
Noname manuscript No.
(will be inserted by the editor)

Variance-based stochastic extragradient methods with linear search for

stochastic variational inequalities
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Abstract We propose stochastic extragradient methods for stochastic variational inequalities with a
linear search requiring only pseudo-monotonicity of the operator and no knowledge of the Lipschitz
constant L. We provide convergence and complexity analysis, allowing for an unbounded feasible set,
unbounded operator, non-uniform variance of the oracle and we do not require any regularization. We
also prove the generated sequence is bounded in Lp. Alongside the stochastic approximation procedure,
we iteratively reduce the variance of the stochastic error. Our methods cope with stepsizes bounded away
from zero and attain the near-optimal oracle complexity O(log1/θ L) ·ǫ−2 · [ln(ǫ−1)]1+b and an accelerated
rate O(1/K) in terms of the mean (quadratic) natural residual and the mean D-gap function, where K
is the number of iterations required for a given tolerance ǫ > 0 for arbitrary θ ∈ (0, 1) and b > 0. Explicit
estimates for the convergence rate, oracle complexity and the p-moments are given depending on problem
parameters and the distance of initial iterates to the solution set.
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1 Introduction

The standard (deterministic) variational inequality problem, which we will denote as VI(T, X) or simply
VI, is defined as follows: given a closed and convex set X ⊂ Rn and a single-valued operator T : Rn → Rn,
find x∗ ∈ X such that for all x ∈ X ,

〈T (x∗), x − x∗〉 ≥ 0. (1)

We shall denote by X∗ the solution set of VI(T, X). The variational inequality problem includes many
interesting special classes of variational problems with applications in economics, game theory and engi-
neering. The basic prototype is smooth convex optimization when T is the gradient of a smooth function.
Other problems which can be formulated as variational inequalities, include complementarity problems
(when X = Rn

+), systems of equations (when X = Rn), saddle-point problems and many equilibrium
problems. The complementarity problem and systems of equations are important classes of problems
where the feasible set is unbounded.
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Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro, RJ, 22460-320, Brazil,
E-mail: rimfo@impa.br

P. Thompson
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In the stochastic case, we start with a measurable space (Ξ, G), a measurable (random) operator
F : Ξ × Rn → Rn and a random variable ξ : Ω → Ξ defined on a probability space (Ω, F ,P) which
induces an expectation E and a distribution Pξ of ξ. When no confusion arises, we sometimes use ξ to
also denote a random sample ξ ∈ Ξ. We assume that for every x ∈ Rn, F (ξ, x) : Ω → Rn is an integrable
random vector. The solution criterion analyzed in this paper consists of solving VI(T, X) as defined by
(1), where T : Rn → Rn is the expected value of F (ξ, ·), i.e.,

T (x) = E[F (ξ, x)], ∀x ∈ Rn. (2)

Precisely, the definition of the stochastic variational inequality problem (SVI) is the following:

Definition 1 (SVI) Under the setting of (2), find a random variable x∗ : Ω → X , such that 〈T (x∗(ξ)), x−
x∗(ξ)〉 ≥ 0, for all x ∈ X and almost every ξ ∈ Ξ.

Such formulation of SVI is also called expected value formulation. It was first proposed in [8], as a
natural generalization of stochastic optimization problems (SP). Recently, a more general definition of
stochastic variational inequality was considered in [4] where the feasible set is also affected by randomness,
that is, X : Ξ ⇒ Rn is a random set-valued function. This setting appears, e.g., in economical or traffic
equilibrium problems where an uncertain demand is present in the constraints.

Methods for the deterministic VI(T, X) have been extensively studied (see [6]). If T is fully available
then SVI can be solved by these methods. As in the case of SP, the SVI in Definition 1 becomes very
different from the deterministic setting when T is not available. This is often the case in practice due to
expensive computation of the expectation in (2), unavailability of Pξ or no close form for F (ξ, ·). This
requires sampling the random variable ξ and the use of values of F (η, x) given a sample η of ξ and a
current point x ∈ Rn (a procedure often called “stochastic oracle” call). In this context, there are two
current methodologies for solving the SVI problem: sample average approximation (SAA) and stochastic
approximation (SA). In this paper we focus on the SA approach. For analysis of the SAA methodology
for SP and SVI, see e.g., [8,29] and references therein.

The SA methodology has a long tradition in probability, statistics and optimization, initiated by
the seminal work of Robbins and Monro in [26]. In this paper they consider X = Rn and T = ∇f in
Definition 1 for a smooth strongly convex function f under specific conditions. Thus, the problem they
analyse is: under (2), almost surely find x∗(ξ) ∈ Rn such that T (x∗(ξ)) = 0. The SA methodology has
been applied to SVI in [13], [14], [34], [21], [32], [10], [11], [5], [35], [16], [17], [36]. SA-typed methods for
SVI can be seen as a projection-type method where the exact mean operator T is replaced along the
iterations by a random sample of F . This approach induces an stochastic error F (ξ, x) − T (x) for x ∈ X
in the trajectory of the method. See also [22], [2] for other problems where the stochastic approximation
procedure is relevant (such as machine learning, online optimization, repeated games, queueing theory,
signal processing and control theory).

1.1 Related work on SA

The first SA method for SVI was analyzed in [13]. Its iteration is given by:

xk+1 = Π [xk − αkF (ξk, xk)], (3)

where Π is the Euclidean projection onto X , {ξk} is a sample of ξ and {αk} is a sequence of positive
steps. In [13], the almost sure (a.s.) convergence of {xk} is proved assuming L-Lipschitz continuity of
T , strong monotonicity or strict monotonicity of T , stepsizes satisfying

∑
k αk = ∞,

∑
k α2

k < ∞ (with
0 < αk < 2ρ/L2 in case T is ρ-strong monotone) and an unbiased oracle with uniform variance, i.e.,
there exists σ > 0 such that for all x ∈ X ,

E
[
‖F (ξ, x) − T (x)‖2

]
≤ σ2. (4)

After the above mentioned work, more recent research on SA methods for SVI have been developed in
[14], [34], [21], [32], [10], [11], [5], [35], [16], [17], [36]. Two of the main concerns in these papers were the
extension of the SA approach to the general monotone case and the obtention of (optimal) convergence
rate and complexity results with respect to known metrics associated to the VI problem. In order to
analyze the monotone case, SA methodologies based on the extragradient method of Korpelevich [20]
and the mirror-prox algorithm of Nemiroviski [23] were used in [14], [5], [35], [16], [17], [11] and iterative
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Tykhonov and proximal regularization procedures (see [15], [19]), were used in [34], [21], [10], [36]. Other
objectives in some of these papers were the use of incremental constraint projections in the case of
difficulties accessing the feasible set [32], [10], the convergence analysis in the absence of the Lipschitz
constant [34], [35], [36], and the distributed solution of Cartesian variational inequalities [34], [21], [10],
[15].

1.2 Two new extragradient methods for SVI

We will need now some notation. We shall denote by ǫ(ξ, x) := F (ξ, x) − T (x) the oracle error at the
point x ∈ Rn. Given a sample ξN := {ξj}N

j=1 of ξ, we denote the associated empirical average of the
random operator at a point x ∈ Rn by

F̂
(
ξN , x

)
:=

1

N

N∑

j=1

F (ξj , x),

and the empirical mean error by

ǫ̂(ξN , x) := F̂
(
ξN , x

)
− T (x) :=

1

N

N∑

j=1

F (ξj , x) − T (x).

In [11], the following stochastic extragradient method was proposed:

zk = Π
[
xk − αkF̂ (ξk, xk)

]
, (5)

xk+1 = Π
[
xk − αkF̂ (ηk, zk)

]
, (6)

where {Nk} ⊂ N is a non-decreasing sequence (termed sample rate) and ξk := {ξk
j : k ∈ N, j = 1, . . . , Nk}

and ηk := {ηk
j : k ∈ N, j = 1, . . . , Nk} are independent identically distributed (i.i.d.) samples of ξ. Method

(5)-(6) is proved to convergence under pseudo-monotonicity of the operator1, i.e., for all z, x ∈ Rn,
〈T (x), z − x〉 ≥ 0 =⇒ 〈T (z), z − x〉 ≥ 0, Lipschitz-continuity of the random operator, i.e., for any
x, y ∈ Rn,

‖F (ξ, x) − F (ξ, y)‖ ≤ L(ξ)‖x − y‖, (7)

for some measurable function L : Ξ → R+ with finite variance, an oracle with finite variance over X ,
i.e., for all x ∈ X ,

E
[
‖F (ξ, x) − T (x)‖2

]
< ∞, (8)

and assuming a stepsize bounded away from zero, i.e., 0 < infk αk ≤ supk αk < (2L)−1 where L > 0 is
the Lipschitz constant of T and a sample rate satisfying

∑
k(Nk)−1 < ∞, which is typically satisfied by

Nk = O
(
k(ln k)1+b

)
for some b > 0.

