f), σ〉D∗
F∗

= ρ̂(Z(σ))(f) = ρ(π(Z(σ)))(f) = 〈ρ∗(df), σ〉D∗
F∗
.

As for the second equation, from Eqs. (5.11), (4.3), (3.53), (3.54) and Cor. 5.14, we
have

〈D(ξ), σ〉D∗
F∗

= Θ(Z(σ))(ξ) = W (Z(σ), δ(ξ))

= 〈Z−1(δ(ξ)), σ〉D∗
F∗

and

〈D(ξ), ε〉D∗
F∗

= 〈∂(ξ), ε〉 = 〈δ(ξ), ε〉
= 〈Z−1(δ(ξ)), ε〉D∗

F∗
.

Now we verify property 4, in its equivalent version, Eq. (5.13). We have two cases:

a) e1 = σ1, e2 = σ2 are linear sections.

In this case, we use Eqs. (5.12), (3.53) and (5.14), and property 7 of Def. 4.6,
and get

[[σ1, σ2]] = Z−1([Z(σ1), Z(σ2)])

= Z−1(δ(W (Z(σ1), Z(σ2)))

= D(〈σ1, σ2〉D∗
F∗

).

b) e1 = σ linear and e2 = ε core.

In this case we obtain directly from Eqs. (5.12) and (5.14),

[[σ, ε]] + [[ε, σ]] = Ψ(Z(σ))(ε) + ρ∗(d〈σ, ε〉)−Ψ(Z(σ))(ε)

= ρ∗(d〈σ, ε〉D∗
F∗

) = D(〈σ, ε〉D∗
F∗

).
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Property 2. We have three cases.

a) e1 = σ1, e2 = σ2 are linear sections.

We need to prove two identities:

a([[σ1, σ]])(f) = [a(σ1), a(σ2)](f) and a([[σ1, σ2]])(ξ) = [a(σ1), a(σ2)](ξ),
(5.15)

for every f ∈ C∞(M), ξ ∈ Γ(F ). The first identity is a direct consequence of
Prop. 4.19, and the second follows directly from Cor. H.11.

b) e1 = σ is linear and e2 = ε is core.

From Eqs. (5.11), (5.12) and (4.5), we have, for every ξ ∈ Γ(F ),

a([[σ, ε]])(ξ) = 〈∂(ξ),Ψ(Z(σ))(ε) + ρ∗(d〈σ, ε〉)〉
= ρ̂(Z(σ))〈∂(ξ), ε〉 − 〈∆Ψ(Z(σ), ∂(ξ)), ε〉. (5.16)

On the other hand, using Eqs. (5.11) and property 2 of Def. 4.17, we obtain

[a(σ), a(ε)](ξ) = a(σ)(a(ε)(ξ))− a(ε)(a(σ)(ξ))

= ρ̂(Z(σ))(〈∂, ε〉 − 〈∂(Θ(Z(σ))(ξ)), ε〉
= ρ̂(Z(σ))(〈∂(ξ), ε〉 − 〈∆Ψ(Z(σ), ∂(ξ)), ε〉. (5.17)

From (5.16) and (5.17) it follows

a([[σ, ε]]) = [a(σ), a(ε)].

c) e1 = ε core and e2 = σ linear.

On one had, from (5.11) and (5.12) we have

a([[ε, σ]])(ξ) = −〈∂(ξ),Ψ(Z(σ))(ε)〉. (5.18)

On the other hand, from (5.17), (4.5) and Cor. 4.16,

[a(ε), a(σ)](ξ) = −[a(σ), a(ε)](ξ)

= −ρ̂(Z(σ))(〈∂(ξ), ε〉) + 〈∆Ψ(Z(σ), ∂(ξ)), ε〉
= ρ(∂(ξ))(〈Z(σ), ε〉 − 〈Ψ(Z(σ))(ε), ∂(ξ)〉
= −〈∂(ξ),Ψ(Z(σ))(ε)〉. (5.19)

From (5.18) and (5.19) we conclude that

a([[ε, σ]]) = [a(ε), a(σ)].

Property 1. Finally we must show Jacobi identity for [[·, ·]]. By lemma 2.6.4 of D. Royten-
berg’s thesis [58], or rather by the proof of this lemma, we can conclude from prop-
erties 2,4 and 5, proven above, that the Jacobiator

J(e1, e2, e3) := [[[[e1, e2]], e3]] + [[e2, [[e1, e2]]]]− [[e1, [[e2, e3]]]] (5.20)

is completely skew-symmetric in e1, e2, e3, where ei is a linear or a core section for
each i = 1, 2, 3. On the other hand, by property 3 of Def. 5.4, J is zero whenever
two sections are core. Therefore, in order to prove property 1 of Def. 5.1, we have
only two cases to work.
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a) e1 = σ1, e2 = σ2, e3 = σ3 are linear sections.

This case follows directly from Eq. (5.12) and property 1 of Def. 4.17.

b) e1 = σ1, e2 = σ2 linear and e3 = ε core.

On one hand, directly from (5.12), we have (omitting annoying long overlines
on the right-hand side)

[[σ1, [[σ2, ε]]]] = Ψ(Z(σ1))
(

Ψ(Z(σ2))(ε) + ρ∗(d〈σ2, ε〉D∗
F∗

)
)

+ ρ∗(d〈σ1, [[σ2, ε]]〉D∗
F∗

)

= Ψ(Z(σ1))(Ψ(Z(σ2))(ε)) + Ψ(Z(σ1))(ρ∗(d〈σ2, ε〉D∗
F∗

))

+ ρ∗(d〈Z(σ1),Ψ(Z(σ2))(ε)〉) + ρ∗ (d(ρ̂(Z(σ1))(〈Z(σ2), ε〉))) .
(5.21)

Analogously,

[[σ2, [[σ1, ε]]]] = Ψ(Z(σ2))(Ψ(Z(σ1))(ε)) + Ψ(Z(σ2))(ρ∗(d〈σ1, ε〉D∗
F∗

))

+ ρ∗(d〈Z(σ2),Ψ(Z(σ1))(ε)〉) + ρ∗ (d(ρ̂(Z(σ2))(〈Z(σ1), ε〉))) .
(5.22)

On the other hand, by (5.12), property 5 of Def. 4.6 and (4.5) it follows that

〈[[σ1, σ2]], ε〉D∗
F∗

= 〈π([Z(σ1), Z(σ2)], ε〉 = 〈∆Ψ(Z(σ1), π(Z(σ2))), ε〉
= ρ̂(Z(σ1))(〈Z(σ2), ε〉)− ρ̂(Z(σ2))(〈Z(σ1), ε〉)
− 〈Z(σ2),Ψ(Z(σ1))(ε)〉. (5.23)

Thereby, using (5.12), (4.58) and Eq. (5.23) above, we have (again omitting
annoying overlines on the right-hand side)

[[[[σ1, σ2]], ε]] = Ψ([Z(σ1), Z(σ2)])(ε) + ρ∗(d〈[[σ1, σ2]], ε〉D∗
F∗

)

= Ψ(Z(σ1))(Ψ(Z(σ2))(ε))−Ψ(Z(σ2))(Ψ(Z(σ1))(ε))

+ ρ∗(d〈σ1,Ψ(Z(σ2))(ε)〉)
+ ρ∗(d(ρ̂(Z(σ1))(〈Z(σ2), ε〉)))− ρ∗(d(ρ̂(Z(σ2))(〈Z(σ1), ε〉)))
− ρ∗(d〈Z(σ2),Ψ(Z(σ1))(ε)〉). (5.24)

From (5.21), (5.22), (5.24) and (5.10), we obtain

[[σ1, [[σ2, ε]]]] = [[σ2, [[σ1, ε]]]] + [[[[σ1, σ2]], ε]]

+ Ψ(Z(σ1))(ρ∗(d〈σ2, ε〉D∗
F∗

))−Ψ(Z(σ2))(ρ∗(d〈σ1, ε〉D∗
F∗

))

= [[σ2, [[σ1, ε]]]] + [[[[σ1, σ2]], ε]].

Hence, we have verified properties 1,2,4 and 5 of Def. 5.1 for W = Γlin(D∗F ∗)⊕Γcore(D
∗
F ∗).

It remains to check a ◦ a∗ = 0, for which it suffices to take only sections of the form df ,
f ∈ C∞(M) and dξ, ξ ∈ C∞lin(F ∗) ∼= Γ(F ). For any f ∈ C∞(M) we can always find

σ ∈ Γ(ÊF ) and ε ∈ Γ(E∗) such that f = 〈σ, ε〉D∗
F∗
. Then, from properties 4 and 2 we

have

a(a∗(df)) = a(D(f)) = a(D(〈σ, ε〉D∗
F∗

) = a([[σ, ε]] + [[ε, σ]])

= [a(σ), a(ε)] + [a(ε), a(σ)] = 0.
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Analogously, since for every ξ ∈ Γ(F ) we can find σ1, σ2 ∈ Γ(ÊF ) such that 〈σ1, σ2〉D∗
F∗

=
ξ, it follows from the same argument above that

a(a∗(dξ)) = a(D〈σ1, σ2〉) = 0.

Therefore, by Prop. 5.9 we conclude that we have obtained a VB -Courant algebroid
structure on D∗F ∗ .

VB-Courant algebroids // Lie 2-algebroids.
Given a VB -Courant algebroid structure on D∗F ∗ , we define a Lie 2-algebroid structure

by

[φ1, φ2] := Z([[Z−1(φ1), Z−1(φ2)]]), ρ̂(φ)(f) := a(Z−1(φ))(f), 〈∂(ξ), ε〉 := a(ε)(ξ)

Ψ(φ)(ε) := −[[ε, Z−1Z(φ)]] = [[Z−1(φ), ε]]−D(〈φ, ε〉), Θ(φ)(ξ) := a(Z−1(φ))(ξ).
(5.25)

We need to verify that ([·, ·], ρ̂, ϕ) is a Loday algebroid structure (Def. 4.17), where ϕ is
defined by Eq. (4.8), properties 1-7 of Def. 4.6 and property 2 of Def. 4.6. These are
simple verifications using properties 1-5 of Def. 5.1. The only properties we think are
worth writing down their verifications are 5 and 6 of Def. 4.6 and 2 of Def. 4.17. In order
to verify property 5 of Def. 4.6, we use property 5 of Def. 5.1,

〈[φ1, φ2], ε〉 = 〈[[Z−1(φ1), Z−1(φ2)]], ε〉D∗
F∗

= a(Z−1(φ1))(〈Z−1(φ2), ε〉D∗
F∗

)− 〈Z−1(φ2), [[Z−1(φ1), ε]]〉
= ρ̂(φ1)(〈π(φ2), ε〉 − ρ(π(φ2))(〈φ1, ε〉)− 〈Ψ(φ1)(ε), π(φ2)〉
= 〈∆Ψ(φ1, π(φ2)), ε〉. (5.26)

In order to prove property 6 of Def. 4.6, we use property 3 of Def. 5.1, and compute for
every φ, Ê and η = ε⊗ ξ,

[φ, η] = Z([[Z−1(φ), ξ ⊗ ε]])
= Z(ξ ⊗ [[Z−1(φ), ε]] + a(Z−1(φ))(ξ)⊗ ε)
= ε⊗Θ(φ)(ξ) + Ψ(Φ)(ε)⊗ ξ + ρ∗(d〈φ, ε〉).

On the other hand, for every e ∈ Γ(E), using property 2 of Def. 4.6 (which follows from
the derivation property of aD∗

F∗
), we have

Θ(φ) ◦ (ε⊗ ξ)(e) = Θ(φ)(〈e, ε〉ξ) = ρ̂(φ)(〈e, ε〉)ξ + 〈e, ε〉Θ(φ)(ξ),

whence,
ε⊗Θ(φ)(ξ) = Θ(φ) ◦ (ε⊗ ξ)− ρ̂(φ)(〈·, ε〉)ξ,

whereby, from (5.26), and Eq. (4.5), we get

[φ, η] = Θ(φ) ◦ η − η ◦∆Ψ(φ, ·).
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Finally, we verify property 2 of Def. 4.17. By property 2 of Def. 5.1, we have

〈∂ ◦Θ(φ)(ξ), ε〉 = a(ε)(a(Z−1(φ))(ξ))

= a(Z−1(φ))(a(ε)(ξ)) + a([[ε, Z−1(φ)]])(ξ)

= ρ̂(φ)(〈∂(ξ), ε〉 − 〈Ψ(φ)(ε), ∂(ξ)〉. (5.27)

On the other hand, since ∂(ξ) = π(D(ξ)), from a ◦ a∗ = 0 we have in particular

ρ(∂(ξ))(f) = a(D(ξ))(f) = a ◦ a∗(dξ)(f) = 0, ∀ ξ ∈ Γ(F ), f ∈ C∞(M),

whereby, from Eq. (4.5),

〈∆Ψ(φ, ∂(ξ)), ε〉 = ρ̂(φ)(〈∂(ξ), ε〉 − ρ(∂(ξ))(〈φ, ε〉 − 〈Ψ(φ)(ε), ∂(ξ)〉
= ρ̂(φ)(〈∂(ξ), ε〉 − 〈Ψ(φ)(ε), ∂(ξ)〉. (5.28)

From (5.27) and (5.28) we conclude that

∂ ◦Θ = ∆Ψ ◦ ∂.

�

Remark 5.19. In Prop. 6.36 we will wee that when the Lie 2-algebroid structure comes
from a Courant algebroid (E∗, 〈·, ·〉, [[·, ·]], a) (cf. [59] and Sec. 6.4 below), then the cor-
responding VB -Courant algebroid corresponding to this Lie 2-algebroid is precisely the
tangent prolongation of E∗ on TE∗ described in Prop. 5.11, now with E = E∗.

From the above theorem, we obtain another non-trivial example of Lie 2-algebroid,
the one that corresponds to the standard Courant algebroid over a vector bundle (see
Prop. 5.12). Let’s see explicitly how the standard Courant structure is transported to the
corresponding Lie 2-algebroid following the procedure indicated in the proof of Thm. 5.18.
First, using the identifications given in Sec. F.2 of the appendix, and the characterization
of the dual sequence in Cor. 3.53, we can identify the pairs of the form

(T α,X∗), α ∈ Γ(A∗), X∗ ∈ Xlin(A∗)

with sections of the dual linear bundle Ê which in this case corresponds to the linear
sections of the double vector bundle (TA)∗TM⊕A∗ . The identification of Cor. 3.53 is given
by

(T α,X∗)(T a, da) = (d〈α, a〉, X∗(a)) ∈ Γ(T ∗M ⊕A), ∀a ∈ Γ(A);

and π : Ê // E = TM ⊕A∗ is given by

〈π(T α,X∗), (a, df)〉 = 〈α, a〉+ σ(X∗)(f), a ∈ Γ(A), f ∈ C∞(M).

Therefore, we have identified Ê // E with J1A∗ ⊕ CDO(A) // TM ⊕ A∗. On the
other hand, the linear bundle ÊF corresponding to TA is Xlin(A) ⊕ Ω1

lin(A). Under this

identifications, the map Z : Ê // ÊF of Prop. C.33 used in Thm. 5.18 above, is given by

Z(X, dα) // (T α,X∗),
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where we are identifying T α with the first jet prolongation of α, j1α ∈ J1A∗, and X∗ ∈
CDO(A) is the covariant differential operator dual to X, when we interpret X ∈ Xlin(A)
as a covariant differential operator in CDO(A∗). Then, the procedure indicated in the
proof of Thm. 5.18, gives us the Lie 2-algebroid structure on

(T ∗M ⊕A)⊗A∗ // J1A∗ ⊕CDO(A) // TM ⊕A∗

as follows:

• [(T α1, X
∗
1 )(T α2, X

∗
2 )] = (T (X∗1 (α2)), [X∗1 , X

∗
2 ]), αi ∈ Γ(A∗), X∗i ∈ CDO(A);

• ρ̂(T α,X∗) = σ(X∗), α ∈ Γ(A∗), X∗ ∈ CDO(A);

• 〈∂(α), (df, a)〉 = 〈α, a〉, α ∈ Γ(A∗), a ∈ Γ(A);

• For α ∈ Γ(A∗), a ∈ Γ(A), X∗ ∈ CDO(A), f ∈ C∞(M),

Ψ(T α,X∗)(df, a) = (dσ(X∗)(f), X∗(a))− (dσ(X∗)(f) + d〈α, a〉, 0)

= (−d〈α, a〉, X∗(a));

• Θ(T α,X∗)(β) = X(β), α, β ∈ Γ(A∗), X∗ ∈ CDO(A).

5.3 Exact V-twisted Courant algebroids

In a recent paper [24], M. Grutzmann and T. Strobl introduced a sort of vector bundle
analogue for exact Courant algebroids [62], which they call exact V-twisted Courant alge-
broids. Our aim in this last section is to show that there is a canonical 1:1 correspondence
between exact V-twisted Courant algebroids (actually, we slightly modify the definition
of [24] by adding axiom 5 below, which is redundant in the case rankF > 1) and VB -
Courant algebroids on the double dual D∗F ∗ of a self-conjugate DVB (D;E,F ;H), and
hence, by Thm. 5.18, a canonical 1:1 correspondence with Lie 2-algebroids, or, by Thm.
4.20, a canonical 1:1 correspondence with NQ degree 2 manifolds. We remark that we
obtain the correspondences between these structures without splittings.

Definition 5.20. An exact V-twisted Courant algebroid consists in the following data:

• a triplet of vector bundles, which we denote by (F, Ê, E),

• a surjective vector bundle morphism π : Ê // E,

• an anchor map ρ : E // TM ,

• a bracket [·, ·] on Γ(Ê),

• a non-degenerate surjective symmetric product (·, ·) taking values in F .

• a vector bundle morphism Θ : Ê //CDO(F ).

These structure data are subject to the following axioms:
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1. π ◦ π∗ = 0, where π∗ : E∗ ⊗ F // Ê is the adjoint of π with respect to (·, ·):

(π∗(η), φ) := η(π(φ)),

2. i) [φ1, fφ2] = f [φ1, φ2] + ρ̂(φ1)(f)φ2,

ii) Θ(φ)(fξ) = fΘ(φ)(ξ) + ρ̂(φ)(f)ξ,

where ρ̂ : Ê // TM is given by ρ̂ := ρ ◦ π,

3. [φ1, [φ2, φ3]] = [[φ1, φ2], φ3] + [φ2, [φ1, φ3]],

4. ([φ1, φ2], φ2) = 1
2Θ(φ1)(φ2, φ2) = (φ1, [φ2, φ2]).

5. π([φ, π∗(η)]) = 0.

Remark 5.21. The adjoint π∗ is well-defined because of both, the non-degeneracy and
the surjectivity of (·, ·).

Remark 5.22. The 5th axiom of the definition above does not form part of the original
definition of [24]. We include it in order to obtain the canonical 1:1 correspondence of Thm.
5.23 below. When rankF > 1, axiom 5 holds automatically. Indeed, observe that axiom 1
implies that π∗(E∗⊗F ) is isotropic with respect to (·, ·), then for any ε⊗ ξ ∈ E∗⊗F and
any φ ∈ Ê, take ξ′ ∈ Γ(F ) linearly independent from ξ, then, axiom 4, after polarization,
implies that for every ε′ ∈ Γ(E∗),

〈π([φ, π∗(ε⊗ ξ)]), ε′〉ξ′ = ([φ, π∗(ε⊗ ξ)], π∗(ε′ ⊗ ξ′)) = Θ(φ)((ε⊗ ξ, ε′ ⊗ ξ′))− (ε⊗ ξ, [φ, ε′ ⊗ ξ′])
= −〈π([φ, ε′ ⊗ ξ′]), ε〉ξ,

thus the linear independence of ξ and ξ′ implies

〈π([φ, π∗(ε⊗ ξ)]), ε′〉 = 〈π([φ, ε′ ⊗ ξ′]), ε〉 = 0.

Since ε′ ∈ Γ(E∗) was arbitrary, we conclude that π([φ, π∗(ε ⊗ ξ)]) = 0. By R-bilinearity
of [·, ·], item i) of axiom 2 and axiom 1, we conclude

π([φ, π∗(η)]) = 0

for any φ ∈ Γ(Ê), η ∈ Γ(E∗ ⊗ F ).
In [24], an explicit example is described, showing that this equation does not hold

necessarily when rankF = 1.

Theorem 5.23. There is a canonical 1:1 correspondence, up to isomorphisms, between
exact V-twisted Courant algebroids and VB-Courant algebroids.

Proof. Suppose we are given an exact V -twisted Courant algebroid. By axiom 1 of Def.
5.20, we have the exact metric vector sequence

0 // E∗ ⊗ F
π∗
// Ê

π
// E // 0, (5.29)
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which, by Thm. 3.58 is equivalent to an involutive sequence

0 // Λ2E∗
ι
// F̃ ∗

p
// F // 0. (5.30)

which in turn we saw in Thm. 3.40 to be equivalent to a self-conjugate DVB

D(Ê)

q1

��

q2
// E

qE

��

F

E
qE

//M ,

(5.31)

and this is equivalent, by Prop. 3.38, to a metric DVB structure on the dual DF ∗ := D(Ê)∗h

DF ∗

qF∗

��

qE∗ // E∗

qE
∗

��

E

F ∗
qF
∗
//M ,

(5.32)

so that the linear bundle F̂ ∗, corresponding to Γlin(DF ∗) fits in the exact sequence

0 // E∗ ⊗ E∗
ι
// F̂ ∗

p
// F ∗ // 0, (5.33)

which is the natural extended involutive sequence corresponding to (5.30).
Now we want to define a VB -Courant algebroid structure on D∗F ∗ . As we did in Thm.

5.18, we will identify the linear bundle of D∗F ∗ with Ê, the linear bundle of D, via the
isomorphism Z. We will use the notation σ for sections in Γlin(D∗F ∗) and also for sections
in Γlin(D), avoiding to write down each time the isomorphism Z and its inverse (contrary
to what we did in the proof of Thm. 5.18). Also, linear sections of the form π∗(ε⊗ ξ) we
will write as ξ ⊗ ε, that is, as the product of the linear function ξ ∈ C∞lin(F ∗) and the core
section ε ∈ Γcore(D

∗
F ∗).

Before defining the structure data of the VB -Courant algebroid, we notice that because
of the non-degeneracy and surjectivity of (·, ·) we can obtain a well-defined map D :
Γ(F ) // Γ(Ê), given by

(D(ξ), σ) := Θ(σ)(ξ), ∀ξ ∈ Γ(F ), σ ∈ Ê. (5.34)

Also we can define a map, which we will denote also by D, between the spaces D :
C∞(M) // Γ(E∗), given by

〈D(f), e〉 := ρ(e)(f), ∀f ∈ C∞(M), e ∈ Γ(E). (5.35)

We will use Cor. 5.9, so that we need to define the Courant algebroid structure only for
linear and core sections. So we define

•
〈σ1, σ2〉 := (σ1, σ2), 〈σ, ε〉 = 〈ε, σ〉 := 〈π(σ), ε〉, 〈ε1, ε2〉 = 0, (5.36)
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•

a(σ)(ξ) := Θ(σ)(ξ), a(ε)(ξ) := 〈D(ξ), ε〉,
a(σ)(f) := ρ̂(σ)(f), a(ε)(f) := 0, (5.37)

•

[[σ1, σ2]] := [σ1, σ2], 〈[[σ, ε1]], ε2〉 := 0,

〈[[σ1, ε]], σ2〉 := a(σ1)(〈σ2, ε〉)− 〈[[σ1, σ2]], ε〉, [[ε, σ]] := −[[σ, ε]] +D(〈σ, ε〉). (5.38)

First of all, we need to verify bilinearity of 〈·, ·〉 when we take σ2 = ξ⊗ ε = π∗(ε⊗ ξ). This
is a direct consequence of the definition of π∗ (cf. axiom 1 of Def. 5.20):

〈σ, ξ ⊗ ε〉 := (σ, π∗(ε⊗ ξ)) = 〈ε, π(σ)〉ξ = ξ〈σ, ε〉.

Next we must prove consistency of the definition of 〈[[σ, ε1]], ε2〉 with the definition of
〈[[σ1, ε]], σ2〉, in the case σ2 = ξ⊗ ε2. Here is where we need axiom 5. Indeed, on one hand
by the definition of 〈[[σ, ε1]], ε2〉 and the bilinearity of 〈·, ·〉, we have

〈[[σ1, ε]], ξ ⊗ ε2〉 = 〈[[σ1, ε]], ε2〉ξ = 0,

and on the other hand, by the definition of 〈[[σ1, ε]], σ2〉 and axiom 5 of Def. 5.20, we have

〈[[σ, ε]], ξ ⊗ ε2〉 = a(σ)(〈ξ ⊗ ε2, ε〉)− 〈[[σ, ξ ⊗ ε2]], ε〉
= 〈[σ, π∗(ε2 ⊗ ξ)], ε〉 = 0,

thus, both ways of computing 〈[[σ, ε]], ξ ⊗ ε2〉 coincide.
As for the anchor map, so far we have it defined only on linear and core sections. In

order to obtain a DVB morphism a : D∗F ∗
// TF ∗ we need to check the compatibility

condition (C.37) of Prop. C.24, which is equivalent to the condition

a(ξ ⊗ ε) = ξ ⊗ a(ε). (5.39)

By the definitions of a(σ)(f) and a(ε)(f), and axiom 1 of Def. 5.20, it follows

a(ξ ⊗ ε)(f) = 0 = ξ a(ε)(f). (5.40)

Now, given any ξ2 ∈ Γ(F ), by the surjectivity of (·, ·), we can find σ1, σ2 ∈ Γ(Ê) such that
ξ2 = 〈σ1, σ2〉, whereby, using the polarized version of axiom 4 of Def. 5.20 and (5.37),

a(ξ1 ⊗ ε1)(ξ2) = a(ξ1 ⊗ ε1)(〈σ1, σ2〉) = 〈ξ1 ⊗ ε1, [[σ1, σ2]] + [[σ2, σ1]]〉
= ξ1 〈ε1,D(〈σ1, σ2〉)〉 = ξ1 a(ε1)(ξ2). (5.41)

From (5.40) and (5.41) it follows (5.39).
Now, if we want to apply Cor. 5.9, we need to verify that properties 1,2,4 and 5 of

Def. 5.1 and a ◦ a∗ = 0 are satisfied by the structure defined above (only on linear and
core sections).
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Property 5. The case for e = σ, e1 = σ1 and e2 = σ2 linear sections, follows immediately
from axiom 4 after polarization. The case with e = σ1, e1 = σ2 linear and e2 = ε
core follows from Eq. (5.38). The only non-trivial case remaining is when e = ε is
core, and e1 = σ1, e2 = σ2 are linear. From axiom 4 (after polarization), (5.38) and
(5.37), we obtain the following,

〈[[ε, σ1]], σ2〉+ 〈σ1, [[ε, σ2]]〉 = −〈[[σ1, ε]], σ2〉+ 〈D(〈σ1, ε〉), σ2〉
− 〈[[σ2, ε]], σ1〉+ 〈D(〈σ2, ε〉), σ1〉

= −a(σ1)(〈σ2, ε〉) + 〈[[σ1, σ2]], ε〉+ a(σ2)(〈σ1, ε〉
− a(σ2)(〈σ1, ε〉) + 〈[[σ2, σ1]], ε〉+ a(σ1)(〈σ2, ε〉

= 〈D(〈σ1, σ2〉), ε〉 = a(ε)(〈σ1, σ2〉).

Property 4. Again the case for e = σ, e1 = σ1 and e2 = σ2 linear sections follows from
axiom 4 after polarization. This case implies, form (5.34) that

[[σ1, σ2]] + [[σ2, σ1]] = D(〈σ1, σ2〉), (5.42)

which in turn implies, from (5.37)

a(ε)(〈σ1, σ2〉) = 〈D(〈σ1, σ2〉), ε〉 = 〈ε, [[σ1, σ2]] + [[σ2, σ1]]〉.

Finally, the case e = σ, e1 = σ1 linear and e2 = ε core follows directly from (5.38)
and (5.35).

Property 2. We have three cases.

a) e1 = σ1, e2 = σ2.

First we need to verify Leibniz rule with respect to the product by a function.
Take σ1, σ2, σ3 ∈ Γ(Ê) and f ∈ C∞(M), then, by property 5 already proven
above, we have,

〈[[σ1, fσ2]], σ3〉 = a(σ1)(〈fσ2, σ3〉)− 〈fσ2, [[σ1, σ3]]〉
= a(σ1)(f)〈σ2, σ3〉+ fa(σ1)(〈σ2, σ3〉)− f〈σ2, [[σ1, σ3]]〉
= 〈f [[σ1, σ2]], σ3〉+ 〈a(σ1)(f)σ2, σ3〉. (5.43)

Then, using Leibniz property together with Jacobi identity for linear sections,
which we already have from axiom 3 of Def. 5.20, we conclude, in the exact
manner we did in Prop. 4.19,

a([[σ1, σ2]])(f) = [a(σ1), a(σ2)](f). (5.44)

In order to prove the same identity for a linear function ξ instead of f , we
need Leibniz rule with respect to the product of a linear function and also
Jacobi identity for e1, e2 linear and e3 core. More precisely, we have, for every
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σ1, σ2 ∈ Γ(Ê), ξ ∈ Γ(F ) and ε ∈ Γcore(D
∗
F ∗), again using property 5 already

proven,

〈[[σ1, ξ ⊗ ε]], σ2〉 = a(σ1)(〈ξ ⊗ ε, σ2〉)− 〈ξ ⊗ ε, [[σ1, σ2]]〉
= a(σ1)(〈σ2, ε〉ξ)− 〈[[σ1, σ2]], ε〉ξ
= a(σ1)(〈σ2, ε〉)ξ + 〈σ2, ε〉a(σ1)(ξ)− 〈[[σ1, σ2]], ε〉ξ
= 〈[[σ1, ε]], σ2〉ξ + 〈σ2, ε〉a(σ1)(ξ)

= 〈ξ ⊗ [[σ1, ε]] + a(σ1)(ξ)⊗ ε, σ2〉. (5.45)

Now, as we said above, we need Jacobi identity for e1, e2 linear and e3 core.
Using (5.38) repeatedly, we have, for σ1, σ2, σ3 ∈ Γ(Ê) and ε ∈ Γcore(D

∗
F ∗),

〈[[σ1, [[σ2, ε]]]], σ3〉 = a(σ1)〈σ3, [[σ2, ε]]〉 − 〈[[σ1, σ3]], [[σ2, ε]]〉
= a(σ1)(a(σ2)(〈σ3, ε〉))− a(σ1)(〈[[σ2, σ3]], ε〉)
− a(σ2)(〈[[σ1, σ3]], ε〉) + 〈[[σ2, [[σ1, σ3]]]], ε〉, (5.46)

〈[[[[σ1, σ2]], ε]], σ3〉 = a([[σ1, σ2]])(〈σ3, ε〉)− 〈[[[[σ1, σ2]], σ3]], ε〉, (5.47)

〈[[σ2, [[σ1, ε]]]], σ3〉 = a(σ2)〈σ3, [[σ1, ε]]〉 − 〈[[σ2, σ3]], [[σ1, ε]]〉
= a(σ2)(a(σ1)(〈σ3, ε〉))− a(σ2)(〈[[σ1, σ3]], ε〉)
− a(σ1)(〈[[σ2, σ3]], ε〉) + 〈[[σ1, [[σ2, σ3]]]], ε〉. (5.48)

From (5.46), (5.47) and (5.48), after cancelling terms, we obtain

〈[[σ1, [[σ2, ε]]]]− [[[[σ1, σ2]], ε]]− [[σ2, [[σ1, ε]]]], σ3〉 = 0. (5.49)

Then, using (5.45) repeatedly, we have the following

[[σ1, [[σ2, ξ ⊗ ε]]]] = [[σ1, ξ ⊗ [[σ2, ε]]]] + [[σ1, a(σ2)(ξ)⊗ ε]]
= ξ ⊗ [[σ1, [[σ2, ε]]]] + a(σ1)(ξ)⊗ [[σ2, ε]]

+ a(σ2)(ξ)⊗ [[σ1, ε]] + a(σ1)(a(σ2)(ξ))⊗ ε, (5.50)

[[[[σ1, σ2]], ξ ⊗ ε]] = ξ ⊗ [[[[σ1, σ2]], ε]] + a([[σ1, σ2]])(ξ)⊗ ε, (5.51)

[[σ2, [[σ1, ξ ⊗ ε]]]] = ξ ⊗ [[σ2, [[σ1, ε]]]] + a(σ2)(ξ)⊗ [[σ1, ε]]

+ a(σ1)(ξ)⊗ [[σ2, ε]] + a(σ2)(a(σ1)(ξ))⊗ ε. (5.52)

Then, using axiom 3 of Def. 5.20 and (5.49), adding (5.50), (5.51) and (5.52),
after cancelling terms, we get

(a([[σ1, σ2]])(ξ)− [a(σ1), a(σ2)](ξ))⊗ ε = 0,

thus, since ε is arbitrary,

a([[σ1, σ2]])(ξ)− [a(σ1), a(σ2)](ξ) = 0. (5.53)

From Eqs. (5.44) and (5.53) we obtain

a([[σ1, σ2]]) = [a(σ1), a(σ2)]. (5.54)
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b) e1 = σ, e2 = ε.

Using repeatedly (5.45) and (5.39), we have, for every σ ∈ Γ(Ê), ε1, ε2 ∈ Γ(E∗)
and ξ1, ξ2 ∈ Γ(F ),

[[σ, [[ξ1 ⊗ ε1, ξ2 ⊗ ε2]]]] = [[σ, ξ2 ⊗ [[ξ1 ⊗ ε1, ε2]]]] + [[σ, a(ξ1 ⊗ ε1)(ξ2)⊗ ε2]]

= ξ2 ⊗ [[σ, [[ξ1 ⊗ ε1, ε2]]]] + a(σ)(ξ2)⊗ [[ξ1 ⊗ ε1, ε2]]

+ a(ξ1 ⊗ ε1)(ξ2)⊗ [[σ, ε2]] + a(σ)a(ξ1 ⊗ ε1)(ξ2))⊗ ε2

(5.55)

[[[[σ, ξ1 ⊗ ε1]], ξ2 ⊗ ε2]] = ξ2 ⊗ [[[[σ, ξ1 ⊗ ε1]], ε2]] + a([[σ, ξ1 ⊗ ε1]])(ξ2)⊗ ε2 (5.56)

[[ξ1 ⊗ ε1, [[σ, ξ2 ⊗ ε2]]]] = [[ξ1 ⊗ ε1, ξ2 ⊗ [[σ, ε2]]]] + [[ξ1 ⊗ ε1, a(σ)(ξ2)⊗ ε2]]

= ξ2 ⊗ [[ξ1 ⊗ ε1, [[σ, ε2]]]] + a(ξ1 ⊗ ε1)(ξ2)⊗ [[σ, ε2]]

+ a(σ)(ξ2)⊗ [[ξ1 ⊗ ε1, ε2]] + a(ξ1 ⊗ ε1)(a(σ)(ξ2))⊗ ε2.
(5.57)

Adding Eqs. (5.55), (5.56) and (5.57) we get, using (5.49) and cancelling terms,

0 =[a(σ)(a(ξ1 ⊗ ε1)(ξ2))− a(ξ1 ⊗ ε1)(a(σ)(ξ2))

− a([[σ, ξ1 ⊗ ε1]])(ξ2)]⊗ ε2.

Since ε2 is arbitrary, it follows that the term in brackets [ ] is zero. Using again
(5.39) and (5.45), we obtain

0 =a(ε1(ξ2)a(σ)(ξ1) + a(σ)(a(ε1)(ξ2)) ξ1 − a(ε1)(a(σ)(ξ2) ξ1

− a([[σ, ε1]])(ξ2) ξ1 − a(ε1)(ξ2)a(σ)(ξ1)

=[a(σ)(a(ε1)(ξ2))− a(ε1)(a(σ)(ξ2)− a([[σ, ε1]])(ξ2)] ξ1,

which implies, since ξ1 ∈ Γ(F ) is arbitrary, that the term in brackets [ ] is zero,
and since ξ2 ∈ Γ(F ) is arbitrary, it follows finally

a([[σ, ε1]])− [a(σ), a(ε1)] = 0. (5.58)

c) e1 = ε, e2 = σ.

From the definition of a in (5.37), item b) above, and skew-symmetry of the
Lie bracket [·, ·] on X(F ), we have, for every ξ ∈ Γ(F ∗),

a([[ε, σ]])(ξ) = a(D(〈σ, ε〉))(ξ)− a([[σ, ε]])(ξ)

= [a(ε), a(σ)](ξ) + a(D(〈σ, ε〉))
= [a(ε), a(σ)](ξ) + 〈D(ξ),D(〈σ, ε〉)〉
= [a(ε), a(σ)](ξ) + a(D(ξ))(〈σ, ε〉). (5.59)

Now, since (·, ·) is surjective, we can write ξ = 〈σ1, σ2〉 for suitable σ1, σ2 ∈
Γ(Ê), which by properties 4 and 2 for the case of linear sections, which were
already proven above, yields

a(D(ξ)) = a(D(〈σ1, σ2〉)) = a([[σ1, σ2]] + [[σ2, σ1]])

= [a(σ1), a(σ2)] + [a(σ2), a(σ2)] = 0. (5.60)
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From (5.59) and (5.60), we conclude that

a([[ε, σ]]) = [a(ε), a(σ)].

Therefore, we have obtained property 2 in the three cases.

Property 1. As we did in the proof of this same property in Thm. 5.18, relying in (the
proof of) lemma 2.6.4 of [58] and the properties 2, 4 and 5 proven above, we conclude
that the Jacobiator J (cf. (5.20)) is totally skew-symmetric when evaluated in linear
or core sections. Again as we argued in the proof of this property in Thm. 5.18,
J(e1, e2, e3) is zero whenever two sections are core, remaining only two non-trivial
cases.

a) e1 = σ1 e2 = σ2, e3 = σ3 are linear sections.

This case is equivalent to axiom 3 of Def. 5.20.

b) e1 = σ1 e2 = σ2 linear and e3 = ε core.

This case is precisely Eq. (5.49).

Thus, we have properties 1, 2, 4 and 5 checked for linear and core sections. The last thing
we need to check in order to apply Cor. 5.9 is a ◦a∗ = 0. It suffices to verify this equation
only for sections of the form df, dξ ∈ T ∗F for f ∈ C∞(M) and ξ ∈ Γ(F ) ∼= C∞lin(F ∗).

For f ∈ C∞(M), by (5.36), the surjectivity of π allows us to find σ ∈ Γ(Ê) and
ε ∈ Γcore(D

∗
F ∗) such that f = 〈σ, ε〉. Then, using properties 4 and 2 proven above, we

have

a ◦ a∗(df) = a(D(f)) = a(D(〈σ, ε〉)) = a([[σ, ε]] + [[ε, σ]])

= [a(σ), a(ε] + [a(ε), a(σ)] = 0.

For ξ ∈ Γ(F ), from a∗(dξ) = D(ξ) and (5.60) it follows

a ◦ a∗(dξ) = 0.

Hence, by Cor. 5.9 we have obtained a VB -Courant algebroid structure on D∗F ∗ from the

exact V -twisted Courant algebroid structure on Ê.

Conversely, if we start from a VB -Courant algebroid structure on the dual of a metric
DVB D∗F ∗ , then from equations (5.36), (5.37) and (5.38) we induce the corresponding
exact V -twisted Courant algebroid data on the linear sequence (5.29). It is not difficult
to verify that the data obtained satisfy indeed the axioms of Def. 5.20, and that these two
processes of going from an exact V -twisted Courant algebroid to a VB -Courant algebroid
and back, establish the desired canonical 1:1 correspondence.

�



Chapter 6

Poisson degree 2 manifolds

In this chapter we study the structure of a degree 2 manifold endowed with -2 graded
Poisson brackets, called Poisson degree 2 manifolds, a particular case of Poisson k-manifolds
introduced in Def. 3.4. Since Poisson structures appear naturally when performing re-
duction of symplectic structures, it is naturally to treat Poisson degree 2 manifolds in the
context of reduction of Courant algebroids [6].

After obtaining a geometric characterization in terms of the basic exact sequence (3.14),
we provide a geometric characterization of Poisson degree 2 manifolds in terms of the
corresponding involutive double vector bundle, arriving to double linear Poisson brackets,
invariant under the involution, giving rise to the category of what we call involutive double
linear Poisson bundles. When we go to the dual, we obtain a VB -algebroid structure which
is compatible with the linear metric corresponding to the transpose of the involution, a
structure introduced by D. Li-Bland [41] and studied by [29] under the name of metric
VB-algebroids.

Then we give a classification of regular Poisson manifolds in terms of certain Chevalley
cohomology groups. Finally we recover the symplectic case, studied by D. Roytenberg [59].

6.1 The categories of degree 2 Poisson manifolds and invo-
lutive Lie algebroid sequences

Recall that we already introduced Poisson k-manifolds in Def. 3.4. A Poisson degree
2 manifold is simply a Poisson k-manifold of degree 2.

A morphism between between two degree 2 Poisson manifolds, called a Poisson mor-
phism,

Ψ : (N , {·, ·}N ) // (M, {·, ·}M)

is a morphism between the degree 2 manifolds

Ψ = (ψ,ψ]) : N = (N,ON ) //M = (M,OM ),

such that the morphism of sheaves ψ] : OM //ψ∗ON preserves the Poisson brackets, that
is, for every U ⊂M , and every f, g ∈ OM(U), we have

ψ]({f, g}) = {ψ](f), ψ](g)}.
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Degree 2 Poisson manifolds, together with the morphisms between them, form a cate-
gory.

Theorem 6.1. Given a degree 2 manifold M, consider its corresponding involutive se-
quence (E, F̃ , p : F̃ −→ Λ2E), given by Prop. 3.7. Then there is a 1:1 correspondence
between degree -2 Poisson brackets on M and the following structure on the involutive
sequence:

• A symmetric bilinear form 〈·, ·〉 on E∗;

• A Lie algebroid structure ([·, ·], ρ) on F̃ ∗;

• A Lie algebroid 〈·, ·〉-preserving action, Ψ, of F̃ ∗ on E∗;

such that

• The brackets between a section ζ of F̃ ∗ and a section ε1 ∧ ε2 of Λ2E∗, seen inside
F̃ ∗ through the map Λ2E∗

ι−→ F̃ ∗, are given by

[ζ, ε1 ∧ ε2] = Ψ(ζ)(ε1) ∧ ε2 + ε1 ∧Ψ(ζ)(ε2). (6.1)

• The action Ψ of F̃ ∗ on E∗ restricted to Λ2E∗, which we denote by Ψ̃, is given by

Ψ̃(ε1 ∧ ε2)(ε) = 〈ε2, ε〉ε1 − 〈ε1, ε〉ε2. (6.2)

Proof. By Prop. 3.7, we only need to prove the equivalence between degre -2 Poisson
brackets on a degree 2 manifold and the data in the items of the statement. Suppose first
that a degree to M is endowed with degree -2 Poisson brackets {·, ·}. Then applying the
brackets to degree 1 functions ε1, ε2, which are identified with (local) sections of E∗, by
Leibniz rule and since the brackets have degree -2, we see that, for any f ∈ C∞(M),

{fε1, ε2} = f{ε1, ε2} = f{ε2, ε1} = {ε1, fε2},

thus getting a symmetric bilinear form 〈·, ·〉 on E∗.
Again by Leibniz’s rule, we see that, for a degree 2 function ζ ∈ A2 ∼= Γ(F̃ ∗),

{ζ, ·}

defines a derivation on C∞(M). Hence we obtain a vector bundle map ρ : F̃ ∗ // TM ,
given by

ρ(ζ)(f) := {ζ, f}.

Setting, for ζ1, ζ2 ∈ Γ(F̃ ∗),
[ζ1, ζ2] := {ζ1, ζ2},

defines Lie brackets on Γ(F̃ ∗), by graded skew-symmetry and Jacobi identity, and actually,
by Leibniz’s rule, ([·, ·], ρ) defines a Lie algebroid structure on F̃ ∗.

Next, we define a vector bundle map Ψ : F̃ ∗ //CDO(E∗) (over the identity), where
CDO(E∗) is the Lie algebroid whose sections are the covariant differential operators of
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sections of E (also called derivative endomorphisms), [·, ·] is given by the commutator, and
the anchor is given by the symbol map, by

Ψ(ζ)(ε) := {ζ, ε},

with ζ ∈ Γ(F̃ ∗) and ε ∈ Γ(E∗). That Ψ actually takes values on CDO(E∗) and is a Lie
algebroid morphism, follows from Leibniz’s rule and Jacobi identity. Also from Jacobi
identity it follows that Ψ preserves 〈·, ·〉, which, by definition, means that

ρ(ζ)(〈ε1, ε2〉) = 〈Ψ(ζ)(ε1), ε2〉+ 〈ε1,Ψ(ζ)(ε2)〉.

The compatibilities of [·, ·] and Ψ with the inclusion ι : Λ2E∗ // F̃ ∗, given in the last two
items of the statement, follow directly from Leibniz’s rule.

Conversely, suppose we are given the data in the statement. We use these data to
define

{A1,A1}; {A2,A0}; {A2,A1} and {A2,A2}.

We need to check that the brackets defined this way are compatible with graded skew-
symmetry, which follows directly from the symmetry of 〈, ·, ·〉 and the skew-symmetry of
[·, ·], and Leibniz’s rule. For a product ε1∧ ε2, it follows from the compatibility conditions
(6.1) and (6.2) and for a product fg it follows from the fact that ρ takes values on
the tangent bundle of M ; Jacobi identity restricted to functions belonging to A0,A1,A2

follows from Jacobi identity of [·, ·], from the preserving brackets property of ρ and from
the 〈·, ·〉-preserving property of Ψ.

We extend the definition to the whole structure sheaf OM by Leibniz’s rule and graded
skew-symmetry together with an induction argument. �

Remark 6.2. A consequence of (6.1) and (6.2) is that the brackets on Λ2E∗ satisfy

[ε1 ∧ ε2, ε3 ∧ ε4] = 〈ε2, ε3〉ε1 ∧ ε4 + 〈ε2, ε4〉ε3 ∧ ε1 − 〈ε1, ε3〉ε2 ∧ ε4 − 〈ε1, ε4〉ε3 ∧ ε2; (6.3)

in particular, the anchor map restricted to Λ2E∗ is zero, so that Λ2E∗ actually is a Lie
algebroid ideal of F , and the exact sequence

0 // Λ2E∗ // F̃ ∗ // F ∗ // 0, (6.4)

obtained by transposition of (3.3), turns into a Lie algebroid exact sequence.

The result above leads us to introduce the following definition.

Definition 6.3. An involutive Lie algebroid sequence is an involutive sequence

(E, F̃ , F̃
p
// Λ2E),

endowed with the structure given by Thm. 6.1, satisfying properties (6.1) and (6.2).

An involutive Lie algebroid morphism (ψ,ψ1, ψ2) : (F̃ // Λ2E) // (F̃ ′ // Λ2E′)
between two involutive Lie algebroid sequences, is an involutive morphism between the
underlying involutive sequences, such that:
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•
ψ∗(〈ε′1, ε′2〉′) = 〈ψ∗1(ε′1), ψ∗1(ε′2)〉, ∀ε′1, ε′2 ∈ Γ((E′)∗) ∼= C∞lin(E′); (6.5)

•
ψ∗2({ζ ′1, ζ ′2}′) = {ψ∗2(ζ ′1), ψ∗2(ζ ′2)}, ∀ζ ′1ζ ′2 ∈ Γ(F̃ ′

∗
) ∼= C∞lin(F̃ ′), (6.6)

where {·, ·} here stands for the linear Poisson structure on F̃ dual to the Lie algebroid
structure ([·, ·], ρ) on F̃ ∗, and similarly {·, ·}′ stands for the linear Poisson structure

on F̃ ′ corresponding to the dual Lie algebroid on F̃ ′
∗
;

•

ψ∗1(Ψ′(ζ ′)(ε′)) = Ψ(ψ∗2(ζ ′))(ψ∗1(ε′)), ∀ζ ∈ Γ(F̃ ′
∗
) ∼= C∞lin(F̃ ′), (6.7)

ε′ ∈ Γ((E′)∗) ∼= C∞lin(E′).

The compatibility of the conditions above with equations (6.1) and (6.2), follows from
the fact that (ψ,ψ1, ψ2) is involutive.

The involutive Lie algebroid sequences, together with the morphisms between them,
form the involutive Lie algebroid sequence category.

Corollary 6.4. The category of degree 2 Poisson manifolds is equivalent to the category
of involutive Lie algebroid sequences.

Proof. We will construct a functor from the category of degree 2 Poisson manifolds to
the involutive Lie algebroid sequence category as follows. Given a degree 2 Poisson
manifold (M, {·, ·}), by Thm. 3.12), we have an involutive sequence associated to M,
(E, F̃ // Λ2E), and given a Poisson morphism (ψ,ψ]), we have an involutive morphism
associated (ψ,ψ1, ψ2). Simply by tracking the definitions, one can verify that the condi-
tion of preserving the Poisson brackets for (ψ,ψ]) implies that (ψ,ψ1, ψ2) is an involutive
Lie algebroid morphism between the corresponding involutive Lie algebroid sequences.
Therefore, we have a functor from the category of degree 2 manifolds to the involutive Lie
algebroid sequence category. Fully faithfulness and essentially surjectivity easily follow
from those properties of the functor given by Thm. 3.12.

�

6.1.1 Splittings

Proposition 6.5. There is a 1-1 correspondence between degree 2 Poisson manifolds with
a splitting of (3.3) and the following data:

• A Lie algebroid (F ∗, ρ, [·, ·])

• A vector bundle endowed with a symmetric bilinear form (E∗, 〈·, ·〉)

• An F ∗-connection ∇ on (E∗, 〈·, ·〉) (preserving 〈·, ·〉).

• A curvature form K ∈ Ω2(F ∗; Λ2E∗) that satisfies
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– The curvature condition
R∇ = −Ψ̃ ◦K, (6.8)

where Ψ̃ is the action on (E∗, 〈·, ·〉) restricted to Λ2E∗, given by formula (6.2).

– Bianchi identity d∇K = 0.

Remark 6.6. For further reference, we introduce the F ∗-connection on E, dual to ∇, and
denote it also by ∇.

Proof. Suppose we have a degree 2 Poisson manifold and a splitting ψ of (3.3), or equiv-
alently of the transposed sequence (6.4), is given. By Thm. 6.1 we have equivalently the
data given in the statement of that theorem, in particular, we have a vector bundle E∗

endowed with a symmetric bilinear form 〈·, ·〉. By remark 6.2, the quotient F ∗ = F̃ ∗/Λ2E∗

inherits a Lie algebroid structure.
Using the action Ψ we obtain an F ∗-connection by setting

∇ := Ψ ◦ ψ,

which preserves 〈·, ·〉. Finally we define K ∈ Ω2(F ∗; Λ2E∗) by

K(X,Y ) := ψ([X,Y ]F ∗)− [ψ(X), ψ(Y )]
F̃ ∗ . (6.9)

Of course K takes values on Λ2E∗ since π(K(X,Y )) = 0, where π : F̃ ∗ // F ∗ is the
projection. Now, by definition of ∇ and by Jacobi identity, we have

Ψ̃ ◦K(X,Y )(ε) = [K(X,Y ), ε] = [ψ([X,Y ])− [ψ(X), ψ(Y )], ε]

= ∇[X,Y ]ε+ [[ε, ψ(X)], ψ(Y )] + [ψ(X), [ε, ψ(Y )]]

= ∇[X,Y ]ε+∇Y∇Xε−∇X∇Y ε = −R∇(X,Y )(ε).

Also from Jacobi identity for both brackets [·, ·]
F̃ ∗ and [·, ·]F ∗ , which will be denoted simply

by [·, ·] in order not to burden the notation, we have

(d∇K)(X,Y, Z) =
∑
cyclic

(∇XK(Y,Z)−K([X,Y ], Z))

=
∑
cyclic

∇X(ψ([Y, Z])− [ψ(Y ), ψ(Z)])−
∑
cyclic

(ψ([[X,Y ], Z])− [ψ([X,Y ]), ψ(Z)])

=
∑
cyclic

[ψ(X), ψ([Y,Z])]−
∑
cyclic

[ψ(X), [ψ(Y ), ψ(Z)]]

−
∑
cyclic

[ψ(X), ψ([Y,Z])]−
∑
cyclic

ψ([[X,Y ], Z]) = 0.

Conversely given the data in the statement, we are going to build a split degree 2 Poisson
manifold. The sheaf structure is given by

O(U) = Γ(Λ·E∗[1]|U )⊗ Γ(S·F ∗[1]|U );

by Leibniz’s rule, it is enough to define the brackets for functions with degrees 0,1 and 2.
The brackets between functions with degree 0, or where one of the functions has degree 1
and the other has degree 0, we define to be 0. The other cases we define in the following
way:
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• {X, f} := ρ(X)(f), for X ∈ Γ(F ∗) and f ∈ C∞(M);

• {ε1, ε2} := 〈ε1, ε2〉, for ε1, ε2 ∈ Γ(E∗);

• {X, ε} := ∇Xε, for X ∈ Γ(F ∗) and ε ∈ Γ(E∗);

• {X1, X2} := [X1, X2]−K(X1, X2), for X1, X2 ∈ Γ(F ∗);

all the other cases can be defined imposing graded Leibniz’s rule and graded symmetry,
together with an induction argument. Jacobi identity follows from Jacobi identity for [·, ·],
from the bracket preserving property of ρ, from the 〈·, ·〉-preserving property of∇; from the
curvature condition and from Bianchi identity, together with an induction argument. �

Proposition 6.7. Consider the sequence

Λ2E∗
ι−→ F̃ ∗

π−→ F ∗, (6.10)

the transposition of (3.3). Let ψ,ψ′ : F ∗ −→ F̃ ∗ be two splittings of the sequence (6.10),
so that they differ by the gauge form B := ψ − ψ′ ∈ Ω1(F ∗,Λ2E∗). Let ] : E −→ E∗ the
map induced by 〈·, ·〉. Also, for η ∈ Λ2E∗ and e ∈ E, let’s denote

η ∧ e := ιeη = η(e),

where ι is the contraction operator. Then, for ε ∈ Γ(E∗), e ∈ Γ(E) and α, β ∈ Γ(F ∗),

∇′αε = ∇αε+B(α) ∧ ]ε;
∇′αe = ∇αe− ](B ∧ e);

(6.11)

K ′(α, β) = K(α, β)− d∇B(α, β) +
1

2
B ∧B(α, β), (6.12)

where, in (6.11), we are using the same symbol for the F ∗-connection on E∗ and its
corresponding adjoint on E (see Rmk. 6.6).

Proof. The proof consists of calculations:

∇′αε = ∇αε−Ψ(B(α))(ε)

= ∇αε+B(α) ∧ ]ε;
〈∇′αe, ε〉 = ρ(α)〈e, ε〉 − 〈e,∇′αε〉

= 〈∇αe, ε〉 − 〈e,B(α) ∧ ]ε〉
= 〈∇αe, ε〉+ 〈B(α) ∧ e, ]ε〉
= 〈∇αe− ](B(α) ∧ e), ε〉

∴ ∇′αe = ∇αe− ](B ∧ e).
K ′(α, β) = K(α, β)−∇αB(β) +∇βB(α) +B([α, β]) + [B(α), B(β)]

= K(α, β)− d∇B(α, β) +
1

2
B ∧B(α, β).

�
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6.2 The category of involutive Poisson double vector bun-
dles

In this section we will see the “double realization” of the involutive Lie algebroid
sequence category, and show that the equivalence between the category of involutive se-
quences and involutive double vector bundles obtained in Ch. 3 (Sec. 3.3), induces
naturally an equivalence between the involutive Lie algebroid sequence category and the
category of what we call involutive Poisson double vector bundles.

Definition 6.8. Let (D,H) be an involutive double vector bundle. A Poisson structure
{·, ·} on D is called involutive if it is double linear, that is, linear with respect to both
vector bundle structures, and invariant under the involution H, that is

H∗{f, g} = {H∗f,H∗g}, f, g ∈ C∞(D), (6.13)

whereH∗ : C∞(D) //C∞(D) is the pullback on functions. The whole structure (D,H, {·, ·})
will be called involutive Poisson double vector bundle.

A a morphism Φ : (D,H, {·, ·}) // (D′, H ′, {·, ·}′) is called an involutive Poisson DVB
morphism if it commutes with the involutive structures and preserves the Poisson brackets:

1. Φ ◦H = H ′ ◦ Φ;

2. Φ∗{f, g}′ = {Φ∗f,Φ∗g}, ∀f, g ∈ C∞(D′).

Involutive Poisson double vector bundles together with the morphisms between them
form a category, called the involutive Poisson DVB category.

Remark 6.9. It follows from the Leibniz’s rule of the Poisson brackets, and Hadamard’s
lemma for functions, that the Poisson brackets on a point d ∈ D are completely determined
by they values on a coordinate system around this point. In particular, since every point
of D has an adapted coordinate system around it (Cor. A.20), it turns out that a double
linear Poisson structure is completely determined by its action on double-linear functions,
on pullbacks of linear functions on the side bundles and on pullbacks of linear functions
on the base M . Likewise, in order to verify the brackets preserving condition 2 above,
it is enough to check this for adapted coordinates, or equivalently, for functions of the
types just mentioned (double-linear, pullbacks of linear functions and basic functions on
the sides).

Theorem 6.10. The category of involutive Lie algebroid sequences is equivalent to the
category of involutive Poisson double vector bundles.

Proof. Let’s define a functor

P :


involutive Lie algd. sequences

+
involutive Lie algd. morphisms

 


involutive Poisson DVB
+

involutive Poisson DVB morphims,


(6.14)

and show that is essentially surjective and fully faithful, thus establishing the desired
equivalence of categories.
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Given an involutive Lie algebroid sequence, whose underlying involutive sequence is
(F̃ //Λ2E), consider the corresponding involutive –actually self-conjugate– double vector
bundle (D;E,F ;H) given by the equivalence of Thm. 3.40. From the proof of this theo-
rem, it follows that sections of F̃ ∗ correspond with double-linear functions on D which are
invariant under H, whose set we will denote by C∞lin(D)H . Denoting this correspondence
by

C∞lin(D)H // Γ(F̃ ∗)

γ // A(γ),

and recalling that we denoted by qh and qv, respectively, the horizontal and vertical pro-
jections of D over E, we define

P1. {γ1, γ2} := A−1([A(γ1),A(γ2)]), ∀γ1, γ2 ∈ C∞lin(D)H ;

P2h. {γ, q∗h(ε)} := q∗h(Ψ(A(γ))(ε)), ∀γ ∈ C∞lin(D)H , ε ∈ C∞lin(E) ∼= Γ(E∗);

P2v. {γ, q∗v(ε)} := q∗v(Ψ(A(γ))(ε)), ∀γ ∈ C∞lin(D)H , ε ∈ C∞lin(E) ∼= Γ(E∗);

P3. {γ, q∗h(qE)∗(f)} := q∗h(qE)∗(ρ(A(γ))(f)), ∀γ ∈ C∞lin(D)H , f ∈ C∞(M);

P4. {q∗h(ε1), q∗v(ε2)} := {q∗v(ε1), q∗h(ε2)} := q∗h(qE)∗(〈ε1, ε2〉), ∀ε1, ε2 ∈ C∞lin(E) ∼= Γ(E∗)

P5. {q∗h(ε1), q∗h(ε2)} := {q∗v(ε1), q∗v(ε2)} := 0, ∀ε1, ε2 ∈ C∞lin(E) ∼= Γ(E∗);

P6. {q∗h(ε), q∗h(qE)∗(f)} := {q∗v(ε), q∗h(qE)∗(f)} := 0, ∀ε ∈ C∞(E), f ∈ C∞(M);

P7. {q∗h(qE)∗(f), q∗h(qE)∗(g)} := 0, f, g ∈ C∞(M).

That the definitions above are consistent with Leibniz’s rule follows from the compatibility
conditions 1 and 2 of the definition of an involutive Lie algebroid sequence, Leibniz rule
of the Lie brackets and derivation property of the anchor.

Remark 6.11. In order to have the Poisson brackets defined on the whole space of double-
linear functions, it remains to define them on double linear functions that correspond to
the symmetric part of E ⊗ E, that is, functions of the type

q∗h(ε1)q∗v(ε2) + q∗h(ε2)q∗v(ε1),

which we do just by demanding that Leibniz rule must hold. With this, we have de-
fined the Poisson in all kinds of functions that appear in adapted coordinate systems,
and thus the brackets are defined in the whole space of functions. Therefore, it is enough
to have the Poisson brackets defined on those double linear functions that are H-invariant.

Since double linear Poisson brackets are characterized by having bidegree (−1,−1)
when they act on bigraded functions (see lemma E.34), we see that Eqs. P1-P7 above do
define a double linear Poisson structure on D. We need to check that it is H-invariant,
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which follows immediately from the observation that equation hA = −IdE (recall that D
is self-conjugate) implies, for every ε ∈ C∞lin(E) and e ∈ E,

H∗(q∗h(ε))(0v(e)) = ε(qh ◦H ◦ 0v(e)) = ε(hA(e)) = −ε(e)
= −q∗v(ε)(0v(e)),

from which, H∗(q∗h(ε)) = −q∗v(ε); and analogously, hB = IdE implies H∗(q∗v(ε)) = q∗H(ε).
Using these equations, and the symmetry of the pairing 〈·, ·〉, we obtain H-invariance of
{·, ·}.

Now, given an involutive Lie algebroid morphism (ψ,ψ1, ψ2), by Thm. 3.40 we obtain
an involutive DVB morphism (Φ, ϕE , ϕM ), with ϕE = ψ1 and ϕM = ψ. That it is a
Poisson map between the corresponding involutive Poisson double vector bundles follows
directly from Eqs. (6.5), (6.6) and (6.7), and the way we define the Poisson structures,
given by P1-P7. Therefore we have a functor between the two categories. From these
equations also follows fully faithfulness of such functor.

Finally, essentially sujectivity follows from the observation that, when we have an H-
invariant Poisson structure on an involutive double vector bundle, then the pullback DVB
h∗A(D) used in the proof of Prop. 3.29, inherits the Poisson structure from D, pushed

by the isomorphism Φ̃. Also we saw in the proof of Prop. 3.29 that h∗A(D) inherits an

involutivity structure H̃, induced by H through the map Φ̃. Then, the H̃-invariance of
the induced Poisson brackets on h∗A(D) follows easily from the H-invariance of the Poisson
brackets on D. Thus, we have found an involutive Poisson double vector bundle that is
self-conjugate. The Poisson structure in this case determines, using Eqs. P1-P7 above,
an involutive Lie algebroid structure on the corresponding involutive sequence attached
to h∗A(D).

�

6.2.1 Metric VB-algebroids

Definition 6.12. A metric V B-algebroid is a metric DVB (D, 〈·, ·〉A) with a VB -algebroid
structure on DB, such that ] : D //D∗A is a VB -algebroid isomorphism, where (D∗A)C∗ is
endowed with the dual VB -algebroid structure given by Cor. E.25.

Remark 6.13. Given a double vector bundle D, the 1:1 correspondence, established in
Prop. 3.38, between involutive structures on D and linear metrics on the dual (D∗A)C∗

induces naturally a 1:1 correspondence between involutive Poisson structures on D and
metric VB -algebroid structures on D∗A, thus recovering the result of M. Jotz [29] which
establishes an equivalence between the category of degree 2 Poisson manifolds and the
category of metric VB -algebroids. We offer below a direct proof of that correspondence.

Theorem 6.14. There is a canonical 1:1 correspondence, between degree 2 Poisson man-
ifolds and metric VB-algebroids.

Proof. By theorem 3.40 we already have a canonical 1:1 correspondence between degree
2 manifolds and involutive double vector bundles, which in turn are equivalent to metric
double vector bundles, as seen in Prop. 3.38. Let’s show that the Poisson brackets on
M canonically induce a VB -algebroid structure on DF ∗ := D(F̂ ∗)∗ such that Φ turns
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into a VB -algebroid isomorphism, where Φ : DF ∗
//D∗F ∗ is the symmetric isomorphism

introduced in Prop 3.38.
We want to endow with a VB -algebroid structure on the double vector bundle

DF ∗
qE−−−−→ E

qF∗

y yqE
F ∗

qF
∗

−−−−→ M,

(6.15)

with core bundle E∗. By remark 2.12, we only need to define the Lie algebroid structure
for core and linear sections, and for basic and linear functions. We will use the data

〈·, ·〉, ([·, ·], ρ), Ψ, (6.16)

given in theorem 6.1. So we define, for f ∈ C∞(M), ε, ε1, ε2 ∈ Γ(E∗) and ζ, ζ1, ζ2 ∈ Γ(F̂ ∗),

ρD(ε)(f̃) := 0; ρD(ε1)(ε2) = −〈∂(ε1), ε2〉 := −〈ε1, ε2〉;

ρD(ζ)(f̃) := ρ(ζ)(f); ρD(ζ)(ε) := Ψ(ζ)(ε) =: [ζ, ε]D;

[ε1, ε2]D := 0; [ζ1, ζ2]D := [ζ1, ζ2],

(6.17)

where we are extending the brackets from F̃ ∗ to F̂ ∗ = F̃ ∗ ⊕ S2E∗, by Leibniz’s rule, and
we are using the same notation for sections of E∗ that correspond to linear functions on E
or that correspond to core sections of DF ∗ . Analogously as noticed in the proof of Thm.
6.1, the properties satisfied by the data (6.16), imply that we actually get a VB -algebroid
structure with the definitions we made in (6.17).

Now, to prove that Φ : DF ∗
//D∗F ∗ is a Lie algebroid isomorphism, amounts to prove

that the Lie algebroid structures on F ∗ ⊕ E ⊕ E∗ induced by Θ from DF ∗ and by Θ̃
from D∗F ∗ , coincide. By Thm. E.21 our task becomes to show that the corresponding
representations up to homotopy coincide. By Thm. E.32, this consists in showing

∂∗ = ∂; ∇∗ = ∇; −K∗ = K. (6.18)

Now, by our definition of ∂, given in (6.17), it follows that ∂ = ], where ] : E∗ // E is
the morphism induced by the bilinear form 〈·, ·〉. Since this form is symmetric, it follows
∂∗ = ∂.

From Prop. E.7, (E.12) and (6.17), it follows immediately that ∇ = ∇∗.
Finally since, by construction, F̃ ∗ ⊂ F̂ ∗ is a Lie subalgebroid, and the splitting ψ takes

values on F̃ ∗ (see Rmk. 3.42 and the proof of Thm. 3.40), it follows that K, defined in
(E.15), takes values on Λ2E∗, which implies that

−K∗ = K.

Conversely, if (DF ∗ , E; Φ) is an involutive V B-algebroid, then introducing a horizontal lift
ψ : F ∗ // F̃ ∗ of the corresponding involutive sequence we obtain decompositions Θ, Θ̃ for
DF ∗ and D∗F ∗ , respectively. Since Φ is a statomorphism and preserves the Lie algebroid
structures, it follows that the Lie algebroid structures on F ∗ ⊕E ⊕E∗ induced by Θ and
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Θ̃ from DF ∗ and D∗F ∗ respectively, coincide, which means that (6.18) holds. This implies
that if we define

〈ε1, ε2〉 := −〈∂(ε1), ε2〉,

we obtain a symmetric bilinear form, where we are using the same symbol 〈·, ·〉 to denote
in the left the bilinear form on E∗ and on the right the duality pairing between E and E∗.

Since K = −K∗, it follows that K takes values on Λ2E∗, which means that the Lie
brackets on F̂ ∗ leave invariant F̃ ∗, and since the anchor map ρ is zero on S2E∗, it follows
that actually the Lie algebroid structure ([·, ·]; ρ) on F̂ ∗ restricts to a Lie subalgebroid
structure on F̃ ∗.

Since the statomorphism Φ : DF ∗
// D∗F ∗ preserves the Lie algebroid structures, it

follows from Eqs. (E.33) and (E.34) (see the proof of Thm. E.32 in the appendix) that

ρD(ζ)(ε) = [ζ, ε],

where again we are denoting by the same ε a linear function on E (left-hand side) and a
core section of DF ∗ (right-hand side). So we define Ψ : F̃ ∗ //CDO(E∗) by

Ψ(ζ)(ε) := ρD(ζ)(ε) = [ζ, ε].

Therefore we have obtained the data that characterizes a degree -2 Poisson structure
on M

E,F̃
, given in Thm. 6.1. It remains to check the compatibility conditions with the

inclusion Λ2E∗ ↪→ F̃ ∗, given in Eqs. (6.1) and (6.2). They follow immediately from
Leibniz’s rule.

Clearly, the two processes, one to get an involutive V B-algebroid from degree -2 Poisson
brackets and vice versa, are inverses one of the other. So we have obtained the desired
canonical 1:1 correspondence.

�

Proposition 6.15. Consider a VB-algebroid D, so that D∗A is endowed with the dual
V B-algebroid structure (see Thm. E.32 in the appendix). Then,

D ⊕
A
D∗A

is a metric VB-algebroid, with the VB-algebroid structure given by Prop. E.22 (App. E).

Proof. Let’s introduce a decomposition for D, which induces a decomposition for D∗A, and
therefore, by Cor. C.44 and Prop. C.7, we obtain a naturally induced decomposition on
D ⊕

A
D∗A.

By Thm. E.21, Prop. E.20, Thm. E.32 and Prop. E.31 we obtain representations up
to homotopy corresponding to the VB -algebroid structures on D and D∗A, given by

∂ +∇+K and ∂∗ +∇∗ −K∗

and by Prop. E.22, it follows that the representation up to homotopy corresponding to
the VB -algebroid structure on D ⊕

A
D∗A is given by the data

(∂, ∂∗) + (∇,∇∗) + (K,−K∗), (6.19)
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which evidently, under a natural identification, satisfies Eq. (6.18). By (the proof of)
Thm. 6.14 and Prop. 3.44, it follows that D ⊕

A
D∗A is a metric VB -algebroid.

�

Example. Let (A, [·, ·], ρ) be a Lie algebroid. Consider the tangent prolongation VB -
algebroid, TA, and the cotangent VB -algebroid, T ∗A, seen in Ch. F. Then we are
in the context of Prop. 6.15, and therefore

TA⊕
A
T ∗A

(qTM ,πA∗ )−−−−−−−→ TM ⊕A∗

qA

y yqTM⊕A∗
A

qA−−−−→ M

(6.20)

is a metric VB -algebroid.

�

6.3 Classification of regular degree 2 Poisson manifolds

Definition 6.16. We say that a degree 2 Poisson manifold is regular when the metric,
that is, the symmetric form 〈·, ·〉 has constant rank.

Let’s consider in this section a regular, degree 2, Poisson manifold (M, {·, ·}), and the
corresponding pair of vector bundles with their additional structure (E∗, 〈·, ·〉), (F ∗, ρ, [·, ·]).
Fix a splitting of the sequence (6.10), say ψ : F ∗ // F̃ ∗. As we saw in Prop. 6.5, by set-
ting ∇Xε = {ψ(X), ε} we get an F ∗-connection on (E∗, 〈·, ·〉), which preserves 〈·, ·〉, and
defining K(X,Y ) := ψ([X,Y ])− {ψ(X), ψ(Y )}, we get (6.8) and d∇K = 0.

