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Abstract

In this thesis we are concerned with the study of pointwise and ergodic iteration-complexities

of a family of splitting-projective methods proposed by Eckstein and Svaiter, for finding a

zero of the sum of two maximal monotone operators. We also present two inexact variants

of specific instances of this family of algorithms, and derive corresponding convergence rate

results.

Keywords: monotone operators, splitting algorithms, complexity, projective algorithms,

inclusion problem.
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Resumo

Nesta tese apresentamos a análise de complexidade de uma famı́lia de métodos de decom-

posição-projetiva proposta por Eckstein e Svaiter para resolver o problema de encontrar um

zero da soma de dois operadores monótonos maximais. Também introduzimos variantes

inexatas de dois casos espećıficos desta famı́lia de algoritmos e obtemos suas taxas de con-

vergência.

Palavras-chave: operadores monótonos, métodos de decomposição, métodos projetivos,

complexidade, problema de inclusão.
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Introduction

Monotone operators were first introduced by Minty in the early sixties [25] for the study of

electrical networks. Since then, these operators have been used in several branches of applied

mathematics such as optimization, partial differential equations, mathematical economics,

and much more.

The classical monotone inclusion problem (MIP) consists in locating a root of a max-

imal monotone operator. This problem provides a powerful framework for the study of a

broad class of problems, which include optimization problems, variational inequalities and

equilibrium problems.

In this thesis we are concerned with the MIP defined by the sum of two maximal monotone

operators. Splitting methods for this problem, which are inspired by decomposition techniques

from numerical linear algebra, encompasses extensive literature with a variety of applications,

see for instances [18, 23, 30, 17, 19, 13, 40, 41, 10, 14, 3], and references therein. This list is

surely not exhaustive and is given simply as a statement of the richness and fruitfulness of

the field.

A family of splitting algorithms for finding a zero of the sum of two maximal monotone

operators was introduced in [14] by Eckstein and Svaiter. Their framework is based on

reformulating the MIP as a convex feasibility problem defined by a certain closed convex

“extended” solution set. For this latter problem the authors presented successive projection

algorithms which use, on each iteration, independent calculations involving each operator. In

this thesis we study this family of methods and establish its iteration-complexity.

Our complexity study for the methods described in [14] is motivated by the analysis

presented in [27] and the subsequent papers [28, 29]; where the hybrid proximal extragradient

method [36] was used as a general framework to derive iteration-complexity results for specific

algorithms for solving various type of structured MIPs.
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Outline of the Thesis. This work is organized in three chapters. Chapter 1 contains

two sections. Section 1.1 reviews some definitions and facts on maximal monotone operators

and convex functions that will be used along this work. Section 1.2 presents a relaxed

projection method which extends the general framework introduced in [14]; and also proves

some properties of such method.

Chapter 2 is devoted to the study of specific instances of the general framework proposed

in Section 1.2. It contains five sections as follows. Section 2.1 introduces the family of

splitting-projective methods proposed in [14] for solving the MIP of the sum of two maximal

monotone operators. Global convergence rate results for this family of algorithms are also

obtained in this section. Section 2.2 specializes the general complexity bounds that were

derived in the previous section, for the case where global convergence for the methods were

obtained in [14]. Section 2.3 derives iteration-complexity bounds for Spingarn’s method of

partial inverses [39]. Sections 2.4 and 2.5 introduce two inexact versions of the method

discussed in Section 2.1 and derives iteration-complexity results for them.

Chapter 3 presents an application of the algorithm proposed in Section 2.5 to convex

programming problems. Section 3.1 studies a splitting-projective method for solving a class

of linearly constrained optimization problems with proper closed convex objective functions.

This algorithm is applied, in Section 3.2, to solve the TV denoising model for image restora-

tion [35]. Finally, Subsection 3.2.1, describes some preliminary computational experiments.

Notations
R real numbers

R+ nonnegative real numbers

E the product set Rn × Rn × R+

〈·, ·〉 inner product

‖·‖ norm associated to the inner product

T : Rn ⇒ Rn point-to-set operator

Gr (T ) graph of T

f : Rn → (−∞,∞] extend real valued function

dom f domain of f

∂f subdifferential of f

f∗ Fenchel-Legendre conjugate of f

∇f gradient of a differentiable function f

ri (D) relative interior of the convex set D

‖x‖1 `1 norm
∑n

i=1 |xi|
MT transpose of matrix M

‖M‖F Frobenius norm of matrix M ,
√

trace(MTM)

sgn(·) sign function

C∗ the adjoint operator of the linear map C
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Chapter 1

Background material

We present in this chapter the definitions and some basic properties of a point-to-set

maximal monotone operator and its ε-enlargements. We also describe some basic definitions

and facts on convex functions. These results will be used in our subsequent presentation.

In Section 1.2 we introduce the general splitting-projective scheme that we are interested

in study in this work and we prove some technical results regarding it. These results will be

useful for our complexity study of specific instances of the general framework, which will be

developed in the following chapters.

1.1 Preliminaries

A point-to-set operator T : Rn ⇒ Rn is a relation T ⊆ Rn × Rn and

T (x) = {v ∈ Rn : (x, v) ∈ T}, x ∈ Rn.

Given T : Rn ⇒ Rn its graph is the set

Gr (T ) = {(x, v) ∈ Rn × Rn : v ∈ T (x)}.

An operator T : Rn ⇒ Rn is monotone if

〈
x− x′, v − v′

〉
≥ 0 ∀(x, v), (x′, v′) ∈ Gr (T ) ,

and it is maximal monotone if it is monotone and maximal in the family of monotone operators

of Rn into Rn, with respect to the partial order of inclusion. This is, if S : Rn ⇒ Rn is a

monotone operator such that Gr (T ) ⊆ Gr (S), then S = T .
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Given an extended real valued function f : Rn → (−∞,∞], the domain of f is the set

dom f = {x ∈ Rn : f(x) <∞} .

We will say that f is a proper function if dom f 6= ∅. We will also say that f is closed if it is

a lower semicontinuous function.

The subdifferential of f is the point-to-set operator ∂f : Rn ⇒ Rn defined as

∂f(x) =
{
v : f(x′) ≥ f(x) +

〈
v, x′ − x

〉
∀x′ ∈ Rn

}
, ∀x ∈ Rn.

A vector v ∈ Rn is called a subgradient of f at x ∈ Rn if v ∈ ∂f(x). The operator ∂f is

trivially monotone if f is proper. In addition, if f is a proper closed convex function, then

∂f is maximal monotone [33].

The Fenchel-Legendre conjugate of f is the function f∗ : Rn → (−∞,∞] defined as

f∗(v) = sup
x∈Rn
{〈v, x〉 − f(x)}, ∀v ∈ Rn.

It is simple to see that f∗ is a convex closed function. Furthermore, if f is proper, closed and

convex, then f∗ is a proper function [4].

The ε-enlargement of a maximal monotone operator was introduced in [6] by Burachik,

Iusem and Svaiter. In [27], Monteiro and Svaiter extended this notion to a generic point-to-

set operator as follows. Given T : Rn ⇒ Rn and ε ∈ R, define the operator ε-enlargement of

T , T ε : Rn ⇒ Rn, by

T ε(x) = {v ∈ Rn :
〈
x′ − x, v′ − v

〉
≥ −ε, ∀(x′, v′) ∈ Gr (T )}, ∀x ∈ Rn.

The following proposition presents some important properties of T ε, its proof can be found

in [27].

Proposition 1.1. Let T : Rn ⇒ Rn. Then,

(a) if ε′ ≤ ε it holds that T ε
′
(x) ⊆ T ε(x) for all x ∈ Rn;

(b) T is monotone if and only if T ⊆ T 0;

(c) T is maximal monotone if and only if T = T 0.

Observe that items (a) and (c) above imply that if T : Rn ⇒ Rn is maximal monotone,

then T (x) ⊆ T ε(x) for all x ∈ Rn and ε ≥ 0, hence T ε(x) is indeed an enlargement of T (x).

The ε-enlargement is a generalization of the ε-subdifferential of a extended real function.
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Given ε ≥ 0, the ε-subdifferential of a function f is the operator ∂εf : Rn ⇒ Rn defined as

∂εf(x) =
{
v : f(x′) ≥ f(x) +

〈
v, x′ − x

〉
− ε, ∀x′ ∈ Rn

}
∀x ∈ Rn.

It is trivial to verify that ∂0f(x) = ∂f(x) and ∂f(x) ⊆ ∂εf(x), for every x ∈ Rn and ε ≥ 0.

The proposition below lists some useful properties of the ε-subdifferential of a proper closed

convex function which will be needed in our presentation.

Proposition 1.2. If f : Rn → (−∞,∞] is a proper closed convex function, g : Rn → R is a

convex differentiable function in Rn, and M : Rm → Rn is a linear transformation, then

(a) ∂εf(x) ⊆ (∂f)ε(x) for any ε ≥ 0 and x ∈ Rn;

(b) v ∈ ∂εf(x) if and only if x ∈ ∂εf∗(v) for all ε ≥ 0;

(c) ∂(f + g)(x) = ∂f(x) +∇g(x) for all x ∈ Rn;

(d) M∗∂f(Mx) ⊆ ∂(f ◦M)(x) for all x ∈ Rm. If, in addition, ri (dom f) ∩ rangeM 6= ∅,
then ∂(f ◦M)(x) = M∗∂f(Mx) for every x ∈ Rm.

Proof. Statement (a) was proved in [6, Proposition 3], and (b)-(d) are classical results which

can be found, for example, in [22] and [32].

We now state the weak transportation formula [7] for computing points in the graph of

T ε. This formula will be used in the complexity analysis of some ergodic iterates generated

by the algorithms studied in this work, see Subsection 1.2.2.

Theorem 1.1. Assume that T : Rn ⇒ Rn is a maximal monotone operator. Let xi, vi ∈ Rn

and εi, αi ∈ R+, for i = 1, . . . , k, be such that

vi ∈ T εi(xi), i = 1, . . . , k,
k∑
i=1

αi = 1,

and define

x =

k∑
i=1

αixi, v =

k∑
i=1

αivi, ε =

k∑
i=1

αi(εi + 〈xi − x, vi〉).

Then, the following statements hold:

(a) ε ≥ 0 and v ∈ T ε(x);

(b) if, in addition, T = ∂f , for some proper closed convex function f , and vi ∈ ∂εif(xi) for

i = 1, . . . , k, then v ∈ ∂εf(x).
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1.2 The general splitting-projection framework

If T : Rn ⇒ Rn is a maximal monotone operator the monotone inclusion problem (MIP)

consists of

finding z ∈ Rn such that 0 ∈ T (z).

It is well known that MIPs have many applications, such as optimization and min-max

problems, complementarity problems and variational inequalities. An important tool for the

design and analysis of several implementable methods for solving MIPs is the proximal point

algorithm (PPA), proposed by Martinet [24] and generalized by Rockafellar [34]. The PPA,

in its exact version, computes a sequence {zk} obeying the recursion

zk+1 = (I + λkT )−1(zk)

where I is the identity mapping and λk > 0 is known as the proximal parameter. Even

though the PPA has good global and local convergence properties [34], its major drawback is

that it requires the evaluation of the resolvent mapping (or proximal mapping) (I + λkT )−1.

The difficulty lies in the fact that inverting operators I + λkT can be equally complicated as

solving the original problem.

One alternative to surmount this difficulty is to find maximal monotone operators A and

B such that T = A + B and the evaluation of the resolvents (I + λA)−1 and (I + λB)−1 is

simple to do. Then, one can devise methods that use independently these proximal mappings.

In this work, we are interested in the problem of finding z ∈ Rn such that

0 ∈ A(z) +B(z) (1.1)

where A,B : Rn ⇒ Rn are maximal monotone operators.

Splitting methods for this problem generate sequences which converge to a solution using,

in each iteration, the resolvents (I + λA)−1 and (I + λB)−1, rather than (I + λ(A+ B))−1.

Peaceman-Rachford and Douglas-Rachford methods are examples of this type of algorithms.

These were first introduced in [31] and [12] for the particular case of linear mappings and then

generalized in [23] by Lions and Mercier, to address monotone inclusion problems. Forward-

Backward methods [23, 30, 41], which generalize standard gradient projection methods for

variational inequalities and optimization problems, are also examples of splitting algorithms

for problem (1.1).

Eckstein and Svaiter introduced in [14] a family of splitting-projection methods to find

a solution of problem (1.1). They defined a certain closed convex extended solution set in

a product space, and constructed a class of methods for solving the MIP (1.1), which is

essentially a standard projection method. For constructing the separating hyperplanes the
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authors used individually evaluations of the resolvent mappings (I + λA)−1 and (I + λB)−1,

which make their scheme truly a splitting method for (1.1).

The extended solution set of (1.1), introduced in [14], is defined as

Se (A,B) := {(z, w) ∈ Rn × Rn : w ∈ B(z), −w ∈ A(z)} . (1.2)

The next result, which establishes two important properties of Se (A,B), was proved in [14,

Lemma 1]. For the sake of completeness, we include its proof here.

Lemma 1.1. Let A,B : Rn ⇒ Rn be two maximal monotone operators. The following

statements hold.

(a) A point z ∈ Rn is a solution of (1.1) if and only if there is w ∈ Rn such that (z, w) ∈
Se (A,B).

(b) Se (A,B) is a closed and convex subset of Rn × Rn.

Proof. (a) A point z ∈ Rn satisfies 0 ∈ (A+B)(z) if and only if there is a w ∈ Rn such that

w ∈ B(z) and −w ∈ A(z). Hence, z is a solution of (1.1) if and only if there exist w with

(z, w) ∈ Se(A,B).

(b) Define the linear map F : Rn × Rn → Rn × Rn as F (z, w) = (w,−z). Define also the

maximal monotone operator T : Rn × Rn ⇒ Rn × Rn as T (z, w) = A(z)×B−1(w). Observe

now that F + T is maximal monotone, and

0 ∈ (F + T )(z, w)⇔ 0 ∈ w +A(z), 0 ∈ −z +B−1(w)

⇔ −w ∈ A(z), w ∈ B(z)

⇔ (z, w) ∈ Se(A,B).

Hence, Se(A,B) = (F + T )−1(0, 0). The assertion (b) follows from the fact that the root set

of a maximal monotone operator is a convex closed set, see [5].

According to the above lemma, problem (1.1) is equivalent to the convex feasibility

problem of finding a point in Se(A,B). In order to solve this feasibility problem by suc-

cessive orthogonal projection methods we need to construct hyperplanes separating points

(z, w) /∈ Se(A,B) from Se(A,B). For this purpose, in [14] it was used points in the graph

of A and B to define affine functions, which were called decomposable separators, such that

Se (A,B) was contained in the non-positive half-spaces determined by them. Here, we gen-

eralize this concept using points in the ε-enlargements of A and B.