As it will be discussed more precisely in the sequel, method (5)-(6) has important improvements with
respect to previous SA methods for SVI (the main advantages being of accelerating the convergence rate
with respect to the noise error and coping efficiently with unboundedness and variance of the oracle).
One drawback, however, is that it requires the knowledge of the Lipschitz constant L. The main purpose
of this paper is the introduction of an extragradient method with a linear search for determining the
stepsizes, as was done by Khobotov [18] and by Iusem and Svaiter [12] for the deterministic case. See
also [30], [33], [1] for other deterministic projection methods with linear search. Importantly, we are able
to maintain the good properties of method (5)-(6) in the absence of L. The introduction of such a linear
search has two goals. First, it allows the method to deal with problems where the Lipschitz constant
of the operator T is inexistent, unknown, or too large, in which case the stepsizes become too small
with a detrimental effect on the convergence. It also improves over the alternative of “small” exogenous
stepsizes, (i.e., a summable sequence {αk}), which has also a very detrimental effect on the convergence.
The intuition is that a linear search provides a procedure which uses the information available at iteration
k in order to determine the largest possible value of the stepsize αk for which the convergence properties
of the algorithms can be ensured. The prototype of the linear search is the Armijo search applied to the
steepest descent method for unconstrained optimization problems, adapted to the VI problem in [18] and
[12]. It is widely recognized that the Armijo search substantially enhances the numerical performance of

1 Pseudo-monotonicity is a weaker condition than monotonicity: for all z, x ∈ Rn, 〈T (z) − T (x), z − x〉 ≥ 0.
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the steepest descent method, compared with the variants which use exogenous stepsizes, be it summable
ones, or dependent on the Lipschitz constant. All these nice properties make the extragradient methods
with linear search we propose more implementable.

We thus propose two stochastic extragradient methods with linear search. The first variant, which
we call the stochastic hyperplane projection method (SHP), is the stochastic variant of the hyperplane
projection method proposed in [12] by Iusem and Svaiter. In such method, the linear search is based on
the geometric interpretation of separating the current iterate and the solution set by a hyperplane. The
SHP method takes the form: choose, α̂ ∈ (0, 1], θ ∈ (0, 1), 0 < β̂ ≤ β̃, {βk} ⊂ [β̂, β̃], {Nk} ⊂ N and
λ > 0; given iterate xk, generate a sample ξk := {ξk

j : j = 1, . . . , Nk} of ξ and take αk as the maximum

α ∈ {θjα̂ : j ∈ N0} such that

〈
F̂ (ξk, z̄k(α)), xk − Π(gk)

〉
≥ λ

βk
‖xk − Π(gk)‖2, (9)

where gk := xk − βkF̂ (ξk, xk) and for all α > 0, z̄k(α) := αΠ(gk) + (1 − α)xk. Then set zk := z̄k(αk)

and xk+1 := Π
[
xk − γkF̂ (ξk, zk)

]
, where

γk :=
〈

F̂ (ξk, zk), xk − zk
〉

· ‖F̂ (ξk, zk)‖−2.

It is not difficult to see that xk+1 = Π
[
ΠHk

(xk)
]

where ΠHk
is Euclidean projection onto the hyperplane

Hk :=
{

x ∈ Rn : 〈F̂ (ξk, zk), x − zk〉 = 0
}

.

The second variant we propose, which we call stochastic extragradient method with linear search
(SELS), is the stochastic variant of the method proposed by Khobotov in [18]. The SELS method takes
the form: choose α̂ > 0, θ ∈ (0, 1), {Nk} ⊂ N and λ > 0; given iterate xk, generate samples ξk := {ξk

j :

j = 1, . . . , Nk} and ηk := {ηk
j : j = 1, . . . , Nk} of the random variable ξ and choose αk as the maximum

α ∈ {θjα̂ : j ∈ N0} such that

α
∥∥∥F̂ (ξk, zk(α)) − F̂ (ξk, xk)

∥∥∥ ≤ λ‖zk(α) − xk‖, (10)

where for all α > 0, zk(α) := Π
[
xk − αF̂ (ξk, xk)

]
. Then set zk and xk+1 as in (5)-(6) for αk as chosen

in (10).
We now introduce some additional notation required in the next subsection. For any a > 0 we

consider the natural residual function ra, defined, for any x ∈ Rn, by ra(x) := ‖x − Π(x − aT (x))‖ and
the regularized gap-function ga, defined, for any x ∈ Rn, by ga(x) := supy∈X{〈T (x), x − y〉 − a

2 ‖x − y‖2}.
For fixed b > a > 0, the D-gap function ga,b is defined as, for any x ∈ Rn, by ga,b(x) := ga(x) − gb(x). It
is known that the D-gap function and the natural residual are continuous unrestricted merit functions
of VI(T, X), i.e., X∗ = g−1

a,b(0) = r−1
a (0) for any b > a > 0. Moreover, the quadratic natural residual and

the D-gap function are equivalent merit functions in the sense that, given b > a > 0, there are constants
C1, C2 > 0 such that for all x ∈ Rn, C1rb−1 (x)2 ≤ ga,b(x) ≤ C2ra−1 (x)2 (see [6], Theorems 10.2.3, 10.3.3).
For fixed α > 0 and given ǫ > 0, we consider an iteration index K = Kǫ, such that E[rα(xK)2] < ǫ,
and we look at E[rα(xK)2] as a non-asymptotic convergence rate. In particular, we will have an O(1/K)
convergence rate if E[rα(xK)2] ≤ Q/K for some constant Q > 0. The oracle complexity will be defined as
the total number of oracle calls needed for E[rα(xK)2] < ǫ to hold. As an example, for method (5)-(6),

the oracle complexity is
∑K

k=1 2Nk.

1.3 Comparison with previous works

To the best of our knowledge, methods SHP and SELS are the first extragradient methods with linear
search for SVIs. We remark that, as will be presented in this paper, the SELS method maintains the good
properties of the extragradient method (5)-(6) up to a factor of O(log1/θ L) in the oracle complexity and
the number of projections per iteration, since it does not require knowledge of the Lipschitz constant L.
Importantly, O(log1/θ L) is a small factor for practical purposes (see Remark 4). In summary, SELS and
SHP have the following characteristics:

i) SELS and SHP require only (7) and pseudo-monotonicity of T without any regularization.
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ii) SELS requires a stepsize bounded away from zero and hence has an accelerated rate of O(1/K) in
terms of the mean quadratic natural residual or the mean D-gap function with a near-optimal oracle

complexity of O
(

log1/θ L
)

· ǫ−2 ·
[
ln(ǫ−1)

]1+b
for any b > 0 and 2 · O

(
log1/θ L

)
projections per

iteration (see Proposition 7 and Remark 4),
iii) SELS and SHP only require a stochastic oracle with a non-uniform variance, i.e., satisfying (8).

Importantly, the performance of SELS and SHP depends on a minimal trade-off between the variance
on X∗ and the distance of initial iterates to X∗, i.e., the performance depends on the factor

Q̂ := inf
x∗∈X∗

{
σ(x∗) · max

0≤k≤k0(x∗)
E[‖xk − x∗‖2]

}
, (11)

where, for x∗ ∈ X∗, k0(x∗) ∈ N is explicitly determined (see Propositions 5 and 7). This result also
improves in the case in which (4) does holds but σ(x∗)2 ≪ σ2 or in the case in which X is compact
but max0≤k≤k0(x∗) E[‖xk − x∗‖2] ≪ diam(X)2. In this sense, SELS depends only on the variance of
the oracle error at points of the solution set and the trajectory of the method.2

iv) SELS and SHP allow an unbounded feasible set or operator, keeping asymptotic convergence of the
generated sequence and results of items ii)-iii). We also prove that the generated sequence is bounded
in Lp.

v) Under conditions of items i)-iv), the sample rate {Nk} is robust in the sense that a scaling factor
Θ > 0 on the sampling rate maintains the progress of the algorithm with proportional scaling in the
convergence rate and oracle complexity (see Propositions 5 and 7. See also [24] for robust methods).