If we take another splitting ψ′, then, as seen in Prop. 6.7, the two splittings are related
by ψ′ = ψ − B, with B ∈ Ω1(F ∗,Λ2E∗), and the corresponding operators ∇′ and K ′ are
related to ∇ and K by formulas (6.11) and (6.12). On the other hand, since the metric
has constant rank, it follows that ker ] and imΨ̃ are vector sub-bundles of E∗ and AE∗ ,
respectively, where AE∗ is the bundle of covariant differential operators, or infinitesimal
automorphisms of E that preserve 〈·, ·〉, that is, the gauge Lie algebroid of (E∗, 〈·, ·〉),
which is well defined –and also comes with a vector bundle structure– since the metric has
constant rank. Moreover, imΨ̃ is an ideal, in fact, given ε1∧ ε2 ∈ Γ(Λ2E∗), ε ∈ Γ(E∗) and
ζ ∈ AE∗ ,

[ζ, Ψ̃(ε1 ∧ ε2)](ε) = ζ ◦ Ψ̃(ε1 ∧ ε2)(ε)− Ψ̃(ε1 ∧ ε2)(ε) ◦ ζ(ε)

= ζ(〈ε2, ε〉ε1 − 〈ε1, ε〉ε2)− 〈ε2, ζ(ε)〉ε1 + 〈ε1, ζ(e)〉ε2

= Xζ(〈ε2, ε〉)ε1 + 〈ε2, ε〉ζ(ε1)−Xζ(〈ε1, ε〉)ε2 − 〈ε1, ε〉ζ(ε2)

−Xζ(〈ε2, ε〉)ε1 + 〈ζ(ε2), ε〉ε1 +Xζ(〈ε1, ε〉)ε2 − 〈ζ(ε1), ε〉ε2

= Ψ̃(ζ(ε1) ∧ ε2 − ε1 ∧ ζ(ε2))(ε),

where Xζ ∈ TM is the symbol of ζ. So, coker Ψ̃ = AE∗/imΨ̃ inherits the Lie brackets from

AE∗ , and since imΨ̃ ⊂ ker ρAE∗ , it follows that coker Ψ̃ inherits the whole Lie algebroid
structure.
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From the formulas (6.12) and (6.2), it follows that ∇ induces a well defined Lie alge-
broid representation of F ∗ on coker Ψ̃, that is, ∇ induces a Lie algebroid morphism

∇ : F ∗ −→ coker Ψ̃

which doesn’t depend on the splitting ψ. In turn, coker Ψ̃ acts on ker ], since AE∗ leaves
ker ] invariant and if [ζ] = [ζ ′] ∈ coker Ψ̃, then ζ ′ = ζ + Ψ̃(ϑ), with ϑ ∈ Λ2E∗, hence, for
any ε ∈ Γ(ker ]) we have

ζ ′(ε) = ζ(ε) + Ψ̃(ϑ)(ε) = ζ(ε).

Thus ∇ gives us a well defined action from F ∗ on ker ]. Observe that, through the
natural inclusion End(E∗) ⊂ End(Λ2E∗), we extend ∇ to Λ2E∗, and also the action ∇ to
an action on ker Ψ̃ = Λ2(ker ]), and we have the following classification result.

Theorem 6.17. Consider the Chevalley cohomology H•(F ∗; ker Ψ̃) with differential in-
duced by ∇. If it is possible to find K ∈ Ω2(F ∗,Λ2E∗) such that, for some lift ∇ of ∇,
Ψ̃ ◦K = −R∇ holds, then d∇K takes values on ker Ψ̃, is closed with respect to d∇, and

the class [d∇K] ∈ H3(F ∗; ker Ψ̃) is well defined, that is, it doesn’t depend on the lift ∇,
nor on K. Moreover, (∇,K) gives rise to a Poisson structure if and only if [d∇K] = 0.
In this case, all the Poisson structures coming from ∇ are in 1:1 correspondence with the
elements in H2(F ∗; ker Ψ̃).

Proof. • Choose a lift ∇ : F ∗ −→ AE∗ of ∇. First let’s observe that, using the
definition of Ψ̃ and the fact that ∇ takes values on AE∗ ,

Ψ̃ ◦ ∇XK(Y, Z) = ∇X ◦ Ψ̃(K(Y, Z))− Ψ̃(K(Y,Z)) ◦ ∇X , (6.21)

for X,Y, Z ∈ Γ(F ∗). To verify this, suppose, for sake of simplicity, that K(Y,Z) =
ε1 ∧ ε2, with ε1, ε2 ∈ Γ(E∗), then, for ε ∈ Γ(E∗),

∇XK(Y,Z) = ∇Xε1 ∧ ε2 + ε1 ∧∇Xε2 and

Ψ̃(K(Y,Z))(ε) = 〈ε2, ε〉ε1 − 〈ε1, ε〉ε2,

whence

Ψ̃(∇XK(Y, Z))(ε) = 〈ε2, ε〉∇Xε1−〈∇Xε1, ε〉ε2 + 〈∇Xε2, ε〉ε1−〈ε1, ε〉∇Xε2, (6.22)

and on the other hand,

∇X ◦ Ψ̃(K(Y,Z))(ε) =〈∇Xε2, ε〉ε1 + 〈ε2,∇Xε〉ε1 + 〈ε2, ε〉∇Xε1

− 〈∇Xε1, ε〉ε2 − 〈ε1,∇Xε〉ε2 − 〈ε1, ε〉∇Xε2;

−Ψ̃(K(Y,Z)) ◦ ∇X(ε) =− 〈ε2,∇Xε〉ε1 + 〈ε1,∇Xε〉ε2.

Adding both terms and comparing with (6.22) we get (6.21).
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Then, for X,Y, Z ∈ Γ(F ∗), ε ∈ Γ(E∗), using the condition Ψ̃ ◦K = −R∇ given in
the hypothesis,

Ψ̃ ◦ d∇K(X,Y, Z)(ε) = Ψ̃ ◦

∑
cyclic

(∇XK(Y, Z)−K([X,Y ], Z))

 (ε)

=
∑
cyclic

(∇X(Ψ̃ ◦K(Y,Z)(ε))− Ψ̃ ◦K(Y, Z)(∇Xε)− Ψ̃ ◦K([X,Y ], Z))(ε)

=
∑
cyclic

(−∇X [∇Y ,∇Z ] +∇X∇[Y,Z] + [∇Y ,∇Z ]∇X −∇[Y,Z]∇X

+ [∇[X,Y ],∇Z ]−∇[[X,Y ],Z])(ε)

=
∑
cyclic

(−[∇X , [∇Y ,∇Z ]] + [∇X ,∇[Y,Z]]− [∇Z ,∇[X,Y ]]

−∇[[X,Y ],Z])(ε) = 0.

Thus, (d∇K)(X,Y, Z) ∈ ker Ψ̃.

On the other hand, the condition −R∇ = Ψ̃ ◦K implies that the extension of ∇ to
Λ2E∗ satisfies, for η ∈ Γ(Λ2E∗),

−R∇̃(X,Y )(η) = ∇̃[X,Y ]η − [∇̃X , ∇̃Y ](η) = [K(X,Y ), η],

where the brackets [·, ·] are the ones given in Rmk. 6.2. Thereby, performing a
calculation similar to the one done in lemma E.16, we obtain, for η ∈ Ωk(F ∗; Λ2E∗),

d2
∇(η) = −[K∧, η],

whence
d∇(d∇K) = −[K∧,K] = [K∧,K] = 0,

so that d∇K is (d∇)-closed. To see that the class [d∇K] is well defined, consider

first another lift ∇′ of ∇, then ∇′ = ∇ − Ψ̃ ◦ B for some B ∈ Ω1(F ∗,Λ2E∗). Take
K ′ := K − d∇B + 1

2B ∧B, then

Ψ̃ ◦K ′ = −R∇′ and d∇′K
′ = d∇K,

so that [d∇′K
′] = [d∇K]. Now let ∇ fixed. If K,K ′ satisfy

Ψ̃ ◦K = Ψ ◦K ′ = −R∇,

then
µ := K −K ′ ∈ Ω2(F ∗, ker Ψ̃), and

d∇K − d∇K ′ = d∇µ,

hence [d∇K] = [d∇K
′]. Thus, [d∇K] depends only on ∇.
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• If ∇ comes from a Poisson structure, we already saw that a splitting ψ gives us a map
∇ that lifts ∇ and K that satisfies Ψ̃◦K = −R∇ and d∇K = 0. Conversely, suppose
that we have a morphism ∇ and we can find a lift ∇ and K satisfying Ψ̃◦K = −R∇
and [d∇K] = 0. Then there exists µ ∈ Ω2(F ∗, ker Ψ̃) such that d∇µ = d∇K, but
then

Ψ̃ ◦ (K − µ) = Ψ̃ ◦K and d∇(K − µ) = 0,

whence we can define a Poisson structure observing that with the data we already
have, the only cases we need to define the Poisson brackets are, for X,Y ∈ Γ(F ∗),
η, ν ∈ Γ(Λ2E∗) and ε ∈ Γ(E∗),

– {X + η, ε} := ∇X(ε) + Ψ̃(η)(ε) and

– {X + η, Y + ν} := ([η, ν] +∇Xν −∇Y η + (K − µ)(X,Y )) + [X,Y ]

It is easy to see that the bracket obtained this way, extending it to any pair of
functions by linearity, skew-symmetry and Leibniz’s rule, satisfies the Jacobi identity
and thus defines a Poisson bracket.

• If∇ comes from some Poisson structure, fix a lift∇. To find all the Poisson structures
that induce ∇ we need to find all the maps K ∈ Ω2(F ∗,Λ2E∗) which satisfy Ψ̃◦K =
−R∇ and d∇K = 0. In order to do this, notice that if K and K ′ are two such
maps, then µ := K−K ′ takes values on ker Ψ̃ and d∇µ = 0, so [µ] ∈ H2(F ∗; ker Ψ̃).
Conversely, if K is a map such that (∇,K) gives rise to a Poisson structure, and we
take [µ] ∈ H2(F ∗; ker Ψ̃), then it follows straightforward that the pair (∇,K−µ) also
gives rise to a Poisson structure. Now if the pairs (∇,K) and (∇,K ′) are equivalent,
that is, they are related by a map B ∈ Ω1(F ∗,Λ2E∗), then this map actually takes
values on ker Ψ̃, since it must leave ∇ unchanged. Then K ′ = K−d∇B+ 1

2B∧B =
K − d∇B, so that in this case [µ] = [d∇B] = 0. So we obtain a linear map from
the space of classes of equivalences of pairs (∇,K), with ∇ fixed, to H2(F ∗; ker Ψ̃)
which is well defined and injective, thus it is a 1:1 correspondence. (Actually we had
to choose a class [(∇,K)] to correspond to 0 ∈ H2(F ∗; ker Ψ̃). What we get without
making choices is that the set of classes of pairs (∇,K) is an affine space modeled
on H2(F ∗; ker Ψ̃).)

�

Corollary 6.18. Given a degree 2 manifold, there is a canonical 1:1 correspondence be-
tween degree -2 Poisson brackets with non-degenerate metric and the following data:

• A non-degenerate metric 〈·, ·〉 on E∗,

• A Lie algebroid structure ([·, ·], ρ) on F ∗.

Proof. Since 〈·, ·〉 is non-degenerate, we can use this metric to get the identification Λ2E∗ ∼=
so(E∗). Under this identification we have Ψ̃ = Id, in particular, ker Ψ̃ = coker Ψ̃ = 0.
Therefore, the only possible Lie algebroid morphism

∇ : F ∗ // coker Ψ̃
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is the zero map, and any 〈·, ·〉-preserving connection ∇ on E∗ is a lift of 0 = ∇. Also, K :=
−R∇ satisfies the condition of the theorem. Since in this case the Chevalley cohomology
H•(F ∗; ker Ψ̃) is zero, the theorem tells us that there is one, and only one Poisson structure
comming from (E∗, 〈·, ·〉) and (F ∗, ρ, [·, ·]). �

6.4 Example: The symplectic case

In this section we show how the theory developed applies to the well-known symplectic
case, studied by D. Roytenberg [59], shedding new light on the known results.

6.4.1 The symplectic structure

Definition 6.19. A symplectic degree 2 manifold is a degree 2 Poisson manifold, (M, {·, ·}),
such that the Poisson brackets are non-degenerate.

The next characterization of symplectic degree 2 manifolds is sketched in [59]. We
prove it here in full detail.

Proposition 6.20. There is a canonical 1:1 correspondence between symplectic degree
2 manifolds and pseudo-euclidean vector bundles (E∗, 〈·, ·〉), that is, vector bundles E∗

endowed with a non-degenerate metric on the fibers 〈·, ·〉.

Remark 6.21. Actually, in [59] the correspondence is with E, which causes no harm in
this case, since the metric is non-degenerate, so that we can identify E with E∗. In the
general, degenerate case, we only get a metric on the bundle that corresponds to the degree
1 functions, which is E∗ according to the usual conventions. In order to keep coherence
with the rest of the present work, we prefer to remain with E∗, instead of switching to E
through the metric.

Proof. To say that the brackets {·, ·} are non-degenerate is equivalent to the condition, in
local coordinates {xi, εµ, αν}, that the matrix{xi, xj}(x) {εµ, xj}(x) {αν , xj}(x)

{xi, ελ}(x) {εµ, ελ}(x) {αν , ελ}(x)
{xi, ακ}(x) {εµ, ακ}(x) {αν , ακ}(x)

 , (6.23)

is invertible, where, for a function f ∈ OM , f(x) denotes the evaluation of the degree zero
component of f |x ∈ O|x at x (cf. [68]). Checking the degrees of the components of this
matrix, we see that it is invertible if and only if

det({αν , xj}(x)) 6= 0 and det({εµ, ελ}(x)) 6= 0, (6.24)

which is equivalent to the conditions

• ρ : F ∗ // TM is an isomorphism,

• 〈·, ·〉 is non-degenerate.

We saw in Cor. 6.18 that there is a canonical 1:1 correspondence between the degree
2 Poisson manifolds with 〈·, ·〉 non-degenerate and
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• A Lie algebroid (F ∗, [·, ·], ρ),

• A pseudo-euclidean vector bundle (E∗, 〈·, ·〉).

Since ρ preseves the Lie brackets, it follows that, when {·, ·} are non-degenerate, (F ∗, [·, ·], ρ)
is canonically isomorphic to (TM, [·, ·], Id). In this way we obtain a canonical 1:1 corre-
spondence between symplectic degree 2 manifolds (M, {·, ·}) and pseudo-euclidean vector
bundles (E∗, 〈·, ·〉). �

The arguments in the preceding proof can be generalized to obtain the following con-
clusion.

Corollary 6.22. If a graded n-manifold M admits a symplectic structure ω homogeneous
of degree k, then necessarily, n = k. Moreover, if the dimension of M is (p|q1| . . . |qk),
then

p = qk, q1 = qk−1, . . . , qi = qk−i.

Proof. When we calculate the corresponding matrix, in a similar way as we did in Eq.
(6.23), we see that this matrix will be invertible only if there are coordinate functions of
degree k, αν , in the same quantity as there are in degree 0, xi, and

det({αν , xi}) 6= 0.

If there were coordinate functions of degree l > k, βr, then {βr, γs} will be an homogeneous
function of degree ≥ 1, for any other coordinate function γs, since we admit only non-
negative degrees. Then the evaluation of the degree zero component of {βr, γs}(x) at x
will be zero, but this implies that the r-column of the matrix of ω is zero, preventing it
from being invertible, a contradiction.

Now, the above argument also shows that the only non-zero entries in the matrix of ω
are the ones of the form

{θri , θsk−i}(x), (6.25)

thereby, for fixed i, the entries in (6.25) must form an invertible sub-matrix, in particular
it must be square, which implies that qi = qk−i.

�

Proposition 6.23. Let (M, {·, ·}) be a symplectic degree 2 manifold. Then its associated
sequence (6.10):

0 // Λ2E∗
ι
// F̃ ∗

π
// F ∗ // 0 (6.26)

is canonically isomorphic, as a Lie algebroid sequence, to the Atiyah sequence correspond-
ing to the pseudo-euclidean vector bundle (E∗, 〈·, ·〉):

0 // so(E∗)
ι
// AE∗

π
// TM // 0. (6.27)

Proof. By Thm. 6.1, we obtain the following morphism of Lie algebroid sequences:

Λ2E∗

Ψ̃
��

ι // F̃ ∗

Ψ
��

π // F ∗

ρ

��

so(E∗)
ι // AE∗

π // TM

, (6.28)
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By Prop. 6.20, ρ is an isomorphism and 〈·, ·〉 is non-degenerate, thereby Ψ̃ is an iso-
morphism too. Hence, by the exactness of the sequences and the commutativity of the
diagrams in Eq. (6.28), it follows that Ψ is an isomorphism.

�

Remark 6.24. The map Ψ̂ : F̂ ∗ //CDO(E∗) given by

Ψ̂(ζ + λ) = Ψ(ζ) + (]⊗ IdE∗)(λ),

is an isomorphism, where ζ ∈ F̃ ∗, λ ∈ S2E∗.

Proposition 6.25. Let (M, {·, ·}) be a symplectic degree 2 manifold with associated exact

sequence (6.27). Then the corresponding involutive double vector bundle D
(
F̂ ∗
∗)

, given

by Thm. 3.40 is canonically isomorphic to

[∗(T ∗E)
q2−−−−→ E

q1

y yqE
E

qE−−−−→ M,

(6.29)

where [ : E //E∗ is the inverse of the isomorphsim ] : E∗ //E given by the non-degenerate
metric 〈·, ·〉, and

[∗(T ∗E) = E ×
([,E∗,qE∗ )

T ∗E := {(ε, v) ∈ E × T ∗E|[(ε) = qE∗(v)} ⊂ E × T ∗E

is the pull-back bundle, so that we have the following diagram

[∗(T ∗E)

p1
��

p2
// T ∗E

qE∗

��

qE // E

qE

��

E
[ // E∗

qE
∗

//M

, (6.30)

and the maps q1 and q2 of diagram (6.29) are given p1 and qE ◦ p2, respectively.
The isomorphism

D
(
F̂ ∗
∗)

q1

��

q2
// E

qE

��

F ∗

E
qE

//M

Θ //

[∗(T ∗E)

q1

��

q2
// E

qE

��

T ∗M

E
qE

//M

(6.31)

is the identity on each side bundle, and the induced map on the core θT ∗M is given by
(ρ−1)∗, where ρ : F ∗ // TM is the anchor map.

Proof. We have

F̂ ∗
∗

= F̃ ⊕ S2(E) and CDO(E∗)∗ = A∗E∗ ⊕ sym(E),
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where
sym(E) := {ϑ ∈ gl(E)|ϑt = ϑ},

where ϑt : E // E is the adjoint with respect to the metric 〈·, ·〉:

ϑt := ] ◦ ϑ∗ ◦ [.

Define Φ : F̂ ∗
∗

//CDO(E∗)∗ by

Φ(ω + λ) := (Ψ−1)∗(ω) + ([⊗ IdE)(λ), (6.32)

for ω ∈ F̃ ∗ and λ ∈ S2(E). Then it is easy to see that the diagram

F̂ ∗
∗

Φ
��

p
// E ⊗ E

[⊗IdE
��

CDO(E∗)∗
p

// E ⊗ E

(6.33)

commutes, so that (Φ; [, IdE ; IdM ) is a DVS morphism (see Def. D.2). Note that ϕF ∗ :=
Φ|F ∗ : F ∗ // T ∗M is given by

ϕF ∗ = (ρ∗)−1. (6.34)

Consider the involutive double vector bundle

D
(
F̂ ∗
∗) q2−−−−→ E

q1

y yqE
E

qE−−−−→ M,

given in the proof of Thm. 3.40, and the double vector bundle

T ∗E
qE−−−−→ E

qE∗

y yqE
E∗

qE
∗

−−−−→ M,

introduced in Eq. (F.2), but here E is playing the role of A and we are using the notation
qE instead of πE and qE∗ instead of πE∗ . Then, by Prop. D.5, we obtain a morphism of
double vector bundles

(D(Φ); [, IdE ; IdM ) : D
(
F̂ ∗
∗)

// T ∗E,

given by
D(Φ)(ω, e1, e2) = ((Ψ−1)∗(χ) + ([⊗ IdE)(λ), [(e1), e2), (6.35)

where ω = χ+ λ ∈ F̂ ∗
∗

= F̃ ⊕ S2E, and we are using

T ∗(E) ∼= D(CDO(E∗)∗), (6.36)
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identification that follows from propositions D.6, C.32 together with Eq. (F.6) and the
comments following it (or instead, we can use directly Eq. (F.5) with E playing the role
of A).

Since [, IdE and (ρ−1)∗ are isomorphisms, it follows that D(Φ) is an isomorphism.
By Prop. B.16 it follows that [∗(T ∗E) is a double vector bundle (see Eqs. (6.29) and

(6.30)) and that

(p2; [, IdE ; IdM ) : ([∗(T ∗E);E,E;M) // (T ∗E;E∗, E;M)

is a morphism of double vector bundles.
Now, since qE∗ ◦D(Φ) = [ ◦ q1, it follows, by the universal property of the pull-back

bundle, that there exists a unique vector bundle map (q1, D(Φ)), such that the following
diagram commutes

D
(
F̂ ∗
∗)

q1

!!

D(Φ)

''

(q1,D(Φ))

%%

[∗(T ∗E)

p1
��

p2
// T ∗E

qE∗

��

E
[ // E∗.

(6.37)

We define Θ := (q1, D(φ)) and claim that this is a DVB isomorphism. Indeed, we saw
that p2 and D(Φ) are double vector bundle isomorphisms, whence,

Θ = D(Φ)−1 ◦ p2 (6.38)

is a double vector bundle isomorphism, and moreover, since D(Φ)2 = IdE it follows that
Θ is the identity on the second side bundle. By the diagram (6.37) above it follows that
Θ is also the identity on the first side bundle. Finally, since p2|T ∗M = IdT ∗M , it follows
from (6.38) and (6.34) that

ΘF ∗ = (D(Φ)−1 ◦ p2)|T ∗M = ϕ−1
F ∗ ◦ IdT ∗M = (ρ−1)∗.

�

Corollary 6.26. The map p2 : [∗(T ∗E) // T ∗E is a double vector bundle isomorphism.
If we denote by (p2)1, (p2)2 the induced maps on the side bundles, and by (p2)T ∗M the
induced map between the core bundles, we have

(p2)1 = [; (p2)2 = IdE ; (p2)T ∗M = IdT ∗M .

In particular, if we introduce a decomposition

Θ = (qE∗ , qE , qT ∗M ) : T ∗E // E∗ ⊕ E ⊕ T ∗M,

then we obtain an induced decomposition

Θ′ = (p1, p2, qT ∗M ) : [∗(T ∗E) // E ⊕ E ⊕ T ∗M,

and if (xi, es, εr, αt) is an adapted coordinate system for T ∗E, then (xi, [∗(es), εr, αt) is
an adapted coordinate system for [∗(T ∗E).
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Proof. The first part of the corollary is already done in the proof of Prop. 6.25. The
statement about the adapted coordinate system follows immediately from the first part of
the corollary, and from the proof of Cor. A.20.

�

Now we want to understand the metric VB -algebroid structure onD
(
F̂ ∗
∗)∗

= DF ∗ –or

equivalently on [∗(T ∗E)∗– which corresponds to the symplectic structure onM, according
to Thm. 6.14. The VB -algebroid structure on DF ∗ is equivalent to the corresponding

Poisson structure on D = D
(
F̂ ∗
∗)

(see Prop. E.24, where the correspondence between

both structures is worked out explicitly).

Proposition 6.27. The double-linear Poisson structure on D
(
F̂ ∗
∗)

corresponding to the

metric VB-algebroid structure on DF ∗ = D
(
F̂ ∗
∗)∗

(see Def. E.23 and Prop. E.24), is

the pull-back of the canonical Poisson structure on T ∗E by the isomorphism

D(Φ) : D
(
F̂ ∗
∗) ∼=

// T ∗E,

given in Eq. (6.35).

Proof. We know that the Poisson structure is completely determined by the action of the
brackets on functions f ∈ C∞(M), ε ∈ Γ(E) ∼= C∞lin(E) and on functions that correspond
to core and linear sections of DF ∗ .

Now, by Eq. (6.36), Prop. C.32 and Prop. D.6, it follows that the double-linear

functions on D
(
F̂ ∗
∗)

are identified with the sections of CDO(E∗), and by Prop. 6.23,

it follows that, for double-linear functions ν1, ν2 ∈ C∞lin

(
D
(
F̂ ∗
∗)) ∼= Γ(F̂ ∗), we have

Ψ̂(νi) ∈ Γ(CDO(E∗)) ∼= C∞lin(T ∗E) (see Rmk. 6.24) and

{ν1, ν2} = Ψ̂−1[Ψ̂(ν1), Ψ̂(ν2)] = Ψ̂−1{Ψ̂(ν1), Ψ̂(ν2)}, (6.39)

therefore, from (6.35) and Rmk. 6.24,

{ν1, ν2} = D(Φ)∗{(D(Φ)−1)∗(ν1), (D(Φ)−1)∗(ν2)}.

Next, for a double-linear function ν ∈ C∞lin
(
D
(
F̂ ∗
∗))

and a basic function f̃ = (qE ◦
q1)∗f , with f ∈ C∞(M), we have, using (6.28),

{ν, f̃} = (qE ◦ q1)∗ρ(π(ν))(f) = (qE ◦ qE ◦D(Φ))∗(π(Ψ̂(ν))(f))

= D(Φ)∗(qE ◦ qE)∗{Ψ̂(ν), (qE ◦ qE)∗f},

whence
{ν, f̃} = D(Φ)∗{(D(Φ)−1)∗ν, (D(Φ)−1)∗f̃}.

Next consider a double-linear function ν and a linear function ε ∈ C∞lin(E) ∼= Γ(E∗).
We have the following

{ν, (q2)∗ε} = (q2)∗Ψ̂(ν)(ε) = D(Φ)∗(qE)∗{Ψ̂(ν), (qE)∗ε},
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whence
{ν, (q2)∗ε} = D(Φ)∗{(D(Φ)−1)∗ν, (D(Φ)−1)∗(q2)∗ε}.

Now, for e ∈ Γ(E) ∼= ΓcoreTE and for η ∈ Γ(CDO(E∗)) ∼= ΓlinTE, observe that
[η, e] ∈ ΓcoreTE

∗ and, for ε ∈ Γ(E∗) ∼= C∞lin(E),

[η, e](ε) = η(e(ε))− e(η(ε))

= (π ◦ η)(〈e, ε〉)− 〈e, η(ε)〉
= 〈η∗(e), ε〉 = η∗(e)(ε),

where η∗ ∈ CDO(E∗) was given in Eq. (F.7). Hence,

[η, e] = η∗(e). (6.40)

On the other hand,

Therefore, for ν ∈ Γ(F̃ ∗) ⊂ Γ(F̂ ∗) ∼= C∞lin

(
D
(
F̂ ∗
∗))

, we have Ψ(ν) ∈ Γ(AE∗), whence,

for ε ∈ Γ(E∗) we have ] ◦Ψ(ν)(ε) = Ψ(ν)∗(](ε)) (this is equivalent to the compatibility of
the operator Ψ(ν) ∈ Γ(AE∗) with the metric 〈·, ·〉 on E∗), whence Ψ(ν)(ε) = [(Ψ(ν)∗(]ε))
and thereby, taking into account that q∗1 = D(Φ)∗ ◦ q∗E ◦ ],

{ν, (q1)∗ε} = (q1)∗[ν, ε] = (q1)∗Ψ(ν)(ε)

= D(Φ)∗ ◦ (qE)∗ ◦ ] ◦ [(Ψ(ν)∗(](ε)))

= D(Φ)∗ ◦ (qE)∗(Ψ(ν)∗(](ε)))

= D(Φ)∗ ◦ (qE)∗[Ψ(ν), ](ε)]

= D(Φ)∗{Ψ(ν), (qE)∗](ε)}
= D(Φ)∗{(D(Φ)−1)∗ν, (D(Φ)−1)∗(q1)∗ε}.

This holds when ν ∈ Γ(F̃ ∗) ⊂ Γ(F̂ ∗). Now, when ν = λ ∈ Γ(S2(E∗)) ⊂ Γ(F̂ ∗), we have
on one hand, from Leibniz’s rule

{ν, (q1)∗ε} = −(q1)∗λ(](ε)).

On the other hand, (D(Φ)−1)∗(λ) = λ ◦ ] and taking into account Eq. (6.40), it follows

{(D(Φ)−1)∗λ, (D(Φ)−1)∗(q1)∗ε} = (qE)∗[λ ◦ ], ](ε)] = (qE)∗(−] ◦ λ)(](ε)),

thereby

D(Φ)∗{(D(Φ)−1)∗λ, (D(Φ)−1)∗(q1)∗ε} = −D(Φ)∗ ◦ (qE)∗ ◦ ] ◦ λ(](ε))

= −(q1)∗λ(](ε)) = {λ, (q1)∗ε}.

Finally, for ε1, ε2 ∈ Γ(E∗) ∼= C∞lin(E),

{(q1)∗ε1, (q2)∗ε2} = (qE
∗ ◦ q1)∗{ε1, ε2} = (qE

∗ ◦ q1)∗〈ε1, ε2〉
= D(Φ)∗ ◦ (qE)∗ ◦ (qE)∗〈]ε1, ε2〉
= D(Φ)∗{(qE)∗]∗ε1, (qE∗)

∗ε2}
= D(Φ)∗{(D(Φ)−1)∗(q1)∗ε1, (D(Φ)−1)∗(q2)∗2}.
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�

Below we obtain as a corollary the important fact that we always can find Darboux
coordinates in a symplectic degree 2 manifold. This result is mentioned, and used, in [59],
but it is not proven there.

Corollary 6.28. Consider the canonical Darboux coordinates on T ∗E, (xi, εa,
∂
∂xi
, ∂
∂εa

),
which satisfy {

xi,
∂

∂xj

}
= δij ,

{
εa,

∂

∂εb

}
= δba,

and the Poisson brackets of any other pair of coordinate functions is zero. If we choose
the εa’s to be an orthonormal frame of E∗ at each point, then this coordinate system
induces a Darboux coordinate system on D(F̂ ∗) by pull-back under the isomorphism D(Φ),
(qi, εa, pi, ξ

a), which satisfies

{qi, pj} = δij , {ξa, εb} = ±1,

and the other brackets are zero. In particular, (qi, εa, pi) is a coordinate system for M
that satisfies

{qi, pj} = δij , {εa, εb} = ±1,

and the other brackets are zero.

Proof. It is a direct consequence of Cor. 6.26 and Prop. 6.27.
�

6.4.2 Integrable, symplectic vector fields

We want to describe an integrable 1-vector field Q on a symplectic degree 2 manifold
that is compatible with the symplectic form in the following sense.

Definition 6.29. A vector field Q on a symplectic manifold (M, ω) is called symplectic if

LQω = 0.

It can be shown, by the same calculations as in the classical case (but this time taking
care of the corresponding degrees) that Q is symplectic if and only if

Q({f, g}) = {Q(f), g}+ (−1)|f |{f,Q(g)}. (6.41)

An alternative way to characterize a homogeneous vector field of degree k (see Rmk.
4.2) is the condition

[ε,Q] = kQ,

where ε is the Euler vector field ε(f) := |f |f (see [59]).
Analogously, we can characterize a homogeneous k-form ω ∈ Ωk(M) by the condition

Lεω = kω,
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thus yielding an alternative way to characterize the homogeneity of a symplectic 2-form,
ω, without mentioning the corresponding Poisson brackets:

Lεω = 2ω.

A consequence of this is that a symplectic 2-form is automatically exact, for

2ω = Lεω = dιεω + ιεdω = dιεω,

whence

ω = d(
1

2
ιεω).

Next proposition shows that when a 1-vector field is symplectic, then it comes from a
degree 3 hamiltonian, that is,

Q = {θ, ·},

and moreover, Q is integrable, that is, Q2 = 0 if and only if θ is integrable with respect
to the symplectic structure, that is, {θ, θ} = 0. This result belongs to D. Roytenberg [59].
In Rmk. 6.33 we will show this result from a different perspective.

Proposition 6.30 ([59]). There is a 1:1 canonical correspondence between integrable,
symplectic 1-vector fields Q, and integrable 3-hamiltonians, that is, homogeneous degree 3
functions θ, satisfying

{θ, θ} = 0.

Proof. If Q is a symplectic 1-vector field, we have, on one hand,

0 = LQω = ιQdω + dιQω = dιQω.

On the other hand, since [ε,Q] = Q, we have

ιQω = ι[ε,Q]ω = [Lε, ιQ](ω)

= LειQω − ιQLεω = LειQω − 2ιQω,

whence
3ιQω = LειQω = dιειQω + ιεdιQω = dιειQω.

Thereby,

ιQω = d(
1

3
ιειQω),

that is, Q is hamiltonian: Q = Xθ, with θ = 1
3ω(Q, ε).

Observe that, in particular, it follows that θ is homogeneous of degree 3 and Q = {θ, ·}.
Since, for any f ∈ OM ,

{θ, {θ, f}} = {{θ, θ}, f} − {θ, {θ, f}},

it follows that Q2 = X 1
2
{θ,θ}, therefore, taking the non-degeneracy of {·, ·} into account,

Q is integrable if and only if {θ, θ} = 0.
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It is immediate that given a degree 3 function θ, with {θ, θ} = 0, we obtain an inte-
grable, symplectic 1-vector field

Q := {θ, ·},
and the two processes we described Q θ and θ  Q are inverses one of the other.

�

A consequence of Prop. 6.27, is that the space Γ(Ê) ∼= Γlin

(
D
(
F̂ ∗
∗))

is C∞(M)-

spanned by the sections of the form dε (observe that sections of the form ε ⊗ df can be

written as d(fε) − fdε), and the space Γ(F ) ∼= Γcore

(
D
(
F̂ ∗
∗))

is C∞(M)-spanned by

the sections of the form df . Here ε ∈ Γ(E∗) ∼= C∞lin(E) and f ∈ C∞(M), and d is the

differential dual to the Lie algebroid structure on DF ∗ = D
(
F̂ ∗
∗)∗

. With this in mind,

given a degree 3 function on M, θ, it is possible to express the pair of morphisms (θ]1, θ
]
2)

that characterize θ (see Thm. 3.59) in terms of the Poisson brackets {·, ·}. This is the
content of the following result.

Proposition 6.31. Given a degree 3 function onM, θ ∈ A3. Consider the corresponding
pair of morphisms (θ]1, θ

]
2), which characterizes θ, given by Thm. 3.59. Then, for any

f ∈ C∞(M), ε ∈ Γ(E∗) ∼= C∞lin(E),

θ]1(df) = −{θ, f}, θ]2(dε) = {θ, ε}. (6.42)

In particular, θ is completely determined by the quantities

{{θ, f}, ε} and {{θ, ε1}, ε2}, ∀f ∈ C∞(M), ε, ε1, ε2 ∈ Γ(E∗). (6.43)

Proof. If we introduce a splitting we have

θ = θ1 + θ2,

with θ1 ∈ Γ(E∗⊗F ∗) and θ2 ∈ Γ(Λ3E∗). Because Eqs. (6.42) behave well with respect to
linear operations, we don’t loose generality if we prove them for

θ = θ1 + θ2 = ε0 ⊗ ζ + ε1 ∧ ε2 ∧ ε3. (6.44)

Then,
−{θ, f} = −{ε0 ⊗ ζ, f} = −{ζ, f}ε0 = −〈ζ, df〉ε0 = θ]1(df).

Analogously,

{θ, ε} = {ε0 ⊗ ζ + ε1 ∧ ε2 ∧ ε3, ε}
= 〈ε0, ε〉ζ − ε0 ∧ {ε, ζ}

+ 〈ε, ε1〉ε2 ∧ ε3 − 〈ε, ε2〉ε1 ∧ ε3 + 〈ε, ε3〉ε1 ∧ ε2

= −〈ε0, dε〉ζ + ε0 ∧ 〈ζ, dε〉
− 〈ε1, dε〉ε2 ∧ ε3 + 〈ε2, dε〉ε1 ∧ ε3 − 〈ε3, dε〉ε1 ∧ ε2.

Now if we apply the definition of θ]2 given in the proof of Thm. 3.59 to θ given in Eq.

(6.44), evaluated in de ∈ Γ(Ê), we find that

θ]2(dε) = −〈ε0, dε〉ζ + ε0 ∧ 〈ζ, dε〉 − 〈ε1, dε〉ε2 ∧ ε3 + 〈ε2, dε〉ε1 ∧ ε3 − 〈ε3, dε〉ε1 ∧ ε2,
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whence,
θ]2(dε) = {θ, ε}.

The last assertion of the proposition follows immediately from the observation made before
the proposition and from the identities

〈ε1, ε2〉 = {ε1, ε2}, 〈γ, dε〉 = {γ, ε}, ε, ε1, ε2 ∈ Γ(E∗), f ∈ C∞(M), γ ∈ Γ(F̃ ∗).

〈γ, df〉 = {γ, f}, (6.45)

�

Recall that we already introduced Courant algebroids in Def. 5.1. In our next theorem,
we show a characterization of Courant algebroids as symplectic NQ degree 2 manifolds.
This result is due to D. Roytenberg [59]. However the proof we provide is new in many
aspects, specially in the fact that we use strongly our characterization of degree 3 functions
as a pair of vector bundle morphisms (Thm. 3.59).

Theorem 6.32 ([59]). There is a canonical 1:1 correspondence between integrable, sym-
plectic 1-vector fields Q, and Courant algebroids. The correspondence is given by

a(ε)(f) := {Q(f), ε} = {Q(ε), f}, [[ε1, ε2]] := {Q(ε1), ε2}, (6.46)

where ε, ε1, ε2 ∈ Γ(E∗) and f ∈ C∞(M).

Proof. We have already seen in Prop. 6.30 that there is a canonical 1:1 correspondence
between integrable, symplectic 1-vector fieldsQ and degree 3 functions θ satisfying {θ, θ} =
0, where the correspondence is explicitly given by θ  Q = {θ, ·}. Thus, we will show
actually a correspondence between integrable degree 3 functions and Courant algebroid
structures.

By Thm. 3.59 we know that a degree 3 function, θ, is equivalent to the pair of
morphisms (θ]1, θ

]
2), which, by Prop. 6.31, are determined by Eqs. (6.42), which in turn

are completely determined by Eqs. (6.43), and those equations give precisely the Courant
algebroid data defined in Eq. (6.46). Explicitly we have

〈θ]1(df), ](ε)〉 = −a(ε)(f), 〈θ]2(dε1), dε2〉 = [[ε1, ε2]]. (6.47)

So, suppose we begin with the Courant algebroid data ([[·, ·]], a). In order to see that
we actually obtain a degree 3 function θ via Eqs. (6.46), we define

〈θ]2(dε), df〉 := a(ε)(f), (6.48)

and observe θ]2 is completely determined by Eq. (6.48) and the second equation of (6.47).

That θ]2 actually takes values on F̃ ∗ follows from property 5 of Def. 5.1. Also by the first
equation of (6.47) and by Eq. (6.48), we already have property 1 of Thm. 3.59. Indeed,
we have

〈θ]2(dε), df〉 = a(ε)(f) = −〈θ]1(df), ](ε)〉 = 〈θ]1(df), dε〉, (6.49)

where we also used π(dε) = −](ε), which follows from the definition of the anchor map of
the metric VB -algebroid corresponding to (M, {·, ·}), given in Eq. (6.17).
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Now we need to show that properties 2 and 3 of Thm. 3.59 hold for the pair (θ]1, θ
]
2)

we have defined. For the proof of property 2 we compute

〈(ε1 ⊗ df)∗ ◦ (θ]1)∗ − θ]1 ◦ (ε1 ⊗ df), dε2〉 = −θ]1(df)〈ε1, ε2〉+ 〈(θ]1)∗(](ε2)), df〉ε1

= D(f)〈ε1, ε2〉 − a(ε2)(f)ε1, (6.50)

where D : C∞(M) // Γ(E∗) is the “differential” given by

〈D(f), ε〉 := a(ε)(f), ∀ε ∈ Γ(E∗), (6.51)

that is, D is the adjoint of a, with respect to the non-degenerate metric 〈·, ·〉 on E∗. On
the other hand, by properties 3 and 4 of Def. 5.1,

〈θ]2(ε1 ⊗ df), dε2〉 = 〈θ]2(d(fε1)− fdε1), dε2〉

= 〈θ]2(d(fε1)), dε2〉 − f〈θ]2(dε1), dε2〉
= [[fε1, ε2]]− f [[ε1, ε2]]

= f [[ε1, ε2]] +D(f)〈ε1, ε2〉 − a(ε2)(f)ε1 − f [[ε1, ε2]]

= D(f)〈ε1, ε2〉 − a(ε2)(f)ε1.

Comparing with Eq. (6.50) we get property 2. of Thm. 3.59.

At this point it is demanded to observe that we have two ways to calculate 〈θ]2(dε1), d(fε2)〉.
We must show they cast the same result:

• On one hand, by property 3 of Def. 5.1,

〈θ]2(dε1), d(fε2)〉 = [[ε1, fε2]] = f [[ε1, ε2]] + a(ε1)(f)ε2.

• On the other hand, by Eq. (6.48),

〈θ]2(dε1), d(fε2)〉 = f〈θ]2(dε1), dε2〉+ 〈θ]2(dε1), ε2 ⊗ df〉
= f [[ε1, ε2]] + a(ε1)(f)ε2.

Finally, property 3 of Thm. 3.59 follows from property 4 of Def. 5.1:

• On one hand, by property 4. of Def. 5.1 and Eq. (6.47),

〈θ]2(dε1), dε2〉+ 〈θ]2(dε2), dε1〉 = D(〈ε1, ε2〉).

On the other hand, by Eq. (3.48) and using dε = (dε−∇·ε) +∇·ε,

W (dε1, dε2) = −〈∇·ε1, ε2〉 − 〈∇·ε2, ε1〉 = −d(〈ε1, ε2〉)

=⇒ θ]1(W (dε1, dε2)) = D(〈ε1, ε2〉).

Therefore
〈θ]2(dε1), dε2〉+ 〈θ]2(dε2), dε1〉 = θ]1(W (dε1, dε2)).
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• By Eqs. (6.48) and (6.50),

〈θ]2(dε1), ε2 ⊗ df〉+ 〈θ]2(ε2 ⊗ df), dε1〉 = a(ε1)(f)ε2 +D(f)〈ε1, ε2〉 − a(ε1)(f)ε2

= D(f)〈ε1, ε2〉.

On the other hand, by Eq. (3.48),

W (dε1, ε2 ⊗ df) = −〈ε1, ε2〉df

=⇒ θ]1(W (dε1, ε2 ⊗ df)) = D(f)〈ε1, ε2〉.

Therefore

〈θ]2(dε1), ε2 ⊗ df〉+ 〈θ]2(ε2 ⊗ df), dε1〉 = θ]1(W (dε1, ε2 ⊗ df)).

• Finally, 〈θ]2(εi ⊗ dfi), εj ⊗ dfj〉 = 0 = W (εi ⊗ dfi, εj ⊗ dfj), i, j ∈ {1, 2}, therefore

〈θ]2(ε1 ⊗ df1), ε2 ⊗ df2〉+ 〈θ]2(ε2 ⊗ df2), ε1 ⊗ df1〉 = θ]1(W (ε1 ⊗ df1, ε2 ⊗ df2)) = 0.

Accordingly, we have shown that from the pair ([[·, ·]], a) satisfying properties 3, 4 and 5 of

Def. 5.1, we obtain a degree 3 function θ, or equivalently, the pair of morphisms (θ]1, θ
]
2)

satisfying properties 1, 2 and 3 of Thm. 3.59. And conversely, if we start from such a
pair (θ]1, θ

]
2), we can define the pair ([[·, ·]], a) by Eqs. (6.47), and the calculations above

also show that from properties 1, 2 and 3 of Thm. 3.59 we obtain properties 3 and 4 of
Def. 5.1. Property 5 of Def. 5.1, follows from the fact that θ]2 takes values on F̃ ∗. Indeed,

notice that, for ε ∈ Γ(E∗), θ]2(dε) ∈ F̃ ∗ ∼= AE∗ (see Prop. 6.23), therefore, under the

identification F̃ ∗
Ψ
// AE∗ , we have, for any ε1, ε2 ∈ Γ(E∗),

a(ε)(〈ε1, ε2〉) = (π ◦ θ]2(dε))(〈ε1, ε2〉)

= 〈θ]2(dε)(ε1), ε2〉+ 〈ε1, θ
]
2(dε)(ε2)〉

= 〈[θ]2(dε), ε1], ε2〉+ 〈ε1, [θ
]
2(dε), ε2]〉 (6.52)

= 〈〈θ]2(dε), dε1〉, ε2〉+ 〈ε1, 〈θ]2(dε), dε2〉〉
= 〈[[ε, ε1]], ε2〉+ 〈ε1, [[ε, ε2]]〉.

It remains to verify that the integrability equation {θ, θ} = 0 is equivalent to properties 1
and 2 of Def. 5.1. First observe that property 4 is equivalent to

[[ε1, ε2]] + [[ε2, ε1]] = D(〈ε1, ε2〉).

Since 〈·, ·〉 is non-degenerate, and the Lie bracket of vector fields [a(ε1), a(ε2)] is skew-
symmetric, we can conclude that

a ◦ a∗ = 0,

where a∗ : T ∗M // E∗ is the composition of the pull-back of a with the inverse of the
metric isomorphism [ : E // E∗, that is

〈a∗(α), ε〉 = 〈a(ε), α〉, ∀ε ∈ Γ(E∗), α ∈ Γ(T ∗M).
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It follows that,

〈a∗(α), a∗(β)〉 = 〈a(a∗β), α〉 = 0, ∀α, β ∈ Γ(T ∗M). (6.53)

Resuming the task of characterizing integrability of θ, notice that this is a local issue,
thereby we can work in a Darboux coordinate system (qi, εa, pi) as the one given by Prop.
6.28. In these coordinates we have

{θ, θ} = Aijpipj +Bab
j εaεbpj + Cabcdεaεbεcεd, (6.54)

where Aij , Bj
ab, C

abcd ∈ C∞(U) are real functions in U ⊂M given by

Aij = {{{θ, θ}, qi}, qj},
Bab
j = ±{{{{θ, θ}, εa}εb}, qj},

Cabcd = ±{{{{{θ, θ}, εa}, εb}, εc}, εd}.

Now using Jacobi identity we have the following:

Aij = {{qj , {qi, θ}}, θ}+ {{qi, θ}, {qj , θ}}
+ {{qj , θ}, {qi, θ}}+ {θ, {qj , {qi, θ}}}

= 2{{qj , {qi, θ}}, θ}+ 2{{qi, θ}, {qj , θ}}
= 2{{qi, θ}, {qj , θ}}
= 2〈a∗(dqi), a∗(dqj)〉. (6.55)

{{{θ, θ}, εa}, εb} = −2{{εb, {εa, θ}}, θ} − 2{{εa, θ}, {εb, θ}}
=⇒ ±Bab

j = {{εb, {εa, θ}}, {qj , θ}}+ 2{{qj , {εa, θ}}, {εb, θ}}
+ 2{{εa, θ}, {qj , {εb, θ}}}+ {{qj , θ}, {εb, {εa, θ}}}

= 2a([[εa, εb]])(q
j) + 2a(εb)(a(εa)(q

j))− 2a(εa)(a(εb)(q
j))

= 2〈a([[εa, εb]])− [a(εa), a(εb)], dq
j〉. (6.56)

{{{{θ, θ}, εa}, εb}, εc} = −2{{{εb, {εa, θ}}, θ}, εc} − 2{{{εa, θ}, {εb, θ}}, εc}
= 2([[[[εa, εb]], εc]] + [[εb, [[εa, εc]]]]− [[εa, [[εb, εc]]]])

=⇒ ±Cabcd = 2〈[[[[εa, εb]], εc]] + [[εb, [[εa, εc]]]]− [[εa, [[εb, εc]]]], εd〉. (6.57)

Thereby, {θ, θ} = 0 if and only if Aij = Bab
j = Cabcd = 0, and taking Eqs. (6.53), (6.55),

(6.56) and (6.57) into account, this is equivalent to properties 1 and 2 of Def. 5.1, as we
wanted.

�

Remark 6.33. An interesting consequence of what was observed in the proof of the
corollary above is that we can obtain an alternative proof, providing a new insight, of the
fact that symplectic 1-vector fields on symplectic degree 2 manifolds are automatically
hamiltonian. The proof consists on obtaining from Q a pair ([[·, ·]], a) satisfying properties
3, 4 and 5 of Def. 5.1. Define

a(ε)(f) := {Q(ε), f}, [[ε1, ε2]] := {Q(ε1), ε2}, e, ε1, ε2 ∈ Γ(E∗), f ∈ C∞(M). (6.58)



6.4. EXAMPLE: THE SYMPLECTIC CASE 132

Then, from (graded) Leibniz rule of {·, ·}, we have

[[ε1, fε2]] = {Q(ε1), fε2} = {Q(ε1), f}ε2 + f{Q(ε1), ε2}
= a(ε1)(f)ε2 + f [[ε1, ε2]],

hence, we have property 3 of Def. 5.1.
If Q is symplectic, then Q satisfies Eq. (6.41). In particular,

0 = Q{ε, f} = {Q(ε), f} − {ε,Q(f)},

thereby, {Q(ε), f} = {Q(f), ε}, whence, if we define D(f) := Q(f), so that Eq. (6.51)
holds, we have

D(〈ε1, ε2〉) = Q({ε1, ε2}) = {Q(ε1), ε2} − {ε1, Q(ε2)}
= [[ε1, ε2]] + [[ε2, ε1]],

which is equivalent to property 4 of Def. 5.1.
Finally, property 5 of Def. 5.1 is obtained easily from (graded) Jacobi identity of {·, ·}:

a(ε)(〈ε1, ε2〉) = {Q(ε), {ε1, ε2}}
= {Q(ε), ε1}, ε2}+ {ε1, {Q(ε), ε2}}
= 〈[[ε, ε1]], ε2〉+ 〈ε1, [[ε, ε2]]〉.

Therefore, by what was done in the proof of Thm. 6.32, we obtain a pair (θ]1, θ
]
2) which

satisfies properties 1, 2 and 3 of Thm. 3.59, thereby obtaining a degree 3 function θ, such
that

〈θ]2(dε), df〉 = a(ε)(f), 〈θ]2(dε1), dε2〉 = [[ε1, ε2]]. (6.59)

From Eqs. (6.45), it follows that

{θ]2(dε), f} = a(ε)(f), {θ]2(dε1), ε2} = [[ε1, ε2]].

Bringing to the picture the second equation in (6.42) and Eq. (6.58), we get

{Q(ε1), ε2} = {{θ, ε1}, ε2}, and {Q(ε1), f} = {{θ, ε1}, f},

also, using Jacobi identity and the second equation above, we get

{Q(f), ε} = {{θ, f}, ε}.

Therefore, since {·, ·} is non-degenerate, we conclude

Q = {θ, ·}.

�
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The “cotangent” Lie 2-algebroid of a Courant algebroid

Equations (6.59) show the parallel that can be drawn between the pair of morphisms

(θ]1, θ
]
2) corresponding to Courant algebroids, and the Poisson morphism π] : T ∗M //TM

corresponding to Poisson manifolds. The parallel also extends to our Lie 2-algebroid
structure, which was defined in Thm. 4.9, being related to the Courant algebroid structure
in a very similar way the cotangent Lie algebroid is related to its corresponding Poisson
structure, as Eqs. 1-5 of the following theorem show.

Proposition 6.34. Consider a Courant algebroid structure ([[·, ·]], a) on the pseudo-euclidean
bundle (E∗, 〈·, ·〉). By Thm. 6.32 we have equivalently the Q-structure on the corresponding
symplectic degree 2 manifold M. Consider the Lie 2-algebroid structure ([·, ·],Θ,Ψ, ∂, ρ)
corresponding to this degree 2 NQ-manifold given by Thm. 4.20. Then

1. [dε1, dε2] = d[[ε1, ε2]], ∀ε1, ε2 ∈ Γ(E∗).

2. Θ(dε)(df) = d(a(ε)(f)), ∀ε ∈ Γ(E∗), f ∈ C∞(M).

3. Ψ(dε1)(ε2) = −[[ε2, ε1]], ∀ε1, ε2 ∈ Γ(E∗).

4. 〈∂(df), ε〉 = a(ε)(f) ∀ε ∈ Γ(E∗), f ∈ C∞(M).

5. ρ̂(dε)(f) = a(ε)(f), ∀ε ∈ Γ(E∗), f ∈ C∞(M).

Proof. Let’s prove Eq. 1. We want to show

〈[dε1, dε2], ε〉 = 〈d[[ε1, ε2]], ε〉, 〈[dε1, dε2], γ〉 = 〈d[[ε1, ε2]], γ〉 ∀ε1, ε2, ε ∈ Γ(E∗), γ ∈ F̃ ∗.
(6.60)

Let’s show the first equality of (6.60). By Eq. (4.15), we have

〈[dε1, dε2], ε〉 = ρ̂(dε1)(〈dε2, ε〉)− ρ̂(dε2)(〈dε1, ε〉) + 〈T (dε1, dε2), Q(ε)〉. (6.61)

Now,

1.

ρ̂(dε1)(〈dε2, ε〉) = −{Q({ε2, ε}), ε1}
= −{{Q(ε2), ε}, ε1}+ {{ε2, Q(ε)}, ε1}.

2.

ρ̂(dε2)(〈dε1, ε〉) = −{Q({ε1, ε}), ε2} = {{ε1, ε}, Q(ε2)}
= −{{Q(ε2), ε1}, ε} − {ε1, {Q(ε2), ε}}.

3.

〈T (dε1, dε2), Q(ε)〉 = 〈dε2, 〈dε1, Q(ε)〉〉 = −{{Q(ε), ε1}, ε2}
= {{ε2, ε1}, Q(ε)} − {ε1, {ε2, Q(ε)}}
= −{Q({ε2, ε1}, ε} − {ε1{ε2, Q(ε)}}
= −{{Q(ε2), ε1}, ε}+ {{ε2, Q(ε1)}, ε} − {ε1{ε2, Q(ε)}}.
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Putting items 1, 2 and 3 into Eq. (6.61), we obtain

〈[dε1, dε2], ε〉 = {{ε2, Q(ε1)}, ε} = 〈d[[ε1, ε2]], ε〉.

Now we will prove the second equality of (6.60). By Eq. (4.14) we have

〈[dε1, dε2], γ〉 =Ψ(dε1)(〈dε2, γ〉)−Ψ(dε2)(〈dε1, γ〉)

+ ρ∗(d(〈T (dε2, dε1), γ〉))− 〈dε2, Q(γ)]2(dε1)〉. (6.62)

Now,

1.

Ψ(dε1)(〈dε2, γ〉) = −{Q({γ, ε2}), ε1} = −{{Q(γ), ε2}, ε1}−{{γ,Q(ε2)}, ε1}. (6.63)

In order to compute the term {{Q(γ), ε2}, ε1}, observe that

{{Q(γ), ε2}, ε1} = −{{ε1, Q(γ)}, ε2}+ {Q(γ), {ε1, ε2}}.

Now,
Q({γ, {ε1, ε2}}) = {Q(γ), {ε1, ε2}}+ {γ,Q({ε1, ε2})},

Whence,

{{Q(γ), ε2}, ε1} = −{{ε1, Q(γ)}, ε2}+Q({γ, {ε1, ε2}})− {γ,Q({ε1, ε2})}.

Thereby, putting this into Eq. (6.63), we have

Ψ(dε1)(〈dε2, γ〉) ={{ε1, Q(γ)}, ε2} −Q({γ, {ε1, ε2}})
+ {γ,Q({ε1, ε2})} − {{γ,Q(ε2)}, ε1}.

2.

Ψ(dε2)(〈dε1, γ〉 = −{Q({γ, ε1}), ε2} = −Q({{γ, ε1}, ε2})− {{γ, ε1}, Q(ε2)}
= Q({{γ, ε2}, ε1})−Q({γ, {ε1, ε2}})− {{γ, ε1}, Q(ε2)}
= Q({{γ, ε2}, ε1})−Q({γ, {ε1, ε2}})− {{γ,Q(ε2)}, ε1}
− {{Q(ε2), ε1}, γ}.

3.
ρ∗(d(〈T (dε2, dε1), γ〉)) = −Q(〈dε1, 〈dε2, γ〉〉) = Q({{γ, ε2}, ε1}).

4.
〈dε2, Q(γ)]2(dε1)〉 = {{Q(γ), ε1}, ε2}.
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Putting items 1, 2, 3 and 4 into Eq. (6.62), we obtain

〈[dε1, dε2], γ〉 = {{Q(ε2), ε1}, γ}+ {γ,Q({ε1, ε2})}
= {{Q(ε2), ε1}, γ}+ {γ, {Q(ε1), ε2}} − {γ, {ε1, Q(ε2)}}
= {γ, {Q(ε1), ε2}} = 〈d[[ε1, ε2]], γ〉.

Therefore we have Eq. 1 of the statement of the theorem. Now let’s prove Eq. 2 of the
theorem. We want to show

〈Θ(dε)(df), γ〉 = 〈d(a(ε)(f)), γ〉, ∀ε ∈ Γ(E∗), f ∈ C∞(M), γ ∈ Γ(F̃ ∗). (6.64)

By Eq. (4.12) we have

〈Θ(dε)(df), γ〉 = ρ̂(dε)(〈df, γ〉) + 〈∂(df), 〈dε, γ〉〉 − 〈df,Q(γ)]2(dε)〉. (6.65)

Let’s compute each term of the right-hand side of this equation.

1.

ρ̂(dε)(〈df, γ〉) = {Q({γ, f}), ε} = {Q(ε), {γ, f}}
= {{Q(ε), γ}, f}+ {γ, {Q(ε), f}}.

2.

〈∂(df), 〈dε, γ〉〉 = 〈df,Q({γ, ε})〉 = {Q({γ, ε}), f}
= {{Q(γ), ε}, f}+ {{γ,Q(ε)}, f}.

3. 〈df,Q(γ)]2(dε)〉 = {{Q(γ), ε}, f}.

Putting items 1, 2 and 3. into Eq. (6.65), we get

〈Θ(dε)(df), γ〉 = {γ, {Q(ε), f}} = 〈d(a(ε)(f)), γ〉.

Thereby, we have Eq. 2 of the theorem. Next let’s take care of Eq. 3 of the theorem:

Ψ(dε1)(ε2) = −〈dε1, Q(ε2)〉 = −{Q(ε2), ε1} = −[[ε2, ε1]].

Next, we prove Eq. 4 of the theorem:

〈∂(df), ε〉 = 〈df,Q(ε)〉 = {Q(ε), f} = a(ε)(f).

Finally, let’s prove Eq. 5 of the theorem:

ρ̂(dε)(f) = −〈dε,Q(f)〉 = {ε,Q(f)} = a(ε)(f).

�
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Remark 6.35. Eq. 1 of Prop. 6.34 may tempt us to conclude that

[φ1, φ2] = L
θ]2(φ1)

φ2 − Lθ]2(φ2)
φ1 + d(〈θ]2(φ2), φ1〉), ∀φ1, φ2 ∈ Γ(Ê), (6.66)

in analogy with the cotangent Lie algebroid brackets in the degree 1 case. The temptation
is there because, for φ1 = dε1, φ2 = dε2, Eq. (6.66) is true, as it is easily verified. However,
Eq. (6.66) is not true in the general case. We can see this by contradiction. If Eq. (6.66)
were valid, then by property 3 of Thm. 3.59 and property 7 of Def. 4.6, we should have

d(θ]1(W (φ1, φ2))) = δ(W (φ1, φ2)), ∀φ1, φ2 ∈ Γ(Ê), (6.67)

and since W : S2(Ê) // F is surjective, we should have

d(θ]1(ξ)) = δ(ξ), ∀ξ ∈ Γ(F ). (6.68)

By evaluating both sides of Eq. (6.68) on fξ, we should conclude that

θ]1(ξ)⊗ df = ρ∗(df)⊗ ξ.

Now observe the following:

〈ρ∗(df), ε〉 = ρ(ε)(f) = −〈ε,Q(f)〉 = 〈ε,−{θ, f}〉 = 〈θ]1(df), ε〉,

therefore we should have
θ]1(ξ)⊗ df = θ]1(df)⊗ ξ,

which is impossible to hold if ξ ∈ Γ(F ) and f ∈ C∞(M) are arbitrary.
In Sec. 7.1 we find a formula relating the Lie 2-algebroid brackets of Eq. (4.14) and

the brackets given by Eq. (6.66).
�

Proposition 6.36. Let (M, {·, ·}) be a symplectic degree 2 manifold. Consider its asso-
ciated metric double vector bundle. We state that this DVB can be canonically identified
with TE∗, with the linear metric described in Prop. 5.11.

IfM is endowed with an integrable, symplectic 1-vector field Q, then the corresponding
VB-Courant algebroid structure is given by the tangent prolongation of E∗ described in
Prop. 5.11.

Proof. Let (DF ∗ , E; Φ) be the associated metric DVB that corresponds toM, so that the
self-conjugate DVB is

D ∼= D
(
F̂ ∗
∗)

= (DF ∗)
∗
E .

By Prop. 6.25 we have (DF ∗)
∗
E
∼= [∗(T ∗E). Then, Cor. B.17 allows us to conclude that

DF ∗
∼= ([∗(T ∗E∗))∗E

∼= [∗((T ∗E)∗E∗)
∼= [∗(TE∗),

where, for the last identification, we used the Legendre transform ΥE : T ∗E // T ∗E∗ (cf.
Eq. (F.4)). Therefore, from Prop. B.18, we conclude that

]∗(DF ∗) ∼= ]∗([∗(TE∗)) ∼= TE∗.
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We saw in the proof of Thm. 6.32 that W (dε1, dε2) = −d〈ε1, ε2〉. Also, since d is
the differential corresponding to the metric VB -algebroid, from (6.17) we conclude that
〈dε1, ε2〉 = −〈ε1, ε2〉. Now, taking into account that the Legendre transform ΥE is −Id on
the side bundle E, from Cor. 3.50, Eq. (3.48) and Cor. F.2 we conclude that the linear
metric on ]∗(DF ∗) ∼= TE∗ given by Thm. 3.38 is precisely the one described in Prop. 5.11.

As for the VB -Courant algebroid, under the identifications above, it can be seen that
the corresponding VB -Courant algebroid structure on TE coincides with the tangent
prolongation of E described in Prop. 5.11.

�

Integrability of θ in terms of the morphisms (θ]1, θ
]
2)

A very important consequence of Eq. 1 of Prop. 6.34 is the following characterization
of integrability of a degree 3 function θ ∈ A3 on a symplectic manifold.

Proposition 6.37. Let (M, {·, ·}) be a symplectic degree 2 manifold. Let θ ∈ A3 be a
degree 3 hamiltonian. Then θ is integrable, that is, {θ, θ} = 0 if and only if

θ]2([dε1, dε2]) = [θ]2(dε1), θ]2(dε2)], ∀ε1, ε2 ∈ Γ(E∗) ∼= C∞lin(E), (6.69)

where d is the differential dual to the V B-algebroid structure on DF ∗, the brackets on the
left-hand side are the preLie 2-algebroid brackets, given by Eqs. (4.14) and (4.15), and the
brackets in the right-hand side are the V B-algebroid brackets on DF ∗ (or the Lie algebroid
brackets on F̃ ∗).

Remark 6.38. The results of this section can be obtained directly from the more general
results obtained in Sec. 7.2. However we chose to provide here alternative proofs exploiting
the nondegeneracy of the Poisson brackets, so that it appears more transparently the role of
the Courant algebroid structure, which determines already θ together with its integrability
condition, as we saw in Sec. 6.4.2.

Proof. Define a pair ([[·, ·]], a) from θ by Eq. (6.46), where Q = {θ, ·}. Then, for any
ε3 ∈ Γ(E∗) we have

〈θ]2([dε1, dε2]), dε3〉 = 〈θ]2(d[[ε1, ε2]]), dε3〉
= {{θ, [[ε1, ε2]]}, ε3}
= [[[[ε1, ε2]], ε3]]. (6.70)

On the other hand,

〈[θ]2(dε1), θ]2(dε2)], dε3〉 = {{{θ, ε1}, {θ, ε2}}, ε3}
= −{{ε3, {θ, ε1}}, {θ, ε2}} − {{θ, ε1}, {ε3, {θ, ε2}}}
= −[[ε2, [[ε1, ε3]]]] + [[ε1, [[ε2, ε3]]]]. (6.71)

From Eqs. (6.70) and (6.71) it follows that

〈[θ]2(dε1), θ]2(dε2)], dε3〉 − 〈θ]2([dε1, dε2]), dε3〉 = [[ε1, [[ε2, ε3]]]]− [[[[ε1, ε2]], ε3]]− [[ε2, [[ε1, ε3]]]].
(6.72)
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Analogously, for any f ∈ C∞(M),

〈θ]2([dε1, dε2]), df〉 = 〈θ]2(d[[ε1, ε2]]), df〉
= {{θ, [[ε1, ε2]]}, f} = a([[ε1, ε2]])(f). (6.73)

On the other hand

〈[θ]2(dε1), θ]2(dε2)], df〉 = {{{θ, ε1}, {θ, ε2}}, f}
= −{{f, {θ, ε1}}, {θ, ε2}} − {{θ, ε1}, {f, {θ, ε2}}}
= −a(ε2)a(ε1)(f) + a(ε1)a(ε2)(f) = [a(ε1), a(ε2)](f). (6.74)

From Eqs. (6.73) and (6.74) it follows

〈[θ]2(dε1), θ]2(dε2)], df〉 − 〈θ]2([dε1, dε2]), df〉 = [a(ε1), a(ε2)](f)− a([[ε1, ε2]])(f). (6.75)

Now, we saw in the proof of Thm. 6.32 that the pair ([[·, ·]]) obtained from a degree 3
hamiltonian θ satisfies automatically properties 3 and 4 of Def. 5.1. We saw also in the
proof of Thm. 6.32 that a consequence of property 4 of Def. 5.1, and the non-degeneracy
of 〈·, ·〉, is that

〈a∗(α), a∗(β)〉 = 0 ∀α, β ∈ Γ(T ∗M),

where a∗ : T ∗M // E is given by 〈a∗(α), ε〉 := 〈a(ε), α〉, ∀ε ∈ Γ(E∗).
Therefore, from Eqs. (6.72) and (6.75), together with the last part of the proof of

Thm. 6.32, it follows that

θ]2([dε1, dε2]) = [θ]2(dε1), θ]2(dε2)]⇐⇒ {θ, θ} = 0.

�

Now we would like to find out how the data of the Lie 2-algebroid corresponding to θ
is related to the V B-algebroid structure on DF ∗ through the pair of morphisms (θ]1, θ

]
2),

in the spirit of what we have already done for φ1 = dε1, φ2 = dε2 in Eq. (6.69).

Proposition 6.39. Let θ be an integrable, degree 3 hamiltonian on a symplectic degree 2
manifold. Then, for φ ∈ Γ(Ê), f ∈ C∞(M), we have

ρ̂(φ)(f) = π(θ]2(φ))(f), (6.76)

where π : AE∗ // TM and we are using the identification F̃ ∗ ∼= AE∗.

Proof. Set Q = {θ, ·}, then

ρ̂(φ)(f) = ρ(pE∗(φ))(f) = −〈pE∗(φ), Q(f)〉

= 〈pE∗(φ), θ]1(df)〉 = 〈φ, θ]1(df)〉

= 〈θ]2(φ), df〉 = 〈pF ◦ θ]2(φ), df〉

= π(θ]2(φ))(f).

�
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Proposition 6.40. Let θ be an integrable, degree 3 hamiltonian on a symplectic degree 2
manifold. Then, for φ ∈ Γ(Ê), ξ ∈ Γ(F ), we have

θ]1(Θ(φ)(ξ)) = [θ]2(φ), θ]1(ξ)], (6.77)

where the brackets on the right-hand side concern to the involutive V B-algebroid DF ∗.

Proof. It is enough to prove Eq. (6.77) for φ = dε and ξ = df and to show that both sides
of the equation behave in the same way with respect to the C∞(M)-module structure.
Let’s begin by showing this. It is immediate that both sides are tensorial with respect to
φ. So let’s see what happens with respect to ξ. Using Eq. (6.76), we have

θ]1(Θ(φ)(fξ)) = fθ]1(Θ(φ)(ξ)) + ρ̂(φ)(f)θ]1(ξ)

= fθ]1(Θ(φ)(ξ)) + π(θ]2(φ))(f)θ]1(ξ).

On the other hand,

[θ]2(φ), θ]1(fξ)] = f [θ]2(φ), θ]1(ξ)] + π(θ]2(φ))(f)θ]1(ξ).

Therefore, both sides of (6.77) behave the same way when we multiply by f ∈ C∞(M) φ
or ξ. So, to end the proof, let’s verify Eq. (6.77) for φ = dε and ξ = df :

On one hand, by Eq. 2 of Prop. 6.34

〈θ]1(Θ(dε1)(df)), dε2〉 = −{θ]1(d(a(ε1)(f))), ε2}
= {{θ, a(ε1)(f)}, ε2} = a(ε2)(a(ε1)(f)). (6.78)

On the other hand,

〈[θ]2(dε1), θ]1(df)], dε2〉 = −{{{θ, ε1},−{θ, f}}, ε2}
= {{ε2, {θ, ε1}}, {θ, f}}+ {{θ, ε1}, {ε2, {θ, f}}}
= −a([[ε1, ε2]]) + a(ε1)(a(ε2)(f)) (6.79)

= −[a(ε1), a(ε2)] + a(ε1)(a(ε2)(f))

= a(ε2)(a(ε1)(f)).

From Eqs. (6.78) and (6.79) we obtain

θ]1(Θ(dε1)(df)) = [θ]2(dε1), θ]1(df)],

which is Eq. (6.77) for φ = de and ξ = df , as we wanted.
�



Chapter 7

Integrability of degree 3 functions
on a degree 2 manifold

In this chapter we put together the previous results in order to obtain in Thm. 7.25 a
characterization, in terms of vector bundles and maps, of degree 3 functions θ on a degree
2 Poisson manifold (M, {·, ·}) satisfying the homological equation {θ, θ} = 0.

7.1 An alternative formula for the bracket of an exact Lie
2-algebroid

In this section we find an alternative formula of the Lie 2-algebroid bracket defined
by Eqs. (4.14) and (4.15), or equivalently by the derived bracket formula, see Prop.
4.12, in the case where the 1-vector field Q is exact, that is, it comes from an integrable
3-hamiltonian θ ∈ A3:

Q = {θ, ·}, {θ, θ} = 0. (7.1)

Of course, we are in the context that the corresponding degree 2 manifold is endowed with
degree -2 Poisson brackets {·, ·}. The mentioned formula will prove useful in proving the
characterization of integrability of a 3-hamiltonian next section.

We advice the reader to keep in mind the ideas and calculations made in Sec. G.2, for
the degree 1 case. Here we follow closely those ideas, though in the degree 2 case some
complications appear mainly due to the non-skew symmetry of θ]2, so that we have to keep
track of the symmetric part, given by item 3 of Thm. 3.59.

Definition 7.1. Consider a degree 2 Poisson manifold endowed with a Q-structure (see
Def. 4.1). The corresponding Lie 2-algebroid (Thm. 4.20) is called exact if Q is exact,
i.e., it has the form (7.1).