Definition 1. Given two triples (x, b, εx), (y, a, εy) ∈ E such that b ∈ Bεx(x) and a ∈ Aεy(y),

the decomposable separator associated to (x, b, εx) and (y, a, εy) is the affine function

7



φ : Rn × Rn → R

φ(z, w) = 〈z − x, b− w〉+ 〈z − y, a+ w〉 − εx − εy. (1.3)

The non-positive level set of φ is

Hφ = {(z, w) : φ(z, w) ≤ 0} . (1.4)

Lemma 1.2. If φ is the decomposable separator associated to (x, b, εx) and (y, a, εy) ∈ E,

where b ∈ Bεx(x) and a ∈ Aεy(y), and Hφ is its non-positive level set, then

(a) Se(A,B) ⊆ Hφ;

(b) either ∇φ 6= 0 or φ ≤ 0 in Rn × Rn;

(c) either Hφ is a closed half-space or Hφ = Rn × Rn.

Proof. Item (a) is a direct consequence of the definitions of the ε-enlargement of an operator

and the set Se(A,B). Rewriting φ(z, w) as

φ(z, w) = 〈z − y, a+ b〉+ 〈w − b, x− y〉 − εx − εy ∀(z, w) ∈ Rn × Rn, (1.5)

and noting that ∇φ = (a+ b, x− y) and εx, εy ≥ 0, then (b) and (c) follow immediately.

In view of Lemma 1.2, if φ is a decomposable separator, then the orthogonal projection

of (z, w) ∈ Rn × Rn onto Hφ is

PHφ(z, w) = (z, w)− γ∇φ, where γ =


0 if φ(z, w) ≤ 0,

φ(z, w)

‖∇φ‖2
otherwise.

(1.6)

We now present the general projection scheme for finding a point in Se(A,B) that will be

studied in this work. Algorithm 1 below generalizes the framework introduced in [14], since

we use the notion of decomposable separator introduced in Definition 1.

Algorithm 1. Choose (z0, w0) ∈ Rn × Rn. For k = 1, 2, . . .

1. Choose (xk, bk, εx,k) and (yk, ak, εy,k) ∈ E such that

bk ∈ Bεx,k(xk) and ak ∈ Aεy,k(yk).

2. Define φk : Rn × Rn → R as the decomposable separator associated to (xk, bk, εx,k) and

(yk, ak, εy,k), and compute PHφk (zk−1, wk−1) the orthogonal projection of (zk−1, wk−1)
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onto Hφk given in (1.6), i.e. define

γk =


0 if φk(zk−1, wk−1) ≤ 0,

φk(zk−1, wk−1)

‖∇φk‖2
otherwise;

(1.7)

and set

PHφ(zk−1, wk−1) = (zk−1, wk−1)− γk∇φk. (1.8)

3. Choose ρk ∈ (0, 2) and set

(zk, wk) = (zk−1, wk−1) + ρk

[
PHφk (zk−1, wk−1)− (zk−1, wk−1)

]
= (zk−1, wk−1)− ρkγk∇φk.

Notice that the general form of Algorithm 1 is not sufficient to guarantee convergence

of the sequence {(zk, wk)} to a point in Se (A,B); for example, if the separation between

(zk−1, wk−1) /∈ Se(A,B) and Se(A,B) by φk is not strict, then the next iterate is in fact

(zk−1, wk−1) itself, which might lead to a constant sequence. Hence, to ensure convergence

it is necessary to impose additional conditions on the decomposable separators, see [14]

and Section 2 below. However, since Algorithm 1 is a relaxed projection type method it

is possible to establish Fejer monotone convergence to Se(A,B) and boundedness for its

generated sequence, as well as other classical properties for this kind of algorithms, see for

example [14], [1].

1.2.1 The generated sequences

In this subsection we will analyze some properties of the sequences {(zk, wk)}, {φk}, {γk}
and {ρk} generated by Algorithm 1. To that end, let us define the aggregate affine maps

Φk : Rn × Rn → R recursively as

Φ0 ≡ 0, Φk =

k∑
1

ρjγjφj k = 1, 2, . . . (1.9)

and βk as

βk = min
(z,w)

[
1

2
‖(z, w)− (z0, w0)‖2 + Φk(z, w)

]
k = 0, 1, . . . . (1.10)

Lemma 1.3. For all k ∈ N, the following claims hold:

(a) (zk, wk) = arg min
(z,w)

(
1

2
‖(z, w)− (z0, w0)‖2 + Φk(z, w)

)
;

(b) βk+1 = βk +
1

2
(2− ρk+1)ρk+1γ

2
k+1 ‖∇φk+1‖2;

9



(c) βk ≥ 0.

Proof. To prove (a), first we observe that since Φ0 ≡ 0, it holds that (z0, w0) =

arg min
1

2
‖(z, w)− (z0, w0)‖2 + Φ0(z, w). Next, we notice that for all integer k ≥ 1 we have

∇Φk(z, w) =

k∑
j=1

ρjγj∇φj , ∀(z, w) ∈ Rn × Rn.

Moreover, the update rule in step 3 of Algorithm 1 implies that (zk, wk) = (z0, w0) −
k∑
j=1

ρjγj∇φj . Combining these two expressions we obtain (zk, wk)−(z0, w0)+∇Φk(zk, wk) = 0.

Hence, (zk, wk) satisfies the optimality condition for the minimization problem in (a), and

the claim in (a) follows.

To prove (b) we first notice that if φk+1(zk, wk) ≤ 0 then by (1.7) we have γk+1 = 0.

Therefore, Φk+1 = Φk and (b) follows from these two latter equalities.

We assume now that φk+1(zk, wk) > 0. We observe that

βk+1 = min
(z,w)

[
1

2
‖(z, w)− (z0, w0)‖2 + Φk(z, w) + ρk+1γk+1φk+1(z, w)

]
= min

(z,w)

[
βk +

1

2
‖(z, w)− (zk, wk)‖2 + ρk+1γk+1φk+1(z, w)

]
. (1.11)

By statement (a) we have that the optimal solution of the problem above is

(zk+1, wk+1) = (zk, wk)− ρk+1γk+1∇φk+1. (1.12)

Therefore, taking (z, w) = (zk+1, wk+1) in (1.11), we have

βk+1 = βk +
1

2
‖ρk+1γk+1∇φk+1‖2 + ρk+1γk+1φk+1(zk+1, wk+1). (1.13)

Next we observe that

φk+1(zk+1, wk+1) = 〈(zk+1, wk+1)− (yk+1, bk+1),∇φk+1〉 − εx,k+1 − εy,k+1

= 〈(zk, wk)− (yk+1, bk+1),∇φk+1〉 − ρk+1γk+1 ‖∇φk+1‖2 − εx,k+1 − εy,k+1

= φk+1(zk, wk)− ρk+1γk+1 ‖∇φk+1‖2

= γk+1 ‖∇φk+1‖2 − ρk+1γk+1 ‖∇φk+1‖2 ,

where the first equality follows rewriting φk+1 as in (1.5) and the last one follows from the

definition of γk+1 in (1.7). To end the proof of (b) we replace this last identity into (1.13).

Since β0 = 0 by equations (1.9) and (1.10), statement (c) follows from item (b) and a
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simple induction argument.

Proposition 1.3. For every (z, w) ∈ Rn × Rn and k ≥ 1,

1

2
‖(z, w)− (z0, w0)‖2 + Φk(z, w) =

1

2
‖(z, w)− (zk, wk)‖2 +

1

2

k∑
j=1

ρj(2− ρj)γ2
j ‖∇φj‖

2 .

(1.14)

Proof. Adding the identity in Lemma 1.3(b) from j = 0 to k and using that β0 = 0, we have

βk =
1

2

k∑
j=1

ρj(2− ρj)γ2
j ‖∇φj‖

2 . (1.15)

Moreover, in view of Lemma 1.3(a) and the definition of βk it holds that

1

2
‖(z, w)− (z0, w0)‖2 + Φk(z, w) = βk +

1

2
‖(z, w)− (zk, wk)‖2 , ∀(z, w) ∈ Rn × Rn.

Thus, replacing (1.15) into the above equality we conclude (1.14).

The following theorem, which follows directly from Proposition 1.3, establishes bounded-

ness for the sequence {(zk, wk)} generated by Algorithm 1 and for the sequence of minima

{βk} defined in (1.10).

Theorem 1.2. Take (z0, w0) ∈ Rn × Rn and let {(zk, wk)}, {φk}, {γk}, and {ρk} be the

sequences generated by Algorithm 1. If Se(A,B) 6= ∅, then for every integer k ≥ 1 we have

2βk =
k∑
j=1

ρj(2− ρj)γ2
j ‖∇φj‖

2 ≤ d2
0 and ‖(zk, wk)− (z0, w0)‖ ≤ 2d0, (1.16)

where d0 is the distance of (z0, w0) to Se (A,B).

Proof. Take (z∗, w∗) the orthogonal projection of (z0, w0) onto Se(A,B). From Lemma 1.2(a)

and the definition of Φk in (1.9) it follows that Φk(z
∗, w∗) ≤ 0 for all integer k ≥ 1. Hence,

specializing equality (1.14) with (z∗, w∗) we obtain the first bound in (1.16) and the following

inequality

‖(zk, wk)− (z∗, w∗)‖ ≤ d0.

Since ‖(z0, w0)− (z∗, w∗)‖ = d0, the second estimate in (1.16) follows now from the latter

two relations and the triangle inequality for norms.

It is important to say that Theorem 1.2 can be proved using standard arguments of relaxed

projection algorithms. We have chosen the above approach since it will be more convenient

for our subsequent analysis.

11



1.2.2 The ergodic sequences

We now consider sequences obtained by weighted averages of the sequences {xk} and {yk}
generated by Algorithm 1 and study its properties.

Let {xk}, {yk}, {γk} and {ρk} be the sequences computed with Algorithm 1, for every

integer k ≥ 1 assume that γk > 0 and define xk and yk as

xk :=
1

Γk

k∑
j=1

ρjγjxj , yk :=
1

Γk

k∑
j=1

ρjγjyj , where Γk :=

k∑
j=1

ρjγj . (1.17)

The following lemma is a direct consequence of the weak transportation formula, Theorem

1.1.

Lemma 1.4. Let {(xk, bk, εx,k)}, {(yk, ak, εy,k)}, {γk} and {ρk} be the sequences generated

by Algorithm 1. For every integer k ≥ 1, suppose that γk > 0 and consider xk, yk and Γk

given as in (1.17), define also

bk :=
1

Γk

k∑
j=1

ρjγjbj , εx,k :=
1

Γk

k∑
j=1

ρjγj(εx,j + 〈xj − xk, bj〉), (1.18)

ak :=
1

Γk

k∑
j=1

ρjγjaj , εy,k :=
1

Γk

k∑
j=1

ρjγj(εy,j + 〈yj − yk, aj〉). (1.19)

Then,

εx,k ≥ 0, bk ∈ Bεx,k(xk), (1.20)

εy,k ≥ 0, ak ∈ Aεy,k(yk). (1.21)

Proof. Since for all integer k ≥ 1, it holds that bk ∈ Bεx,k(xk) and ak ∈ Aεy,k(yk), relations

(1.20) and (1.21) follow from Theorem 1.1.

We will refer to the sequences {(xk, bk, εx,k)} and {(yk, ak, εy,k)} defined in (1.17)-(1.18)-

(1.19) as the ergodic sequences associated to Algorithm 1.

The following lemma presents a more suitable manner of writing ak + bk, xk − yk and

εx,k + εy,k to obtain bounds on its size.

Lemma 1.5. Let {(xk, bk, εx,k)}, {(yk, ak, εy,k)}, {γk} and {ρk} be the sequences generated

by Algorithm 1. Assume that γk > 0 for all k ≥ 1, and define the sequences {xk}, {yk}, {Γk},
{bk}, {ak} {εx,k} and {εy,k} as in (1.17), (1.18) and (1.19). Consider also the sequences of

12



aggregate functions {Φk} defined in (1.9). Then, for every integer k ≥ 1, we have

ak + bk =
1

Γk
(z0 − zk), (1.22)

xk − yk =
1

Γk
(w0 − wk), (1.23)

εx,k + εy,k = − 1

Γk
Φk(yk, bk). (1.24)

Proof. Direct use of the definitions of xk, yk, bk and ak, yields

(ak + bk, xk − yk) =
1

Γk

k∑
j=1

ρjγj(aj + bj , xj − yj). (1.25)

Since ∇φk = (ak + bk, xk − yk) for all integer k ≥ 1, in view of the update rule in step 3 of

Algorithm 1, the definition of Γk and (1.25), we have

(zk, wk) = (z0, w0)−
k∑
j=1

ρjγj(aj + bj , xj − yj)

= (z0, w0)− Γk(ak + bk, xk − yk).

(1.26)

Relation (1.26) clearly implies identities (1.22) and (1.23).

To prove (1.24) first we notice that

Φk(yk, bk) =
k∑
j=1

ρjγj
(〈
yk − xj , bj − bk

〉
+
〈
yk − yj , aj + bk

〉
− εx,j − εy,j

)
=

k∑
j=1

ρjγj
(〈
xj , bk − bj

〉
+ 〈yk, bj〉+ 〈yk − yj , aj〉 −

〈
yj , bk

〉
− εx,j − εy,j

)
.

Next, we multiply this last equality by 1/Γk, and use the definitions of yk and bk to obtain

1

Γk
Φk(yk, bk) =

1

Γk

k∑
j=1

ρjγj
(〈
xj , bk − bj

〉
+ 〈yk − yj , aj〉 − εx,j − εy,j

)
. (1.27)

We now observe that εx,k can be rewritten as

εx,k =
1

Γk

k∑
j=1

ρjγj
(
εx,j +

〈
xj , bj − bk

〉)
.

Thus, adding εx,k and εy,k and noting (1.27), we deduce equality (1.24).
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Theorem 1.3. Assume the hypotheses in Lemma 1.5. Let d0 be the distance of (z0, w0) to

Se (A,B). Then, for all integer k ≥ 1, we have

∥∥ak + bk
∥∥ ≤ 2d0

Γk
, ‖xk − yk‖ ≤

2d0

Γk
, (1.28)

εx,k + εy,k ≤
1

Γk

 1

Γk

k∑
j=1

ρjγj ‖(yj , bj)− (zj−1, wj−1)‖2 + 4d2
0

 . (1.29)

Proof. Combining (1.22), (1.23) and the second inequality in (1.16), we have

∥∥(ak + bk, xk − yk)
∥∥ =

1

Γk
‖(z0, w0)− (zk, wk)‖ ≤

2d0

Γk
. (1.30)

Hence, the bounds in (1.28) follow.

We notice that, since Φk is an affine function, the definitions of yk, bk and Γk yield

Φk(yk, bk) =
1

Γk

k∑
j=1

ρjγjΦk(yj , bj). (1.31)

Now, using the definition of βk in (1.10), we obtain

βk ≤
1

2
‖(yj , bj)− (z0, w0)‖2 + Φk(yj , bj), for all j = 1, . . . k.