Before method (5)-(6) and SELS, previous works required: (i) specific classes of pseudo-monotonicity,
bounded monotone operators or a regularization procedure (which requires additional coordination of
parameters and a sub-optimal rate), (ii) small stepsizes, i.e. satisfying

∑
k α2

k < ∞, with a slower con-

vergence rate of O(1/
√

K) and oracle complexity O(ǫ−2) in terms of a mean gap-function 3 for bounded
monotone operators, (iii) for the general monotone case without regularization, previous methods re-
quired a uniform variance, i.e., satisfying (4), which is much more demanding than (8) and excludes,
e.g., affine monotone stochastic complementarity problems, (iv) for unbounded X or T , asymptotic con-
vergence was obtained under demanding monotonicity properties or regularization, and convergence rates
were only given for strongly monotone operators or for monotone operators requiring a uniform variance
with the slower rate O(1/

√
K) in terms of a mean gap-function 4 and with no guaranteed asymptotic

convergence (see [11], Example 1).
It should be noticed that methods which avoid the use of the Lipschitz constant or Lipschitz continuity,

were proposed in [35,36], but by means of a very different procedure. Instead of linear searches they use a
random smoothing technique by means of sampling an auxiliary random variable. It is an interesting idea,
but it requires compactness of the feasible set, uniformly bounded variance of the oracle for monotone
operators, and achieves the slower rate O(1/

√
K), while we can cope with unbounded sets, non-uniform

variance for pseudo-monotone operators and achieve the rate O(1/K).
We make some final comments on the results of methods SHP and SELS. In the deterministic case,

the hyperplane projection method in [12] requires only continuity. The SHP method requires Hölder
continuity of the random operator in order to control the variance of the oracle error. This variant
also uses two projections per iteration with convergence rate O(1/

√
K), sample rate Nk ∼ k2 (up to

logarithm terms) and oracle complexity O(ǫ−6) (up to logarithm terms). The SELS method requires
Lipschitz continuity of the random operator, 2 ·O(log1/θ L) projections per iteration, sample rate Nk ∼ k

(up to logarithmic terms) and oracle complexity of O(log1/θ L) · ǫ−2 (up to logarithmic terms). Hence,
the choice between these two linear search variants depends on a trade-off between computational and
oracle complexity (which might depend on the application of interest). If oracle complexity is expensive,
our results tend to suggest SELS (if Lipschitz continuity is available).

The paper is organized as follows: in Section 2 we present notation and preliminaries, including
the required probabilistic tools. In Section 3 we present the proposed algorithms and their convergence
analysis. In Subsection 3.1 the assumptions required for the analysis are discussed. Subsection 3.2 presents

2 A typical example includes monotone linear SVIs where F (ξ, x) = A(ξ)x for some random matrix A(ξ) such that
A = E[A(ξ)] is a semi-definite positive matrix. In this case, we have V[ǫ(ξ, x)] = O(‖x‖2) so that (4) is not satisfied for
unbounded X. Note that for a compact X such that 0 ∈ X, (4) does hold but 0 ∈ X∗ and V[ǫ(ξ, 0)] = 0. For such case,
the performance of methods in [14] and [5] depends on σ2 > 0 which is very conservative compared to (11).

3 Precisely, the dual-gap function defined as G(x) := supy∈X〈T (y), x − y〉.
4 Precisely, the relaxed dual gap-function of Monteiro-Svaiter defined as G̃(x, v) := supy∈X〈T (y) − v, x − y〉 for x ∈ X

and v ∈ Rn.
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the convergence analysis while Subsection 3.3 focus on convergence rates and complexity results. We
present the analysis of SPH and SELS separately. The Appendix provide proofs of essential lemmas.

2 Preliminaries

2.1 Projection operator and notation

For x, y ∈ Rn, we denote by 〈x, y〉 the standard inner product, and by ‖x‖ =
√

〈x, x〉 the correspondent
Euclidean norm. Given C ⊂ Rn and x ∈ Rn, we use the notation d(x, C) := inf{‖x − y‖ : y ∈ C}. For
a closed and convex set C ⊂ Rn, we use the notation ΠC(x) := argminy∈C ‖y − x‖2 for x ∈ Rn. Given
H : Rn → Rn, S(H, C) denotes the solution set of VI(H, C). The following properties of the projection
operator are well known.

Lemma 1 Take a closed and convex set C ⊂ Rn.

i) Given x ∈ Rn, ΠC(x) is the unique point of C satisfying the property: 〈x − ΠC(x), y − ΠC(x)〉 ≤ 0,
for all y ∈ C.

ii) For all x ∈ Rn, y ∈ C, ‖ΠC(x) − y‖2 + ‖ΠC(x) − x‖2 ≤ ‖x − y‖2.
iii) For all x, y ∈ Rn, ‖ΠC(x) − ΠC(y)‖ ≤ ‖x − y‖.
iv) Given H : Rn → Rn, S(H, C) = {x ∈ Rn : x = ΠC [x − H(x)]}.
v) For all x ∈ C, y ∈ Rn, 〈x − y, x − ΠC(y)〉 ≥ ‖x − ΠC(y)‖2.

In the case of the feasible set X as in (1), we shall use the notation Π := ΠX . Given an operator
H : Rn → Rn, for any x ∈ Rn and α > 0, we denote the natural residual function associated to VI(H, X)
by

rα(H ; x) := ‖x − Π [x − αH(x)]‖ .

In the case of the operator T as in (1), we use the notation rα := rα(T, ·). For the unit stepsize α = 1,
we use the notation r(H ; ·) := r1(H ; ·) and r := r1.

We shall also use the following useful lemma (see [6], Proposition 10.3.6).

Lemma 2 Given x ∈ Rn, the function (0, ∞) ∋ α 7→ rα(H,x)
α is non-increasing.

We use the abbreviation “RHS” for “right hand side”. Given sequences {xk} and {yk}, we use the
notation xk = Op(yk) or ‖xk‖ .p ‖yk‖ to mean that there exists a constant Cp > 0 (depending only
on p) such that ‖xk‖ ≤ Cp‖yk‖ for all k (we omit the reference to p if no confusion arises or if there is
no such dependence). The notation ‖xk‖ ∼ ‖yk‖ means that ‖xk‖ . ‖yk‖ and ‖yk‖ . ‖xk‖. Given a
σ-algebra F and a random variable ξ, we denote by E[ξ], E[ξ|F ], and V[ξ], the expectation, conditional
expectation and variance, respectively. Also, we write ξ ∈ F for “ξ is F -measurable”. We denote by
σ(ξ1, . . . , ξk) the σ-algebra generated by the random variables ξ1, . . . , ξk. Given the random variable ξ
and p ≥ 1, |ξ|p is the Lp-norm of ξ and |ξ |F|p := p

√
E [|ξ|p |F ] is the Lp-norm of ξ conditional to the

σ-algebra F . Given x ∈ R, we denote ⌈x⌉ the smallest integer greater than x. For a matrix B ∈ Rn×n,
BT denotes its transpose, ‖B‖ denotes its spectral norm and tr(B) denotes its trace. For m ∈ N, we use
the notation [m] = {1, . . . , m}.

2.2 Probabilistic tools

As in other stochastic approximation methods, a fundamental tool to be used is the following Convergence
Theorem of Robbins and Siegmund [27], which can be seen as the stochastic version of the properties of
quasi-Fejér convergent sequences.

Theorem 1 Let {yk}, {uk}, {ak}, {bk} be sequences of non-negative random variables, adapted to the
filtration {Fk}, such that a.s.

∑
ak < ∞,

∑
bk < ∞ and for all k ∈ N, E

[
yk+1

∣∣Fk

]
≤ (1+ak)yk −uk+bk.

Then a.s. {yk} converges and
∑

uk < ∞.

If a.s. for all k ∈ N, E[yk+1|Fk] = yk then {yk, Fk} is called a martingale. We will require the following
result, proved in [3]:
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Theorem 2 Let Xj := (Xj,t)t∈T for j ∈ [N ] denote independent random vectors indexed by T such that
E[Xj,t] = 0 for all t ∈ T and j ∈ [N ]. Let

Z := sup
t∈T

∣∣∣∣∣∣

N∑

j=1

Xj,t

∣∣∣∣∣∣
,

M := max
j∈[N ]

sup
t∈T

|Xj,t|,

σ̂2 := sup
t∈T

E




N∑

j=1

X2
j,t


 .

Then, there exists constant κ > 0, such that

|Z|p ≤ 2E[Z] + 2
√

2κpσ̂ + 20κp|M |p + 4
√

κp|M |2.

A random vector Y taking values in Rn is called sub-Gaussian with variance parameter σ2 > 0 if for
all v ∈ Rn,

E

[
e〈v,Y 〉

]
≤ e

σ2‖v‖2

2 .