Lemma 7.2. Consider a Poisson degree 2 manifold (M, {·, ·}) and its corresponding met-
ric VB-algebroid (DF ∗ , [·, ·], ρ). Recall that a horizontal lift of (3.14) provides simultane-
ously a splitting for M, a decomposition for DF ∗ and a horizontal lift for (3.44). This
last horizontal lift induces a projection pE∗⊗F : Ê // E∗ ⊗ F . With this considerations,

140



7.1. AN ALTERNATIVE FORMULA FOR THE BRACKET OF AN EXACT LIE 2-ALGEBROID 141

we have

〈φ, [γ, θ̂]〉 = 〈φ, {̂γ, θ}〉+
(
pE∗⊗F (Lγ π̂(φ))

)∗
◦ (θ]1)∗, ∀γ ∈ A2, θ ∈ A3, φ ∈ Ê, (7.2)

where, for any degree 3 function θ ∈ A3, θ̂ ∈ Γ(Λ2(DF ∗)E) is the embedding (3.67),
described in some detail in the proof of Thm. 3.59, and we are denoting the same γ for a
degree 2 function γ ∈ A2 and its canonically corresponding involutive section γ ∈ Γ(F̃ ∗) ⊂
Γ(F̂ ∗) ∼= Γlin((DF ∗)E). L stands for the Lie derivative on Γ(Λ·(DF ∗)

∗
E), associated to the

Lie algebroid structure on DF ∗
// E.

Proof. Since both sides of (7.2) are R-bilinear, it is suffices to show the following two
fundamental cases

i) θ̂ = e⊗ ζ, with ε ∈ Γ(E∗) and ζ ∈ Γ(F ).

ii) θ̂ = ε1 ∧ ε2 ∧ ε3, with ε1, ε2, ε3 ∈ Γ(E∗).

Let’s prove item i). Again because of R-bilinearity of the brackets, we can assume γ =
ζ0 + ε1∧ ε2, ζ0 ∈ Γ(F ) and ε1, ε2 ∈ Γ(E∗). Then, taking into account the relation between
the VB -algebroid data and the corresponding -2 Poisson brackets (see Thms. 6.1 and
6.14), and using also Eq. (6.9) or equivalently (E.15), we have

[γ, θ̂] = [γ, ε⊗ ζ] = [γ, ε]⊗ ζ + ε⊗ [γ, ζ]

= {γ, ε} ⊗ ζ + ε⊗ [ζ0, ζ] + ε ∧ ε1 ⊗ {ε2, ζ̂} − ε ∧ (ε1 ∧ {ε2, ζ̂})

+ ε ∧ ({ε1, ζ̂} ∧ ε2)− ε ∧K(ζ0, ζ)

= {̂γ, θ} − ε⊗ ε1 ∧ {ε2, ζ̂} − ε⊗ {ε1, ζ̂} ∧ ε2 + ε⊗K(ζ0, ζ)

= {̂γ, θ} − pΛ2E∗({γ, ζ̂})⊗ ε,

where pΛ2E∗ : F̃ ∗ // Λ2E∗ is the projection induced by the horizontal lift, and the bar
means that we are considering Λ2E∗ as the second exterior power of the core bundle
E∗ ⊂ DF ∗ . Therefore, writing, through the horizontal lift, φ = ê+ η, we arrive to

〈φ, [γ, θ̂]〉 = 〈φ, {̂γ, θ}〉 − ε⊗ (〈ê, {γ, ζ̂}〉). (7.3)

On the other hand, using Eq. (G.2),(
pE∗⊗F (Lγ π̂(φ))

)∗
◦ (θ]1)∗ = ε⊗ 〈Lγ ê, ζ〉 = −ε⊗ (〈ê, {γ, ζ̂}〉). (7.4)

From Eqs. (7.3) and (7.4), we get (7.2) in case i).
In the above calculations, when performing the bracket with ζ, we are considering

implicitly its lift into F̃ ∗.
Now let’s work out case ii). In this case we have θ1 = 0. Hence (7.2) is equivalent to

[γ, θ̂] = {̂γ, θ}. Again recalling the relation between the VB -algebroid structure and the



7.1. AN ALTERNATIVE FORMULA FOR THE BRACKET OF AN EXACT LIE 2-ALGEBROID 142

corresponding -2 Poisson brackets, and also the interpretation of ε1∧ ε2∧ ε3 as a 2-section
of (DF ∗)E∗ given in Eq. (3.73), we have

[γ, θ̂] = [γ, ε1 ∧ ε2 ∧ ε3] = [γ, ε1 ∧ ε2 ⊗ ε3 − ε1 ∧ ε3 ⊗ ε2 + ε2 ∧ ε3 ⊗ ε1]

= ρ(γ)(ε3)⊗ ε1 ∧ ε2 + ε3 ⊗ [γ, ε1] ∧ ε2 + ε3 ⊗ ε1 ∧ [γ, ε2]

− ρ(γ)(ε2)⊗ ε1 ∧ ε3 − ε2 ⊗ [γ, ε1] ∧ ε3 − ε2 ⊗ ε1 ∧ [γ, ε3]

ρ(γ)(ε1)⊗ ε2 ∧ ε3 + ε1 ⊗ [γ, ε2] ∧ ε3 + ε1 ⊗ ε2 ∧ [γ, ε3]

= ε1 ∧ ε2 ∧ {γ, ε3}+ {γ, ε1} ∧ ε2 ∧ ε3 + ε1 ∧ {γ, ε2} ∧ ε3

= {̂γ, θ}.

�

Lemma 7.3. With the same considerations made in the statement of Lem. 7.2, for every
ε ∈ Γ(E∗), we have

[ε, θ̂] = −pΛ2E∗({θ, ε}) = −Q(ε) + (θ]1)∗(](ε)), (7.5)

where, as already explained in the proof of lemma 7.2, pΛ2E∗ : F̃ //Λ2E∗ is the projection
induced by the horizontal lift, and the bar means that we are considering Λ2E∗ as the second
exterior power of the core bundle E∗ ⊂ DF ∗, so that Λ2E∗ ⊂ Λ2(DF ∗)E. ] : E∗ // E is
the core map given in Eq. (6.17), by the metric that comes from the Poisson structure.

Proof. As we already did in the previous lemma, we can suppose without loss of generality
that θ = ε0 ⊗ ζ + ε1 ∧ ε2 ∧ ε3. Thus, we compute

{ε, ε0 ⊗ ζ + ε1 ∧ ε2 ∧ ε3} ={ε, ε0} − ε0 ∧ {ε, ζ}
+ {ε, ε1}ε2 ∧ ε3 − {ε, ε2}ε1 ∧ ε3 + {ε, ε3}ε1 ∧ ε2.

On the other hand, taking into account Eq. (3.73), we compute using Leibniz’s rule for
the Schouten bracket and Eqs. (6.17)

[ε⊗ ζ + ε1 ∧ ε2 ∧ ε3] =[ε, ε0 ⊗ ζ] + [ε, ε1 ⊗ ε2 ∧ ε3 − ε2 ⊗ ε1 ∧ ε3 + ε3 ⊗ ε1 ∧ ε2]

=ε0 ∧ [ε, ζ]− 〈ε, ε1〉ε2 ∧ ε3 + 〈ε, ε2〉ε1 ∧ ε3 − 〈ε, ε3〉ε1 ∧ ε2.

Comparing the two equations above we conclude that

[ε, θ̂] = −{ε, θ}+ {ε, ε0}ζ = −pΛ2E∗({θ, ε}).

The second equality in Eq. (7.5) follows from the observation that Q(ε) = {θ, ε} = {ε, θ}
and {ε, ε0}ζ = −(θ]1)∗(](ε)).

�

Lemma 7.4. On an exact Lie 2-algebroid we have

ρ̂(φ)(f) = ρ(θ]2(φ))(f) and ρ∗(dT ∗Mf) = θ]1(df), ∀φ ∈ Γ(Ê), f ∈ C∞(M).
(7.6)
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Here we are using the same notation ρ for two different maps. In the first equation it
stands for the anchor of the metric VB-algebroid ρD : DF ∗

// TE, given in Eq. (6.17).
In the second equation it stands for the anchor ρ : E // TM defined in Eq. (4.9).

In the second equation, the operator d stands for the de Rham differential correspond-
ing to the metric VB-algebroid. The operator dT ∗M stands for the canonical de Rham
differential of the cotangent bundle.

Proof. First observe that Eq. (6.42) is valid in the Poisson case in general, since for its
proof we didn’t use the non-denegeracy of the Poisson brackets. Using this equation, the
definitions, and item 1 of Thm. 3.59, we have

ρ̂(φ)(f) = −〈φ,Q(f)〉 = −〈φ, {θ, f}〉 = 〈φ, θ]1(df)〉

= 〈θ]2(φ), df〉 = ρ(θ]2(φ))(f).

Analogously,

ρ(e)(f) = −〈e,Q(f)〉 = −〈e, {θ, f}〉 = 〈e, θ]1(df)〉,

from which it follows ρ∗(dT ∗Mf) = θ]1(df).
�

Lemma 7.5. On an exact Lie 2-algebroid

Ψ(φ)(ε) = ρ(θ]2(φ))(ε)− θ]1(W (φ, dε)) (7.7)

holds for every φ ∈ Γ(Ê), ε ∈ Γ(E∗).

Proof. Ψ is defined in Eq. (4.11). Using Eq. (6.42), which is valid in the general Poisson
case as already observed in the proof of lemma 7.4, and item 3 of Thm. 3.59, we have

Ψ(φ)(ε) = −〈φ,Q(ε)〉 = −〈φ, {θ, ε}〉

= −〈φ, θ]2(dε)〉

= 〈θ]2(φ), dε〉 − θ]1(W (φ, dε))

= ρ(θ]2(φ))(ε)− θ]1(W (φ, dε)).

�

Theorem 7.6. Let (Ê, ρ̂, ∂,Ψ,Θ, [·, ·]) be an exact Lie 2-algebroid. Then the bracket [·, ·]
is given by the explicit formula

[φ1, φ2] = L
θ]2(φ1)

φ2 − Lθ]2(φ2)
φ1 + d(〈φ1, θ

]
2(φ2)〉)−Rθ(φ1, φ2), (7.8)

where d and L are the de Rham differential and Lie derivative, respectively, corresponding
to the metric VB-algebroid DF ∗ that comes from the Poisson degree 2 manifold under the
correspondence given in Thm. 6.14.
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The (bidifferential) operator Rθ : Γ(Ê)× Γ(Ê) // Γ(Ê) is defined by

〈Rθ(φ1, φ2), γ〉 := θ]1(W (φ1, d(〈φ2, γ〉))−W (φ2, d(〈φ1, γ〉))− d(〈T (φ2, φ1), γ〉)
+W (Lγφ1, φ2))

= θ]1(W (φ2, 〈γ, dφ1〉) + 〈〈φ2, γ〉, dφ1〉), ∀φ1, φ2 ∈ Γ(Ê), γ ∈ Γ(F̃ ∗)
(7.9)

where W : S2Ê // F was defined in Prop. 3.48 and T : Ê ⊗ Ê // F̃ is the bilinear map
defined in Eq. (3.45).

Remark 7.7. Observe that Eq. (7.51) is not enough to define the operator Rθ, for the
simple reason that a linear section φ ∈ Γ(Ê) is not completely determined by its pairing
with involutive sections Γ(F̃ ∗) only, because the pairing with sections of Λ2E∗ is not
enough to determine the part of φ that projects over E (consider, for example, the case
that rankE = 1, then Λ2E∗ = 0). In the next theorem, Thm. 7.6, we will show that Rθ
takes values actually on E∗⊗F , so that the pairing above does determine the value of Rθ.

Another observation, which follows from Eq. (7.51), is that Rθ is tensorial on its second
entry.

Remark 7.8. The same formulas (7.8) and (7.51) hold in the case of an exact preLie
2-algebroid. Integrability is not used anywhere in the proof.

Proof. The idea is to introduce a horizontal lift, which allows to correspond to the 3-
hamiltonian θ a bivector θ̂ ∈ Γ(Λ2(DF ∗)E), as we did in the proof of Thm. 3.59, and
exploiting the identity

〈φ, θ̂〉 = −θ]2(φ) + (θ]1 ◦ η)∗ = −θ]2(φ) + η∗ ◦ (θ]1)∗, (7.10)

for every φ = ê + η ∈ Ê —which follows from the very way we define θ]2 in Eqs. (3.68)-
(3.72)—, we can use the results for bivectors already available from sections G.2, G.3 and
G.4. In particular, we are going to use Eq. (G.13), which applied to the bivector θ̂ gives

〈φ2, 〈φ1, [γ, θ̂]〉〉 = ρ(γ)(〈φ2, 〈φ1, θ̂〉〉)− 〈φ2, 〈Lγφ1, θ̂〉〉 − 〈Lγφ2, 〈φ1, θ̂〉〉. (7.11)

Now, applying Eq. (7.10) to the degree 3 function −Q(γ) = {γ, θ}, we get

〈φ1, {̂γ, θ}〉 = Q(γ)]2(φ1)− η∗1 ◦ (Q(γ)]1)∗. (7.12)

On the other hand, from the identity

Lγ(ε⊗ ξ) = ε⊗ Lγξ + 〈dε, γ〉 ⊗ ξ,

which is obtained immediately from Cartan’s formula (G.21), and lemma 7.10 below, it
follows that Lγ preserves E∗ ⊗ F ⊂ Ê, hence

pE∗⊗F (Lγφ1) = pE∗⊗F (Lγ ê1) + Lγη1. (7.13)
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From Eqs. (7.12) and (7.13), applying lemma 7.2 and Eq. (7.10) to θ, Eq. (7.11) turns
into

−〈φ2, Q(γ)]2(φ1)− η∗1 ◦ (Q(γ)]1)∗ + (pE∗⊗F (Lγ ê1))∗ ◦ (θ]1)∗〉 = ρ(γ)(〈φ2, θ
]
2(φ1)− η∗1 ◦ (θ]1)∗〉)

−〈φ2, θ
]
2(Lγφ1)− (pE∗⊗F (Lγ ê1) + Lγη1)∗ ◦ (θ]1)∗〉 − 〈Lγφ2, θ

]
2(φ1)− η∗1 ◦ (θ]1)∗〉,

from which, using Eq. (G.2),

−〈φ2, Q(γ)]2(φ1)〉 = 〈φ2, [γ, θ
]
2(φ1)]〉 − 〈φ2, θ

]
2(Lγφ1)− (Lγη1)∗ ◦ (θ]1)∗〉

− ρ(γ)(〈φ2, η
∗
1 ◦ (θ]1)∗〉) + 〈Lγφ2, η

∗
1 ◦ (θ]1)∗〉 − 〈φ2, η

∗
1 ◦ (Q(γ)]1)∗〉

= 〈φ2, [γ, θ
]
2(φ1)]〉 − 〈φ2, θ

]
2(Lγφ1)− (Lγη1)∗ ◦ (θ]1)∗〉

− 〈φ2, [γ, η
∗
1 ◦ (θ]1)∗]〉 − 〈φ2, η

∗
1 ◦ (Q(γ)]1)∗〉. (7.14)

Remark 7.9. In the calculations that follow, we are going to assume that η1 = ε1 ⊗ ξ1

and θ̂1 = ε ⊗ ζ, where ε1, ε ∈ Γ(E∗), ξ1 ∈ Γ(F ∗) and ζ ∈ Γ(F ). By the same argument
that we explained in the proof of lemma 7.2, there is no loose of generality in making this
assumption.

With the above remark made, observe that, since

W (η1, φ2) = η1(e2) = 〈e2, ε1〉ξ1 and η∗1 ◦ (θ]1)∗ = 〈ξ1, ζ〉ε1 ⊗ ε, (7.15)

it follows the identity

〈φ2, η
∗
1 ◦ (θ]1)∗〉 = 〈e2, ε1〉〈ξ1, ζ〉ε = 〈e2, ε1〉θ]1(ξ1) = θ]1(W (η1, φ2)). (7.16)

Also observe that, since Lγ preserves E∗ ⊗ F ⊂ Ê, we can apply Eq. (7.16) to Lγη1, so
that

〈φ2, (Lγη1)∗ ◦ (θ]1)∗〉 = θ]1(W (Lγη1, φ2)). (7.17)

On the other hand, from Eq. (G.2) and item 3 of Thm. 3.59, we obtain

ρ(γ)(〈φ1, θ
]
2(φ2)〉) = 〈Lγφ1, θ

]
2(φ2)〉+ 〈φ1, [γ, θ

]
2(φ2]〉

= −〈φ2, θ
]
2(Lγφ1)〉+ θ]1(W (Lγφ1, φ2)) + 〈φ1, [γ, θ

]
2(φ2)]〉. (7.18)

Putting together Eqs. (7.17) and (7.18), we get

〈φ2, θ
]
2(Lγφ1)− (Lγη1)∗ ◦ (θ]1)∗〉 = −ρ(γ)(〈φ1, θ

]
2(φ2)〉) + θ]1(W (Lγφ1, φ2))

+ 〈φ1, [γ, θ
]
2(φ2)]〉 − θ]1(W (Lγη1, φ2)). (7.19)

Finally, we need to compute the last two terms of Eq. (7.14). We begin with the first of
them. Using (7.15) we have

[γ, η∗1 ◦ (θ]1)∗] = ρ(γ)(〈ξ1, ζ〉)ε⊗ ε1 + 〈ξ1, ζ〉ρ(γ)(ε)⊗ ε1 + 〈ξ1, ζ〉ε⊗ [γ, ε1],
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we obtain

〈φ2, [γ, η
∗
1 ◦ (θ]1)∗]〉 = ρ(γ)(〈ξ1, ζ〉)〈e2, ε1〉ε+ 〈ξ1, ζ〉〈e2, ε1〉ρ(γ)(ε) + 〈ξ1, ζ〉〈e2, [γ, ε1]〉ε.

(7.20)
As for the second term of the last part of Eq. (7.14), we have

〈φ2, η
∗
1 ◦ (Q(γ)]1)∗〉 = −〈φ2, η

∗
1 ◦ ([γ, θ̂]]1)∗〉 = −〈φ2, 〈ξ1, ζ〉ρ(γ)(ε)⊗ ε1 + 〈ξ1, [γ, ζ]〉ε⊗ ε1〉

= −〈ξ1, ζ〉〈e2, ε1〉ρ(γ)(ε)− 〈ξ1, [γ, ζ]〉〈e2, ε1〉ε. (7.21)

Putting Eqs. (7.20) and (7.21), we get

〈φ2, [γ, η
∗
1 ◦ (θ]1)∗]〉+ 〈φ2, η

∗
1 ◦ (Q(γ)]1)∗〉 = ρ(γ)(〈ξ1, ζ〉)〈e2, ε1〉ε+ 〈ξ1, ζ〉〈e2, ρ(γ)(ε1)〉ε

− 〈ξ1, [γ, ζ]〉〈e2, ε1〉ε, (7.22)

where we used the fact that, on a metric VB-algebroid, [γ, ε1] = ρ(γ)(ε1) holds for every
γ ∈ Γ(F̃ ∗) and every ε1 ∈ Γ(E∗). On the other hand, observe that

〈Lγη1, ζ〉 = 〈Lγ(ε1 ⊗ ξ1), ζ〉 = ρ(γ)(〈ε1 ⊗ ξ1, ζ〉)− 〈ε1 ⊗ ξ1, [γ, ζ]〉
= ρ(γ)(〈ξ1, ζ〉)ε1 + 〈ξ1, ζ〉ρ(γ)(ε1)− 〈ξ1, [γ, ζ]〉ε1,

whence

〈φ2, (Lγη1)∗ ◦ (θ]1)∗〉 =〈e2, ε1〉ρ(γ)(〈ξ1, ζ〉)ε+ 〈e2, ρ(γ)(ε1)〉〈ξ1, ζ〉ε
− 〈e2, ε1〉〈ξ1, [γ, ζ]〉ε. (7.23)

Comparing Eqs. (7.22) and (7.23), we conclude that

〈φ2, [γ, η
∗
1 ◦ (θ]1)∗]〉+ 〈φ2, η

∗
1 ◦ (Q(γ)]1)∗〉 = 〈φ2, (Lγη1)∗ ◦ (θ]1)∗〉 = θ]1(W (Lγη1, φ2)). (7.24)

Therefore, putting (7.19) and (7.24) into (7.14) we arrive to the identity

−〈φ2, Q(γ)]2(φ1)〉 =〈φ2, [γ, θ
]
2(φ1)]〉 − 〈φ1, [γ, θ

]
2(φ2)]〉

+ ρ(γ)(〈φ1, θ
]
2(φ2)〉)− θ]1(W (Lγφ1, φ2)). (7.25)

Now, from Eqs. (7.7) and (G.2), we get

Ψ(φ1)(〈φ2, γ〉) = ρ(θ]2(φ1))(〈φ2, γ〉)− θ]1(W (φ1, d(〈φ2, γ〉))

= 〈L
θ]2(φ1)

φ2, γ〉+ 〈φ2, [θ
]
2(φ1), γ]〉 − θ]1(W (φ1, d(〈φ2, γ〉))). (7.26)

Finally, putting Eqs. (7.25) and (7.26) into Eq. (4.14), and also using Eq. (7.6), we have
the following

〈[φ1, φ2], γ〉 = 〈L
θ]2(φ1)

φ2, γ〉 − θ]1(W (φ1, d(〈φ2, γ〉)))

− 〈L
θ]2(φ2)

φ1, γ〉+ θ]1(W (φ2, d(〈φ1, γ〉)))

+ θ]1(d(〈T (φ2, φ1), γ〉)) + ρ(γ)(〈φ1, θ
]
2(φ2)〉)− θ]1(W (Lγφ1, φ2))

= 〈L
θ]2(φ1)

φ2 − Lθ]2(φ2)
φ1 + d(〈φ1, θ

]
2(φ2)〉), γ〉

− θ]1(W (φ1, d(〈φ2, γ〉))−W (φ2, d(〈φ1, γ〉))
− d(〈T (φ2, φ1), γ〉) +W (Lγφ1, φ2)).
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Thus it remains to show the second equality of Eq. (7.51), which is equivalent to

W (φ1, d(〈φ2, γ〉))−W (φ2, d(〈φ1, γ〉))− d(〈φ1, 〈φ2, γ〉〉) +W (Lγφ1, φ2)

= W (φ2, 〈γ, dφ1〉) + 〈〈φ2, γ〉, dφ1〉. (7.27)

On one hand we have, by Cartan’s formula,

−W (φ2, d(〈φ1, γ〉))+W (Lγφ1, φ2) = W (φ2,Lγφ1−d(〈φ1, γ〉)) = W (φ2, 〈γ, dφ1〉), (7.28)

On the other hand, by Eqs. (3.46) and (6.17), for every ζ ∈ Γ(F ∗), we have

〈W (φ1, d(〈φ2, γ〉)), ζ〉 =
〈
φ1, 〈d(〈φ2, γ〉), ζ̂〉

〉
+
〈
d(〈φ2, γ〉), 〈φ1, ζ̂〉

〉
=
〈
φ1, ρ(ζ̂)(〈φ2, γ〉)

〉
+ ρD

(
〈φ1, γ〉

)
(〈φ2, γ〉)

=
〈
φ1, ρ(ζ̂)(〈φ2, γ〉)

〉
−
〈
〈φ1, ζ̂〉, 〈φ2, γ〉

〉
D
. (7.29)

By Cartan’s formula, Eq. (G.2) and Eq. (6.17),

−〈d(〈φ1, 〈φ2, γ〉), ζ̂〉 =
〈
−L〈φ2,γ〉φ1 + ι〈φ2,γ〉dφ1, ζ̂

〉
=
〈
φ1,
[
〈φ2, γ〉, ζ̂

]〉
− ρD

(
〈φ2, γ〉

)(
〈φ1, ζ̂〉

)
+
〈
〈〈φ2, γ〉, dφ1〉, ζ̂

〉
= −

〈
φ1, ρ(ζ̂)(〈φ2, γ〉)

〉
+
〈
〈φ2, γ〉, 〈φ1, ζ̂〉

〉
D

+
〈
〈〈φ2, γ〉, dφ1〉, ζ̂

〉
.

(7.30)

From (7.29) and (7.30), we get

W (φ1, d(〈φ2, γ〉))− d(〈φ1, 〈φ2, γ〉〉 = 〈〈φ2, γ〉, dφ1〉. (7.31)

Hence, from Eqs. (7.28) and (7.31) we arrive to Eq. (7.27).
�

Lemma 7.10. Consider a VB-algebroid (D;A,B;M)C , with Lie algebroid structure over
B, as usual. If L is the corresponding Lie derivative, then

Lcφ ∈ Γcore(D
∗
B) ∼= Γ(A∗) ∀c ∈ Γcore(DB) ∼= Γ(C), φ ∈ Γlin(D∗B) ∼= Ĉ∗B,

and

Lγκ ∈ Γcore(D
∗
B) ∼= Γ(A∗), ∀κ ∈ Γcore(D

∗
B) ∼= Γ(A∗), γ ∈ Γlin(DB) ∼= Γ(Â).

Proof. By lemma 2.8, in order to prove the first statement, we need to check that 〈Lcφ, c0〉 =
0 ∀c0 ∈ Γcore(DB) and 〈Lcφ, γ〉 is fiberwise constant for every γ ∈ Γlin(DB). By Eq. (G.2),
the definition of a VB-algebroid and lemma 2.8,

〈Lcφ, c0〉 = ρ(c)(〈φ, c0〉 − 〈φ, [c, c0]〉 = 0.

Analogously,
〈Lcφ, γ〉 = ρ(c)(〈γ, φ〉)− 〈φ, [c, γ]〉,

which is fiberwise constant due to the definition of VB-algebroid and to lemma 2.8.
Similarly it is proved that Lγκ ∈ Γcore(D

∗
B).

�
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Theorem 7.11 (Continuation of Thm. 7.6). In the conditions and with the notations of
Thm. 7.6, we have, for every φ1, φ2 ∈ Γ(Ê) and ε ∈ Γ(E∗),

〈[φ1, φ2], ε〉 =
〈
L
θ]2(φ1)

φ2 − Lθ]2(φ2)
φ1 + d(〈φ1, θ

]
2(φ2)〉, ε

〉
. (7.32)

In particular, it follows that the operator Rθ takes values on Γ(E∗ ⊗ F ).

Proof. From Eqs. (G.13) and (7.5), we obtain, taking into account lemma 7.10, Eq. (3.68)
and Eq. (7.10),

−〈φ2, 〈φ1,−Q(ε)− (θ]1)∗(](ε))〉〉 =ρ(ε)(〈φ2, θ
]
2(φ1)− η∗1 ◦ (θ]1)∗〉) + 〈φ2, θ

]
1(Lεφ1)〉

− 〈Lεφ2, θ
]
2(φ1)〉,

from which, using Eq. (G.2), lemma 7.10 again, and Prop. E.8,

〈φ2, 〈φ1, Q(ε)〉〉 =〈Lεφ2, θ
]
2(φ1)〉+ 〈φ2, [ε, θ

]
2(φ1)]〉 − 〈φ2, [ε, η

∗
1 ◦ (θ]1)∗]〉

+ 〈φ2, θ
]
1(Lεφ1)〉 − 〈Lεφ2, θ

]
2(φ1)〉 − 〈φ2, 〈η1, (θ

]
1)∗(](ε))〉〉

=〈φ2, [ε, θ
]
2(θ]1)]〉+ 〈φ2, η

∗
1 ◦ (θ]1)∗(](ε))〉+ φ2, θ

]
1(Lεφ1)〉

− 〈φ2, η
∗
1 ◦ (θ]1)∗(](ε))〉

=〈φ2, [ε, θ
]
2(φ1)]〉+ 〈φ2, θ

]
1(Lεφ1)〉.

With this equation, we compute from Eq. (4.15), using also (7.6), (G.2) and item 1 of
Thm. 3.59,

〈[φ1, φ2], ε〉 =ρ̂(φ1)(〈φ2, ε〉)− ρ̂(φ2)(〈φ1, ε〉) + 〈φ2, 〈φ1, Q(ε)〉〉

=ρ(θ]2(φ1))(〈φ2, ε〉)− ρ(θ]2(φ2))(〈φ1, ε〉) + 〈φ2, [ε, θ
]
2(φ1)]〉+ 〈φ2, θ

]
1(Lεφ1)〉

=
〈
L
θ]2(φ1)

φ2, ε
〉

+ 〈φ2, [θ
]
2(φ1), ε]〉 −

〈
L
θ]2(φ2)

φ1, ε
〉
− 〈φ1, [θ

]
2(φ2), ε]〉

+ 〈φ2, [ε, θ
]
2(φ1)]〉+

〈
θ]2(φ2),Lεφ1

〉
=
〈
L
θ]2(φ1)

φ2, ε
〉
−
〈
L
θ]2(φ2)

φ1, ε
〉

+ ρ(ε)(〈φ1, θ
]
2(φ2)〉)

=
〈
L
θ]2(φ1)

φ2 − Lθ]2(φ2)
φ1 + d(〈φ1, θ

]
2(φ2)〉), ε

〉
.

�

Lemma 7.12. On a Poisson degree 2 manifold, given a 3-function θ ∈ A3, which defines
a 1-vector field Q = {θ, ·},

∂ = −] ◦ θ]1, 〈∂(ξ), ε〉 = ρ
(
θ]1(ξ)

)
(ε),

holds, where ∂ is defined by Eq. (4.10), θ]1 by Thm. 3.59 and ρ and ] by Eq. (6.17).
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Proof. Regarding to the first equation, observe that the equation

θ]2(de) = {θ, ε} = Q(ε)

Prop. 6.31 for the symplectic case, remains valid in the Poisson case with the exact same
proof. Then, for any ξ ∈ Γ(F ) and ε ∈ Γ(E∗),

−〈] ◦ θ]1(ξ), ε〉 = 〈θ]1(ξ),−](ε)〉 = 〈ξ, θ]2(dε)〉
= 〈ξ,Q(ε)〉 = 〈∂(ξ), ε〉

As for the second equation, follows immediately from the first and Eq. (6.17).
�

Proposition 7.13. In the same conditions of Thm. 7.6, and with the same notations,

Θ(φ)(ξ) = L
θ]2(φ)

ξ + L
θ]1(ξ)

φ− d(〈ξ, θ]2(φ)〉), ∀φ ∈ Γ(Ê), ξ ∈ Γ(F ). (7.33)

Proof. If we put in Eq. (7.14) ξ instead of φ instead of φ1 and ξ instead of φ2, we obtain,
for every γ ∈ Γ(F̃ ∗),

− 〈ξ,Q(γ)]2(φ)〉 = 〈ξ, [γ, θ]2(φ)]〉 − 〈ξ, θ]2(Lγφ)〉. (7.34)

Then, starting from the definition of Θ given in Eq. (4.12), we compute using Eqs. (7.6),
(G.2), item 1 of Thm. 3.59 and lemma 7.12,

〈Θ(φ)(ξ), γ〉 =ρ̂(φ)(〈ξ, γ〉) + 〈∂(ξ), 〈φ, γ〉〉 − 〈ξ,Q(γ)]2(φ)〉

=ρ(θ]2(φ))(〈ξ, γ〉) + ρ
(
θ]1(ξ)

)
(〈φ, γ〉) + 〈ξ, [γ, θ]2(φ)]〉 − 〈ξ, θ]2(Lγφ)〉

=
〈
L
θ]2(φ)

ξ, γ
〉

+

〈
L
θ]1(ξ)

φ, γ

〉
− ρ(γ)(〈θ]1(ξ), φ〉)

=

〈
L
θ]2(φ)

ξ + L
θ]1(ξ)

φ− d(〈ξ, θ]2(φ)〉), γ
〉
.

�

7.2 Integrable degree 3 functions on a degree 2 Poisson
manifold

Finally we want to obtain a characterization of the integrability of a degree 3 function
θ ∈ A3 on a Poisson degree 2 manifold (M, {·, ·}), where integrability means, as we already
said before, Poisson self-commuting: {θ, θ} = 0.

Since Q := {θ, ·} is a 1-vector field, by Thm. 4.9 it defines a preLie 2-algebroid
structure on the dual sequence (3.44). On the other hand, by Thm. 6.1, the Poisson
brackets define a Lie algebroid structure on the involutive bundle F̃ ∗. Moreover, by Thm.
3.59, θ induces a vector bundle morphism θ]2 : Ê // F̃ ∗. Therefore, in the spirit of Prop.
G.19, it is natural to expect a characterization of integrability in terms of a (possibly
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twisted) bracket-preserving condition for θ]2, which consists in relating the Lie 2-algebroid

brackets on Ê with the Lie algebroid brackets on F̃ ∗ through θ]2.
We will proceed in a similar way to what we did for the degree 1 case in Sec. G.4.

In particular, the calculations will rely strongly in the vector field and derived bracket
viewpoint, more precisely, in propositions 3.61 and 4.12, keeping in mind that in the
present case Q = {θ, ·}.

Lemma 7.14. Let (M, {·, ·}) be a graded 2-Poisson manifold. A degree 3 function θ ∈ A3

is integrable, i.e. {θ, θ} = 0 if and only if

a)
{θ, θ}(φ1, φ2) := ιφ2ιφ1{θ, θ} = 0, ∀φ1φ2 ∈ Γ(Ê) ∼= X(M)−1

and

b)
{θ, θ}(ξ1, ξ2) := ιξ2ιξ1{θ, θ} = 0 ∀ξ1, ξ2 ∈ Γ(F ) ∼= X(M)−2.

If rankE > 1, then condition b) is not necessary.

Proof. The “only if” part of the lemma is trivial. So let’s prove the “if” part. Choosing
local coordinates {xi, εµ, αν}, the degree 4 function {θ, θ} reads

{θ, θ} = Aijα
iαj +Babjε

aεbαj + Cabcdε
aεbεcεd, (7.35)

where Aij , Babj , Cabcd ∈ C∞(U). Then the hypothesis of the lemma imply

0 =
∂

∂αj
∂

∂αi
{θ, θ} = Aij ,

0 =
∂

∂εb
∂

∂εa
{θ, θ} = Babjα

j ,

0 =
∂

∂εb
∂

∂εd
{θ, θ} = Cabcdε

cεd.

Notice that if rankE = 1 then εcεd = 0, but in this case we have {θ, θ} = Aijα
iαj , hence

Cabcd = 0 trivially. Therefore, the equations above imply Aij = Babj = Cabcd = 0, that is,
{θ, θ} = 0.

If rankE > 1, we can find local coordinates ε1, ε2 ∈ Γ(E∗) ∼= A1 such that ε1ε2 6= 0.
Then setting φ1 = ε1 ⊗ ∂

∂αi
∈ Γ(Ê) ∼= X(M)−1 and φ2 = ε2 ⊗ ∂

∂αj
∈ Γ(Ê) ∼= X(M)−1 we

get from condition a) of the lemma

0 = ιφ2ιφ1{θ, θ} = ε1ε2 ∂

∂αj
∂

∂αi
{θ, θ} = Aijε

1ε2,

from which, since ε1ε2 6= 0, it follows Aij = 0. Therefore, when rankE > 1, we can
conclude that {θ, θ} = 0 using only condition a) of the lemma.

�
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Lemma 7.15. Let (M, {·, ·}) be a graded Poisson degree 2 manifold and θ ∈ A3 a degree

3 function, to which there corresponds the pair of morphisms (θ]1, θ
]
2), given by Thm. 3.59.

Consider the 1-vector field Q := {θ, ·} and its corresponding preLie 2-algebroid, given by
Thm. 4.9. Also consider the dual bundle Ê, which is the linear bundle that fits on the
corresponding dual sequence (3.44). Then, for every φ1, φ2, φ3 ∈ Γ(Ê), we have

〈φ3, {θ, θ}(φ1, φ2)〉 =〈φ3, Q(θ]2(φ2))]2(φ1)〉+ Ψ(φ3)(〈φ1, θ
]
2(φ2)〉)

− 〈φ3, Q(θ]2(φ1))]2(φ2)〉 − 〈φ3, θ
]
2([φ1, φ2])〉, (7.36)

where {θ, θ}(φ1, φ2) ∈ A2 ∼= Γ(F̃ ∗) was defined in lemma 7.14.

Proof. Using propositions 4.12 and 3.61, we have

θ]2([φ1, φ2]) =− ι[φ1,φ2]θ = [[ιφ1 , Q], ιφ2 ](θ)

=ιφ1Qιφ2(θ) +Qιφ1ιφ2(θ)− ιφ2ιφ1Q(θ)− ιφ2Qιφ1(θ)

=Q(θ]2(φ2))]2(φ1)−Q(〈φ1, θ
]
2(φ2)〉)

− {θ, θ}(φ1, φ2)−Q(θ]2(φ1))]2(φ2),

from which, using Eq. (4.11) and rearranging terms we obtain Eq. (7.36).
�

Lemma 7.16. In the conditions of lemma 7.15, and with the same notations, we have,
for every φ1, φ2 ∈ Γ(Ê), ξ ∈ Γ(F ),〈

φ2, {θ, θ}(φ1, ξ)
〉

=−
〈
φ2, 〈φ1, Q(θ]1(ξ))〉

〉
+ ρ̂(φ2)

(〈
φ1, θ

]
1(ξ)

〉)
−
〈
φ2, Q(θ]2(φ1))]1(ξ)

〉
−
〈
θ]1(θ(φ1)(ξ)), φ2

〉
, (7.37)

where, as usual, {θ, θ}(φ1, ξ) := ιξιφ1{θ, θ}, and the bar over a section of Γ(E∗) means
that it is considered as a core section Γcore((DF ∗)E∗).

Proof. The proof runs in the same way as for lemma 7.15. From Prop. 4.12, we have

−ιΘ(φ1)(ξ)θ = [[ιφ1 , Q], ιξ](θ) = ιφ1Qιξ(θ) +Qιφ1ιξ(θ)− ιξιφ1Q(θ)− ιξQιφ1(θ),

therefore, using Prop. 3.61, and omitting, to simplify the notation, the bar over sections
of Γ(E∗) ∼= Γcore((DF ∗)E∗),

〈φ2, θ
]
1(Θ(φ1)(ξ))〉 =− 〈φ2, ιΘ(φ1)(ξ)θ〉 = −〈φ2, 〈φ1, Q(θ]1(ξ))〉〉+ ρ̂(φ2)(〈φ1, θ

]
1(ξ)〉)

− 〈φ2, {θ, θ}(φ1, ξ)〉 − 〈φ2, Q(θ]2(φ1))]1(ξ)〉,

from which, rearranging terms, we get (7.37).
�
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Lemma 7.17. Let (M, {·, ·}) be a graded Poisson degree 2 manifold and let θ ∈ A3 be a

degree 3 function, with its associated pair of morphisms (θ]1, θ
]
2). Consider the dual bundle

Ê, which is the linear bundle that fits on the corresponding dual sequence (3.44). Then,
for every φ1, φ2, φ3 ∈ Γ(Ê), we have∑

cyclic

〈
L
θ]2(φ3)

φ1, θ
]
2(φ2)

〉
=
∑
cyclic

[
−
〈
L
θ]2(φ1)

φ3, θ
]
2(φ2)

〉
+ ρ(θ]2(φ1))(θ]1(W (φ3, φ2)))

]
,

where the operators L, d and ρ belong to the metric VB-algebroid structure corresponding
to the Poisson degree 2 manifold (Thm. 6.14).

Proof. The proof is just a computation using Cartan’s formula and item 3 of Thm. 3.59
and then a rearrangement of terms.∑

cyclic

〈
L
θ]2(φ3)

φ1, θ
]
2(φ2)

〉
=〈〈θ]2(φ3), dφ1〉, θ]2(φ2)〉+ ρ(θ]2(φ2))(〈φ1, θ

]
2(φ3)〉)

+ 〈〈θ]2(φ2), dφ3〉, θ]2(φ1)〉+ ρ(θ]2(φ1))(〈φ3, θ
]
2(φ2)〉)

+ 〈〈θ]2(φ1), dφ2〉, θ]2(φ3)〉+ ρ(θ]2(φ3))(〈φ2, θ
]
2(φ1)〉)

= −〈〈θ]2(φ2), dφ1〉, θ]2(φ3)〉 − ρ(θ]2(φ2))(〈φ3, θ
]
2(φ1)〉) + ρ(θ]2(φ2))(θ]1(W (φ1, φ3)))

−〈〈θ]2(φ1), dφ3〉, θ]2(φ2)〉 − ρ(θ]2(φ1))(〈φ2, θ
]
2(φ3)〉) + ρ(θ]2(φ1))(θ]1(W (φ3, φ2)))

−〈〈θ]2(φ3), dφ2〉, θ]2(φ1)〉 − ρ(θ]2(φ3))(〈φ1, θ
]
2(φ2)〉) + ρ(θ]2(φ3))(θ]1(W (φ2, φ1)))

=
∑
cyclic

[
−
〈
L
θ]2(φ1)

φ3, θ
]
2(φ2)

〉
+ ρ(θ]2(φ1))(θ]1(W (φ3, φ2)))

]
�

Lemma 7.18. Consider the operator Rθ : Γ(Ê) ⊗ Γ(Ê) // Γ(Ê) defined in Eq. (7.51).
We have yet another expression for it:

〈Rθ(φ1, φ2), γ〉 = θ]1

(
W (φ1, d(〈φ2, γ〉)) +W (φ2, 〈γ, dφ1〉)− d(〈φ1, 〈φ2, γ〉〉)

)
. (7.38)

Proof. From Cartan’s formula and the bilinearity of the symmetric tensor W it follows

W (Lγφ1, φ2)−W (φ2, d(〈φ1, γ〉)) = W (φ2,Lγφ1 − d(〈φ1, γ〉)) = W (φ2, 〈γ, dφ1〉),

by which Eq. (7.38) follows immediately from the first equation of (7.51).
�

Theorem 7.19. Let (M, {·, ·}) be a graded Poisson degree 2 manifold, and let θ ∈ A3

be a degree 3 function on M, to which there corresponds the pair of morphisms (θ]1, θ
]
2),

given by Thm. 3.59. Consider the 1-vector field Q := {θ, ·} and its corresponding preLie
2-algebroid, given by Thm. 4.9. Also consider the metric VB-algebroid DF ∗ corresponding
to the Poisson degree 2 manifold, according to Thm. 6.14. Then
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i) [θ]2(φ1), θ]2(φ2)]− θ]2([φ1, φ2]) = 1
2

[
{θ, θ}(φ1, φ2) + θ]2(Rθ(φ1, φ2))

]
, ∀φ1, φ2 ∈ Γ(Ê),

where {θ, θ}(φ1, φ2) ∈ A2 ∼= Γ(F̃ ∗) was defined in lemma 7.14, and Rθ(φ1, φ2) was
defined in Eq. (7.51).

ii) θ is integrable, i.e. {θ, θ} = 0, if and only if

[θ]2(φ1), θ]2(φ2)]− θ]2([φ1, φ2]) =
1

2
θ]2(Rθ(φ1, φ2)) ∀φ1, φ2 ∈ Γ(Ê) (7.39)

Proof. Let’s prove the equation of item i) in the theorem. For every φ1, φ2, φ3 ∈ Γ(Ê),
taking into account Eqs. (7.36) (4.14) (7.6), item 3 of Thm. 3.59 and Eq. (7.6), we have

〈φ3, {θ, θ}(φ1, φ2)〉 =〈φ3, Q(θ]2(φ2))]2(φ1)〉+ Ψ(φ3)(〈φ1, θ
]
2(φ2)〉)

− 〈φ3, Q(θ]2(φ1))]2(φ2)〉 − 〈φ3, θ
]
2([φ1, φ2])〉

=Ψ(φ1)(〈φ3, θ
]
2(φ2)〉)−Ψ(φ3)(〈φ1, θ

]
2(φ2)〉) + θ]1(d(〈T (φ3, φ1), θ]2(φ2)〉))

− 〈[φ1, φ3], θ]2(φ2)〉+ Ψ(φ3)(〈φ1, θ
]
2(φ2)〉)−Ψ(φ2)(〈φ3, θ

]
2(φ1)〉)

+ Ψ(φ3)(〈φ2, θ
]
2(φ1)〉)− θ]1(d(〈T (φ3, φ2), θ]2(φ1)〉)) + 〈[φ2, φ3], θ]2(φ1)〉

+ 〈[φ1, φ2], θ]2(φ3)〉 − θ]1(W (φ3, [φ1, φ2]))

=Ψ(φ1)(〈φ3, θ
]
2(φ2)〉)−Ψ(φ2)(〈φ3, θ

]
2(φ1)〉) + Ψ(φ3)(〈φ2, θ

]
2(φ1)〉)

− 〈L
θ]2(φ1)

φ3, θ
]
2(φ2)〉+ 〈L

θ]2(φ3)
φ1, θ

]
2(φ2)〉 − ρ(θ]2(φ2))(〈φ1, θ

]
2(φ3)〉)

+ 〈L
θ]2(φ2)

φ3, θ
]
2(φ1)〉 − 〈L

θ]2(φ3)
φ2, θ

]
2(φ1)〉+ ρ(θ]2(φ1))(〈φ2, θ

]
2(φ3)〉)

+ 〈L
θ]2(φ1)

φ2, θ
]
2(φ3)〉 − 〈L

θ]2(φ2)
φ1, θ

]
2(φ3)〉+ ρ(θ]2(φ3))(〈φ1, θ

]
2(φ2)〉)

+θ]1(d(〈T (φ3, φ1), θ]2(φ2)〉))− θ]1(d(〈T (φ3, φ2), θ]2(φ1)〉))− θ]1(W (φ3, [φ1, φ2]))

+ 〈Rθ(φ1, φ3), θ]2(φ2)〉 − 〈Rθ(φ2, φ3), θ]2(φ1)〉 − 〈Rθ(φ1, φ2), θ]2(φ3)〉.

Now we introduce in the calculations Eqs. (7.7), (7.38) and once more item 3 of Thm.
3.59 and Eq. (7.6), and continuing the calculations above we obtain, after performing
some cancellations,

〈φ3, {θ, θ}(φ1, φ2)〉 =− 〈L
θ]2(φ1)

φ3, θ
]
2(φ2)〉 − 〈L

θ]2(φ2)
φ1, θ

]
2(φ3)〉 − 〈L

θ]2(φ3)
φ2, θ

]
2(φ1)〉

+ 〈L
θ]2(φ3)

φ1, θ
]
2(φ2)〉+ 〈L

θ]2(φ2)
φ3, θ

]
2(φ1)〉+ 〈L

θ]2(φ1)
φ2, θ

]
2(φ3)〉

+ ρ(θ]2(φ1))(θ]1(W (φ2, φ3)))− θ]1(Wφ1, d(〈φ3, θ
]
2(φ2)〉)))

− ρ(θ]2(φ2))(θ]1(W (φ1, φ3)))− θ]1(Wφ2, d(〈φ3, θ
]
2(φ1)〉)))

+ ρ(θ]2(φ3))(θ]1(W (φ1, φ2)))− θ]1(Wφ3, d(〈φ2, θ
]
2(φ1)〉)))

+ θ]1(W (φ3, 〈θ]2(φ2), dφ1〉)) + θ]1(W (φ1, d(〈φ3, θ
]
2(φ2)〉)))

− θ]1(W (φ3, 〈θ]2(φ1), dφ2〉))− θ]1(W (φ2, d(〈φ3, θ
]
2(φ1)〉)))

−θ]1
(
W (φ3,Lθ]2(φ1)

φ2)
)

+ θ]1

(
W (φ3,Lθ]2(φ2)

φ1)
)
− θ]1(W (φ3, d(θ]1(W (φ1, φ2)))))

+θ]1(W (φ3, Rθ(φ1, φ2))) + 〈φ3, θ
]
2(Rθ(φ1, φ2))〉 − θ]1(W (φ3, Rθ(φ1, φ2))).
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Finally we introduce lemma 7.17 into the calculations, namely we apply it to the second
line of the equation above, and after cancelling some terms, we get

〈φ3, {θ, θ}(φ1, φ2)〉 =− 2
∑
cyclic

(
〈L

θ]2(φ1)
φ3, θ

]
2(φ2)〉

)
+ 2ρ(θ]2(φ1))(θ]1(W (φ2, φ3)))

+ 2ρ(θ]2(φ3))(θ]1(W (φ1, φ2)))− 2θ]1

(
W (φ3,Lθ]2(φ1)

φ2)
)

+ 2θ]1(W (φ3, 〈θ]2(φ2), dφ1〉)) + 〈φ3, θ
]
2(Rθ(φ1, φ2))〉. (7.40)

On the other hand, let’s compute

〈φ3, θ
]
2([φ1, φ2])〉 − 〈φ3, [θ

]
2(φ1), θ]2(φ2)]〉.

Using item 3 of Thm. 3.59, Eq. (7.6) and Cartan’s formula, we have

〈φ3, θ
]
2([φ1, φ2])〉 =− 〈θ]2(φ3), [φ1, φ2]〉+ θ]1(W (φ3, [φ1, φ2]))

=− 〈L
θ]2(φ1)

φ2, θ
]
2(φ3)〉+ 〈L

θ]2(φ2)
φ1, θ

]
2(φ3)〉 − ρ(θ]2(φ3))(〈φ1, θ

]
2(φ2)〉)

+ 〈θ]2(φ3), Rθ(φ1, φ2)〉+ θ]1

(
W (φ3,Lθ]2(φ1)

φ2)
)
− θ]1

(
W (φ3,Lθ]2(φ2)

φ1)
)

+ θ]1

(
W (φ3, d(〈φ1, θ

]
2(φ2)〉)

)
− θ]1(W (φ3, Rθ(φ1, φ2)))

=− 〈L
θ]2(φ1)

φ2, θ
]
2(φ3)〉+ 〈L

θ]2(φ2)
φ1, θ

]
2(φ3)〉 − ρ(θ]2(φ3))(〈φ1, θ

]
2(φ2)〉)

− 〈φ3, θ
]
2(Rθ(φ1, φ2))〉+ θ]1(W (φ3, Rθ(φ1, φ2))) + θ]1

(
W (φ3,Lθ]2(φ1)

φ2)
)

− θ]1(W (φ3, 〈θ]2(φ2), dφ1〉)) + θ]1(W (φ3, d(〈θ]2(φ2), φ1〉)))

+ θ]1

(
W (φ3, d(〈φ1, θ

]
2(φ2)〉)

)
− θ]1(W (φ3, Rθ(φ1, φ2))) (7.41)

The other term we compute using Eq. (G.2) and item 3 of Thm. 3.59:

−〈φ3, [θ
]
2(φ1), θ]2(φ2)]〉 =− ρ(θ]2(φ1))(〈φ3, θ

]
2(φ2)〉)) + 〈L

θ]2(φ1)
φ3, θ

]
2(φ2)〉

=ρ(θ]2(φ1))(〈φ2, θ
]
2(φ3)〉)− ρ(θ]2(φ1))(θ]1(W (φ2, φ3)))

+ 〈L
θ]2(φ1)

φ3, θ
]
2(φ2)〉. (7.42)

Before adding up the terms, we need a last formula. Using Cartan’s formula and item 3
of Thm. 3.59, we have

−〈L
θ]2(φ1)

φ2, θ
]
2(φ3)〉 =− 〈θ]2(φ3), 〈θ]2(φ1), dφ2〉〉 − ρ(θ]2(φ3))(〈φ2, θ

]
2(φ1)〉)

=〈θ]2(φ1), 〈θ]2(φ3), dφ2〉〉+ ρ(θ]2(φ3))(〈φ1, θ
]
2(φ2)〉)

− ρ(θ]2(φ3))(θ]1(W (φ1, φ2))). (7.43)

Now putting (7.43) into (7.41) and the adding up with (7.42) we get, after cancelling
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terms,

〈φ3, θ
]
2([φ1, φ2])〉 − 〈φ3, [θ

]
2(φ1), θ]2(φ2)]〉 =

∑
cyclic

(
〈L

θ]2(φ1)
φ3, θ

]
2(φ2)〉

)
− ρ(θ]2(φ1))(θ]1(W (φ2, φ3)))− ρ(θ]2(φ3))(θ]1(W (φ1, φ2)))

+ θ]1

(
W (φ3,Lθ]2(φ1)

φ2)
)
− θ]1(W (φ3, 〈θ]2(φ2), dφ1〉))

− 〈φ3, θ
]
2(Rθ(φ1, φ2))〉. (7.44)

Comparing Eqs. (7.40) and (7.44), we obtain item i) of the theorem.
In order to prove item ii), observe that in view of item i) we just proved, Eq. (7.39)

is equivalent to {θ, θ}(φ1, φ2) = 0. Therefore, keeping in mind lemma 7.14, it is enough to
verify that {θ, θ}(ξ1, ξ2) = 0, which is what we are going to do now. From Eqs. (4.38),(7.2)
and (4.10), we have

0 = [[ιξ1 , Q], ιξ2 ](θ) =ιξ1Qιξ2(θ) +Qιξ1ιξ2(θ)− ιξ2ιξ1Q(θ)− ιξ2Qιξ1(θ)

=− 〈∂(ξ1), θ]1(ξ2)〉 − {θ, θ}(φ1, φ2) + 〈∂(ξ2), θ]1(ξ1)〉,

where we used that ιξ1ιξ2(θ) = 0 since it is a degree -1 function. Therefore,

{θ, θ}(ξ1, ξ2) = −〈∂(ξ1), θ]1(ξ2)〉+ 〈∂(ξ2), θ]1(ξ1)〉.

Now, from lemma 7.12 and the symmetry of ] we have

〈∂(ξ1), θ]1(ξ2)〉 = −〈](θ]1(ξ1)), θ]1(ξ2)〉 = −〈](θ]1(ξ2)), θ]1(ξ1)〉

= 〈∂(ξ2), θ]1(ξ1)〉, ∀ξ1, ξ2 ∈ Γ(F ∗).

Therefore, we conclude that {θ, θ}(ξ1, ξ2) = 0, as we wanted.
�

Corollary 7.20. In the conditions of Thm. 7.19, if θ is integrable, then

p
(

[θ]2(φ1), θ]2(φ2)]
)

= p
(
θ]2([φ1, φ2])

)
∀φ1, φ2 ∈ Γ(Ê), (7.45)

where p : F̃ ∗ // F ∗ is the projection of the exact sequence (3.14).

Proof. From Thm. 7.19 it follows that

p
(

[θ]2(φ1), θ]2(φ2)]
)
− p

(
θ]2([φ1, φ2])

)
= p

(
1

2
θ]2(Rθ(φ1, φ2))

)
. (7.46)

From Thm. 7.11, we know that Rθ(φ1, φ2) ∈ Γ(E∗ ⊗ F ). Then, by item 2 of Thm. 3.59,
it follows that

θ]2(Rθ(φ1, φ2)) ∈ Γ(Λ2E∗),

from which, p
(

1
2θ
]
2(Rθ(φ1, φ2))

)
= 0. Putting this in Eq. (7.46), we obtain (7.45).

�
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Lemma 7.21. In the same conditions of lemma 7.17, for every φ1, φ2 ∈ Γ(Ê), ξ ∈ Γ(F ),〈
L
θ]2(φ2)

φ1, θ
]
1(ξ)

〉
−
〈
L
θ]2(φ1)

ξ, θ]2(φ2)
〉

+
〈
L
θ]1(ξ)

φ2, θ
]
2(φ1)

〉
= −

〈
L
θ]2(φ1)

φ2, θ
]
1(ξ)

〉
+
〈
L
θ]2(φ2)

ξ, θ]2(φ1)
〉
−
〈
L
θ]1(ξ)

φ1, θ
]
2(φ2)

〉
+ ρ(θ]1(ξ))(θ]1(W (φ1, φ2))).

Proof. The proof consists just in a computation using Cartan’s formula and items 1 and
3 of Thm. 3.59.〈
L
θ]2(φ2)

φ1, θ
]
1(ξ)

〉
−
〈
L
θ]2(φ1)

ξ, θ]2(φ2)
〉

+
〈
L
θ]1(ξ)

φ2, θ
]
2(φ1)

〉
=
〈
ι
θ]2(φ2)

dφ1, θ
]
1(ξ)

〉
+ ρ(θ]1(ξ))(〈φ1, θ

]
2(φ2)〉)−

〈
ι
θ]2(φ1)

dξ, θ]2(φ2)
〉
− ρ(θ]2(φ2))(〈ξ, θ]2(φ1)〉)

+
〈
ι
θ]1(ξ)

dφ2, θ
]
2(φ1)

〉
+ ρ(θ]2(φ1))(〈φ2, θ

]
1(ξ)〉)

=−
〈
ι
θ]2(φ1)

dφ2, θ
]
1(ξ)

〉
− ρ(θ]1(ξ))(〈φ2, θ

]
2(φ1)〉) + ρ(θ]1(ξ))(θ]1(W (φ1, φ2)))

+
〈
ι
θ]2(φ2)

dξ, θ]2(φ1)
〉

+ ρ(θ]2(φ1))(〈ξ, θ]2(φ2)〉)

−
〈
ι
θ]1(ξ)

dφ1, θ
]
2(φ2)

〉
− ρ(θ]2(φ2))(〈φ1, θ

]
1(ξ)〉)

=−
〈
L
θ]2(φ1)

φ2, θ
]
1(ξ)

〉
+
〈
L
θ]2(φ2)

ξ, θ]2(φ1)
〉
−
〈
L
θ]1(ξ)

φ1, θ
]
2(φ2)

〉
+ ρ(θ]1(ξ))(θ]1(W (φ1, φ2))).

�

Proposition 7.22. In the conditions of Thm. 7.19, and with the same notations,

〈φ2, {θ, θ}(φ1, ξ)〉 = 2
[
−
〈
L
θ]2(φ1)

φ2, θ
]
1(ξ)

〉
+
〈
L
θ]2(φ2)

ξ, θ]2(φ1)
〉
−
〈
L
θ]1(ξ)

φ1, θ
]
2(φ2)

〉]
.

(7.47)

Proof. Using lemma 7.16, Eqs. (4.15), (4.12), lemmas 7.4, 7.12, Thm. 7.11, Prop. 7.13
and items 1 and 3 of Thm. 3.59, we will compute the left-hand side of (7.47). As we did
in the proof of lemma 7.16, we omit the bar over sections of Γ(E∗) in order to simplify
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the notation.

〈φ2, {θ, θ}(φ1, ξ)〉 =ρ(θ]2(φ1))(〈φ2, θ
]
1(ξ)〉)− ρ(θ]2(φ2))(〈φ1, θ

]
1(ξ)〉)− 〈[φ1, φ2], θ]1(ξ)〉

+ ρ(θ]2(φ2))(〈φ1, θ
]
1(ξ)〉)− ρ(θ]2(φ2))(〈ξ, θ]2(φ1)〉)− ρ(θ]1(ξ))(〈φ2, θ

]
2(φ1)〉)

+ 〈Θ(φ2)(ξ), θ]2(φ1)〉 − 〈Θ(φ1)(ξ), θ]2(φ2)〉

=ρ(θ]2(φ1))(〈φ2, θ
]
1(ξ)〉)− ρ(θ]2(φ2))(〈ξ, θ]2(φ1)〉)− ρ(θ]1(ξ))(〈φ2, θ

]
2(φ1)〉)

−
〈
L
θ]2(φ1)

φ2, θ
]
1(ξ)

〉
+
〈
L
θ]2(φ2)

φ1, θ
]
1(ξ)

〉
− ρ(θ]1(ξ))(〈φ1, θ

]
2(φ2)〉)

+
〈
L
θ]2(φ2)

ξ, θ]2(φ1)
〉

+
〈
L
θ]1(ξ)

φ2, θ
]
2(φ1)

〉
− ρ(θ]2(φ1))(〈ξ, θ]2(φ2)〉)

−
〈
L
θ]2(φ1)

ξ, θ]2(φ2)
〉
−
〈
L
θ]1(ξ)

φ1, θ
]
2(φ2)

〉
+ ρ(θ]2(φ2))(〈θ]2(φ1), ξ〉)

=−
〈
L
θ]2(φ1)

φ2, θ
]
1(ξ)

〉
+
〈
L
θ]2(φ2)

ξ, θ]2(φ1)
〉
−
〈
L
θ]1(ξ)

φ1, θ
]
2(φ2)

〉
+
〈
L
θ]2(φ2)

φ1, θ
]
1(ξ)

〉
−
〈
L
θ]2(φ1)

ξ, θ]2(φ2)
〉

+
〈
L
θ]1(ξ)

φ2, θ
]
2(φ1)

〉
− ρ(θ]1(ξ))(θ]1(W (φ1, φ2))).

Finally, using lemma 7.21, we arrive to the right-hand side of Eq. (7.47).
�

Proposition 7.23. In the conditions of Thm. 7.19, we have

[θ]2(φ1), θ]1(ξ)]− θ]1(Θ(φ1)(ξ)) =
1

2
{θ, θ}(φ1, ξ). (7.48)

In particular, if θ is integrable, we have

[θ]2(φ1), θ]1(ξ)] = θ]1(Θ(φ1)(ξ)). (7.49)

Proof. Let’s compute:

〈φ2, θ
]
1(Θ(φ1)(ξ))〉 − 〈φ2, [θ

]
2(φ1), θ]1(ξ)]〉 = 〈Θ(φ1(ξ), θ]2(φ2)〉 − 〈φ2, [θ

]
2(φ1), θ]1(ξ)]〉

=
〈
L
θ]2(φ1)

ξ, θ]2(φ2)
〉

+
〈
L
θ]1(ξ)

φ1, θ
]
2(φ2)

〉
− ρ(θ]2(φ2))(〈ξ, θ]2(φ1)〉)

− ρ(θ]2(φ1))(〈φ2, θ
]
1(ξ)〉) +

〈
L
θ]2(φ1)

φ2, θ
]
1(ξ)

〉
=
〈
ι
θ]2(φ1)

dξ, θ]2(φ2)
〉

+ ρ(θ]2(φ2))(ξ, θ]2(φ1)〉) +
〈
L
θ]1(ξ)

φ1, θ
]
2(φ2)

〉
− ρ(θ]2(φ2))(〈ξ, θ]2(φ1)〉)− ρ(θ]2(φ1))(〈φ2, θ

]
1(ξ)〉) +

〈
L
θ]2(φ1)

φ2, θ
]
1(ξ)

〉
=
〈
L
θ]2(φ1)

φ2, θ
]
1(ξ)

〉
−
〈
L
θ]2(φ2)

ξ, θ]2(φ1)
〉

+
〈
L
θ]1(ξ)

φ1, θ
]
2(φ2)

〉
.

Therefore, from Prop. 7.22 we obtain Eq. (7.48), from which immediately follows Eq.
(7.49) if {θ, θ} = 0.

�
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7.2.1 Degenerate Courant algebroids

Let’s summarize the vector bundle information we obtained to characterize
integrable degree 3 functions on a degree 2 Poisson manifold.

1. Associated to any degree 2 manifold M we obtained

a) the involutive vector sequence that characterizes, up to isomorphisms, such
degree 2 manifold,

(E, F̃ , F̃
p
// Λ2E), with inclusion ker p =: F

ι
// F̃

to which we have naturally associated

b) the dual sequence Ê
π
// E, where

Ê = {φ ∈ Hom(F̃ ∗, E∗)|∃e ∈ E s.t. φ(λ) = ιeλ, ∀λ ∈ Λ2E∗}; π(φ) = e,
(7.50)

and we have the natural identification

ker π ∼= Hom(F ∗, E∗) ∼= Hom(E,F ), φ̃ ∈ Hom(E,F ) //(φ̃)∗◦ι∗ ∈ Hom(F̃ ∗, E∗).

c) A map T : Ê ⊗ Ê // F̃ , given by

〈T (φ1, φ2), ζ〉 = 〈φ1(ζ), π(φ2)〉, ∀φ1, φ2 ∈ Ê, ζ ∈ F̃ .

d) A map W : S2Ê // F , given by

W (φ1, φ2) = T (φ1, φ2) + T (φ2, φ1).

2. Associated to -2 Poisson brackets {·, ·} on M we have the unique involutive

Lie algebroid structure on the transposed involutive sequence (Λ2E∗
p∗
// F̃ ∗), that

characterizes them, and comprises the following maps:

a) A symmetric bilinear form 〈·, ·〉 on E∗;

b) A Lie algebroid structure ([·, ·], ρ) on F̃ ∗;

c) A Lie algebroid 〈·, ·〉-preserving action, Ψ : F̃ ∗ //CDO(E∗), of F̃ ∗ on E∗;

such that

– The brackets between a section γ of F̃ ∗ and a section ε1 ∧ ε2 of Λ2E∗
p∗

↪→ F̃ ∗,
are given by

[γ, ε1 ∧ ε2] = Ψ(γ)(ε1) ∧ ε2 + ε1 ∧Ψ(γ)(ε2).

– The action Ψ of F̃ ∗ on E∗ restricted to Λ2E∗, which we denote by Ψ̃, is given
by

Ψ̃(ε1 ∧ ε2)(ε) = 〈ε2, ε〉ε1 − 〈ε1, ε〉ε2.
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Out of these structure maps, we get two differential operators:

d) d : Γ(E∗) // Γ(Ê), given by

d(ε)(γ) = Ψ(γ)(ε),

and π(d(ε)) = −](ε) ∀ε ∈ Γ(E∗), γ ∈ Γ(F̃ ∗);

e) L : Γ(F̃ ∗)× Γ(Ê) // Γ(Ê), given by

Lγφ(γ′) = Ψ(γ)(φ(γ′))− 〈φ, [γ, γ′]〉
and 〈π(Lγφ), ε〉 = ρ(γ)(〈π(φ), ε〉)− φ(Ψ(γ)(ε))〉,

∀γ, γ′ ∈ Γ(F̃ ∗), φ ∈ Γ(Ê), ε ∈ Γ(E∗).

3. Associated to a degree 3 function θ onM, there are two compatible morphisms
which characterize it

a) θ]2 : Ê // F̃ ∗, θ]1 : F // E∗. The compatibility conditions are

∗ 〈ι∗(θ]2(φ)), ξ〉 = 〈π(φ), θ]1(ξ)〉, ∀φ ∈ Ê, ξ ∈ F ;

∗ θ]2(φ̃) = (θ]1 ◦ φ̃)∗ − θ]1 ◦ φ̃ ∈ Λ2E∗, ∀φ̃ ∈ Hom(E,F ) ⊂ Ê;

∗ φ1(θ]2(φ2)) + φ2(θ]2(φ1)) = θ]1(W (φ1, φ2)), ∀φ1, φ2 ∈ Ê.
Using these maps and the preceding ones, we get two differential operators:

b) Rθ : Γ(Ê)× Γ(Ê) //Hom(E,F ), given by

Rθ(φ1, φ2)(ι∗(γ)) = θ]1(W (φ1, d(φ2(γ)))−W (φ2, d(φ1(γ))) (7.51)

− d(〈T (φ2, φ1), γ〉) +W (Lγφ1, φ2)),

∀φ1, φ2 ∈ Γ(Ê), γ ∈ F̃ ∗.
c) [·, ·]θ : Γ(Ê)× Γ(Ê) // Γ(Ê), given by

[φ1, φ2]θ = L
θ]2(φ1)

φ2−Lθ]2(φ2)
φ1+d(φ1(θ]2(φ2)))−Rθ(φ1, φ2), ∀φ1, φ2 ∈ Γ(Ê).

4. Associated to the homological equation {θ, θ} = 0 we have integrability equa-
tion that characterizes it:

[θ]2(φ1), θ]2(φ2)]− θ]2([φ1, φ2]θ) =
1

2
θ]2(Rθ(φ1, φ2)) ∈ Γ(Λ2E∗), ∀φ1, φ2 ∈ Γ(Ê).

So now we define the structure which gathers all the vector bundle information that
characterizes integrable degree 3 functions on a degree 2 Poisson manifold, and call it a
degenerate Courant algebroid, since this information is equivalent to a Courant algebroid
when the Poisson brackets are symplectic (see Sec. 7.2.2 below).
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Definition 7.24. Given an involutive sequence (E, F̃ , F̃
p
// Λ2E), with ker p = F

ι
↪→ F̃ ,

a degenerate Courant algebroid is given by an involutive Lie algebroid structure on the

transposed sequence Λ2E∗
p∗
// F̃ ∗, as described in item 2 above, and a pair of morphisms

θ]1 : F // E∗, θ]2 : Ê // F̂ ∗, where Ê is the vector bundle given by (7.50), satisfying the
compatibility conditions of item 3.a) above and the integrability equation of item 4, where
[·, ·]θ and Rθ are given in items 3.b) and 3.c).

Therefore, we have obtained the following result.

Theorem 7.25. Given a degree 2 manifoldM, consider the involutive sequence F̃ //Λ2E
we can associate to it. Then -2 Poisson brackets {·, ·} together with a degree 3 function θ
onM satisfying {θ, θ} = 0 are equivalent to a degenerate Courant algebroid on F̃ //Λ2E.

Remark 7.26. D. Li-Bland [41] introduced the notion of LA-Courant algebroids, which
are VB -Courant algebroids endowed with a metric VB -algebroid structure over the second
fibration (the horizontal one) satisfying a compatibility condition. There he shows that Q
structures on a degree 2 Poisson manifold that are derivations of the Poisson bracket, are
in 1:1 correspondence with LA-Courant algebroids on the metric double vector bundle that
corresponds to the degree 2 manifold. See also [29], where the correspondence is proved
in an explicit fashion using splittings, representations up to homotopy and Dorfman 2-
representations compatible in a suitable way. Since Q structures that come from degree 3
functions are automatically derivations of the Poisson bracket1, it follows that degenerate
Courant algebroids are examples of LA-Courant algebroids. The correspondences with the
VB -Courant and metric VB -algebroid structures were explained, respectively, in sections
5.2.2 and 6.2.1.

7.2.2 Example: Courant algebroids and quotients

As we saw in Sec. 6.4.2, when the Poisson brackets are symplectic, i.e. non-degenerate,
the whole structure of an integrable degree 3 function on a degree 2 symplectic manifold
is already encoded by its corresponding Courant algebroid. Thus, what we will do in
this section is to recover, in the symplectic case, the whole degenerate Courant structure
through the Courant algebroid structure. To describe it, we will follow the same scheme
given by items 1,2,3 and 4 in Sec. 7.2.1.

So let (E, 〈·, ·〉, [[·, ·]], a) be a Courant algebroid.

1. The involutive vector sequence is given in this case by transpose of the Atiyah se-

quence associated to the pseudo-euclidean vector bundle (E∗
]∼= E, 〈·, ·〉):

Λ2E ∼= so(E) // AE // TM,

as seen in Prop. 6.23, where the isomorphism of vector bundle sequences is given
by (6.28), so that, after identifying E∗ ∼= E through the metric, we have the vector

1This follows directly from Jacobi identity of the Poisson bracket.
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sequence isomorphism:

Λ2E∗

Ψ̃
��

ι̃ // F̃ ∗

Ψ
��

p̃
// F ∗

ρ

��

so(E)
ι̃ // AE

p̃
// TM

.

The dual sequence is given by the first jet bundle of E, J1E, which is also naturally
identified with the bundle of linear 1-forms of E∗, Ω1

lin(E∗), the identification map
is given by

J1E
∼=
// Ω1

lin(E∗)

j1e // de, e ∈ Γ(E) ∼= C∞lin(E∗),

where d is the usual (de Rham) differential applied to the function e of E∗. Now, in
order to see an element of Ω1

lin as an element of Ê in (7.50), we use identification of
covariant differential operators with linear fields (see [46]), and thus, given

X ∈ F̃ ∗ ∼= AE ⊂ CDO(E) ∼= Xlin(E∗),

we set, for e ∈ Γ(E) ∼= C∞lin(E∗),

de(X) = X(e), π(de) = −e. (7.52)

With these identifications, the maps T and W of items 1.c) and 2.d) are given by

〈T (de1, de2), X〉 = −〈X(e1), e2〉; W (de1, de2) = −d〈e1, e2〉, (7.53)

for every e1, e2 ∈ Γ(E) ∼= C∞lin(E∗), X ∈ AE ⊂ Xlin(E∗).