Therefore, since βk ≥ 0 we have

−Φk(yj , bj) ≤
1

2
‖(yj , bj)− (z0, w0)‖2

≤ ‖(yj , bj)− (zj−1, wj−1)‖2 + ‖(zj−1, wj−1)− (z0, w0)‖2

≤ ‖(yj , bj)− (zj−1, wj−1)‖2 + 4d2
0,

where the last inequality follows from the second bound in (1.16). Multiplying this latter

inequality by
1

Γk
ρjγj , adding from j = 1 to k and noting (1.31), we obtain

−Φk(yk, bk) ≤
1

Γk

k∑
j=1

ρjγj ‖(yj , bj)− (zj−1, wj−1)‖2 + 4d2
0.

The bound in (1.29) follows combining the above relation with (1.24).
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Chapter 2

Splitting-projective methods

This chapter is concerned with the complexity analysis of particular instances of the

general framework of Algorithm 1.

We start our analysis by defining a termination criterion for the methods in terms of

the ε-enlargement of the operators A and B. This criterion will enable the obtention of

complexity bounds, proportional to the distance of the initial iterate to the extended solution

set Se(A,B), for all the schemes presented in the chapter.

In Section 2.1 we will obtain general complexity bounds for the family of splitting-

projective methods introduced in [14]. Such bounds will be expressed in terms of the param-

eter sequences {λk}, {µk}, {αk}, {γk} and {ρk}, calculated in each iteration of the method,

see Algorithm 2 below. In Section 2.2, we will specialize these results for the case where

global convergence was obtained in [14].

Section 2.3 is devoted to derive complexity estimates for Spingarn’s splitting algorithm

[39] for the two-operator case. Finally, in Sections 2.4 and 2.5, two inexact variants of the

scheme presented in Section 2.1 will be proposed.

The ideas of our analysis are very similar to the ones used in [27] for obtaining iteration

complexity for the Hybrid Proximal Extragradient (HPE) method, which was proposed in

[36] by Solodov and Svaiter.

2.1 Complexity analysis

Throughout this chapter, we assume that problem (1.1) has at least one solution, which

implies that Se(A,B) is a non-empty set in view of Lemma 1.1.

We start by stating the splitting-projective method that will be studied in this section.

Algorithm 2. Choose (z0, w0) ∈ Rn × Rn. For k = 1, 2, . . .

15



1. Choose λk, µk > 0 and αk ∈ R such that

µk
λk
−
(αk

2

)2
> 0, (2.1)

and find (xk, bk) ∈ Gr (B) and (yk, ak) ∈ Gr (A) such that

λkbk + xk = zk−1 + λkwk−1, (2.2)

µkak + yk = (1− αk)zk−1 + αkxk − µkwk−1. (2.3)

2. If ‖ak + bk‖+ ‖xk − yk‖ = 0 stop. Otherwise, set

γk =
〈zk−1 − xk, bk − wk−1〉+ 〈zk−1 − yk, ak + wk−1〉

‖ak + bk‖2 + ‖xk − yk‖2
. (2.4)

3. Choose a parameter ρk ∈ (0, 2) and set

zk = zk−1 − ρkγk(ak + bk),

wk = wk−1 − ρkγk(xk − yk).
(2.5)

Several remarks are in order. Algorithm 2 is the same as [14, Algorithm 2], except for the

stopping criterion in step 2 above, and boundedness conditions imposed in the parameters

ρk, λk and µk in [14]. Notice that if ‖ak + bk‖ + ‖xk − yk‖ = 0 for some k, then xk = yk,

bk = −ak and since the points (xk, bk) and (yk, ak) are chosen in the graph of B and A,

respectively, we have (xk, bk) ∈ Se (A,B). Therefore, when Algorithm 2 stops in step 2, it

has found a point in the extended solution set.

Observe also that since A and B are maximal monotone, Minty’s theorem [26] implies

that the mappings (I + λkB)−1 and (I + µkA)−1 are everywhere defined and single valued

for all integer k ≥ 1. Hence, by (2.2) and (2.3) the points (xk, bk) and (yk, ak) exist and are

unique.

Moreover, if for all k = 1, 2, . . ., we denote by φk the decomposable separator associated

to the pair of points (xk, bk) and (yk, ak), calculated in step 1 of Algorithm 2, i.e.

φk : Rn × Rn → R
φk(z, w) = 〈z − xk, bk − w〉+ 〈z − yk, ak + w〉 , (2.6)

then, the update rule in step 3 of Algorithm 2 can be restated as

(zk, wk) = (zk−1, wk−1)− ρkγk∇φk. (2.7)

Consequently, Algorithm 2 falls within the general framework of Algorithm 1, and the results

of Section 1.2 apply.
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The next lemma, which will be useful for deriving complexity estimates for Algorithm 2,

establishes two lower bounds for φk(zk−1, wk−1).

Lemma 2.1. If {(xk, bk)}, {(yk, ak)}, {(zk, wk)}, {λk}, {µk}, {αk} and {ρk} are the se-

quences generated by Algorithm 2, and {φk} is the sequence of decomposable separators defined

in (2.6), then, for all integer k ≥ 1, the following inequalities hold

φk(zk−1, wk−1) ≥ θk
δk

(
‖ak + bk‖2 + ‖xk − yk‖2

)
, (2.8)

φk(zk−1, wk−1) ≥ θk
µk

(
‖zk−1 − yk‖2 + ‖wk−1 − bk‖2

)
, (2.9)

where δk := µk + (1− αk)λk > 0 and θk > 0 is the smallest eigenvalue of the matrix(
1 −λk|αk|

2

−λk|αk|
2 λkµk

)
.

Proof. Inequality (2.8) was obtained in [14, Proposition 3] as part of the convergence proof for

Algorithm 2 in [14], as were the assertions that θk, δk > 0 under assumption (2.1). Therefore,

we need only to prove here relation (2.9).

If we subtract yk from both sides of (2.2) and rearrange terms, we obtain

xk − yk = zk−1 − yk + λk(wk−1 − bk). (2.10)

Now adding µkbk to both sides of (2.3) and rearranging the terms, yields

µk(ak + bk) = (1− αk)zk−1 + αkxk − yk − µk(wk−1 − bk)

= αk(xk − yk) + (1− αk)(zk−1 − yk)− µk(wk−1 − bk). (2.11)

Next, we replace (2.10) into (2.11) and divide by µk to obtain

ak + bk =
αk
µk

(zk−1 − yk + λk(wk−1 − bk)) +
(1− αk)
µk

(zk−1 − yk)− (wk−1 − bk)

=
1

µk
(zk−1 − yk) +

(
αkλk
µk
− 1

)
(wk−1 − bk). (2.12)

Noting that

φk(zk−1, wk−1) = 〈ak + bk, zk−1 − yk〉+ 〈xk − yk, wk−1 − bk〉 , (2.13)
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and combining the above identity with (2.10) and (2.12) we have

φk(zk−1, wk−1) =
1

µk
‖zk−1 − yk‖2 +

αkλk
µk
〈zk−1 − yk, wk−1 − bk〉+ λk ‖wk−1 − bk‖2

≥ 1

µk
‖zk−1 − yk‖2 −

|αk|λk
µk

‖zk−1 − yk‖ ‖wk−1 − bk‖+ λk ‖wk−1 − bk‖2

=
1

µk

(
‖zk−1 − yk‖
‖wk−1 − bk‖

)T (
1 −λk|αk|

2

−λk|αk|
2 λkµk

)(
‖zk−1 − yk‖
‖wk−1 − bk‖

)
,

where the inequality in the above relation follows from Cauchy-Schwartz inequality. Finally,

(2.9) follows from the expression above and the definition of θk.

Our goal in the remaining part of the section will be to derive complexity bounds for

Algorithm 2. For simplicity, from now on we suppose that the method never stops in step 2,

i.e. we are assuming that ‖∇φk‖ > 0 for all integer k ≥ 1. However, we observe that all the

results presented hold if (xk, bk) is a point in Se (A,B) for some k.

Let us consider the following stopping criterion for Algorithm 1. Given an arbitrary pair

of scalars δ, ε > 0, Algorithm 1 will stop whenever it finds a pair of points (x, b, εx), (y, a, εy)

∈ E such that

b ∈ Bεx(x), a ∈ Aεy(y), max{‖a+ b‖ , ‖x− y‖} ≤ δ, max{εx, εy} ≤ ε. (2.14)

We observe that, in view of Proposition 1.1, if δ = ε = 0 the above termination criterion is

reduced to b ∈ B(x), a ∈ A(y), x = y and b = −a, in which case (x, b) ∈ Se(A,B).

Based on the termination condition (2.14) we can define the following notion of approxi-

mate solution for problem (1.1).

Definition 2. For a given tolerance pair (δ, ε) of positive scalars, a pair (x, y) ∈ Rn ×Rn is

called a (δ, ε)-approximate solution (or (δ, ε)-solution) of problem (1.1), if there exist b, a ∈ Rn

and εx, εy ∈ R+ such that the relations in (2.14) hold.

Notice that Algorithm 2 generates, on each iteration, a pair (xk, yk) and vectors bk,

ak ∈ Rn such that the inclusions in (2.14) hold with (x, b, εx) = (xk, bk, 0) and (y, a, εy) =

(yk, ak, 0). Hence, we can try to develop bounds for the quantities ‖ak + bk‖ and ‖xk − yk‖
to estimate when an iterate (xk, yk) is bound to satisfy the termination condition (2.14).

Theorem 2.1. Let {(zk, wk)}, {(xk, bk)}, {(yk, ak)}, {λk}, {µk}, {αk}, {γk} and {ρk} be the

sequences generated by Algorithm 2 and let {φk} be the sequence of decomposable separators

defined in (2.6). Then, for every integer k ≥ 1, we have

bk ∈ B(xk), ak ∈ A(yk), (2.15)
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and there exists an index 1 ≤ i ≤ k such that

‖ai + bi‖2 + ‖xi − yi‖2 ≤
d2

0
k∑
j=1

ρj(2− ρj)
(
θj
δj

)2
, (2.16)

where d0 := dist ((z0, w0), Se (A,B)) and θk, δk were defined in Lemma 2.1.

Proof. The assertions that bk ∈ B(xk) and ak ∈ A(yk) are direct consequences of step 1 in

Algorithm 2. The definitions of γj and φj in step 2 of the method and (2.6), respectively,

together with inequality (2.8), yield

γj =
φj(zj−1, wj−1)

‖∇φj‖2
≥ θj
δj
, for j = 1, 2, . . . . (2.17)

Therefore,

γ2
j ≥

(
θj
δj

)2

for j = 1, 2, . . . .

Multiplying both sides of the inequality above by ρj(2− ρj) ‖∇φj‖2, adding from j = 1 to k,

and using the first bound in (1.16), we have

k∑
j=1

ρj(2− ρj)
(
θj
δj

)2

‖∇φj‖2 ≤ d2
0.

Taking i such that

i ∈ arg min
j=1,...,k

(
‖∇φj‖2

)
, (2.18)

and using the previous inequality we obtain

‖∇φi‖2
k∑
j=1

ρj(2− ρj)
(
θj
δj

)2

≤ d2
0.

Bound (2.16) now follows from the above relation and noting that ∇φi = (ai+bi, xi−yi).

The theorem above estimates the quality of the best iterate among (x1, y1), . . . , (xk, yk)

in terms of the stopping criterion (2.14). We refer to this estimate as pointwise complexity

bounds.

Using the sequences of ergodic iterates associated to Algorithm 2, defined as in Subsection

1.2.2, we will derive different complexity bounds for Algorithm 2. Our study is inspired in the

analysis developed in [27] to obtain complexity estimates for the HPE-method using average

of the iterates, see [27, Section 4]. Following the notion of this reference, we will also call

these kind of estimates as ergodic complexity bounds.
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Define the sequences of ergodic means {(xk, bk, εx,k)} and {(yk, ak, εx,k)}, associated to the

sequences {(xk, bk, 0)}, {(yk, ak, 0)}, {γk} and {ρk} generated by Algorithm 2, as in (1.17),

(1.18) and (1.19).

According to Lemma 1.4 we can attempt to bound the size of
∥∥ak + bk

∥∥, ‖xk − yk‖, εx,k
and εy,k in order to know when the ergodic iterates {xk} and {yk} will meet the stopping

criterion (2.14).

Theorem 2.2. Assume the hypotheses of Theorem 2.1. In addition, consider the sequence

{Γk} given in (1.17), and consider also the sequences of ergodic iterates {(xk, bk, εx,k)},
{(yk, ak, εy,k)} associated to Algorithm 2 defined in (1.17), (1.18) and (1.19). Then, for

every integer k ≥ 1, we have

bk ∈ Bεx,k(xk), ak ∈ Aεy,k(yk), (2.19)

and

∥∥ak + bk
∥∥ ≤ 2d0

Γk
, ‖xk − yk‖ ≤

2d0

Γk
, εx,k + εy,k ≤

d2
0(ςk + 4)

Γk
(2.20)

where

ςk = max
j=1,...,k

{
µj

θj(2− ρj)Γk

}
. (2.21)

Proof. Inclusions in (2.19) are consequence of Lemma 1.4. Since we are assuming that

‖∇φk‖ > 0 for all k = 1, . . ., Lemma 2.1 implies that φk(zk−1, wk−1) > 0. Therefore, γk > 0

for all integer k ≥ 1, and applying Theorem 1.3 we obtain the first two inequalities in (2.20).

Relation (2.9), together with identity φj(zj−1, wj−1) = ‖∇φj‖2 γj , yields

µj
θj
‖∇φj‖2 γj ≥ ‖(yj , bj)− (zj−1, wj−1)‖2 for j = 1, 2, . . . .

We multiply the inequality above by
1

Γk
ρjγj and add from j = 1 to k, to obtain

1

Γk

k∑
j=1

ρjγj ‖(yj , bj)− (zj−1, wj−1)‖2 ≤ 1

Γk

k∑
j=1

µj
θj
ρjγ

2
j ‖∇φj‖

2

=
1

Γk

k∑
j=1

µj
θj(2− ρj)

ρj(2− ρj)γ2
j ‖∇φj‖

2

≤
(

max
j=1,...,k

{
µj

θj(2− ρj)Γk

}) k∑
j=1

ρj(2− ρj)γ2
j ‖∇φj‖

2

≤
(

max
j=1,...,k

{
µj

θj(2− ρj)Γk

})
d2

0,
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where the last inequality above follows from the first estimate in (1.16). Combining the

relation above with (1.29) and the definition of ςk in (2.21), we conclude the last bound in

(2.20).