We will use the following result, proved in [9]:

Theorem 3 (Quadratic forms of sub-Gaussian vectors) Let A ∈ Rn×n be a matrix, and let S :=
AT A. Suppose that Y is a zero-mean sub-Gaussian random vector with variance parameter σ2 taking
values in Rn. Then for all 0 ≤ s < 1

2σ2‖S‖ ,

E
[
exp

{
s‖AY ‖2

}]
≤ exp

{
σ2 tr(S)s +

σ4 tr(S2)s2

1 − 2σ2‖S‖s

}
.

We shall also use the following characterization of sub-Gaussian random variables found in Theorem
2.1 of [3].

Theorem 4 Let Y a random variable taking values in R with E[Y ] = 0. If for some σ2 > 0, for all
s > 0,

P(|Y | ≥ s) ≤ 2 exp

{
− s2

2σ2

}

then Y is a sub-Gaussian random variable with variance parameter 4σ2.

A random variable Y taking values in R is called sub-Gamma with parameters σ2 > 0 and c > 0 if
for all 0 < s < 1

c ,

E
[
esY
]

≤ e
σ2s2

2(1−cs) .

We will need the following result established in Corollary 2.6 of [3].

Lemma 3 Let {Zi}N
i=1 be real-valued sub-Gamma random variables with parameters σ2 > 0 and c > 0.

Then

E

[
max

i=1,...,N
Zi

]
≤

√
2σ2 ln N + c ln N.

We will need the following result implied by Theorem 1 of [25].

Theorem 5 Let (Ω, F ,P) be a probability space, (Ξ, G) be a measurable space, {ξ : Ω → Ξ}N
j=1 be

independent random variables and a measurable function f : Ξ → R. Let also {ηj}N
j=1 be a collection of

independent random variables which are independent of {ξj}N
j=1 and HN := σ(ξj : j ∈ [N ]). Set

V := E




N∑

j=1

(f(ξj)) − f(ηj))
2

∣∣∣∣∣HN


 .

Then there exists constant C > 0 such that for all λ > 0,

P





∣∣∣∣∣∣

N∑

j=1

f(ξj)

∣∣∣∣∣∣
≥ C

√
V (1 + λ)



 ≤ e−λ.
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Finally, we will use the following result in Lemma 13.11 of [3]. We give first the definition of metric
entropy of a pseudo-metric space. A subset V ⊂ T of a countable pseudo-metric space (T , d) is called a
δ-net for T if for every t ∈ T , there exists v ∈ V such that d(t, v) ≤ δ. If, additionally, V is finite, with
cardinality N(δ, T ) of minimum size, then the δ-entropy number is H(δ, T ) := ln N(δ, T ).

Lemma 4 We consider Rn with the ℓq metric and denote by Bq the correspondent unit ball. For all
q ≥ 1 and all u ∈ (0, 1], the metric entropy H(u, Bq) satisfies

H(u, Bq) ≤ n ln

(
1 +

1

u

)
.

For further details on the probabilistic tools mentioned above, we refer the reader to the book [3].

3 Stochastic extragradient methods with linear search

In this section we present formally the two extragradient methods with linear search we propose. We
start with the stochastic hyperplane projection method. The idea is to adapt the deterministic hyperplane
projection method by replacing the mean operator with the empirical average of the random operator
associated to a progressively increasing sample rate {Nk}.

Algorithm 1 (The stochastic hyperplane projection method)

1. Initialization: Choose the initial iterate x0 ∈ Rn, parameters β̃ ≥ β̂ > 0, λ ∈ (0, 1), α̂ ∈ (0, 1] and

θ ∈ (0, 1), the step sequence {βk} ⊂ [β̂, β̃], the sample rate {Nk} and initial samples ξ0 := {ξ0
j }N0

j=1 of
the random variable ξ.

2. Iterative step: Given xk, generate samples ξk := {ξk
j }Nk

j=1 of ξ.

If xk = Π
[
xk − βkF̂ (ξk, xk)

]
stop. Otherwise:

Linear search rule: Find the maximum α ∈ {θjα̂ : j ∈ N0} such that

〈
F̂
(
ξk, z̄k(α)

)
, xk − Π(gk)

〉
≥ λ

βk
‖xk − Π(gk)‖2, (12)

where gk := xk − βkF̂ (ξk, xk) and for all α > 0, z̄k(α) := αΠ(gk) + (1 − α)xk.
Denoting by αk > 0 the above maximum value, set

zk := z̄k(αk) = αkΠ
[
xk − βkF̂ (ξk, xk)

]
+ (1 − αk)xk, (13)

xk+1 := Π
[
xk − γkF̂ (ξk, zk)

]
, (14)

where γk :=
〈

F̂ (ξk, zk), xk − zk
〉

· ‖F̂ (ξk, zk)‖−2.

Set yk := xk − γkF̂ (ξk, zk). We remark that, as in the deterministic hyperplane projection method of

Iusem-Svaiter [12], xk+1 is the projection of xk onto the hyperplane Hk := {x ∈ Rn : 〈F̂ (ξk, zk), x−zk〉 =

0}, or alternatively onto the halfspace Lk := {x ∈ Rn : 〈F̂ (ξk, zk), x−zk〉 ≤ 0}. In the deterministic case,
the monotonicity of the operator implies a crucial fact used in the convergence analysis: if the method
does not stop in finitely many iterations then xk /∈ Lk and Hk strictly separates the solution set X∗

from the iterate xk, which entails a strict Fejér relation. In Algorithm 1, we still have xk /∈ Lk, but the
separation property is no longer valid, since a solution x∗ ∈ X∗ may fail to belong to Lk if the angle
〈ǫ(ξk, zk), x∗ − zk〉 is positive. Nevertheless, a recursive relation can be obtained in order to control this
infeasibility of the solution to Lk in terms of 〈ǫ(ξk, zk), x∗ − zk〉 (see Lemma 8).

Concerning Algorithm 1, we define the oracle errors:

ǭk
1 := F̂ (ξk, xk) − T (xk), (15)

ǭk
2 := F̂ (ξk, zk) − T (zk), (16)

ǭk
3 := F̂ (ξk, ẑk) − T (zk), (17)

where ẑk := z̄k(θαk) (see linear search (12) for the definition of z̄k(α)).
We now present the stochastic extragradient with linear search which differs from Algorithm 1 by the

use of a different linear search.
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Algorithm 2 (The stochastic extragradient method with linear search)

1. Initialization: Choose the initial iterate x0 ∈ Rn, parameters α̂ > 0, λ ∈ (0, 1/
√

6) and θ ∈ (0, 1),
the sample rate {Nk} and initial samples ξ0 := {ξ0

j }N0

j=1 and η0 := {η0
j }N0

j=1 of the random variable ξ.

2. Iterative step: Given iterate xk, generate samples ξk := {ξk
j }Nk

j=1 and ηk := {ηk
j }Nk

j=1 of ξ.

If xk = Π
[
xk − α̂F̂ (ξk, xk)

]
stop. Otherwise:

Linear search rule: define αk as the maximum α ∈ {θjα̂ : j ∈ N0} such that

α
∥∥∥F̂
(
ξk, zk(α)

)
− F̂

(
ξk, xk

)∥∥∥ ≤ λ‖zk(α) − xk‖, (18)

where zk(α) := Π
[
xk − αF̂ (ξk, xk)

]
for all α > 0. Set

zk = Π
[
xk − αkF̂ (ξk, xk)

]
, (19)

xk+1 = Π
[
xk − αkF̂ (ηk, zk)

]
. (20)

Note that if T is Lipschitz continuous with constant L, Algorithm 2 recovers Algorithm (5)-(6) of
[11] if we set 0 < infk αk ≤ supk αk = α̂ < 1/2L (i.e., the linear search rule (18) is satisfied in the first
iteration with αk := α̂).

Concerning Algorithm 2, we define the oracle errors:

ǫk
1 := F̂ (ξk, xk) − T (xk), (21)

ǫk
2 := F̂ (ηk, zk) − T (zk), (22)

ǫk
3 := F̂ (ξk, zk) − T (zk). (23)

3.1 Discussion of the assumptions

Concerning Algorithm 1, we shall study the the stochastic process {xk} with respect to the filtration

Fk = σ(x0, ξ0, . . . , ξk−1).

Concerning Algorithm 2, we shall study the stochastic process {xk} with respect to the filtrations

Fk = σ(x0, ξ0, . . . , ξk−1, η0, . . . , ηk−1), F̂k = σ(x0, ξ0, . . . , ξk, η0, . . . , ηk−1).

A significant difference between Algorithms 1, 2 and Algorithm (5)-(6) in [11] is that the adaptative
stepsize αk obtained in the linear search is a random variable which depends on the sample ξk. The
inevitable consequence is that the errors {ǭk

2 , ǭk
3} in Algorithm 1 and ǫk

3 in Algorithm 2 do not induce
martingales. This complicates considerably the convergence analysis requiring other statistical tools (see
Lemma 6).