2. The involutive Lie algebroid data is already given by the Atiyah sequence, viewed
as a Lie algebroi sequence:

a) The bilinear form on E ∼= E∗ is the pseudo-euclidean metric.

b) The Lie bracket is given by the commutator, viewing AE inside Xlin(E∗), and
the anchor is given by the symbol of X, viewed as a covariant differential
operator, or equivalently, the base map, viewing X ∈ X as a vector bundle map
X : E∗M

// TE∗TM over some base map X̃ : M // TM , then ρ(X) = X̃.

c) The action of AE on E can be viewed simply as the action of vector fields as
derivations of functions.

d) d : Γ(E) ∼= C∞lin(E∗) // Γ(Ê) = Ω1
lin(E∗) is just the differential of functions,

restricted to functions linear on the fibers.

e) The operator L is just the Lie derivative of 1-forms under the identifications
F̃ ∗ ∼= Xlin(E∗), Ê ∼= Ω1

lin(E∗), and the formula in this case, for 1-forms of type
de is simply

LXde = d(X(e)) ∀X ∈ AE , e ∈ Γ(E).
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3. a) θ]2 : Ω1
lin(E∗) // Xlin(E∗) is given by

θ]2(de) = ade, where ad : Γ(E) // Γ(AE), e // ade := [[e, ·]].

This defines a section in Γ(AE). In fact, from Leibniz rule for [[·, ·]] it follows that

ade is a covariant differential operator, with symbol given by σ(θ]2(de)) = a(e);
that ade preserves the metric is precisely what property 5 of Def. 5.1 says.
θ]1 : T ∗M // E is given by

θ]1(df) = −D(f), where D : C∞(M) // Γ(E), 〈D(f), e〉 := a(e)(f).

It was shown in the proof of Thm. 6.32 that properties 3, 4 and 5 of Def. 5.1
allow to obtain the three compatibility conditions for θ]1 and θ]2.

b) The operator Rθ is zero for exact 1-forms, Rθ(de1, de2) = 0.

For 1-forms φi = fidei, i = 1, 2, we have

Rθ(f1de1, f2de2) = f2Rθ(f1de1, de2) = f2(D〈e1, e2〉 ⊗ df1 −D(f1)⊗ d〈e1, e2〉).

c) The bracket [·, ·]θ is given by (see Prop. 6.34)

[de1, de2]θ = d[[e1, e2]], ∀e1, e2 ∈ Γ(E).

4. Finally, the integrability condition in this case is given by

[θ]2(de1), θ]2(de1)] = θ]2([de1, de2]θ),

which is equivalent to the Jacobi identity for [[·, ·]], indeed, for every e1, e2, e3 ∈ Γ(E),
we have

〈[θ]2(de1), θ]2(de2)], de3〉 = [[e2, [[e2, e3]]]]− [[e2, [[e1, e3]]]];

on the other hand,

〈θ]2([de1, de2]θ), de3〉 = 〈θ]2(d[[e1, e2]]), de3〉 = [[[[e1, e2]], e3]].

The two equalities above show that the integrability equation is equivalent to Jacobi
identity of [[·, ·]].

Example 7.27. Courant algebroid with a symmetry group. An example of a
degenerate Courant algebroid which is not the one that corresponds to a Courant algebroid
appears when we have a Lie group G acting on a Courant algebroid E ∼= E∗, preserving
everything: the vector bundle structure, the metric, the Courant brackets and the anchor.

We will describe once more the data of the corresponding degenerate Courant algebroid
in the same scheme of items 1,2,3 and 4 of Sec. 7.2.1.

1. The base manifold is the quotient M/G, and the fiber bundles E∗, F̃ ∗, F ∗ and Ê
are also given by the quotients

E∗ = E/G, F̃ ∗ = AE/G, F ∗ = TM/G, and Ê = Ω1
lin(E)/G,
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and we have natural identifications of the sections of each quotient, with G-invariant
sections on the original bundle. Likewise, functions on M/G are naturally identified
with G-invariant functions on M . So we use these G-invariant functions and sections
to determine the whole structure in terms of the data we found in the previous
example above, that corresponds to the Courant algebroid. We only need to verify
in each case that the data obtained is again G-invariant, so that it corresponds to
data on the quotient.

– For G-invariant φ1, φ2 ∈ Γ(Ω1
lin(E))G and X ∈ Γ(AE)G ⊂ Xlin(E)G, and for

any infinitesimal generator Y ∈ Γ(AE) of the G-action on (E, 〈·, ·〉), with sym-
bol σY ∈ Γ(TM), taking into account the equivariance of the projection π :

Ω1
lin(E) // E∗

]∼= E, we have

σY 〈T (φ1, φ2), X〉 =σY 〈X(φ1), π(φ2)〉
=〈Y (X(φ1)), π(φ2)〉+ 〈X(φ1), Y (π(φ2))〉
=0.

Therefore, T (φ1, φ2) descends to the quotient, and so does

W (φ1, φ2) = T (φ1, φ2) + T (φ2, φ1).

2. We already have by hypothesis that G preserves 〈·, ·〉, so it descends to the quotient
to a bilinear symmetric pairing (now possibly degenerate). Let’s see the rest of the
involutive Lie algebroid structure.

– For X1, X2 ∈ Γ(AE)G, e ∈ Γ(E)G, f ∈ C∞(M)G and Y ∈ Γ(AE) an infinitesimal
generator of the action, we have

[Y, [X1, X2]] = [[Y,X1], X2] + [X1, [Y,X2]] = 0;

σY (ρ(X1)(f)) = σY (σX1(f)) = 0;

Y (Ψ(X1)(e) = Y (X1(e)) = 0;

so that the involutive Lie algebroid structure also descends to the quotient.

3. To check that the morphism θ]2 descends to the quotient, take an invariant 1-form
fde1 ∈ Γ(Ω1

lin)G, an infinitesimal generator X ∈ Γ(AE) and an arbitrary e2 ∈ Γ(E),
then we have on one hand, using [LX , d] = 0, that the invariance of fde1, that is,
LX(fde1) is equivalent to the equation

fdX(e1) = −σX(f)de1
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Then, using the fact that the action preserves the Courant bracket,

[X, θ]2(fde1)](e2) =X(θ]2(fde1)(e2))− θ]2(fde1)(X(e2))

=σX(f)[[e1, e2]] + f [[X(e1), e2]] + f [[e1, X(e2)]]

− θ]2(fde1)(X(e2))

=σX(f)θ]2(de1)(e2) + θ]2(fd(X(e1)))(e2) + θ]2(fde1)(X(e2))

− θ]2(fde1)(X(e2))

=− θ]2(fd(X(e1)))(e2) + θ]2(fd(X(e1)))(e2) = 0.

For the equivariance of θ]1, take α ∈ Γ(T ∗M)G and extending any e ∈ E to a section
such that X(e) = 0, we have, using the equivariance of a : E // TM ,

〈X(θ]1(α)), e〉 = σX(〈θ]1(α), e〉)− 〈θ]1(α), X(e)〉
= σX(〈a(e), α〉
= 〈[σX , a(e)], α〉+ 〈a(e),LσXα〉 = 0.

Therefore, θ]2 and θ]1 are equivariant maps, so they descend to the quotient.

Since Rθ and [·, ·]θ are already determined by the structure above, it follows that
these operators are also G-invariant, so they descend to the quotient and satisfy the
integrability equation

[θ]2(φ1), θ]2(φ2)]− θ]2([φ1, φ2]θ) =
1

2
θ]2(Rθ(φ1, φ2)).
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Appendix A

Double vector bundles

In this appendix we develop the basics of double vector bundles, including a detailed
study of their local structure. Since the interest on this subject is increasing, as more
applications to Poisson geometry, Lie theory and mathematical physics appear, we decided
to present the main properties and facts of double vector bundles from scratch, so that
besides facilitating the reading, Ch. 2 together with appendices A–F may serve as a
reference into the field, including some new results and a new approach emphasizing the
point of view of the linear and the core bundles, which in a precise sense (see App. D and
also the reference [12]) encode the whole structure of a double vector bundle, reducing their
complicated structure to a triple of plain vector bundles, which are much more simpler
to deal with. It is worth remarking that in section A.4 we show that every double vector
bundle admits a local decomposition, a result that is regarded as folklore but a proof of
which we weren’t able to find in the literature, in spite that [23] refers to [20] for this
result, we didn’t find it there. The main references we used for this appendix are [32],[46]
and [23]. The concept of double vector bundle was originally introduced by J. Pradines
[56].

A.1 More on double vector bundles and morphisms

Proposition A.1 ([32],[46]). If Φ is a morphism of double vector bundles, setting

ϕA := qA′ ◦ Φ ◦ 0A;

ϕB := qB′ ◦ Φ ◦ 0B;

ϕM := qA
′ ◦ qA′ ◦ Φ ◦ 0A ◦ 0A = qB

′ ◦ qB′ ◦ Φ ◦ 0B ◦ 0B,

we obtain maps ϕA : A // A′, ϕB : B // B′, ϕM : M // M ′ such that each of
(Φ, ϕB), (Φ, ϕA), (ϕA, ϕM ) and (ϕB, ϕM ) is a morphism of the relevant vector bundles.

166
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Also

ϕA ◦ qA := qA′ ◦ Φ;

ϕB ◦ qB := qB′ ◦ Φ;

ϕM ◦ qA ◦ qA := qA
′ ◦ qA′ ◦ Φ;

ϕM ◦ qB ◦ qB := qB
′ ◦ qB′ ◦ Φ.

Proof. It is a direct verification using fiber preserving and linearity of Φ with respect
to both fibrations, and the fact that the projections and zero sections are vector bundle
maps. �

We may denote a morphism by

(Φ;ϕA, ϕB, ϕM ) : (D;A,B;M) // (D′;A′, B′;M ′).

Proposition A.2 ([32],[46]). The definition of a double vector bundle is symmetric with
respect to A and B. That is, a commutative square like (2.1) is a double vector bundle if
and only if the square

D

��

// A

��

B //M

, (A.1)

is also a double vector bundle.

Proof. We have to check conditions (a), (b) and (c) from definition 2.1, which are obviously
symmetric with respect to the side bundles A and B.

�

A.2 The core bundle and core sequences

Let’s call qA and qB, respectively, the projections from D over A and B, and let’s call
qA and qB the projections from A and B, respectively, over M . Then qA is as vector
bundle morphism over qB and qB is a vector bundle morphism over qA.

We refer to the vector bundle D // A as DA, and to the vector bundle D // B as
DB.

Proposition A.3 ([32]). The vector bundle structures on DA and DB coincide on the
intersection C := ker qA ∩ ker qB. And C is itself a vector bundle over M , with projection
qC := qA ◦ qA|C = qB ◦ qB|C .

Proof. First let’s prove that C is a vector bundle over M with the structure inherited from
DA. Notice that ker qA = DA|0A(M), so, after the identification M ∼= 0A(M), it follows
that ker qA is a vector bundle bundle over M with the structure inherited from DA. Now,
qB|ker qA : ker qA // B is a vector bundle morphism over the identity Id : M //M , and
since 0B(B) ⊆ ker qA, it follows that qB|ker qA has full rank. Then

C = ker qA ∩ ker qB = ker (qB|ker qA) ,
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is a vector subbundle of ker qA over M . Of course, by a completely symmetric argument,
C is also a vector subbundle of ker qB, and since qA ◦ qA = qB ◦ qB, it follows that the
projections over M corresponding to both structures coincide, we denote this projection
by qC : C //M . Finally we see that if d1, d2 ∈ C satisfy qC(d1) = qC(d2) = m, then

d1 +
A
d2 = (d1 +

B
(0B ◦ 0B(m))) +

A
((0B ◦ 0B(m)) +

B
d2)

= (d1 +
A

(0A ◦ 0A(m))) +
B

(d2 +
A

(0A ◦ 0A(m)))

= (d1 +
B
d2).

This shows that the two vector structures on each fiber of C coincide.
�

Proposition A.4 ([32]). Let (D;A,B;M) be a double vector bundle, and C its core
bundle. Then

1. ker qB with the vector bundle structure induced from DB is canonically isomorphic
to the Whitney sum A⊕ C.

2. ker qB with the vector bundle structure induced from DA is canonically isomorphic
to the vector bundle (qA)∗C.

3. ker qA with the vector bundle structure induced from DA is canonically isomorphic
to the Whitney sum B ⊕ C.

4. ker qA with the vector bundle structure induced from DB is canonically isomorphic
to the vector bundle (qB)∗C.

Proof.

1. Consider the map pA : ker qB // ker qB given by

pA(d) := 0A(qA(d)).

Since qB : DA
//B is a vector bundle morphism, it follows that pA(d) ∈ ker qB, so

pA is a well defined, linear map. Moreover, it’s a projection, since

p2
A(d) = 0A(qA(0A(qA(d)))) = 0A(qA(d)) = pA(d).

Then, defining pC : ker qB // ker qB by

pC(d) := d−
B
pA(d) = d−

B
0A(qA(d))

we have

p2
C(d) = pC(d)−

B
pA(pC(d))

= d−
B
pA(d)−

B
pA(d−

B
pA(d))

= d−
B
pA(d)−

B
pA(d) +

B
p2
A(d)

= d−
B
pA(d) = pC(d).
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Notice that, for d ∈ C, we have pC(d) = d, and for all d ∈ ker qB, we have

qA(pC(d)) = qA(d)−
B
qA(0A(qA(d))) = qA(d)−

B
qA(d) = 0,

hence pC(d) ∈ ker qB ∩ ker qA = C. So pC is a projection over C. Identifying
A ∼= 0A(A), we obtain the map

P := (pA, pC) : ker qB //A⊕ C

over the identity IdM . Let d ∈ ker qB. If P (d) = 0, then qA(d) = 0, and since we
already have qB(d) = 0, it follows that d ∈ C. But, P (d) = 0 implies pC(d) = 0,
whence d = 0. So, P is an isomorphism.

2. Consider the map
τA : (qA)∗C //DA

given by τA(a, c) := 0A(a) +
B
c. Notice that both 0A(a) and c project to 0B(m)

under qB, so the addition 0A(a) +
B
c is defined and also projects to 0B(m) under

qB. Therefore τA injects (qA)∗C into ker qB. Since, as manifolds, (qA)∗C and ker qB
are already isomorphic, it will suffice to show that τA is linear with respect to the
structure over A.

τA((a, c1) + (a, c2)) = τA(a, c1 + c2) = 0A(a) +
B

(c1 +
A
c2) = (0A(a) +

A
0A(a)) +

B
(c1 +

A
c2)

= (0A(a) +
B
c1) +

A
(0A(a) +

B
c2)

= τA(a, c1) +
A
τA(a, c2).

Items 3 and 4 are analogous.
�

As a corollary we obtain Mackenzie’s core sequences, which are instrumental to under-
stand the structure of double vector bundles and their decompositions.

Corollary A.5 ([46]). There is an exact sequence

0 // (qA)∗C //DA
// (qA)∗B // 0 (A.2)

of vector bundles over A, and an exact sequence

0 // (qB)∗C //DB
// (qB)∗A // 0, (A.3)

where the injections are the ones considered in the proof of Prop. A.4: τA(a, c) = 0A(a) +
B

c; τB(b, c) = 0B(b) +
A
c. And the projections are the obvious induced maps (qA, qB) and

(qB, qA), respectively.
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Definition A.6. The sequences (A.2) and (A.3) are called core sequences over A and over
B, respectively.

The following corollary will be useful in order to understand the relation of a splitting
of the core section (A.2) and a decomposition of D (see Def. 2.7). Further, this corollary,
along with the one that follows it (Cor. A.8), will facilitate the study of duality for double
vector bundles.

Corollary A.7 ([32]). Let v, w ∈ D such that

qB(v) = qB(w) = b ∈ B,
qA(v) = qA(w) = a ∈ A.

There exists k ∈ C such that qC(k) = qB(b) = qA(a) and, using the identifications of Prop.
A.4,

v = w +
B

(b, k),

v = w +
A

(a, k).

Proof. Since qA(v −
B
w) = qA(v) − qA(w) = 0, it follows that v −

B
w ∈ ker qA, and from

Prop. A.4 there exists a unique k ∈ C such that v −
B
w = (b, k). By the same reasons we

have v −
A
w = (a, k′), for a unique k′ ∈ C. To conclude the proposition we need to show

that k = k′. In order to achieve this, recall that the identification from Prop. A.4 means
that (b, k) = 0B(b) +

A
k and (a, k′) = 0A(a) +

B
k′. Then

w +
A

(0A(a) +
B
k′) = v = w +

B
(0B(b) +

A
k)

= (w +
A

0A(a)) +
B

(0B(b) +
A
k)

= (w +
B

0B(b)) +
A

(0A(a) +
B
k)

= w +
A

(0A(a) +
B
k).

By the uniqueness of k′ satisfying v = w +
A

(0A(a) +
B
k′), it follows that k = k′. �

Corollary A.8. Let v, v′, w, w′ ∈ D be such that

qA(v) = qA(w) = a,

qB(v′) = qB(w′) = a′,

qB(v) = qB(w) = qB(v′) = qB(w′) = b,

v +
B
v′ = w +

B
w′. (A.4)

Then

v −
A
w = (a, c) ∈ ker qB

v′ −
A
w′ = (a′,−c) ∈ ker qB.
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Proof. We have v −
A
w ∈ ker qB, then

v −
A
w = (a, c),

for some c ∈ C. Analogously,
v′ −

A
w′ = (a, c′),

for some c′ ∈ C ′.
From Cor. A.7 we have also

v −
A
w = (b, c) and v′ −

A
w′ = (b, c′).

By (A.4) we obtain

(b, c) = v −
A
w = w′ −

A
v′ = (b,−c′),

thus, c′ = −c. �

Proposition A.9 ([32]). Let Φ : (D;A,B;M) //(D′;A′, B′;M ′) be a morphism of double
vector bundles. Then

1. Φ(ker qB) ⊂ ker qB′,

2. Φ(ker qA) ⊂ ker qA′,

3. Φ(C) ⊂ C ′.

We denote the restriction ϕC := Φ|C : C // C ′.

Proof.

1. Recall from Prop. A.1 that Φ induces vector bundle maps ϕA : A // A′ and
ϕB : B // B′. Since Φ preserves fibers, it follows that ϕB ◦ qB = qB′ ◦ Φ, hence, if
qB(d) = 0, qB′(Φ(d)) = 0.

2. Analogous to 1.

3. From 1 and 2 it follows that

Φ(C) = Φ(ker qB ∩ ker qA) ⊂ ker qB′ ∩ ker qA′ = C ′.

�
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A.3 More on core and linear sections

Proposition A.10. Let Φ : (D;A,B;M)C // (D′;A′, B;M)′C be a double vector mor-
phism which is the identity on the common side bundle, B. Then the induced map on
sections, which we denote by the same Φ, satisfies Φ(Γcore(DB)) ⊂ Γcore(D

′
B).

Proof. Let α̃ = ι ◦ α ◦ qB +
A

0B be the core section corresponding to the section α ∈ Γ(C).

By Prop. A.9, and since Φ is the identity on M , it follows that Φ ◦ ι ◦α is a section of C ′.
Then, by the linearity of Φ with respect to A and A′, and recalling that Φ is the identity
on B,

Φ(α̃) = Φ ◦ ι ◦ α ◦ qB +
A′

0B

is the core section on D′B corresponding to the section Φ ◦ ι ◦ α ∈ Γ(C ′).
�

Proposition A.11. Let Φ : (D;A,B;M)C // (D′;A′, B;M)′C be a double vector mor-
phism which is the identity on the common side bundle, B. Then the induced map on
sections (denoted by the same Φ), satisfies Φ(Γlin(DB)) ⊂ Γlin(D′B).

Proof. Let γ ∈ Γlin(DB). We need to prove that Φ(γ) : D //D′A′ preserves fibers and the
linear structure.

Let b1, b2 ∈ Bm. Then qA(γ(b1)) = qA(γ(b2)), whence

qA′(Φ(γ)(b1)) = qA′(Φ(γ(b1))) = ϕA(qA(γ(b1))) = qA′(Φ(γ(b2))),

and

Φ(γ)(b1 + b2) = Φ(γ(b1 + b2)) = Φ(γ(b1) +
A
γ(b2))

= Φ(γ(b1)) +
A′

Φ(γ(b2)) = Φ(γ)(b1) +
A′

Φ(γ)(b2).

It follows that Φ(γ) is linear, thus Φ(Γlin(DB)) ⊂ Γlin(D′B).
�

Remark A.12. Actually, the property of preserving core and linear sections allows us
to characterize double vector bundle morphisms which are the identity on B. We will be
able to prove this (Prop. C.27) only after studying the local structure of double vector
bundles and their morphisms.

Propositions A.10 and A.11 were taken from [23], where the proofs were left as an
exercise.

A.4 Decompositions and local structure

In this section we provide a thorough treatment of decompositions and splittings of
double vector bundles and core sequences, respectively, and exploit the relationship be-
tween them, which will lead in particular to a simple proof of the existence of a local
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decomposition for a double vector bundle. The study presented here of both, decompo-
sitions and the local structure, will be instrumental for the understanding of the linear
bundle in App. C.

The relationship between decompositions and splittings is also the key to show that a
decomposition of a double vector bundle automatically induces decompositions of its two
duals (Sec. B.3), and horizontal lifts of each associated linear sequence (Subsec. C.2).

A.4.1 Decompositions and splittings of core sections

Recall the definition of decomposition given in Def. 2.7. The following characterization
of a decomposition, although simple, is very useful and we haven’t found it elsewhere.

Proposition A.13. A decomposition of (D;A,B;M)C is equivalent to a map qC : D //C
which is a vector bundle map with respect to both structures DA and DB, and satisfies
qC ◦ ι = IdC , where ι : C //D is the inclusion. Every decomposition Θ : D //A⊕B⊕C
has the form

Θ = (qA, qB, qC).

Proof. Suppose that we have such a map. Define

Θ :D //A⊕B ⊕ C
d // (qA, qB, qC).

Clearly, Θ : DA
//(qA)∗B⊕A (qA)∗C and Θ : DA

//(qB)∗A⊕B (qB)∗C are vector bundle
morphisms, and Θ is the identity on A,B and C.

Conversely, suppose that we have a decomposition Θ : D // A ⊕ B ⊕ C. Define

qC : D // C simply by qC = ΘC , where ΘC is the natural projection of Θ on C, D
Θ−→

A⊕B ⊕ C // C.
The linearity of qC with respect to both structures readily follows form the correspond-

ing linearities of Θ, and qC ◦ ι = IdC follows from the fact that Θ is the identity on C. It
remains to prove that the projections ΘA and ΘB on A and B are, respectively, qA and
qB.

Let’s denote by pA : A ⊕ B ⊕ C // A and by pB : A ⊕ B ⊕ C // B the projections.
Since Θ : DA

// (qA)∗B ⊕A (qA)∗C preserves fibers, we have, for every d ∈ D,

Θ(d) = Θ(0A(qA(d))),

and since pA ◦Θ ◦ 0A = IdA, it follows that

ΘA(d) = pA ◦Θ(d) = pAΘ(0A(qA(d))) = qA(d).

Analogously, it is shown that ΘB := pB ◦Θ = qB.
�

Definition A.14. A splitting of the core sequence (A.2) is a vector bundle map

θ : (qA)∗B //DA

over the identity, such that (qA, qB)◦θ = Id(qA)∗B. Analogously it can be defined a splitting
of the core sequence over B, (A.3).
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Remark A.15. A splitting of (A.2) can always be found by choosing a complement K of
ker(qA, qB) ∼= (qA)∗C which can be done, say, by taking the orthogonal complement with
respect to a Riemannian metric on DA. Then (qA, qB)|K : K //(qA)∗B is an isomorphism.
The splitting is obtained by setting θ := ((qA, qB)|K)−1.

Now we are interested in determine when a splitting of (A.2) provides a decomposition
of D. We begin with an important step.

Proposition A.16. A splitting of the exact sequence (A.2) gives a map Θ : D //A⊕B⊕C
inducing the identity on A,B and C, which is a vector bundle isomorphism with respect
to the fibration over A.

Proof. Take d ∈ D and let w = θ((qA, qB)(d)). Then qB(w) = qB(d) and qA(w) = qA(d).
By Cor. A.7 there exists a unique k ∈ C such that

d = w +
A

(qA(d), k) = w +
B

(qB(d), k).

Define qC(d) := k. We claim that Θ : D //A⊕B ⊕ C given by

Θ(d) := (qA(d), qB(d), qC(d))

is the desired isomorphism. First we see that qC preserves fibers, because if qA(d1) =
qA(d2), then qA(qA(d1)) = qA(qA(d2)) = m, and by definition we must have qC(qC(d1)) =
qC(qC(d2)) = m. In order to check linearity, observe that

qC(d) = (d−
A
w)−

B
0A(qA(d)) = (d−

B
w)−

A
0B(qB(d)). (A.5)

Let d1, d2 ∈ D such that qA(d1) = qA(d2) = a, then qA(d1 +
A
d2) = a. By the linearity of

qB and θ with respect to the fibration over A, it follows

qC(d1 +
A
d2) = ((d1 +

A
d2)−

B
θ(qA(d1 +

A
d2), qB(d1 +

A
d2)))−

A
0B(qB(d1 +

A
d2))

= [(d1 +
A
d2)−

B
(θ(qA(d1 +

A
d2), qB(d1)) +

A
θ(qA(d1 +

A
d2), qB(d2)))]

−
A

0B(qB(d1))−
A

0B(qB(d2))

= [(d1 −
B
θ(qA(d1), qB(d1)))−

A
(0B(qB(d1))] +

A
[(d2 −

B
θ(qA(d2), qB(d2)))−

A
0B(qB(d2)))]

= qC(d1) +
A
qC(d2).

Thus qC is a vector bundle morphism, hence Θ is a vector bundle morphism. By
Prop. A.4, DA and A ⊕ B ⊕ C, as a vector bundle over A, have the same rank, equal to
rankB + rankC, so it is enough to prove that Θ is injective. Suppose that Θ(d) = 0, then
qA(d) = qB(d) = 0, so d = k, by the way we defined k. But then d = qC(d) = 0.

Finally, it is obvious that Θ induces the identity on A and B. If d ∈ C ⊂ D, then
qA(d) = qB(d) = 0, so, by the definition of qC we have qC(d) = d, so Θ induces the identity
also on C.

�
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Now we are able to characterize those splittings of (A.2) that are equivalent to de-
compositions of D. Although simple, this characterization is instrumental for what comes
next, and seems to be new in the literature.

Corollary A.17. A splitting of the exact sequence (A.2), which is simultaneously a split-
ting of the exact sequence (A.3), is equivalent to a decomposition of D. More specifically,
in order to get a decomposition of D it is necessary and sufficient to get a splitting θ of
(A.2), which preserves the fibration over B and satisfies

θ(a1 + a2, b) = θ(a1, b) +
B
θ(a2, b) (A.6)

for a1, a2 ∈ Am and b ∈ Bm, where the suffix m stands for the fiber over m.

Proof. From the proof of Prop. A.16 it follows that, if θ, seen as a map from (qB)∗A //DB,
is also a vector bundle morphism (over the identity), that is, if θ satisfies the conditions
of the corollary, then, the induced map qC : D //C will be linear also with respect to the
fibration over B, thus Θ will be a double vector bundle morphism inducing the identity
on A,B and C, that is, it will be a decomposition of D.

Conversely, suppose we have a decomposition Θ : D //A⊕B ⊕C. Then notice that

(qA, qC) ◦ τA = Id(qA)∗C ,

which is equivalent to have a splitting of (A.2), since this condition implies that τA((qA)∗C)
is complementary to K := ker(qA, qC), that is,

DA = K ⊕A ker(qA, qB).

Explicitly, the splitting θ : (qA)∗B //DA is obtained by setting

θ(a, b) = ϑ−1(a, b),

where ϑ := (qA, qB)|K .
It remains to check that θ preserves the fibration over B and satisfies (A.6). By

definition, we have
qB(θ(a, b)) = qB(ϑ(a, b)) = b, (A.7)

which implies that θ preserves the fibration over B.
By the same argument of (A.7), we have qA(ϑ(a, b)) = a.
Now let a1, a2 ∈ Am, then

qA(θ(a1 + a2, b)) = a1 + a2,

and taking into account (A.7), that qC ◦ θ = 0 and the linearities of qA and qC , we get

Θ(θ(a1 + a2, b)) = (a1 + a2, b, 0) = Θ(θ(a1, b) +
B
θ(a2, b)),

which is equivalent to (A.6).
�
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A.4.2 The local structure of double vector bundles

The next result establishes the existence of local decompositions for a double vector
bundle. We weren’t able to find a proof of this result elsewhere in the literature, although
it is assumed as known in several places1.

Proposition A.18. There always exists a local decomposition for a double vector bundle.

Proof. Choose a local frame {a1, . . . , aA} for A over a suitable open set U ⊂ M . Taking
any splitting θ of (A.2) we obtain, for any b ∈ B|U , elements θ(a1, b), . . . , θ(aA, b). Now,
any (a, b) ∈ (qA)∗B|U can be written in the form (a, b) =

∑A
i=1 αi(ai, b), where αi ∈ R

are unique real numbers (or, in the case b : U // B is a smooth section –and therefore
(a, b) : U // (qA)∗BU is a smooth section too–, αi : U //R is a smooth function for every
i = 1, . . . , A).

Define
θ′(a, b) = α1 ·

B
θ(a1, b) +

B
. . .+

B
αA ·

B
θ(aA, b).

We claim that θ′ is a splitting of (A.2), restricted to U ⊂ M , satisfying the conditions of
Cor. A.17. First let’s check that θ′ is actually a splitting:

(qA, qB)(θ′(a, b)) = (qA, qB)(
∑
B

αi ·
B
θ(ai, b)) = (

∑
αiai, b) = (a, b), (A.8)

where the suffix B means that we are using the bundle structure DB to perform the
addition. The property of preserving fibers and linearity over A is immediate form the
corresponding property for θ.

It follows immediately from (A.8) that θ′ preserves fibers over B, for qB(θ′(a, b)) = b.

Finally, we need to verify linearity. Observe that if ã1 =
∑
αi1ai and ã2 =

∑
αi2ai,

then
ã1 + ã2 =

∑
αi1ai +

∑
αi2ai =

∑
(αi1 + αi2)ai.

Therefore

θ′(ã1 + ã2, b) =
∑
B

(αi1 + αi2) ·
B
θ(ai, b)

=
∑
B

(αi1 ·
B
θ(ai, b) +

B
αi2 ·

B
θ(ai, b))a =

∑
B

αi1 ·
B
θ(ai, b) +

B

∑
B

αi2 ·
B
θ(ai, b)

= θ′(ã1, b) +
B
θ′(ã2, b).

Thus, by Cor. A.17 θ′ induces a decomposition of D|U .
�

Remark A.19. We shall later see, in Cor. C.8, that global decompositions always exist.

As a first consequence of the local decomposition result above, we show the existence
of special coordinates in a DVB, called adapted coordinates.

1See, for example, [23], where they sketch a proof for the global decomposition citing [20] for the local
result, but we haven’t found the proof of this result there.
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Corollary A.20. Given a double vector bundle (D;A,B;M)C , for each m ∈ M there
exists an open set U ⊂ M containing m, such that, on D|U we can find coordinates
xi, αa, βb, κc, simultaneously adapted to both structures DA and DB, that is, the coordinates
xi are constant on each slice

Dm := {d ∈ D : qA ◦ qA(d) = qB ◦ qB(d) = m},

the coordinates αa are constant on each fiber over A, the coordinates βb are constant on
each fiber over B and the following equalities hold:

αa(v +
A
w) = αa(v) = αa(w) αa(v +

B
w) = αa(v) + αa(w)

βb(v +
A
w) = βb(v) + βb(w) βb(v +

B
w) = βb(v) = βb(w)

κc(v +
A
w) = κc(v) + κc(w) κc(v +

B
w) = κc(v) + κc(w).

Proof. Choose an open coordinate neighborhood of m, U ⊂ M , such that A,B and C
trivialize over U (for example this can be done by choosing a convex set with respect to
a Riemannian metric on M). Then we have adapted coordinates xi, αa, βb, κc on (A ⊕
B ⊕ C)|U . From Prop. A.18 and its proof, we get a double vector bundle isomorphism
Θ : D|U // (A ⊕ B ⊕ C)|U . The desired coordinates are obtained pulling back the
coordinates xi, αa, βb, κc by Θ, which we denote by the same letters.

�

Definition A.21. A coordinate system for a double vector bundle, which satisfies the
properties of Cor. A.20 will be called an adapted coordinate system, and it’s coordinates
will be called adapted coordinates.

Remark A.22. Notice that an adapted coordinate system provides simultaneously local
trivializations for both vector bundle structures of a double vector bundle.

A.4.3 Local structure of DVB morphisms

Next proposition gives a very nice characterization of double vector bundle morphisms,
which will allow (see Cor. A.24) to encode the data of a DVB morphism between decom-
posed double vector bundles by three linear maps and one bilinear map between vector
bundles. This simplifies significatively the study of double vector bundle morphisms.

Proposition A.23. Let Φ : D //D′ be a map, and let (xi, αa, βb, kc) and (x̃ĩ, α̃ã, β̃ b̃, k̃c̃)
be respective coordinate systems for D and D′ given by Cor. A.20. Then Φ is a double
vector bundle morphism if and only if

x̃ĩ ◦ Φ = Φĩ,

α̃ã ◦ Φ = Φã
aα

a,

β̃ b̃ ◦ Φ = Φb̃
bβ
b,

k̃c̃ ◦ Φ = Φc̃
ck
c + Φc̃

abα
aβb,

(A.9)

where Φĩ,Φã
a,Φ

b̃
b,Φ

c̃
c,Φ

c̃
ab are functions on the domain of (xi) in M .
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Proof. Suppose that Φ is a double vector bundle morphism, and let’s prove (A.9). The
first three equations follow from Prop. A.1. So we only need to prove the last equation.
Since Φ preserves the vector bundle structures over A and A′, respectively, we have

k̃c̃ ◦ Φ(xi, αa, βb, kc) = (ΦA)c̃c(x
i, αa)κc(xi) + (ΦA)c̃b(x

i, αa)βb(xi). (A.10)

On the other hand, analogously we have

k̃c̃ ◦ Φ(xi, αa, βb, kc) = (ΦB)c̃c(x
i, βb)κc(xi) + (ΦB)c̃a(x

i, βb)αa(xi). (A.11)

Since we must have (A.10)=(A.11), it follows that

(ΦA)c̃a(x
i, αa) = (ΦB)c̃c(x

i, βb) =: Φc̃
c(x

i),

for 0A(A) ∩ 0B(B) = 0C(M).

(A.10)=(A.11) also implies

(ΦA)c̃b(x
i, αa)βb(xi) = (ΦB)c̃a(x

i, βb)αa(xi)

Then, taking d = (xi, 1a, β
b, 0), where 1a = (0, . . . , 0, 1, 0, . . . , 0) ∈ A, the 1 being

exactly in the ath place, we see that

(ΦA)c̃b(x
i, 1a)β

b(xi) = (ΦB)c̃a(x
i, βb);

and taking d = (xi, αa, 1b, 0), where 1b = (0, . . . , 0, 1, 0, . . . , 0) ∈ B, it follows

(ΦB)c̃a(x
i, 1b)α

a(xi) = (ΦA)c̃b(x
i, αa).

Thus, for d = (xi, αa, βb, kc),

(ΦA)c̃b(x
i, αa)βb(xi) = (ΦB)c̃a(x

i, 1b)α
aβb = (ΦB)c̃a(x

i, βb)αa = (ΦA)c̃b(x
i, 1a)β

bαa.

In particular,
(ΦB)c̃a(x

i, 1b) = (ΦA)c̃b(x
i, 1a) =: Φc̃

ab(x
i),

hence
(ΦA)c̃b(x

i, αa) = Φc̃
ab(x

i)αa,

and
(ΦB)c̃a(x

i, βb) = Φc̃
ab(x

i)βb.

Therefore,
k̃c̃ ◦ Φ(xi, αa, βb, kc) = Φc̃

c(x
i)κc + Φc̃

ab(x
i)αaβb.

For the converse, suppose that a map Φ : D //D′ satisfies (A.9). From those equations
it is immediate that Φ preserves both fibrations. Linearity with respect to both structures
also follows from (A.9), taking into account the linearity of the coordinates given by Cor.
A.20.

�
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Corollary A.24. Let
Φ : A⊕B ⊕ C //A′ ⊕B′ ⊕ C ′,

be a double vector bundle morphism between two decomposed double vector bundles. Then

Φ(a, b, c) = (ϕA(a), ϕB(b), ϕC(c) + Ψ(a, b)),

where the mapping
Ψ : A⊕B // C ′

is bilinear.

Proof. The proof follows easily from Props. A.1 and A.9, along with Cor. A.23.
�

A first application of Cor. A.24 is the explicit computation of the inverse of a DVB
morphism, which in particular shows that the inverse is automatically a DVB morphism
too.

Proposition A.25. Let Φ : (D;A,B;M)C //(D′;A′, B′;M ′)C′ be a double vector bundle
morphism with inverse Φ−1. Then ϕA, ϕB and ϕC are isomorphisms; Φ−1 is also a double
vector bundle morphism, that is Φ−1 is an isomorphism of double vector bundles, and

ϕA′ = ϕ−1
A ;

ϕB′ = ϕ−1
B ;

ϕC′ = ϕ−1
C .

If D,D′ are decomposed, then

Φ−1(a′, b′, c′) = (ϕ−1
A (a′), ϕ−1

B (b′), ϕ−1
C (c′)− ϕ−1

C ◦Ψ(ϕ−1
A (a′), ϕ−1

B (b′))). (A.12)

Proof. That Φ−1 is also a double vector bundle morphism follows from the corresponding
fact for vector bundles. Now recall that, by definition, ϕA = qA ◦ Φ ◦ 0A and ϕA′ =
qA ◦ Φ−1 ◦ 0A′ . Since (Φ, ϕA) : DA

//D′A′ is a vector bundle morphism, we have

Φ ◦ 0A = 0A′ ◦ ϕA = 0A′ ◦ qA′ ◦ Φ ◦ 0A.

Then,

ϕA′ ◦ ϕA = qA ◦ Φ−1 ◦ 0A′ ◦ qA′ ◦ Φ ◦ 0A = qA ◦ Φ−1 ◦ Φ ◦ 0A = qA ◦ 0A = IdA.

Interchanging Φ with Φ−1 we get ϕA◦ϕA′ = IdA′ . Thus ϕA is a vector bundle isomorphism
and ϕ−1

A = ϕA′ . Analogously it is shown that ϕB is a vector bundle isomorphism, with
ϕ−1
B = ϕB′ . Finally, ϕC′ ◦ ϕC = Φ−1 ◦ Φ|C = IdC , and interchanging Φ with Φ−1 we get

ϕC ◦ ϕC′ = IdC′ . Thus ϕC is also a vector bundle isomorphism, with ϕ−1
C = ϕC′ .

Now let D = A⊕B⊕C and D′ = A′⊕B′⊕C ′ be decomposed double vector bundles.
For a ∈ Am, consider the linear mapping Φa : Da

∼= B ⊕ C //Dϕ(a)
∼= B′ ⊕ C ′, which is

given by, according to Cor. A.24,

Φa(b, c) =

(
ϕB 0
Ψa ϕC

)(
b
c

)
. (A.13)
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Here Ψa : B // C ′ is given by Ψa(b) := Ψ(a, b), where Ψ is the bilinear mapping given
in Cor. A.24. So, in order to calculate Φ−1(a′, b′, c′) we only need to calculate Φ−1

a :
D′a′

//Dϕ−1
A (a′), which reduces to invert the matrix in (A.13), and this is easy:

If

Φ−1
a =

(
X Y
Z U

)
,

then, from (
X Y
Z U

)(
ϕB 0
Ψa ϕC

)
=

(
Id 0
0 Id

)
,

we get the equations

X ◦ ϕB + Y ◦Ψa = Id; Y ◦ ϕC = 0;
Z ◦ ϕB + U ◦Ψa = 0; U ◦ ϕC = Id;

from which we find

Y = 0; U = ϕ−1
C ;

X = ϕ−1
B ; Z = −ϕ−1

C ◦Ψa ◦ ϕ−1
A ,

obtaining

Φ−1
a =

(
ϕ−1
B 0

−ϕ−1
C ◦Ψa ◦ ϕ−1

B ϕ−1
C

)
, (A.14)

which gives (A.12).
�

In particular, we can describe the behaviour of the change of two decompositions, and
obtain an explicit computation of the projection qC on the core bundle corresponding to
a decomposition.

Proposition A.26. Let (D;A,B;M)C be a double vector bundle. If Θ,Θ′ are two de-
compositions, then

Θ ◦ (Θ′)−1(a, b, c) = (a, b, c+ Ψ(a, b)), (A.15)

where Ψ : A⊕B // C is bilinear (over the identity). In particular,

qC(d) = q′C(d) + Ψ(qA(d), qB(d)). (A.16)

Proof. Set Φ := Θ ◦ (Θ′)−1 : A⊕B⊕C //A⊕B⊕C. By Cor. A.24, and since Θ and Θ′

induce the identity on A,B and C, it follows (A.15), and denoting by pC : A⊕B⊕C //C
the projection, we get

qC(d) = pC ◦Θ(d) = pC ◦Θ ◦ (Θ′)−1 ◦Θ′(d)

= pC ◦Θ ◦ (Θ′)−1(qA(d), qB(d), q′C(d))

= q′C(d) + Ψ(qA(d), qB(d)).

.
�



Appendix B

More on duality of double vector
bundles

We dedicate a whole appendix to study duality of double vector bundles. Because
of the symmetry with respect to each structure (see Prop. A.2), it suffices to study one
of the duals, and the other one will enjoy the same properties. So we study the dual
with respect to the fibration over A, denoted by D∗A, providing a thorough construction
of this bundle. In particular we show that it is also a double vector bundle, and exhibit
explicitly its structure. Then we move on to the study of dual morphisms, splittings and
decompositions. We end appendix B describing canonical isomorphisms between suitable
duals, which are important to understand the duality of VB -algebroid structures and
involutivity of double vector bundles.

B.1 Construction of the dual of a double vector bundle

In this section we draw on the local structure studied in the previous chapter to describe
the dual of a double vector bundle. We relayed on [32] and [46], although we supply more
details.

Proposition B.1 ([32],[46]). Let (D;A,B;M)C be a double vector bundle. The duals D∗A
and D∗B are also double vector bundles:

D∗B

πC∗

��

πB // B

qB

��

A∗

C∗
qC
∗

//M

;

D∗A

πA

��

πC∗ // C∗

qC
∗

��

B∗

A
qA

//M

,

(B.1)

with cores A∗ and B∗, respectively.
Observe that we are denoting by the same symbol, πC∗, different mappings.

Proof. By Prop. A.2, it is enough to prove that (D∗A;A,C∗;M)B∗ is a double vector bun-
dle, with core B∗. We already have the dual vector bundle structure over A, D∗A, so we
need to describe the vector bundle structure over C∗, (D∗A)C∗ , and verify the compatibility

181
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between both structures.

The projection πC∗ : D∗A
// C∗ is defined by

〈πC∗(d), c〉 = 〈d, 0A(πA(d)) +
B
c〉A, (B.2)

for every c ∈ Cm, where m = qA ◦ πA(d), and 〈·, ·〉A denotes the duality pairing between
DA and D∗A.

Recalling that, by Prop. A.4, ker qA = B ⊕ C, the zero section 0C∗ : C∗ // D∗A is
defined by observing that

π−1
A (0A(M)) = (ker qA)∗ = B∗ ⊕ C∗, (B.3)

thus we have a natural inclusion 0C∗ : C∗ // π−1
A (0A(M)) ⊂ D∗A

0C∗(κ) = (0, κ).

To check that actually πC∗ ◦ 0C∗ = IdC∗ , let κ ∈ C∗m and c ∈ Cm, then by (B.2)

〈πC∗(0C∗(κ)), c〉 = 〈(0, κ), (0, c)〉A = 〈κ, c〉,

thence, πC∗(0C∗(κ)) = κ.

Let’s check that πC∗ is a vector bundle morphism. First we see that πC∗ preserves
fibers by definition. Now, let d1, d2 ∈ D∗A with πA(d1) = πA(d2) = a, then

〈πC∗(d1 +
A
d2), c〉 = 〈d1 +

A
d2, 0A(a) +

B
c〉A

= 〈d1, 0A(a) +
B
c〉A + 〈d2, 0A(a) +

B
c〉A

= 〈πC∗(d1) + πC∗(d2), c〉.

Then, πC∗ : D∗A
// C∗ is a vector bundle morphism.

Now we want to define an addition structure on the fibers of (D∗A)C∗ . Let d1, d2 ∈ D∗A
with πC∗(d1) = πC∗(d2). We define d1 +

C∗
d2 by the conditions

• πA(d1 +
C∗
d2) = πA(d1) + πA(d2);

•
〈d1 +

C∗
d2, v1 +

B
v2〉A = 〈d1, v1〉A + 〈d2, v2〉A, (B.4)

for every v1, v2 ∈ D with qA(v1) = πA(d1) and qA(v2) = πA(d2), and of course
qB(v1) = qB(v2).
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Let’s see that d1 +
C∗
d2 is well defined. First we need to express any v ∈ D with qA(v) =

πA(d1) + πA(d2) in the form v = v1 +
B
v2, with qA(v1) = πA(d1) and qA(v2) = πA(d2). In

order to get such v1, v2 ∈ D, we can work locally and thus suppose D = A ⊕ B ⊕ C. So
we have

v = (πA(d1) + πA(d2), qB(v), qC(v));

Define
v1 := (πA(d1), qB(v), qC(v)) and v2 := (πA(d2), qB(v), 0).

Now we want to see that the formula (B.4) doesn’t depend on the representation
v = v1 +

B
v2, that is, if we also have v = v3 +

B
v4, with qA(v3) = πA(d1) and qA(v4) = πA(d2),

then we must show that

〈d1, v3〉A + 〈d2, v4〉A = 〈d1, v1〉A + 〈d2, v2〉A,

or equivalently
〈d1, v1 −

A
v3〉A = 〈d2, v4 −

A
v2〉A. (B.5)

We have the following

qA(v1) = qA(v3) = πA(d1),

qA(v2) = qA(v4) = πA(d2),

qB(v1) = qB(v2) = qB(v3) = qB(v4) = qB(v),

v1+
B
v2 = v3 +

B
v4 = v.

Then, by Cor. A.8 it follows that

v1 −
A
v3 = (πA(d1), c),

v2 −
A
v4 = (πA(d2),−c),

whence v4 −
A
v2 = (πA(d2), c), and thence

〈d1, v1 −
A
v3〉A = 〈d1, 0A(πA(d1)) +

B
c〉A

= 〈πC∗(d1), c〉 = 〈πC∗(d2), c〉
= 〈d2, 0A(πA(d2)) +

B
c〉A

= 〈d2, v4 −
A
v2〉A,

which gives (B.5).

That formula (B.4) really defines a linear functional on the fibers of DA follows from
the interchange law:

Let w1 = v1 +
B
v2 and w2 = v3 +

B
v4, then
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〈d1 +
C∗
d2, w1 +

A
w2〉A = 〈d1 +

C∗
d2, (v1 +

B
v2) +

A
(v3 +

B
v4)〉A

= 〈d1 +
C∗
d2, (v1 +

A
v3) +

B
(v2 +

A
v4)〉A

= 〈d1, v1 +
A
v3〉A + 〈d2, v2 +

A
v4〉A

= (〈d1, v1〉A + 〈d2, v2〉A) + (〈d1, v3〉A + 〈d2, v4〉A)

= 〈d1 +
C∗
d2, w1〉A + 〈d1 +

C∗
d2, w2〉A.

Thus, we have obtained a well defined element d1 +
C∗
d2 ∈ D∗A.

The scalar product is defined, for d ∈ D∗A and t ∈ R, by the conditions

πA(t ·
C∗
d) = tπA(d) and

〈t ·
C∗
d, t ·

B
v〉A = t〈d, v〉A,

for every v ∈ D such that qA(v) = πA(d).
It is easy to check that these operations satisfy the properties of a vector space on

each fiber. In order to see that we actually have a vector bundle structure D∗A
πC∗−→ C∗, it

remains to show that we can find local trivializations. Use the adapted coordinates given
by Cor. A.20 to obtain local frames bs and ct dual, to βs and κt. Recall that in the proof
of Cor. A.20 we obtained a local decomposition Θ : D|U // (A⊕ B ⊕ C)|U . We can use
this isomorphism in order to get local frames on (DA)|U , which we denote by Bs and Ct,
which are given by

Bs(a) := Θ−1(a,bs(q
A(a)), 0),

and
Ct(a) := Θ−1(a, 0, ct(q

A(a))).

Now we can define coordinates on (D∗A)U , (x̃i, α̃r, β̃s, κ̃t), given by

x̃i(d) := xi(qA ◦ πA(d));

α̃r(d) := αr(πA(d));

β̃s(d) := 〈d,Bs(πA(d))〉A;

κ̃t(d) := 〈d,Ct(πA(d))〉A.

(B.6)

We claim that (B.6) is an adapted coordinate system for (D∗A)|U . Indeed, let d1, d2 ∈ D∗A,
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with πC∗(d1) = πC∗(d2), and set a1 := πA(d1); a2 := πA(d2); m := qA(a1) = qA(a2), then

α̃r(d1 +
C∗
d2) = αr(πA(d1 +

C∗
d2)) = αr(πA(d1) + πA(d2))

= αr(πA(d1)) + αt(πA(d2)) = α̃r(d1) + α̃r(d2).

β̃s(d1 +
C∗
d2) = 〈d1 +

C∗
d2,Bs(πA(d1 +

C∗
d2))〉A

= 〈d1 +
C∗
d2,Θ

−1(a1 + a2,bs(m), 0)〉A

= 〈d1 +
C∗
d2,Θ

−1(a1,bs(m), 0) +
B

Θ−1(a2,bs(m), 0)〉A

= 〈d1,Bs(a1)〉+ 〈d2,Bs(a2)〉A
= β̃s(d1) + β̃s(d2).

Now, let d1, d2 ∈ D∗A with πA(d1) = πA(d2) = a, then

β̃s(d1 +
A
d2) = 〈d1 +

A
d2,Bs(a)〉A = 〈d1,Bs(a)〉A + 〈d2,Bs(a)〉A

= β̃s(d1) + β̃s(d2).

κ̃t(d1 +
A
d2) = 〈d1 +

A
d2,Ct(a)〉A = 〈d1,Ct(a)〉A + 〈d2,Ct(a)〉A

= κ̃s(d1) + κ̃s(d2).

Thus, the coordinate system (x̃i, α̃r, β̃s, κ̃t) is an adapted coordinate system, as we
claimed. By remark A.22 we have obtained a local trivialization for (D∗A)C∗ // C∗, thus
we have two vector bundle structures

D∗A
πC∗−−−−→ C∗

πA

y yqC∗
A

qA−−−−→ M.

(B.7)

Also from the coordinate system obtained, we conclude that the core bundle of D∗A is
B∗, but it can also be proved directly: on one hand we have kerπA = B∗ ⊕ C∗; on the
other hand πC∗ |kerπA(κ) = κ, for every κ ∈ C∗, and 〈πC∗ |kerπA(β), c〉 = 〈β, c〉A = 0, for
every β ∈ B∗, so it follows that

kerπA ∩ kerπC∗ = ker(πC∗ |kerπA) = B∗.

Let’s see that πA : (D∗A)C∗ // A is a vector bundle morphism. By the definition of πC∗ ,
we have qC

∗ ◦ πC∗(d) = qA ◦ πA(d), thus πA preserves fibers. By the definition of +
C∗

it

follows that πA preserves addition. Thus πA is a vector bundle morphism.
Finally, we need to check the interchange law. Let d1, d2, d3, d4 ∈ D∗A with

πA(d1) = πA(d3); πA(d2) = πA(d4); πC∗(d1) = πC∗(d2); πC∗(d3) = πC∗(d4).
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Let v = v1 +
B
v2 ∈ D with qA(v1) = πA(d1) and qA(v2) = πA(d2), then

〈(d1 +
A
d3) +

C∗
(d2 +

A
d4), v1 +

B
v2〉A = 〈d1 +

A
d3, v1〉A + 〈d2 +

A
d4, v2〉A. (B.8)

On the other hand

〈(d1 +
C∗
d2) +

A
(d3 +

C∗
d4), v1 +

B
v2〉A = 〈d1 +

C∗
d2, v1 +

B
v2〉A + 〈d3 +

C∗
d4, v1 +

B
v2〉A

= 〈d1, v1〉A + 〈d2, v2〉A + 〈d3, v1〉A + 〈d4, v2〉A
= 〈d1 +

A
d3, v1〉A + 〈d2 +

A
d4, v2〉A.

(B.9)

From (B.8) and (B.9) it follows the interchange law:

(d1 +
A
d3) +

C∗
(d2 +

A
d4) = (d1 +

C∗
d2) +

A
(d3 +

C∗
d4).

Thus we conclude that (B.7) is a double vector bundle, with core B∗.
�

B.2 Dual morphisms

In this short section we describe the behaviour of transposed DVB morphisms. To
simplify the situation, we only consider isomorphisms, which otherwise suffices for our
purposes.

Proposition B.2 ([32]). If Φ : (D;A,B;M) // (D′;A′, B′;M ′) is a double vector bundle
isomorphism, then Φ∗A : D′∗A′

//D∗A and Φ∗B : D′∗B′
//D∗B are also double vector bundle

isomorphisms.

Proof. It suffices to prove the statement of the proposition for Φ∗A. This map is already a
vector bundle morphism D′∗A′

//D∗A, so it remains to prove that it is also a vector bundle
morphism (D′∗A′)C′∗

// (D∗A)C∗ . First we see that Φ∗A preserves the fibration:

〈πC∗ ◦ Φ∗A(w′), c〉 = 〈Φ∗A(w′), 0A(ϕ−1
A (a′)) +

B
c〉A

= 〈w′, 0A′(a′) +
B′
ϕC(c)〉A′ = 〈πC′∗(w′), ϕC(c)〉, (B.10)

where w′ ∈ D′∗A′ , with πA′(w
′) = a′.

Now let w′1, w
′
2 ∈ D′∗A′ , with πC′∗(w

′
1) = πC′∗(w

′
2), and let d1, d2 ∈ D with qA(di) =

πA(Φ∗A(w′i)), i = 1, 2, and qB(d1) = qB(d2), then

〈Φ∗A(w′1 +
C′∗

w′2), d1 +
B
d2〉A = 〈w′1 +

C′∗
w′2,Φ(d1) +

B′
Φ(d2)〉A′

= 〈w′1,Φ(d1)〉A′ + 〈w′2,Φ(d2)〉A′
= 〈Φ∗A(w′1), d1〉A + 〈Φ∗A(w′2), d2〉A
= 〈Φ∗A(w′1) +

C
Φ∗A(w′2), d1 +

B
d2〉A,
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thence
Φ∗A(w′1 +

C′∗
w′2) = Φ∗A(w′1) +

C
Φ∗A(w′2),

so that Φ∗A is also a vector bundle morphism (D′∗A′)C′∗
// (D∗A)C∗ .

�

Corollary B.3 ([32]). The induced morphisms of Φ∗A on the base manifold, and on the
side and core bundles are given by:

• ϕM ′ = ϕ−1
M

• ϕA′ = ϕ−1
A ,

• ϕC′∗ = ϕ∗C ,

• ϕB′∗ = ϕ∗B.

Proof. The first two equalities, about ϕM ′ and ϕA′ , follows directly from the definition of
Φ∗A. The second equality follows from (B.10).

For the third equality we rely on Prop. A.4. Let β′ ∈ B′∗ ⊂ kerπA′ ∼= B′∗⊕C ′∗. Then
Φ∗A(β′) ∈ kerπA ∼= B∗ ⊕ C∗, so let d ∈ ker qA ∼= B ⊕ C, then d = b + c, for b ∈ B, c ∈ C,
and Φ(d) = ϕB(b) + ϕC(c) ∈ ker qA′ ∼= B′ ⊕ C ′. Thence

〈Φ∗A(β′), d〉A = 〈β′,Φ(d)〉A′ = 〈β′, ϕB(b) + ϕC(c)〉 = 〈β′, ϕB(b)〉.

Thus, ϕB′∗(β
′) = Φ∗A(β′) = ϕ∗B(β′) ∈ B∗ ⊂ D∗A.

�

Corollary B.4 ([32]). Let Φ : A ⊕ B ⊕ C // A′ ⊕ B′ ⊕ C ′ be a double vector bundle
isomorphism between decomposed double vector bundles. Then,

Φ∗A : A′ ⊕ C ′∗ ⊕B′∗ //A⊕ C∗ ⊕B∗

(a′, κ′, β′) // (ϕ−1
A (a′), ϕ∗C(κ′), ϕ∗B(β′) + Ψ∗

ϕ−1
A (a′)

(κ′)),

where

Ψa :B // C ′

b //Ψ(a, b),

where Ψ : A⊕B // C ′ is given by Cor. A.24.

Proof. By Cor. A.24 we know that

Φ∗A(a′, κ′, β) = (ϕA′(a
′), ϕC′∗(κ

′), ϕB′∗(β
′) + Ψ′(a′, κ′)).

So we need to show that ϕA′ = ϕ−1
A , ϕC′∗ = (ϕC)∗, ϕB′∗ = (ϕB)∗ and Ψ′a′ = (Ψϕ−1

A (a′))
∗.

Now, let (Φ∗A)a′(κ
′, β′) := Φ∗A(a′, κ′, β′). By definition,

(Φ∗A)a′ = Φ∗ϕ−1(a′),
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thus, ϕA′ = ϕ−1
A follows directly from the definition of Φ∗A. Writing in matrix form, we

see that

(Φ∗A)a′ = Φ∗ϕ−1(a′) =

(
ϕB 0

Ψϕ−1
A (a′) ϕC

)t
=

(
(ϕB)t (Ψϕ−1

A (a′))
t

0 (ϕC)t

)
,

from which it follows ϕC′∗ = (ϕC)∗, ϕB′∗ = (ϕB)∗ and Ψ′a′ = (Ψϕ−1
A (a′))

∗.
�

B.3 Dual splittings and decompositions

In this section we obtain the fundamental results relating the decompositions and
splittings of a DVB to the induced ones on the corresponding duals. Up to our knowledge,
the results presented in this section are new, the only exception being the first part of
Prop. B.5, which is hinted in [46].

Proposition B.5. The core sequence of D∗A (over A) is the result of transposing the core
sequence (A.2) of DA:

0 // (qA)∗(B∗) //D∗A // (qA)∗(C∗) // 0 (B.11)

A splitting of the core sequence (A.2) induces a splitting of the dual core sequence (B.11).

Proof. Let c ∈ C, then

〈(τA)∗(w), (πA(w), c)〉 = 〈w, τA(πA(w), c)〉A
= 〈w, 0A(πA(w)) +

B
c〉A

= 〈πC∗(w), c〉.

Then (πA, πC∗) = (τA)∗.
Now let (a, β) ∈ (qA)∗(B∗). Take any v ∈ D with qA(v) = πA(0A(a) +

C∗
β) = a and

qB(v) = b. Then

〈0A(a) +
C∗
β, v〉A = 〈0A(a) +

C∗
β, v +

B
0B(b)〉A

= 〈0A(a), v〉A + 〈β, 0B(b)〉A
= 〈β, b〉.

On the other hand,

〈(qA, qB)∗(a, β), v〉 = 〈(a, β), (a, b)〉 = 〈β, b〉.

Thus,
τB∗(a, β) = 0A(a) +

C∗
β = (qA, qB)∗(a, β).

Now let θ : (qA)∗B //DA be a splitting of (A.2). By transposing, we get a projection

D∗A
θ∗−→ (qA)∗(B∗).
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Since θ∗ ◦ τB∗ = [(qA, qB) ◦ θ]∗ = (Id(qA)∗B)∗ = Id(qA)∗(B∗), the exactness of (B.11)

implies that (πA, πC∗)|ker θ∗ is invertible. Define θ̃ := [(πA, πC∗)|ker θ∗ ]
−1. By definition it

follows that θ̃ is a splitting of (B.11).
�

Proposition B.6. If we have a splitting θ of (A.2) which is simultaneously a splitting
of (A.3) then the induced splitting of (B.11), θ̃, is simultaneously a splitting of the core
sequence

0 // (qC
∗
)∗(B∗) // (D∗A)C∗ // (qC

∗
)∗A // 0. (B.12)

The induced decompositions by these splittings,

Θ = (qA, qB, qC) : D //A⊕B⊕C and Θ̃ = (πA, πC∗ , πB∗) : D∗A //A⊕C∗⊕B∗,

preserve the duality pairing:

〈v, w〉A = 〈Θ(v), Θ̃(w)〉 := 〈qB(v), πB∗(w)〉+ 〈qC(v), πC∗(w)〉, (B.13)

for v ∈ D, w ∈ D∗A, with qA(v) = πA(w).

Proof. We already have that θ̃ preserves the fibration over C∗, for

πC∗(θ̃(a, k)) = p2(πA, πC∗ ◦ θ(a, k)) = p2(a, k) = k,

where p2 : (qA)∗(C∗) // C∗ is the natural projection.
Now we need to verify

θ̃(a1 + a2, k) = θ̃(a1, k) +
C∗
θ̃(a2, k),

or equivalently

(πA, πC∗ , πB∗)(θ̃(a1 + a2, k)) = (πA, πC∗ , πB∗)(θ̃(a1, k) +
C∗
θ̃(a2, k)). (B.14)

By definition of θ̃ and of the addition +
C∗

, we have

πA(θ̃(a1 + a2, k)) = πA(θ̃(a1, k) +
C∗
θ̃(a2, k)) = a1 + a2,

and
πC∗(θ̃(a1 + a2, k)) = πC∗(θ̃(a1, k) +

C∗
θ̃(a2, k)) = k.

Now, recall that the projection over the core bundle induced by a splitting θ was
defined in the proof of Prop. A.16, eq. (A.5). That definition implies, in our situation,
that πB∗ = p2 ◦ θ∗. Then, again by the definition of θ̃, θ∗ ◦ θ̃(a, k) = (a, 0) holds, so that

πB∗(θ̃(a1 + a2, k)) = 0.

On the other hand, the linearity of θ with respect to the fibration over B and the
definition of +

C∗
imply, for every b ∈ B,
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〈πB∗(θ̃(a1, k) +
C∗
θ̃(a2, k)), b〉 = 〈θ∗(θ̃(a1, k) +

C∗
θ̃(a2, k)), (a1 + a2, b)〉A

= 〈θ̃(a1, k) +
C∗
θ̃(a2, k), θ(a1, b) +

B
θ(a2, b)〉A

= 〈θ̃(a1, k), θ(a1, b)〉A + 〈θ̃(a2, k), θ(a2, b)〉A
= 〈θ∗(θ̃(a1, k), (a1, b))〉A + 〈θ∗(θ̃(a2, k)), (a2, b)〉A
= 0.

Thus,
πB∗(θ̃(a1, k) +

C∗
θ̃(a2, k)) = 0,

and so we have obtained (B.14).
Now we verify (B.13). Let’s compute the first term from the right-hand side of (B.13)

〈qB(v), πB∗(w)〉 = 〈qB(v), p2 ◦ θ∗(w)〉
= 〈(qA, qB)(v), θ∗(w)〉A
= 〈θ(qA, qB)(v), w〉A. (B.15)

In order to compute the second term of the right-hand side of (B.13), recall the definition
of qC given in (A.5), and the definition of πC∗ . We get the following

〈qC(v), πC∗(w)〉 = 〈0A(πA(w)) +
B
qC(v), w〉A

= 〈v −
A
θ(qA, qB)(v), w〉A. (B.16)

Adding (B.15) and (B.16) we get (B.13).
�

Corollary B.7. Given a double vector bundle D, a decomposition of D induces canonically
decompositions for D∗A and D∗B.

If θ is the splitting corresponding to the decomposition fo D, then the projections πB∗ :
D∗A

//B∗ and πA∗ : D∗B
//A∗, which correspond to the decompositions, are given by

πB∗ = p2 ◦ θ∗ and πA∗ = p1 ◦ θ∗.

Corollary B.8. Given a double vector bundle D and a decomposition Θ, with its corre-
sponding decomposition Θ̃ on the dual D∗A,

Θ̃−1(a, κ, β) = Θ∗(a, κ, β),

holds for a ∈ Am, κ ∈ C∗m and β ∈ B∗m.
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Proof. For any v ∈ D∗A and d ∈ D, with πA(v) = qA(d) = a, we have

〈Θ∗(Θ̃(v)), d〉A = 〈Θ̃(v),Θ(d)〉 = 〈v, d〉A,

where we used (B.13) in the last equality. It follows that

Θ∗ ◦ Θ̃ = Id;

and since Θ, Θ̃ are isomorphisms, we conclude that

Θ̃−1 = Θ∗.

�

Corollary B.9. Let (D;A,B;M)C be a double vector bundle. Let a ∈ Am, b ∈ Bm,
c ∈ Cm, β ∈ B∗m, k ∈ C∗, v ∈ DA with qA(v) = a and qB(v) = b, and w ∈ D∗A, with
πA(w) = a and πC∗(w) = k. Then

〈0A(a) +
B
c, w〉A = 〈c, k〉; 〈v, 0A(a) +

C∗
β〉A = 〈b, β〉.

Proof. We can work locally, so that we have a decomposition of D and the induced dual
decomposition on D∗A given in Prop. B.6, and consequently we get maps qC : D //C and
πB∗ : D∗A

//B∗. Then, by (B.13),

〈0A(a) +
B
c, w〉A = 〈qB(0A(a) +

B
c), πB∗(w)〉+ 〈qC(0A(a) +

B
c), πC∗(w)〉 = 〈c, k〉.

Analogously it can be shown that 〈v, 0A(a) +
C∗
β〉A = 〈b, β〉.

�

Corollary B.10. Given a double vector bundle D and a decomposition Θ, the dual split-
ting

θ̃ : (qA)∗C∗ //D∗A,

of (B.11) given in Prop. B.5, corresponding to the splitting θ of (A.2), is given by

θ̃(a, κ) = (qA, qC)∗(a, κ), (B.17)

where qC : D // C is the projection induced by Θ, and (qA, qC)∗ is the transpose of
(qA, qC) : DA

// (qA)∗C.

Proof. In the proof of Prop. B.5 we defined, for a ∈ Am and κ ∈ C∗m,

θ̃(a, κ) = [(πA, πC∗)|ker θ∗ ]
−1(a, κ). (B.18)

So, (B.17) reads
[(πA, πC∗)|ker θ∗ ]

−1 = (qA, qC)∗(a, κ). (B.19)

To prove this take any c ∈ Cm, and let d ∈ D with qA(d) = a and qC(d) = c. Then

〈(qA, qC)∗(a, κ), d〉A = 〈(a, κ), (a, c)〉A = 〈κ, c〉. (B.20)
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On the other hand, in order to compute 〈θ̃(a, κ), d〉A, we claim that

[(πA, πC∗)|ker θ∗ ]
−1(a, κ) = Θ∗(a, κ, 0). (B.21)

To verify (B.21) we need to check two things:

1) Θ∗(a, κ, 0) ∈ ker θ∗; 2) (πA, πC∗)(Θ
∗(a, κ, 0)) = (a, κ).

So, let’s compute:

〈θ∗ ◦Θ∗(a, κ, 0), (a, b)〉A = 〈(a, κ, 0),Θ ◦ θ(a, b)〉A
= 〈(a, κ, 0),Θ ◦Θ−1(a, b, 0)〉A
= 〈κ, 0〉+ 〈0, b〉 = 0,

hence θ∗(Θ∗(a, κ, 0)) = 0, which yields 1). Now, recalling from Cor. B.8 that Θ∗ = Θ̃−1,
it follows that

(πA, πC∗) ◦Θ∗(a, κ, 0) = (pA, pC∗) ◦ Θ̃ ◦Θ∗(a, κ, 0) = (pA, pC∗)(a, κ, 0) = (a, κ),

yielding 2). Thence (B.21) is true.
From (B.18) and (B.21) we get

〈θ̃(a, κ), d〉A = 〈Θ∗(a, κ, 0), d〉A = 〈(a, κ, 0), (a, b, c)〉A = 〈κ, c〉. (B.22)

From (B.20) and (B.22), follows (B.19).
�

B.4 Canonical isomorphisms between dual DVB’s

In this section we discuss the isomorphisms mentioned in the introduction of this
chapter, that will enable us, in Sec. E.3 to understand the relation between a VB -algebroid
structure, and its dual. The material in this section is mainly based on [46] (however, see
also [32]).

We begin exhibiting a duality relation between the two duals of a double vector bundle,
which is natural up to sign (we could choose the opposite signature).

Proposition B.11 ([46]). There is a natural (up to sign) duality between the bundles D∗A
and D∗B over C∗, given by

(v|w) = 〈v, d〉A − 〈w, d〉B, (B.23)

where v ∈ D∗A, w ∈ D∗B have πC∗(v) = πC∗(w) = k and d is any element of D with
qA(d) = πA(v) and qB(d) = πB(w).

Proof. First we see that (B.23) is well defined, for if d′ ∈ D satisfies qA(d′) = qA(d) =
πA(v) = a and qB(d′) = qB(d) = πB(w) = b, then, by Cor. A.7 there exist c ∈ C such
that d = d′ +

A
(a, c), whence

〈v, d〉A = 〈v, d′〉A + 〈k, c〉,
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by (B.2). Also by Cor. A.7 we have d = d′ +
B

(b, c), whence

〈w, d〉B = 〈w, d′〉B + 〈k, c〉.

Thus,
〈v, d〉A − 〈w, d〉B = 〈v, d′〉A − 〈w, d′〉B,

and so the pairing (B.23) is well defined. Now we need to check that this pairing is
bilinear. Let v1, v2 ∈ D∗A, w ∈ D∗B, with πC∗(v1) = πC∗(v2) = πC∗(w) = k, and let
d1, d2 ∈ D with qA(d1) = πA(v1), qA(d2) = πA(v2) and qB(d1) = qB(d2) = πB(w). Then,
by (B.4) we have

(v1 +
C∗
v2|w) = 〈v1 +

C∗
v2, d1 +

B
d2〉A − 〈w, d1 +

B
d2〉B

= 〈v1, d1〉A + 〈v2, d2〉A − 〈w, d1〉B − 〈w, d2〉B
= (v1|w) + (v2|w).

Analogously, it is shown that (v|w1 +
C∗
w2) = (v|w1) + (v|w2), for v ∈ D∗A, w1, w2 ∈ D∗B

with πC∗(v) = πC∗(w1) = πC∗(w2). So indeed (·|·) is bilinear.
It remains to prove that it is non-degenerate. Let v ∈ D∗A and suppose (v|w) = 0 for

all w ∈ D∗B with πC∗(v) = πC∗(w) = k ∈ C∗m. Then take w = 0C∗(k) +
B
α, where α ∈ Am

is arbitrary. We have πB(w) = 0B(m) and

(v|w) = 〈v, d〉A − 〈0C∗(k) +
B
α, d〉B.