2.2 Specialized complexity results

In [14], global convergence of the sequences {(xk, bk)}, {(yk,−ak)} and {(zk, wk)}, cal-

culated by Algorithm 2, to a point (z∗, w∗) ∈ Se(A,B) was proved under the following

assumptions:

A.1 there exist λ and λ such that, λ ≥ λ > 0 and λk, µk ∈ [λ, λ] for all integer k ≥ 1;

A.2 there exists ρ ∈ [0, 1) such that ρk ∈ [1− ρ, 1 + ρ] for all integer k ≥ 1;

A.3 ν := inf
k

{
µk
λk
−
(αk

2

)2
}
> 0.

Using the results obtained in the previous section we show that Algorithm 2, under

hypotheses A.1-A.3, has O(1/
√
k) pointwise convergence rate, while the rate in the ergodic

sense is O(1/k).

Theorem 2.3. Let {(zk, wk)}, {(xk, bk)}, {(yk, ak)}, {λk}, {µk}, {αk}, {γk} and {ρk} be the

sequences generated by Algorithm 2 under assumptions A.1-A.3. If d0 denote the distance of

(z0, w0) to the extended solution set Se (A,B). Then, for all integer k ≥ 1, we have

bk ∈ B(xk), ak ∈ A(yk), (2.22)

and there exists an index 1 ≤ i ≤ k such that

‖ai + bi‖ ≤
d0υ√
k(1− ρ)

, and ‖xi − yi‖ ≤
d0υ√
k(1− ρ)

,

where

υ =

2λ
(

1 + λ
2
)(

1 +
√
λ/λ

)
λ2ν

. (2.23)

Proof. Inclusions in (2.22) follow from (2.15). Now we notice that condition A.2 implies that

ρj(2− ρj) ≥ (1− ρ)2, for j = 1, 2, . . . . (2.24)

Next, we observe that relation (2.1) in step 1 of Algorithm 2 yields |αj | ≤ 2
√
µj/λj . Hence,

assumption A.1 implies

|αj | ≤ 2

√
λ/λ, for j = 1, 2, . . . .

21



The inequality above, together with the definition of δj in Lemma 2.1 and assumption A.1,

yields

δj ≤ 2λ

(
1 +

√
λ/λ

)
. (2.25)

Moreover, in [14, Proposition 3] under hypotheses A.1-A.3, it was proved that

θj :=
1

2

(
1 + λjµj −

√
(1 + λjµj)2 − 4(λjµj − (λjαj/2)2)

)
≥
λ2
j (µj/λj − (αj/2)2)

1 + λjµj

≥ λ2ν

1 + λ
2 . (2.26)

Thus, combining (2.25) and (2.26) we obtain

θj
δj
≥ λ2ν(

1 + λ
2
)

2λ

(
1 +

√
λ/λ

) =
1

υ
for j = 1, 2, . . . . (2.27)

Now, from (2.27) and (2.24) we deduce that

ρj(2− ρj)
(
θj
δj

)2

≥ (1− ρ)2

υ2
,

for all j = 1, . . . , k. Hence, adding this last inequality from j = 1 to k, we have

k∑
j=1

ρj(2− ρj)
(
θj
δj

)2

≥ k (1− ρ)2

υ2
.

The theorem now follows from the above expression and inequality (2.16) in Theorem 2.1.

Theorem 2.4. Assume the hypotheses of Theorem 2.3 and consider the sequences of ergodic

iterates {(xk, bk, εx,k)}, {(yk, ak, εy,k)} associated to Algorithm 2 defined in (1.17), (1.18) and

(1.19). Then, for every integer k ≥ 1, we have

bk ∈ Bεx,k(xk), ak ∈ Aεy,k(yk), (2.28)

and

∥∥ak + bk
∥∥ ≤ 2d0υ

k(1− ρ)
, ‖xk − yk‖ ≤

2d0υ

k(1− ρ)
, (2.29)

εx,k + εy,k ≤
d2

0υ(υ′k + 4)

k(1− ρ)
, (2.30)
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where υ is given in (2.23) and

υ′k =
λ
(

1 + λ
2
)
υ

λ2ν(1− ρ)2k
.

Proof. The inclusions in (2.28) follow from Lemma 1.4. The definition of Γk, together with

assumption A.2 and (2.17), yields

Γk ≥ (1− ρ)
k∑
j=1

θj
δj
.

Now, by (2.27) and the inequality above we have

Γk ≥
(1− ρ)k

υ
. (2.31)

The bounds in (2.29) follow from (2.31) and the first two inequalities in (2.20). To conclude

the proof we observe that the definition of ςk in (2.21), hypothesis A.1, (2.26) and (2.31)

imply

ςk ≤
λ(1 + λ

2
)υ

λ2ν(1− ρ)2k
.

Thus, combining the above relation, the last inequality in (2.20), the definition of υ′k and

(2.31), we obtain inequality (2.30).

2.3 Spingarn’s splitting method

In [39] Spingarn introduced a method to find a zero of the sum of m maximal monotone

operators based on the concept of partial inverses. Although here we restrict our study to

the m = 2 case, we make some remarks on the general case. Spingarn’s method computes

independent proximal subproblems on each of the m operators involved in the problem at each

iteration, and then finds the next iterate essentially averaging the results. This algorithm is

actually a special case of Douglas-Rachford splitting method [13], and it was also proved that

it is a particular instance of the general projective-splitting methods for sums of m maximal

monotone operators, which was introduced in [15].

For the two-operator case, Eckstein and Svaiter proved in [14] that Spingarn’s method

is a special case of a scaled variant of Algorithm 2. Interpreting Spingarn’s algorithm as an

instance of Algorithm 2 allows us to use the analysis developed in the previous sections for

obtaining its complexity bounds.

For this purpose, let us begin with a brief discussion of the reformulation of problem (1.1)

studied in [14], obtained by rescalation.

Let η > 0 be a fix scalar, multiplying both sides of (1.1) by η, gives the reformulated
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problem

0 ∈ ηA(z) + ηB(z). (2.32)

Observe that the solution set of (1.1) and (2.32) remains the same, but the extended solution

set associated to operators ηA and ηB is transformed into

Se (ηA, ηB) = {(z, ηw) : (z, w) ∈ Se (A,B)}.

If we apply Algorithm 2 to ηA and ηB, and consider ηak, ηbk and ηwk instead of ak,

bk and wk, respectively, after some algebraic manipulations, we obtain a scheme identical to

Algorithm 2, except that (2.2)-(2.5) are modified to

λkηbk + xk = zk−1 + λkηwk−1, bk ∈ B(xk); (2.33)

µkηak + yk = (1− αk)zk−1 + αkxk − µkηwk−1, ak ∈ A(yk); (2.34)

γk =
〈zk−1 − xk, bk − wk−1〉+ 〈zk−1 − yk, ak + wk−1〉

η ‖ak + bk‖2 + 1
η ‖xk − yk‖

2 , (2.35)

zk = zk−1 − ρkγkη(ak + bk), (2.36)

wk = wk−1 −
ρkγk
η

(xk − yk). (2.37)

The general pointwise and ergodic complexity bounds for the method above are obtained as

a direct consequence of Theorems 2.1 and 2.2, replacing ai, bi, ak, bk, εx,k and εy,k by ηai,

ηbi, ηak, ηbk, ηεx,k and ηεy,k, respectively.

If η > 0, in our notation, Spingarn’s splitting method is reduced to the following set of

recursions:

ηbk + xk = zk−1 + ηwk−1, bk ∈ B(xk); (2.38)

ηak + yk = zk−1 − ηwk−1, ak ∈ A(yk); (2.39)

zk = (1− ρk)zk−1 +
ρk
2

(xk + yk), (2.40)

wk = (1− ρk)wk−1 +
ρk
2

(bk − ak). (2.41)

Notice that if we take λk = µk = 1 and αk = 0 for all integer k ≥ 1, then (2.33)-(2.34)

and (2.38)-(2.39) are identical. Moreover, the remaining calculations (2.35), (2.36) and (2.37)

can be rewritten into the form (2.40)-(2.41).

Theorem 2.5. Fix λk = µk = 1 and αk = 0 in (2.33)-(2.37) for every integer k ≥ 1. Then

the recursions (2.33)-(2.37) and (2.38)-(2.41) are identical. Hence, Spingarn’s method is a

special case of Algorithm 2.

Proof. This result was proved in [14, Subsection 4.2].
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The following theorem establishes the global convergence rate for Spingarn’s method in

terms of the termination criterion (2.14).

Theorem 2.6. Let η > 0 and let {(xk, bk)}, {(yk, ak)} and {ρk} be the sequences generated

by Spingarn’s splitting method (2.38)-(2.41). For every k ≥ 1, define

Pk =
k∑
j=1

ρj , (2.42)

and

xk =
1

Pk

k∑
j=1

ρjxj , bk =
1

Pk

k∑
j=1

ρjbj , εx,k =
1

Pk

k∑
j=1

ρj 〈xj − xk, bj〉 , (2.43)

yk =
1

Pk

k∑
j=1

ρjyj , ak =
1

Pk

k∑
j=1

ρjaj , εy,k =
1

Pk

k∑
j=1

ρj 〈yj − yk, aj〉 . (2.44)

Assume that hypothesis A.2 holds and set d0 := dist ((z0, ηw0), Se (ηA, ηB)). Then the fol-

lowing statements hold.

(a) For every integer k ≥ 1 we have

bk ∈ B(xk), ak ∈ A(yk), (2.45)

and there exists an index 1 ≤ i ≤ k such that

‖ai + bi‖ ≤
2d0

η
√
k(1− ρ)

, ‖xi − yi‖ ≤
2d0√
k(1− ρ)

.

(b) For every integer k ≥ 1 we have

bk ∈ Bεx,k(xk), ak ∈ Aεy,k(yk),

and

∥∥ak + bk
∥∥ ≤ 4d0

ηk(1− ρ)
, ‖xk − yk‖ ≤

4d0

k(1− ρ)
, (2.46)

εx,k + εy,k ≤
2d2

0

ηk(1− ρ)

(
2

(1− ρ)2
+ 4

)
. (2.47)

Proof. (a) If we fix λk = µk = 1 and αk = 0 for all integer k ≥ 1, in the set of recursions

(2.33)-(2.37), then the definitions of δk and θk in the statement of Lemma 2.1 yield δk = 2

and θk = 1 for every integer k ≥ 1.
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Since by Theorem 2.5, Spingarn’s algorithm is a special case of (2.33)-(2.37) with this

choice of the parameters λk, µk and αk, the claims in (a) follow from Theorem 2.1 applied to

(2.33)-(2.37) with λk = µk = 1, αk = 0, and assumption A.2.

(b) The first assertion in (b) follows from the definitions of Γk, xk, bk, εx,k, yk, ak, εy,k in

(2.42), (2.43) and (2.44), the inclusions in (2.38), (2.39) and Theorem 1.1.

Now we set, λk = µk = 1 and αk = 0 in (2.33)-(2.37) for all k = 1, 2, . . . .

Claim: γk = 1
2 for every integer k ≥ 1.

Equalities in (2.33) and (2.34) are reduced to

ηbk + xk = zk−1 + ηwk−1,

ηak + yk = zk−1 − ηwk−1;

hence, zk−1 − xk = η(bk − wk−1) and zk−1 − yk = η(ak + wk−1), which implies

〈zk−1 − xk, bk − wk−1〉+ 〈zk−1 − yk, ak + wk−1〉 = η ‖bk − wk−1‖2 + η ‖ak + wk−1‖2 . (2.48)

We observe that

1

η
‖xk − yk‖2 =

1

η
‖xk − zk−1‖2 + 2

1

η
〈xk − zk−1, zk−1 − yk〉+

1

η
‖zk−1 − yk‖2

= η ‖bk − wk−1‖2 + 2η 〈wk−1 − bk, ak + wk−1〉+ η ‖ak + wk−1‖2 ,

and

η ‖ak + bk‖2 = η ‖ak + wk−1‖2 + 2η 〈ak + wk−1, bk − wk−1〉+ η ‖bk − wk−1‖2 .

Hence, adding these two last identities we obtain

η ‖ak + bk‖2 +
1

η
‖xk − yk‖2 = 2η ‖ak + wk−1‖2 + 2η ‖bk − wk−1‖2 . (2.49)

Combining (2.35), (2.48) and (2.49) we prove the claim.

Theorem 2.5 implies that the sequences {(xk, ηbk)} and {(yk, ηak)} can be viewed as

generated by Algorithm 2 applied to the operators ηA and ηB, with λk = µk = 1 and αk = 0

for all k = 1, 2, . . . .

Moreover, since γk = 1/2 for all integer k ≥ 1, the sequences of ergodic iterates associated

to {(xk, ηbk)}, {(yk, ηak)}, {ρk} and {γk}, which are obtained by equations (1.17), (1.18) and

(1.19) with Γk = (1/2)Pk, are exactly as defined in (2.43) and (2.44), but with ηbk, ηεx,k, ηak

and ηεy,k instead of bk, εx,k, ak and εy,k.

26



Hence, applying Theorem 2.2 we have

∥∥η(ak + bk)
∥∥ ≤ 2d0

(1/2)Pk
, ‖xk − yk‖ ≤

2d0

(1/2)Pk
, η(εx,k + εy,k) ≤

d2
0(ςk + 4)

(1/2)Pk
, (2.50)

where d0 is the distance of (z0, ηw0) to Se(ηA, ηB) and ςk = max
j=1,...,k

{
µj

θj(2− ρj)(1/2)Pk

}
.

We notice that condition A.2 yields that ρj ≥ 1−ρ for every j, therefore by the definition

of Pk we have

Pk ≥ k(1− ρ). (2.51)

Furthermore, since in this case µj = 1, θj = 1 and 2− ρj ≥ 1− ρ for all integer j ≥ 1, these

latter relations together with the definition of ςk and (2.51) imply

ςk ≤
2

(1− ρ)2k
≤ 2

(1− ρ)2
, for all k = 1, 2, . . . . (2.52)

Thus, (b) follows combining the inequality above, (2.51), condition A.2 and the bounds in

(2.50).

2.4 A parallel inexact case

Algorithm 2 has to solve two proximal subproblems on each iteration to construct decom-

posable separators. Since finding the exact solution of subproblems (2.2) and (2.3) could be a

challenging task, one might wish to allow approximate evaluations of the resolvents mapping,

while keeping convergence of the method.

It is customary to appeal to the theory of approximation criteria for the PPA and related

methods, when attempting to approximate solutions of proximal subproblems. The first

inexact versions of the PPA were introduced in [34] by Rockafellar and are based on summable

absolute error criteria. For instance, one of the approximation criterion proposed in [34] for

the PPA is ∥∥zk+1 − (I + λkT )−1(zk)
∥∥ ≤ sk, ∞∑

k=1

sk <∞. (2.53)

This kind of approximation criteria, which involve a theoretical sequence {sk} ⊂ [0,∞) such

that
∑∞

k=1 sk < ∞, has as a practical disadvantage the fact that there is no constructive

way of choosing it. Therefore, it is of great importance to develop error conditions for

approximating proximal subproblems that could be computable during the progress of the

algorithm. Relative error criteria of this kind were proposed in [37], [36] and [38].