We state next the assumptions needed for the convergence analysis of these algorithms.

Assumption 1 (Consistency) The solution set X∗ := S(T, X) is non-empty.

Assumption 2 (Stochastic model) X ⊂ Rn is closed and convex, (Ξ, G) is a measurable space such
that F : Ξ × X → Rn is a Carathéodory map, 5 ξ : Ω → Ξ is a random variable defined on a probability
space (Ω, F ,P) and E[‖F (ξ, x)‖] < ∞ for all x ∈ X.

Remark 1 We observe that by Example 14.29 of [28], if F is a Carathéodory map and ξN = {ξj}N
j=1

is a sample of ξ, then (ω, x) 7→ ‖ǫ̂(ξN (ω), x)‖ is a normal integrand, that is,

ω 7→ epi ‖ǫ̂(ξN (ω), ·)‖ := {(x, α) ∈ Rn × R : ‖F (ξ, α)‖ ≤ α}

is a measurable function. Hence, for any x∗ ∈ Rn and measurable positive function R : Ω → R+, by
Theorem 14.37 in [28], we have that

ω 7→ sup
x∈B[x∗,R(ω)]

‖ǫ̂(ξN (ω), x)‖

is a measurable function.

5 That is, F (ξ, ·) : X → Rn is continuous for a.e. ξ ∈ Ξ and F (·, x) : Ξ → Rn is measurable.
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Assumption 3 (Pseudo-monotonicity) We assume that T : Rn → Rn as defined in (2) is pseudo-
monotone, i.e., for all z, x ∈ Rn, 〈T (x), z − x〉 ≥ 0 =⇒ 〈T (z), z − x〉 ≥ 0.

Assumption 4 (Hölder-continuity) There exist δ ∈ (0, 1] and measurable function L : Ξ → R+ with
finite 2p-moment for some p ≥ 2 such that for all x, y ∈ X,

‖F (ξ, x) − F (ξ, y)‖ ≤ L(ξ)‖x − y‖δ.

We will not require knowledge of L or δ in our methods. With respect to Algorithm 2, we shall always
assume that δ = 1 in Assumption 4, that is, Lipschitz-continuity. With respect to Algorithm 1, we
perform the asymptotic analysis for any δ ∈ (0, 1], while in the convergence rate estimates and the
complexity analysis we assume that δ = 1.

Assumption 5 (Sample rate) In Algorithms 1 and 2, {ξj}Nk

j=1 and {ηj}Nk

j=1 are i.i.d. samples of ξ. In

the case of Algorithm 2, {ξj}Nk

j=1 and {ηj}Nk

j=1 are independent of each other.
Moreover, concerning the sample rate {Nk} we assume:

i) In Algorithm 1,
∑∞

k=0
1√
Nk

< ∞.

ii) In Algorithm 2,
∑∞

k=0
1

Nk
< ∞.

Assumption 6 (Variance control) There exists 6 p ≥ 2 and a locally bounded and measurable func-
tion σ : X∗ → R+ such that for all x∗ ∈ X∗, x ∈ X,

|‖F (ξ, x) − T (x)‖|2p ≤ σ(x∗) (1 + ‖x − x∗‖).

Denote q := p/2. We remark that Assumption 6 is implied by the non-uniform variance (8) over X∗ and
the Hölder-continuity (4).

3.2 Convergence analysis

In this section, we provide, in two subsections, the convergence analysis of Algorithms 1 and 2. We first
state two lemmas whose proofs can be found in the Appendix.

The following lemma is Lemma 4 in [11], applied to the oracle error ǭk
1 in Algorithm 1 and to the

oracle errors {ǫk
1 , ǫk

2} in Algorithm 2.

Lemma 5 Consider Assumptions 1-6. Let ξN := {ξj : j ∈ [N ]} be an i.i.d. sample of ξ.
Then for any p ∈ [p, 2p] and for all x∗ ∈ X∗, x ∈ X, v ∈ Rn,

∣∣∥∥ǫ̂
(
ξN , x

)∥∥∣∣
p

≤ Cp

√
n

N
σ(x∗)(1 + ‖x − x∗‖),

∣∣〈v, ǫ̂
(
ξN , x

)
〉
∣∣
p

≤ Cp

‖v‖√
N

σ(x∗)(1 + ‖x − x∗‖).

As commented above, errors {ǭk
2 , ǭk

3} in Algorithm 1 and ǫk
3 in Algorithm 2 do not induce martingales.

For this reason, in order to bound such stochastic errors we will need some additional statistical theory.
A difficult additional feature is that X may be unbounded. This is the subject of the following lemma,
proved in the Appendix.

Lemma 6 Suppose that Assumptions 1-6 hold. Let ξN := {ξj : j ∈ [N ]} be an i.i.d. sample of ξ and let
FN be a σ-algebra independent of ξN . Given β > 0, a random vector xN ∈ FN in X, and a random
variable αN ∈ (0, 1], set

zN := αN Π
[
xN − βF̂ (ξN , xN )

]
+ (1 − αN )xN .

Then there exists Cp,L > 0 (depending on L(ξ) and p), such that for any x∗ ∈ X∗,

∣∣∣
∥∥ǫ̂
(
ξN , zN

)∥∥
∣∣∣FN

∣∣∣
p

≤ CL,p

√
n

N
σ(x∗)(‖xN − x∗‖ + 1).

6 In Assumptions 4 and 6, we ask the Lipschitz modulus L(ξ) and the oracle error ǫ(ξ, x) to have finite 2p-moments for
some p ≥ 2. This is slightly more than asking finite p-moment for some p ≥ 2 as in Algorithm (5)-(6) in [11]. This is a
technical assumption for facilitating the analysis, and sufficient for practical purposes. For instance, if L(ξ) is bounded we
could ask the oracle error to have finite p-moment. Moreover, assuming that L(ξ) has all finite moments, we could ask the
oracle error to have finite p-moment for an arbitrary p > 2.
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Finally, we remark that although the proofs of Lemmas 5 and 6 are given for the Lipschitz-continuous
case in Assumption 4, this entails no loss of generality since, for δ ∈ (0, 1), we always have the bound

‖x − x∗‖δ ≤ max {1, ‖x − x∗‖} ≤ 1 + ‖x − x∗‖,

for any x ∈ Rn and x∗ ∈ X∗.

3.2.1 The stochastic hyperplane projection method

We now present the convergence analysis of Algorithm 1. We start by showing the linear search (12) in
Algorithm 1 is well defined.

Lemma 7 (Good definition of the linear search) Consider Assumption 2. Then

i) The linear search (12) in Algorithm 1 terminates after a finite number of iterations.

ii) If the method does not stop at iteration k + 1, then 〈F̂ (ξk, zk), xk − zk〉 > 0. In particular, γk > 0 in
(14).

Proof Item (ii) is a direct consequence of (i). We prove next item (i). Assume by contradiction that for
every j ∈ N0, 〈

βkF̂
(

ξk, zk
(
θ−jα̂

) )
, xk − Π(gk)

〉
< λ‖xk − Π(gk)‖2.

We let j → ∞ above and by continuity of F̂ (ξk, ·), resulting from Assumption 2, we obtain

λ‖xk − Π(gk)‖2 ≥ 〈xk − gk, xk − Π(gk)〉 ≥ ‖xk − Π(gk)‖2,

using Lemma 1(v) in the last inequality. Since we have xk 6= Π(gk) by the definition of the method, we
obtain that λ ≥ 1, a contradiction.

The following Lemma is also proved in the Appendix.

Lemma 8 Consider Assumptions 1-3. Suppose that the method does not stop at iteration k + 1. Then,
for all x∗ ∈ X∗,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖yk − xk‖2 + 2γk〈ǭk
2 , x∗ − zk〉.

We now aim at controlling the error term γk〈ǭk
2 , x − zk〉, which perturbs the hyperplane separation

property. This term is not a martingale, since zk depends on ξk. Hence, differently than Algorithm 2,
we must analyze the first order moments of stochastic errors (see Assumption 5(i)). We shall need the
following simple lemma for establishing a useful endogenous bound for γk, in terms of the deterministic
bounded stepsize βk.