Since πB(w) = qB(w), it follows that d ∈ ker qB ∼= A⊕ C, so that d = (a, c), for some
c ∈ C, where a = π(v), whence

〈0C∗(k) +
B
α, d〉B = 〈k, c〉+ 〈α, a〉.

Taking c = 0, that is, d = 0A(a), we get

0 = (v|w) = 〈α, a〉.

Since α was arbitrary, we conclude that πA(v) = 0, thus v ∈ kerπA ∼= B∗⊕C∗, so that
v = (β, k), for some β ∈ B∗m.

Now take w = 0B(b), with b ∈ Bm arbitrary. We have d ∈ ker qA ∼= B ⊕ C. Take
d = (b, 0) = 0B(b). Then

0 = (v|w) = 〈(β, k), (b, 0)〉A − 〈0B(b), 0B(b)〉B = 〈β, b〉,

where we are using the same symbol 0B for the zero sections of DB
//B and D∗B

//B.
Then, since b was arbitrary,

v = (0, k) = 0C∗(k),

so that (·|·) is indeed non-degenerate.
�
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Corollary B.12. If D = A⊕B⊕C is a decomposed DVB, then, for v ∈ D∗A = A⊕C∗⊕B∗
and w ∈ D∗B = B ⊕ C∗ ⊕A∗, such that v = (a, κ, β) and w = (b, κ, α), we have

(v|w) = 〈β, b〉 − 〈α, a〉. (B.24)

Proof. By Prop. B.11, choosing d = (a, b, c), we have, by Eq. (B.23),

(v|w) = 〈β, b〉+ 〈κ, c〉 − 〈κ, c〉 − 〈α, a〉
= 〈β, b〉 − 〈α, a〉.

�

Now we get into the matter of exhibiting the isomorphisms mentioned at the beginning
of this section.

Proposition B.13 ([46]). The pairing (B.23) induces isomorphisms of double vector bun-
dles

ΥA : (D∗A)C∗ // (D∗B)∗C∗ , 〈ΥA(v), w〉C∗ = (v|w)

ΥB : (D∗B)C∗ // (D∗A)∗C∗ , 〈ΥB(w), v〉C∗ = (v|w)

with (ΥA)∗ = ΥB. Both isomorphisms induce the identity on the sides C∗ // C∗.
ΥA is the identity on the cores B∗ //B∗, and induces −Id on the side bundles A //A.
ΥB is the identity on the side bundles B //B, and induces −Id on the cores A∗ //A∗.

Proof. That ΥA and ΥB are vector bundles (with respect to the vector structure over C∗)
inducing the identity on C∗ follows directly from Prop. B.11. Also, by definition, we have
(ΥA)∗ = ΥB. Let’s prove that ΥA is linear also with respect to the structures over A.
First we check that ΥA preserves the fibration over A. We need to compute πA(ΥA(v)),
so let α ∈ A∗ ⊂ D∗B, we have, using Cor. B.9,

〈πA(ΥA(v)), α〉 = 〈ΥA(v), 0C∗(k) +
B
α〉C∗ = (v|0C∗(k) +

B
α),

where k := πC∗(ΥA(v)) = πC∗(v).
Now let d ∈ D with qA(d) = πA(v) = a ∈ Am and qB(d) = πB(0C∗(k) +

B
α) = 0B(m).

Then d = 0A(a) +
B
c, for some c ∈ Cm, so that, using again Cor. B.9,

(v|0C∗(k) +
B
α) = 〈v, 0A(a) +

B
c〉A − 〈0C∗(k) +

B
α, 0A(a) +

B
c〉B

= 〈k, c〉 − (〈k, c〉+ 〈α, a〉)
= −〈πA(v), α〉.

Thus, 〈πA(ΥA(v)), α〉 = −〈πA(v), α〉, that is

πA(ΥA(v)) = −πA(v), (B.25)

in particular ΥA preserves the fibration over A.



B.4. CANONICAL ISOMORPHISMS BETWEEN DUAL DVB’S 195

To check linearity, let v1, v2 ∈ D∗A, with πA(v1) = πA(v2). Any w ∈ D∗B, with πC∗(w) =
πC∗(v1) + πC∗(v2) can be written in the form w = w1 +

B
w2, with πC∗(w1) = πC∗(v1) and

πC∗(w2) = πC∗(v2). Then

〈ΥA(v1 +
A
v2), w〉C∗ = 〈ΥA(v1 +

A
v2), w1 +

B
w2〉C∗

= (v1 +
A
v2|w1 +

B
w2)

= 〈v1 +
A
v2, d〉A − 〈w1 +

B
w2, d〉B

= 〈v1, d〉A + 〈v2, d〉A − 〈w1, d〉B − 〈w2, d〉B
= (v1|w1) + (v2|w2). (B.26)

On the other hand,

〈ΥA(v1) +
A

ΥA(v2), w〉C∗ = 〈ΥA(v1) +
A

ΥA(v2), w1+
B
〉C∗

= 〈ΥA(v1), w1〉C∗ + 〈ΥA(v2), w2〉C∗
= (v1|w1) + (v2|w2). (B.27)

From (B.26) and (B.27) we get

ΥA(v1 +
A
v2) = ΥA(v1) +

A
ΥA(v2).

Therefore ΥA is a morphism of double vector bundles. It follows from (B.25) that ΥA

induces −Id on the side bundles A // A. Now, for β ∈ B∗m ⊂ D∗A, we want to compute
ΥA(β). Since ΥA is a double vector bundle morphism, we have ΥA(β) ∈ B∗ ⊂ (D∗B)C∗ ,
so, let’s take b ∈ Bm ⊂ kerπC∗ ⊂ (D∗B)C∗ , we have

〈ΥA(β), b〉C∗ = (β|b) = 〈β, d〉A − 〈b, d〉B,
for any d ∈ D with qA(d) = πA(β) = 0 and qB(d) = πB(d) = b. In particular, d := 0B(b)
satisfies the requirements, and we get

〈ΥA(β), b〉C∗ = 〈β, b〉,

thence ΥA(β) = β, that is, ΥA induces the identity on the cores B∗ //B∗.
The corresponding claims for ΥB follow analogously.

�

It will be useful to have formulas for the isomorphisms ΥA and ΥB in terms of a
decomposition.

Proposition B.14. Let Θ : D // A ⊕ B ⊕ C be a decomposition ofr a DVB. Then we
have induced decompositions on the duals (Prop. B.6)

Θ̃A : D∗A //A⊕ C∗ ⊕B∗ and Θ̃B : D∗B //B ⊕ C∗ ⊕A∗.

Then, terms of these decompositions, the isomorphisms ΥA and ΥB are given by

(Θ̃−1
B )∗C∗ ◦ΥA ◦ Θ̃−1

A : A⊕ C∗ ⊕B∗ // C∗ ⊕A⊕B∗

(a, κ, β) // (κ,−a, β), (B.28)
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and

(Θ̃−1
A )∗C∗ ◦ΥB ◦ Θ̃−1

B : B ⊕ C∗ ⊕A∗ // C∗ ⊕B ⊕A∗

(b, κ, α) // (κ, b,−α). (B.29)

Proof. Let v ∈ D∗A and w ∈ D∗B with πC∗(v) = πC∗(w) = κ, such that Θ̃A(v) = (a, κ, β)

and Θ̃B(w) = (b, κ, α). Then, by the definitions, and using Eqs. (B.13) and (B.24),

〈(Θ̃−1
B )∗C∗ ◦ΥA ◦ Θ̃−1

A (a, κ, β), (b, κ, α)〉C∗ = 〈(Θ̃−1
B )∗C∗ ◦ΥA(v), Θ̃B(w)〉C∗

= 〈ΥA(v), w〉C∗ = (v|w)

= 〈β, b〉 − 〈α, a〉
= 〈(κ,−a, β), (b, κ, α)〉C∗ ,

which implies that
(Θ̃−1

B )∗C∗ ◦ΥA ◦ Θ̃−1
A (a, κ, β) = (κ,−a, β).

The statement about ΥB is proved analogously.
�

We end this section by showing that the dual isomorphisms, with respect to each
fibration of a double vector bundle, are also dual to each other. More precisely we have
the following.

Proposition B.15. Let Φ : D //D′ be an isomorphism of double vector bundles. Then
the dual isomorphisms given in Prop. B.2, Φ∗A : D′∗A′

//D∗A and Φ∗B : D′∗B′
//D∗B satisfy

(Φ∗A)∗C′∗ = (Φ−1)∗B′ = (Φ∗B)−1, (B.30)

where we are using the identifications (D∗A)∗C∗
∼= D∗B and (D′∗A′)

∗
C′∗
∼= D∗B′, given by ΥB

and ΥB′, respectively, in Prop. B.13.

Proof. Take w ∈ D∗B, α′ ∈ D′∗A′ and compute using (B.23):

((Φ∗A)∗C′∗(w)|α′)C′∗ = (w|Φ∗A(α′))C∗ = 〈Φ∗A(α′), d〉A − 〈w, d〉B
= 〈α′,Φ(d)〉A′ − 〈w, d〉B,

(B.31)

for any d ∈ D with qA(d) = πA(Φ∗A(α′)) = ϕ−1
A (πA′(α

′)) and qB(d) = πB(w).

On the other hand, notice that, by Cor. B.3, Φ(d) ∈ D′ satisfies

qA′(Φ(d)) = ϕA(qA(d)) = ϕA(ϕ−1
A (πA′(α

′))) = πA′(α
′),

and, taking also into account Cor. A.25,

πB′((Φ
−1)∗B(w)) = ϕ−1

B′ (πB(w)) = (ϕ−1
B )−1(πB(w)) = ϕB(πB(w)) = ϕB(qB(d)) = qB′(Φ(d));

then we can use Φ(d) in the definition of (·|·)C∗ to compute ((Φ−1)∗B(w)|α′)C′∗ , and we
get the following

((Φ−1)∗B(w)|α′)C′∗ = 〈α′,Φ(d)〉A′ − 〈(Φ−1)∗B(w),Φ(d)〉B′ = 〈α′,Φ(d)〉A′ − 〈w,Φ−1(Φ(d))〉B
= 〈α′,Φ(d)〉A′ − 〈w, d〉B.

(B.32)

From (B.31) and (B.32) we get (B.30).
�
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B.5 The pull-back in the DVB category

Proposition B.16. Let

D

qA

��

qB // B

qB

��

C

A
qA

//M

be a double vector bundle, and let ϕ : E //A be an isomorphism. Consider the pull-back
bundle

ϕ∗D = E ×
(ϕ,A,qA)

D := {(e, d) ∈ E ×D|ϕ(e) = qA(d)} ⊂ A×D

and the projections p1 : ϕ∗D // E, p2 : ϕ∗D // D over the first and second factor,
respectively, so that the following diagram commutes

ϕ∗D

p1
��

p2
// D

qA
��

qB // B

qB

��

E
ϕ

// A
qA

//M

. (B.33)

Let pE := p1 and qϕB := qB ◦ p2, then

ϕ∗D

pE

��

qϕB // B

qB

��

C ,

E
qE

//M

(B.34)

is endowed with a double vector bundle structure such that p2 is a DVB isomorphism.

Proof. We need to describe a vector bundle structure ϕ∗D //B and show its compatibility
with the vector bundle structure ϕ∗D //E. Notice that p2 : ϕ∗D //D is an isomorphism
of vector bundles over ϕ, since we can define p−1

2 : D // ϕ∗D by

p−1
2 (d) := (ϕ−1(qA(d)), d) ∀d ∈ D,

which satisfies
p2 ◦ p−1

2 (d) = d and p−1
2 ◦ p2(e, d) = (e, d).

It follows that ϕ∗(D)
qϕB
// B is a fibration. We define the zero section by

0ϕB := p−1
2 ◦ 0B,

so that we have qϕB ◦ 0ϕB = IdB.
Let (e1, d1), (e2, d2) ∈ ϕ∗D with qϕB(e1, d1) = qϕB(e2, d2), then qB(d1) = qB(d2). Define

(e1, d1) +
qϕB

(e2, d2) := (e1 + e2, d1 +
B
d2). (B.35)
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Then, for any b ∈ B and any (e, d) ∈ ϕ∗D, with qϕB(e, d) = b,

0ϕB(b) +
qϕB

(e, d) = (ϕ−1(qA ◦ 0B(b)), 0B(b)) +
qϕB

(e, d)

= (0 + e, 0B(b) +
B
d) = (e, d).

Therefore, we have obtained a vector bundle structure on ϕ∗D
qϕB
// B. Now,

qE((e1, d1) +
qϕB

(e2, d2)) = qE(e1 + e2, d1 +
B
d2) = e1 + e2 = qE(e1, d1) + qE(e2, d2),

then qE is a vector bundle morphism. qϕB is also a vector bundle morphism, since qϕB =
qB ◦ p2 is the composition of vector bundle morphisms.

Finally, let (e1, d1), (e2, d2), (e1, d3), (e2, v4) ∈ ϕ∗D, with qB(d1) = qB(d2) and qB(d3) =
qB(d4), then

qA(d1) = ϕ(e1) = qA(d3) and qA(d2) = ϕ(e2) = qA(d4),

and we have the following

((e1, d2) +
qϕB

(e2, d2)) +
qE

((e1, d3) +
qϕB

(e2, d4)) = (e1 + e2, d1 +
B
d2) +

qE
(e1 + e2, d3 +

B
d4)

= (e1 + e2, (d1 +
B
d2) +

A
(d3 +

B
d4))

= (e1 + e2, (d1 +
A
d3) +

B
(d2 +

A
d4))

= (e1, d1 +
A
d3) +

qϕB

(e2, d2 +
A
d4)

= ((e1, d1) +
qE

(e1, d3)) +
qϕB

((e2, d2) +
qE

(e2, d4)).

Thereby, ϕ∗D is a double vector bundle. Also we see immediately that

(p2;ϕ, IdB; IdM ) : (ϕ∗D;E,B;M) // (D;A,B;M)

is a morphism of double vector bundles.
�

Corollary B.17. In the conditions of Prop. B.16, there is a canonical isomorphism

(ϕ∗D)∗E
∼= ϕ∗(D∗A)

Proof. From Prop. B.16 we have that p2 : ϕ∗D // D is a DVB isomorphism. Then by
Prop. B.2 it follows that

Θ := ((p2)∗E)−1 : (ϕ∗D)∗E //D∗A

is a DVB isomorphism. Again from Prop. B.16 we have a DVB isomorphism p′2 :
ϕ∗(D∗A) //D∗A. Then, setting Θ′ := (p′2)−1, we obtain the canonical isomorphism

Φ := Θ′ ◦Θ : (ϕ∗D)∗E // ϕ(D∗A).

�
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Proposition B.18. Let (D;A,B;M)C and (D′;A′, B′;M ′)C′ be two DVB’s. Let ϕ :
E // A, ϕ′ : E′ // A′ be two vector bundle isomorphisms. Then any DVB morphism
Φ : D //D′ induces a DVB morphism

Φ̃ : ϕ∗D // ϕ∗(D′).

If Φ is an isomorphism, then Φ̃ is an isomorphism too.

Proof. Define

Φ̃(e, d) := (ϕE(e),Φ(d)), ϕE(e) := (ϕ′)−1 ◦ ϕA ◦ ϕ(e), ,

which is well-defined since, for (e, d) ∈ ϕ∗D we have qA(d) = ϕ(e), whereby

qA′ ◦ Φ(d) = ϕA(qA(d)) = ϕA ◦ ϕ(e) = ϕ′ ◦ ϕE(e).

Since ϕE is an isomorphism, it follows that when Φ is an isomorphism, Φ̃ is an isomorphism
too, with inverse given by

Φ̃−1(e′, d′) = (ϕ−1
E (e′),Φ−1(d′)).

�



Appendix C

The linear bundle and global
structure

In this appendix we study in detail the structure of linear sections of a double vector
bundle. Since we can reduce most of what can be said about double vector bundles to
statements about linear and core sections, it turns out to be a fundamental fact that linear
sections feet into a vector bundle structure, as is the case (in a more trivial way) for core
sections. Therefore we reduce many questions on double vector bundles to questions on
linear and core bundles, which are just vector bundles. This is a powerful viewpoint in
order to tackle global issues related to double vector bundles.

Other highlights in this appendix are

• The proof of Prop. C.17, exhibiting a canonical isomorphism between certain two
linear bundles, in which relies the characterization of degree 2 manifolds as involutive
DVB’s (Thm. 3.40).

• The relation of DVB morphisms with pairs of morphisms between the corresponding
linear and core bundles.

• The introduction of the double-linear bundle (see Prop. C.32), first studied in [12],
which leads to the equivalence of the category of DVB with that of DVB-sequences
(see Ch. D), established in [12].

• The construction of the Whitney sum of two DVB’s, sharing a common side bundle.
In particular this is again a DVB. We describe its corresponding linear sequence,
and show how to induce horizontal lifts on it.

We took as a starting point for this appendix the few remarks and hints about the
linear bundle, and its exact sequence, provided in [23]. We also benefited from [12], in
particular the concept of double-linear bundle was taken from there.

C.1 The structure of the module of linear sections

We begin studying the structure of Γlin(DB) (the space of linear sections over B)
of a decomposed double vector bundle. Since we already proved the existence of local

200
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decompositions, the result below provides information about the local structure of Γlin(DB)
for any double vector bundle.

The following proposition is hinted in [23], but we decided to provide here full details.

Proposition C.1. Let D = A⊕B⊕C be a decomposed double vector bundle. Consider the
structure over B, DB = (qB)∗A ⊕B (qB)∗C. Then, the space of linear sections Γlin(DB)
is isomorphic to Γ(A⊕Hom(B,C)), as C∞(M)-modules (see remark 2.6).

Proof. Any section γ ∈ Γ(DB) is a map γ : B // (qB)∗A⊕B (qB)∗C whose projection on
B yields the identity and therefore consists of two bundle maps over the identity on M :

γ1 := qA ◦ γ : B //A and γ2 := qC ◦ γ : B // C,

Now assume that γ is linear, then it is a vector bundle morphism γ : B // (qA)∗B ⊕A
(qA)∗C, which has the form

γ(b) = (γ1(b), b, γ2(b)).

Being γ a bundle morphism, it must preserve fibers. This means that

qB(b1) = qB(b2) = m⇒ γ1(b1) = γ1(b2).

This implies that γ1 induces a map α : M // A, given by α(m) = γ1(b), for any b ∈ Bm,
and since γ1 is a bundle map over the identity, it follows that α is actually a section of A.

Now let’s see what we get from the condition of γ preserving the linear structure:

γ(b1 + b2) = (γ1(b1 + b2), b1 + b2, γ2(b1 + b2))

= (α(m), b1 + b2, γ2(b1 + b2)).

On the other hand,

γ(b1) +
A
γ(b2) = (α(m), b1, γ2(b1)) +

A
(α(m), b2, γ2(b2))

= (α(m), b1 + b2, γ2(b1) + γ2(b2)).

Then, the linearity of γ is equivalent to the linearity of γ2. So we have established a
map

Ψ : Γlin(DB) // Γ(A⊕Hom(B,C))

γ // (α , γ2).

It is easy to check that Ψ preserve the C∞(M)-module structure. Also Ψ is invertible,
since given (α, γ2), we define γ1 : B //A by γ1(b) := α ◦ qB. It is immediate that γ(b) :=
(b, γ1, γ2) ∈ (qB)∗A ⊕B (qB)∗C is a linear section of DB, and that the correspondence
(α, γ2) // γ preserves the module structure. Thus, Ψ is an isomorphism of modules.

�

Now we are in conditions to give a global description of the space Γlin(DB) as the space
of sections of certain vector bundle, namely, the linear bundle. We also provide a explicit,
useful description for the fibers of the linear bundle (see Eq. (C.2)), which is borrowed
from [12].

Although the linear bundle was already introduced in the literature ([23],[12]), we
haven’t found an explicit construction of it, which we provide in the proposition below.
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Proposition C.2. The space Γlin(DB) is locally free as a C∞(M)-module, with rank
equal to rankA+ rankB rankC, and we have Γlin(DB) ∼= Γ(Â) for some vector bundle Â.
Moreover, Â fits in the exact sequence

0 //B∗ ⊗ C ι−→ Â
p−→ A // 0. (C.1)

We have an explicit description for the fibers of Â, given by

Âm := {σ ∈ Hom(Bm, Da) : a ∈ Am, qB ◦ σ = IdBm}. (C.2)

Proof. For the proof of the first part of the proposition, we work locally. By Prop. A.18,
we can find a double vector bundle isomorphism D // D̃, where D̃ = A ⊕ B ⊕ C is a
decomposed double vector bundle. By Prop. A.11, it follows that Γlin(DB) ∼= Γlin(D̃B).
Now, by Prop. C.1 Γlin(D̃B) ∼= Γ(A ⊕ Hom(B,C)), and since Γ(A ⊕ Hom(B,C)) is a
locally free C∞(M)-module whose rank equals to rankA + rankBrankC, it follows the
same assertion for Γlin(DB).

Now let
Â :=

⋃
m∈M

Âm,

where Âm is defined in (C.2). We claim that Â is a vector bundle over M and that
Γlin(DB) ∼= Γ(Â). Of course, the projection π : Â //M is defined, for σ ∈ Âm, π(σ) = m.
Addition in the fibers is also defined in the obvious way (using the DB structure), observing
that for σ1, σ2 ∈ Âm, by the interchange law,

(σ1 + σ2)(b1 + b2) = σ1(b1 + b2) +
B
σ2(b1 + b2)

= (σ1(b1) +
A
σ1(b2)) +

B
(σ2(b1) +

A
σ2(b2))

= (σ1(b1) +
B
σ2(b1)) +

A
(σ1(b2) +

B
σ2(b2))

= (σ1 + σ2)(b1) +
A

(σ1 + σ2)(b2),

so that we also have σ1 +σ2 ∈ Âm, thus addition is well-defined. Also scalar multiplication
is defined using the DB structure, and since ·

B
is a vector bundle morphism with respect

to the DA structure,

(t · σ)(b1 + b2) : = t ·
B
σ(b1 + b2)

= t ·
B

(σ(b1) +
A
σ(b2))

= t ·
B
σ(b1) +

A
t ·
B
σ(b2)

= (t · σ)(b1) +
A

(t · σ)(b2),

we have also that t ·
B
σ ∈ Âm, for σ ∈ Âm.



C.1. THE STRUCTURE OF THE MODULE OF LINEAR SECTIONS 203

Now we need to endow Â with a vector bundle atlas, which will show both, that Â is a
differential manifold and that Â //M is locally trivial. We can work locally, so let’s take

a decomposition D
∼=−→ D̃ = A⊕B ⊕ C. By the linearity of qC : D // C with respect to

the structure over A, we have, for σ ∈ Âm and b1, b2 ∈ Bm,

qC ◦ σ(b1 + b2) = qC(σ(b1) +
A
σ(b2)) = qC ◦ σ(b1) + qC ◦ σ(b2),

thence qC ◦ σ ∈ Hom(B,C)m. Since qC is linear also with respect to the structure over B,
we have, for σ1, σ2 ∈ Âm and b ∈ Bm,

qC ◦ (σ1 + σ2)(b) = qC(σ1(b) +
B
σ2(b))

= qC ◦ σ1(b) + qC ◦ σ2(b)

= (qC ◦ σ1 + qC ◦ σ2)(b).

Finally observe that, by the definition of Âm, we have a well-defined map

Âm // Am

σ // qA ◦ σ, (C.3)

given by qA ◦ σ := qA ◦ σ(b), for any b ∈ Bm, and that, for σ1, σ2 ∈ Âm,

qA ◦ (σ1 + σ2) = qA(σ1(b) +
B
σ2(b)) = qA ◦ σ1 + qA ◦ σ2.

Thus we obtain an isomorphism

Âm ∼= Am ⊕ Hom(B,C)m

σ // (qA ◦ σ , qC ◦ σ),

with inverse

(a, τ) ∈ Am ⊕Hom(B,C)m // σ ∈ Hom(Bm, Da)

σ(b) := (a, b, τ(b)).
(C.4)

Actually, since the preceding isomorphism is valid for every m ∈ U ⊂M over which D is
decomposed, we have obtained a map, for a suitable open neighborhood U of m0 ∈M ,

ϕ : Â|U // (A⊕Hom(B,C))|U ,

where Â|U :=
⋃
m∈U Âm, and such that for each m ∈ U fixed, the map ϕ|

Âm
is an

isomorphism of vector spaces.
Now suppose that we have such maps corresponding to two different open sets U1, U2,

ϕ1 and ϕ2, respectively. Let Θ1 = (qA, qB, q1C) and Θ2 = (qA, qB, q2C) be the correspond-
ing decompositions of D and let V = U1 ∩ U2, then, by Prop. A.26, we have

Θ2 ◦Θ−1
1 (a, b, c) = (a, b, c+ Ψ(a, b)), (C.5)
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where Ψ : A⊕B // C is bilinear, and

q2C = q1C + Ψ(qA, qB).

Therefore, the transition map ϕ2 ◦ ϕ−1
1 on V , for (a, τ) ∈ (A⊕Hom(B,C))|V , is given by

ϕ2 ◦ ϕ−1
1 (a, τ) = (a, τ + Ψa).

Thus, since Ψ is bilinear, we see that the transition map ϕ2 ◦ ϕ−1
1 depends linearly, on

each fiber, of (a, τ) ∈ Am ⊕Hom(B,C)m, and smoothly of m ∈M .
Hence Â is a vector bundle over M . Now, let γ ∈ Γlin(DB), then, by definition, γ is a

vector bundle morphism γ : B //DA over a map α : M //A, which is a section, since

qA ◦ α = qA ◦ α ◦ qB ◦ 0B = qA ◦ qA ◦ γ ◦ 0B = qB ◦ qB ◦ γ ◦ 0B = qB ◦ 0B = IdM .

Thus, for each m ∈M we obtain the data

• a := α(m) ∈ Am

• σ := γ|Bm ∈ Hom(Bm, Da),

which satisfies qB ◦ σ = IdBm . In this way, we obtain a map η : M // Â, given by

η(m) := γ|Bm .

Since γ|Bm ∈ Âm, it follows actually that η ∈ Γ(Â).
Conversely, given η ∈ Γ(Â), we define γ : B //D by

γ(b) = η(qB(b))(b).

Since qB ◦γ(b) = qB ◦η(qB(b))(b) = b, it follows that γ is a section of DB. Let’s show that
actually γ ∈ Γlin(DB). First of all we have a map α : M //A given by

α(m) := qA ◦ η(m).

We have
qA ◦ γ(b) = qA ◦ η(qB(b))(b) = α ◦ qB(b).

Finally, since η(m) ∈ Hom(Bm, Dα(m)), it follows that γ : B // DA is a vector bundle
morphism over α, thus γ ∈ Γlin(DB). Hence

Γlin(DB) ∼= Γ(Â).

To finish the proof, we have to show that there is an inclusion ι : B∗ ⊗ C // Â and
a projection p : Â // A such that ι(B∗ ⊗ C) seats in ker p. The exactness will follow
by rank reasons. The projection p : Â // A is simply p(σ) := qA ◦ σ. The inclusion
ι : B∗ ⊗ C // ker p is given by

φ ∈ (B∗ ⊗ C)m // ι(φ) ∈ Hom(Bm, D0A(m))

ι(φ)(b) = φ(b) +
A

0B(b) = (b, φ(b)). (C.6)

That actually ι(φ) ∈ Hom(Bm, D0A(m)) follows from the fact that 0B : B //DA is a vector
bundle morphism.

�
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Definition C.3. The vector bundle Â from Prop. C.2 is called the linear bundle associated
to DB.

Remark C.4. Of course there is a second linear bundle, the one associated to DA, which
we denote by B̂, whose fiber over m ∈M is given by

B̂m = {ω ∈ Hom(Am, Db) : b ∈ Bm, qA ◦ ω = IdAm},

and fits in the exact sequence

0 //A∗ ⊗ C ι−→ B̂
p−→ B // 0. (C.7)

C.2 Horizontal lifts and global decompositions

Next we introduce the key concept of horizontal lift, which is instrumental to treat
global questions and explicit calculations. The importance of horizontal lifts lies in that
they allow us to encode the whole data of a decomposition in a single vector bundle map.
This a first benefit of the linear bundle viewpoint, which, as explained in the introduction
to this chapter, reduces many aspects of the study of a double vector bundle to the study
of a plain vector bundle.

Definition C.5. A horizontal lift of Â is a section ψ : A //Â of the exact sequence (C.1).
In the following proposition we prove that once we introduce a horizontal lift of the

linear sequence (C.1), corresponding to Γlin(DB), we automatically have an induced hori-
zontal lift for the linear sequence (C.7), corresponding to Γlin(DA).

Proposition C.6. The correspondence

b ∈ B // ψ(b) ∈ B̂
ψ(b)(a) := ψ(a)(b).

(C.8)

associates, canonically, to each horizontal lift ψ : A // Â of (C.1), a horizontal lift
ψ : B // B̂ of (C.7).

Proof. Let’s check that ψ is well-defined, that is, for b ∈ Bm we need to verify that
ψ(b) ∈ B̂m. For a ∈ Am we have

qB ◦ ψ(b)(a) = qB(ψ(a)(b)) = b,

thus ψ(b)(a) ∈ Db for every a ∈ Am. Let a1, a2 ∈ Am, then, since ψ : A // Â is a vector
bundle morphism,

ψ(b)(a1 + a2) = ψ(a1 + a2)(b) = (ψ(a1) + ψ(a2))(b)

= ψ(a1)(b) +
B
ψ(a2)(b) = ψ(b)(a1) + ψ(b)(a2).

Finally, since ψ is a horizontal lift,

qA ◦ ψ(b)(a) = qA ◦ ψ(a)(b) = a.
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The above shows that ψ(b) ∈ B̂m.
It remains to check that p ◦ ψ = IdB. For b ∈ Bm and any a ∈ Am we have

p ◦ ψ(b) = qB(ψ(b)(a)) = qB(ψ(a)(b)) = b.

Therefore ψ : B // B̂ is a horizontal lift.
�

Of course, if we expect any profit from working with linear sequences and horizontal
lifts, we must have an explicit relation between horizontal lifts and splittings of core
sequences and the corresponding decompositions. This is what we do below.

Proposition C.7. Let (D;A,B;M)C be a double vector bundle. Consider the linear
bundle Â corresponding to linear sections of DB.

There is a canonical 1:1 correspondence between horizontal lifts of (C.1) and decompo-
sitions of D; or equivalently, by Prop. C.6, between horizontal lifts of (C.7), and decom-
postions of D.

Proof. Let ψ : B // B̂ be horizontal lift of (C.7). We will use Cor. A.17 to obtain a
decomposition of D. So we need a splitting θ of (A.2) which preserves the fibration over
B and satisfies (A.6). For (a, b) ∈ (qA)∗Bm, define

θ(a, b) := ψ(b)(a).

Let’s verify that θ is a splitting of (A.2) satisfying the required conditions. By definition
we have

qA(θ(a, b)) = qA(ψ(b)(a)) = a

and

qB(θ(a, b)) = qB(ψ(b)(a)) = b.

Thus (qA, qB)(θ(a, b)) = (a, b), so θ is a splitting of (A.2). Also from this, it follows
that θ preserves the fibration over B. Equation (A.6) follows from the linearity of ψ(b) :
Am //Db.

Conversely, suppose we have a decomposition Θ : D //A⊕B ⊕C. By Cor. A.17 we
have a map

θ : (qA)∗B //DA

which is a splitting of (A.2), that preserves the fibration over B and satisfies (A.6).
Define, for a ∈ Am,

ψ :Bm // B̂m

b // ψ(b); ψ(b)(a) := θ(a, b). (C.9)

We need to show that ψ is well defined and that it is in fact a horizontal lift. Since

qA ◦ ψ(b)(a) = a and qB ◦ ψ(b)(a) = b,
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it follows that ψ(b) ∈ B̂m and that ψ(b)(a) ∈ Db for every a ∈ Am. To check linearity, let
a1, a2 ∈ Am, then, by (A.6)

ψ(b)(a1 + a2) = θ(a1 + a2, b) = θ(a1, b) +
B
θ(a2, b) = ψ(b)(a1) +

B
ψ(b)(a2).

We conclude that ψ(b) ∈ B̂m.
Finally, for b ∈ Bm, and any a ∈ Am,

p ◦ ψ(b) = qB ◦ ψ(b)(a) = qB ◦ θ(a, b) = b,

that is, p ◦ ψ = IdB.
�

An important by-product of the linear bundle viewpoint we obtain below, is the global
decomposition for any double vector bundle, which moreover is explicit as soon as we
have a fibre, non-degenerate metric. Compare for example with [23] where they sketch
an argument based on local existence of decompositions and show indirectly the global
existence through a Čech cohomology argument.

Corollary C.8. Given a double vector bundle (D;A,B;M)C . There always exists a
decompostion D

∼−→ A⊕B ⊕ C.

Proof. Choosing a Riemannian (fibre) metric on Â, we obtain a horizontal lift of (C.1),
and thence by Prop. C.7 we get the corresponding decomposition of D.

�

Corollary C.9. Let D be a double vector bundle and Θ a decomposition. Then the
horizontal lift ψ̃ : C∗ // Ĉ∗, corresponding to the dual decomposition Θ̃ of D∗A given in
Cor. B.7, is given by

ψ̃(κ)(a) = (qA, qC)∗(a, κ). (C.10)

Proof. It follows directly from (C.9) and Cor. B.10.
�

In the following proposition we find explicit formulas, in terms of a decomposition of
D, for the decompositions of the linear bundles corresponding Γlin(DB) and Γlin((D∗A)C∗).
Among other consequences, these identifications enables to establish a somewhat surprising
isomorphism between both linear bundles (see Prop. C.17).

Proposition C.10. Given a double vector bundle D, let Θ : D // A ⊕ B ⊕ C be a
decomposition, then we have isomorphisms

K : Â //A⊕Hom(B,C) and H : Â∗ //A⊕Hom(C∗, B∗),

where Â∗ is the linear bundle corresponding to Γlin(C∗, (D∗A)C∗). The isomorphisms are
given by

K(σ) = (a, σ1), where σ1 := qC ◦ σ, σ ∈ Hom(Bm, Da),

where qC is the projection D // C corresponding to Θ, and

H(ω) = (a, ω1), with ω1 := πB∗ ◦ ω, ω ∈ Hom(C∗m, (D
∗
A)a),

where πB∗ is the projection D∗A
//B∗ corresponding to the induced decomposition on D∗A.
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Proof. That K and H are vector bundle morphisms follows from the fact that p : Â //A
and p∗ : Â∗ //A are vector bundle morphisms, and from the linearity of qC and πB∗ . So
it will suffice to show inverses for K and H, which are easily seen to be given by

K−1(a, σ1)(b) = Θ−1(a, b, σ1(b)), (C.11)

for (a, σ1) ∈ Am ⊕Hom(B,C)m, b ∈ Bm and, by Cor. B.8,

H−1(a, ω1)(κ) = Θ∗A(a, ω1(κ), κ), (C.12)

for (a, ω1) ∈ Am ⊕Hom(C∗, B∗)m, κ ∈ C∗m.
�

Another important requirement to have any success when working with linear bundles
and horizontal lifts, comprises to have explicit formulas relating the splittings and hori-
zontal lifts induced by two decompositions, in terms of the bilinear mapping Ψ obtained
in Prop. A.26. This what we address in the following proposition.

Proposition C.11. Let (D;A,B;M)C be a double vector bundle, and let Θ,Θ′ be two
decompositions of D, which are related by formula (A.15) in Prop. A.26. Let θ, θ′ be the
corresponding splittings of (A.3) (and simultaneously of (A.2) also), and let ψ,ψ′ be the
corresponding horizontal lifts of (C.1). Then

θ(a, b) = θ′(a, b)−
A

(a,Ψ(a, b))

= θ′(a, b)−
B

(b,Ψ(a, b));
(C.13)

and
ψ(a) = ψ′(a)− ιA(Ψa), (C.14)

where Ψa : B // C is the vector bundle morphism (over the identity) given by Ψa(b) =
Ψ(a, b), and ιA : B∗ ⊗ C // Â is the inclusion.

Proof. Recall that θ(a, b) = Θ−1(a, b, 0) and analogously is defined θ′. From (A.15) it
follows that

(Θ ◦ (Θ′)−1)−1(a, b, c) = (a, b, c−Ψ(a, b)).

Then

θ(a, b) = (Θ′)−1 ◦Θ′ ◦Θ−1(a, b, 0)

= (Θ′)−1 ◦ (Θ ◦ (Θ′)−1)−1(a, b, 0)

= (Θ′)−1(a, b,−Ψ(a, b, ))

= (Θ′)−1(a, b, 0)−
A

(Θ′)−1(a, 0,Ψ(a, b))

= θ′(a, b)−
A

(a,Ψ(a, b))

= θ′(a, b)−
B

(b,Ψ(a, b)),
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thus obtaining (C.13). From this also follows

ψ(a)(b) = θ(a, b) = θ′(a, b)−
B

(b,Ψ(a, b)) = ψ′(a)(b)−
B

(b,Ψa(b))

= (ψ′(a)− ιA(Ψa))(b),

from which we get (C.14).
�

Remark C.12. Analogously it is shown that the corresponding horizontal lifts of (C.7),
ψ,ψ′ are related by

ψ(b) = ψ′(b)− ιB(Ψb),

where ιB : A∗ ⊗ C // B̂ is the inclusion, and Ψb : A // C is given by Ψb(a) := Ψ(a, b).

Corollary C.13. Given a double vector bundle D, let Θ,Θ′ be two decompositions and let
πB∗ , π

′
B∗ be the projections corresponding to the induced decompositions on the dual D∗A.

Then, for v ∈ D∗A,
π′B∗(v) = πB∗(v) + (ΨπA(v))

∗(πC∗(v)), (C.15)

Proof. We can write the first equation in (C.13) in the following way

θ′(a, b) = θ(a, b) +
A

(0A(a) +
B

Ψa(b)),

where we are considering C inside D. Then, dualizing with respect to A, it follows that

(θ′)∗(v) = θ∗(v) +
A

(πA(v) +
C∗

(ΨπA(v))
∗(πC∗(v))),

that is
(θ′)∗ = θ∗ +

A
(πA, (ΨπA)∗ ◦ πC∗). (C.16)

Recalling that πB∗ = p2 ◦ θ∗, we get

π′B∗ = πB∗ + (ΨπA)∗ ◦ πC∗ .

�

Remark C.14. Analogously it is shown that, if πA∗ , π
′
A∗ are the projections corresponding

to the induced decompositions on the dual D∗B, then, for w ∈ D∗B,

π′A∗(w) = πA∗(w) + (ΨπB(w))
∗(πC∗(w)), (C.17)

where Ψb(a) := Ψ(a, b).

Now that we know how different splittings and horizontal lifts relate (Prop. C.11), we
need the same information for the induced splittings and horizontal lifts induced on the
dual of a double vector bundle.
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Proposition C.15. Given a double vector bundle D and two decompositions Θ,Θ′ as in
Prop. C.11. Let θ̃, θ̃′ be the induced splittings of the core sequence (B.11) corresponding
to the dual D∗A, as given in Prop. B.5. Then, for a ∈ Am and κ ∈ C∗m,

θ̃′(a, κ) = θ̃(a, κ)−
A

(a,Ψ∗a(κ)), (C.18)

where, as usual, Ψa : B // C is given by Ψa(b) = Ψ(a, b), with Ψ given in (A.15).

If ψ̃, ψ̃′ : C∗ // Ĉ∗ are the corresponding horizontal lifts, they are related by

ψ′(κ) = ψ(κ)− ιA(Ψ∗κ), (C.19)

where ιA : A∗ ⊗B∗ // Ĉ∗ is the inclusion, and Ψ∗κ : A //B∗ is given by

Ψ∗κ(a) := Ψ∗a(κ).

Proof. By Cor. B.10, (C.18) is equivalent to

(qA, qC)∗(a, κ) = (qA, q
′
C)∗(a, κ) +

A
(a,Ψ∗a(κ)). (C.20)

We will prove (C.20) computing each side of the equation separately. Let d ∈ D with
qA(d) = a, qB(d) = b and qC(d) = c. As for the left-hand side, we have

〈(qA, qC)∗(a, κ), d〉A = 〈(a, κ), (qA(d), qC(d))〉A = 〈κ, c〉. (C.21)

Now, computing the right-hand side we have the following

〈(qA, q′C)∗(a, κ) +
A

(a,Ψ∗a(κ)), d〉A = 〈(a, κ), (qA(d), q′C(d))〉A + 〈0A(a) +
C∗

Ψ∗A(κ), d〉A

= 〈κ, c−Ψa(b)〉+ 〈Ψ∗a(κ), b〉
= 〈κ, c〉 − 〈κ,Ψa(b)〉+ 〈κ,Ψa(b)〉 = 〈κ, c〉. (C.22)

From (C.21) and (C.22) we obtain (C.20).
Finally, the identity 〈Ψ∗κ(a), b〉 = 〈κ,Ψ(a, b)〉, for every a ∈ Am, b ∈ Bm and κ ∈ C∗,

implies that Ψ∗κ ∈ A∗ ⊗B∗, and we have

ψ̃′(κ)(a) = θ′(a, κ) = θ(a, κ)−
A

(a,Ψ∗a(κ))

= ψ̃(κ)(a)−
A

(0A(a) +
C∗

Ψ∗κ(a))

= ψ̃(κ)(a)− ιA(Ψ∗κ)(a),

(C.23)

thus proving (C.19).
�

Corollary C.16. In the situation of Prop. C.15, let Â∗ be the linear bundle of (D∗A)C∗,
corresponding to Γlin(C∗, D∗A), and let ψ∗, ψ

′
∗ be the horizontal lifts corresponding to the

splittings θ̃, θ̃′, respectively. Then

ψ′∗(a)(κ) = ψ∗(a)(κ)− ιC∗(Ψ∗a)(κ). (C.24)



C.2. HORIZONTAL LIFTS AND GLOBAL DECOMPOSITIONS 211

Proof. Follows directly from (C.23) and the way ψ∗ and ψ′∗ are defined.
�

Finally, we end this section with the important –and surprising– existence of an iso-
morphism between the linear bundle corresponding to DB and the linear bundle corre-
sponding to (D∗A)C∗ , which as already mentioned, is the key for the characterization of
degree 2 manifolds in terms of involutive DVB’s.

Proposition C.17. Given a double vector bundle D, let Â be its linear bundle, correspond-
ing to Γlin(B,D), and let Â∗ be the linear bundle of (D∗A)C∗, corresponding to Γlin(C∗, D∗A),
as in Prop. C.10. If Θ is a decomposition of D, then we obtain a well-defined isomorphism

T : Â // Â∗

given by
T := H−1 ◦∆ ◦K, (C.25)

where H,K are the isomorphisms of Prop. C.10, and

∆ : A⊕Hom(B,C) //A⊕Hom(C∗, B∗)

is given by
∆(a, σ1) = (a,−σ∗1). (C.26)

Proof. The proof consists in verifying that if Θ′ is another decomposition of D, and H ′,K ′

are the corresponding isomorphisms given by Prop. C.10, then

H−1 ◦∆ ◦K = (H ′)−1 ◦∆ ◦K ′. (C.27)

Let’s begin computing T . For σ ∈ Âm, with p(σ) = a and qC ◦ σ = σ1 ∈ Hom(B,C) we
have

Tσ = H−1 ◦∆ ◦K(σ)

= H−1 ◦∆(p(σ), qC ◦ σ)

= H−1(a,−σ∗1),

from which, for κ ∈ C∗m and d ∈ D with Θ(d) = (a, b, c),

〈Tσ(κ), d〉A = 〈Θ∗A(a,−σ∗1(κ), κ), d〉A
= 〈(a,−σ∗1(κ), κ), (a, b, c〉A
= 〈−σ∗1(κ), b〉+ 〈κ, c〉
= 〈κ, c− σ1(b)〉.

On the other hand, since q′C = qC −Ψ(qA, qB), we get σ′1 = σ1 −Ψa, where σ′1 := q′C ◦ σ.
So we have, denoting T ′ = (H ′)−1 ◦∆ ◦K ′,

〈T ′σ(κ), d〉A = 〈(Θ′)∗A(a,−(σ′1)∗(κ), κ), d〉A
= 〈(a,−(σ1 −Ψa)

∗(κ), κ), (a, b, c−Ψ(a, b))〉A
= 〈κ,−σ1(b) + Ψ(a, b)〉+ 〈κ, c−Ψ(a, b)〉
= 〈κ, c− σ1(b)〉.

Thus, it follows Tσ = T ′σ, which implies that the morphism Â // Â∗ is well defined.
�
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C.3 Global behaviour of DVB morphisms

In this section we explain partially how morphisms of DVB’s relate to morphisms
of the corresponding linear sections. A full understanding will be achieved only after
we introduce the double-linear bundle in next section, and ultimately after the double
realization procedure [12] is understood. This procedure will be reviewed in App. D.

Proposition C.18. Let (D;A,B;M)C and (D′;A′, B;M)C′ be two double vector bundles
with a common side bundle, B. A morphism of double vector bundles

Φ : (D;A,B;M)C // (D′, A′, B;M)C′

which is the identity over B induces a vector bundle morphism Φ̂B : Â // Â′ over ϕM ,
where Φ̂B is given by

Φ̂B(σ) = Φ ◦ σ,

for σ ∈ Hom(Bm, Da), with qB ◦ σ = IdBm.

Proof. We need to check that Φ̂B is well-defined and that this mapping is a vector bundle
morphism. Let σ ∈ Â. Since Φ is a vector bundle morphism DA

//D′A′ , it follows that

Φ̂B(σ) ∈ Hom(Bm, D
′
ϕA(a)). For the well-definition, it remains to check that qB ◦ Φ(σ) =

IdBm . Since ϕB = IdB, it follows that

qB ◦ Φ̂B(σ) = qB ◦ Φ ◦ σ = ϕB ◦ qB ◦ σ = IdBm ,

thus Φ̂B maps Âm into Â′m. Linearity on the fibers readily follows from linearity of Φ with
respect to the structures over B.

�

Remark C.19. In order to get a vector bundle morphism Φ̂B : Â //Â′ for a more general
double vector bundle morphism Φ : (D;A,B;M)C //(D′;A′, B′;M ′)C′ , we need the extra
condition requiring ϕB to be an isomorphism. In this case we have

Φ̂B(σ) := Φ ◦ σ ◦ ϕ−1
B . (C.28)

Corollary C.20. If Φ : (D;A,B;M)C // (D′;A′, B′,M ′)C′ is an isomorphism, then Φ∗B
induces a vector bundle morphism (Φ̂∗B)B′ : Ĉ ′∗B′ // Ĉ∗B given by

σ′ ∈ (Ĉ ′∗B′)m // Φ∗B ◦ σ′ ◦ ϕB ∈ (Ĉ∗B)m.

Here Ĉ∗B is the linear vector bundle corresponding to the linear sections of D∗B.

Proof. Follows directly from Rmk. C.19 above and Cor. B.3.
�

Now we want to understand the action of the induced morphism (Φ̂∗A)C′∗ : Â′C′∗
//ÂC∗ ,

where Â′C′∗ is the linear bundle corresponding to Γlin(C
′∗, D

′∗
A′) and ÂC∗ is the linear bun-

dle corresponding to Γlin(C∗, D∗A). In order to achieve this we first need two results of
interest by their own. The first about the inverse of an induced morphism, and the second
about the expression of the induced morphism when we introduce decompositions.
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Proposition C.21. If Φ : (D;A,B;M)C // (D′;A′, B′;M ′)C′ is an isomorphism, then
Φ̂B is an isomorphism, with inverse

(Φ̂B)−1 = Φ̂−1
B′ .

Proof. For any σ ∈ Â we have from Eq. (C.28) and Prop. A.25,

Φ̂−1
B′ ◦ Φ̂B(σ) = Φ̂−1

B′(Φ ◦ σ ◦ ◦ϕ−1
B ) = Φ−1 ◦ Φ ◦ σ ◦ ϕ−1

B ◦ ϕB = σ.

Analogously it is shown that Φ̂B ◦ Φ̂−1
B′(σ

′) = σ′.
�

Proposition C.22. Let Φ : (D;A,B;M)C //(D′;A′, B′;M ′)C′ be a DVB morphism such
that ϕB is an isomorphism. Let’s introduce decompositions on D and D′ so that we obtain
the isomorphisms K : Â // A ⊕ Hom(B,C) and K ′ : Â′ // A′ ⊕ Hom(B′, C ′) given in

Prop. C.10. Then the induced morphism Φ̂B : Â // Â′ in terms of the decompositions has
the expression

K ′ ◦ Φ̂B ◦K−1(a, τ) = (ϕA(a), (ϕC ◦ τ + Ψa) ◦ ϕ−1
B ), ∀(a, τ) ∈ A⊕Hom(B,C), (C.29)

with Ψa : B // C ′ given by

Ψa(b) := qC′ ◦ Φ ◦Θ−1(a, b, 0), (C.30)

where qC′ : D′ // C ′ corresponds to the decomposition of D′ and Θ : D //A⊕B ⊕ C is
the decomposition of D.

Proof. If Θ′ : D′ //A′ ⊕B′ ⊕C ′ is the decomposition of D′, then by Cor. A.24, we have

Θ′ ◦ Φ ◦Θ−1(a, b, c) = (ϕA(a), ϕB(b), ϕC(c) + Ψ(a, b)), (C.31)

where Ψ : A⊕B // C ′ is bilinear. It is immediate from the equation (C.31) above that

Ψ(a, b) = qC′ ◦ Φ ◦Θ(a, b, 0). (C.32)

Let’s take a ∈ Am, b ∈ Bm, τ ∈ Hom(B,C)m), and for any b′ ∈ Bm compute, using
Eqs. (C.11), (C.28) and (C.31),

K ′ ◦ Φ̂B ◦K−1(a, τ)(b′) = K ′
(
Φ ◦Θ−1(a, b, τ(ϕ−1

B (b′)))
)

=
(
qA′ ◦ Φ ◦Θ−1(a, b, τ(ϕ−1

B (b′)), qC′ ◦ Φ ◦Θ−1(a, b, τ(ϕ−1
B (b′))

)
= (ϕA(a), ϕC ◦ τ ◦ ϕ−1

B (b′) + Ψ(a, ϕ−1
B (b′))),

hence, by Eqs. (C.32) and (C.30),

K ′ ◦ Ψ̂B ◦K−1(a, τ) = (ϕA(a), (ϕC ◦ τ + Ψa) ◦ ϕ−1
B ).

�
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Proposition C.23. Let Φ : (D;A,B;M)C // (D′;A′, B′;M ′)C′ be a DVB isomorphism.

Then (Φ̂∗A)C′∗ : ÂC∗ // Â′C′∗ is given by

(Φ̂∗A)C′∗ = T ◦ (Φ̂B)−1 ◦ (T ′)−1, (C.33)

where ÂC∗ , Â′C′∗ are the linear bundles corresponding to Γlin(C∗, D∗A) and Γlin(C
′∗, D

′∗
A′),

respectively, and T : Â // ÂC∗, T
′ : Â′ // Â′C′∗ are the isomorphisms given by Prop.

C.17.

Proof. Using the isomorphisms K and H of Prop. C.10, we see that Eq. (C.33) is equiv-
alent to

H ◦ (Φ̂∗A)C′∗ ◦ (H ′)−1 = H ◦ T ◦ (Φ̂B)−1 ◦ (T ′)−1 ◦ (H ′)−1 (C.34)

= H ◦ T ◦ (K−1 ◦K) ◦ (Φ̂B)−1 ◦ ((K ′)−1 ◦K ′) ◦ (T ′)−1 ◦ (H ′)−1

= (H ◦ T ◦K−1) ◦ (K ◦ (Φ̂B)−1 ◦ (K ′)−1) ◦ (K ′ ◦ (T ′)−1 ◦ (H ′)−1).

Thereby, we can work only with morphisms between decomposed linear bundles and use
the formula obtained in Prop. C.22 above. So let’s take (a′, τ ′) ∈ A′⊕Hom(C

′∗, B
′∗). On

one hand, by Prop. B.4, we have

H ◦ (Φ̂∗A)C′∗ ◦ (H ′)−1(a′, τ ′) =
(
ϕ−1
A (a′), (ϕ∗B ◦ τ ′ + Ψ∗

ϕ−1
A (a′)

) ◦ (ϕ−1
C )∗

)
(C.35)

On the other hand, by Prop. C.21 and formula (A.12) of Prop. A.25, we have

H ◦ T ◦ (Φ̂B)−1 ◦ (T ′)−1 ◦ (H ′)−1(a′, τ ′) = H ◦ T ◦ (Φ̂−1
B′(a

′,−(τ ′)∗)

= H ◦ T
(
ϕ−1
A (a′), (−ϕ−1

C ◦ (τ ′)∗ − ϕ−1
C ◦Ψϕ−1

A (a′) ◦ ϕ
−1
B ) ◦ ϕB

)
=
(
ϕ−1
A (a′), ϕ∗B ◦ τ ′ ◦ (ϕ−1

C )∗ + Ψ∗
ϕ−1
A (a′)

◦ (ϕ−1
C )∗

)
. (C.36)

From (C.35) and (C.36), we obtain (C.34).
�

In the following proposition we obtain a converse for Prop. C.18.

Proposition C.24. Let (D;A,B;M)C and (D′;A′, B;M)C′ be two double vector bundles
with a common side bundle, B. Then any pair of vector bundle morphisms

ϕC : C // C ′ and ϕ
Â

: Â // Â′

satisfying the compatibility condition

ϕ
Â

(τ) = ϕC ◦ τ ∈ Hom(B,C ′) ⊂ Â′, ∀τ ∈ Hom(B,C) ⊂ Â, (C.37)

determine a unique DVB morphism Φ : D //D′ over the identity on B, such that Φ|C =
ϕC and Φ̂ = ϕ

Â
.
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Proof. First of all, observe that because of the compatibility condition (C.37) we obtain
a well-defined morphism ϕA : A //A′ by setting

ϕA(a) := π′ ◦ ϕ
Â

(â),

where â ∈ Â is any horizontal lift of a, and π′ : Â′ // A′ is the projection. In order to
define the map Φ, introduce provisionally a decomposition D ∼= A ⊕ B ⊕ C, so that we
also obtain the induced decomposition Â ∼= A ⊕ Hom(B,C), and let’s take any d ∈ D,
then we have d = (a, b, c).

First suppose b 6= 0. Then pick any τ ∈ Hom(B,C) with τ(b) = c. Thereby we obtain

σ = (a, τ) ∈ Â

which satisfies σ(b) = d. Then define

Φ(d) := ϕ
Â

(σ)(b). (C.38)

We need to show that Φ is well-defined, i.e. the definition above doesn’t depend on the
particular σ chosen, and that Φ defined in that way actually is DVB morphism. Suppose
that we have also σ′ ∈ Â with σ′(b) = d. Then qA ◦ σ = qA ◦ σ′ = a (see Eq. (C.3)),
whence

τ := σ − σ′ ∈ Hom(B,C),

that is
qA(σ(b)−

B
σ′(b)) = qA ◦ σ(b)− qA ◦ σ′(b) = 0.

Then, using Eq. (C.37),

ϕ
Â

(σ − σ′)(b) = ϕ
Â

(τ)(b) = ϕC ◦ τ(b)

= ϕC(σ(b)−
B
σ′(b)) = ϕC(d−

B
d) = 0.

Therefore, ϕ
Â

(σ)(b) = ϕ
Â

(σ′)(b), which means that Eq. (C.38) gives us a well-defined
element in D′.

Now we can extend Φ by a continuity argument, or else in the case that b = 0, that is,
b ∈ ker qB = A⊕ C, simply define

Φ(d) = Φ(a, c) = (ϕA(a), ϕC(c)) ∈ ker qB = A′ ⊕ C ′.

The compatibility condition (C.37) guarantees that Φ is smooth. Let’s prove that Φ
is a DVB morphism. It is immediate to verify that Φ preserves both fibrations, and the
induced maps on the side bundles are ϕA and IdB, respectively. As for linearity, take
d1, d2 ∈ Da, with qB(d1) = b1 and qB(d2) = b2. Again by a continuity argument, we don’t
loose generality if we suppose that b1 and b2 are linearly independent (the set of such
vector is an open dense in Bm). Then we can find σ ∈ Â with σ(b1) = d1 and σ(b2) = d2.
Then σ(b1 + b2) = d1 +

A
d2 and

Φ(d1 +
A
d2) = ϕ

Â
(σ)(b1 + b2) = ϕ

Â
(σ)(b1) +

A′
ϕ
Â

(σ)(b2) = Φ(d1) +
A′

Φ(d2).
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For d1, d2 ∈ Db, we can find σ1, σ2 ∈ Â such that σ1(b) = d1 and σ2(b) = d2. Then
(σ1 + σ2)(b) = σ1(b) +

B
σ2(b) = d1 +

B
d2, so that

Φ(d1 +
B
d2) = ϕ

Â
(σ1 + σ2)(b) = ϕ

Â
(σ1)(b) +

B
ϕ
Â

(σ2)(b) = Φ(d1) +
B

Φ(d2).

�

Remark C.25. We can obtain a more general result than Prop. C.24 above, by letting D′

to have a different side bundle B′ and including in the hypothesis one more vector bundle
morphism ϕB : B // B′. Then the compatibility condition (C.37) must be modified to
the condition

ϕ
Â

(τ) ◦ ϕB = ϕC ◦ τ, ∀τ ∈ B∗ ⊗ C ∼= Hom(B,C) ⊂ Â.

We can prove that there is a unique DVB morphism Φ : D //D′ such that the induced
vector bundle morphisms between the side bundles B,B′, the core bundles C,C ′ and the
linear bundles Â, Â′ are ϕB, ϕC and ϕ

Â
, respectively. The proof given above to Prop. C.24

works just fine, with the only modification that we define, instead of (C.38),

Φ(d) := ϕ
Â

(σ)(ϕB(b)).

An important observation, already suggested by the proposition above, is that a DVB
morphism Φ that preserves a common side bundle is completely determined by its action
on linear and core sections. This is the content of the following simple, though useful,
lemma.

Lemma C.26. Let
Φ : (D;A,B;M)C // (D′;A′, B;M)C′

be a DVB morphism over the identity on B. Then Φ induces maps

Φ̃lin : Γlin(DB) // Γlin(D′B) and Φ̃core : Γcore(DB) // Γcore(D
′
B) (C.39)

which completely determine Φ. More precisely, given any d ∈ D, we can find γ ∈ Γlin(DB)
and β ∈ Γcore(DB) such that

Φ(d) = Φ̃lin(γ)(qB(d)) +
B

Φ̃core(β)(qB(d)).

Proof. We have already seen that a DVB morphism preserves core and linear sections
(Props. A.10 and A.11), therefore we obtain the maps Φ̃lin and Φ̃core stated in (C.39).

Now let d ∈ Dm, and choose a decomposition D ∼= A ⊕ B ⊕ C, so that d = (a, b, c).
Suppose first that b 6= 0. Then we can find γ2 ∈ Γ(Hom(B,C)) such that γ2(m)(b) = c.
Also we can find α ∈ Γ(A) such that α(m) = a. Then, by Prop. C.1, we obtain a linear
section γ ∈ Γlin(DB)

γ := (α, γ2) ∈ Γ(A⊕Hom(B,C)) ∼= Γlin(DB),
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such that γ(b) = (α(m), b, γ2(m)(b)) = (a, b, c) = d, which implies that

Φ(d) = Φ(γ(qB(d))) = Φ̃lin(γ)(qB(d)).

Now, in the case qB(d) = 0, choose β ∈ Γ(C) such that β(m) = c, and define β̃ ∈
Γcore(DB) by

β̃(b) := 0B(b) +
A
β(qB(b)).

Then, setting γ := (α, 0) ∈ Γ(A⊕Hom(B,C)) ∼= Γlin(DB), we obtain

γ(qB(d)) +
B
β̃(qB(d)) = (a, 0, 0) +

B
(0, 0, c) = (a, 0, c) = d,

whence

Φ(d) = Φ(γ(qB(d)) +
B
β̃(qB(d))) = Φ(γ(qB(d))) +

B
Φ(β̃(qB(d)))

= Φ̃lin(γ)(qB(d)) +
B

Φ̃core(β̃)(qB(d)).

�

Next proposition provides a converse for Props. A.10 and A.11, thus characterizing,
in terms of core and linear sections, when a vector bundle morphism, which is the identity
on a common side bundle, becomes a DVB morphism. This characterization was stated,
in [23] and its proof left as an exercise.

Proposition C.27. Let (D;A,B;M)C and (D′;A′, B;M)C′ be two double vector bundles
with a common side bundle, B. A vector bundle morphism Φ : DB

//D′B over the identity
is a double vector bundle morphism, that is, preserves also the structures over A and A′,
respectively, if and only if the induced map on sections over B, also denoted by Φ, satisfies
Φ(Γlin(DB)) ⊂ Γlin(D′B) and Φ(Γcore(DB)) ⊂ Γcore(D

′
B).

Proof. We have already seen that a double vector bundle morphism preserves linear and
core sections. So let’s prove that this condition suffices in order to Φ be a double vector
bundle morphism. We can work locally, and so suppose that D and D′ are decomposed
(Prop. A.18). We need to prove that Φ : DA

// D′A′ preserves fibers and the linear
structure.

Let d ∈ Dm. By lemma C.26 we can find γ ∈ Γlin(DB) and β̃ ∈ Γcore(DB) such that

Φ(d) = Φ̃lin(γ)(qB(d)) +
B

Φ̃core(β̃)(qB(d)).

Since Φ̃lin(γ) is a linear section on D′B, it projects over a section α′ ∈ Γ(A′), thereby

qA′ ◦ Φ(d) = qA′ ◦ Φ̃lin(γ)(qB(d)) + qA′ ◦ Φ̃core(β̃)(qB(d)) = α′(m),

where, by definition, α′(m) = qA′ ◦ γ′(0B(m)). Now, by the construction of γ (see the
proof of lemma C.26), we have γ(0B(m)) = (a, 0, 0). Hence,

qA′ ◦ Φ(d) = α′(m) = qA′ ◦ Φ ◦ γ(0B(m)) = qA′ ◦ Φ(a, 0, 0) = qA′ ◦ Φ ◦ 0A(qA(d)),
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which means that Φ : DA
//D′A′ preserves fibers.

Now let’s see linearity. Let d1, d2 ∈ D such that qA(d1) = qA(d2) = a. Then d1 =
(a, b1, c1) and d2 = (a, b2, c2). Hence

d1 +
A
d2 = (a, b1 + b2, c1 + c2).

Let γ ∈ Γlin(DB) such that

γ(b1 + b2) = γ(b1) +
A
γ(b2) = (a, b1, 0) +

A
(a, b2, 0) = (a, b1 + b2, 0),

and let β̃ ∈ Γcore(DB) such that

β̃(b1 + b2) = (0, b1 + b2, c1 + c2).

Then (γ +
B
β̃)(b) = d1 +

A
d2, with b := b1 + b2; so, using that Φ preserves linear and core

sections,
Φ(d1 +

A
d2) = Φ(γ +

B
β̃) = γ′(b) +

B
β̃′(b),

where γ′ := Φ(γ) ∈ Γlin(D′B) and β̃′ := Φ(β̃) ∈ Γcore(D
′
B). Hence

qB(Φ(d1 +
A
d2)) = qB(γ′(b) +

B
β̃′(b)) = b = b1 + b2. (C.40)

On the other hand, since Φ : DB
//D′B is a bundle map over the identity,

qB(Φ(d1) +
A′

Φ(d2)) = qB(Φ(d1)) + qB(Φ(d2)) = b1 + b2. (C.41)

Therefore, from (C.40) and (C.41), it follows

qB(Φ(d1 +
A
d2)) = qB(Φ(d1) +

A′
Φ(d2)). (C.42)

It remains to show qC′(Φ(d1 +
A
d2)) = qC′(Φ(d1) +

A′
Φ(d2)). To compute qC′(Φ(d1 +

A
d2)),

notice that Φ(Γcore(DB)) ⊂ Γcore(D
′
B) implies, for c ∈ C, after choosing a section β :

M // C with β(m) = c, and taking its corresponding core section β̃,

Φ(c) = Φ(β̃(0B(m))) = β̃′(0B(m)),

whence Φ(C) ⊂ C ′. So Φ induces a vector bundle morphism ϕC := Φ|C : C // C ′ over
the identity. So we have

qC′(Φ(d1 +
A
d2)) = qC′(γ

′(b)) + β̃′(b)

= qC′(γ
′(b1) +

A′
γ′(b2)) + ϕC(c1 + c2)

= γ′2(b1) + γ′2(b2) + ϕC(c1) + ϕC(c2). (C.43)
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Now we compute Φ(d1) and Φ(d2). As we already observed, we can find core sections
β̃1 and β̃2 such that β̃1(b1) = (0, b1, c1), and β̃2(b2) = (0, b2, c2). Then

d1 = (a, b1, c1) = γ(b1) +
B
β̃1(b1)

and d2 = (a, b2, c2) = γ(b2) +
B
β̃2(b2).

So we have
Φ(d1) = Φ(γ(b1)) +

B
Φ(β̃1(b1)),

hence qC′(Φ(d1)) = γ′2(b1) +ϕC(c1). Analogously we can show that qC′(Φ(d1)) = γ′2(b2) +
ϕC(c2). Therefore, taking (C.43) into account,

qC′(Φ(d1) +
A′

Φ(d2)) = γ′2(b1) + ϕC(c1) + γ′2(b2) + ϕC(c2) = qC′(Φ(d1 +
A
d2)).

�

C.4 Linear and core sections on the dual

Lemma C.28. A section γ ∈ Γ(DA) is linear if and only if

a) 〈γ, φ〉A is a fiberwise linear function for every φ ∈ Γlin(D∗A), and

b) 〈γ, ξ̃〉A is fiberwise constant for every ξ̃ ∈ Γcore(D
∗
A).

A section β̃ ∈ Γ(DA) is core if and only if

c) 〈β̃, φ〉A is fiberwise constant for every φ ∈ Γlin(D∗A) and

d) 〈β̃, ξ̃〉A = 0 for every ξ̃ ∈ Γcore(D
∗
A).

Proof. If γ ∈ Γlin(DA) and φ ∈ Γlin(D∗A), then, for a1, a2 ∈ A, we have, using Eq. (B.4),

〈γ(a1 + a2), φ(a1 + a2)〉A = 〈γ(a1) +
B
γ(a2), φ(a1) +

C∗
φ(a2)〉A

= 〈γ(a1), φ(a1)〉A + 〈γ(a2), φ(a2)〉A,

which means that the function a // 〈γ(a), φ(a)〉A is linear.
If ξ̃ ∈ Γcore(D

∗
A), with ξ ∈ Γ(B∗), then by Cor. B.9, and if γ ∈ Γlin(DA) maps over the

section α ∈ Γ(B), we have

〈γ(a), ξ̃(a)〉A = 〈qB ◦ γ(a), ξ(qA(a))〉 = 〈α(m), ξ(m)〉,

which means that the function a // 〈γ(a), ξ̃(a)〉A is fiberwise constant.
Conversely, if γ ∈ Γ(DA) satisfies items a) and b) of the lemma, then for every ξ̃ ∈

Γcore(D
∗
A), with ξ ∈ Γ(B∗), item b) implies that the function a //〈γ(a), ξ̃(a)〉A is fiberwise

constant. By Cor. B.9, we obtain that the function

a // 〈qB ◦ γ(a), ξ(qA(a))〉
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is fiberwise constant, which implies that qA ◦ γ is fiberwise constant. Thereby, γ preserves
fibers and we obtain a section α ∈ Γ(B) such that

qB ◦ γ(a) = α(qA(a)).

Now, item a) implies that, for every φ ∈ Γlin(D∗A), the map a //〈γ(a), φ(a)〉A is linear,
whereby, for a1, a2 ∈ A with a1 + a2 6= 0, and any v ∈ D∗a1+a2 choosing φ ∈ Γlin(D∗A) such
that φ(a1 + a2) = v (which is always possible since a1 + a2 6= 0), and using Eq. (B.4), we
have

〈γ(a1 + a2), d〉A = 〈γ(a1 + a2), φ(a1 + a2)〉A = 〈γ(a1), φ(a1)〉A + 〈γ(a2), φ(a2)〉A
= 〈γ(a1) +

B
γ(a2), φ(a1) +

C∗
φ(a2)〉A

= 〈γ(a1) +
B
γ(a2), φ(a1 + a2)〉A = 〈γ(a1) +

B
γ(a2), d〉A.

By a continuity argument, we conclude that

〈γ(a1 + a2), d〉A = 〈γ(a1) +
B
γ(a2), d〉D

for every d ∈ D∗a1+a2 with a1, a2 ∈ A arbitrary (not necessarily satisfying a1 + a2 6= 0),
which means γ : A //DB is a vector bundle morphism over α, that is, γ ∈ Γlin(DA).

Now let’s prove the second part of the lemma, the one concerning to the characteriza-
tion of core sections. If β̃ ∈ Γcore(DA), with β ∈ Γ(C) and φ ∈ Γlin(D∗A) which maps over
α ∈ Γ(C∗), then by Cor. B.9

〈β̃(a), φ(a)〉A = 〈β(qA(a)), πC∗ ◦ φ(a)〉 = 〈β(m), α(m)〉,

which means that a // 〈β̃(a), φ(a)〉A is fiberwise constant.
If ξ̃ ∈ Γcore(D

∗
A), with ξ ∈ Γ(B∗), then, for every a ∈ A, ξ̃(a) ∈ kerπC∗ , whereby Cor.

B.9 implies that
〈β̃(a), ξ̃(a)〉A = 0.

Conversely, let β̃ ∈ Γ(DA) be any section satisfying items c) and d) of the lemma.
Then, using Cor. B.9, item d) implies that

〈β̃(a), ξ̃(a)〉A = 〈qB ◦ β̃(a), ξ(qA(a))〉,

which in turn implies that qB ◦ β̃(a) = 0 ∀a ∈ A, that is, β̃ takes values on ker qB ∼= A⊕C,
so that we can write

β̃(a) = (a, β̃C(a)) = 0A(a) +
B
β̃C(a),

with β̃C := pC ◦ β̃ : A //C, where pC : ker qB ∼= A⊕C //C is the projection. Now, item
c) and Cor. B.9 implies that, for φ ∈ Γlin(D∗A) over α ∈ Γ(C∗),

〈β̃(a), φ(a)〉A = 〈β̃C(a), πC∗ ◦ φ(a)〉 = 〈β̃C(a), α(qA(a))〉
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is fiberwise constant. Since, for any α ∈ Γ(C∗) we can find φ = α̂ ∈ Γlinear(D
∗
A) over α,

we conclude that β̃C is fiberwise constant, which means that

β̃C(a) = β(qA(a))

for β ∈ Γ(C) defined by β(m) = β̃C(0A(m)). Therefore,

β̃(a) = 0A(a) +
B
ι ◦ β ◦ qA(a),

that is, β̃ is a core section.
�

Now we use the lemma to prove the characterization of linear sections of a DVB stated
in Cor. 2.9.