In this section we will include a relative error criterion to evaluate approximately the

resolvent mappings in Algorithm 2, in the special case of taking αk = 0 for all k, which

possibly allows the subproblems to be performed in parallel. To solve inexactly subproblems
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(2.2) and (2.3) we will use the notion of approximate solution for a proximal subproblem

introduced in [38] by Solodov and Svaiter.

The general projective-splitting framework for the sum of m ≥ 2 maximal monotone oper-

ators [15] admits a relative error condition to solve approximately the proximal subproblems.

The criterion used in [15] is a generalization of the relative error criterion for the HPE-method

in the case of m maximal monotone operators

We have preferred the framework developed in [38], since it yields a larger relative error

condition and evaluation of the ε-enlargements of the operators.

We now present the notion of inexact solution of a proximal subproblem introduced in

[38]. Let T : Rn ⇒ Rn be a maximal monotone operator, λ > 0 and z ∈ Rn. Consider the

proximal system {
w ∈ T (z′),

λw + z′ − z = 0.
(2.54)

Definition 3. Given σ ∈ [0, 1), a triplet (z′, w, ε) ∈ E is called a σ-approximate solution of

(2.54) at (λ, z) if

w ∈ T ε(z′),∥∥λw + z′ − z
∥∥2

+ 2λε ≤ σ
(
‖λw‖2 +

∥∥z′ − z∥∥2
)
.

(2.55)

We observe that if (z′, w) is the exact solution of (2.54), then taking ε = 0 the triplet

(z′, w, ε) satisfies the approximation criterion (2.55) for all σ ∈ [0, 1). Conversely, if σ = 0

only the exact solution of (2.54), taking ε = 0, will satisfy (2.55).

The method that will be studied in this section is as follows.

Algorithm 3. Start with (z0, w0) ∈ Rn × Rn, σ ∈ [0, 1), ρ ∈ [0, 1). Then for k = 1, 2, . . .

1. Choose λk, µk > 0 and calculate (xk, bk, εx,k) and (yk, ak, εy,k) ∈ E such that

bk ∈ Bεx,k(xk), ak ∈ Aεy,k(yk),

and

‖λk(bk − wk−1) + xk − zk−1‖2 + 2λkεx,k ≤ σ
(
‖xk − zk−1‖2 + ‖λk(bk − wk−1)‖2

)
,

(2.56)

‖µk(ak + wk−1) + yk − zk−1‖2 + 2µkεy,k ≤ σ
(
‖yk − zk−1‖2 + ‖µk(ak + wk−1)‖2

)
.

(2.57)
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2. If ‖ak + bk‖+ ‖xk − yk‖ = 0 stop. Otherwise, set

γk =
〈zk−1 − xk, bk − wk−1〉+ 〈zk−1 − yk, ak + wk−1〉 − εx,k − εy,k

‖ak + bk‖2 + ‖xk − yk‖2
.

3. Choose a parameter ρk ∈ [1− ρ, 1 + ρ] and set

zk = zk−1 − ρkγk(ak + bk),

wk = wk−1 − ρkγk(xk − yk).

Notice that for all iteration k = 1, 2, . . ., the triplet (xk, bk, εx,k), calculated in step 1 of

Algorithm 3, is a σ-approximate solution of (2.54) at (λk, zk), where T = B−wk−1. Similarly,

(yk, ak, εy,k) is a σ-approximate solution of (2.54) at point (µk, zk), with T = A + wk−1.

Observe also that taking σ = 0 in Algorithm 3 yields exactly Algorithm 2 with αk = 0 for all

integer k ≥ 1, since condition (2.1) is met.

Let us define, for every integer k ≥ 1, the decomposable separator φk associated to the

pair (xk, bk, εx,k) and (yk, ak, εy,k), φk : Rn × Rn → R

φk(z, w) = 〈z − xk, bk − w〉+ 〈z − yk, ak + w〉 − εx,k − εy,k. (2.58)

It will be shown, in the following lemma, that if Algorithm 3 stops at iteration k in step

2 then it has found a point in Se(A,B). Otherwise we have that ‖∇φk‖ > 0, which gives

φk(zk−1, wk−1) > 0. This clearly implies that Algorithm 3 falls within the general framework

of Algorithm 1.

Lemma 2.2. If {(xk, bk, εx,k)}, {(yk, ak, εy,k)}, {(zk, wk)}, {λk}, {µk}, and {ρk} are the

sequences generated by Algorithm 3, and {φk} is the sequence of decomposable separators

defined in (2.58). Then, for every integer k ≥ 1, we have

φk(zk−1, wk−1) ≥ 1− σ
4

ξk

(
‖ak + bk‖2 + ‖xk − yk‖2

)
≥ 0, (2.59)

where

ξk = min

{
λk,

1

λk
, µk,

1

µk

}
. (2.60)

Furthermore, if ‖∇φk‖ > 0 then φk(zk−1, wk−1) > 0, and ‖∇φk‖ = 0 if and only if (xk, bk) =

(yk,−ak) ∈ Se (A,B).

Proof. We define the residual vectors

rx,k = λk(bk − wk−1) + xk − zk−1 and ry,k = µk(ak + wk−1) + yk − zk−1.
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By the definition of φk in (2.58) and direct calculations, we have

φk(zk−1, wk−1) = 〈zk−1 − xk, bk − wk−1〉+ 〈zk−1 − yk, ak + wk−1〉 − εx,k − εy,k

=
1

2λk

(
‖zk−1 − xk‖2 + ‖λk(bk − wk−1)‖2 − ‖rx,k‖2 − 2λkεx,k

)
+

1

2µk

(
‖zk−1 − yk‖2 + ‖µk(ak + wk−1)‖2 − ‖ry,k‖2 − 2µkεy,k

)
.

(2.61)

Identity (2.61), together with the error criteria (2.56) and (2.57), implies that

φk(zk−1, wk−1) ≥ 1− σ
2λk

(
‖zk−1 − xk‖2 + ‖λk(bk − wk−1)‖2

)
+

1− σ
2µk

(
‖zk−1 − yk‖2 + ‖µk(ak + wk−1)‖2

)
.

(2.62)

If we interpret the last expression as a quadratic form applied to the R4 vector

(‖zk−1 − xk‖ , ‖bk − wk−1‖ , ‖zk−1 − yk‖ , ‖ak + wk−1‖)T , we obtain

φk(zk−1, wk−1) ≥ 1− σ
2


‖zk−1 − xk‖
‖wk−1 − bk‖
‖zk−1 − yk‖
‖wk−1 + ak‖


T 

1
λk

0 0 0

0 λk 0 0

0 0 1
µk

0

0 0 0 µk



‖zk−1 − xk‖
‖wk−1 − bk‖
‖zk−1 − yk‖
‖wk−1 + ak‖


≥ 1− σ

2
ξk

(
‖zk−1 − xk‖2 + ‖bk − wk−1‖2 + ‖zk−1 − yk‖2 + ‖ak + wk−1‖2

)
(2.63)

where ξk, defined in (2.60), is the smallest eigenvalue of the matrix in (2.63).

Combining the second inequality in (2.63) with relations

‖zk−1 − xk‖2 + ‖zk−1 − yk‖2 ≥
1

2
‖xk − yk‖2 ,

‖bk − wk−1‖2 + ‖ak + wk−1‖2 ≥
1

2
‖ak + bk‖2 ;

we obtain (2.59).

Since ξk > 0 and σ ∈ [0, 1), inequality (2.59) clearly implies that φk(zk−1, wk−1) > 0

whenever ‖∇φk‖ > 0. To prove the last assertion of the lemma we rewrite φk(zk−1, wk−1) as

φk(zk−1, wk−1) = 〈ak + bk, zk−1 − yk〉+ 〈xk − yk, wk−1 − bk〉 − εx,k − εy,k,

then, if ‖∇φk‖ = 0 it follows that xk = yk, bk = −ak and

φk(zk−1, wk−1) = −εx,k − εy,k.
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From (2.59), the equation above and the fact that εx,k, εy,k ≥ 0; we obtain εx,k = εy,k = 0.

Hence, bk ∈ B(xk), ak ∈ A(yk) and we conclude that (xk, bk) = (yk,−ak) ∈ Se (A,B).

For deriving complexity bounds for Algorithm 3 we will assume, as was done in the

preceding section, that the stopping condition in step 2 of Algorithm 3 does not hold for all

iteration k. Thus, from now on we suppose that ‖∇φk‖ > 0 for every integer k ≥ 1.

Theorem 2.7. Take (z0, w0) ∈ Rn × Rn and let {(xk, bk, εx,k)}, {(yk, ak, εy,k)}, {λk}, {µk},
{γk} and {ρk} be the sequences generated by Algorithm 3. Let d0 be the distance of (z0, w0)

to the set Se (A,B) and for all integer k ≥ 1 define ξk by (2.60). Then, for every integer

k ≥ 1 we have

bk ∈ Bεx,k(xk), ak ∈ Aεy,k(yk), (2.64)

and there exists an index 1 ≤ i ≤ k such that

‖ai + bi‖2 + ‖xi − yi‖2 ≤
16d2

0

(1− σ)2(1− ρ)2ξi
k∑
j=1

ξj

, (2.65)

εx,i + εy,i ≤
4σd2

0

(1− σ)2(1− ρ)2
k∑
j=1

ξj

. (2.66)

Proof. The inclusions in (2.64) are due to step 1 of Algorithm 3. Since γk =
φk(zk−1, wk−1)

‖∇φk‖2
,

using (2.59) we have

γk ≥
1− σ

4
ξk, for k = 1, 2, . . . . (2.67)

Thus, squaring both sides of (2.67) and multiplying by ‖∇φk‖2 we obtain

γ2
k ‖∇φk‖

2 ≥
(

1− σ
4

)2

ξ2
k ‖∇φk‖

2 . (2.68)

We observe that the error criteria (2.56) and (2.57) imply

εx,k ≤
σ

2λk

(
‖zk−1 − xk‖2 + ‖λk(bk − wk−1)‖2

)
and

εy,k ≤
σ

2µk

(
‖zk−1 − yk‖2 + ‖µk(ak + wk−1)‖2

)
.

Adding these two inequalities and considering relation (2.62) we obtain

εx,k + εy,k ≤
σ

1− σ
φk(zk−1, wk−1) =

σ

1− σ
γk ‖∇φk‖2 .
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Multiplying the latter inequality by γk, using (2.67) and multiplying both sides of the resulting

expression by
1− σ
σ

we have

(1− σ)2

4σ
ξk(εx,k + εy,k) ≤ γ2

k ‖∇φk‖
2 for k = 1, 2, . . . . (2.69)

Now we define

ψk := max

{(
1− σ

4

)2

ξk ‖∇φk‖2 ,
(1− σ)2

4σ
(εx,k + εy,k)

}
,

and we combine (2.68) and (2.69) to obtain

ξkψk ≤ γ2
k ‖∇φk‖

2 for k = 1, 2, . . . .

Next, adding the inequality above from j = 1 to k, using the first inequality in (1.16), and

the fact that ρk ∈ [1− ρ, 1 + ρ] for all integer k ≥ 1, we obtain

k∑
j=1

ξjψj ≤
d2

0

(1− ρ)2
, (2.70)

and consequently (
min

j=1,...,k
{ψj}

) k∑
j=1

ξj ≤
d2

0

(1− ρ)2
.

The theorem now follows from this last inequality and the definition of ψk.

If {(xk, bk, εx,k)}, {(yk, ak, εy,k)}, {γk} and {ρk} are the sequences generated by Algorithm

3, we define the sequences of ergodic iterates {(xk, bk, εx,k)}, {(yk, ak, εy,k)} as in (1.17), (1.18)

and (1.19). Since Algorithm 3 is a special instance of Algorithm 1 the results of Subsection

1.2.2 hold for the ergodic sequences associated to Algorithm 3. Thus, combining Theorem

1.3 and Lemma 2.2 we can state ergodic complexity estimates for the method.

Theorem 2.8. Let {(xk, bk, εx,k)}, {(yk, ak, εy,k)}, {γk} and {ρk} be the sequences generated

by Algorithm 3 and let {(xk, bk, εx,k)} and {(yk, ak, εy,k)} be the sequences of ergodic iterates

associated to Algorithm 3 defined in (1.17), (1.18) and (1.19). Consider ξk given by (2.60).

Then, for all integer k ≥ 1, we have

bk ∈ Bεx,k(xk), ak ∈ Aεy,k(yk) (2.71)
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and

∥∥ak + bk
∥∥ ≤ 2d0

Γk
, ‖xk − yk‖ ≤

2d0

Γk
, εx,k + εy,k ≤

d2
0(ϕk + 4)

Γk
, (2.72)

where d0 is the distance of (z0, w0) to Se (A,B) and

ϕk =

(
2

1− σ

)
max
j=1,...,k

{
1

ξj(2− ρj)Γk

}
.

Proof. The inclusions in (2.71) follow from Lemma 1.4. The first two bounds in (2.72) are

due to (1.28) in Theorem 1.3.

We notice now that the second inequality in (2.63) implies that

φj(zj−1, wj−1) ≥ 1− σ
2

ξj

(
‖zj−1 − yj‖2 + ‖bj − wj−1‖2

)
, for j = 1, . . . .

The relation above, together with the definition of γj , yields

2

(1− σ)ξj
γj ‖∇φj‖2 ≥ ‖zj−1 − yj‖2 + ‖bj − wj−1‖2 , for j = 1, . . . .

Multiplying the above inequality by
1

Γk
ρjγj and adding from j = 1 to k, we obtain

1

Γk

k∑
j=1

ρjγj ‖(yj , bj)− (zj−1, wj−1)‖2 ≤ 1

Γk

k∑
j=1

2

(1− σ)ξj
ρjγ

2
j ‖∇φj‖

2

=
1

Γk

k∑
j=1

2

(1− σ)ξj(2− ρj)
ρj(2− ρj)γ2

j ‖∇φj‖
2

≤ϕk
k∑
j=1

ρj(2− ρj)γ2
j ‖∇φj‖

2

≤ϕkd2
0;

(2.73)

where the second and the third inequalities are due to the definition of ϕk and the first bound

in (1.16), respectively. Replacing (2.73) into (1.29), in Theorem 1.3, we obtain the last bound

in (2.72).

Theorems 2.7 and 2.8 provide general complexity results for Algorithm 3. Observe that

the derived bounds are expressed in terms of ξk and Γk. The next result presents iteration-

complexity bounds for Algorithm 3 to obtain (δ, ε)-approximate solutions of problem (1.1).

Theorem 2.9. Assume the hypotheses of Theorem 2.8. Suppose also that there exist λ and

λ such that, λ ≥ λ > 0 and for all integer k ≥ 1 the proximal parameters λk and µk in step 1
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of Algorithm 3 are chosen within the interval [λ, λ]. Defining ξ = min

{
λ,

1

λ

}
, then, for all

δ, ε > 0, the following statements hold.