Lemma 9 Suppose that the method does not stop at iteration k + 1. Then

0 < γk <
αkβk

λ
≤ α̂βk

λ
. (24)

Proof We only need to prove the second inequality. The linear search (12) and the fact that xk − zk =
αk(xk − Π(gk)) imply that

〈F̂ (ξk, zk), xk − zk〉 ≥ λ

αkβk
‖xk − zk‖2. (25)

From (25) and the definition of γk we get

γk =
〈F̂ (ξk, zk), xk − zk〉

‖F̂ (ξk, zk)‖2
>

λ

αkβk

‖xk − zk‖2

‖F̂ (ξk, zk)‖2
, (26)

while the definition of γk gives

γk =
〈F̂ (ξk, zk), xk − zk〉

‖F̂ (ξk, zk)‖2
≤ ‖F̂ (ξk, zk)‖‖xk − zk‖

‖F̂ (ξk, zk)‖2
=

‖xk − zk‖
‖F̂ (ξk, zk)‖

, (27)

using the Cauchy-Schwartz inequality. Inequalities (26)-(27) imply the claim.
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For x∗ ∈ X∗, k ∈ N0, we define

Ĥk(x∗) := max {Cp, Cp,L} β̃

λ

√
n

Nk
σ(x∗),

where Cp and Cp,L are the constants defined in Lemmas 5 and 6.

Lemma 10 (Error decay) Consider Assumptions 1-6. Suppose that Algorithm 1 does not stop at iter-
ation k + 1. Then for all x∗ ∈ X∗,

∣∣γk〈ǭk
2 , x∗ − zk〉

∣∣Fk

∣∣
q
. β̃LĤk(x∗)

(
1 + ‖xk − x∗‖2

)
+ Ĥk(x∗)2

(
1 + ‖xk − x∗‖2

)
.

Proof We denote z̃k := Π(gk), so that

x∗ − zk = αk(x∗ − z̃k) + (1 − αk)(x∗ − xk), (28)

using the fact that x∗ = αkx∗ + (1 − αk)x∗. In view of (28), we have

γk〈ǭk
2 , x∗ − zk〉 = γkαk〈ǫk

2 , x∗ − z̃k〉 + γk(1 − αk)〈ǭk
2 , x∗ − xk〉

≤ β̃

λ
‖ǭk

2‖
(
‖x∗ − z̃k‖ + ‖x∗ − xk‖

)
, (29)

using the Cauchy-Schwarz inequality, Lemma 9, and the facts that 0 < αk ≤ α̂ ≤ 1 and 0 < βk ≤ β̃.
Since x∗ ∈ X∗, by Lemma 1(iv), we use the fact that x = Π [x − βkT (x)] and the definitions of z̃k,

gk and ǭk
1 in order to obtain

‖z̃k − x∗‖ = ‖Π [xk − βk(T (xk) + ǭk
1)] − Π [x∗ − βkT (x∗)]‖

≤ ‖xk − x∗ + βk(T (x∗) − T (xk)) − βk ǭk
1‖

≤ ‖xk − x∗‖ + β̃L‖xk − x∗‖δ + β̃‖ǭk
1‖, (30)

using Lemma 1(iii) in the first inequality, and the fact that 0 < βk ≤ β̃ together with Assumption 4 in
the last inequality.

Using (29)-(30) and the fact that ‖xk − x∗‖δ ≤ 1 + ‖xk − x∗‖, we consider |·|Fk|q and get

∣∣γk〈ǭk
2 , x∗ − zk〉

∣∣Fk

∣∣
q

≤
[
β̃L + (2 + β̃L)‖xk − x∗‖

] β̃

λ

∣∣‖ǭk
2‖
∣∣Fk

∣∣
q

+
β̃2

λ

∣∣‖ǭk
1‖‖ǭk

2‖
∣∣Fk

∣∣
q
, (31)

using the fact that xk ∈ Fk. By Lemma 5, xk ∈ Fk and the independence between ξk and Fk, we get

∣∣‖ǭk
1‖
∣∣Fk

∣∣
p

≤ Cp

√
n

Nk
σ(x∗)(‖xk − x∗‖ + 1). (32)

By Lemma 6, the definitions of zk, xk ∈ Fk and the fact that αk ∈ (0, 1], we get

∣∣‖ǭk
2‖
∣∣Fk

∣∣
p

≤ CL,p

√
n

Nk
σ(x∗)(‖xk − x∗‖ + 1). (33)

Invoking Hölder’s inequality, we also get
∣∣‖ǭk

1‖‖ǭk
2‖
∣∣Fk

∣∣
q

≤
∣∣‖ǫk

1‖
∣∣Fk

∣∣
p

·
∣∣‖ǫk

2‖
∣∣Fk

∣∣
p

(34)

Relations (31)-(34), the definition of Ĥk(x∗) and the convexity of t 7→ t2 entail the claim.

Consider Ĥk(x∗) as in Lemma 10. Define Ĉ(x∗) :=
√

NkĤk(x∗).

Proposition 1 (Stochastic quasi-Fejér property) Consider Assumptions 1-6 and assume that Al-
gorithm 1 generates an infinite sequence {xk}. Then

(i) There exists ĉ ≥ 1 such that, for all k ∈ N and x∗ ∈ X∗,

E
[
‖xk+1 − x∗‖2

∣∣Fk

]
≤ ‖xk − x∗‖2 − E

[
‖yk − xk‖2

∣∣Fk

]

+ĉ

[
β̃LĈ(x∗)√

Nk

+
Ĉ(x∗)2

Nk

]
(
1 + ‖xk − x∗‖2

)
.
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(ii) A.s. {‖xk − x∗‖} and {d(xk, X∗)} converge for all x∗ ∈ X∗. In particular, {xk} is a.s.-bounded.
(iii) A.s. if a cluster point of {xk} belongs to X∗ then limk→∞ d(xk, X∗) = 0.

Proof i) It is an immediate consequence of Lemmas 8, 10 and the fact that xk ∈ Fk, after taking E[·|Fk]
in Lemma 8.

ii) Set

ck(x∗) := ĉ

[
β̃LĈ(x∗)√

Nk

+
Ĉ(x∗)2

Nk

]
.

From (i), for all k ∈ N0,

E
[
‖xk+1 − x∗‖2

∣∣Fk

]
≤ [1 + ck(x∗)] ‖xk − x∗‖2 + ck(x∗). (35)

By Assumption 5(i), we have
∑

k ck(x∗) < ∞. Hence, from (35) and Theorem 1 we conclude that a.s.
{‖xk − x∗‖} converges and, in particular, {xk} is bounded.

Set x̄k := ΠX∗(xk). Relation (35) and the fact that xk ∈ Fk imply

E
[

d(xk+1, X∗)2
∣∣Fk

]
≤
[
1 + ck(x̄k)

]
d(xk, X∗)2 + ck(x̄k). (36)

The boundedness of {x̄k} and Assumption 5(i) imply that
∑

k ck(x̄k) < ∞ a.s. Hence, Theorem 1 and
(36) imply that {d(xk, X∗)} a.s.-converges.

iii) Suppose that there exists x̄ ∈ X∗ and a subsequence {kℓ} such that limℓ→∞ ‖xkℓ − x̄‖ = 0 a.s.
Clearly, d(xk, X∗) ≤ ‖xkℓ − x̄‖ almost surely, and therefore it follows that limℓ→∞ d(xkℓ , X∗) = 0. By
(ii), {d(xk, X∗)} a.s.-converges and hence limk→∞ d(xk, X∗) = 0.

We now prove asymptotic convergence of Algorithm 1. Consider Ĉ(x∗) as defined in Proposition 1.

Theorem 6 (Asymptotic convergence) Under Assumptions 1-6, either Algorithm 1 stops at itera-
tion k + 1, in which case xk is a solution of VI(T, X), or it generates an infinite sequence {xk} that a.s.
is bounded and such that limk→∞ d(xk, X∗) = 0. In particular, a.s. every cluster point of {xk} belongs
to X∗.

Proof If Algorithm 1 stops at iteration k, then xk = Π [xk − βkF̂ (ξk, xk)]. From this fact and Lemma
1(iv) we get, for all x ∈ X ,

〈F̂ (ξk, xk), x − xk〉 ≥ 0. (37)

From the fact that xk ∈ Fk and the independence of ξk and Fk, we get E[F̂ (ξk, xk)|Fk] = T (xk). Using
this equality and the fact that xk ∈ Fk, we consider E[·|Fk] in (37) and obtain, 〈T (xk), x − xk〉 ≥ 0 for
all x ∈ X . Hence xk ∈ X∗.

We now suppose that the sequence {xk} is infinite. By Proposition 1(iii), it is sufficient to show that
a.s. the bounded sequence {xk} has a cluster point in X∗.

Choose any x∗ ∈ X∗. As in Proposition 1, set

ck(x∗) := ĉ

[
β̃LĈ(x∗)√

Nk

+
Ĉ(x∗)2

Nk

]
.