Corollary C.29. There is a canonical 1:1 correspondence between sections in Γlin(D∗B) ∼=
Γ(Ĉ∗B) and pairs of linear maps

f
Â

: Â //B∗ and fC : C // R,

such that the following compatibility condition is satisfied

f
Â

(τ) = fC ◦ τ, ∀τ ∈ Hom(B,C) ⊂ Â.

Proof. If we take φ ∈ Γlin(D∗B) ∼= Γ(Ĉ∗B), then by the easy part of Lem. 2.8, we obtain

linear functions f
Â

: Â //B∗ and fC : C // R, by setting

f
Â

(σ) := 〈σ, φ〉B and fC(c) := 〈c̃, φ〉B,

where of course we are identifying C∞lin(B) ∼= B∗. Since Lem. 2.8 already tells us that
f
Â

and fC are linear, we only need to check the compatibility condition, which is just
linearity of 〈·, ·〉B with respect to the product of a linear function. Indeed, there is no loss
of generality if we take τ of the form β ⊗ c ∈ Hom(B,C). In this case we have

f
Â

(τ) = 〈β ⊗ c̃, φ〉B = β〈c̃, φ〉B
= fC(c)β = fC ◦ τ.

Conversely, if we have such f
Â

and fC , arguing similarly as we did, for example, in the

proof of Prop. C.24, for every d ∈ D with b = qB(d) 6= 0 we can find σ ∈ Â such that
σ(b) = d. Then we define φ(b) ∈ (D∗B)b by

〈φ(b), d〉B := f
Â

(σ)(b),

and extend φ to the whole bundle B by setting, for d = (a, c) ∈ ker qB = A⊕ C,

〈φ(0B(m)), (a, c)〉B = fC(c).

We must check that φ(b) is well-defined. If σ, σ′ ∈ Â satisfy σ(b) = σ′(b) = d, then

qA((σ − σ′)(b)) = qA(d−
B
d) = 0,
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whence the compatibility condition implies that σ−σ′ = τ ∈ Hom(B,C) ⊂ Â and τ(b) = 0.
Then,

f
Â

(σ)(b)− f
Â

(σ′)(b) = f
Â

(σ − σ′)(b) = f
Â

(τ)(b) = fC(τ(b)) = 0.

Therefore we have a well-defined section φ ∈ Γ(D∗B), which is smooth as it is easily verified,
for example by using adapted coordinates. Also observe that, by definition, for c ∈ C ⊂ D
we have 〈φ(b), c〉B = fC(c). Therefore, φ satisfies conditions a) and b) of Lem. C.26, from
which we conclude that φ is a linear section.

It is clear that the two processes described above are inverses one of the other, so we
have the desired canonical 1:1 correspondence.

�

C.5 The double-linear bundle

In this section we introduce the so-called double-linear functions on a DVB, D, which
are equivalent to linear sections of any of the two duals of D, which therefore also form
a vector bundle structure, which we call the double-linear bundle. This enables a better
understanding of the isomorphism T : Â // Â∗, allowing to arrive to it without resorting
to decompositions (see Rmk. C.37). Most important, Prop. C.33 is instrumental to show
the duality between representations up to homotopy corresponding a VB-algebroid and to
the VB -algebroid structure induced on one of its duals, cf. Thm. E.32.

Finally we show how, for any DVB morphism, the double-linear bundle enables to
associate a morphism between duals of certain linear vector bundles (isomorphic to the
corresponding double-linear bundle, see Prop. C.32), which is actually a morphism of
exact sequences. For more details see Prop. C.38. Moreover, in the next chapter we
will see that the double-linear bundle is the bridge between the category of double vector
bundles and the category of double vector sequences, cf. Thm. D.8.

Definition C.30. Let (D;A,B;M)C be a double vector bundle. A function µ ∈ C∞(D)
is called double-linear if it is linear with respect to both vector bundle structures:

µ(d1 +
A
d2) = µ(d1) + µ(d2),

for d1, d2 ∈ D with qA(d1) = qA(d2); and

µ(d3 +
B
d4) = µ(d3) + µ(d4),

for d3, d4 ∈ D with qB(d3) = qB(d4).
The set of double-linear functions is called double-linear bundle, and is denoted by

C∞lin(D).

Remark C.31. It is immediate that C∞lin(D) is a vector subspace of C∞(D).

Proposition C.32. C∞lin(D) admits a vector bundle structure over M , whose fiber over
m ∈M is given by

C∞lin(D)m = {µ|Dm : µ ∈ C∞lin(D)},
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where Dm is the slice of D over m:

Dm := {d ∈ D : qA ◦ qA(d) = qB ◦ qB(d) = m}.

We have
C∞lin(D)m = {ν ∈ C∞(Dm) : ν is double− linear}. (C.44)

C∞lin(D) fits in the exact sequence

0 //A∗ ⊗B∗ ι−→ C∞lin(D)
p−→ C∗ // 0, (C.45)

and
Ĉ∗A ∼= Ĉ∗B ∼= C∞lin(D) (C.46)

holds, where Ĉ∗A is the linear vector bundle corresponding to the linear sections of D∗A,

and Ĉ∗B the linear vector bundle corresponding to the linear sections of D∗B.

Proof. By remark C.31, we have naturally defined vector space structures on C∞lin(D)m
for each m ∈M . We need to prove that C∞lin(D) has a differential manifold structure and
that it is locally trivial. Let’s take adapted local coordinates on an open set D|U , U ⊂M ,
with m0 ∈ M ⊂ D (see Def. A.21). For f ∈ C∞(D) apply Hadamard’s lemma fiberwise
twice, we get,

f(xi, αa, βb, κc) = f(m) + αafa(d) + βbfb(d) + κcfc(d)

= f(m) + αa(fa(m) + αaga(d) + βbgb(d) + κcgc(d))

+ βb(fb(m) + αaha(d) + βbhb(d) + κcgc(d))

+ κc(fc(m) + αala(d) + βblb(d) + κclc(d)),

where d = (xi, αa, βb, κc) and m = qA ◦ qA(d). Now, if f = µ is double-linear, we get
µ(m) = 0, and applying again Hadamard’s lemma, now to each function gα, hα, gα, for
α = a, b, c, the double-linearity leads us to conclude that

fa(m) = fb(m) = fc(m) = 0;

ga(d) = 0; gb(d) = gb(m); gc(d) = 0;

ha(d) = ha(m); hb(d) = 0; hc(d) = 0;

la(d) = 0; lb(d) = 0; hc(d) = hc(m).

Therefore,
µ(xi, αa, βb, κc) = αaβbµab(m) + κcµc(m), (C.47)

where µab(m) = gb(m) + ha(m) and µc(m) = hc(m). Of course any collection of functions
µab, µc ∈ C∞(U) furnishes a double-linear function given by formula (C.47). Thus, we
have obtained a bijection

C∞lin(D)|U // (A∗ ⊗B∗ ⊕ C∗)|U .
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We use this bijection to endow C∞lin(D)|U with a vector bundle structure. If we use another
adapted coordinate system, then using formulas (A.9) we get

µab = Φã
aΦ

b̃
bµãb̃ + Φc̃

abµc̃; µc = Φc̃
cµc̃,

so that {µab, µc} transform linearly. Therefore, C∞lin(D) is a vector bundle over M with

rankC∞lin(D) = rankA rankB + rankC. (C.48)

Also, from (C.47) we see that, given a double-linear function ν on Dm, we can extend
it to a double-linear function µ on D|U , by setting µab and µc constants on U . Now take
a bump-function on U , and extend it to a function φ on D, constant on the slices Dm.
Then it is immediate to see that

µ̃(d) =

{
φ(d)µ(d) if d ∈ D|U

0 if d /∈ D|U
(C.49)

defines a double-linear function on D. This proves (C.44).

Now let λ ∈ A∗m ⊗B∗m, then we define ι(λ) ∈ C∞lin(D)m by

ι(λ)(d) := 〈λ, qA(d)⊗ qB(d)〉, (C.50)

which is obviously double-linear. Thus we have an injective map

ι : A∗ ⊗B∗ // C∞lin(D).

Let this time ν ∈ C∞lin(D)m, then we define p(ν) ∈ C∗ by

〈p(ν), c〉 = ν(c)

for every c ∈ Cm, where, in the right-hand side we are considering Cm embedded into
Dm. Using a decompositon of D we see that p is surjective, with left-inverse q∗C . Since
C = ker qA ∩ ker qB it follows that p ◦ ι = 0. By rank reasons (see eq. (C.48)), we obtain
the exact sequence (C.45).

To prove Ĉ∗B ∼= C∞lin(D) let’s take ν ∈ C∞lin(D)m and associate σνB ∈ Ĉ∗B by setting

〈σνB(b), d〉B := ν(d), b ∈ Bm, d ∈ Db. (C.51)

We need to check that σνB is indeed an element in (Ĉ∗B)m. Because of the linearity of
ν with respect to the structure over B, it follows that actually σνB(b) ∈ (D∗B)b. Now, for
any c ∈ Cm,

〈πC∗(σνB(b)), c〉 = 〈σνB(b), 0B(b) +
A
c〉B = ν(0B(b) +

A
c) = ν(c),

which implies that σνB(b) ∈ (D∗B)κ, with κ ∈ C∗m defined by 〈κ, c〉 = ν(c). Now let
b1, b2 ∈ Bm, then, for d1, d2 ∈ Da with qB(d1) = b1 and qB(d2) = b2,

〈σνB(b1 + b2), d1 +
A
d2〉B = ν(d1 +

A
d2) = ν(d1) + ν(d2) = 〈σνB(b1), d1〉B + 〈σνB(b2), d2〉B

= 〈σνB(b1) +
C∗
σνB(b2), d1 +

A
d2〉B.
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Thus, σνB ∈ Hom(Bm, (D
∗
B)κ), and since σνB(b) ∈ Db, it follows that σνB ∈ (Ĉ∗B)m. Hence,

we have obtained a map

ZB : C∞lin(D) // Ĉ∗B

ν // σνB,
(C.52)

which is linear in the fibers as follows directly from the definition, so that ZB is a vector
bundle morphism. It is actually an isomorphism, for, if σ ∈ Hom(Bm, (D

∗
A)κ), define

νσ(d) := 〈σ(b), d〉B, b = qB(d).

Let d1, d2 ∈ Db, then

νσ(d1 +
B
d2) = 〈σ(b), d1 +

B
d2〉B = 〈σ(b), d1〉B + 〈σ(b), d2〉B

= νσ(d1) + νσ(d2).

Now let d1, d2 ∈ Da, a ∈ Am, then qB(d1 +
A
d2) = b1 + b2, where b1 = qB(d1) and

b2 = qB(d2). So we have the following

νσ(d1 +
A
d2) = 〈σ(b1 + b2), d1 +

A
d2〉B = 〈σ(b1) +

C∗
σ(b2), d1 +

A
d2〉B

= 〈σ(b1), d1〉B + 〈σ(b2), d2〉B = νσ(d1) + νσ(d2).

Therefore νσ ∈ C∞lin(D)m and, for b ∈ Bm and d ∈ Db,

〈ZB(νσ)(b), d〉B = νσ(d) = 〈σ(b), d〉B,

that is, ZB(νσ) = σ, which shows that ZB is an isomorphism. Hence Ĉ∗B ∼= C∞lin(D) as
we wanted.

Analogously it is shown that Ĉ∗A ∼= C∞lin(D), with the isomorphism

ZA : C∞lin(D) // Ĉ∗A

ν // σνA,
(C.53)

where
〈σνA(a), d〉A := ν(d), d ∈ Da. (C.54)

�

Proposition C.33. Let Z := ZB ◦ Z−1
A , where ZA and ZB where given in (C.53) and

(C.52), respectively. The following diagram commutes

A∗ ⊗B∗

∗
��

ιA // Ĉ∗A

Z
��

pA // C∗

Id

��

B∗ ⊗A∗ ιB // Ĉ∗B
pB // C∗

, (C.55)

where ∗ : A∗ ⊗B∗ //B∗ ⊗A∗ is the transpose: ∗(φ) = φ∗.
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Proof. pB ◦ Z = pA follows directly from the definitions of ZA and ZB. So it remains to
prove only that

Z ◦ ιA(φ) = ιB(φ∗), (C.56)

for every φ ∈ (A∗ ⊗ B∗)m. So let a ∈ Am, b ∈ Bm and d ∈ D, with qA(d) = a and
qB(d) = b. Let’s compute:

〈ιB ◦ ∗(φ)(b), d〉B = 〈0B(b) +
C∗
φ∗(b), d〉B = 〈φ∗(b), a〉 (from (B.9))

= 〈φ(a), b〉. (C.57)

On the other hand, by the definitions of ZA and ZB, we obtain

〈Z ◦ ιA(φ)(b), d〉B = 〈ZB ◦ Z−1
A ◦ ιA(φ)(b), d〉B

= 〈ZB ◦ ι(φ)(b), d〉B = ι(φ)(d), where ι : A∗ ⊗B∗ // C∞lin(D) is the inclusion

= 〈φ, a⊗ b〉 = 〈φ(a), b〉. (C.58)

From (C.57) and (C.58) it follows (C.56).
�

Proposition C.34. Let (D;A,B;M)C be a double vector bundle. Consider its flip (D;B,A;M)C
(see Def. 2.5). Let’s denote the first DVB by DA and the second by DB. Then we have
the exact sequences

A∗ ⊗B∗
ιA
// C∞lin(DA)

p
// C∗ and B∗ ⊗A∗

ιB
// C∞lin(DB)

p
// C∗,

which are related by

A∗ ⊗B∗

∗
��

ιA // C∞lin(DA)

Flip∗

��

p
// C∗

Id

��

B∗ ⊗A∗ ιB // C∞lin(DB)
p

// C∗

, (C.59)

where Flip : DB
// DA is the canonical identification of a double vector bundle with its

flip, and Flip∗ is the restriction of the pull-back map to the set of double linear functions.

Proof. We have already introduced ιA, which is given, for λ ∈ A∗ ⊗B∗, by

ιA(λ)(d) = 〈λ, qA(d)⊗ qB(d)〉.

Analogously, we can define, for η ∈ B∗ ⊗A∗,

ιB(η)(d) = 〈η, qB(d)⊗ qA(d)〉.

For any λ ∈ A∗ ⊗B∗ and τ ∈ B ⊗A we have

〈λ∗, τ〉 = 〈λ, τ∗〉.
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This can be verified taking λ and τ of the form α⊗ β and b⊗ a, respectively. The general
case follows by linearity. Then we have, for any λ ∈ A∗ ⊗B∗,

ιB(λ∗)(d) = 〈λ∗, qB(d)⊗ qA(d)〉
= 〈λ, qA(d)⊗ qB(d)〉
= ιA(λ)(d),

where we are omitting the identification Flip and denoting indistinctly d ∈ DB and d ∈ DA.
From this follows (C.59).

�

Remark C.35. With the identification given in Prop. C.34, we see that it is more
accurate to see the isomorphisms ZA and ZB defined in (C.53) and (C.52), respectively,
as mappings

ZA : C∞lin(DA) // Ĉ∗A and ZB : C∞lin(DB) // Ĉ∗B,

so that the isomorphism Z : Ĉ∗A // Ĉ∗B fits in the diagram

A∗ ⊗B∗

Id

��

ιA // Ĉ∗A

Z−1
A
��

Z

��

pA // C∗

Id

��

A∗ ⊗B∗

∗
��

ιA // C∞lin(DA)

Flip∗

��

p
// C∗

Id

��

B∗ ⊗A∗

Id

��

ιB // C∞lin(DB)

ZB
��

p
// C∗

Id

��

B∗ ⊗A∗ ιB // Ĉ∗B
pB // C∗

. (C.60)

Proposition C.36. Consider the isomorphism ΥA : D∗A
// (D∗B)∗C∗ given in Prop. B.13.

Let Υ̂A : Ĉ∗A // Ĉ∗B∗ be the induced isomorphism between the linear bundles, given by
Remark C.19. Then,

Z = T−1 ◦ Υ̂A. (C.61)

Here Z : Ĉ∗A // Ĉ∗B is the morphism given in Prop. C.33, and T−1 : Ĉ∗B∗ // Ĉ∗B is
the isomorphism given in Prop. C.17, with (D∗B)∗C∗ playing the role of D and we identify
D∗B with ((D∗B)∗C∗)

∗
C∗.

Proof. Pick a decomposition forD, which, as we have already seen, induces decompositions
for the duals and horizontal lifts for the several linear bundles involved. In particular, we
have (non-canonical) isomorphisms Ĉ∗A ∼= C∗⊕Hom(A,B∗) and Ĉ∗B ∼= C∗⊕Hom(B,A∗).
It follows from diagram (C.55) and Eqs. (C.54) and (C.51) that, in terms of these decom-
positions, the isomorphism Z is given by, for (κ, σ1) ∈ C∗ ⊕Hom(A,B∗),

Z(κ, σ1) = (κ, σ∗1). (C.62)
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On the other hand, since υA = −Id, where υA is the vector bundle morphism induced on
the side bundle A by ΥA, we get

Υ̂A(ι(σ1))(a) = ΥA ◦ ι(σ1) ◦ υ−1
A (a) = Υ ◦ ι(σ1)(−a)

= ΥA(0A(−a) +
C∗
σ1(−a)) = 0A(a) +

C∗
(−σ1)(a),

whence, in terms of the decomposition,

Υ̂A(κ, σ1) = (κ,−σ1).

From (C.25) it follows that, in terms of the decomposition,

T−1 ◦ Υ̂A(κ, σ1) = ∆(κ,−σ1) = (κ, σ∗1). (C.63)

From (C.62) and (C.63) it follows (C.61).
�

Remark C.37. In particular we obtained the formula

T = Υ̂A ◦ Z−1

which expresses T without the need of an auxiliary decomposition. Of course in order to
obtain T corresponding to the linear bundle Â as in Prop. C.17, we must begin with the
right double vector bundle, namely, D∗B, and C∗ playing the role of A. Applying Prop.

C.36 to this DVB instead of D, we obtain the formula, this time for T : Â // Â∗, the
precise map of Prop. C.17,

Z = T−1 ◦ (Υ̂C∗),

where Z is the isomorphism given in Prop. C.33, but this time D∗B is playing the role of

D, so that now Z is an isomorphism between ÂC∗ , the linear bundle of (D∗B)∗C∗ , and ÂB,
the linear bundle of (D∗B)∗B

∼= D. Thus, the formula for T is

T = Υ̂C∗ ◦ Z−1. (C.64)

We saw in Prop. C.18 and Rmk. C.19 that under certain circumstances, a DVB
morphism induces a vector bundle morphism on the corresponding linear bundles. The
process described there requires that the base morphism is a bijection. The problem is
that we are inducing the morphism on the “functorialy wrong” linear bundle. The double-
linear bundle enables to establish an induced morphism on the “right” linear bundle, for
any given DVB morphism. This is what we address in the following proposition.

Proposition C.38. Let Φ : (D;A,B;M)C // (D′;A′, B′;M ′)C′ be a double vector mor-

phism. Then, Φ induces a vector bundle morphism Φ̂ : (Ĉ∗B)∗ // (Ĉ ′∗B′)
∗, over ϕM .

Explicitly, using the identification (C.46), let η ∈ C∞lin(D)∗m, then we define Φ̂(η) ∈
C∞lin(D′)∗ϕM (m) by

〈Φ̂(η), ν ′〉 := 〈η,Φ∗ν ′〉, (C.65)
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where ν ′ ∈ C∞lin(D′)ϕM (m), and Φ∗ν ′ ∈ C∞lin(D)m is defined as usual by Φ∗ν ′(d) := ν ′(Φ(d)).

The following diagram commutes:

C

ϕC

��

p∗
// (Ĉ∗B)∗

Φ̂
��

ι∗ // A⊗B

ϕA⊗ϕB
��

C ′
p′∗

// (Ĉ ′∗B′)
∗ ι′∗ // A′ ⊗B′

, (C.66)

where we are identifying C ∼= C∗∗, C ′ ∼= C ′∗∗, (A∗⊗B∗)∗ ∼= A⊗B and (A′∗⊗B′∗)∗ ∼= A′⊗B′
in the canonical way.

Proof. It is evident that (C.65) determines a well-defined vector bundle morphism Φ̂ :

(Ĉ∗B)∗ //(Ĉ ′∗B′)
∗ over ϕM . So we only need to check that the diagram (C.66) commutes,

which consists, under the identification (C.46), of straightforward computations:

• for c ∈ Cm and η′ ∈ C∞lin(D′)∗ϕM(m) we have

〈Φ̂ ◦ p∗(c), η′〉 = 〈p∗(c),Φ∗η′〉 = Φ∗η′(c) = η′(Φ(c)) = η′(ϕC(c))

= 〈p′∗(ϕC(c)), η′〉,

thence, Φ̂ ◦ p∗(c) = p′∗(ϕC(c)).

• for η ∈ C∞lin(D)∗m and λ′ ∈ (A′∗ ⊗B′∗)ϕM(m) we have

〈ι′∗ ◦ Φ̂(η), λ′〉 = 〈ι′(λ′), Φ̂(η)〉 = 〈η,Φ∗ι′(λ′)〉.

On the other hand,

〈ϕA ⊗ ϕB ◦ ι∗(η), λ′〉 = 〈η, ι((ϕ∗A ⊗ ϕ∗B)m(λ′))〉.

Thus, in order to show that ι′∗ ◦ Φ̂(η) = ϕA ⊗ ϕB ◦ ι∗(η) it suffices to show

Φ∗ι′(λ′) = ι((ϕ∗A ⊗ ϕ∗B)m(λ′)). (C.67)

So let d ∈ Dm, we have

Φ∗ι′(λ′)(d) = ι′(λ′)(Φ(d)) = 〈λ′, qA(Φ(d))⊗ qB(Φ(d))〉
= 〈λ′, ϕA(qA(d))⊗ ϕB(qB(d))〉 = 〈(ϕ∗A ⊗ ϕ∗B)m(λ′), qA(d)⊗ qB(d)〉
= ι((ϕ∗A ⊗ ϕ∗B)m(λ′))(d),

which gives (C.67).

�
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Remark C.39. If Φ1 : D // D′ and Φ2 : D′ // D′′ are DVB morphisms, then the
corresponding induced morphisms given by Prop. C.38 satisfy

Φ̂2 ◦ Φ1 = Φ̂2 ◦ Φ̂1.

Indeed, let η ∈ C∞lin(D)∗ and ν ′′ ∈ C∞lin(D′′), then

〈Φ̂2 ◦ Φ1(η), ν ′′〉 = 〈η, (Φ2 ◦ Φ1)∗(ν ′′)〉
= 〈η,Φ∗1(Φ∗2(ν ′′))〉

= 〈Φ̂1(η),Φ∗2(ν ′′)〉

= 〈Φ̂2(Φ̂1(η)), ν ′′〉.

When Φ : D // D′ is an isomorphism, there rises the natural question about the
relation of the induced morphism of Prop. C.38 and the induced morphism given in Cor.
C.20. We answer this in the next proposition.

Proposition C.40. If Φ : (D;A,B;M)C // (D′;A′, B′;M ′)C′ is an isomorphism, then
the following diagram commutes

C∞lin(D′)

ZA′
��

Φ∗ // C∞lin(D)

ZA
��

Ĉ ′∗A′
Φ̂∗A // Ĉ∗A

, (C.68)

where Φ̂∗A : Ĉ ′∗A′ // Ĉ∗A is the vector bundle isomorphism induced by Φ that was given
in Cor. C.20, but here we are choosing the side bundle A instead of B.

Proof. On one hand, by Cor. C.20 we have

Φ̂∗A(σ′) = Φ∗A ◦ σ′ ◦ ϕA, ∀ σ′ ∈ Ĉ ′∗A′ ,

whereby, for every d ∈ D

〈Φ̂∗A ◦ ZA′(ν
′)(qA(d)), d〉A = 〈σν′A′ ◦ ϕA(qA(d)),Φ(d)〉 = ν ′(Φ(d)).

On the other hand,

〈ZA ◦ Φ∗(ν ′)(qA(d)), d〉A = Φ∗(ν ′(d)) = ν ′(Φ(d)),

thus we conclude that Φ̂∗A ◦ ZA′ = ZA ◦ Φ∗(ν ′).
�

Proposition C.41. If, in the situation of Prop. C.38, we choose decompositions D ∼=
A⊕B⊕C and D′ ∼= A′⊕B′⊕C ′, which in turn induce decompositions C∞lin(D)∗ ∼= A⊗B⊕C
and C∞lin(D′)∗ ∼= A′ ⊗B′ ⊕ C ′, then the induced morphism Φ̂ has the expression

Φ̂(η, c) = ((ϕA ⊗ ϕB)(η), ϕC(c) + Ψ(η)), η ∈ A⊗B, c ∈ C, (C.69)

where Ψ : A⊗B // C ′, is given in the expression of Φ in Cor. A.24.
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Proof. First notice that, from Eqs. (C.46), (C.10) and (C.54), we have that the horizontal
lift of (C.45), induced by the decomposition, is given by

ψ : C∗ // C∞lin(D)

κ // q∗C(κ), q∗C(κ)(d) = 〈κ, qC(d)〉.

Analogously, ψ′ : (C ′)∗ // C∞lin(D′) is given by q∗C′ .
Now, given (λ′, κ′) ∈ (A′)∗⊗ (B′)∗⊕ (C ′)∗, on one hand, by Cor. A.24 and Eq. (C.50),

we have

Φ∗(ι′(λ′))(d) = ι′(λ′)(Φ(a, b, c)) = ι′(λ′)(ϕA(a), ϕB(b), ϕC(c) + Ψ(a, b))

= 〈λ′, ϕA(a)⊗ ϕB(b)〉
= λ′, ϕA ⊗ ϕB(a⊗ b)〉
= (ϕA ⊗ ϕB)∗(λ′)(d).

On the other hand

Φ∗(ψ′(κ′)) = ψ′(κ′)(Φ(a, b, c)) = ψ′(κ′)(ϕA(a), ϕB(b), ϕC(c) + Ψ(a, b))

= 〈κ′, ϕC(c) + Ψ(a, b)〉
= ϕ∗C(κ′)(qC(d)) + Ψ(κ′)(a⊗ b)
= ψ(ϕ∗C(κ′))(d) + Ψ(κ′)(d),

where we are identifying Ψ ∈ Hom(A ⊗ B,C ′) ∼= A∗ ⊗ B∗ ⊗ (C ′)∗ ∼= Hom(C ′, A∗ ⊗ B∗).
Therefore from the two equations above we obtain

Φ∗(λ′ + κ′) = (ϕA ⊗ ϕB)∗(λ′) + Ψ(κ′) + ϕ∗C(κ′),

whereby, for η ∈ A ⊗ B and c ∈ C, and denoting the induced horizontal lift by ψ̃ :
A⊗B // C∞lin(D)∗, we get

〈Φ̂(p∗(c) + ψ̃(η)), ι′(λ′) + ψ′(κ′)〉 = 〈p∗(c) + ψ̃(η), ι′((ϕA ⊗ ϕB)∗(λ′) + Ψ(κ′)) + ψ′(ϕ∗C(κ′))〉
= 〈(ϕA ⊗ ϕB(η), λ′〉+ 〈Ψ(η), κ′〉+ 〈ϕC(c), κ′〉

= 〈p∗(ϕC(c) + Ψ(η)) + ψ̃((ϕA ⊗ ϕB)(η)), ι′(λ′) + ψ′(κ′)〉.

Thus, Φ̂(c, η) = ((ϕA ⊗ ϕB)(η), ϕC(c) + Ψ(η)).
�

C.6 The Whitney sum in the DVB category

In this section we briefly discuss the Whitney sum of two DVB’s over a common side
bundle. We describe its second side bundle, the core and linear bundles, and the induced
horizontal lifts. The main reason we introduce this material is to understand the main
example that prompts the main aspects of the theory developed in this work: TA⊕

A
T ∗A.
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Proposition C.42. Let (D;A,B;M)C and (D′;A,B′;M)C′ be double vector bundles with
one side bundle in common, A. Then the pull-back bundle

D ×
(qA,A,q

′
A)
D′,

denoted simply by D ⊕
A
D′ is again a double vector bundle with side bundles A and

B ×
(qB ,M,qB′ )

B′ = B ⊕B′, and core bundle C ×
(qC ,M,qC′ )

C ′ = C ⊕ C ′.

Proof. We need to describe the vector bundle structure over B ⊕B′. The projection is

qB⊕B′ := (qB, qB′),

and the zero section is given by

0B⊕B′ := (0̃B, 0̃B′),

where

0̃B : B ⊕B′
pr1
// B

0B
// D,

0̃B′ : B ⊕B′
pr2
// B′

0B′
// D′.

Now, for (d1, d
′
1), (d2, d

′
2), with qB⊕B′(d1, d

′
1) = qB⊕B′(d2, d

′
2), addition is given by

(d1, d
′
1) +

B⊕B′
(d2, d

′
2) := (d1 +

B
d2, d

′
1 +
B′
d′2).

It is easy to verify that adapted coordinate systems for D and D′ provide an adapted
coordinate system for D×

A
D′. From this observation follows the rest of the statement. �

Proposition C.43. Let D,D′ be double vector bundles with a common side bundle, A.
Then there is a natural isomorphism

Γlin((D ×
A
D′)B⊕B′) ∼= Γlin(DB)×

A
Γlin(D′B′), (C.70)

where

Γlin(DB)×
A

Γlin(D′B′) := {(σ, σ′) ∈ Γlin(DB)× Γlin(D′B′)|qA ◦ σ = q′A ◦ σ′}.

Consider the linear bundles corresponding to Γlin(DB) and Γlin(D′B′), respectively, fitting
in the exact sequences

B∗ ⊗ C
ι
// Â

p
// A, (B′)∗ ⊗ C ′

ι′
// Â′

p′
// A.

Then the pull-back bundle
Â ×

(p,A,p′)
Â′,
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which we will denote simply by Â×
A
Â′, fits in the exact sequence

(B∗ ⊗ C)⊕ ((B′)∗ ⊗ C ′)
(ι̃,ι̃′)
// Â ×

(p,A,p′)
Â′

π
// A,

where
ι̃ = ι ◦ pr1 : (B∗ ⊗ C)⊕ ((B′)∗ ⊗ C ′) // Â,

ι̃′ = ι ◦ pr2 : (B∗ ⊗ C)⊕ ((B′)∗ ⊗ C ′) // Â′

and
π = p ◦ pr1 = p′ ◦ pr2.

Finally, there is a canonical 1:1 correspondence between pairs of horizontal lifts ψ,ψ′ of
Â and Â′, respectively, and horizontal lifts

(ψ,ψ′) : A // Â×
A
Â′.

Proof. The proof consists in very simple verifications that we leave as an exercise.
�

The following corollary is an immediate consequence of Prop. C.43, and its proof again
we leave as a simple verification exercise.

Corollary C.44. The linear bundle corresponding to Γlin((D ×
A
D′)B⊕B′) is given by

(B∗ ⊗ C ′)⊕ ((B′)∗ ⊗ C)⊕ (Â×
A
Â′),

the corresponding linear sequence is

(B ⊕B′)∗ ⊗ (C ⊕ C ′) // (B∗ ⊗ C ′)⊕ ((B′)∗ ⊗ C)⊕ (Â×
A
Â′) //A

and a horizontal lift of this sequence is equivalent to a pair of horizontal lifts (ψ,ψ′) of Â

and Â′, respectively.

�



Appendix D

Double Realization

In Prop. C.38 we saw that the right vector bundle which “reads” the information of a
double vector bundle is the dual of the double-linear bundle:

C∞lin(D)∗ ∼= (Ĉ∗A)∗ ∼= (Ĉ∗B)∗,

since it is in this bundle that we can naturally induce a vector bundle morphism from a
DVB morphism. This motivates the introduction of the concept of a DVB-sequence. The
material on this appendix is based, up to some changes on the emphasis and the approach,
on [12].

D.1 Double vector sequences and the double realization pro-
cess

Definition D.1. An exact sequence of vector bundles over M ,

0 // C
ι−→ Ω

p−→ A⊗B // 0 (D.1)

over the identity map IdM is called a double vector sequence, or briefly a DVB sequence,
and will be denoted by (Ω //A⊗B;M)C .

We refer to A,B as side bundles, and C the core. We usually identify C with ι(C).

Definition D.2. A morphism of DVB sequences, or simply a DVS morphism

(Φ;ϕA, ϕB;ϕM ) : (Ω
p−→ A⊗B;M)C // (Ω′

p′−→ A′ ⊗B′;M ′)C′ ,

consists of maps Φ : Ω // Ω′, ϕA : A // A′, ϕB : B // B′ and ϕM : M //M ′, each of
(Φ, ϕM ), (ϕA, ϕM ), (ϕB, ϕM ) is a morphism of the relevant vector bundles, such that the
diagram

Ω
p−−−−→ A⊗B

Φ

y yϕA⊗ϕB
Ω′

p′−−−−→ A′ ⊗B′

(D.2)

commutes.

234
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Remark D.3. In the definition above, ϕC := Φ|C is also a morphism of vector bundles
over ϕM .

DVB sequences together with the above morphisms form a category.

Proposition D.4 ([12]). Given a double vector sequence (Ω
p−→ A⊗B;M)C , there is an

associated double vector bundle

D(Ω)

qA

��

qB // B

qB

��

C

A
qA

//M

Here D(Ω) is given by

D(Ω) = {(ω, a, b) ∈ Ω⊕A⊕B|p(ω) = a⊗ b}.

The projections are given by

qA(ω, a, b) = a; qB(ω, a, b) = b.

Proof. First let’s show that D(Ω) // A is a vector bundle. Consider the vector bundle
over A: Ω⊕A⊕B //A, and the map

p̃ :Ω⊕A⊕B // (qA)∗(A⊗B), (D.3)

(ω, a, b) // (a, p(ω)− a⊗ b). (D.4)

p̃ is a vector bundle map over IdA, since

p̃((ω1, a, b1) +
A

(ω2, a, b2)) = p̃(ω1 + ω2, a, b1 + b2)

= (a, p(ω1 + ω2)− a⊗ (b1 + b2))

= (a, p(ω1) + p(ω2)− (a⊗ b1 + a⊗ b2))

= (a, p(ω1)− a⊗ b1) +
A

(a, p(ω2)− a⊗ b2)

= p̃(ω1, a, b1) +
A
p̃(ω2, a, b2).

Also, since p is surjective, it follows that im(p̃|Ω⊕A) = (qA)∗(A⊗B), and

ker p̃ = D(Ω),

which implies that D(Ω) //A is a vector bundle. Analogously it is shown that D(Ω) //B
is a vector bundle.

The zero sections are

0A(a) = (0, a, 0); 0B(b) = (0, 0, b).
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The compatibility of the projections is easily verified:

qA((ω1, a1, b) +
B

(ω2, a2, b)) = qA(ω1 + ω2, a1 + a2, b) = a1 + a2

= qA(ω1, a1, b) + qA(ω2, a2, b).

Finally, the interchange law again is easy:

((ω1, a1, b1) +
A

(ω2, a1, b2)) +
B

((ω3, a2, b1) +
A

(ω4, a2, b2)) =

= (ω1 + ω2, a1, b1 + b2) +
B

(ω3 + ω4, a2, b1 + b2)

= (ω1 + ω2 + ω3 + ω4, a1 + a2, b1 + b2)

= (ω1 + ω3, a1 + a2, b1) +
A

(ω2 + ω4, a1 + a2, b2)

= ((ω1, a1, b1) +
B

(ω3, a2, b1)) +
A

((ω2, a1, b2) +
B

(ω4, a2, b2)).

It remains to show that the core bundle is C, which follows from observing that
(ω, a, b) ∈ ker qA ∩ qB if and only if a = b = 0 and p(ω) = 0, that is, if and only if
(ω, a, b) = (ι(c), 0, 0) for some c ∈ C.

�

Proposition D.5 ([12]). For any morphism of double vector sequences

(Φ;ϕA, ϕB;ϕM ) : (Ω
p−→ A⊗B;M)C // (Ω′

p′−→ A′ ⊗B′;M ′)C′ ,

define D(Φ) : D(Ω) //D(Ω′) by

D(Φ)(ω, a, b) = (Φ(ω), ϕA(a), ϕB(b)),

for any (ω, a, b) ∈ D(Ω). Then

(D(Φ);ϕA, ϕB;ϕM )

is a morphism of double vector bundles.

Proof. First we need to check that D(Φ) is well-defined. Let (ω, a, b) ∈ D(Ω), then
p(ω) = a⊗ b. Since the diagram (D.2) commutes, we have

p′(Φ(ω)) = (ϕA ⊗ ϕB)(p(ω)) = (ϕA ⊗ ϕB)(a⊗ b)
= ϕA(a)⊗ ϕB(b).

Thus (Φ(ω), ϕA(a), ϕB(b)) ∈ D(Ω′), and so D(Φ) is well-defined indeed.
The verifications that D(Φ) is a vector bundle morphism with respect to both struc-

tures follow directly from the definitions.
�
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D.2 The inverse process

Recall that we have a process to pass from a double vector bundle (D;A,B;M)C to a
DVB sequence, namely considering the transpose of the sequence (C.45):

0 // C // C∞lin(D)∗ //A⊗B // 0,

On the other hand, we saw in the previous section a process to pass from a DVB sequence

(Ω
p
// A ⊗ B;M)C to a double vector bundle, given by Prop. D.4, D(Ω). In the next

proposition we show that these two processes are mutually inverse.

Proposition D.6. Let (Ω
p
// A⊗B;M)C be a double vector sequence. Then there is a

canonical isomorphism

(C∞lin(D(Ω))∗
p
// A⊗B) ∼= (Ω

p
// A⊗B). (D.5)

Conversely, if (D;A,B;M)C is a double vector bundle, then there is a canonical double
vector bundle isomorphism

D(C∞lin(D)∗) ∼= D. (D.6)

Proof. In order to prove (D.5), we will build a map Φ : Ω∗ //C∞lin(D(Ω)) and verify that
it is a vector bundle isomorphism over the identity, which induces a DVS isomorphism

(Φ∗; IdA, IdB; IdM ) : (C∞lin(D(Ω))∗
p
// A⊗B)

∼=
// (Ω

p
// A⊗B). (D.7)

Given ξ ∈ Ω∗m, m ∈M , define

Φ(ξ) = νξ ∈ C∞lin(D(Ω))m, νξ(ω, a, b) := ξ(ω), ∀(ω, a, b) ∈ D(Ω)m.

Let’s check that νξ is actually a double linear function in D(Ω)m.

νξ((ω1, a1, b) +
B

(ω2, a2, b)) = νξ(ω1 + ω2, a1 + a2, b) = ξ(ω1 + ω2)

= ξ(ω1) + ξ(ω2) = νξ(ω1, a1, b) + νξ(ω2, a2, b).

Linearity with respect to the structure over A is analogous.
Hence the map Φ is well-defined. To verify that it is a vector bundle morphism, we

compute

νξ1+ξ2(ω, a, b) = (ξ1 + ξ2)(ω) = ξ1(ω) + ξ2(ω) = νξ1(ω, a, b) + νξ2(ω, a, b).

Thus Φ is a vector bundle morphism over IdM . Since Ω∗ and C∞lin(D(Ω)) have the same
rank, in order to check that Φ is an isomorphism, it remains to check only injectivity.
For this purpose, let’s take bases {ai} and {bj} for Am and Bm, for some m ∈ M . Since
p : Ω //A⊗B is surjective, we can find also find ωij ∈ Ωm such that p(ωij) = ai⊗ bj . We
complete to a base {ωij , ck} for Ωm, where {ck} is a base for ker pm. Then, if Φ(ξ) = νξ = 0
for some ξ ∈ Ω∗, we get

ξ(ωij) = νξ(ωij , ai, bj) = 0 and ξ(ck) = νξ(ck, 0, 0) = 0,
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which implies ξ = 0.
Thus, Φ is a vector bundle isomorphism. To check that (Φ∗, IdA, IdB, IdM ) in (D.7) is

a DVS isomorphism, we need to check commutativity of the diagram

C∞lin(D(Ω))∗
ι∗−−−−→ A⊗B

Φ∗
y yId

Ω
p−−−−→ A⊗B.

For η ∈ C∞lin(D(Ω))∗ and λ ∈ A∗ ⊗B∗ we have

〈p ◦ Φ∗(η), λ〉 = 〈η,Φ ◦ p∗(λ)〉. (D.8)

On the other hand
〈ι∗(η), λ〉 = 〈η, ι(λ)〉. (D.9)

Then we need to show that Φ ◦ p∗(λ) = ι(λ) ∀λ ∈ A∗ ⊗B∗. Now,

Φ ◦ p∗(λ)(ω, a, b) = 〈p∗(λ)ω〉 = 〈λ, p(ω)〉
= 〈λ, a⊗ b〉 = 〈λ, qA(ω, a, b)⊗ qB(ω, a, b)〉
= ι(λ)(ω, a, b),

as we wanted.
Now, given a double vector bundle (D;A,B;M)C , we want to show (D.6). So, now we

need a map Φ : D //D(C∞lin(D)∗). Recall that

D(C∞lin(D)∗) = {(η, a, b) ∈ C∞lin(D)∗ ⊕A⊕B|ι∗(η) = a⊗ b}.

For m ∈ M , let d ∈ Dm with qA(d) = a and qB(d) = b. Define η ∈ C∞lin(D)∗m,
depending on d ∈ Dm, by

〈η, µ〉 := µ(d), ∀µ ∈ C∞lin(D)m.

We claim that (η, a, b) ∈ D(C∞lin(D)∗)m. We need to verify ι∗(η) = a ⊗ b. So let
λ ∈ A∗ ⊗B∗, and compute

〈ι∗(η), λ〉 = 〈ι(λ), η〉 = ι(λ)(d) = 〈qA(d)⊗ qB(d), λ〉 = 〈a⊗ b, λ〉.

Hence, we have a well-defined map Φ : D //D(C∞lin(D)∗). Directly from the definition we
see that Φ preserves both fibrations. It also preserves the linear structures, since

Φ(d1 +
A
d2) = (η, a, b1 + b2),

where η(µ) = µ(d1 +
A
d2) = µ(d1) + µ(d2) =: η1 + η2. Then

Φ(d1 +
A
d2) = (η1 + η2, a, b1 + b2) = (η1, a, b1) + (η2, a, b2) = Φ(d1) +

A
Φ(d2).

Analogously, we have Φ(d1 +
B
d2) = Φ(d1) +

B
Φ(d2).
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Now, since, by definition of Φ, ϕA = IdA and ϕB = IdB, in order to show that Φ is an
isomorphism, it suffices to show that ϕC = IdC . Let c ∈ Cm ⊂ Dm, then qA(c) = 0A(m)
and qB(c) = 0B(m). Define η ∈ C∞lin(D)∗m by 〈η, µ〉 := µ(c), for every µ ∈ C∞lin(D)m.
Since ι∗(η) = 0, it follows that η ∈ ker ι∗ = p∗(C∗∗) ∼= C. Under this identification, the
definition of η shows that η = c. Thus, taking that identification into account, we have
Φ(c) = (c, 0, 0), which means that ϕC = IdC . Therefore Φ is a double vector bundle
isomorphism.

�

Corollary D.7. Given an exact sequence of vector bundles

0 //B∗ ⊗ C // Â //A // 0, (D.10)

there is a unique, up to canonical isomorphisms, DVB

D(Â)

qA

��

qB // B

qB

��

C

A
qA

//M

such that its linear bundle corresponding to Γlin(DB) is (canonically isomorphic to) Â.

Proof. Consider the transpose of (D.10)

0 //A∗ // Â∗ //B ⊗ C∗.

Then, by Prop. D.4, we obtain a double vector bundle

D(Â∗)

qB

��

qC∗ // C∗

qC
∗

��

A∗

B
qB

//M

By Prop. D.6, we have C∞lin(D(Â∗))∗ ∼= Â∗, thus C∞lin(D(Â∗)) ∼= Â. Then, by Prop.

C.32, the linear bundle corresponding to Γlin(D(Â∗)∗B) is isomorphic to Â. Therefore,

D(Â) := D(Â∗)∗B satisfies the requirements of the statement.
�

With the above material at hand (Props. D.4 and D.6), the following proposition,
which establishes the equivalence of categories between double vector bundles and DVB
sequences, becomes an exercise in category theory. A proof can be found in [12]. This
result will allow to obtain the equivalence between the category of degree 2 manifolds and
the category of involutive DVB’s in Sec. 3.3.
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Theorem D.8 ([12]). The correspondence

D : (Ω
p−→ A⊗B;M)C  (D(Ω);A,B;M)C

D : (Φ;ϕA, ϕB;ϕM )  (D(Φ);ϕA, ϕB;ϕM )

is a covariant functor from the category of double vector sequences to the category of double
vector bundles.

The correspondence given in Prop. C.38,

S : (D;A,B;M)C  (C∞lin(D)∗
p−→ A⊗B;M)C

S : (Φ;ϕA, ϕB;ϕM ) (Φ̂;ϕA, ϕB;ϕM )

is a covariant functor from the category of double vector bundles to the category of double
vector sequences.

These functors give an equivalence of categories, that is, there are natural transforma-
tions

δ : IdDV B //D ◦S and ε : S ◦D // IdDV S ,

where IdDV B is the identity functor on the category of double vector bundles, and IdDV S
is the identity functor on the category of double vector sequences.

Definition D.9. The functor D is called double realization.



Appendix E

More on VB-algebroids and
representations up to homotopy

In this appendix we expand, providing full details, the recent theory of VB -algebroids
and (2-term) representations up to homotopy (see Sec. 2.2), developed in [23]. The
characterization of VB -algebroids in terms of data on a linear bundle and its core bundle
(Prop. E.9), is the inspiration, and guide, to characterize NQ degree 2 manifolds in terms
of geometric data in Ch. 4. Also the duality theory, which we develop thoroughly in Sec.
E.3, will enable us to characterize degree −2 Poisson brackets on a degree 2 manifold, in
terms of the so-called metric VB-algebroid introduced in D. Li-Bland’s thesis [41], and
treated through splittings by M. Jotz in [29], where they actually receive this name.

E.1 Structure of VB-algebroids

In view of Thm. D.8, it is natural to have a characterization of VB -algebroids in terms
of the exact sequence (C.1). In the next proposition we give the first step towards such
characterization, which will be given in Prop. E.9.

Proposition E.1 ([23]). Consider a VB-algebroid, and its linear bundle Â. Under the
isomorphism Γlin(DB) ∼= Γ(Â), given in Prop. C.2, we can endow Â with a natural Lie
algebroid structure, with bracket [·, ·]

Â
and anchor ρ

Â
given by

[X,Y ]
Â

:= [X,Y ]D,

ρ
Â

(X) := ρA(α), (E.1)

where X projects over α ∈ Γ(A).
Moreover, since [X,Y ] is a linear section over p([X,Y ]) ∈ Γ(A) we can endow A with

a natural Lie algebroid structure with anchor ρA and brackets given by

[α1, α2]A := p([α̂1, α̂2]
Â

), (E.2)

where α̂i ∈ Γ(DB) is any horizontal lift of αi.
In particular, the map p : Â //A is a Lie algebroid morphism, and the exact sequence

(C.1) becomes a Lie algebroid sequence.

241
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Proof. The proof consists of simple verifications. Here we carry out only the less obvious
ones. Let f ∈ C∞(M), then, since ρD : D // TB is a vector bundle morphism over
ρA : A // TM , and committing some abuse of notation because of the identification
Γlin(DB) ∼= Γ(Â), we have

[X, fY ]
Â

= [X, ((qB)∗f)Y ]D = ((qB)∗f)[X,Y ]D + ρD(X)((qB)∗f)Y

= f [X,Y ]
Â

+ ρA(α)(f)Y

= f [X,Y ]
Â

+ ρ
Â

(X)(f)Y.

Hence ([·, ·]
Â
, ρ
Â

) actually provides a Lie algebroid structure on Â.

We claim that ιA(B∗ ⊗ C) ⊂ Â is a Lie algebroid ideal. By linearity and Leibniz
rule of [·, ·]

Â
, it is enough to show the assertion for elements of the form ιA(β ⊗ c), with

β ∈ Γ(B∗) and c ∈ Γ(C). But in this situation, by definition it follows that ιA(β ⊗ c)
is just the product β · c̃, where β is seen as a linear function on B and c̃ is the core
section corresponding to c. Then we can apply the Leibniz rule to get, for X ∈ Γ(Â) with
p(X) = α ∈ Γ(A),

[X, ιA(β ⊗ c)]
Â

= ρD(X)(β) · c̃ + β · [X, c̃]D. (E.3)

Now, since ρD is a double vector bundle morphism, it takes linear sections of DB to linear
sections of TB, which implies that ρD(X) ∈ Γ(TB) is a linear tangent field, which means
that preserves linear functions. Then ρD(X)(β) is again a linear function on B. Thus,

ρD(X)(β) · c̃ ∈ Γ(ιA(B∗ ⊗ C));

also β · [X, c̃]D ∈ Γ(ιA(B∗⊗C)), since [Γlin(DB),Γcore(DB)]D ⊂ Γcore(DB). Hence ιA(B∗⊗
C) is an ideal of Â, as we had asserted.

Noticing that, by (E.1), ιA(B∗⊗C) ⊂ ker ρ
Â

, it follows that A ∼= Â/ ker p = Â/ιA(B∗⊗
C) inherits a natural Lie algebroid structure characterized by the condition that p : Â //A
is a Lie algebroid morphism, which implies in particular that the Lie brackets on A are
given by (E.2) and the anchor is given by ρA.

�

Definition E.2. The vector bundle Â endowed with its Lie algebroid structure is called
the fat algebroid.

Corollary E.3. The vector bundle B∗ ⊗ C inherits a Lie algebroid structure with zero
anchor map, and brackets given by

[φ, φ′] := [ιA(φ), ιA(φ′)]
Â
.

Definition E.4. Recall, from remark 2.11 that ρD : D // TB is a double vector bundle
morphism. Then by Prop. A.9, we have a vector bundle map ρD|C : C // B, where
B ⊂ TB is seen as the “vertical bundle”, which is precisely the core bundle of TB. We
define the core-anchor by ∂ := −ρD|C .
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Proposition E.5 ([23]). The core-anchor ∂ : C //B is given by

(qB)∗〈∂(c), β〉 = −ρD(c̃)(β), (E.4)

for c ∈ Γ(C) and β ∈ Γ(B∗), where the sections of B∗ are identified with the linear
functions on B.

The brackets on B∗ ⊗ C (see Cor. E.3) are given explicitly by

[φ, φ′] = φ∂φ′ − φ′∂φ. (E.5)

Proof. Equation (E.4) follows directly from the definition and the way vertical tangent
vectors act. In order to prove (E.5), we observe, as we did in the proof of Prop. E.1, that
it is enough to prove it for elements of the form β ⊗ c ∈ B∗ ⊗ C, because of linearity and
Leibniz rule of the brackets. Now, by Eq. (E.3), and since [Γcore(DB),Γcore(DB)] = 0, for
φ = β ⊗ c, φ′ = β′ ⊗ c′, we have

[φ, φ′] = [β ⊗ c, β′ ⊗ c′] = ρD(ιA(β ⊗ c))(β′) · c′ + β′ · [ιA(β ⊗ c), c̃′]D

= β · ρD(c̃)(β′)c′ − β′ · ρD(c̃′)(β)c

= −〈∂(c), β′〉β ⊗ c′ + 〈∂(c′), β〉β′ ⊗ c

= φ∂φ′ − φ′∂φ,

as we wanted.
�

E.1.1 Lie algebroid representations; A-connections.

Definition E.6. Let A be a Lie algebroid over M . An A-connection on a vector bundle
E over M is an R-bilinear map ∇ : Γ(A)× Γ(E) // Γ(E), (α, ε) //∇αε such that:

∇fαε = f∇αε, ∇αfε = f∇αε+ ρ(α)(f)ε,

for all f ∈ C∞(M), ε ∈ Γ(E) and α ∈ Γ(A). The A-curvature of ∇ is the tensor given by

R∇(α, β)(ε) := ∇α∇βε−∇β∇αε−∇[α,β]ε,

for all α, β ∈ Γ(A), ε ∈ Γ(E). The A-connection ∇ is called flat if R∇ = 0. A represen-
tation of A is a vector bundle E together with a flat A-connection ∇ on E.

Proposition E.7 ([23]). The fat algebroid has natural representations (flat connections)
ζC and ζB

∗
on C and B∗, respectively, given by

ζ̃CX(c) := [X, c̃]D, (E.6)

ζB
∗

X (β) := ρD(X)(β), (E.7)

for X ∈ Γ(Â), c ∈ Γ(C) and β ∈ Γ(B∗), where, for c ∈ Γ(C), c̃ ∈ Γcore(DB) is the
corresponding core section.

Dualizing the representation ζB
∗

to a representation ζB on B by
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〈ζBX(b), β〉 := ρ
Â

(X)〈b, β〉 − 〈b, ζB∗X (β)〉, (E.8)

we obtain the following relations between ζC and ζB:

∂ζCX = ζBX∂; (E.9)

φζBX − ζCXφ = [φ,X]
Â
, (E.10)

for all X ∈ Γ(Â) and φ ∈ Hom(B,C) ∼= B∗ ⊗ C.

Proof. For f ∈ C∞(M), note that fX ∈ Γ(Â) corresponds, under the isomorphism Γ(Â) ∼=
Γlin(DB), to ((qB)∗f)X ∈ Γlin(DB). Similarly, under the isomorphism Γ(C) ∼= Γcore(C),
fc ∈ Γ(C) corresponds to ((qB)∗f)c̃ ∈ Γcore(DB). Then, using Leibniz rule we have

ζ̃CfX(c) = [((qB)∗f)X, c̃]D = ((qB)∗f)[X, c̃]D − ρD(c̃)((qB)∗f)X = ((qB)∗f)[X, c̃],

for ρD(c) is a vertical field on TB, and (qB)∗f is constant on fibers. Thus ζCfX = fζCX .
Again by Leibniz rule,

ζ̃CX(fc) = [X, ((qB)∗f)c̃]D = ρD(X)((qB)∗f)c̃ + ((qB)∗f)[X, c]

= ˜ρ
Â

(X)(f)c + f̃ [X, c].

Hence, ζCX(fc) = ρ
Â

(X)(f)c+fζCX(c). Finally, from the Jacobi property for [·, ·]D it follows

that ζC is actually a Lie algebroid representation of Â on C, that is, a flat Â-connection
on C.

Now, let’s see that the equation for ζB
∗

also defines a flat Â-connection, this time on
B∗. We already observed in the proof of Prop. E.1 that since ρD(X) is a linear vector
field for X ∈ Γlin(DB), it preserves linear functions. Now let’s compute

ζB
∗

fX(β) = ρD(((qB)∗f)X)(β) = ((qB)∗(f))ρD(X)(β) = fζB
∗

X (β),

where the last equality needs to be well understood, since we are committing an abuse of
notation, that comes from the identification of sections of B∗ with linear functions on B.
Next we verify Leibniz rule, where we will commit the same abuse of notation

ζB
∗

X (fβ) = ρD(X)(((qB)∗f)β) = ρD(X)((qB)∗f)β + ((qB)∗f)ρD(X)(β)

= ρ
Â

(X)(f)β + fζB
∗

X (β).

Since ρD : DB
//TB preserves Lie brackets, it also follows that ζB

∗
is a flat Â-connection

on B∗.
Finally let’s prove (E.9) and (E.10).

〈∂ζCX(c), β〉 = 〈∂([X, c̃]D, β〉 = −ρD([X, c̃]D)(β)

= −[ρD(X), ρD(c̃)](β) = −ρD(X)ρD(c̃)(β) + ρD(c̃)ρD(X)(β)

= ρD(X)〈∂(c), β〉 − 〈∂(c), ζB
∗

X (β)〉
= 〈ζBX(∂(c)), β〉,
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thence follows (E.9).
Next, in order to avoid confusion due to our abuse of denoting by the same symbol a

section X ∈ Γ(Â) and its corresponding induced linear section of DB, we will introduce
the distinction similar to the one we have been making between sections of C and the
corresponding induced core section of DB. Namely, for X ∈ Γ(Â) we denote by X̃ ∈
Γlin(DB) the corresponding linear section. Analogously, we will denote by f̃ := (qB)∗f
the function on B which corresponds to f ∈ C∞(M). With this arrangement, we are in
conditions to perform the necessary calculations which will lead to (E.10) with, hopefully,
reasonable clarity.

By linearity, it is enough to prove (E.10) for φ = fβ ⊗ c, with, as usual, f ∈ C∞(M),
β ∈ Γ(B∗) and c ∈ Γ(C). First, observe that (E.10) is equivalent to

φ̃ζBX(b)− ˜ζCXφ(b) = ˜[φ,X]
Â

(b). (E.11)

So, we begin computing the left hand-side of the equation above.

φ̃ζBX(b)− ˜ζCXφ(b) =f̃ ˜〈ζBX(b), β〉c̃− [X̃, f̃〈β,b〉c̃]D = f̃ρD(X̃)〈̃b, β〉c̃− f̃ ˜〈b, ρD(X̃)(β)〉c̃

− ρD(X̃)(f̃)〈̃β,b〉c̃− f̃ρD(X̃)(〈̃β,b〉)c̃− f̃〈β,b〉[X̃, c̃]D

= −f̃ ˜〈b, ρD(X̃)(β)〉c̃− ρD(X̃)(f̃)〈̃β,b〉c̃− f̃〈β,b〉[X̃, c̃]D.

Now, computing the right hand-side of (E.11) we have

˜[φ,X]
Â

= [ ˜ιA(fβ ⊗ c), X̃]D

= −ρD(X̃)(f̃)β · c̃− f̃ρD(X̃)(β)c̃− f̃β · [X̃, c̃]D,

hence

˜[φ,X]
Â

(b) = −ρD(X̃)(f̃)〈β,b〉c̃− f̃ ˜〈ρD(X̃)(β),b〉c̃− f̃〈β,b〉[X̃, c̃]D.

Comparing both sides we obtain (E.11).
�

Proposition E.8 ([23]). The representations of Â introduced on Prop. E.7, can be pulled
back to representations of B∗ ⊗ C ∼= Hom(B,C), θCφ , θ

B
φ , on C and B, respectively.

Explicitly, these representations are given by

θCφ (c) = φ ◦ ∂(c);

θBφ (b) = ∂ ◦ φ(b),

for φ ∈ Hom(B,C), c ∈ Γ(C), and b ∈ Γ(B).

Proof. By C∞(M)-linearity, it is enough to proof the proposition for φ = β1 ⊗ c1. We
have

θ̃Cφ (c) = ˜ζCιA(φ)(c) = [ι̃A(φ), c̃]D = [β1 · c̃1, c̃]D

= −ρD(c̃)(β1) · c̃1 = ˜〈∂(c), β1〉c̃1

= ˜φ ◦ ∂(c).
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Thus follows θCφ (c) = φ ◦ ∂(c).

To compute θB recall that ιA(B∗ ⊗ C) ⊂ ker ρ
Â

, so we have

〈θBφ (b), β〉 = 〈ζBιA(φ)(b), β〉 = −〈b, ρD(β1 · c̃1)(β)〉

= −〈b, β1〉ρD(c̃1)(β)

= 〈b, β1〉〈∂(c1), β〉.

Hence, θBφ (b) = ∂ ◦ φ(b).
�

Finally we are able to give the announced characterization of a VB -algebroid structure
in terms of data on the exact sequence (C.1) and the core bundle.

Proposition E.9. There is a canonical 1:1 correspondence between V B-algebroids struc-
tures on the double vector bundle (D;A,B;M)C (over B) and the following structure on
the exact sequence (C.1):

• an anchor map ρ : A // TM ,

• a Lie algebroid structure ([·, ·], ρ̂) on Â,

• a core map ∂ : C //B,

• and two Lie algebroid representations

ζC :Â //CDO(C) and ζB :Â //CDO(B)

X // ζCX X // ζBX .

These structure data are related by:

1. ρ̂ = ρ ◦ pA, where pA : Â //A is the projection,

2. ∂ζCX = ζBX∂,

3. [X,φ] = ζCXφ− φζBX ,

4. ζCφ = φ ◦ ∂ and ζBφ = ∂ ◦ φ,

for all X ∈ Γ(Â) and φ ∈ Γ(B∗ ⊗ C) ∼= Γ(Hom(B,C)) ⊂ Γ(Â).

Proof. If DB is endowed with a V B-algebroid structure, we have already obtained the
structure data of the statement, and showed that relations 1, 2, 3 and 4 are satisfied. So
let’s see that we can build the inverse process.

Given a sequence like (C.1), by the double realization process we can find the corre-
sponding double vector bundle (D;A,B;M)C such that Γ(Â) ∼= Γlin(DB).

In order to define the anchor map ρD : DB
// TB, it is enough to set its action on

core and linear sections (cf. lemma C.26). Define

ρD(c) := −∂c ∈ Γ(B) ∼= Γcore(TB); and ρD(X) := ζBX ∈ Γ(CDO(B)) ∼= Γlin(TB),
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for all c ∈ Γ(C) ∼= Γcore(DB) and X ∈ Γ(Â) ∼= Γlin(DB).
Also the brackets [·, ·] on Γ(DB) will be completely determined by their action on core

and linear sections (see Rmk. 2.12). Because of the identification Γ(Â) ∼= Γlin(DB) we
have already defined the brackets for linear sections. For the other cases define

[c1, c2] := 0 and [X, c] := ζCX(c),

for all c, c1, c2 ∈ Γ(C) ∼= Γcore(DB), X ∈ Γ(Â) ∼= Γlin(DB). It is easy to see that conditions
1, 2, 3 and 4 imply the Lie algebroid structure conditions for ([·, ·]D, ρD).

�

E.2 Horizontal lifts and Representations up to homotopy

The aim of this section is to show how 2-term representations up to homotopy come
into scene after introducing a decomposition on a VB -algebroid, and moreover, we show
that once we fix a decomposition, there is a canonical 1:1 correspondence between VB -
algebroid structures on D ∼= A ⊕ B ⊕ C and representations up to homotopy of A on

C
∂
// B[1], cf. Thm. E.21.

In the end we construct the Whitney sum of two VB -algebroids and describe its corre-
sponding representation up to homotopy after introducing decompositions on the respec-
tive VB -algebroids.

E.2.1 Horizontal lifts

Definition E.10. Let (D, [·, ·]D, ρD) be a VB-algebroid. Consider the fat bundle Â and
a horizontal lift ψ : A // Â. We can pull-back the Â-connections ζC and ζB by ψ to
induced A-connections ∇C and ∇B on C and B, respectively. If we denote ψ(X) = X̂,
for X ∈ Γ(A), we have

∇CX := ζC
X̂

; ∇BX := ζB
X̂
. (E.12)

Remark E.11. The induced connections ∇C and ∇B depend on the choice of the hori-
zontal lift.

Corollary E.12 ([23]). The following equations hold

∂ ◦ ∇CX = ∇BX ◦ ∂ (E.13)

φ ◦ ∇BX −∇CX ◦ φ = [φ, X̂], (E.14)

for X ∈ Γ(A) and φ ∈ Hom(B,C).

Proof. Follows directly from Eqs. (E.9) and (E.10).
�

Proposition E.13 ([23]). Define K ∈ Ω2(A; Hom(B,C)) by

K(X,Y ) := ̂[X,Y ]A − [X̂, Ŷ ]
Â
, (E.15)
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for X,Y ∈ Γ(A). Then

R∇C (X,Y ) = −θCK(X,Y ) = −K(X,Y ) ◦ ∂, (E.16)

R∇B (X,Y ) = −θBK(X,Y ) = −∂ ◦K(X,Y ), (E.17)∑
cyclic

([X̂,K(Y,Z)]−K([X,Y ], Z)) = 0, (E.18)

for X,Y, Z ∈ Γ(A), where R∇C and R∇B are, respectively, the curvatures of the connec-
tions ∇C and ∇B, and we are omitting the suffixes for the brackets in (E.18) for sake of
clearness.

Proof. First notice that K indeed takes values on Hom(B,C), since, by the definition of
[·, ·]A we have

p(K(X,Y )) = [X,Y ]A − [X,Y ]A = 0.

Next,

R∇C (X,Y )(c̃) = ∇CX∇CY c̃−∇CY∇CX c̃−∇[X,Y ]c̃

= [X̂, [Ŷ , c̃]]− [Ŷ , [X̂, c̃]]− [[̂X,Y ], c̃]

= [[X̂, Ŷ ], c̃]− [[̂X,Y ], c̃]

= [− ˜K(X,Y ), c̃] = −θCK(X,Y )(c̃).

Now, to prove (E.17), recall that ιA(B∗ ⊗ C) ⊂ ker ρ
Â

. In order to perform the
calculations in a reasonably clean way, the linear sections corresponding to sections of the
form X̂ ∈ Γ(Â) will be denoted the same, being clear from the context that the section is
actually a section in Γlin(DB) instead of Γ(Â).

〈−θBK(X,Y )(b), β〉 = −〈b,−ρD( ˜K(X,Y ))(β)〉 = −〈b, ρD([X̂, Ŷ ]− [̂X,Y ])(β)〉

= −〈b, ρD(X̂)(ρD(Ŷ )(β))〉+ 〈b, ρD(Ŷ )(ρD(X̂)(β))〉+ 〈b, ρD([[̂X,Y ])(β)〉

= 〈∇BXb, ρD(Ŷ )(β)〉 − 〈∇BY b, ρD(X̂)(β)〉 − 〈∇B[X,Y ]b, β〉

= −〈∇BY∇BXb, β〉+ 〈∇BX∇BY b, β〉 − 〈∇B[X,Y ]b, β〉

= 〈R∇B (X,Y )(b), β〉.

Finally, by Jacobi identity for both [·, ·]
Â

and [·, ·]A, and taking into account that∑
cyclic

[X̂, [̂Y,Z]] =
∑
cyclic

[Ẑ, [̂X,Y ]],

we have∑
cyclic

([X̂,K(Y, Z)]−K([X,Y ], Z)) =
∑
cyclic

([X̂, [̂Y,Z]− [Ŷ , Ẑ]]− ̂[[X,Y ], Z] + [[̂X,Y ], Ẑ])

= −
∑
cyclic

[X̂, [Ŷ , Ẑ]]−
∑
cyclic

̂[[X,Y ], Z] +
∑
cyclic

[X̂, [̂Y, Z]] +
∑
cyclic

[[̂X,Y ], Ẑ]

= −
∑
cyclic

[X̂, [Ŷ , Ẑ]]−
∑
cyclic

̂[[X,Y ], Z] = 0.



E.2. HORIZONTAL LIFTS AND REPRESENTATIONS UP TO HOMOTOPY 249

�

Definition E.14. We refer to the 2-form K ∈ Ω2(A; Hom(B,C)) as the curvature form
corresponding to the V B-algebroid DB.

E.2.2 Representations up to homotopy

Now we will introduce the concept of a representation up to homotopy. We need some
preliminary remarks.

Let
E =

⊕
n

En

be a graded vector bundle and A a Lie algebroid. Then the space of E-valued A-differential
forms, Ω(A;E), is graded by total degree:

Ω(A;E) =
⊕
i+j=p

Ωi(A;Ej). (E.19)

The space Ω(A;E) is naturally endowed with a Ω(A)-module structure, given by

ωη(α1, . . . , αp+q) =
∑

sgn(σ)ω(ασ(1), . . . , ασ(p))η(ασ(p+1), . . . , ασ(p+q)), (E.20)

for ω ∈ Ωp(A), η ∈ Ωq(A;E), where the sum is over all (p, q)-shuffles.
Let E,F be graded vector bundles. We can form the new graded space Hom(E,F )

of degree-preserving morphisms, whose degree k part, denoted by Homk(E,F ), consists
of vector bundle maps which increase the degree by k. Then Ω(A; Hom(E,F )) is also
endowed with the graded structure given by (E.19), with Hom(E,F ) instead of E.

There is another natural wedge product type map

· ∧ · : Ω(A; End(E))⊗ Ω(A;E) // Ω(A;E),

which, for T ∈ Ωp(A; Endk(E)), η ∈ Ωq(A;E), is given by

T ∧ η(α1, . . . , αp+q) =
∑

(−1)qksgn(σ)Tασ(1),...,ασ(p)(η(ασ(p+1), . . . , ασ(p+q))),

where, again, the sum is over all (p, q)-shuffles.

Lemma E.15 ([2]). There is a canonical 1:1 correspondence between degree n elements
of Ω(A; End(E)) and operators F on Ω(A;E) which increase the degree by n and which
are Ω(A)-linear in the graded sense:

F (ω ∧ η) = (−1)n|ω|ω ∧ F (η), ∀ω ∈ Ω(A), η ∈ Ω(A;E).

Explicitly, T ∈ Ω(A,End(E)) induces the operator T̂ given by

T̂ (η) = T ∧ η.



E.2. HORIZONTAL LIFTS AND REPRESENTATIONS UP TO HOMOTOPY 250

Proof. It is a routine to see that the operator T̂ actually defines a degree n, Ω(A)-linear
operator on Ω(A;E), for T ∈ Ω(A; End(E))n. Let’s prove the converse. Since F is Ω(A)-
linear, its action is completely determined by what it does on Ω0(A;E) = Γ(E). Because
F has degree n, it sends each Γ(Ek) into the sum

Γ(Ek+n)⊕ Ω1(A;Ek+n−1)⊕ Ω2(A;Ek+n−2))⊕ . . . .

Denote by F0, F1, F2, . . . the components of F |ΓE . Then we define, for each k, Tk ∈
Ωk(A; Endn−k(E)), by

(Tk)α1,...,αk(ε) := Fk(ε)(α1, . . . , αk) ∈ Γ(E),

for ε ∈ Γ(E) and α1, . . . , αk ∈ Γ(A). By the way we defined Fk, it follows that F = T̂ ,
where

T =
∑
k

Fk ∈ Ω(A; End(E))n.

�

Lemma E.16 ([2]). Given a Lie algebroid A and a vector bundle E over M , there is a
canonical 1:1 correspondence between A-connections ∇ on E and degree +1 operators d∇
on Ω(A;E) which satisfy the derivation rule. Moreover, (E,∇) is a representation if and
only if d2

∇ = 0.

Proof. The operator d∇ is defined, for η ∈ Ωk(A;E) by

d∇η(α1, . . . , αk+1) =
∑
i<j

(−1)i+jη([αi, αj ], . . . , α̂i, . . . , α̂j , . . . , αk+1)

+
∑
i

(−1)i+1∇αiη(α1, . . . , α̂i, . . . , αk+1).

With respect to the product by functions f ∈ C∞(M) the derivation rule reads

d∇(fη) = (dAf)η + fd∇η,

which follows directly from the derivation rule of ∇. For 1-forms ω ∈ Ω1(A), the derivation
rule reads

d∇(ωη) = (dAω)η − ωd∇η,

which follows from the definitions of dA, d∇ and the wedge product (E.20), after a cum-
bersome calculation.

The derivation rule for the general case follows from an inductive argument.
Of course, given d∇, we recover ∇ simply by restriction to 0-forms ε ∈ Ω0(A;E) =

Γ(E).
Now, if d2

∇ = 0, then, for ε ∈ Γ(E), we have

0 = d2
∇ε(α1, α2) = d∇(∇·ε)(α1, α2)

= −∇[α1,α2]ε+∇α1∇α2ε−∇α2∇α1ε = R∇(α1, α2)ε.
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Thus, R∇ = 0. It follows from the same equation above, that if ∇ is flat, then d2
∇ε = 0, for

ε ∈ Γ(E) = Ω0(A;E). By the derivation rule, it follows that for ω ∈ Ωk(A) and ε ∈ Γ(E),

d2
∇(ωε) = d∇((dAω)ε+ (−1)kωd∇ε))

= (d2
Aω)ε+ (−1)k+1(dAω)d∇ε+ (−1)k(dAω)d∇ε+ (−1)2kωd2

∇ε = 0.