(a) There exists an index

i = O
(

max

{
d2

0

ξ2δ2
,
d2

0

ξε

})
such that, the iterate (xi, yi) is a (δ, ε)-solution of problem (1.1).

(b) There exists an index

k0 = O
(

max

{
d0

ξδ
,
d2

0

ξε

})
such that, for all integer k ≥ k0 the ergodic iterate (xk, yk) is a (δ, ε)-solution of problem

(1.1).

Proof. We first notice that

ξj ≥ ξ for all j = 1, 2, . . . . (2.74)

Thus, statement (a) is a direct consequence of (2.74) and Theorem 2.7.

Now, we combine the definition of Γk in (1.17) with (2.67) and (2.74), to obtain

Γk ≥
(1− ρ)(1− σ)

4

k∑
j=1

ξj ≥
(1− ρ)(1− σ)

4
ξk. (2.75)

Therefore, inequalities (2.74) and (2.75) imply that

1

ξj(2− ρj)Γk
≤ 4

ξ2(1− ρ)2(1− σ)k
, for j = 1, . . . , k.

The inequality above, together with the definition of ϕk, yields

ϕk ≤
8

(1− ρ)2(1− σ)2ξ2k
≤ 8

(1− ρ)2(1− σ)2ξ2
. (2.76)

Defining the last term in (2.76) as ϕ, and using Theorem 2.8, inequalities (2.75) and (2.76),

we conclude that

∥∥ak + bk
∥∥ ≤ 8d0

ξ(1− ρ)(1− σ)k
,

‖xk − yk‖ ≤
8d0

ξ(1− ρ)(1− σ)k
,

εx,k + εy,k ≤
4d2

0(ϕ+ 4)

ξ(1− ρ)(1− σ)k
,
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for all integer k ≥ 1. The inclusions in (2.71) together with the inequalities above imply

statement (b).

2.5 A sequential inexact case

In this section we will study a variant of a sequential case of Algorithm 2. We observe

that, unless αk = 0, subproblems (2.2) and (2.3) cannot be solved in parallel. For example,

taking αk = 1 for all k, in step 2 of Algorithm 2, we have to perform on each iteration the

following steps

λkbk + xk = zk−1 + λkwk−1, bk ∈ B(xk); (2.77)

µkak + yk = xk − µkwk−1, ak ∈ A(yk). (2.78)

Therefore (2.78) must to be solved after (2.77); these steps cannot be performed simulta-

neously like the proximal subproblems in step 1 of Algorithm 3. However, this choice of

αk could be an advantage since subproblem (2.78) uses more recent information, that is xk

instead of zk−1.

In this section we will set αk = 1 for all integer k ≥ 1 in Algorithm 2, and we will also

allow the solution of the second proximal subproblem to be approximate, provided that the

approximate solution satisfies the relative error condition of Definition 3.

Algorithm 4. Start with (z0, w0) ∈ Rn × Rn, σ ∈ [0, 1/2), ρ ∈ [0, 1). For k = 1, 2, . . . .

1. Choose λk > 0 and calculate (xk, bk) ∈ Rn × Rn and (yk, ak, εy,k) ∈ E such that

λkbk + xk = zk−1 + λkwk−1, bk ∈ B(xk); (2.79)

and

λkak + yk = xk − λkwk−1 + rk, ak ∈ Aεy,k(yk); (2.80)

‖rk‖2 + 2λkεy,k ≤ σ
(
‖yk − xk‖2 + ‖λk(ak + wk−1)‖2

)
. (2.81)

2. If ‖ak + bk‖+ ‖xk − yk‖ = 0 stop. Otherwise, set

γk =
〈zk−1 − xk, bk − wk−1〉+ 〈zk−1 − yk, ak + wk−1〉 − εy,k

‖ak + bk‖2 + ‖xk − yk‖2
.
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3. Choose a parameter ρk ∈ [1− ρ, 1 + ρ] and set

zk = zk−1 − ρkγk(ak + bk),

wk = wk−1 − ρkγk(xk − yk).

We notice that the maximum tolerance for the relative error in the resolution of (2.80)-

(2.81) is 1/2, instead of 1 as in Algorithm 3. We also notice that the proximal parameter in

step 1 of Algorithm 4 is not allowed to change from one subproblem to another within an

iteration.

For all integer k ≥ 1, the decomposable separator φk : Rn × Rn → R, associated to

(xk, bk, 0) and (yk, ak, εy,k), is given by

φk(z, w) = 〈z − xk, bk − w〉+ 〈z − yk, ak + w〉 − εy,k. (2.82)

Hence, if φk(zk−1, wk−1) > 0 we have that Algorithm 4 is an instance of the general scheme

presented in Section 1.2.

The following lemma implies that Algorithm 4 stops in step 2 whenever it has found a

point in the extended solution set Se (A,B).

Lemma 2.3. If {(xk, bk)}, {(yk, ak, εy,k)}, {(zk, wk)}, {λk}, and {ρk} are the sequences

generated by Algorithm 4, and {φk} is the sequence of decomposable separators defined in

(2.82). Then, for all integer k ≥ 1, we have

φk(zk−1, wk−1) ≥ 1− 2σ

2
τk

(
‖ak + bk‖2 + ‖xk − yk‖2

)
≥ 0, (2.83)

where

τk = min

{
λk,

1

λk

}
. (2.84)

Furthermore, if ‖∇φk‖ > 0 then φk(zk−1, wk−1) > 0, and ‖∇φk‖ = 0 if and only if (xk, bk) =

(yk,−ak) ∈ Se (A,B).

Proof. Specializing identity (2.82) with (z, w) = (zk−1, wk−1), adding and subtracting

〈xk, ak + wk−1〉 on the right-hand side and regrouping the terms, we obtain

φk(zk−1, wk−1) = 〈zk−1 − xk, bk + ak〉+ 〈xk − yk, ak + wk−1〉 − εy,k

=λk 〈bk − wk−1, bk + ak〉+
1

2λk

[
‖xk − yk‖2 + ‖λk(ak + wk−1)‖2

]
− 1

2λk

[
‖rk‖2 + 2λkεy,k

]
,

(2.85)

where we have used in the last equality the identity in (2.79) and rk is given by (2.80). We
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observe that

λk 〈bk − wk−1, bk + ak〉 =
λk
2

[
‖bk − wk−1‖2 + ‖bk + ak‖2 − ‖ak + wk−1‖2

]
. (2.86)

Hence, combining equalities (2.85) and (2.86), and the error criterion (2.81) we have

φk(zk−1, wk−1) ≥ λk
2
‖bk − wk−1‖2 +

λk
2
‖ak + bk‖2 +

1− σ
2λk

‖xk − yk‖2 −
σλk

2
‖ak + wk−1‖2 .

Since ‖ak + wk−1‖2 ≤ 2 ‖ak + bk‖2 + 2 ‖bk − wk−1‖2, we deduce that

φk(zk−1, wk−1) ≥ λk(1− 2σ)

2
‖bk − wk−1‖2 +

λk(1− 2σ)

2
‖ak + bk‖2 +

1− σ
2λk

‖xk − yk‖2 .
(2.87)

The inequalities in (2.83) now follow from the above relation, the definition of τk and noting

that 1− σ ≥ 1− 2σ > 0.

The claim that ‖∇φk‖ > 0 implies φk(zk−1, wk−1) > 0 is obtained as a direct consequence

of (2.83). To prove the last assertion of the lemma we notice that if ‖∇φk‖ = 0 then xk = yk,

bk = −ak, and it follows from (2.83), the first equality in (2.85) and the fact that εy,k ∈ R+,

that εy,k = 0. Thus, we have (xk, bk) ∈ Se (A,B).

We assume, from now on, that ‖∇φk‖ > 0 for every integer k ≥ 1.

The next result establishes pointwise iteration-complexity bounds for Algorithm 4. It will

be proved in much the same way as Theorem 2.7, using Lemma 2.3 instead of Lemma 2.2.

Theorem 2.10. Take (z0, w0) ∈ Rn × Rn and let {(xk, bk)}, {(yk, ak, εy,k)}, {λk}, {γk} and

{ρk} be the sequences generated by Algorithm 4. Let d0 be the distance of (z0, w0) to Se (A,B),

and for all integer k ≥ 1 let τk be given by (2.84). Then, for every integer k ≥ 1, we have

bk ∈ B(xk), ak ∈ Aεy,k(yk), (2.88)

and there exists an index 1 ≤ i ≤ k such that

‖ai + bi‖2 + ‖xi − yi‖2 ≤
4d2

0

(1− 2σ)2(1− ρ)2τi
k∑
j=1

τj

, (2.89)

εy,i ≤
4σd2

0

(1− 2σ)2(1− ρ)2
k∑
j=1

τj

. (2.90)

Proof. The inclusions in (2.88) are due to step 1 of Algorithm 4. It follows from the definition
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of γk and inequality (2.83) that

γk ≥
(

1− 2σ

2

)
τk, for k = 1, 2, . . . . (2.91)

Squaring both sides of the above inequality and multiplying by ‖∇φk‖2 we obtain

γ2
k ‖∇φk‖

2 ≥
(

1− 2σ

2

)2

τ2
k ‖∇φk‖

2 , for k = 1, 2, . . . . (2.92)

Now, we notice that the error criterion (2.81) implies

εy,k ≤
σ

2λk

[
‖xk − yk‖2 + ‖λk(ak + bk)‖2

]
.

Hence,

εy,k ≤
σ

2λk
‖xk − yk‖2 + σλk ‖ak + wk−1‖2 + σλk ‖bk − wk−1‖2 .

The above inequality, together with (2.87), yields

εy,k ≤
2σ

1− 2σ
φk(zk−1, wk−1).

If we multiply the above relation by γk and combine with (2.91), after some manipulations,

we obtain
(1− 2σ)2

4σ
τkεy,k ≤ γ2

k ‖∇φk‖
2 . (2.93)

Next, we define

ψk = max

{
(1− 2σ)2

4
τk ‖∇φk‖2 ,

(1− 2σ)2

4σ
εy,k

}
,

and using (2.92) and (2.93) we can conclude the proof proceeding analogously to the proof

of Theorem 2.7.

As in the previous sections, we will also derive ergodic complexity bounds for Algorithm

4.

Theorem 2.11. Let {(xk, bk)}, {(yk, ak, εy,k)}, {γk} and {ρk} be the sequences generated by

Algorithm 4 and let {(xk, bk, εx,k)} and {(yk, ak, εy,k)} be the associated sequences of ergodic

iterates defined in (1.17), (1.18) and (1.19). Consider τk given by (2.84). Then, for all

integer k ≥ 1, we have

bk ∈ Bεx,k(xk), ak ∈ Aεy,k(yk), (2.94)
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and

∥∥ak + bk
∥∥ ≤ 2d0

Γk
, ‖xk − yk‖ ≤

2d0

Γk
, εx,k + εy,k ≤

d2
0(ϑk + 4)

Γk
; (2.95)

where d0 is the distance of (z0, w0) to Se (A,B) and

ϑk = max
j=1,...,k

{
8

τj(1− 2σ)(2− ρj)Γk

}
.

Proof. Since Algorithm 4 is an instance of Algorithm 1, Lemma 1.4 and Theorem 1.3 apply,

therefore the inclusions in (2.94) and the first two inequalities in (2.95) follow.

We derive now an estimate for the sum on the right-hand side of (1.29). We notice that

(2.87) implies

φj(zj−1, wj−1) ≥ λj
(

1− 2σ

2

)
‖bj − wj−1‖2 , (2.96)

for all integer j ≥ 1. We also notice that

zj−1 − yj = zj−1 − xj + xj − yj = λj(bj − wj−1) + xj − yj ,

where the last identity is due to the equality in (2.79). This last expression and the triangle

inequality for norms yield

‖zj−1 − yj‖ ≤ λj ‖bj − wj−1‖+ ‖xj − yj‖ .

Moreover, squaring both sides of the inequality above and making some manipulations, we

have

1

2λj
‖zj−1 − yj‖2 ≤ λj ‖bj − wj−1‖2 +

1

λj
‖xj − yj‖2

≤ 2

1− 2σ
φj(zj−1, wj−1),

(2.97)

where the last inequality follows from (2.87). Adding now (2.96) and (2.97) we obtain

1− 2σ

4

1

λj
‖zj−1 − yj‖2 +

1− 2σ

2
λj ‖bj − wj−1‖2 ≤ 2φj(zj−1, wj−1). (2.98)

The above relation, together with the definitions of γj and τj , implies

‖bj − wj−1‖2 + ‖zj−1 − yj‖2 ≤
8

(1− 2σ)τj
γj ‖∇φj‖2 .

Multiplying both sides of the above relation by
1

Γk
ρjγj , and adding from j = 1 to k, we
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obtain the desired bound, i.e.

1

Γk

k∑
j=1

ρjγj

[
‖bj − wj−1‖2 + ‖zj−1 − yj‖2

]
≤ 1

Γk

k∑
j=1

8

(1− 2σ)τj
ρjγ

2
j ‖∇φj‖

2

=
1

Γk

k∑
j=1

8

(1− 2σ)τj(2− ρj)
ρj(2− ρj)γ2

j ‖∇φj‖
2

≤ ϑk
k∑
j=1

ρj(2− ρj)γ2
j ‖∇φj‖

2

≤ ϑkd2
0,

where the second and the third inequalities above follow from the definition of ϑk and (1.16),

respectively. The proof of the last bound in (2.95) now follows combining the above relation

with (1.29).

We finish this section with the following theorem, which provides complexity bounds for

Algorithm 4 to find a (δ, ε)-approximate solution of problem (1.1) in terms of the stopping

criterion (2.14). It will be proved in much the same manner as Theorem 2.9.

Theorem 2.12. Assume the hypotheses of Theorem 2.11. Suppose also that there exist λ

and λ such that, λ ≥ λ > 0 and λk ∈ [λ, λ] for all integer k ≥ 1. Defining τ = min

{
λ,

1

λ

}
,

then, for every δ, ε > 0, the following claims hold.

(a) There exists an index

i = O
(

max

{
d2

0

τ2δ2
,
d2

0

τε

})
such that, the point (xi, yi) calculated by Algorithm 4 is a (δ, ε)-approximate solution of

problem (1.1).

(b) There exists an index

k0 = O
(

max

{
d0

τδ
,
d2

0

τε

})
such that, for all integer k ≥ k0 the ergodic iterate (xk, yk) is a (δ, ε)-approximate

solution of problem (1.1).

Proof. We observe that the definitions of τk and τ in (2.84) and the statement of the theorem,

respectively, imply that

τk ≥ τ, for k = 1, 2, . . . . (2.99)

Therefore, applying Theorem 2.10 and combining with (2.99), we have that there exists and
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index 1 ≤ i ≤ k such that

‖ai + bi‖ ≤
2d0

(1− 2σ)(1− ρ)τ
√
k
, ‖xi − yi‖ ≤

2d0

(1− 2σ)(1− ρ)τ
√
k
,

εy,i ≤
4d2

0

(1− 2σ)2(1− ρ)2kτ
.