Using the property that E[E[·|Fk]] = E[·], we take the expectation in Proposition 1(i), and get, for all
k ∈ N0,

E
[
‖xk+1 − x∗‖2

∣∣Fk

]
≤ [1 + ck(x∗)]E

[
‖xk − x∗‖2

]
− E

[
‖yk − xk‖2

]
+ ck(x∗). (38)

From the fact that
∑

k ck(x∗) < ∞, (38) and Theorem 1 we conclude that

∞∑

k=0

E
[
‖yk − xk‖2

]
< ∞, (39)

and that
{
E
[
‖xk − x∗‖2

]}
converges. In particular,

{
E
[
‖xk − x∗‖2

]}
is a bounded sequence.

By the definition of Algorithm 1, we have that ‖yk − xk‖2 = 〈T (zk) + ǭk
2 , xk − zk〉2‖T (zk) + ǭk

2‖−2.
Hence, from (39) we get

lim
k→∞

E

[
〈T (zk) + ǭk

2 , xk − zk〉2

‖T (zk) + ǭk
2‖2

]
= 0. (40)
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From the definitions of {ǭk
1 , ǭk

2 , ǭk
3}, Lemmas 5 and 6, the property that E[E[·|Fk ]] = E[·] and the

boundedness of
{
E
[
‖xk − x∗‖2

]}
, we get

E
[
‖ǭk

s‖2
]
.

supk∈N0
E
[
‖xk − x∗‖2

]
+ 1√

Nk

for s ∈ {1, 2, 3} and all k ∈ N0. Since limk→∞
√

Nk = 0 (Assumption 5(i)), we have in particular that,
for s ∈ {1, 2, 3},

lim
k→∞

E[‖ǭk
s‖2] = 0. (41)

Since L2-convergence implies a.s.-convergence along a subsequence, from (40)-(41), we may take a (de-
terministic) subsequence {kℓ}∞

ℓ=1 such that a.s. for s ∈ {1, 2, 3},

lim
ℓ→∞

αkℓ
〈T (zkℓ) + ǭkℓ

2 , xkℓ − Π(gkℓ)〉
‖T (zkℓ) + ǭkℓ

2 ‖
= 0, (42)

lim
ℓ→∞

ǭkℓ
s = 0, (43)

using the fact that xk −zk = αk[xk −Π(gk)]. Since βk ∈ [β̂, β̃] with β̂ > 0, we may refine {kℓ} if necessary
so that, for some β > 0,

lim
ℓ→∞

βkℓ
= β. (44)

From Proposition 1(ii), the a.s.-boundedness of the sequence {xkℓ} implies that, on a set Ω1 of total
probability, there exists a (random) subsequence N ⊂ {kℓ}∞

ℓ=1 such that

lim
k∈N

xk = x∗, (45)

for some (random) x∗ ∈ Rn. Using the fact that gk = xk − βk[T (xk) + ǭk
1 ], (43)-(45) and the continuity

of T and Π , for the event Ω1, we have

g∗ := lim
k∈N

gk = x∗ − βT (x∗). (46)

Also, for the event Ω1, from the definition of zk in (13), the fact that αk ∈ (0, 1], (43) and (45)-(46), we
get that {T (zk) + ǭk

2}k∈N is bounded so that, since (42), we obtain

lim
k∈N

αk〈T (zk) + ǭk
2 , xk − Π(gk)〉 = 0. (47)

We now consider two cases for the event Ω1.
Case (i): limk∈N αk 6= 0. In this case, we may refine N if necessary, and find some (random) ᾱ > 0

such that αk ≥ ᾱ for all k ∈ N. It follows from (47) that on Ω1,

lim
k∈N

〈T (zk) + ǭk
2 , xk − Π(gk)〉 = 0. (48)

From (12)-(13), we get

〈T (zk) + ǭk
2 , xk − Π(gk)〉 ≥ τ

βk
‖xk − Π(gk)‖2 ≥ τ

β̃
‖xk − Π(gk)‖2 (49)

for all k. Relations (48)-(49) imply that, for Ω1,

0 = lim
k∈N

‖xk − Π(gk)‖. (50)

From (45)-(46), we take limits in (50) and obtain

0 = ‖x∗ − Π [x∗ − βT (x∗)]‖.

Therefore, x∗ = Π [x∗ − βT (x∗)], so that x∗ ∈ X∗ by Lemma 1(iv).
Case (ii): limk∈N αk = 0. In this case we have

lim
k∈N

θαk = 0. (51)
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Since ẑk := θαkΠ(gk) + (1 − θαk)xk and {gk}k∈N is bounded, we get from (51)

lim
k∈N

ẑk = x∗. (52)

Observe that, by the definition of the linear search rule (12), we have

〈T (ẑk) + ǭk
3 , xk − Π(gk)〉 <

τ

βk
‖xk − Π(gk)‖2 (53)

for all k ∈ N0. We take limit in (53) along N, and we get, using the continuity of T and Π and relations
(43)-(46) and (52) that

〈T (x∗), x∗ − Π(g∗)〉 ≤ τ

β
‖x∗ − Π(g∗)‖2. (54)

Since the sequence {xk} is feasible and X is closed, the limit point x∗ belongs to X . Thus, from (54)
and Lemma 1(v), we get that, for Ω1,

τ‖x∗ − Π(g∗)‖2 ≥ β〈T (x∗), x∗ − Π(g∗)〉 = 〈x∗ − g∗, x∗ − Π(g∗)〉 ≥ ‖x∗ − Π(g∗)‖2. (55)

Since τ ∈ (0, 1), (55) implies that ‖x∗−Π(g∗)‖ = 0. Hence, in view of (46), we have x∗ = Π(x∗−βT (x∗)).
By Lemma 1(iv), we conclude that x∗ ∈ X∗.

We have proved that in the event Ω1 of total probability, both in case (i) and in case (ii), {xk} has
a cluster point which solves VI(T ,X). The claim follows from Proposition 1(iii).

3.2.2 The stochastic extragradient method with linear search

We now present the convergence analysis of Algorithm 2. We first show that the linear search (18) in
Algorithm 2 is well defined.

Lemma 11 (Good definition of the linear search) Consider Assumption 2. The linear search (18)
terminates after a finite number of iterations.

Proof Set γj := θ−jα̂ and Hk := F̂ (ξk, ·). Assuming by contradiction that the linear search (18) does
not terminate after a finite number of iterations, for every j ∈ N0,

∥∥∥F̂
(
ξk, zk(γj)

)
− F̂

(
ξk, xk

)∥∥∥ > λ
rγj

(Hk; xk)

γj
≥ λ · r(Hk; xk), (56)

using the fact that γj ∈ (0, 1] and Lemma 2 in the last inequality. The contradiction follows by letting

j → ∞ in (56) and invoking the continuity of F̂ (ξk, ·), resulting from Assumption 2, the fact that
limj→∞ zk(γj) = xk, which follows from the continuity of Π , and the fact that r(Hk; xk) > 0, which
follows from the definition of Algorithm 2.

Define recursively, for k ∈ N0, A0 := 0,

Ak+1 := Ak + (1 − 6λ2)α̂2‖ǫk
1‖2 + 6α̂2‖ǫk

2‖2 + 6α̂2‖ǫk
3‖2, (57)

and, for x∗ ∈ X∗, M0(x∗) := 0,

Mk+1(x∗) := Mk(x∗) + 2αk〈x∗ − zk, ǫk
2〉. (58)

Using the notation ∆Mk(x∗) := Mk+1(x∗) − Mk(x∗) and ∆Ak := Ak+1 − Ak, the following recursive
relation is proved in the Appendix. It generalizes Lemma 3 of [11] to the method with the linear search
(18).

Lemma 12 Consider Assumptions 1-3. If the method does not stop at iteration k+1 then for all x∗ ∈ X∗,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 −
(

1 − 6λ2

2

)
rαk

(xk)2 + ∆Mk(x∗) + ∆Ak.



16 A. N. Iusem et al.

We now need upper bounds on the moments of ∆Ak and ∆Mk(x∗) in terms of ‖xk − x∗‖2 for any
x∗ ∈ X∗. With respect to ∆Mk(x∗) in (58), a minor difference is that the adaptive stepsize αk is a

random variable which depends on previous filtration information. Nevertheless, {∆Mk(x∗), F̂k} is still

a martingale, since αk, zk ∈ F̂k and ηk is independent of F̂k. With respect to ∆Ak, a major difference
with Algorithm (5)-(6) in [11] is the presence of the error ǫk

3 in definition (57). As commented before,
in order to bound this stochastic error we use in Lemma 6 statistical techniques different from than
martingale methods, used in Lemma 5. By Lemma 6, we have

∣∣∣‖ǫk
3‖
∣∣∣Fk

∣∣∣
p

≤ CL,p

√
n

Nk
σ(x∗)(‖xk − x∗‖ + 1). (59)

Using (59), the proof of the following proposition follows a similar proofline as that of Proposition 2 in
[11], so that we state it without proof.