Since Ω(A;E) is generated, as an Ω(A)-module, by Γ(E), it follows that d2
∇ = 0.

�

Remark E.17. We will need to recall how to extend d∇ to an operator on Ω(A; End(E)),
where E is a graded vector bundle, in which case, as we already saw, End(E) acquires a
natural grading. This is done demanding the following Leibniz type rule:

d∇(T (ε)) = (d∇T )(ε) + (−1)|T |Td∇ε,

where T ∈ Ω(A; End(E)) and ε ∈ Γ(E), and thus T (ε) ∈ Ω(A;E).

Definition E.18. Let A be a Lie algebroid over M . A representation up to homotopy of
A, also called a degree 1 A-superconnection, consists of a graded vector bundle E over M
and an operator, called the structure operator,

D : Ω(A;E) // Ω(A;E)

which increases the total degree by one and satisfies D2 = 0 and the graded derivation
rule:

D(ωη) = dA(ω)η + (−1)kωD(η)

for all ω ∈ Ωk(A) and η ∈ Ω(A;E), where dA is the associated De-Rham operator on
Ω(A) = Γ(Λ·A∗). The cohomology of the resulting complex is denoted by H•(A;E).

Definition E.19. A morphism Φ : E //F between two representations up to homotopy
of A is a degree zero linear map

Φ : Ω(A;E) // Ω(A;F )

which is Ω(A)-linear and commutes with the structure differentials DE and DF ∗ .

Proposition E.20 ([23],[2]). There is a canonical 1:1 correspondence between represen-
tations up to homotopy (E,D) of A concentrated in two consecutive degrees, say 0 and 1
(so that E is zero in all the other degrees), and the following data

1. Two vector bundles C and B and a vector bundle map ∂ : C //B

2. A-connections on C and B, ∇C and ∇B, compatible with ∂, which means that ∇B∂ =
∂∇C .

3. A 2-form K ∈ Ω2(A; Hom(B,C)), called the curvature form such that

R∇C = −K ◦ ∂, R∇B = −∂ ◦K,
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and
d∇K = 0,

where we are considering ∇ := ∇C +∇B as an A-connection on E := C ⊕ B, and
viewing Hom(B,C) naturally seated in End(E), so that we consider the extension
d∇ to Ω(A; End(E)), and view K as an element in Ω2(A; End(E)).

Proof. We have E = E0 ⊕ E1. Denote E0 = C and E1 = B. Due to the derivation rule
and the fact that Ω(A;E) is generated as an Ω(A)-module by Γ(E), the operator D will
be uniquely determined by what it does on Γ(E), or more precisely, by what it does on C
and B. Since D has total degree 1, we have

D(Γ(C)) ⊂ Γ(B)⊕ Ω(A;C) and D(Γ(B)) ⊂ Ω(A;B)⊕ Ω2(A;C),

hence

D(Ωp(A;C)) ⊂ Ωp(A;B)⊕Ωp+1(A;C) and D(Ωp(A;B)) ⊂ Ωp+1(A;B)⊕Ωp+2(A;C).

Thus, we obtain a decomposition D = D0+D1+D2, such that Di(Ω
p(A;E)) ⊂ Ωp+i(A;E).

From the derivation rule for D, we deduce that Di for i 6= 1 is a (graded) Ω(A)-linear
map, for, if ωη ∈ Ωp(A;Ek), then dA(ω)η ∈ Ωp+1(A;Ek), so that this term corresponds
to the image of D1. By Lemma E.15, it follows that D0 and D2 are given by the wedge
product with an element in Ω(A; End(E)). More precisely, D0 is given by T0 ∈ End1(E)
and D2 is given by T2 ∈ Ω2(A; End−1(E)).

Now, since T0 is of degree 1, it follows that T0(C) ⊂ B and T0(B) = 0, thence T0

is completely determined by the vector bundle morphism ∂ := T0|C : C // B. Analo-
gously, we have a canonical isomorphism End−1(E) ∼= Hom(B,C), so that T2 is completely
determined by an element K ∈ Ω2(A; Hom(B,C)).

On the other hand, D1 satisfies the derivation rule on each of the vector bundles C
and B, then by Lemma E.16, it comes from A-connections on these bundles, ∇C and ∇B,
which put together give an A-connection ∇ := ∇C + ∇B on E := C ⊕ B, which can be
extended to Ω(A; End(E)).

Conversely, given ∂,∇C ,∇B and K, we can form the operator degree 1 operator on
Ω(A;E), D := ∂ + d∇ + K, where ∂ is seen as an element in Ω0(A; End1(E)), K is seen
as an element in Ω2(A; End−1(E)) and d∇ is the extension of ∇ := ∇C +∇B to a degree
1 operator on Ω(A;E). By what we already saw, D defined in this way is a degree 1
operator that satisfies the derivation rule.

Now let’s compute D2c and D2b for c ∈ Γ(C) and b ∈ Γ(B).

D2c = D(∂c + d∇c)

= d∇(∂c) + d2
∇c +K ∧ (∂c)

= (d∇∂) ∧ c− ∂ ∧ (d∇c) +R∇(c) + (K ◦ ∂)(c).

Thus, D2c = 0⇐⇒ ∇B ◦ ∂ = ∂ ◦ ∇C and R∇C = −K ◦ ∂.
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Analogously,

D2b = D(d∇b +K ∧ b)

= d2
∇b + (d∇K) ∧ b−K ∧ (d∇b) + (∂ ∧K) ∧ b +K ∧ (d∇b)

= R∇(b) + (∂ ◦K)(b) + (d∇K)(b),

so that D2b = 0⇐⇒ R∇B = −∂ ◦K and d∇K = 0.
So far we have D2ε = 0 for every ε ∈ Γ(E) if and only if D = ∂ + d∇ +K satisfies the

equations in the statement. Now, for ω ∈ Ωk(A) and ε ∈ Γ(E) we have by the derivation
rule

D2(ωε) = D(dA(ω)ε+ (−1)kωDε)

= d2
A(ω)ε+ (−1)k+1dAωDε+ (−1)kdAωDε+ (−1)2kωD2ε = 0.

Since Ω(A;E) is generated, as an Ω(A)-module by Γ(E) it follows that D2 = 0. There-
fore, D2 = 0 if and only if ∂,∇ and K satisfy the equations in the statement.

�

E.2.3 VB-algebroids ! 2-term representations up to homotopy

Theorem E.21 ([23]). There is a canonical 1:1 correspondence between V B-algebroid
structures on the decomposed double vector bundle A⊕B⊕C, or equivalently between V B-
algebroids D with a splitting, and representations up to homotopy of A on E = E0⊕E1 =
C ⊕B[1].

Proof. Given a V B-algebroid with a splitting, we saw in Prop. E.5, Cor. E.12 and Prop.
E.13 that we obtain the data of the statement in Prop. E.20, so that we get a representation
up to homotopy of A on C ⊕B[1].

Conversely, given a representation up to homotopy of A on C ⊕ B[1], then we need
to build a V B-algebroid structure on D = (qB)∗A⊕

B
(qB)∗C. We will use the data in the

statement of Prop. E.20 to define this structure. Let’s define the anchor map. For a core
section c̃ ∈ Γcore(DB), which corresponds to a section c ∈ Γ(C), we define

ρD(c̃) = −∂̃c ∈ Γvert(TB) = Γcore(TB).

We saw in Prop. C.1 (with a different notation there) that a linear section on D has the
form

X̃(b) = (X(qB(B)), b, φ(b)), that is X̃ = X̂ +
B
ι(φ),

where X ∈ Γ(A) and φ ∈ Γ(Hom(B,C)). We define

ρD(X̃) := ∇B∗X −
B
∂∗ ◦ φ∗ ∈ Γlin(TB),

where ∇B∗ is the dual A-connection of ∇B (with respect to ρA). By lemma C.26, ρD
is completely determined by knowing its action on core and linear sections. Namely, let
d = (a, b, c) ∈ D, then consider a linear section X̃ ∈ Γlin(DB) with X̃(b) = (a, b, 0),
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which is the horizontal lift of a section X ∈ Γ(A), and a core section c̃ ∈ Γcore(DB) with
c̃(b) = (0, b, c), coming from a section c ∈ Γ(C), then

ρD(d) = −
B
∂(c) +

B
∇B∗X .

Also from Prop. C.27 it follows that ρD is a double vector bundle morphism.
Now we define [·, ·]D satisfying the conditions of Def. 2.10. From remark 2.12 it suffices

to define it for core and linear sections. For c̃1, c̃2 ∈ Γcore(DB) we define

[c̃1, c̃2]D := 0;

for X̃ = X̂ +
B
ι(φ) ∈ Γlin(DB) and c̃ ∈ Γcore(DB), we define

[X̃, c̃]D := ∇̃CXc +
B

˜φ ◦ ∂(c)

Next, for X̃1 = X̂1, X̃2 = X̂2 ∈ Γlin(DB), we define

[X̃1, X̃2]D := ̂[X1, X2]A −
B
K(X,Y );

for X̃1 = X̂ and X̃2 = ι(φ), we define

[X̃1, X̃2]D := ι(∇CX ◦ φ)−
B
ι(φ ◦ ∇BX);

finally, for X̃1 = ι(φ1) and X̃2 = ι(φ2), we define

[X̃1, X̃2]D := ι(φ1 ◦ ∂ ◦ φ2 − φ2 ◦ ∂ ◦ φ1).

As we already saw, the equations above are satisfied when the structure data ∂,∇C ,∇B
and K come from a V B-algebroid. It follows that the structure defined by them satisfy
the axioms of a Lie algebroid, and of course, the conditions of a V B-algebroid.

�

E.2.4 The Whitney sum of two VB-algebroids

Proposition E.22. Let (D, [·, ·]D, ρD) and (D′, [·, ·]D′ , ρD′) be two VB-algebroids, such
that the induced Lie algebroid on the side bundle is the same for both VB-algebroids,
(A, [·, ·], ρ). Then there is a natural VB-algebroid structure on the pull-back bundle (see
Prop. C.42)

D ⊕
A
D′,

such that for any horizontal lift (ψ,ψ′) of the corresponding linear sequence (see Cor.
C.44), the induced representation up to homotopy is the sum of the corresponding repre-
sentations induced by (D,ψ) and (D′, ψ′) (in the proof it is made precise what we mean
with the sum of the two representations).
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Proof. We will use Prop. E.9 to define a VB -algebroid structure on D ⊕
A
D′. We already

have, by hypothesis, the anchor map ρ : A // TM .
The core map ∂ : C ⊕ C ′ //B ⊕B′ we define by

∂(c, c′) = (∂D(c), ∂D′(c
′)), (E.21)

where ∂D, ∂D′ are the core maps of D and D′, respectively.
Now we need to define brackets on the linear bundle, which, by Cor. C.44, is given by

(B∗ ⊗ C ′)⊕ ((B′)∗ ⊗ C)⊕ (Â×
A
Â′).

By definition, a section of Â ×
A
Â′ is a pair of sections (X,Y ) of Â and Â′, respectively,

such that
p ◦X = p′ ◦ Y.

We define, for sections (X1, Y1), (X2, Y2) ∈ Â×
A
Â′,

[(X1, Y1), (X2, Y2)] := ([X1, X2]D, [Y1, Y2]D′). (E.22)

For φ1, φ2 ∈ (B∗ ⊗ C ′)⊕ ((B′)∗ ⊗ C) ⊂ Hom((B ⊕B′)∗, (C ⊕ C ′)) we define

[φ1, φ2] := φ1 ◦ ∂ ◦ φ2 − φ2 ◦ ∂ ◦ φ1.

It remains to define [(X,Y ), φ] for (X,Y ) ∈ Â×
A
Â′ and φ ∈ (B∗ ⊗ C ′)⊕ ((B′)∗ ⊗ C).

First we need to define Lie algebroid representations ζC⊕C
′

: Â ×
A
Â′ // CDO(C ⊕ C ′)

and ζB⊕B
′

: Â×
A
Â′ //CDO(B ⊕B′). Set

ζC⊕C
′

(X,Y )(c, c
′) := (ζCX , ζ

C′
Y )(c′) and ζB⊕B

′

(X,Y ) (b,b′) := (ζBX , ζ
B′
Y )(b′). (E.23)

Now we define
[(X,Y ), φ] := ζC⊕C

′

(X,Y )φ− φζ
B⊕B′
(X,Y ) . (E.24)

The last ingredient to have the data required by Prop. E.9 is to define ζB⊕B
′

and
ζC⊕C

′
on (B∗ ⊗ C)⊕ ((B′)∗ ⊗ C). We do it in the natural way:

ζC⊕C
′

φ := φ ◦ ∂ and ζB⊕B
′

φ := ∂ ◦ φ. (E.25)

By construction, and because D and D′ are already VB -algebroids, it follows that the
data defined above satisfy conditions 1., 2., 3. and 4. of Prop. E.9, and thus we have a
VB -algebroid structure on D ⊕

A
D′.

Now let ψ,ψ′ be horizontal lifts for Â and Â′, respectively. Then, by Thm. E.21, we
obtain two representations up to homotopy, corresponding to the VB -algebroid structures
on D and D′, respectively, which are given by, according to Prop.E.20,

∂ +∇+K and partial′ +∇′ +K ′, (E.26)
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respectively.
Let’s denote by Ã the linear bundle corresponding to (D ⊕

A
D′)B⊕B′ , so that

Ã := (B∗ ⊗ C ′)⊕ ((B′)∗ ⊗ C)⊕ (Â×
A
Â′).

By Cor. C.44, (ψ,ψ′) provides a horizontal lift for Ã, and the VB -algebroid structure we
just obtained on D ⊕

A
D′ thereby induces a representation up to homotopy of A on

(C ⊕ C ′)⊕ (B ⊕B′)[1] ∼= (C ⊕B[1])⊕ (C ′ ⊕B′[1]),

denoted by D̃, which can be seen therefore as an operator on

Ω(A; (C ⊕B[1])⊕ (C ′ ⊕B′[1]),

so that D̃ decomposes in to components

D̃ = (D1, D2),

with D1 taking values on C ⊕B[1] and D2 taking values on C ′ ⊕B′[1].
We claim that D1 and D2 are the representations up to homotopy corrsponding to the

VB -algebroids on D and D′, respectively, that is, we have

D̃ = ∂̃ + ∇̃+ K̃

= (∂, ∂′) + (∇,∇′) + (K,K ′).

We already obtained ∂̃ = (∂, ∂′) in Eq. (E.21). Also, ∇̃ = (∇,∇′) follows immediately
from the fact that the horizontal lift is given by (ψ,ψ′) and from Eq. (E.23). So it remains
to check that K̃ = (K,K ′). We have

K̃(X,Y ) = (ψ([X,Y ]), ψ′([X,Y ])− [(ψ(X), ψ′(X)), (ψ(Y ), ψ′(Y ))]

= (ψ([X,Y ]), ψ′([X,Y ]))− ([ψ(X), ψ(Y )]D, [ψ
′(X), ψ′(Y )]D′

= (ψ([X,Y ])− [ψ(X), ψ(Y )]D, ψ
′([X,Y ])− [ψ′(X), ψ′(Y )]D′)

= (K(X,Y ),K ′(X,Y )).

�

E.3 Duality

E.3.1 The dual VB-algebroid

In this subsection we show characterize a VB -algebroid structure in terms of its dual
Poisson structure, which leads to the discovery of a second VB -algebroid structure on the
dual with respect to the second fibration of the VB -algebroid. We describe in some detail
this structure, which is dual to the first in a sense that we will make precise in terms of
the corresponding representation up to homotopy in the next subsection. Finally we are
able to characterize a VB -algebroid isomorphism in terms of its transpose.
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Definition E.23. A Poisson structure on a double vector bundle (D;A,B;M) is called
double-linear Poisson structure if it is linear with respect to both fibrations: the one over
A and the one over B.

The following characterization of a VB -algebroid structure in terms of a double-linear
Poisson structure on the dual provides a great insight. We take it from [23], although we
provide more details in the proof.

Proposition E.24 ([23]). A double vector bundle (D;A,B;M)C , such that DB is equipped
with a Lie algebroid structure, satisfies the VB-algebroid compatibility conditions if and
only if the induced Poisson structure on D∗B is linear over C∗. Therefore, there is a canon-
ical 1:1 correspondence between VB-algebroid structures on D and double-linear Poisson
structures on D∗B.

Proof. We can work locally. Take an adapted coordinate system, given by Cor. A.20,
{xi, βb, αa, κc} in D∗B

∼= B ⊕A∗ ⊕ C∗.
The functions αa are double-linear, then we can identify them with linear sections of

DB, whence, if DB is equipped with a Lie algebroid structure, {αa, αã} is also a linear
section of DB, thus a double-linear function on D∗B, in particular linear over C∗.

Next, we claim that the functions κc, restricted to a slice (D∗B)m are identified with
elements in C ⊂ DB. Recall that, for d ∈ (D∗B)m, with πC∗(d) = κ,

〈c, d〉B = 〈c, κ〉.

We define cκc ∈ Dm by
〈cκc , d〉B := κc(d).

In order to verify that this equation actually defines an element in C ⊂ D, we need to
check

• κc(d1 +
B
d2) = κc(d1) + κc(d2)

• If πC∗(d1) = πC∗(d2), then κc(d1) = κc(d2).

Both conditions are satisfied since κc are adapted coordinates. Hence, the functions κc are
canonically identified with core sections in DB, and actually, any core section is a linear
combination of the κc’s. Then

{αa, κc} = µc(x)κc.

The remaining cases are easy to compute:
{αa, βb} = ρ(αa)(βb) = βbµb(x), for the anchor is a double vector bundle morphism

and so ρ(α) is a linear tangent field on B;

{κc, κc̃} = 0; {αa, xi} = ρai (x); {κc, xi} = {βb, β b̃} = {βb, xi} = {xi, xj} = 0.

Hence, the induced Poisson brackets {·, ·} from the Lie algebroid structure on DB are
linear over C∗. We also see that, conversely, if the Poisson brackets {·, ·} induced from
a Lie algebroid structure on DB are linear over C∗, then they must satisfy the equations
above and therefore the Lie algebroid structure is actually a VB -algebroid structure.
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�

A first –and perhaps the most important– by-product of the above characterization is
the occurrence of a dual (in a sense clarified later, cf. Thm. E.32) VB -algebroid structure
associated to a given VB -algebroid.

Corollary E.25 ([23]). A VB-algebroid structure on DB induces a dual VB-algebroid
structure on (D∗B)∗C∗, which in turn induces an isomorphic VB-algebroid structure on D∗A
over C∗ via the isomorphism ΥC∗, given in Prop. B.13, with D∗B playing the role of D
(see Rmk. C.37).

Proof. Since the induced Poisson structure on D∗B is linear with respect to the vector
bundle structure over C∗, it induces a Lie algebroid structure on (D∗B)∗C∗ , and since the
Poisson structure is double-linear, the Lie algebroid structure is actually a VB -algebroid
structure.

�

Remark E.26. It is useful to write down the explicit formulas for the VB -algebroid
structure on (D∗B)∗C∗ and on D∗A in terms of the VB -algebroid structure on D. We will use
the isomorphisms ZB and ZA introduced in (C.52) and (C.53), respectively, but in this
case D∗B plays the role of D, in particular C∗ plays the role of A and B plays the role of
A.

a) Let X ∈ Γlin((D∗B)∗C∗) = Γ(ÂC∗) and f ∈ C∞(M), then

ρ(D∗B)∗
C∗

(X)(f) = {Z−1
C∗ (X), f} = ρD(ZB ◦ Z−1

C∗ (X))(f) = ρD(Z(X))(f).

b) Let β ∈ Γ(B∗) and c ∈ Γ(C), then

ρ(D∗B)∗
C∗

(β)(c) = {β, c} = −ρD(c)(β).

c) ρ(D∗B)∗
C∗

(X)(c) = {Z−1
C∗ (X), c} = [ZB ◦ Z−1

C∗ (X), c]D = [Z−1(X), c]D.

d) [X,β](D∗B)∗
C∗

= {Z−1
C∗ (X), β} = ρD(ZB ◦ Z−1

C∗ (X))(β) = ρD(Z−1(X))(β).

e) Finally, for X,Y ∈ Γ(ÂC∗),

[X,Y ](D∗B)∗
C∗

= ZC∗({Z−1
C∗ (X), Z−1

C∗ (Y )}) = ZC∗ ◦ Z−1
B ([ZB ◦ Z−1

C∗ (X), ZB ◦ Z−1
C∗ (Y )])

= Z([Z−1(X), Z−1(Y )]).

From the expressions above, we readily obtain the description of the VB -algebroid
structure on D∗A obtained from (D∗B)∗C∗ by the isomorphism ΥC∗ . We just need to keep in
mind that ΥC∗ is the identity on A and B∗ and it is −Id on C∗, and also recall Eq. (C.64)
from Rmk. C.37. Identifying Γ(C) with Γcore(DB) and Γ(B∗) with Γcore(D

∗
A) in order to

avoid writing annoying long bars as the ones that appear in items c) and d) above, we
have the following:

ρD∗A(X)(f) = ρD(T−1(X))(f); ρD∗A(β)(c) = ρD(c)(β); ρD∗A(X)(c) = [T−1(X), c]D;

[X,β]D∗A = ρD(T−1(X))(β); [X,Y ]D∗A = T [T−1(X), T−1(Y )]D.

(E.27)
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Definition E.27. Let D,D′ be two VB -algebroids. A VB-algebroid morphism from D to
D′ is a DVB morphism Φ : D //D′ that is also a Lie algebroid morphism.

Remark E.28. See [47] for the definition of Lie algebroid morphism. In the case that we
have a Lie algebroid isomorphism (Φ, ϕ) : A //A′:

A

π
��

Φ // A′

π′

��

M
ϕ
//M ′

,

we can talk about the push forward Φ∗ : Γ(A) //Γ(A′) on sections and ϕ∗ : X(M) //X(M ′)
on vector fields, given by

Φ∗(X)(m′) = Φ(X(ϕ−1(m′))) and ϕ∗(V )(m′) = dϕ(V )(ϕ−1(m′)),

for every X ∈ Γ(A), V ∈ X(M) and m′ ∈ M ′. In this situation, Φ is a Lie algebroid
morphism if and only if

ϕ∗(ρA(X))(f) = ρA′(Φ∗(X))(f), ∀ X ∈ Γ(A), f ∈ C∞(M ′) (E.28)

and
Φ∗([X,Y ]A) = [Φ∗(X),Φ∗(Y )]A′ , ∀ X,Y ∈ Γ(A). (E.29)

In the case of VB -algebroids, by Rmk. 2.12 we can spell out the condition of being a
Lie algebroid isomorphism by the following equations, which involve only linear and core
sections and fiberwise linear and constant functions:

a) (ϕM )∗(ρDB (X))(f) = ρD′
B′

(Φ̂B(X))(f); (ϕB)∗(ρDB (X))(β′) = ρD′
B′

(Φ̂B(X))(β′);

(ϕB)∗(ρDB (c))(β′) = ρD′
B′

(ϕC(c))(β′);

b) ϕC([X, c]DB ) = [Φ̂B(X), ϕC(c)]D′
B′

; Φ̂B([X,Y ]DB ) = [Φ̂B(X), Φ̂B(Y )]D′
B′

.

Observe that we are identifying a fiberwise constant function on DB with a function f ∈
C∞(M). For such functions we have ρDB (X)(f) = ρA(qA(X))(f), where ρA : A // TM
is the base morphism corresponding to ρDB : DA

//TBTM given in Def. 2.10. Therefore,
it makes sense the expression

(ϕM )∗(ρDB (X))

on the first equation of item a) above, and it reads (ϕM )∗(ρA(qA(X))).

Proposition E.29. A map Φ : D // D′ between two VB-algebroids is a VB-algebroid
isomorphism if and only if Φ∗A : (D′)∗A′

//D∗A is a VB-algebroid isomorphism.

Proof. By the the involutivity of dualization, it is enough to prove one way of the state-
ment, that is, to prove that if Φ : D //D′ is a VB -algebroid isomorphism, then

Φ∗A : (D′)∗A′
//D∗A



E.3. DUALITY 260

is a VB -algebroid isomorphism, that is, Φ∗A satisfies satisfies the equations of items a) and
b) of Rmk. E.28 above. We will use repeatedly those equations applied to Φ, Eqs. E.27,
Eq. (C.33) of Prop. C.22, Cor. B.3 and the following identity for the push-forward of
vector fields:

ϕ∗(X)(f) = (ϕ−1)∗(X(ϕ∗(f))),

which follows immediately from the definitions. So let’s begin the computations.

•

(ϕ−1
M )∗

(
ρ(D′)∗

A′
(X ′)

)
(f ′) = (ϕM )∗

(
ρ(D′)∗

A′
(X ′)((ϕ−1

M )∗(f ′))
)

= (ϕM )∗
(
ρD′

B′
((T ′)−1(X ′))((ϕ−1

M )∗(f ′))
)

= (ϕM )∗(ϕ−1
M )∗

(
ρDB (Φ̂−1

B ◦ (T ′)−1(X ′))(ϕ∗M ((ϕ−1
M )∗(f ′)))

)
= ρD∗A(T ◦ Φ̂−1

B ◦ (T ′)(X ′))(f ′)

= ρD∗A(Φ̂∗A(X ′))(f ′).

•

(ϕ∗C)∗

(
ρ(D′)∗

A′
(X ′)

)
(c) = ϕ−1

C

(
ρ(D′)∗

A′
(X ′)(ϕC(c))

)
= ϕ−1

C

(
[(T ′)−1(X ′), ϕC(c)]

)
D′
B′

= ϕ−1
C ◦ ϕC

(
[Φ̂−1
B ◦ (T ′)−1(X ′), c]DB

)
= ρD∗A(T ◦ Φ̂−1

B ◦ (T ′)−1(X ′))(c)

= ρD∗A(Φ̂∗A(X ′))(c).

•

(ϕ∗C)∗

(
ρ(D′)∗

A′
(β′))

)
(c) = (ϕM )∗

(
ρ(D′)∗

A′
(β′)(ϕC(c))

)
= (ϕM )∗

(
ρD′

B′
(ϕC(c))(β′)

)
= (ϕM )∗ ◦ (ϕ−1

M )∗
(
ρDB (c)((ϕB)∗(β′))

)
= ρD∗A((ϕB)∗(β′))(c).

•

(ϕB)∗
(

[X ′, β′](D′)∗
A′

)
= (ϕB)∗

(
ρD′

B′
((T ′)−1(X ′))(β′)

)
= (ϕB)∗ ◦ (ϕ−1

B )∗
(
ρDB (Φ̂−1

B ◦ (T ′)−1(X ′))((ϕB)∗(β′))
)

= [T ◦ Φ̂−1
B ◦ (T ′)−1(X ′), (ϕB)∗(β′)]D∗A

= [Φ̂∗A(X ′), (ϕB)∗(β′)]D∗A .
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•

Φ̂∗A

(
[X ′, Y ′](D′)∗

A′

)
= Φ̂∗A ◦ T

′
(

[(T ′)−1(X ′), (T ′)−1(Y ′)](D′
B′

)
= Φ̂∗A ◦ T

′ ◦ Φ̂B

(
[Φ̂−1
B ◦ (T ′)−1(X ′), Φ̂−1

B ◦ (T ′)−1(Y ′)]DB

)
= T

(
[Φ̂−1
B ◦ (T ′)−1(X ′), Φ̂−1

B (T ′)−1(Y ′)]DB

)
= [T ◦ Φ̂−1

B ◦ (T ′)−1(X ′), T ◦ Φ̂−1
B (T ′)−1(Y ′)]D∗A

= [Φ̂∗A(X ′), Φ̂∗A(Y ′)]D∗A .

Therefore Φ∗A satisfies the equations of items a) and b) of Rmk. E.28, and thus we conclude
that it is a VB -algebroid isomorphism.

�

E.3.2 The dual representation up to homotopy

In this subsection we introduce the notion of duality between to representations up to
homotopy. The main result (Thm. E.32) we show is that, given a VB -algebroid structure
onDB, the representation up to homotopy corresponding to the dual VB -algebroid (D∗A)C∗

(see Cor. E.25) is dual to the representation corresponding to DB. This result does not
appear in [23], and is instrumental for the geometric characterization of -2 Poisson brackets
we provide in terms of metric VB -algebroids (Thm. 6.14). After we obtained this result,
we learned that it was independently obtained by T. Drummond, M. Jotz and C. Ortiz,
[18].

Definition E.30. Let (E,D) be a representation up to homotopy of a Lie algebroid A.
We define the dual representation (E∗, D∗), where E∗ is simply the dual (graded) vector
bundle, and D∗ is characterized by the condition

dA(ν ∧ η) = D∗(ν) ∧ η + (−1)|ν|ν ∧D(η), (E.30)

for all η ∈ Ω(A;E) and ν ∈ Ω(A;E∗), where ∧ is the operation

Ω(A;E∗)⊗ Ω(A;E) // Ω(A)

such that, for ν ∈ Ωp(A; (E∗)j), η ∈ Ωq(A;Ek), ν ∧ η ∈ Ωp+q(A) is given by

(α1, . . . , αp+q) //
∑

(−1)qjsgn(σ)〈ν(ασ(1), . . . , ασ(p)), η(ασ(p+1), . . . , ασ(p+q))〉,

where 〈·, ·〉 is the duality pairing between E∗ and E, and the sum is taken, as usual, over
all (p, q)-shuffles.

Proposition E.31. Let (E,D) be a representation up to homotopy of A, concentrated in
degrees 0 and 1. We saw in Prop. E.20 that E = C ⊕ B[1] and D = ∂ +∇ + K, where
∇ = ∇C +∇B. Now Consider the dual representation D∗ on E∗ = B∗[−1]⊕ C∗. Then

D∗ = ∂∗ +∇∗ −K∗.
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Proof. By Prop. E.20, we have D∗ = ∂′ +∇′ + K ′. We will use Eq. (E.30) to compute
∂′,∇′ and K ′. Let ε ∈ Γ(E) and ε∗ ∈ Γ(E∗), then

dA〈ε∗, ε〉 = D∗(ε∗) ∧ ε+ (−1)|ε
∗|ε∗ ∧D(ε) (E.31)

=⇒ ρA(X)〈ε∗, ε〉 = 〈∇′Xε∗, ε〉+ (−1)|ε
∗|(−1)|ε

∗|·1〈ε∗,∇Xε〉
= 〈∇′Xε∗, ε〉+ 〈ε∗,∇Xε〉,

thence, ∇′ = ∇∗. From Eq. (E.31) we also obtain, for c ∈ Γ(C) and b∗ ∈ Γ(B∗[−1])

0 = 〈∂′(b∗), c〉+ (−1)|b
∗|〈b∗, ∂(c)〉

= 〈∂′(b∗), c〉 − 〈b∗, ∂(c)〉,

thence, ∂′ = ∂∗.
Finally, to compute K ′ we use again Eq. (E.31) with c∗ ∈ Γ(C∗) and b ∈ Γ(B[1]). We

have, for X1, X2 ∈ Γ(A),

0 = K ′(c∗) ∧ b + (−1)|c
∗|c∗ ∧K(b)

=⇒ 0 = 〈K ′(X1, X2)(c∗),b〉+ 〈c∗,K(X1, X2)(b)〉,

whence K ′ = −K∗.
�

The

Theorem E.32. Let D be a V B-algebroid. If we choose a splitting (or equivalently a
horizontal lift) θ, then by Theorem E.21 we obtain a representation up to homotopy of A
on E = C ⊕B[1]. By Corollary E.25 we have an induced V B-algebroid structure on D∗A.

By Cor. B.7, θ induces a splitting θ̃A for the corresponding dual D∗A (and also a splitting θ̃B
for D∗B). In this way, again by Theorem E.21, we obtain a representation up to homotopy
of A on E∗ = B∗[−1] ⊕ C∗. We assert that the Lie algebroid structure on A induced by
the V B-algebroid structure on D∗A coincides with the Lie algebroid structure induced by
the V B-algebroid structure on D, and the representation up to homotopy obtained on E∗

coincides with the representation dual to the representation D on E.

Remark E.33. Be careful, we are using the same symbol D to denote in one occasion
a double vector bundle and in another a representation up to homotopy. However, the
context makes it clear which object we are referring to in each situation.

Proof. The induced VB -algebroid structure is obtained from the isomorphism

ΥC∗ : (D∗B)∗C∗ //D∗A,

which corresponds to the isomorphism ΥA, given in Prop. B.13, being that in our situation
D∗B plays the role of D. This isomorphism is the identity on the sides A //A and on the
cores B∗ //B∗, while it is −Id on the side bundles C∗ // C∗.

We need to prove two things: that the Lie algebroid structures induced on A by DB

and (D∗B)∗C∗ coincide, and that the assertion in the statement about the duality relation
between the corresponding representations up to homotopy holds.
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Let’s begin proving the equality of the Lie algebroid structures on A.
If we denote by ÂC∗ the linear bundle corresponding to (D∗B)∗C∗ , from (C.55) with D∗B

playing the role of D, so that Â plays the role of Ĉ∗A and ÂC∗ plays the role of Ĉ∗B, we
obtain

p
ÂC∗

= ∗ ◦ p
Â
◦ Z−1,

thence, denoting by ÂA the linear bundle corresponding to (D∗A)C∗ ,

p
ÂA

= ΥC∗ ◦ ∗ ◦ pÂ ◦ Z
−1 = − ∗ ◦p

Â
◦ Z−1.

Now, identifying, as usual, sections of the linear bundle with linear sections of the corre-
sponding double vector bundle, and also sections of A with the corresponding horizontal
lifts, we have, directly from the definitions, the identity

[X1, X2]DB = Z−1
(

[X1, X2](D∗B)∗
C∗

)
, (E.32)

in particular we obtain that the Lie algebroid structures induced on A by DB and (D∗B)∗C∗
coincide, since, by (C.55), pA ◦ Z ◦ ψ = IdA.

Now Let’s prove the duality relation between the corresponding representations up
to homotopy. Consider the splitting θ, which induces the splitting θ̃A on D∗A. By Thm.
E.21, these splittings yield representations up to homotopy corresponding to the respective
V B-algebroid structures on DB and D∗A. The representation up to homotopy D of A on
C⊕B[1], corresponding to the VB -algebroid DB is comprised by the data D = ∂+∇+K
given in Prop. E.20. Correspondingly, we denote by D′ = ∂′+∇′+K ′ the representation
up to homotopy raised by the V B-algebroid D∗A. By Prop. E.31, we need to show that

∂′ = ∂∗; ∇′ = ∇∗; and K ′ = −K∗.

Consider sections c ∈ Γ(C) ∼= Γcore(DB) and β ∈ Γ(B∗) ∼= C∞lin(B). Then, denoting
by ρDC∗ the anchor map of the V B-algebroid (D∗B)∗C∗ , and taking into account also the
identification Γ(C) ∼= C∞lin(C∗),

ρDC∗ (β)(c) = {β, c} = −ρD(c)(β).

Now, since, ΥC∗ is −Id on C∗, denoting by ρD∗A the anchor map of the VB -algebroid D∗A
it follows that,

〈∂′(β), c〉 = −ρD∗A(β)(c) = ρDC∗ (β)(c) = −ρD(c)(β) = 〈∂(c), β〉,

whence ∂′ = ∂∗.
Next, let X ∈ Γ(A), and c ∈ Γ(C). As above, we make several identifications without

changing notation, for sake of readability. Namely, we identify Γ(A) with Γ(ψ(A)), where
ψ(A) ⊂ Â is the image of the horizontal lift in the linear bundle; viewing X as a section
of DB we can also identify it, through the isomorphism ZB (C.52), with a double-linear
function on D∗B, also, through the isomorphism Z (Prop. C.33), with a linear section
of (D∗B)∗C∗ , and also, through the isomorphism T (Prop. C.17), with a linear section of
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(D∗A)C∗ . Again, we also identify Γ(C) ∼= Γcore(DB) and Γ(C) ∼= C∞lin(C∗). We have the
following

ρD∗A(X)(c) = (Υ−1
C∗)
∗ρDC∗ (X)(Υ∗C∗(c)) = −ρDC∗ (X)(−c) = ρDC∗ (X)(c),

then

((∇′)C)∗Xc = ρD∗A(X)(c) = ρDC∗ (X)(c) = {X, c} = [X, c]D = ∇CXc, (E.33)

whence (∇′)C = (∇C)∗. Analogously, since ΥC∗ is the identity on the sides A // A and
on the cores B∗ //B∗, we have

(∇B)∗X(β) = ρD(X)(β) = {X,β} = [X,β]DC∗ = ΥC∗
(
[Υ−1

C∗X,Υ
−1
C∗β]DC∗

)
= [X,β]D∗A = (∇′)B∗X β, (E.34)

that is (∇′)B∗ = (∇B)∗. Thence ∇′ = ∇∗.
Finally, we compute K ′. Observe that, if we denote by p

Â
: Â //B∗⊗C the projection

induced by the horizontal lift ψ, then

K(X1, X2) = −p
Â

([X1, X2]),

where, again, we are identifying A with ψ(A) ⊂ Â.
On the other hand, denoting by KC∗ the curvature form corresponding to the V B-

algebroid (D∗B)∗C∗ , we get, using Eq. (E.32),

KC∗(X1, X2) = −p
ÂC∗

(
[X1, X2](D∗B)∗

C∗

)
= −p

ÂC∗
(Z ([X1, X2]DB ))

= − ∗ ◦p
Â

([X1, X2]DB ) = K(X1, X2)∗,

thence,

K ′(X1, X2) = Υ−1
C∗(KC∗(ΥC∗(X1),ΥC∗(X2))) = Υ−1

C∗(KC∗(X1, X2))

= −KC∗(X1, X2) = −K(X1, X2)∗,

that is, K ′ = −K∗.
�

E.3.3 The de Rham operator as a representation up to homotopy

In this subsection we want to explore the relation between the de Rham operator
dD of a VB -algebroid and its corresponding representation up to homotopy operator D.
Basically what we do is to fill-in the details of what is said to this regard in Sec. 4.6 of
[23]. The results of this subsection are not needed in the rest of this work, we present
them just for completeness and illustrative purposes.

Lemma E.34. Let D be a double vector bundle. There is a subalgebra C·,·(D) of C∞(D),
the bi-graded functions, which allow a bi-graded structure, that is, each function f ∈
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C·,·(D) can be endowed with a well-defined bi-degree (p, q), which is compatible with the
algebra structure, in the sense that if f ∈ Cp,q(D) and g ∈ Cr,s(D), then fg ∈ Cp+r,q+s(D).

Locally, given an adapted coordinate system (xi, αa, βb, κc), the algebra C·,·(D) is
C∞(M)−spanned by αa, with degree (1, 0); βb, with degree (0, 1); and κc, with degree
(1, 1).

Proof. First locally, given adapted coordinates (xi, αa, βb, κc), we assign to these coordi-
nate functions the following bi-degrees:

• xi are assigned bi-degree (0, 0);

• αa are assigned bi-degree (1, 0);

• βb are assigned bi-degree (0, 1);

• κc are assigned bi-degree (1, 1).

It follows from Prop. A.23 that this bi-grading is well defined globally, and can be extended
to the polynomial algebra generated locally by these coordinate functions, which yields
the sub-algebra C·,·(D).

�

Remark E.35. Notice that the bi-degree (1, 1) functions coincide with the double-linear
functions, introduced in Def. C.30.

Lemma E.36. Consider a double vector bundle D. There is a subalgebra Ω·,·(DB) of
Ω(DB) = Γ(Λ·D∗B) which allows a bi-grading.

Proof. We may identify Γ(D∗B) with the space of functions on D that are linear over B.
This space of linear functions contains a subspace, formed by the bi-graded functions of
bi-degree (1, q), q ≥ 0. Denote this subspace by Γpol(D

∗
B). This space is single-graded,

and the grading can be extended to Λ·(Γpol(D
∗
B)), which is a subalgebra of Ω(DB). Since

the exterior algebra also has a natural grading, we obtain a bi-graded structure in the
subalgebra

Ω·,·(DB) := Λ·(Γpol(D
∗
B)).

�

Definition E.37. The space of cochains linear over A is formed by the elements of
Ω·,·(DB) of bi-degree (p, 1), and is denoted by Ωlin(DB).

Lemma E.38. By a choice of a decomposition of D, the exterior algebra of its dual D∗B,
Γ(Λ·D∗B), can be decomposed as

Γ(Λ·D∗B) ∼= Γ(Λ·A∗)⊗ C∞(B)⊗ Γ(Λ·C∗). (E.35)

Using this decomposition, we may describe the subspace Ωlin(DB) as

Ωlin(DB) = ΛΓ(A∗)⊗ (C∞lin(B)⊕ Λ1Γ(C∗)) = Ω(A)⊗ (Γ(B∗)⊕ Γ(C∗)). (E.36)
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Proof. The decomposition of Eq. (E.35) is immediate from D∗B
∼= (qB)∗(A∗)⊕

B
(qB)∗(C∗).

Now from this decomposition we obtain

Ω·,·(DB) ∼= Γ(Λ·A∗)⊗ Cpol(B)⊗ Γ(Λ·C∗),

where Cpol(B) is the subalgebra of C∞(B) of polynomial functions, which are described
locally by the algebra of polynomials in the linear coordinates βb. By the way the grading
(over A) of Γpol(D

∗
B) is extended to Ω·,·(DB), it follows that the product by a linear

function of B or the wedge product by a section of C∗ contribute to the bi-grading (p, q)
by increasing q. Thus, it follows that the elements of bi-degree (p, 1) are necessarily the
elements in

ΛpΓ(A∗)⊗ (C∞lin(B)⊕ Λ1Γ(C∗)),

space which equals to
Ωp(A)⊗ (Γ(B∗)⊕ Γ(C∗)).

�

Proposition E.39. Let DB be a decomposed V B-algebroid. Consider the induced de
Rham differential dD on Γ(Λ·D∗B). Then the space Ωlin(DB) ⊂ Γ(Λ·D∗B) is invariant
under dD, and the restriction of dD to this subspace is a representation up to homotopy
of A on E′ = B∗[−1]⊕ C∗, which we denote by

D′ := dD|Ωlin(DB).

Under the identification

E′ = B∗[−1]⊕ C∗ ∼= ker(πA : (D∗B)∗C∗ //A),

we get a duality pairing between E′ and

E = C ⊕B[1] ∼= ker(qA : D //A),

namely, the pairing (·|·) over A given by Prop. B.11, between D and (D∗B)∗C∗, where D∗B
is playing the role of D in Prop. B.11.

With respect to this pairing, D′ coincides with the representation dual to D = ∂+∇+K,
given in Prop. E.21.

Proof. We need to verify that dD|Ωlin(DB) = D∗, which, by Prop. E.31, amounts to show
that dD|Ωlin(DB) = ∂∗ + ∇ −K∗, where the adjoints are with respect to the pairing (·|·)
over A –this is important in order to get the right signs, the difference being that the
pairing between C and C∗ using (·|·) has the opposite sign. Let’s compute.

For β ∈ Γ(B∗) and c ∈ Γ(C) we have

(dD(β)|c) = −〈dD(β), c̃〉B = −ρD(c̃)(β) = 〈∂(c), β〉 = (∂(c)|β),

thus, if dD|Ωlin(DB) = ∂′ +∇′ +K ′, we have so far ∂′ = ∂∗.
For β ∈ Γ(B∗),b ∈ Γ(B) and X ∈ Γ(A), we have

(dD(β)|b)(X) = 〈〈dD(β), X̂〉B,b〉 = 〈ρD(X)(β),b〉 = 〈∇∗X(β),b〉 = (∇∗X(β)|b);
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for κ ∈ Γ(C∗), c ∈ Γ(C) and X ∈ Γ(A),

(dD(κ)|c)(X) = −ιc̃ιX̂dD(κ̂) = −ρD(X̂)〈κ̂, c̃〉D + ρD(ĉ)〈κ̂, X̂〉+ 〈κ̂, [X̂, c̃]〉D
= −ρ(X)〈κ, c〉+ 〈κ,∇Xc〉 = −〈∇∗CX κ, c〉 = (∇∗Xκ|c),

where ∇∗C is denoting the connection dual with respect to the usual pairing between C
and C∗. Thus, ∇′ = ∇∗.

Finally, for κ ∈ Γ(C∗), X, Y ∈ Γ(A) and b ∈ Γ(B),

(dD(κ)(X,Y )|b) = 〈〈dD(κ̂), X̂ ∧ Ŷ 〉B,b〉

= 〈ρD(X̂)(〈κ̂, Ŷ 〉B),b〉 − 〈ρD(Ŷ )(〈κ̂, X̂〉B),b〉 − 〈〈κ̂, [X̂, Ŷ ]D〉D,b〉
= 〈K(X,Y )(b), κ〉 = −(K(X,Y )(b)|κ)

= −(K(X,Y )∗(κ)|b),

hence, K ′ = −K∗.
�



Appendix F

The main examples: TA and T ∗A

F.1 The double vector bundle structure on TA and its duals

Consider a vector bundle A
qA
// M , then its tangent bundle comes with a double

vector bundle structure

TA

qTM

��

qA // A

qA

��

A

TM
qTM

//M

(F.1)

where qTM := dqA, where d is the differential. Addition with respect to the vertical

structure (TA
dqA
// TM) is again given by a differential:

d+ : T (A×A) ∼= TA× TA // TA,

where + : A×A //A is the addition in A
qA
// M .

Finally, the zero section 0TM is once more given by a differential: 0TM := d(0A) :
TM // TA.

The two duals corresponding to TA are

T ∗A

πA∗

��

πA // A

qA

��

T ∗M

A∗
qA
∗

//M

;

TA∗

πTM

��

πA∗ // A∗

qA

��

A∗

TM
qTM

//M

(F.2)

with cores T ∗M and A∗, respectively.

268
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Dualizing TA∗ with respect to A∗, we obtain the double vector bundle

T ∗A∗

qA

��

qA∗ // A∗

qA
∗

��

T ∗M

A
qA

//M

,

(F.3)

which is identified with T ∗A through the isomorphism ΥA∗ given in Prop. B.13. This
isomorphism

ΥA∗ : T ∗A∗
∼=
// T ∗A (F.4)

is called Legendre transform.

F.2 The linear bundles: jets and covariant differential op-
erators

The linear bundle corresponding to TA // A is the bundle of linear vector fields.
The linear vector fields, which by definition are the linear sections of TA // A, can be
characterized by the property of living invariant the linear functions of A, when acting on
functions as vector fields. This fact allows us to identify linear vector fields with covariant
differential operators of A∗, since C∞lin(A) ∼= Γ(A∗), and fits in the exact sequence

A⊗A∗ //CDO(A∗)
p
// TM, (F.5)

which in turn is canonically identified with the bundle of covariant differential operators
of A

A∗ ⊗A //CDO(A) // TM, (F.6)

through the map

T : CDO(A∗) //CDO(A)

ζ∗ // ζ,

where ζ is defined by
〈ζ(a), α〉 := p(ζ∗)(〈a, α〉)− 〈ζ∗(α),a〉, (F.7)

for a ∈ Γ(A) and α ∈ Γ(A∗).
Notice that, because of what we observed above, CDO(A) is identified with the linear

bundle of TA∗ //A∗, which is the TM -dual of TA. With this considerations, it is easily
seen that the map T , defined above, coincides with the map, also denoted by T , given by
Prop. C.17.

The linear bundle corresponding to TA // TM is C∞(M)-spanned by sections of the
form

T a : TM // TA, a ∈ Γ(A), (F.8)

where T a is the differential of a, viewed as a map a : M //A. Under the correspondence

T a! j1a, ∀a ∈ Γ(A), (F.9)
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where j1a is the first jet prolongation of a, the linear bundle corresponding to Γlin(TA //TM)
can be identified with the first jet bundle associated to A, and fits in the exact sequence

0 // T ∗M ⊗A // J1A //A // 0, (F.10)

where the inclusion T ∗M ⊗A
ι
// J1A is given by

ι(df ⊗ a) := j1(fa)− fj1(a). (F.11)

We use the notation T for the differential, to distinguish it from the differential da ∈
Γ(T ∗A∗), where we see a as a linear function on A∗ thanks to the identification Γ(A) ∼=
C∞lin(A∗). Actually, if we denote by ÂTM the linear bundle corresponding to TA // TM

(which is isomorphic to J1A, as we just saw), and if we denote by ÂA∗ the linear bundle
corresponding to T ∗A∗ //A∗, then the assignment

Φ : ÂTM // ÂA∗

T a // da (F.12)

determines, extending by C∞(M)-linearity, a vector bundle morphism, that coincides
exactly with the isomorphism Z of Prop. C.33. To verify this we first need the following
lemma.

Lemma F.1. Let A //M be a vector bundle. Take v ∈ TA∗ with qA∗(v) = α ∈ A∗m and
qTM (v) = x ∈ TmM . Let a ∈ Γ(A), then

〈v, da(α)〉A∗ = 〈v, T a(x)〉TM . (F.13)

Proof. After introducing a decomposition for TA∗ through a connection (see Sec. F.4
below), let qA∗(v) = α′, where A∗ is the core bundle of TA∗, which is isomorphic to A∗.
Then, from Eq. (B.13) we obtain

〈v, da(α)〉A∗ = 〈v, (da(α)− 〈∇·a, α〉) + 〈∇·a, α〉〉A∗ = 〈α′,a(m)〉+ 〈∇xa, α〉. (F.14)

Similarly,

〈v, T a(x)〉TM = 〈v, (T a(x)−∇xa) +∇xa〉TM = 〈α′,a(m)〉+ 〈∇xa, α〉. (F.15)

From (F.14) and (F.15) we obtain (F.13).
�

Corollary F.2. The map Φ : ÂTM // ÂA∗, defined by (F.12), coincides with the isomor-
phism Z given in Prop. C.33. Its inverse is given by Φ−1(da) = T a.

Proof. Let’s revisit Prop. C.33. If we take into account the definitions of ZB (Eq. (C.52))
and ZA (Eq. (C.53)), given by Eqs. (C.51) and (C.54), respectively, then we see that

Z = ZB ◦ Z−1
A is determined by the equation, for σ ∈ (Ĉ∗A)m,

〈Z(σ)(b), v〉B = 〈σ(a), v〉A, ∀a ∈ Am, b ∈ Bm, v ∈ Da ∩Db.
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In our case, where D = TA∗, Ĉ∗A = ÂTM and Ĉ∗B = ÂA∗ , the equation above, for a
section σ ∈ Γ(ÂTM ) ∼= Γlin(TATM ) reads

〈Z(σ)(α), v〉A∗ = 〈σ(x), v〉TM , (F.16)

where x ∈ Γ(TM), α ∈ Γ(A∗), and v ∈ Γ(TA∗) is such that qTM (v) = x and qA∗ = α.
Now, if we take σ of the form σ = T a, the equation (F.13) shows precisely that

〈Φ(T a)(α), v〉A = 〈T a(x), v〉TM ,

which, in view of Eq. (F.16), shows that Z = Φ.
Since, by what we discussed above, Z−1 = ZA ◦ Z−1

B is determined by the equation

〈Z−1(τ)(a), v〉A = 〈τ(b), v〉B, ∀a ∈ Am, b ∈ Bm, v ∈ Da ∩Db,

it follows that Φ−1(da) = T a.
�

F.3 The VB-algebroid structures

Given a Lie algebroid structure on A, ([·, ·], ρ), we can construct canonically a VB -
algebroid structure on TA // TM by the following formulas

ρ(a)(f) := 0;

ρ(a)(df) := ρ(a)(f);

ρ(j1a)(f) := ρ(a)(f);

ρ(j1a)(df) := d(ρ(a)(f));

[a,b] := 0;

[j1a,b] := [a,b];

[j1a, j1b] := j1[a,b];

(F.17)

where, for example, a is the core section corresponding to a ∈ Γ(A).
The linear bundle corresponding to T ∗A // A∗ is denoted by J1A∗, which fits in the

exact sequence
A⊗ T ∗M // J1A∗ //A,

and we have a canonical isomorphism

T : J1A
∼=
// J1A∗,

given by Prop. C.17.
By Cor. E.25, we have a VB -algebroid structure on T ∗A, which comes from T ∗A∗ by

the Legendre transform ΥA∗ , see Eq. (F.4), where the VB -algebroid structure on T ∗A∗ is
induced from the VB -algebroid structure of TA //TM , since the TM -dual of TA, namely
TA∗, has an induced Poisson structure which is linear with respect to both fibrations (this
is the content of Prop. E.24 and its corollary E.25).

From Eq. (E.27) and Cor. F.2, we get the following formulas

ρ(df)(g) = 0;

ρ(df)(a) = −ρ(a)(f);

ρ(da)(f) = ρ(a)(f);

ρ(da)(b) = [a,b];

[df, dg] = 0;

[da, df ] = dρ(a)(f);

[da, db] = d[a,b],

(F.18)



F.4. HORIZONTAL LIFTS 272

where, as usual, we are identifying fiberwise linear functions on a vector bundle with
sections of its dual. Thus, we see that the VB -algebroid structure on T ∗A∗ is given by
the cotangent Lie algebroid structure corresponding to the linear Poisson structure on A∗,
induced by the Lie algebroid structure on A.

F.4 Natural horizontal lifts induced from a connection

We know that a decomposition of TA is equivalent to a horizontal lift of (F.5) and
also equivalent to a horizontal lift of (F.10). Now, a horizontal lift of (F.5), or of (F.10),
is equivalent to the choice of a connection on A. Indeed, the correspondence is as follows:
given a connection ∇ of A, the horizontal lift of (F.5) is given by

ψ : TM //CDO(A∗), ψ(x) := ∇∗x, (F.19)

where ∇∗ is the connection dual to ∇, while the horizontal lift of (F.10) is given by

ψ : A // J1A, ψ(a) := j1(a)−∇·a, (F.20)

where j1 : Γ(A) //Γ(J1A) is the map that assigns to a section of A its first jet prolonga-
tion. A natural question is whether this horizontal lift is the one that corresponds to ψ,
according to Prop. C.6. The answer is affirmative, and we give it in the next proposition.
First we need a lemma.

Lemma F.3. Let v ∈ TA and w ∈ TA∗ with qTM (v) = πTM (w) = x, so that v =
d
dt ς(t)|t=0 and w = d

dtτ(t)|t=0, where ς and τ are curves in A and A∗, respectively, such

that qA(ς(t)) = qA
∗
(τ(t)) =: m(t) and d

dtq
A ◦ ς(t)|t=0 = d

dtq
A∗ ◦ τ(t)|t=0 = x. Then

〈v, w〉TM = x(〈ς(t), τ(t)〉) =
d

dt

∣∣∣∣
t=0

〈ς(t), τ(t)〉. (F.21)

Proof. We can work locally, and suppose that A = M × V and A∗ = M × V ∗, where
V is a vector space. Then TA = TM × V × V and TA∗ = TM × V ∗ × V ∗, so that
v = (x, a1, a2) ∈ TmM × V × V and w = (x, α1, α2) ∈ TmM × V ∗ × V ∗. Then

v =
d

dt

∣∣∣∣
t=0

(m(t), a1 + ta2), w =
d

dt

∣∣∣∣
t=0

(m(t), α1 + tα2). (F.22)

Now, on one hand, by Eq. (B.13), from Prop. B.6, we have

〈v, w〉TM = 〈a1, α2〉+ 〈a2, α1〉. (F.23)

On the other hand, by (F.22),

x(〈ς(t), τ(t)〉) =
d

dt

∣∣∣∣
t=0

〈a1 + ta2, α1 + tα2〉 = 〈a1, α2〉+ 〈a2, α1〉. (F.24)

Comparing (F.23) and (F.24), we get (F.21).
�
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Proposition F.4. The horizontal lift ψ given in Eq. (F.20) is precisely the one given by
Prop. C.6, that is,

ψ(a)(x) = ψ(x)(a), (F.25)

holds for every a ∈ Am, x ∈ TmM , where ψ is given in Eq. (F.19).

Proof. On one hand we have, for α ∈ Γ(A∗),

〈ψ(x)(a), dα(a)〉A = 〈∇∗xα, a〉 = x(α,a〉)− 〈∇xa, α〉, (F.26)

where a ∈ Γ(A) is an extension of a, that is, a(m) = a.
On the other hand, by lemma F.1, with A∗ playing the role of A, and taking into

account the correspondence given in (F.9),

〈ψ(a)(x), dα(a)〉A = 〈ψ(a)(x), T α(x)〉TM = 〈T a(x)−∇xa, T α(x)〉TM
= x(〈a, α〉)− 〈∇xa, α〉, (F.27)

where we used in the last line

〈T a(x), T α(x)〉 = x(〈a, α〉),

which follows from (F.21) of lemma F.3.
Comparing (F.26) and (F.27) we get

〈ψ(a)(x), dα〉A = 〈ψ(x)(a), dα〉A. (F.28)

Now, using Eq. (B.13) and the fact that ψ and ψ are horizontal lifts, we have, for
α ∈ Γcore(TA

∗),

〈ψ(a)(x), α(m)〉TM = 〈a, α(m)〉 = 〈ψ(a)(x), α(m)〉TM . (F.29)

From (F.28) and (F.29), we conclude (F.25).
�

F.5 The representations up to homotopy

Proposition F.5. Let (A, [·, ·], ρ) be a Lie algebroid. Consider the prolonged tangent
Lie V B-algebroid TA // TM , defined by Eqs. (F.17). Let’s introduce a connection ∇̃
on A, which provides a horizontal lift for (F.10), given by (F.20). By Thm. E.21 there
corresponds a representation up to homotopy of A on E = A⊕T [1]M . This representation
is encoded by the data D = ∂ +∇+K, given by Prop. E.20, where ∇ = ∇A +∇TM . We
claim that

1. ∂ = −ρ,

2. ∇Aa1
a2 = [a1,a2] + ∇̃ρ(a2)a1,

3. ∇TMa x = [ρ(a),x] + ρ(∇̃xa),



F.5. THE REPRESENTATIONS UP TO HOMOTOPY 274

4. K(a1,a2)(x) = [∇̃xa1,a2] + [a1, ∇̃xa2]− ∇̃x[a1,a2] + ∇̃∇TMa1
xa2 − ∇̃∇TMa2

xa1,

for a,a1,a2 ∈ Γ(A),x ∈ Γ(TM).

Proof. From ρ(a)(df) = ρ(a)(f) and Eq. (E.4), it follows ∂ = −ρ.
From Eq. (E.12) and [j1a1,a2] = [a1,a2] it follows

∇Aa1
a2 = [â1,a2] = [j1a1 − ∇̃·a1,a2]

= [a1,a2]− [∇·a1,a2]

= [a1,a2] + ∇̃ρ(a2)a1,

where, for the last line, we used Prop. E.8.
From Eq. (E.12) and ρ(j1a)(df) = dρ(a)(f) it follows, for any η ∈ Γ(T ∗M),

∇T ∗Ma η = ρ(â)(η) = ρ(j1a− ∇̃·a)(η)

= d(〈ρ(a), η〉)− 〈ρ(∇̃·a), η〉,

where, for the last line, we used Prop. E.8. Therefore

〈∇TMa , η〉 = ρ(a)(〈x, η〉)− 〈x,∇T ∗Ma η〉

= ρ(a)(〈x, η〉)− x(〈ρ(a), η〉) + 〈ρ(∇̃xa), η〉. (F.30)

Now, from Cartan’s calculus we have

ρ(a)(〈x, η〉) = 〈[ρ(a),x], η〉+ 〈x,Lρ(a)η〉
= 〈[ρ(a),x], η〉+ x(〈ρ(a), η〉) + dη(ρ(a),x). (F.31)

Observe that, in order to compute 〈∇TMa x, η〉 we are interested only in the value of η at
one point m ∈ M . Given any w ∈ T ∗mM we can always find η ∈ Γ(T ∗M) with η(m) = w
and dη = 0, whence, from (F.30) and (F.31) we obtain

∇TMa x = [ρ(a),x] + ρ(∇̃xa).

Finally, from Eq. (E.15) and [j1a1, j
1a2] = j1[a1,a2] we have

K(a1,a2) = ̂[a1,a2]− [â1, â2]

= j1[a1,a2]− ∇̃·[a1,a2]− [j1a1 − ∇̃·a1, j
1a2 − ∇̃·a2]

= −∇̃·[a1,a2] + [j1a1, ∇̃·a2] + [∇̃·a1, j
1a2]− [∇̃·a1, ∇̃·a2]. (F.32)

Now, using Eq. (E.14), we compute, for a ∈ Γ(A) and φ ∈ Γ(T ∗M ⊗A),

[j1a, φ] = [â + ∇̃·a, φ]

= [â, φ] + [∇̃·a, φ]

= ∇Aa ◦ φ− φ ◦ ∇TMa + [∇̃·a, φ].
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Then

[j1a1, ∇̃·a2](x) + [∇̃·a1, j
1a2](x) =∇Aa1

∇̃xa2 − ∇̃∇TMa2
xa1 + [∇̃·a1, ∇̃·a2](x)

−∇Aa2
∇̃xa1 + ∇̃∇TMa2

xa1 − [∇̃·a2, ∇̃·a1](x). (F.33)

Now, from items 1. and 3. of the statement,

∇Aai∇̃xaj = [ai, ∇̃xaj ] + ∇̃
ρ(∇̃xaj)

ai. (F.34)

From (E.5) and item 1. of the statement, we have

[∇̃·a1, ∇̃·a2](x) = ∇̃
ρ(∇̃xa1)

a2 − ∇̃ρ(∇̃xa2)
a1. (F.35)

Therefore, from (F.32), (F.33), (F.34) and (F.35), we obtain

K(a1,a2)(x) = [a1, ∇̃xa2]− [a2, ∇̃xa1]− ∇̃x[a1,a2] + ∇̃∇TMa1
xa2 − ∇̃∇TMa2

xa1. (F.36)

�

Corollary F.6. In the conditions of Prop. F.5, consider the cotangent Lie V B-algebroid
T ∗A // A, defined by Eqs. (F.18). The corresponding representation up to homotopy,
raised by the horizontal lift induced by ∇̃, of A on E∗ = T ∗[−1]M ⊕ A∗ is given by
D′ = ∂′ +∇′ +K ′, with ∇′ = ∇T ∗M +∇A∗, such that

1. ∂′ = −ρ∗,

2. ∇T ∗Ma η = Lρ(a)η − 〈∇̃·a, ρ∗(η)〉,

3. ∇A∗a α = Laα− ρ∗(〈∇̃·a, α〉),

4. K ′(a1,a2)(α) = −K(a1,a2)∗(α), with K given in Eq. (F.36).

Proof. It is a direct consequence of Prop. F.5, Thm. E.32 and Prop. E.31.
�



Appendix G

The degree 1 case: the geometry
of Lie algebroids

In this appendix we work out some of the geometric structures that will guide us when
we treat degree 2 manifolds, the main subject of this work. We benefited from [48] and
[37].

G.1 Degree -1 Poisson brackets

Proposition G.1. Given a Poisson 1-manifold (M, {., .}), consider the corresponding
vector bundle A //M , so that M ∼= A[1] and A1 ∼= Γ(A∗). Then {., .} induces a Lie
algebroid structure on A∗ by the following data:

• {s, f} = ρ(s)(f), for f, s ∈ Γ(Λ·A∗) with |f | = 0, |s| = 1

• {s1, s2} = [s1, s2]A∗, for s1, s2 ∈ Γ(Λ·A∗) with |s1| = |s2| = 1.

Conversely, starting with a Lie algebroid (A∗, ρ, [., .]) over M , consider the degree 1 man-
ifold A[1], so that C∞(A[1]) = Γ(Λ·A∗), and set

• {f, g} = 0, for f, g ∈ C∞(A[1]) with |f | = |g| = 0

• {s, f} = ρ(s)(f), for f, s ∈ C∞(A[1]) with |f | = 0, |s| = 1

• {s1, s2} = [s1, s2], for s1, s2 ∈ C∞(A[1]) with |s1| = |s2| = 1.

Extending this product to any s1, s2 ∈ C∞(A[1]) via linearity and (graded) Leibniz’s rule,
we obtain a degree 1 Poisson structure on A[1].

Proof. Let (M, {., .}) be a degree 1 Poisson manifold. Note that the first equation in the
theorem determines the value of ρ(s) for every s ∈ Γ(A∗). So, the first two equations in
the theorem determine ρ and [., .]A∗ , which we will denote simply by [., .]. Now we will
check that ρ is a morphism of vector bundles and that [., .] is a Lie bracket. The first is
a direct consequence of the Leibniz’s rule of {., .}. (Since {., .} has degree -1, it follows
that {f, g} = 0 when |f | = |g| = 0.) To see that [., .] is in fact a Lie bracket notice that

276
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R-bilinearity follows immediately from R-bilinearity of the Poisson bracket. The graded
anti-commutativity and graded identity of the Poisson bracket implies, respectively, that
[., .] is anti-symmetric and satisfies Jacobi identity.

Now we check compatibility of the brackets with the anchor. In fact, it’s a consequence
of the graded Leibniz’s rule:

[s1, fs2] = f{s1, s2}+ {s1, f}s2 = f [s1, s2] + ρ(s1)(f)s2.

For the converse, first observe that we have two different ways to define {s1, fs2}:

• {s1, fs2} = f{s1, s2}+ {s1, f}s2 or, since |fs2| = 1, we could define directly

• {s1, fs2} = [s1, fs2]

By the compatibility of the brackets with the anchor, we see immediately that this two
ways give the same result. Similarly, since X(·) is a derivation for any vector field,

{s, fg} = ρ(s)(fg) = gρ(s)(f) + fρ(s)(g) = {s, f}g + f{s, g}.

Thus {., .} is well defined, and satisfies the graded anti-commutativity and Leibniz’s
rule by definition. So, it only remains to prove that graded Jacobi’s identity holds for
{., .}. First, we see that it is valid for functions of degree 0 or 1, the only case which is
not trivial being when we take {f, {s1, s2}}. In this case it follows from the well known
fact that the anchor is a morphism of Lie algebras. For functions of degree greater than 1,
Jacobi identity follows combining the graded anti-commutativity and Leibniz’s rule with
an induction argument.

�

We end this section mentioning some concepts and results which are related to the
(super) geometry of 1-manifolds.

Definition G.2. A Lie bialgebroid is a pair (A,A∗) of Lie algebroids in duality, where
the Lie brackets satisfy the compatibility condition

d∗[X,Y ] = [d∗X,Y ] + [X, d∗Y ],

for all X,Y ∈ Γ(A), where d∗ is the de Rham differential on Γ(Λ·A) defined by the Lie
algebroid structure of A∗, and [·, ·] is the Schouten bracket on Γ(Λ·A) coming from the
Lie algebroid bracket on Γ(A).

Proposition G.3. On a degree k symplectic manifold a Q-structure is equivalent to a
degree (k + 1) integrable hamiltonian.

Proof. This is found in lemma 2.2 of [59]. See our Prop. 6.30, where the k = 2 case is
worked out in detail.

�

Proposition G.4. There is a canonical 1:1 correspondence between Q-structures on a
degree 1 Poisson manifold and bialgebroids.
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Proof. This is basically the content of Prop. 3.3 of [33].
�

Proposition G.5. There is a canonical 1:1 correspondence between degree 2 integrable
hamiltonians on a degree 1 symplectic manifold and Poisson brackets on the body of the
manifold.

Proof. This is the classical characterization of Poisson brackets in terms of self-commuting
bivectors with respect to the Schouten bracket. See for example [43].

�

For what’s next, we introduce some very useful notions from the so-called Schouten
calculus.

G.2 Cartan-Schouten calculus

In the rest of this appendix, we work out calculations on the exterior algebra of a
Lie algebroid (A, [·, ·], ρ) and its dual A∗, exploiting the de Rham differential and the Lie
derivative, that will serve as guidance for the degree 2 case.

Definition G.6. Let A be a Lie algebroid. Then, for any X ∈ Γ(A) we define the Lie
derivative on Γ(Λ·A⊕ Λ·A∗) as the unique degree 0 differential operator such that

i) LXf := ρ(X)(f), LXY := [X,Y ], ∀ f ∈ C∞(M), Y ∈ Γ(A),

ii) 〈LXω, Y 〉 := LX〈ω,X〉 − 〈ω,LXY 〉, ∀ ω ∈ Γ(A∗), Y ∈ Γ(A),

iii) LX(V ∧W ) = (LXV ) ∧W + V ∧ (LXW ), ∀ V,W ∈ Γ(Λ·A), or V,W ∈ Γ(Λ·A∗).

Definition G.7. For any vector bundle A //M we define a C∞(M)-bilinear, symmetric
pairing

〈·, ·〉 : Γ(Λ·A⊕ Λ·A∗)× Γ(Λ·A⊕ Λ·A∗) // Γ(Λ·A⊕ Λ·A∗)

by

i) 〈P,Q〉 = 〈ω, η〉 := 0 for every P,Q ∈ Γ(Λ·A) and ω, η ∈ Γ(Λ·A∗).

ii) If P = P1 ∧ · · · ∧ Pk ∈ Γ(ΛkA) and ω = ω1 ∧ · · · ∧ ωk ∈ Γ(ΛkA∗), then

〈P, ω〉 ∈ Γ(Λ0A) = Γ(Λ0A∗) = C∞(M), 〈P, ω〉 := det(ωi(Pj)).

Observe that the pairing in this case is non-degenerate, therefore induces isomor-
phisms

ΛkA ∼= (ΛkA∗)∗ and ΛkA∗ ∼= (ΛkA)∗. (G.1)

iii) If P ∈ Γ(ΛkA) and ω ∈ Γ(ΛlA∗), with k < l, then we define 〈P, ω〉 ∈ Γ(Λl−kA∗) by

〈〈P, ω〉, Q〉 := 〈P ∧Q,ω〉, ∀ Q ∈ Λl−kA.

iv) If P ∈ Γ(ΛkA) and ω ∈ Γ(ΛlA∗), with k > l, then we define 〈P, ω〉 ∈ Γ(Λk−lA) by

〈〈P, ω〉, η〉 := 〈P, ω ∧ η〉 ∀ η ∈ Λk−lA∗.
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Notice that in items iii) and iv) we are using the canonical isomorphisms (G.1).

Proposition G.8 (For example [48]). Let A be a Lie algebroid. For any X ∈ Γ(A),
P ∈ Γ(Λ·A) and ω ∈ Γ(Λ·A∗)

LX〈P, ω〉 = 〈LXP, ω〉+ 〈P,LXω〉, (G.2)

holds, where the Lie derivative LX and the pairing 〈·, ·〉 are understood according to Defs.
G.6 and G.7, respectively.

Proof. By item ii) of Def. G.6 we have already (G.2) for P ∈ Γ(A) and ω ∈ Γ(A∗).
Next, assuming that (G.2) is already true when P ∈ Γ(ΛkA) and ω ∈ Γ(ΛkA∗), we will

prove (G.2) for P ∈ Γ(ΛkA) and Γ(ΛlA∗) when k > l and when k < l. Since the argument
is completely symmetric for both cases, we will only work out here the case k > l. Take
η ∈ Γ(Λk−lA∗) arbitrary, then, on one hand, using (G.2) for 〈P, ω〉 ∈ Γ(Λk−lA and η, we
have

LX〈P, ω ∧ η〉 = LX〈〈P, ω〉, η〉 = 〈LX〈P, ω〉, η〉+ 〈〈P, ω〉,LXη〉. (G.3)

On the other hand, using (G.2) for P and ω ∧ η ∈ Γ(ΛkA∗), we have

LX〈P, ω ∧ η〉 = 〈LXP, ω ∧ η〉+ 〈P,LX(ω ∧ η)〉
= 〈〈LXP, ω〉, η〉+ 〈〈P,LXω〉, η〉+ 〈〈P, ω〉,LXη〉. (G.4)

Comparing Eqs. (G.3) and (G.4), we get

〈LX〈P, ω〉, η〉 = 〈〈LXP, ω〉, η〉+ 〈〈P,LXω〉, η〉
= 〈〈LXP, ω〉+ 〈P,LXω〉, η〉.