Item (a) now follows from the inclusions in (2.88) and the inequalities above.

To prove statement (b) we first notice that the definition of Γk in (1.17), together with

inequality (2.91), yields

Γk ≥ (1− ρ)

(
1− 2σ

2

) k∑
j=1

τj .

Combining the inequality above with (2.99) we obtain

Γk ≥ (1− ρ)

(
1− 2σ

2

)
τk, for k = 1, 2, . . . . (2.100)

We next observe that the definition of ϑk in the statement of Theorem 2.11 and relations

(2.99) and (2.100) imply

ϑk ≤
16

τ2(1− 2σ)2(1− ρ)2k
≤ 16

τ2(1− 2σ)2(1− ρ)2
, for k = 1, 2, . . . .

Defining the last term in the above relation as ϑ, and using Theorem 2.11 and inequality

(2.100), we obtain

∥∥ak + bk
∥∥ ≤ 4d0

(1− ρ)(1− 2σ)τk
,

‖xk − yk‖ ≤
4d0

(1− ρ)(1− 2σ)τk
,

εx,k + εy,k ≤
2d0(ϑ+ 4)

(1− ρ)(1− 2σ)τk
.

Statement (b) follows from the above inequalities and inclusions (2.94).
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Chapter 3

Application

In this chapter we will develop an specific instance of the splitting-projective framework

of Section 2.5. Namely, we will use Algorithm 4 to solve a class of linearly constrained

optimization problems.

In Section 3.1 we briefly discuss Lagrangian duality theory for convex optimization, for

more details we refer the reader to [32]. We also introduce in this section the scheme that we

study and we obtain complexity bounds for the method using the results of Section 2.5.

In Section 3.2 we present the ROF [35] model for image restoration and apply the al-

gorithm developed in the previous section to solve this problem. Some numerical tests are

included in Subsection 3.2.1.

3.1 Convex optimization problems

Consider the following optimization problem:

min
(u,v)
{f(u) + g(v) : Mu+ Cv = d} , (3.1)

where d ∈ Rn, M : Rm1 → Rn and C : Rm2 → Rn are linear operators, and f : Rm1 →
(−∞,∞] and g : Rm2 → (−∞,∞] are proper closed convex functions.

The Lagrangian function L : Rm1 ×Rm2 ×Rn → (−∞,∞] for problem (3.1) is defined as

L(u, v, z) = f(u) + g(v) + 〈Mu+ Cv − d, z〉 . (3.2)

The dual function is the concave function q : Rn → [−∞,∞) defined by

q(z) = inf
(u,v)∈Rm1×Rm2

L(u, v, z).
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The dual problem to (3.1) is

max
z∈Rn

q(z). (3.3)

Problem (3.1) will be called the primal problem. A straightforward application of the Fenchel-

Young inequality shows that weak duality holds, i.e. q∗ ≤ p∗, where p∗ and q∗ are the optimal

values of (3.1) and (3.3), respectively. Observe that the dual function q can be written in

terms of the Fenchel-Legendre conjugates of the functions f and g. Specifically,

q(z) = inf
(u,v)

[f(u) + g(v) + 〈Mu+ Cv − d, z〉]

= inf
u

[f(u) + 〈Mu, z〉] + inf
v

[g(v) + 〈Cv, z〉]− 〈d, z〉

=− f∗(−M∗z)− g∗(−C∗z)− 〈d, z〉 .

Moreover, if we define the functions h1(z) = (f∗ ◦ −M∗) (z) and h2(z) = (g∗ ◦ −C∗) (z) +

〈d, z〉, the dual problem (3.3) is equivalent to minimizing h1 + h2 over Rn. Thus, z∗ is a

solution of (3.3) if and only if

0 ∈ ∂(h1 + h2)(z∗). (3.4)

A vector (u∗, v∗, z∗) is said to be a saddle point of the Lagrangian function L, if L(u∗, v∗, z∗)

is finite and

min
(u,v)∈Rm1×Rm2

L(u, v, z∗) = L(u∗, v∗, z∗) = max
z∈Rn

L(u∗, v∗, z). (3.5)

Finding optimal solutions of problems (3.1) and (3.3) is equivalent to finding saddle points

of L. That is, (u∗, v∗) is an optimal primal solution and z∗ is an optimal dual solution if

and only if (u∗, v∗, z∗) satisfy (3.5), see [32]. Furthermore, if a saddle point of L exists then

p∗ = q∗, i.e. there is no duality gap [32].

Note that, if (u∗, v∗, z∗) is a saddle point of L, from (3.2) and (3.5) it follows that

f(u) + g(v) + 〈Mu+ Cv − d, z∗〉 ≥ L(u∗, v∗, z∗) ≥ f(u∗) + g(v∗) + 〈Mu∗ + Cv∗ − d, z〉

for all u ∈ Rm1 , v ∈ Rm2 , z ∈ Rn. From these relations we can directly derive the Kuhn-

Tucker optimality conditions for problem (3.1)

0 = Mu∗ + Cv∗ − d,

0 ∈ ∂f(u∗) +M∗z∗,

0 ∈ ∂g(v∗) + C∗z∗.

(3.6)

An iterative method used for finding saddle points of the Lagrangian function L is the

Alternating Direction Method of Multipliers (ADMM), which goes back to Glowinski and

Marroco [20], and Gabay and Mercier [18]. Gabay [17] showed that ADMM can be interpreted
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as Douglas-Rachford splitting algorithm applied to the operators ∂h1 and ∂h2. This approach

motivates us to solve problems (3.1)-(3.3) by applying the projective-splitting framework

developed in the previous chapter.

We make the following assumptions throughout this section:

B.1 There exists (u∗, v∗, z∗) a saddle point of L;

B.2 ri (dom f∗) ∩ rangeM∗ 6= ∅;

B.3 ri (dom g∗) ∩ rangeC∗ 6= ∅.

We notice that conditions B.2 and B.3 imply, respectively, that h1 and h2 are proper functions.

Therefore ∂h1 and ∂h2 are maximal monotone operators.

Lemma 3.1. If (u∗, v∗, z∗) is a saddle point of L, then

(z∗, d− Cv∗) ∈ Se (∂h1, ∂h2) .

Proof. If (u∗, v∗, z∗) is a saddle point of the Lagrangian function, then the Kuhn-Tucker

optimality conditions hold and by the inclusions in (3.6) and Proposition 1.2(b) we have

u∗ ∈ ∂f∗(−M∗z∗), v∗ ∈ ∂g∗(−C∗z∗).

Thus,

−Mu∗ ∈ −M∂f∗(−M∗z∗) ⊆ ∂(f∗ ◦ −M∗)(z∗), (3.7)

− Cv∗ ∈ −C∂g∗(−C∗z∗) ⊆ ∂(g∗ ◦ −C∗)(z∗); (3.8)

where the last inclusions in (3.7) and (3.8) follow from Proposition 1.2(d). Adding d to both

sides of (3.8) and using the definitions of h2 and Proposition 1.2(c) we have d−Cv∗ ∈ ∂h2(z∗).

Now, adding this last inclusion with (3.7) and noting the definition of h1 we conclude that

−Mu∗ + d− Cv∗ ∈ ∂h1(z∗) + h2(z∗).

The lemma follows combining the relation above with the equality in (3.6) and the definition

of Se (∂h1, ∂h2).

The next result shows how we can invert operators I + λ∂h1 and I + λ∂h2 for all λ > 0.

Lemma 3.2. Let z ∈ Rn, λ > 0 and assume conditions B.1-B.3, then the following claims

hold.
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(a) If ũ ∈ Rm1 is a solution of the following problem

min
u∈Rm1

{
f(u) + 〈z,Mu〉+

λ

2
‖Mu‖2

}
, (3.9)

then, −Mũ ∈ ∂h1(z̃) where z̃ = z + λMũ. Hence, z̃ = (I + λ∂h1)−1(z). Furthermore,

the set of optimal solutions of (3.9) is nonempty.

(b) If ṽ ∈ Rm2 is a solution of problem

min
v∈Rm2

{
g(v) + 〈z, Cv − d〉+

λ

2
‖Cv − d‖2

}
, (3.10)

then, d − Cṽ ∈ ∂h2(ẑ) where ẑ = z + λ(Cṽ − d). Hence, ẑ = (I + λ∂h2)−1(z).

Furthermore, the set of optimal solutions of (3.10) is nonempty.

Proof. (a) If ũ ∈ Rm1 is a solution of (3.9), deriving the optimality condition of this mini-

mization problem, we have

0 ∈ ∂f(ũ) +M∗z + λM∗Mũ = ∂f(ũ) +M∗z̃,

where the last identity follows from the definition of z̃. The inclusion above and Proposition

1.2(b),(d) yield

−Mũ ∈ ∂(f∗ ◦ −M∗)(z̃).

Using the above relation and the definition of h1, we deduce that −Mũ ∈ ∂h1(z̃). The

assertion that z̃ = (I + λ∂h1)−1(z) is a direct consequence of this last inclusion and the

definition of z̃.

Since ∂h1 is maximal monotone, Minty’s theorem [26] asserts that for all z ∈ Rn there

exist z̃, w ∈ Rn such that  w ∈ ∂h1(z̃),

λw + z̃ = z.
(3.11)

Moreover, assumption B.2 and Proposition 1.2(d) imply that

∂h1(z) = −M∂f∗(−M∗z) ∀z ∈ Rn. (3.12)

Therefore, by (3.12) there exists ũ ∈ ∂f∗(−M∗z̃) such that w = −Mũ, where w is given in

(3.11). This last inclusion implies that −M∗z̃ ∈ ∂f(ũ), from which we deduce that

0 ∈ ∂f(ũ) +M∗z̃ = ∂f(ũ) +M∗(z + λMũ),

where the last identity is obtained replacing w by −Mũ in the equality in (3.11). Thus, it
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follows from the relation above that ũ is an optimal solution of problem (3.9).

(b) The same proof of statement (a) remains valid for item (b), noting that condition B.3

and Proposition 1.2(c),(d) yield

∂h2(z) = ∂(g∗ ◦ −C∗)(z) + d = −C∂g∗(−C∗z) + d, ∀z ∈ Rn. (3.13)

We notice that equation (3.12) implies that for all z, w ∈ Rn with w ∈ ∂h1(z) there exists

u ∈ Rm1 such that u ∈ ∂f∗(−M∗z) and w = −Mu. Similarly, if w is a subgradient of h2 at

z, by (3.13) we have that there is v ∈ Rm2 satisfying v ∈ ∂g∗(−C∗z) and w = d−Cv. Hence,

by the definition of the extended solution set, if (z∗, w∗) ∈ Se(∂h1, ∂h2), there exist u∗ and

v∗ with w∗ = −Mu∗ and −w∗ = d − Cv∗, from which follows that (u∗, v∗, z∗) is a saddle

point of L.

Thus, according to Lemma 3.1, we can attempt to find a saddle point of the Lagrangian

function (3.2), by seeking a point in the extended solution set Se(∂h1, ∂h2).

We now state the method that we wish to study in this section.

Algorithm 5. Let (z0, w0) ∈ Rn × Rn, λ > 0 and ρ ∈ [0, 1) be given. For k = 1, 2, . . ..

1. Compute vk ∈ Rm2 as

vk = arg min
v
{g(v) + 〈zk−1 + λwk−1, Cv − d〉+

λ

2
‖Cv − d‖2}, (3.14)

and uk ∈ Rm1 as

uk = arg min
u
{f(u) + 〈zk−1 + λ(Cvk − d),Mu〉+

λ

2
‖Mu‖2}. (3.15)

2. If ‖Muk + Cvk − d‖+ ‖Muk − wk−1‖ = 0 stop. Otherwise, set

γk =
λ ‖Cvk − d+ wk−1‖2 + λ 〈d− Cvk −Muk, wk−1 −Muk〉

‖Muk + Cvk − d‖2 + λ2 ‖Muk − wk−1‖2
.

3. Choose ρk ∈ [1− ρ, 1 + ρ] and set

zk = zk−1 + ρkγk(Muk + Cvk − d),

wk = wk−1 − ρkγkλ(wk−1 −Muk).

Proposition 3.1. Algorithm 5 is a special instance of Algorithm 4 applied to operators
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A = ∂h1 and B = ∂h2, with σ = 0,

λk = λ, εy,k = 0, (3.16)

and
xk = zk−1 + λwk−1 + λ(Cvk − d), bk = d− Cvk,

yk = xk − λ(wk−1 −Muk), ak = −Muk,
(3.17)

for every integer k ≥ 1.

Proof. Applying Lemma 3.2(b) with z = zk−1 + λwk−1 and ṽ = vk we have that xk and bk,

defined in (3.17), satisfy bk ∈ ∂h2(xk) and xk = (I + λ∂h2)−1(zk−1 + λwk−1). Therefore,

we deduce that (xk, bk) is the solution of subproblem (2.79) with λk = λ and B = ∂h2.

Furthermore, applying Lemma 3.2(a) with z = xk − λwk−1 and ũ = uk we have that the

points yk and ak, given in (3.17), satisfy (2.80) and (2.81) with A = ∂h1, λk = λ, εy,k = 0

and σ = 0.

Moreover, identities in (3.17) yield

bk + ak = d− Cvk −Muk, xk − yk = λ(wk−1 −Muk), (3.18)

and

zk−1 − yk = λ(d−Muk − Cvk).

Using these relations above and the definitions of xk, bk, yk and ak in (3.17), we can rewrite

γk in step 2 of Algorithm 5 as

γk =
〈zk−1 − xk, bk − wk−1〉+ 〈zk−1 − yk, ak + wk−1〉

‖ak + bk‖2 + ‖xk − yk‖2
.

Finally, we observe that (3.18) and the update rule of step 3 of Algorithm 5 imply that

(zk, wk) = (zk−1, wk−1)− ρkγk(ak + bk, xk − yk).

Thus, the proposition is proven.

We are now able to establish the convergence rate result for Algorithm 5.

Theorem 3.1. Consider the sequences {(uk, vk)}, {(zk, wk)}, {γk} and {ρk} generated by

Algorithm 5, and the sequences {xk}, {bk}, {yk} and {ak} defined in (3.17). Moreover,

consider the associated sequences of ergodic iterates {(xk, bk, εx,k)} and {(yk, ak, εy,k)} given

by (1.17), (1.18) and (1.19). Let d0 be the distance of (z0, w0) to Se (∂h1, ∂h2) and define

τ = min

{
λ,

1

λ

}
. Then for all integer k ≥ 1, the following statements hold.
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(a) bk ∈ ∂h2(xk), ak ∈ ∂h1(yk), and there exists i ≤ k such that

‖ai + bi‖ ≤
2d0

(1− ρ)τ
√
k
, ‖xi − yi‖ ≤

2d0

(1− ρ)τ
√
k
.