Since η is arbitrary, Eq. (G.2) follows in this case.
So it remains to show (G.2) only in the case P ∈ Γ(ΛkA) and ω ∈ Γ(ΛkA∗). We will

prove by induction. We already observed that the case n = 1 is included in the definition
of LX (Def. G.6). Now let’s prove the case n = k assuming that the case n = k − 1 is
true. Because of the linearity of the operator LX and the bilinearity of the pairing 〈·, ·〉,
there is no loose of generality if we prove Eq. (G.2) only for decomposable sections

P = P1 ∧ · · · ∧ Pk and Ω = ω1 ∧ · · · ∧ ωk.

By the cofactors formula for the determinant, we have

〈P,Ω〉 = 〈P1 ∧ · · · ∧ Pk, ω1 ∧ · · · ∧ ωk〉 = det(〈Pi, ωj〉)
= 〈P1, ω1〉 detA11 − 〈P1, ω2〉detA12 + · · ·+ (−1)1+k〈P1, ωk〉 detA1k, (G.5)

where P̃ = P2 ∧ · · · ∧ Pk, Ωj = ω1 ∧ · · · ∧ ω̂j ∧ · · · ∧ ωk and

detA1j = 〈P̃ ,Ωj〉 = 〈P2 ∧ · · · ∧ Pk, ω1 ∧ · · · ∧ ω̂j ∧ · · · ∧ ωk〉,

and the hat ω̂j means, as usual, that this element is missing in the wedge product.
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Using the induction hypothesis, and Eq. (G.5), we have

LX〈P,Ω〉 =
∑
j

(−1)1+jLX(〈P1, ωj〉〈P̃ ,Ωj〉)

=
∑
j

(−1)1+j(〈LXP1, ωj〉+ 〈P1,LXωj〉)〈P̃ ,Ωj〉

+
∑
j

(−1)1+j〈P1, ωj〉(〈LX P̃ ,Ωj〉+ 〈P̃ ,LXΩj〉)

=
∑
j

(−1)1+j(〈LXP1, ωj〉〈P̃ ,Ωj〉+ 〈P1, ωj〉〈LX P̃ ,Ωj〉)

+
∑
j

(−1)1+j(〈P1,LXωj〉〈P̃ ,Ωj〉+ 〈P1, ωj〉〈P̃ ,LXΩj〉). (G.6)

On the other hand, let’s compute the right-hand side of the equation we want to prove,
i.e. Eq. (G.2).

〈LXP,Ω〉+ 〈P,LXΩ〉 = 〈LX(P1 ∧ P̃ ),Ω〉+ 〈P,LXΩ〉

= 〈(LXP1) ∧ P̃ + P1 ∧ LX P̃ ,Ω〉

+

〈
P,
∑
j

ω1 ∧ · · · ∧ LXωj ∧ · · · ∧ ωk

〉
=
∑
j

(−1)1+j(〈LXP1, ωj〉〈P̃ ,Ωj〉+ 〈P1, ωj〉〈LX P̃ ,Ωj〉)

+
∑
j,l

(−1)1+j〈P1, ωl,j〉〈P̃ ,Ωl,j〉, (G.7)

where ωl,j is the jth factor of the wedge product

Ωl = ω1 ∧ · · · ∧ LXωl ∧ · · · ∧ ωk, (G.8)

in particular notice that

ωj ,j = LXωj and ωl,j = ωj , forj 6= l. (G.9)

Ωl, j is defined by
Ωl,j = ωl,j ∧ · · · ∧ ω̂l,j ∧ · · · ∧ ωl,k. (G.10)

Now,

LXΩj =
∑
j

ω1 ∧ · · · ∧ LXωl ∧ · · · ∧ ω̂j ∧ · · · ∧ ωk =
∑
j 6=l

Ωl,j ,
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whence, using the notation given in (G.8), (G.9) and (G.10),∑
j

(−1)1+j(〈P1,LXωj〉〈P̃ ,Ωj〉+ 〈P1, ωj〉〈P̃ ,LXΩj〉) =
∑
j

(−1)1+j〈P1, ωj ,j〉〈P̃ ,Ωj ,j〉

+
∑
j

(−1)1+j〈P1, ωj〉

〈
P̃ ,
∑
l 6=j

Ωl,j

〉
=
∑
j

(−1)1+j〈P1, ωj ,j〉〈P̃ ,Ωj ,j〉+
∑
l 6=j

(−1)1+j〈P1, ωl,j〉〈P̃ ,Ωl,j〉

=
∑
j,l

(−1)1+j〈P1, ωl,j〉〈P̃ ,Ωl,j〉. (G.11)

From (G.6), (G.11) and (G.7) follows (G.2).
�

Proposition G.9. Let (A, [·, ·], ρ) be a Lie algebroid and d its corresponding de Rham
differential. Then, for any 2-section π ∈ Γ(Λ2A) 1-section X ∈ Γ(A) and dual sections
φ1, φ2 ∈ Γ(A∗),

[π, f ] = −π](df) (G.12)

and

ρ(X)〈π](φ1), φ2〉 = 〈〈[X,π], φ1〉, φ2〉+ 〈π](LXφ1), φ2〉+ 〈π](φ1),LXφ2〉, (G.13)

where π] : A∗ //A is defined by contraction

π](φ) := 〈π, φ〉, (G.14)

so that
〈π](φ1), φ2〉 = 〈π, φ1 ∧ φ2〉 = 〈〈π, φ1〉, φ2〉.

Proof. In order to prove formula (G.12), since both sides are tensorial in π, we don’t lose
generality if we suppose that π = X1 ∧X2, for X1, X2 ∈ Γ(A). Then we have

[π, f ] = [X1 ∧X2, f ] = [f,X1]X2 −X1[f,X2]

= −ρ(X1)(f)X2 + ρ(X2)(f)X1

= −〈df,X1〉X2 + 〈df,X2〉X1

= −π](df).

Formula (G.13) follows from Eq. (G.2), using Defs. G.6 and G.7, as follows.

ρ(X)(〈π](φ1), φ2〉) = LX〈π](φ1), φ2〉 = 〈LXπ](φ1), φ2〉+ 〈π](φ1),LXφ2〉.

Now,

LXπ](φ1) = LX〈π, φ1〉 = 〈LXπ, φ1〉+ 〈π,LXφ1〉
= 〈[X,π], φ1〉+ π](LXφ1).
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Hence,

ρ(X)(〈π](φ1), φ2〉) = 〈〈[X,π], φ1〉, φ2〉+ 〈π](LXφ1), φ2〉+ 〈π](φ1),LXφ2〉.

�

Proposition G.10. Let (A, [·, ·], ρ) be a Lie algebroid, and let π ∈ Λ2(A) be an integrable
2-section, that is, it satisfies [π, π] = 0. Then

d∗ := [π, ·] : Γ(ΛkA) // Γ(Λk+1A)

defines a de Rham differential on Γ(Λ·A), so that we obtain a Lie algebroid structure on
the dual bundle A∗, with anchor

ρ∗(φ)(f) = 〈df, φ〉 = ρ(π](φ))(f), ∀φ ∈ Γ(A∗), f ∈ C∞(M), (G.15)

and Lie bracket is given by the derived bracket formula

〈[φ1, φ2]∗, X〉 = ρ∗(φ1)(〈φ2, X〉)− ρ∗(φ2)(〈φ1, X〉)− d∗X(φ1, φ2). (G.16)

An explicit formula for [·, ·]∗ is given by

[φ1, φ2]∗ = Lπ](φ1)φ2 − Lπ](φ2)φ1 + d(〈φ1, π
](φ2)〉), (G.17)

where d is the de Rham differential corresponding to the Lie algebroid structure on A.

Proof. Since π has degree 2 and the Schouten bracket has degree −1, it follows that [π, ·]
is a degree 1 operator on Γ(Λ·A). By (graded) Jacobi identity of the Schouten bracket it
follows

d2
∗ = [π, [π, ·]] =

1

2
[[π, π], ·] = 0.

Also from (graded) Leibniz property of the Schouten bracket, it follows that d∗ is a graded
1-differential. Hence the operator d∗ is a de Rham differential, which implies that A∗ is
endowed with a Lie algebroid structure coming from d∗, with anchor ρ∗ defined by

ρ∗(φ)(f) = ιφd∗(f) = 〈φ, d∗(f)〉 = 〈φ, [π, f ]〉.

From Eq. (G.12) and the skew-symmetry of π, we also have

ρ∗(φ)(f) = 〈φ, [π, f ]〉 = −〈φ, π](df)〉 = 〈π](φ), df〉,

and the Lie bracket is given by the derived bracket formula (G.16). It is easy to verify
that the bracket defined in this way satisfies skew-symmetry, R-bilinearity and Leibniz
rule. As for Jacobi identity, Eq. (G.16) implies

d2
∗f(φ1, φ2) = ρ∗(φ1)(〈d∗f, φ2〉)− ρ∗(φ2)(〈d∗f, φ1〉)− 〈d∗f, [φ1, φ2]∗〉

= ρ∗(φ1)(ρ∗(φ2)(f))− ρ∗(φ2)(ρ∗(φ1)(f))− ρ∗([φ1, φ2]∗)(f),

from which, d2
∗ = 0 implies

ρ∗([φ1, φ2]∗) = [ρ∗(φ1), ρ∗(φ2)], (G.18)
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where the bracket on the right-hand side stands for the commutator of vector fields on M .
Now, using again Eq. (G.16), also Eq. (G.18) and the well-known formula for the

exterior derivative

〈d∗P, φ1 ∧ φ2 ∧ φ3〉 =
∑
cyclic

(ρ(φ1)(〈P, φ2 ∧ φ3〉) + 〈P, φ1 ∧ [φ2, φ3]〉), (G.19)

where P ∈ Γ(Λ2A) and φ1, φ2, φ3 ∈ Γ(A∗), we have, for every X ∈ Γ(A), φ1φ2, φ3 ∈ Γ(A∗),

〈−d2
∗X,φ1 ∧ φ2 ∧ φ3〉 = 〈X, [φ1, [φ2, φ3]∗]∗ − [[φ1, φ2]∗, φ3]∗ − [φ2, [φ1, φ3]∗]∗〉,

hence, d2
∗ = 0 implies Jacobi identity for [·, ·]∗.

It remains to show formula (G.17). For this we use formulas (G.2) and (G.13). We
have the following

〈[φ1, φ2]∗, X〉 = ρ∗(φ1)(〈φ2, X〉)− ρ∗(φ2)(〈φ2, X〉)− 〈φ2, 〈φ1, [π,X]〉〉
= ρ(π](φ1))(〈φ2, X〉)− ρ(π](φ2))(〈φ1, X〉)− 〈φ2, 〈φ1, [π,X]〉〉
= 〈Lπ](φ1)φ2, X〉+ 〈φ2, [π

](φ1), X]〉 − 〈Lπ](φ2)φ1, X〉 − 〈φ1, [π
](φ2), X]〉

+ ρ(X)(〈π](φ1), φ2〉)− 〈π](LXφ1), φ2〉 − 〈π](φ1),LXφ2〉
= 〈Lπ](φ1)φ2, X〉 − 〈Lπ](φ2)φ1, X〉+ ρ(X)(〈π](φ2), φ1〉)

= 〈Lπ](φ1)φ2 − Lπ](φ2)φ1 + d(〈π](φ2), φ1〉), X〉.

�

G.3 Derived brackets

Before continuing, it is necessary to make a brief digression on the derived bracket
formula we used in Prop. G.10 in order to obtain the dual Lie algebroid bracket from the
differential d∗ = [π, ·]. We will follow the discussion found in [50].

Definition G.11. Let A =
⊕

p∈ZA
p be a Z-graded algebra. Let D : A //A be a linear

endomorphism of the graded vector space A. Let d ∈ Z. The linear endomorphism D is
said to be a derivation of degree d of the graded algebra A if

i) as a linear endomorphism of a graded vector space, D is homogeneous of degree d,
that is, for any homogeneous element a ∈ A of degree p, D(a) is homogeneous of
degree p+ d.

ii) for all p ∈ Z, a ∈ Ap and b ∈ A,

D(ab) = D(a)b+ (−1)dpaD(b).

Example G.12. The de Rham differential d corresponding to a Lie algebroid A, is a
derivation of degree 1 on Γ(Λ·A∗).

For any X ∈ Γ(A), the Lie derivative LX is a derivation of degree 0 on Γ(Λ·A) and
on Γ(Λ·A∗), and the contraction operator ιX defined by ιX(ω) := 〈X,ω〉 is a derivation of
degree −1 on Γ(Λ·A∗).
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Proposition G.13. Let A be a graded algebra. Let D1 : A //A and D2 : A //A be two
derivations of A, of degree d1 and d2, respectively. Their bracket

[D1, D2] := D1 ◦D2 − (−1)d1d2D2 ◦D1,

is a derivation of degree d1 + d2.

Proof. For any a ∈ Ap and b ∈ A, we have

[D1, D2](ab) = D1 ◦D2(ab)− (−1)d1d2D2 ◦D1(ab)

= D1(D2(a)b+ (−1)d2paD2(b))− (−1)d1d2D2(D1(a)b+ (−1)d1paD1(b))

= D1(D2(a))b+ (−1)d1(d2+p)D2(a)D1(b)

+ (−1)d2pD1(a)D2(b) + (−1)(d1+d2)paD1(D2(b))

− (−1)d1d2D2(D1(a))b− (−1)d2pD1(a)d2(b)

− (−1)d1(d2+p)D2(a)D1(b)− (−1)d1d2+(d1+d2)paD2(D1(b))

= [D1, D2](a)b+ (−1)(d1+d2)pa[D1, d2](b).

Definition G.14. A Z-graded Lie algebra is a Z-graded algebra A =
⊕

p∈ZA
p, whose

composition law, denoted by (a, b) // [a, b] and called the graded bracket, satisfies the
following properties:

i) it is homogeneous of degree d, i.e., for a ∈ Ap and b ∈ Aq, we have [a, b] ∈ Aa+b+d,

ii) it is graded anticommutative, i.e., for a ∈ Ap and b ∈ Aq,

[a, b] = −(−1)pq[b, a],

iii) it satisfies the graded Jacobi identity, i.e., for a ∈ Ap, b ∈ Aq and c ∈ Ar,

[a, [b, c]] = [[a, b], c] + (−1)(a+d)b[b, [a, c]].

Example G.15. For a Lie algebroid A, the Schouten bracket [·, ·] endows Γ(Λ·A) with a
graded Lie bracket of degree -1.

Let E =
⊕

p∈ZE
p be a graded vector space. For each p ∈ Z, let Ap ⊂ End(E,E)

be the space of linear endomorphisms of E which are homogeneous of degree p. Then
A =

⊕
p∈ZA

p equipped with the composition of applications as composition law, is a Z-
graded associative algebra, and the graded commutator, defined for homogeneous elements
a ∈ Ap and b ∈ Aq by

[a, b] := ab− (−1)pqba,

and extended by bilinearity to the whole space A, endows A with a Z-graded Lie algebra
structure.

Proposition G.16. Given a Lie algebroid (A, [·, ·], ρ), and a degree 1 graded differential
d∗ on Γ(Λ·A). Consider the anchor map ρ∗ and bracket [·, ·]∗ on the dual A∗, given by
Eqs. (G.15) and (G.16), respectively. Then the formula

ι[φ1,φ2]∗(P ) = [[ιφ1 , d∗], ιφ1 ](P ) (G.20)
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holds for every P ∈ Γ(Λ·A), where the bracket on the right-hand side stands for the
commutator of differentials (see Prop. G.13).

Proof. Since ιφ is a derivation of degree -1 and d∗ is a derivation of degree 1, it follows
from Prop. G.13 that

D := [[ιφ1 , d∗], ιφ1 ]

is a derivation of degree -1 on the algebra A := Γ(Λ·A). In particular, from item ii) of
Def. G.11, it follows, for any f ∈ C∞(M) = A0 and X ∈ Γ(A) = A1,

D(fX) = D(f)X + fD(X) = fD(X),

which means that there is a unique section φ ∈ Γ(A∗) such that

D(X) = 〈φ,X〉 = ιφ(X), ∀X ∈ Γ(A).

We claim that φ = [φ1, φ2]∗. In order to verify this, we need to prove that the degree -1
derivations ιφ and ι[φ1,φ2]∗ , coincide on A1. So, let’s take any X ∈ Γ(A) = A1, then

〈[φ1, φ2]∗, X〉 = [[ιφ1 , d∗], ιφ2 ](X)

= [ιφ1d∗ + d∗ιφ1 , ιφ2 ](X)

= ιφ1d∗ιφ2(X) + d∗ιφ1ιφ2(X)− ιφ2ιφ1d∗(X)− ιφ2d∗ιφ1(X)

= ρ∗(φ1)(〈φ2, X〉)− 〈φ2, 〈φ1, d∗(X)〉〉 − ρ∗(φ2)(〈φ1, X〉)
= ρ∗(φ1)(〈φ2, X〉)− ρ∗(φ2)(〈φ1, X〉)− 〈φ2, 〈φ1, [π,X]〉〉
= ι[φ1,φ2]∗(X),

as we wanted.
�

Lemma G.17. In a Lie algebroid A, we have, for every X ∈ Γ(A) and every ω ∈ Γ(Λ·A∗),
Cartan’s formula holds:

LX = [ιX , d] = ιXd+ dιX , (G.21)

where d : Γ(Λ·A∗) // Γ(Λ·A∗) is the corresponding de Rham differential.

Proof. Since ιX has degree -1 and d has degree 1, it follows from Prop. G.13 that D :=
ιXd+dιX is a degree 0 derivation. By definition we know that LX is a degree 0 derivation
as well. Therefore it is enough to check that D and LX coincide on A0 = C∞(M) and
A1 = Γ(A∗).

For f ∈ C∞(M) we have

D(f) = ιXdf + dιXf = ιXdf = ρ(X)(f) = LXf.

For α ∈ Γ(A∗) and Y ∈ Γ(A), we have

〈D(α), Y 〉 = 〈ιXdα+ dιXα, Y 〉
= ρ(X)(〈α, Y 〉)− ρ(Y )(〈α,X〉)− 〈α, [X,Y ]〉+ ρ(Y )(〈α,X〉)
= ρ(X)(〈α, Y 〉)− 〈α, [X,Y ]〉
= 〈LXα, Y 〉.

�
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G.4 Degree 2 integrable hamiltonians on Poisson 1-manifolds

Lemma G.18. In a Lie algebroid A, for any 2-section π ∈ Γ(Λ2A)

〈[π, π], φ1 ∧ φ2 ∧ φ3〉 = 〈φ3, 〈φ2, 〈φ1, [π, π]〉〉〉 = −2
∑
cyclic

〈Lπ](φ1)φ3, π
](φ2)〉,

holds for every φ1, φ2, φ3 ∈ Γ(A∗).

Proof. Consider the degree 1 derivation d∗ := [π, ·], where [·, ·] is the Schouten bracket on
Γ(Λ·A). Then, from Eq. (G.20), we have

〈[φ1, φ2]∗, π〉 = ι[φ1,φ2]∗π = [[ιφ1 , d∗], ιφ2 ](π)

= ιφ1d∗ιφ2(π) + d∗ιφ1ιφ2(π)− ιφ2ιφ1d∗(π)− ιφ2d∗ιφ1(π)

= 〈φ1, [π, 〈π, φ2〉]〉+ [π, 〈π, φ2 ∧ φ1〉]
− 〈[π, π], φ1 ∧ φ2〉 − 〈φ2, [π, 〈π, φ1〉],

from which we get,

〈[π, π], φ1∧φ2〉 = 〈[π, 〈π, φ2〉], φ1〉+[π, 〈π, φ2∧φ1〉]−〈[π, 〈π, φ1〉], φ2〉−〈[φ1, φ2]∗, π〉. (G.22)

Now, bringing Eqs. (G.14), (G.15) and (G.16), we have, for any φi, φj , φ3 ∈ Γ(A∗),

〈〈[π, 〈π, φj〉], φi〉, φ3〉 = 〈d∗π](φj), φi ∧ φ3〉 = d∗π
](φj)(φi, φ3)

= ρ(π](φi))(〈φ3, π
](φj)〉)− ρ(π](φ3))(〈φi, π](φj)〉) (G.23)

− 〈[φi, φ3]∗, π
](φj)〉.

Putting Eq. (G.23) into Eq. (G.22) with i = 1, j = 2 in the first term of the right-hand
side of (G.22) and with i = 2, j = 1 in the third term, we get

〈[π, π], φ1 ∧ φ2 ∧ φ3〉 = 〈〈[π, π], φ1 ∧ φ2〉, φ3〉
= ρ(π](φ1))(〈φ3, π

](φ2)〉)− ρ(π](φ3))(〈φ1, π
](φ2)〉)

− 〈[φ1, φ3]∗, π
](φ2)〉+ ρ(π](φ3))(〈φ1, π

](φ2)〉)
− ρ(π](φ2))(〈φ3, π

](φ1)〉) + ρ(π](φ3))(〈φ2, π
](φ1)〉)

+ 〈[φ2, φ3]∗, π
](φ1)〉+ 〈[φ1, φ2]∗, π

](φ3)〉

and now using Eq. (G.17) we continue calculations

= ρ(π](φ1))(〈φ3, π
](φ2)〉)− ρ(π](φ2))(〈φ3, π

](φ1)〉) + ρ(π](φ3))(〈φ2, π
](φ1)〉)

− 〈Lπ](φ1)φ3, π
](φ2)〉+ 〈Lπ](φ3)φ1, π

](φ2)〉 − ρ(π](φ2))(〈φ1, π
](φ3)〉)

+ 〈Lπ](φ2)φ3, π
](φ1)〉 − 〈Lπ](φ3)φ2, π

](φ1)〉+ ρ(π](φ1))(〈φ2, π
](φ3)〉)

+ 〈Lπ](φ1)φ2, π
](φ3)〉 − 〈Lπ](φ2)φ1, π

](φ3)〉+ ρ(π](φ3))(〈φ1, π
](φ2)〉)

= −〈Lπ](φ1)φ3, π
](φ2)〉+ 〈Lπ](φ3)φ1, π

](φ2)〉

+ 〈Lπ](φ2)φ3, π
](φ1)〉 − 〈Lπ](φ3)φ2, π

](φ1)〉

+ 〈Lπ](φ1)φ2, π
](φ3)〉 − 〈Lπ](φ2)φ1, π

](φ3)〉
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Now, from Cartan’s formula, observe for example that

〈Lπ](φ3)φ1, π
](φ2)〉+ 〈Lπ](φ2)φ3, π

](φ1)〉+ 〈Lπ](φ1)φ2, π
](φ3)〉

= 〈ιπ](φ3)dφ1, π
](φ2)〉+ 〈d(ιπ](φ3)φ1), π](φ2)〉

+ 〈ιπ](φ2)dφ3, π
](φ1)〉+ 〈d(ιπ](φ2)φ3), π](φ1)〉

+ 〈ιπ](φ1)dφ2, π
](φ3)〉+ 〈d(ιπ](φ1)φ2), π](φ3)〉

= −〈ιπ](φ2)dφ1, π
](φ3)〉 − 〈d(ιπ](φ1)φ3), π](φ2)〉

− 〈ιπ](φ1)dφ3, π
](φ2)〉 − 〈d(ιπ](φ3)φ2), π](φ1)〉

− 〈ιπ](φ3)dφ2, π
](φ1)〉 − 〈d(ιπ](φ2)φ1), π](φ3)〉

= −〈Lπ](φ2)φ1, π
](φ3)〉 − 〈Lπ](φ1)φ3, π

](φ2)〉 − 〈Lπ](φ3)φ2, π
](φ1)〉.

Putting this equality into the last equation, we get finally

〈[π, π], φ1 ∧ φ2 ∧ φ3〉 = −2
∑
cyclic

〈Lπ](φ1)φ3, π
](φ2)〉,

as we wanted.
�

Proposition G.19. Let (A, [·, ·], ρ) be a Lie algebroid. Then a 2-section π ∈ Λ2A is
integrable if and only if the induced morphism π] : A∗ //A preserves brackets:

π]([φ1, φ2]∗) = [π](φ1), π](φ2)], ∀φ1, φ2 ∈ Γ(A∗),

where [·, ·]∗ is the Lie bracket given in Prop. G.10.

Proof. The statement follows immediately from the identity

π]([φ1, φ2]∗)− [π](φ1), π](φ2)] = −1

2
〈[π, π], φ1 ∧ φ2〉, (G.24)

which we will prove now. Let’s compute the right-hand side of (G.24). To do this, we take
any φ3 ∈ Γ(A∗), then, using Eq. (G.17), (G.2) and (G.21) and skew-symmetry, we have

〈φ3, π
]([φ1, φ2]∗)− [π](φ1), π](φ2)]〉 = −〈π](φ3), [φ1, φ2]∗〉 − 〈φ3, [π

](φ1), π](φ2)]〉
= −〈Lπ](φ1)φ2, π

](φ3)〉+ 〈Lπ](φ2)φ1, π
](φ3)〉 − ρ(π](φ3))(〈φ1, π

](φ2)〉)

− ρ(π](φ1))(〈φ3, π
](φ2)〉) + 〈Lπ](φ1)φ3, π

](φ2)〉

= −〈ιπ](φ1)dφ2, π
](φ3)〉 − 〈d(ιπ](φ1)φ2), π](φ3)〉+ 〈Lπ](φ2)φ1, π

](φ3)〉

− ρ(π](φ3))(〈φ1, π
](φ2)〉)− ρ(π](φ1))(〈φ3, π

](φ2)〉) + 〈Lπ](φ1)φ3, π
](φ2)〉

= 〈ιπ](φ3)dφ2, π
](φ1)〉+ ρ(π](φ3))(〈φ1, π

](φ2)〉) + 〈Lπ](φ2)φ1, π
](φ3)〉

− ρ(π](φ3))(〈φ1, π
](φ2)〉) + ρ(π](φ1))(〈φ2, π

](φ3)〉) + 〈Lπ](φ1)φ3, π
](φ2)〉

= 〈Lπ](φ3)φ2, π
](φ1)〉+ 〈Lπ](φ2)φ1, π

](φ3)〉+ 〈Lπ](φ1)φ3, π
](φ2)〉

=
∑
cyclic

〈Lπ](φ1)φ3, π
](φ2)〉. (G.25)

Taking into account lemma G.18, (G.25) is equivalent to (G.24).
�



Appendix H

Lie 2-algebroids + splitting !
split Lie 2-algebroids

In this appendix we establish the equivalence between Lie 2-algebroids with a splitting
and split Lie 2-algebroids, case, proved by G. Bonavolontà and N. Poncin [4]. As an
application we show that split Lie 2-algebroids are equivalent to Lie 2-algebroids endowed
with a splitting, thus establishing the connection between Lie 2-algebroids in the way we
defined them, and split Lie 2-algebroids already present in the literature, which we recall
below.

H.1 Split degree 2 NQ-manifolds and split Lie 2-algebroids

Definition H.1. A split Lie n-algebroid (or an n-term L∞-algebroid) is a graded vector
bundle E = E0 ⊕ E−1 ⊕ · · · ⊕ E−n+1 over a manifold M endowed with the following
structure:

• An anchor map ρ : E0
// TM ;

• n+ 1 brackets li : Γ(ΛiE) // Γ(E) with degree 2− i, for i = 1, . . . , n+ 1, such that

1. ∑
i+j=k+1

(−1)i(j−1)
∑

σ∈Sh(i,j−1)

sgn(σ)Ksgn(σ)lj(li(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(k)) = 0,

(H.1)
where xi ∈ Γ(E−i), Sh(i, j−1) denotes the set of (i, j−1)-shuffles, and ksgn(σ)
is the Koszul sign for a permutation σ ∈ Sk, that is,

x1 ∧ · · · ∧ xk = Ksgn(σ)xσ(1) ∧ · · · ∧ xσ(k).

2. l2 satisfies the Leibniz rule with respect to ρ:

l2(x0, fx) = fl2(x0, x) + ρ(x0)(f)x, ∀x0 ∈ Γ(E0), f ∈ C∞(M), x ∈ Γ(E).

3. For i 6= 2 the li’s are C∞(M)-linear.

288
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Example H.2. A split Lie 1-algebroid is a Lie algebroid in the usual sense. Indeed, we
have E = E0, and l1 vanishes as it is of degree 1. The Lie infinity algebra conditions (Eq.
(H.1)) reduce to the Jacobi identity.

Example H.3. A split Lie n-algebroid over a point is exactly a Lie n-algebra, i.e., an
n-term Lie infinity algebra.

The following characterization of split Lie 2-algebroids in terms of geometric data
appears, in the case that the base is a point, in the work on Lie 2-algebras of Baez and
Crans [3]. With minor modifications we obtain the geometric description in the general
case, where the base is a manifold.

Proposition H.4 ([3]). A split Lie 2-algebroid structure on E = A ⊕ B consistis on the
following data:

• a vector bundle map (over the identity) ∂ : B //A;

• a skew-symmetric bracket [·, ·] : A × A // A together with an anchor-map ρ :
A // TM ;

• a vector bundle map (over the identity) ∇ : A // CDO(B), x // ∇x (from A to
the bundle of covariant differential operators of B);

• a vector bundle map Υ : Λ3A //B.

These maps satisfy:

1. [x, fy] = f [x, y] + ρ(x)(f)y;

2. ∇xfh = f∇xh+ ρ(x)(f)h;

3. ∂(∇xh) = [x, ∂h];

4. ∇∂hk = −∇∂kh

5. ∂ ◦Υ(x, y, z) = −[[x, y], z] + [[x, z], y] + [x, [y, z]],

6. Υ(∂h, x, y) = ∇x∇yh−∇y∇xh−∇[x,y]h;

7.

Υ([w, y], x, z) + Υ([x, z], w, y) +∇yΥ(w, x, z) +∇wΥ(x, y, z) = ∇zΥ(w, x, y) +∇xΥ(w, y, z)

+ Υ([w, z], y, x) + Υ([w, z], x, y) + Υ([x, y], w, z) + Υ([y, z], w, x),
(H.2)

for all w, x, y, z ∈ Γ(A) and h, k ∈ Γ(B).

The following theorem provides a characterization of split NQ-manifolds, establishing
a canonical 1:1 correspondence with split Lie n-algebroids. The proof is in [4], and we
do not provide it here, for reasons of space-time, though we will use this result to estab-
lish a canonical 1:1 correspondence between NQ degree 2 manifolds and Lie 2-algebroids
(without splitting). However, we will provide later, through the derived brackets method,
a direct proof of this correspondence.
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Theorem H.5 ([4]). There is a canonical 1:1 correspondence between split NQ-manifolds
(graded manifolds with a Q-structure and a fixed splitting) and split Lie n-algebroids.

Remark H.6 ([65]). In the degree 2 case, which is the one that interests us, the explicit
correspondence is given by:

Q(f) = −ρ∗(df), ∀f ∈ C∞(M),

〈Q(ε), e1 ∧ e2〉 = ρ(e1)(〈e2, ε〉)− ρ(e2)(〈e1, ε〉)− 〈[e1, e2], ε〉,
〈Q(ε), ξ〉 = 〈∂(ξ), ε〉, (H.3)

〈Q(ζ), e1 ∧ e2 ∧ e3〉 = 〈Υ(e1, e2, e3), ζ〉,
〈Q(ζ), e ∧ ξ〉 = 〈∇eξ, ζ〉 − ρ(e)(〈ξ, ζ〉),

where ε ∈ Γ(E∗), ζ ∈ Γ(F ∗), ξ ∈ Γ(F ) and e, ei ∈ Γ(E).

H.2 Equivalence between both structures

Now we describe the equivalence beween a split Lie 2-algebroid structure, and a Lie
2-algebroid structure afeter we choose a splitting (horizontal lift).

Proposition H.7. Consider a preLie 2-algebroid. When a horizontal lift is chosen, the
structures we obtain through Eqs. (4.9)-(4.15) coincide with the structure data obtained
through Eqs. (H.3).

Proof. Consider the structure data obtained from Q via Eqs. (4.9)-(4.15), and fix a hor-
izontal lift. Of course, ρ and ∂ defined in (H.3) coincide with the same maps defined in
Eqs. (4.9) and (4.10).

Now, define a bracket on Γ(E) by

[e1, e2] := ∆Ψ(ê1, e2). (H.4)

It follows immediately from the definition of ∆Ψ, given in Eq. (4.5), that the bracket
above coincides with the one given in the second equation of (H.3), and

〈[e1, e2], ε〉 = 〈[ê1, ê2], ε〉, (H.5)

follows readily from Eq. (4.15). We want to warn here that we are using the same notation
[·, ·] for two different brackets, one on Γ(E) and the other on Γ(Ê). We hope the context
will make it always clear which bracket we are referring to in each situation.

We also see that ∇F , introduced in Eq. (4.2) coincides with ∇ in the last equation of
(H.3).

Finally, define a vector bundle map Υ : Λ2E ⊗ E // F by

Υ(e1, e2, e3) := −K(e1, e2)(e3), (H.6)

where K : Ω2(E,Hom(E,F )) is the curvature form

K(e1, e2) := [̂e1, e2]− [ê1, ê2]. (H.7)
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It follows from Eq. (H.5) that K(e1, e2) is actually an element in Hom(E,F ) ∼= E ⊗ F ,
viewed inside Ê. We need to show that Υ defined in Eq. H.6 actually coincides with the
map Υ : Λ3E // F defined according to the fourth equation in (H.3). From Eq. (3.78)
we see that this amounts to show that, for e1, e2, e3 ∈ Γ(E) and ζ ∈ Γ(F ∗)

〈e3, 〈[ê1, ê2], ζ̂〉〉 = −〈e3, 〈ê2, Q(ζ̂)]2(ê1)〉〉 (H.8)

holds, where ζ̂ ∈ F̃ ∗ is the horizontal lift of ζ. But (H.8) follows immediately from Eq.
(4.14).

�

Theorem H.8 (Integrability equations revisited). Properties 1 and 2 of Def. 4.17
are equivalent to Eqs. 3-7 of Prop. H.4.

Proof. In Prop. H.7, we have showed that, when we introduce a horizontal lift, the
preLie 2-algebroid structure induced by Q coincides with the split Lie-2 algebroid structure
defined in (H.3). Let’s prove the equivalence between Eq. 2 of Def. 4.17 and Eq. 3 of
Prop. H.4. On one hand we have

∂ ◦Θ(φ)(ξ) = ∂ ◦Θ(ê+ η)(ξ)

= ∂ ◦Θ(ê)(ξ) + ∂ ◦Θ(η)(ξ)

= ∂(∇Fe ξ) + ∂ ◦ η ◦ ∂(ξ), (H.9)

where we used property 4 of Def. 4.6. On the other hand,

(∆Ψ ◦ ∂)(φ)(ξ) = ∆Ψ(φ, ∂(ξ)) = ∆Ψ(ê+ η, ∂(ξ))

= ∆Ψ(ê, ∂(ξ)) + ∆Ψ(η, ∂(ξ))

= [e, ∂(ξ)] + ∂ ◦ η ◦ ∂(ξ), (H.10)

where, again, we used property 4 of Def. 4.6.
Comparing (H.9) and (H.10), we see that Eq. 2 of Def. 4.17 and Eq. 3 of Prop. H.4

are equivalent.

Now let’s prove that, using the equivalence we have already established, property 1 of
Def. 4.17 is equivalent to Eqs. 4, 5, 6 and 7 of Prop. H.4.

In our situation, property 1 of Def. 4.17 is equivalent to the equation

J(φ1, φ2, φ3) = 0, (H.11)

where the Jacobiator, J , for a bracket [·, ·], is defined by

J(φ1, φ2, φ3) := [φ1, [φ2, φ3]]− [[φ1, φ2], φ3]− [φ2, [φ1, φ3]].

Now,

J(φ1, φ2, φ3) = J(ê1 + η1, ê2 + η2, ê3 + η3)

= J(ê1, ê2, ê3) + J(ê1, η2, η3) + J(ê1, ê2, η3) + J(ê1, η2, ê3)

+ J(η1, ê2, ê3) + J(η1, η2, η3) + J(η1, ê2, η3) + J(η1, η2, ê3). (H.12)
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Then, we have to calculate each one of the eight Jacobiators on the right hand side of
(H.12), and verify that the nullity of these eight terms is equivalent to Eqs. 4, 5, 6 and 7
of Prop. H.4 –given the preceding equivalences already proven.

Computation of J(ê1, ê2, ê3)

[ê1, [ê2, ê3]] = [ê1, [̂e2, e3]]− [ê1,K(e2, e3)]

= ̂[e1, [e2, e3]]−K(e1, [e2, e3])−∇Fe1 ◦K(e2, e3) +K(e2, e3) ◦ [e1, ·].
(H.13)

Analogously,

[ê2, [ê1, ê3]] = ̂[e2, [e1, e3]]−K(e2, [e1, e3])−∇Fe2 ◦K(e1, e3)+K(e1, e3)◦[e2, ·]. (H.14)

Finally

[[ê1, ê2], ê3] = [[̂e1, e2], ê3]− [K(e1, e2), ê3]

= ̂[[e1, e2], e3]−K([e1, e2], e3) +∇Fe3 ◦K(e1, e2)

−K(e1, e2) ◦ [e3, ·]−∇F· K(e1, e2)(e3)− ̂∂(K(e1, e2)(e3)). (H.15)

Putting together Eqs. (H.13), (H.14) and (H.15), we conclude that

J(ê1, ê2, ê3) = 0 (H.16)

if and only if Eqs. 5 and 7 of Prop. H.4 are true.

Computation of J(η1, ê2, η3).

[η1, [ê2, η3]] = η1◦∂◦∇Fe2◦η3−∇Fe2◦η3◦∂◦η1−η1◦∂◦η3◦[e2, ·]+η3◦[e2, ·]◦∂◦η1. (H.17)

Next,

[[η1,ê2], η3] = [η1 ◦ [e2, ·]−∇Fe2 ◦ η1 +∇F· η1(e2) + ̂∂(η1(e2)), η3]

= η1 ◦ [e2, ·] ◦ ∂ ◦ η3 − η3 ◦ ∂ ◦ η1 ◦ [e2, ·]−∇Fe2 ◦ η1 ◦ ∂ ◦ η3 + η3 ◦ ∂ ◦ ∇Fe2 ◦ η1

+∇F· η1(e2) ◦ ∂ ◦ η3 − η3 ◦ ∂ ◦ ∇F· η1(e2) +∇F∂(η1(e2)) ◦ η3 − η3 ◦ [∂(η1(e2)), ·].
(H.18)

Finally,

[ê2, [η1, η2]] = ∇Fe2◦η1◦∂◦η3−η1◦∂◦η3◦[e2, ·]−∇Fe2◦η3◦∂◦η1+η3◦∂◦η1◦[e2, ·]. (H.19)

Putting together Eqs. (H.17), (H.18) and (H.19), and using Eq. 3 of Prop. H.4, we
conclude that

J(η1, ê2, η3) = 0 (H.20)

for arbitrary η1, e2, η3 if and only if Eq. 4 of Prop. H.4 holds.
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Computation of J(ê1, ê2, η3).

[ê1, [ê2, η3]] = [ê1,∇Fe2 ◦ η3 − η3 ◦ [e2, ·]]
= ∇Fe1∇

F
e2 ◦ η3 −∇Fe2 ◦ η3 ◦ [e1, ·]−∇Fe1 ◦ η3 ◦ [e2, ·] + η3 ◦ [e2, ·] ◦ [e1, ·].

(H.21)

Next,

[[ê1, ê2], η3] = [[̂e1, e2]−K(e1, e2), η3]

= ∇F[e1,e2] ◦ η3 − η3 ◦ [[e1, e2], ·]−K(e1, e2) ◦ ∂ ◦ η3 + η3 ◦ ∂ ◦K(e1, e2).

(H.22)

Finally,

[ê2, [ê1, η3]] = ∇Fe2∇
F
e1 ◦η3−∇Fe1 ◦η3◦[e2, ·]−∇Fe2 ◦η3◦[e1, ·]+η3◦[e1, ·]◦[e2, ·]. (H.23)

Putting together Eqs. (H.21), (H.22) and (H.23),

J(ê1, ê2, η3) = R∇F (e1, e2) ◦ η3 − η3 ◦ J(e1, e2, ·)
+K(e1, e2) ◦ ∂ ◦ η3 − η3 ◦ ∂ ◦K(e1, e2),

thereby, using Eqs. 5 of Prop. H.4, we conclude that

J(ê1, ê2, η3) = 0. (H.24)

for arbitrary e1, e2, η3 if and only if Eq. 6 of Prop. H.4 is true.

Remark H.9. Observe that at this point we already have obtained all the equations
3 -7 of Prop.H.4 from the properties of a split Lie 2-algebroid. So it remains to show
that those equations imply the nullity of the remaining Jacobiators in (H.12).

Computation of J(ê1, η2, η3).

[ê1, [η2, η3]] = [ê1, η2 ◦ ∂ ◦ η3 − η3 ◦ ∂ ◦ η2]

= ∇Fe1 ◦ η2 ◦ ∂ ◦ η3 − η2 ◦ ∂ ◦ η3 ◦ [e1, ·]−∇Fe1η3 ◦ ∂ ◦ η2 + η3 ◦ ∂ ◦ η2 ◦ [e1, ·].
(H.25)

Next,

[[ê1, η2], η3] = [∇Fe1 ◦ η2 − η2 ◦ [e1, ·], η3]

= ∇Fe1 ◦ η2 ◦ ∂ ◦ η3 − η3 ◦ ∂ ◦ ∇Fe1 ◦ η2 − η2 ◦ [e1, ·] ◦ ∂ ◦ η3 + η3 ◦ ∂ ◦ η2 ◦ [e1, ·].
(H.26)

Finally,

[η2, [ê1, η3]] = [η2,∇Fe1 ◦ η3 − η3 ◦ [e1, ·]
= η2 ◦ ∂ ◦ ∇Fe1 ◦ η3 −∇Fe1 ◦ η3 ◦ ∂ ◦ η2 − η2 ◦ ∂ ◦ η3 ◦ [e1, ·] + η3 ◦ [e1, ·] ◦ ∂ ◦ η2.

(H.27)

Putting together Eqs. (H.25), (H.26) and (H.27), and using Eq. 3 of Prop. H.4, we
conclude that

J(ê1, η2, η3) = 0. (H.28)
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Computation of J(ê1, η2, ê3).

[ê1, [η2, ê3]] = [ê1, η2 ◦ [e3, ·]−∇Fe3 ◦ η2 +∇F· η2(e3) + ∂̂η(e3)]

= ∇Fe1 ◦ η2 ◦ [e3, ·]− η2 ◦ [e3, ·] ◦ [e1, ·]−∇Fe1∇
F
e3 ◦ η2 +∇Fe3 ◦ η2 ◦ [e1, ·]

+∇Fe1 ◦ ∇
F
· η2(e3)−∇F· η2(e3) ◦ [e3, ·] + ̂[e1, ∂(η2(e3))]−K(e1, ∂(η2(e3))).

(H.29)

Next,

[[ê1, η2], ê3] = [∇Fe1 ◦ η2 − η2 ◦ [e1, ·], ê3]

= ∇Fe1 ◦ η2 ◦ [e3, ·]−∇Fe3)∇Fe1 ◦ η2 +∇F· ∇Fe1η2(e3) + ̂∂(∇Fe1η2(e3)

− η2 ◦ [e1, ·] ◦ [e3, ·] +∇Fe3 ◦ η2 ◦ [e1, ·]−∇F· η([e1, e3])− ̂∂ ◦ η2([e1, e3]).
(H.30)

Finally

[η2, [ê1, ê3]] = [η2, [̂e1, e3]−K(e1, e3)]

= η2[[e1, e3], ·]−∇F[e1,e3] ◦ η2 +∇F· η2([e1, e3]) + ̂∂(η2([e1, e3]))

− η2 ◦ ∂ ◦K(e1, e3) +K(e1, e3) ◦ ∂ ◦ η2. (H.31)

Putting together (H.29), (H.30) and (H.31) we get

J(ê1, η2, ê3) = R∇F (e3, e1) ◦ η2 + η2 ◦ J(e1, e3, ·)−R∇F (·, e1)(η2(e3))

+K(e3, e1) ◦ ∂ ◦ η2 + η2 ◦ ∂ ◦K(e1, e3)−K(·, e1)(∂(η2(e3)))

+ [e1, ∂(η2(e3))]− ∂ ◦ ∇Fe1η2(e3),

thereby, using Eqs. 3, 6 and 7 of Prop. H.4, we get

J(ê1, η2, ê3) = 0. (H.32)

Computation of J(η1, ê2, ê3).

[η1, [ê2, ê3]] = [η1, [̂e2, e3]−K(e2, e3)]

= η1 ◦ [[e2, e3], ·]−∇F[e2,e3] ◦ η1 +∇F· η1([e2, e3]) + ̂∂(η1([e2, e3]))

− η1 ◦ ∂ ◦K(e2, e3) +K(e2, e3) ◦ ∂ ◦ η1. (H.33)

Next,

[[η1, ê2], ê3] = [η1 ◦ [e2, ·]−∇Fe2 ◦ η1 +∇F· η1(e2) + ̂∂ ◦ η1(e2), ê3]

= η1 ◦ [e2, ·] ◦ [e3, ·]−∇Fe3 ◦ η1 ◦ [e2, ·] +∇F· η1([e2, e3]) + ̂∂ ◦ η1([e2, e3])

−∇Fe2 ◦ η1 ◦ [e3, ·] +∇Fe3 ◦ ∇
F
e2 ◦ η1 −∇F· ∇Fe2η1(e3)− ̂∂(∇Fe2η1(e3))

+∇F[e3,·]η1(e2)−∇Fe3 ◦ ∇
F
· η1(e2) +∇F· ∇Fe3η1(e2) + ̂∂(∇Fe3η1(e2))

− ̂[e3, ∂(η1(e2))] +K(∂(η1(e2)), e3). (H.34)
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Finally,

[ê2, [η1, ê3]] = ∇Fe2 ◦ η1 ◦ [e3, ·]− η1 ◦ [e3, ·] ◦ [e2, ·]−∇Fe2 ◦ ∇
F
e3 ◦ η1 +∇Fe3 ◦ η1 ◦ [e2, ·]

+∇Fe2 ◦ ∇
F
· η1(e3)−∇F[e2,·]η1(e3) + ̂[e2, ∂(η1(e3))]−K(e2, ∂(η1(e3))).

(H.35)

Putting together Eqs. (H.33), (H.34) and (H.35), we get

J(η1, ê2, ê3) = η1 ◦ J(e2, e3, ·) +R∇F (e2, e3) ◦ η1 +R∇F (e3, ·)(η1(e2)) +R∇F (·, e2)(η1(e3))

+ η1 ◦ ∂ ◦K(e2, e3) +K(e2, e3) ◦ η1 +K(e3, ·)(η1(e2)) +K(·, e2)(η1(e3))

+ ̂∂(∇Fe2η1(e3))− ̂[e2, ∂(η1(e3))]− ̂∂(∇Fe3η1(e2)) + ̂[e3, ∂(η1(e2))].

Thereby, using Eqs. 3, 5 and 6 of Prop. H.4, we get

J(η1, ê2, ê3) = 0. (H.36)

Computation of J(η1, η2, η3).

[η1, [η2, η3]] = [η1, η2 ◦ ∂ ◦ η3 − η3 ◦ ∂ ◦ η2]

= η1 ◦ ∂ ◦ η2 ◦ ∂ ◦ η3 − η2 ◦ ∂η3 ◦ ∂ ◦ η1 − η1 ◦ ∂ ◦ η3 ◦ ∂ ◦ η2 + η3 ◦ ∂ ◦ η2 ◦ ∂ ◦ η1.
(H.37)

Next,

[[η1, η2], η3]] = [η1 ◦ ∂ ◦ η2 − η2 ◦ ∂ ◦ η1, η3]

= η1 ◦ ∂ ◦ η2 ◦ ∂ ◦ η3 − η3 ◦ ∂η1 ◦ ∂ ◦ η2 − η2 ◦ ∂ ◦ η1 ◦ ∂ ◦ η3 + η3 ◦ ∂ ◦ η2 ◦ ∂ ◦ η1.
(H.38)

Finally,

[η2, [η1, η3]] = [η2, η1 ◦ ∂ ◦ η3 − η3 ◦ ∂ ◦ η1]

= η2 ◦ ∂ ◦ η1 ◦ ∂ ◦ η3 − η1 ◦ ∂η3 ◦ ∂ ◦ η2 − η2 ◦ ∂ ◦ η3 ◦ ∂ ◦ η1 + η3 ◦ ∂ ◦ η1 ◦ ∂ ◦ η2.
(H.39)

Putting together Eqs. (H.37), (H.38) and (H.39), we conclude

J(η1, η2, η3) = 0. (H.40)

Computation of J(η1, η2, ê3).

[η1, [η2, ê3]] = [η1, η2 ◦ [e3, ·]−∇Fe3 ◦ η2 +∇F· η2(e3) + ̂∂(η2(e3))]

= η1 ◦ ∂ ◦ η2 ◦ [e3, ·]− η2 ◦ [e3, ·] ◦ ∂ ◦ η1 − η1 ◦ ∂ ◦ ∇Fe3 ◦ η2 +∇Fe3 ◦ η2 ◦ ∂ ◦ η1

+ η1 ◦ ∂ ◦ ∇F· η2(e3)−∇F· η2(e3) ◦ ∂ ◦ η1 + η1 ◦ [∂(η2(e3)), cdot]−∇F∂(η2(e3)) ◦ η1

+∇F· ◦ η1 ◦ ∂ ◦ η2(e3) + ̂∂ ◦ η1 ◦ ∂ ◦ η2(e3). (H.41)
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Next,

[[η1, η2], ê3] = [η1 ◦ ∂ ◦ η2 − η2 ◦ ∂η1, ê3]

= η1 ◦ ∂ ◦ η2 ◦ [e3, ·]−∇F ◦ η1 ◦ ∂ ◦ η2 +∇F· ◦ η1 ◦ ∂ ◦ η2(e3) + ∂ ◦ η1 ◦ ∂ ◦ η2(e3)

− η2 ◦ ∂ ◦ η1 ◦ [e3, ·] +∇Fe3 ◦ η2 ◦ ∂ ◦ η1 −∇F· ◦ η2 ◦ ∂ ◦ η1(e3)− ̂∂ ◦ η2 ◦ ∂ ◦ η1(e3).
(H.42)

Finally,

[η2, [η1, ê3]] = η2 ◦ ∂ ◦ η1 ◦ [e3, ·]− η1 ◦ [e3, ·] ◦ ∂ ◦ η2 − η2 ◦ ∂ ◦ ∇Fe3 ◦ η1 +∇Fe3 ◦ η1 ◦ ∂ ◦ η2

+ η2 ◦ ∂ ◦ ∇F· η1(e3)−∇F· η1(e3) ◦ ∂ ◦ η2 + η2 ◦ [∂(η1(e3)), ·]−∇F∂(η1(e3)) ◦ η2

+∇F· η2 ◦ ∂ ◦ η1(e3) + ̂∂ ◦ η2∂ ◦ η1(e3). (H.43)

Putting together Eqs. (H.41), (H.42) and (H.43) and using Eqs. 3 and 4 of Prop.
H.4, we arrive to

J(η1, η2, ê3) = 0. (H.44)

So, we have showed Eqs. 3 -7 of Prop. H.4 are equivalent to (H.11), and the proof of the
theorem is complete.

�

Corollary H.10. There is a canonical 1:1 correspondence between split Lie 2-algebroids
and Lie 2-algebroids endowed with a splitting.

Proof. The sequence (3.44) together with a splitting ψ : E // Ê is equivalent to the pair
of vector bundles (F,E), or equivalently, to the Whitney sum E = E ⊕ F . We saw at the
beginning of the proof of Thm. 4.20 how to obtain the data (∂, ρ, [·, ·]E ,∇,Υ), provided
we have a splitting, namely we have

[e1, e2]E = ∆Ψ(ê1, e2),

∇eξ = Θ(ê)(ξ),

Υ(e1, e2, e3) = −K(e1, e2)(e3),

where K was introduced in Eq. (H.7).
Conversely, if we start with the data (∂, ρ, [·, ·]E ,∇,Υ), we can obtain the data (ρ̂, ∂, [·, ·],Ψ,Θ)

that defines a Lie 2-algebroid in the following way.

• ρ̂ is defined from ρ by property 1 of Def. 4.6.

• ∂ is the same map in both structures.

• From properties 4 and 5 we can define ∆Ψ from [·, ·]E and ∂ (recall that thanks to
the splitting we can write φ = η + ê). Thereby, we can obtain Ψ from ∆Ψ and ρ
using Eq. (4.5).

• Θ is obtained from ∇ and ∂, using property 4 of Def. 4.6.
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• Finally, [·, ·] is obtained from [·, ·]E , Υ, ∇ and ∂, using Eq. (H.7) and properties 6,7
and 4 of Def. 4.6.

Therefore, we have obtained a preLie 2-algebroid structure. It is routine to verify that
properties 1-7 of the definition are satisfied, indeed, we built the structure data so that
those properties are satisfied.

That conditions 3-7 of Prop. H.4 are equivalent to conditions 1 and 2 of Def. 4.17 is
precisely what we do in the proof of Thm. H.8.

�

Corollary H.11. Consider a Lie 2-algebroid structure on the dual sequence (3.44). Then

Θ : Ê //CDO(F )

is a representation of (Ê, [·, ·]) by first-order differential operators (see Def. I.14), that is,

Θ([φ1, φ2]) = [Θ(φ1),Θ(φ2)], ∀φ1, φ2 ∈ Γ(Ê). (H.45)

Proof. Let’s compute [Θ(φ1),Θ(φ2)](ξ)−Θ([φ1, φ2])(ξ):

a)

Θ(φ1)(Θ(φ2)(ξ)) = Θ(φ1)(∇Fe2ξ + η2 ◦ ∂(ξ))

= ∇Fe1∇
F
e2ξ +∇Fe1η2(∂(ξ)) + η1 ◦ ∂(∇Fe2ξ) + η1 ◦ ∂ ◦ η2∂(ξ).

Similarly

b)
Θ(φ2)(Θ(φ1)(ξ)) = ∇Fe2∇

F
e1ξ +∇Fe2η1(∂(ξ)) + η2 ◦ ∂(∇Fe1ξ) + η2 ◦ ∂ ◦ η1∂(ξ).

c) Now we want to calculate Θ([φ1, φ2])(ξ). Let’s begin with [φ1, φ2]. Using (H.7) and
Eqs. 4, 6 and 7 of Def. 4.6, we have

[φ1, φ2] = [ê1 + η1, ê2 + η2]

= [̂e1, e2]−K(e1, e2) +∇Fe1 ◦ η2 − η2 ◦ [e1, ·]
+ η1 ◦ [e2, ·]−∇Fe2 ◦ η1 +∇F· η1(e2) + ∂ ◦ η1(e2)

+ η1 ◦ ∂ ◦ η2 − η2 ◦ ∂ ◦ η1,

thereby

Θ([φ1, φ2])(ξ) = ∇F[e1,e2]ξ −K(e1, e2) ◦ ∂(ξ) +∇Fe1 ◦ η2 ◦ ∂(ξ)− η2 ◦ [e1, ·] ◦ ∂(ξ)

+ η1 ◦ [e2, ·] ◦ ∂(ξ)−∇Fe2 ◦ η1 ◦ ∂(ξ) +∇F∂(ξ)η1(e2) +∇F∂◦η1(e2)ξ

+ η1 ◦ ∂ ◦ η2 ◦ ∂(ξ)− η2 ◦ ∂ ◦ η1 ◦ ∂(ξ). (H.46)

Using Eqs. 3 and 4 of Prop. H.4, and comparing items a) and b) above with Eq. (H.46)
of item c), we obtain

[Θ(φ1),Θ(φ2)](ξ)−Θ([φ1, φ2])(ξ) = R∇F (e1, e2)(ξ) +K(e1, e2)(∂(ξ)).

Hence, taking Eq. (H.6) into account (and the skew-symmetry of Υ), and using Eq. 6 of
Prop. H.4 we get

[Θ(φ1),Θ(φ2)](ξ)−Θ([φ1, φ2])(ξ) = 0.

�



Appendix I

First-order differential operators
and quasi pseudoalgebra brackets

In this chapter we study first-order differential operators in order to describe certain
generalizations of Lie algebroids that will provide the appropriate geometric structure
which describes NQ degree 2 manifolds. The whole chapter is based on [19] and [53].

Definition I.1. Let E //M be a vector bundle. An R-linear map D : Γ(E) // Γ(E) is
a k-th order differential operator if, for any k+ 1 functions f0, . . . , fk ∈ C∞(M), we have:

[fk, [fk−1, [. . . [f0, D], . . . ]] = 0. (I.1)

Here the bracket [f,D] : Γ(E)→ Γ(E) is defined as the commutator

[f,D](s) = D(f · s)− f ·D(s).

The set of k-th order differential operators is denoted by Dk(E).

Example I.2. The 0-th order differential operators are just the vector bundle endomor-
phisms.

The covariant differential operators of E, sections of the Lie algebroid CDO(E), also
called derivative endomorphisms, which are introduced after Prop. 6.1, are a particular
case of first-order differential operators.

Proposition I.3. An R-linear operator D : Γ(E) // Γ(E) is a first-order differential
operator if and only if there exists a section σD ∈ Γ(TM ⊗ End(E)) such that, for all
f ∈ C∞(M) and s ∈ Γ(E),

D(fs) = fD(s) + σD(df ⊗ s). (I.2)

In this case σD is unique.

Proof. Suppose D ∈ D1(E). Consider the bilinear map of vector spaces B : C∞(M) ×
Γ(E) // Γ(E) given by

B(f, s) = D(fs)− fD(s).
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Then (I.1), in the case k = 1, implies that

B(f, gs) = D(fgs)− fD(gs) = gD(fs)− g(fD(s)) = gB(f, s)

and

B(fg, s) = D(fgs)− fgD(s) = fD(gs) + gD(fs)− 2fgD(s)

= f(D(gs)− gD(s)) + g(D(fs)− f(D(s))

= fB(g, s) + gB(f, s)

This implies that B is represented by a section σD ∈ Γ(TM ⊗ End(E)), so that

D(fs)− fD(s) = σD(df ⊗ s).

Conversely, if there is σD ∈ Γ(TM ⊗ End(E)) such that (I.2) holds, then

[f1, [f0, D]](s) = D(f1f0s)− f0D(f1s)− f1D(f0s) + f0f1D(s)

= f1D(f0s) + f0σD(df1 ⊗ s)− f0f1D(s)− f0σD(df1 ⊗ s)
− f1D(f0s) + f0f1D(s)

= 0.

By the way B was defined, we see that it is uniquely determined by D, therefore σD
is unique.

�

Proposition I.4. An R-linear operator D : Γ(E) // Γ(E) is in D1(E) if and only if it
factors through the first jet bundle J1(E), that is, if and only if there exists a vector bundle
morphism

ΘD : J1(E) // E,

such that D = ΘD ◦ j1.
In the affirmative case, ΘD is unique.

Proof. If there is ΘD with D = ΘD ◦ j1, then, for s ∈ Γ(E),

[f1, [f0, D]](s) = [f1, [f0,ΘD ◦ j1]](s) = [f1,ΘD(j1(f0s))− f0ΘD(j1(s))]

= [f1,ΘD(f0j
1(s) + df0 ⊗ s)− f0ΘD(j1(s))]

= ΘD(df0 ⊗ f1s)− f1ΘD(df0 ⊗ s) = 0,

then D ∈ D1(E).
If D ∈ D1(E) then by Prop. I.3 there exists σD ∈ Γ(TM ⊗End(E)) with the property

(I.2). Recall that the first jet bundle J1(E) fits in the exact sequence

0 // T ∗M ⊗ E // J1(E)
π
// E // 0. (I.3)

Then, given η ∈ Γ(J1(E)), then we obtain a section π(η) ∈ Γ(E), and π(η−j1(π(η))) = 0,
so that η − j1(π(η)) ∈ Γ(T ∗M ⊗ E). Thus we can define ΘD ∈ Hom(J1(E), E) by

ΘD(η) := D(π(η)) + σD(η − j1(π(η))).

Then ΘD ◦ j1(s) = D(s) + σD(j1s− j1s) = D(s).
�
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Corollary I.5. The first-order differential operators are the sections of a vector bundle

Diff1(E) //M,

the natural vector bundle structure induced by the bijection

D1(E) 3 D //ΘD ∈ Hom(J1(E), E),

so that
Diff1(E) ∼= Hom(J1(E), E).

The map
D ∈ D1(E) = Γ(Diff1(E)) // σD ∈ Γ(TM ⊗ End(E)),

introduced in Prop. I.3, induces a vector bundle morphism, called the symbol map,

σ : Diff1(E) //Hom(T ∗M,End(E)).

Proof. The only thing that remains to be verified is that the map of modules

D ∈ D1(E) // σD ∈ Γ(Hom(T ∗M,End(E))

is C∞(M)-linear. By (I.2), we have, for f0 ∈ C∞(M),

σD(df0) = [D, f0],

then, given f ∈ C∞(M), we have

σ(fD)(df0)(s) = [fD, f0](s)

= fD(f0s)− f0fD(s)

= f [D, f0](s) = fσD(df0)(s), ∀s ∈ Γ(E).

�

Proposition I.6. Diff1(E) fits in the exact sequence

0 // End(E) //Diff1(E)
σ
// Hom(T ∗M,End(E)) // 0, (I.4)

and the diagram

CDO(E)
p−−−−→ TM

∩
y yι

Diff1(E)
σ−−−−→ TM ⊗ End(E),

(I.5)

commutes, where ι : TM // TM ⊗ End(E) is given by ι(X) = X ⊗ IdE.

Proof. In order to prove that σ is surjective, it is enough to work locally, so we can
assume that there are sections {e1, . . . , en} that span the module Γ(E). Given X ⊗ A ∈
Γ(TM ⊗ End(E)), define D ∈ Diff1(E) by

D(fei) := fA(ei) + df(X)A(ei).
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Then
σD(df)(ei) = D(fei)− fD(ei) = df(X)A(ei),

so that σD = X ⊗ A. Surjectivity follows by C∞(M)-linearity, since the sections of the
form X ⊗A span the module Γ(TM ⊗ End(E)).

Now, σD = 0 if and only if [D, f ] = 0 ∀f ∈ C∞(M), if and only if D ∈ Hom(E), thus
we obtain (I.4).

That the diagram (I.5) commutes follows simply by the definitions of the maps p, ι and
σ.

�

Proposition I.7. Let

D(E) :=
∞⋃
i=0

Di(E)

then D(E) is a Lie subalgebra of EndRΓ(E), the R-linear endomorphisms of Γ(E) with
the commutator bracket:

[D1, D2] = D1 ◦D2 −D2 ◦D1, D1, D2 ∈ EndRΓ(E).

D1(E), however, is not a Lie subalgebra of D(E) (unless rankE = 1). Actually we have

[D1, D2] ∈ Dk+l(E), for D1 ∈ Dk, D2 ∈ Dl(E). (I.6)

Proof. The whole proposition reduces to prove (I.6). We apply induction on the order of
the operators. First observe that

[D1, D2] ∈ Γ(End(E)), for D1, D2 ∈ D0(E) = Γ(End(E)).

The following observation is that, for f ∈ C∞(M)

D ∈ Dk(E)⇐⇒ [f,D] ∈ Dk−1(E), (I.7)

as follows directly from the definition. Next, by the Jacobi identity for the commutator
of operators, we have

[f, [D1, D2]] = [[f,D1], D2] + [D1, [f,D2]]. (I.8)

By (I.7) we can apply the induction hypothesis to each term of the right-hand side of
(I.8, and thus we obtain, that, for D1,∈ Dk(E), D2 ∈ Dl(E)

[f, [D1, D2]] ∈ Dk+l−1(E),

whence, by (I.7),
[D1, D2] ∈ Dk+l(E).

�
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Definition I.8. A first-order bidifferential operator is an R-bilinear map

∆ : Γ(E1)× Γ(E2) // Γ(E),

where E1, E2, E are vector bundles, such that

[f1, [f0,∆]i]j = 0, 1 ≤ i, j ≤ 2, (I.9)

for all f0, f1 ∈ C∞(M), where

[f,∆]1(s1, s2) := ∆(fs1, s2)− f∆(s1, s2)

and
[f,∆]2(s1, s2) := ∆(s1, fs2)− f∆(s1, s2).

A first-order bidifferential operator ∆ = [·, ·] : Γ(E) × Γ(E) // Γ(E) (not necessarily
skew-symmetric) is called a quasi pseudoalgebra bracket on Γ(E).

[·, ·] is called a pseudolagebra bracket if in addition of being a first-order bidifferential
operator, the adjoint map ads := [s, ·] : Γ(E) // Γ(E) is a covariant differential operator
(also called derivative endomorphism).

We call the pair (E, [·, ·]) a quasi pseudoalgebra structure (resp. a pseudo algebra
structure).

Proposition I.9. A R-bilinear bracket [·, ·] on Γ(E) is a quasi pseudoalgebra structure if
and only if there are two vector bundle maps

ϕl, ϕr : E // TM ⊗ End(E)

called generalized anchor maps, left and right, such that, for all s1, s2 ∈ E and all f ∈
C∞(M),

[s1, fs2] = f [s1, s2] + ϕl(s1)(df ⊗ s2), [fs1, s2] = f [s1, s2]− ϕr(s2)(df ⊗ s1). (I.10)

The generalized anchor maps are actual anchor maps when they take values in TM ⊗ IdE.

Proof. If [·, ·] is a first-order bidifferential operator, define C : Γ(E)×C∞(M)×Γ(E) //Γ(E)
by

C(s1, f, s2) := [f,B]2(s1, s2) = [s1, fs2]− f [s1, s2].

Then, given g ∈ C∞(M),

C(gs1, f, s2) = [gs1, fs2]− f [gs1, s2].

On the other hand, since [·, ·] is first-order, we have

0 =[g, [f, [s1, s2]]2]1 = [g, [s1, fs2]− f [s1, s2]]1

= [gs1, fs2]− f [gs1, s2]− g[s1, fs2] + gf [s1, s2],

whence
C(gs1, f, s2) = g[s1, fs2]− gf [s1, s2] = gC(s1, f, s2),
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which means that C is C∞(M)-linear on the first entry. Analogously it is shown that C
is C∞(M)-linear in the third entry from the identity [g, [f, [s1, s2]]2]2 = 0. Finally, again
from [g, [f, [s1, s2]]2]2 = 0 we have

[s1, gfs2] + gf [s1, s2] = f [s1, gs2] + g[s1, fs2],

whence

C(s1, fg, s2) = [s1, fgs2]− fg[s1, s2] = [s1, fgs2] + fg[s1, s2]− 2fg[s1, s2]

= f [s1, gs2]− fg[s1, s2] + g[s1, fs2]− gf [s1, s2]

= fC(s1, g, s2) + gC(s1, f, s2),

which means that C is a derivation in the second entry. Therefore C is represented by a
section of E ⊗ TM ⊗ E ⊗ E, or equivalently, by a vector bundle morphism

ϕl : E // TM ⊗ End(E).

Analogously we can find the map ϕr.
Conversely, if there are maps ϕl, ϕr satisfying (I.10) then (I.9) follows immediately

from the tensoriality of the generalized anchor maps.
�

Corollary I.10. If [·, ·] is a pseudoalgebra bracket on Γ(E), then there is a vector bundle
morphism

ρ : E // TM

called the anchor map, such that

[s1, fs2] = f [s1, s2] + ρ(s1)(f)s2.

Proof. Define a map on sections ρ : Γ(E) // Γ(TM) by

ρ(s) := p(ads),

where p : CDO(E) // TM is the symbol map, which is a surjective vector bundle mor-
phism. Then, for f ∈ C∞(M), since ker p = End(E),

ρ(fs) = p(adfs) = p(fads − ϕr(df)) = p(fads) = fρ(s).

Then ρ is C∞(M)-linear, and therefore induces a vector bundle morphism.
�

Remark I.11. By the preceding corollary, the right generalized anchor map of a pseu-
doalgebra is given by

ϕr = ρ⊗ Id.

Therefore, we will use the notation
([·, ·], ρ, ϕ)

to encode a pseudoalgebra structure, where ϕ := ϕl.
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Corollary I.12. Lie algebroids and Courant algebroids define quasi pseudoalgebra struc-
tures on the space of sections of the corresponding vector bundles defining the algebroids.

�

Corollary I.13. Let A ⊂ D1(E) = Γ(Diff1(E)) be a subset invariant under the commu-
tator:

[D1, D2] ⊂ A, ∀D1, D2 ∈ A.

Then the commutator defines a first-order bidifferential operator on A.

Proof. Let f ∈ C∞(M) and s ∈ Γ(E), then

[D1, fD2](s) = D1(fD2(s))− fD2(D1(s))

= fD1D2(s) + σD1(df)(D2(s))− fD2D1(s)

= f [D1, D2](s) + σD1(df)(D2(s)). (I.11)

Now, observe that we have define a canonical injection ι : End(E) //End(Diff1(E)), given
by

ι(η)(D) = η ◦D, ∀η ∈ End(E), D ∈ Diff1(E).

It is immediate to see that ι(η)(D) is actually a first-order differential operator, with
σι(η) = η ◦ σD.

Then (I.11) shows that the vector bundle morphism ϕ : Diff1(E) //TM⊗End(Diff1(E))
given by

ϕ(D) := ι ◦ σD,

satisfies

[D1, fD2] = f [D1, D2] + ϕ(D1)(df ⊗D2), ∀D1, D2 ∈ A,∀f ∈ C∞(M).

Analogously, we have

[fD1, D2] = f [D1, D2]− ϕ(D2)(df ⊗D1), ∀D1, D2 ∈ A,∀f ∈ C∞(M).

Thus, Prop. I.9 applies, with ϕl = ϕr = ϕ.
�

Definition I.14. Let (A, [·, ·]) be a quasi pseudoalgebra structure. A representation of
(A, [·, ·]) by first-order differential operators is a vector bundle morphism

Ψ : A //Diff1(E)

such that
Ψ([α1, α2]) = [Ψ(α1),Ψ(α2)], ∀α1, α2 ∈ Γ(A), (I.12)

where the bracket on the right-hand side is, of course, the commutator.
Notice that Eq. (I.12) already implies that Ψ(Γ(A)) ⊂ D1(E) is invariant under the

commutator. Therefore
(Ψ(Γ(A)), [·, ·])

defines a quasi pseudoalgebra structure.
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Example I.15. Let (A, [·, ·], ρ) be a Lie algebroid, in particular (A, [·, ·]) defines a pseu-
doalgebra structure. Then any Lie algebroid representation

Ψ : A //CDO(E)

is a particular case of a representation by first-order differential operators.
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