(b) We have

bk ∈ ∂εx,kh2(xk), ak ∈ ∂εy,kh1(yk), (3.19)

and

∥∥ak + bk
∥∥ ≤ 4d0

k(1− ρ)τ
, ‖xk − yk‖ ≤

4d0

k(1− ρ)τ
,

εx,k + εy,k ≤
2d2

0

k(1− ρ)τ
(ϑ+ 4),

where

ϑ :=
16

τ2(1− ρ)2
. (3.20)

Proof. This result follows immediately from Proposition 3.1 and Theorems 2.10 and 2.11 by

specializing the last two results to the case where τk = τ , σ = 0, and noting that Γk and ϑk

in Theorem 2.11 satisfy

Γk ≥ k(1− ρ)
τ

2
and ϑk ≤

16

τ2(1− ρ)2k
≤ ϑ, for k = 1, 2, . . . .

Observe also that (3.19) follows from Theorem 1.1(b) and the fact that bk ∈ ∂h2(xk) and

ak ∈ ∂h1(yk), according to statement (a).

The above result can be translated from the context of the monotone inclusion problem

(1.1) with ∂h1, ∂h2, to the context of the minimization problem (3.1) and the Kuhn-Tucker

optimality conditions (3.6).

Theorem 3.2. Assume the hypotheses of Theorem 3.1 and define for every integer k ≥ 1

uk =
1

Γk

k∑
j=1

ρjγjuj , vk =
1

Γk

k∑
j=1

ρjγjvj , where Γk =

k∑
j=1

ρjγj . (3.21)

Then,

(a) for all k = 1, 2, . . . ,

0 ∈ ∂g(vk) + C∗xk, 0 ∈ ∂f(uk) +M∗yk, (3.22)
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and there exist and index i ≤ k such that

‖Mui + Cvi − d‖ ≤
2d0

(1− ρ)τ
√
k
, ‖xi − yi‖ ≤

2d0

(1− ρ)τ
√
k

; (3.23)

(b) for all k = 1, 2, . . . ,

0 ∈ ∂εx,kg(vk) + C∗xk, 0 ∈ ∂εy,kf(uk) +M∗yk, (3.24)

and

‖Muk + Cvk − d‖ ≤
4d0

k(1− ρ)τ
, ‖xk − yk‖ ≤

4d0

k(1− ρ)τ
,

εx,k + εy,k ≤
2d2

0

k(1− ρ)τ
(ϑ+ 4);

(3.25)

where ϑ is given in (3.20).

Proof. First we observe that the optimality condition of problems (3.14) and (3.15), together

with the definitions of xk and yk in (3.17), imply inclusions in (3.22). The estimates in (3.23)

are due to Theorem 3.1(a) and the fact that ak + bk = d−Muk −Cvk, for all integer k ≥ 1.

Moreover, the inclusions in (3.24) follow from (3.21), (3.22), Theorem 1.1(b) and linearity

of the M∗ and C∗ operators. The definitions of ak, bk in (3.17), together with the definitions

of uk, vk, bk and ak in (3.21), (1.18) and (1.19), respectively, yield

ak + bk = d−Muk − Cvk.

Therefore, the bounds in (3.25) follow from the identity above and Theorem 3.1(b).

Clearly, it is also possible to apply Algorithms 2 and 3 to operators ∂h1 and ∂h2 to find

a saddle point of the Lagrangian function of problem (3.1), and use the results obtained in

Sections 2.1 and 2.4 to establish its convergence rate. For instance, using Algorithm 3 for

locating a point in Se(∂h1, ∂h2), with σ = 0 and λk = µk = λ for all integer k ≥ 1, gives

a parallel method with pointwise and ergodic convergence rates of O(1/
√
k) and O(1/k),

respectively.

3.2 TV denoising

In this section we discuss the specialization of Algorithm 5 to the total variation model

for image denoising (TV denoising). Total variation or Rudin-Osher-Fatemi (ROF) model

is a common image restoration model first introduced in [35], which has been the object of

intense research, see for instance [8, 11, 42, 2, 9], and references therein.
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Let b ∈ Rm×n be an observed noisy image and u ∈ Rm×n the original image to be

recovered, the anisotropic TV problem for image restoration is the minimization problem

min
u∈Rm×n

ζTV (u) +
1

2
‖u− b‖2F , (3.26)

where ζ > 0, ‖·‖F is the Frobenius norm for matrix and TV is the total variation norm

defined as

TV (u) =
m−1∑
i=1

n−1∑
j=1

|ui,j − ui+1,j |+ |ui,j − ui,j+1|

+
m−1∑
i=1

|ui,n − ui+1,n|+
n−1∑
j=1

|um,j − um,j+1|,

(3.27)

where we assumed in (3.27) standard reflexive boundary conditions

um+1,j − um,j = 0, ∀ j and ui,n+1 − ui,n = 0, ∀ i.

If we consider the discrete forward gradients∇1 : Rm×n → Rm×n and∇2 : Rm×n → Rm×n

in the first and second direction, respectively, given by

(∇1u)ij = ui+1,j − ui,j ,

(∇2u)ij = ui,j+1 − ui,j ,
∀i = 1, . . . ,m, j = 1, . . . , n, ∀u ∈ Rm×n; (3.28)

then the TV norm can be stated as

TV (u) = ‖∇1u‖1 + ‖∇2u‖1 .

Thus, problem (3.26) can be rewritten as

min
u∈Rm×n

ζ ‖∇1u‖1 + ζ ‖∇2u‖1 +
1

2
‖u− b‖2F . (3.29)

Let us state the problem above in the form of a linearly constrained minimization problem

(3.1). Define Ω := Rm×n × Rm×n, and the linear map ∇ : Rm×n → Ω by

∇u = (∇1u,∇2u).

If we set v = ∇u ∈ Ω, then problem (3.29) is equivalent to

min
(u,v)

{
ζ ‖v‖1 +

1

2
‖b− u‖2F : ∇u− v = 0

}
. (3.30)
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To solve the minimization problem above we will apply Algorithm 5 with f(u) =
1

2
‖u− b‖2F ,

g(v) = ζ ‖v‖1, M = ∇, C = −I and d = 0. For simplicity of notation and to avoid confusion,

from now on we write the iteration counter k, at the top of the iterated vectors. Given

zk−1, wk−1 ∈ Ω, Algorithm 5 requires the solution of subproblems,

vk = arg min
v∈Ω

{
ζ ‖v‖1 −

〈
zk−1 + λwk−1, v

〉
+
λ

2
‖v‖2F

}
, (3.31)

and

uk = arg min
u∈Rm×n

{
1

2
‖u− b‖2F +

〈
zk−1 − λvk,∇u

〉
+
λ

2
‖∇u‖2F

}
. (3.32)

The optimality condition of problem (3.31), yields

0 ∈ ζ∂ ‖·‖1 (vk)− (zk−1 + λwk−1) + λvk,

hence,

vk =

(
I +

ζ

λ
∂ ‖·‖1

)−1( 1

λ
zk−1 + wk−1

)
.

Furthermore, the resolvent above can be computed explicitly as

v1
k
i,j = max

[
0,

∣∣∣∣ 1λz1
k−1
i,j + w1

k−1
i,j

∣∣∣∣− ζ

λ

]
sgn

(
1

λ
z1
k−1
i,j + w1

k−1
i,j

)
,

v2
k
i,j = max

[
0,

∣∣∣∣ 1λz2
k−1
i,j + w2

k−1
i,j

∣∣∣∣− ζ

λ

]
sgn

(
1

λ
z2
k−1
i,j + w2

k−1
i,j

)
.

(3.33)

Deriving now the optimality condition for subproblem (3.32) we have that

0 = uk − b+∇∗(zk−1 − λvk) + λ∇∗∇uk,

from which follows that uk has to be the solution of the system of linear equations

(I + λ∇∗∇)uk = b−∇∗(zk−1 − λvk).
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Thus, the iterations of Algorithm 5 for solving problem (3.30) are given by

vk = max

[
0,

∣∣∣∣ 1λzk−1 + wk−1

∣∣∣∣− ζ

λ

]
sgn

(
1

λ
zk−1 + wk−1

)
, (3.34)

(I + λ∇∗∇)uk = b−∇∗(zk−1 − λvk), (3.35)

γk =
λ
∥∥wk−1 − vk

∥∥2
+ λ

〈
vk −∇uk, wk−1 −∇uk

〉
‖∇uk − vk‖2 + λ2 ‖∇uk − wk−1‖2

, (3.36)

zk = zk−1 + ρkγk(∇uk − vk), (3.37)

wk = wk−1 − ρkγkλ(wk−1 −∇uk); (3.38)

where identity (3.34) stands for the formulas (3.33).

3.2.1 Numerical tests

We will now exhibit some preliminary numerical experiments to illustrate the performance

of Algorithm 5 when solving the anisotropic TV denoising model. We tested our method

with two images: the first was an image of size 512× 512 which we referred to as Man, and

the second was the famous image Lena of size 512 × 512. Both images were noised with

Gaussian noise using the Matlab function ’imnoise’ with different variance values. Algorithm

5 (Projective) was implemented in Matlab code and it was chosen λ = 1 and ρk = 1 for all

integer k ≥ 1, in all tests. We solved problem (3.35) using the Conjugate Gradient (CG)

method with tolerance 10−5.

For comparison, we also report the results obtained with the split Bregman (SB) method

[21], which is actually equivalent to ADMM [16]. As in [21] iterations were terminated when

condition
∥∥uk − uk−1

∥∥ /∥∥uk∥∥ ≤ 10−3 was met; since, this stopping criterion is satisfied faster

while yielding good denoised images. However, we will report the residuals for the Kuhn-

Tucker optimality conditions for problem (3.30) for both methods, i.e. we will plot the curves∥∥∇uk − vk∥∥ and
∥∥xk − yk∥∥, where xk and yk are defined in (3.17) with M = ∇ and C = −I.

Moreover, we will refer to the vectors ∇uk− vk and xk− yk as the primal and dual residuals,

respectively.

Figures 3.1 and 3.3 show the performance of Projective and SB methods for denoising

the images Man and Lena, respectively. Man was contaminated with Gaussian noise with

variance v = 0.01 and Lena with variance v = 0.03. To solve the TV problems of the

experiments which are presented in Figures 3.1 and 3.3, it was chosen ζ = 20 and ζ = 40,

respectively. The number of iterations and total computation time (sec), required for the

Projective and SB methods to reach the stopping criterion, are reported below each figure.

We observe that in the experiments, the Projective method executed fewer iterations than

SB method, and the Projective was faster.
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In Figures 3.2 and 3.4 it is plotted the residual errors respective to the tests presented in

Figures 3.1 and 3.3. We notice that the primal errors converges fast in the first iterations, but

then slow down as the exact solution is reached. We also notice that after the first iterations

primal and dual errors of Projective method are smaller than the respective errors of SB.

Figure 3.1: Denoising of Man. (top left) Original image. (top right) Noise contaminated with variance 0.01. (bottom
left) Denoised with Projective, the stopping criterion was satisfied at iteration 14 (2.313). (bottom right) Denoised
with SB, the stopping criterion was satisfied at iteration 16 (2.540).
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Figure 3.2: Residual curves for Projective algorithm and SB method. (top) Primal error
∥∥∇uk − vk∥∥ vs iteration

number k. (bottom) Dual error
∥∥xk − yk∥∥ vs iteration number k. Convergence results are for the tested image Man

with Gaussian noise (variance 0.01) and with ζ = 20.
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Figure 3.3: Denoising of Lena. (top left) Original image. (top right) Noise contaminated with variance 0.03. (bottom
left) Denoised with Projective, the stopping criterion was satisfied at iteration 17 (2.738). (bottom right) Denoised
with SB, the stopping criterion was satisfied at iteration 19 (2.940).
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Figure 3.4: Residual curves for Projective algorithm and SB method. (top) Primal error
∥∥∇uk − vk∥∥ vs iteration

number k. (bottom) Dual error
∥∥xk − yk∥∥ vs iteration number k. Convergence results are for the tested image Lena

with Gaussian noise (variance 0.03) and with ζ = 40.
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We now show the total number of iteration executed by the CG method in each algorithm

for some specific experiments. In the tests presented in Table 3.1, 3.2 and 3.3 both meth-

ods were stopped at iteration 20. We notice that the CG method in Projective algorithm

performed fewer iterations than in SB method.

Image Projective SB

Man 113 119
Lena 109 115

Table 3.1: Total number of iteration of CG method. Images noised with Gaussian noise (v = 0.01). Resulst for ζ = 20.

Image Projective SB

Man 120 125
Lena 118 121

Table 3.2: Total number of iteration of CG method. Images noised with Gaussian noise (v = 0.03). Resulst for ζ = 40.

Image Projective SB

Man 125 127
Lena 120 125

Table 3.3: Total number of iteration of CG method. Images noised with Gaussian noise (v = 0.05). Resulst for ζ = 50

However, the authors of [21] observed that the SB method attained optimal efficiency

executing, at each iteration, just a single iteration of an iterative method to solve subproblem

(3.35). Figures 3.3 and 3.6 below show that the Projective method also yields good denoised

images performing one iteration of CG method.

These results suggest that the Projective framework is competitive when solving TV

denoising models. To confirm this hypothesis more experiments are needed with a larger

sample of images and different levels of noise. We notice that Algorithm 5 can also be

applied to solve the isotropic TV model, i.e. the minimization problem

min
u∈Rm×n

ζ
∑
i

√
|∇1u|2i + |∇2u|2i +

1

2
‖u− b‖2F .

Therefore, it might also be of interest to test the Projective algorithm with the above problem

and compare its performance with algorithms available in the literature, such as SB method

[21].

Clearly, Algorithm 3, 4 and 5 should be applied to a various kind of problems such as

variational inequality, large-scale optimization problems arising in statistics, machine learning
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Figure 3.5: Denoising of Lena with one iteration of CG method per iteration. (left) Noise contaminated with variance
0.01. (center) Denoised with Projective, the stopping criterion was satisfied at iteration 14 (1.167). (right) Denoised
with SB, the stopping criterion was satisfied at iteration 16 (1.190). Results for ζ = 20.

Figure 3.6: Denoising of Man with one iteration of CG method per iteration. (left) Noise contaminated with variance
0.05. (center) Denoised with Projective, the stopping criterion was satisfied at iteration 24 (1.848). (right) Denoised
with SB, the stopping criterion was satisfied at iteration 25 (1.760). Results for ζ = 50.

an related areas; and computational tests should be done to deduce the practical performance

of these methods. These are interesting topics for a future work.
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linéaires. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal.

Numér. 9, R-2 (1975), 41–76.

[21] Goldstein, T., and Osher, S. The split Bregman method for L1-regularized prob-

lems. SIAM J. Imaging Sci. 2, 2 (2009), 323–343.

62
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