Define

Hk(x∗) := Cpα̂

√
n

Nk
σ(x∗), H̃k(x∗) := max {Cp, Cp,L} α̂

√
n

Nk
σ(x∗).

Proposition 2 (Bounds on increments) Consider Assumptions 1-6. If the method does not stop at
iteration k + 1 then for all x∗ ∈ X∗,

|Ak+1 − Ak|Fk|q ≤
[
24 (1 + Lα̂ + Hk(x∗))

2
+ 12 + 2(1 − 6λ2)

]
H̃k(x∗)2‖xk − x∗‖2

+
[
24Hk(x∗)2 + 24 + 2(1 − 6λ2)

]
H̃k(x∗)2,

|Mk+1(x∗) − Mk(x∗)|Fk|q ≤ Hk(x∗)√
n

[1 + Lα̂ + Hk(x∗)]2 ‖xk − x∗‖2

+
Hk(x∗)√

n

[
1 + Lα̂ + (3 + 2Lα̂)Hk(x∗) + 2Hk(x∗)2

]
‖xk − x∗‖

+
Hk(x∗)√

n

[
Hk(x∗) + Hk(x∗)2

]
.

In the following proposition we summarize Lemma 12 and Proposition 2. The proof is omitted since
it follows a proofline similar to that of Proposition 3 in [11]. Note that αk /∈ Fk. We define:

Ck(x∗) := max {Cp, Cp,L} α̂
√

nσ(x∗)
{

24 [1 + Lα̂ + Hk(x∗)]
2

+ 14
}

.

Proposition 3 (Stochastic quasi-Fejér property) Consider Assumptions 1-6. If the method does
not stop at iteration k + 1, then for all x∗ ∈ X∗,

E
[
‖xk+1 − x∗‖2|Fk

]
≤ ‖xk − x∗‖2 − (1 − 6λ2)

2
E
[
rαk

(xk)2
∣∣Fk

]
+ Ck(x∗)

‖xk − x∗‖2 + 1

Nk
.

We now proceed to establish the asymptotic convergence of Algorithm 2. We shall need the following
lemma:

Lemma 13 (Lower bound on stepsize) Consider Assumptions 2 and 4 with δ = 1. Define L̃k :=
1

Nk

∑Nk

j=1 L(ξk
j ). If the method does not stop at iteration k + 1, then

λθ ≤ αkL̃k. (60)

Moreover, λθ ≤
∣∣αk

∣∣Fk

∣∣
2

· |L(ξ)|2.

Proof By the definition of the linear search (18), we have

θ−1αk

∥∥∥F̂
(
ξk, zk(θ−1αk)

)
− F̂ (ξk, xk)

∥∥∥ > λ
∥∥zk

(
θ−1αk

)
− xk

∥∥ . (61)

The inequality in (60) follows easily from (61) and the inequality

∥∥∥F̂
(
ξk, zk(θ−1αk)

)
− F̂ (ξk, xk)

∥∥∥ ≤ L̃k

∥∥zk
(
θ−1αk

)
− xk

∥∥ ,
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which results from Assumption 4 and the fact that zk
(
θ−1αk

)
6= xk. For the second statement we take

E[·|Fk] and get

λθ ≤ E

[
αkL̃k

∣∣∣Fk

]

≤
∣∣αk

∣∣Fk

∣∣
2

·
∣∣∣L̃k

∣∣∣Fk

∣∣∣
2

=
∣∣αk

∣∣Fk

∣∣
2

√√√√√√E





 1

Nk

Nk∑

j=1

L(ξk
j )




2 ∣∣∣Fk




≤
∣∣αk

∣∣Fk

∣∣
2

√√√√ 1

Nk

Nk∑

j=1

E

[
L(ξk

j )2
∣∣∣Fk

]
=
∣∣αk

∣∣Fk

∣∣
2

· |L(ξ)|2,

using Hölder’s inequality in the second inequality, the convexity of t 7→ t2 in the third inequality and the
fact that ξk = {ξk

j }Nk

j=1 is an i.i.d sample of ξ independent of Fk in the last equality.

Theorem 7 (Asymptotic convergence) Under Assumptions 1-6, either Algorithm 2 stops at itera-
tion k + 1, in which case xk is a solution of VI(T, X), or it generates an infinite sequence {xk} such
that a.s. it is bounded, limk→∞ d(xk, X∗) = 0, and r(xk) converges to 0 almost surely and in L2. In
particular, a.s. every cluster point of {xk} belongs to X∗.

Proof If Algorithm 2 stops at iteration k, then xk = Π [xk − α̂F̂ (ξk, xk)]. From this fact and Lemma
1(iv) we get, for all x ∈ X ,

〈F̂ (ξk, xk), x − xk〉 ≥ 0. (62)

From the fact that xk ∈ Fk and the independence of ξk and Fk, we have that E[F̂ (ξk, xk)|Fk] =
T (xk). Using this result and the fact that xk ∈ Fk, we take E[·|Fk] in (62) and obtain, for all x ∈ X ,
〈T (xk), x − xk〉 ≥ 0. Hence xk ∈ X∗.

Suppose now that Algorithm 2 generates an infinite sequence. Take some x∗ ∈ X∗. The result in
Proposition 3 may be rewritten as: for all k ∈ N0,

E
[
‖xk+1 − x∗‖2|Fk

]
≤
(

1 +
C(x∗)

Nk

)
‖xk − x∗‖2 − (1 − 6λ2)

2
E
[
α2

k

∣∣Fk

]
r(xk)2 +

C(x∗)

Nk
, (63)

using the facts xk ∈ Fk and rαk
(xk) ≥ αkr(xk) which follows from Lemma 2 and the fact that αk ∈ (0, 1].

Taking into account Assumption 5(ii), i.e.,
∑

k N−1
k < ∞, (63) and the fact that xk ∈ Fk, we apply

Theorem 1 with yk := ‖xk − x∗‖2, ak = bk = C(x∗)/Nk and uk := (1 − 6λ2)E
[
α2

k

∣∣Fk

]
r(xk)2/2, in order

to conclude that a.s. {‖xk − x∗‖2} converges and

λθ

|L(ξ)|22

∞∑

k=0

r(xk)2 ≤
∞∑

k=0

E
[
α2

k

∣∣Fk

]
r(xk)2 < ∞, (64)

using Lemma 13. In particular, {xk} is a.s.-bounded. From (64), we get that a.s.

0 = lim
k→∞

r(xk)2 = lim
k→∞

∥∥xk − Π
[
xk − T (xk)

]∥∥2
. (65)

The fact that limk→∞ E[r(xk)2] = 0 is proved in a similar way, using first the fact that E
[
α2

k

∣∣Fk

]
≥ λθ

|L(ξ)|2
2

and taking then the total expectation in (63).
Relation (65) and the continuity of T (Assumption 4) and Π (Lemma 1(iii)) imply that a.s. every

cluster point x̄ of {xk} satisfies
0 = x̄ − Π [x̄ − T (x̄)] .

From Lemmas 1(iv) we have that x̄ ∈ X∗. Almost surely, the boundedness of {xk} and the fact that
every cluster point of {xk} belongs to X∗ imply that limk→∞ d(xk, X∗) = 0 as claimed.

3.3 Convergence rate and complexity analysis

In this section we focus on the derivation of the rate of convergence and the oracle complexity in terms
of the mean-square natural residual for Algorithms 1 and 2. We perform analysis for Algorithm 1 and
subsequently for Algorithm 2 in separate subsections.
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3.3.1 The stochastic hyperplane projection method

We start by giving explicit bounds on the p-norm of the sequence generated by Algorithm 1, invoking
the definitions in Lemma 10 and Proposition 1.

Proposition 4 (Uniform boundedness in Lp) Let Assumptions 1-6 hold. Assume that Algorithm 1

generates an infinite sequence. Then, for all x∗ ∈ X∗ and φ ∈ (0,
√

5−1
2 ), given k0 := k0(x∗) ∈ N0 such

that ∑

k≥k0

1√
Nk

≤ φ

ĉ max{1, β̃L}Ĉ(x∗)
, (66)

the following estimate holds:

sup
k≥k0

∣∣‖xk − x∗‖
∣∣2
p

≤
1 +

∣∣‖xk0 − x∗‖
∣∣2
p

1 − φ − φ2
.

Proof Fix x∗ ∈ X∗. Set dk := ‖xk − x∗‖. From Lemmas 8 and 10 and the fact that xk ∈ Fk, we can take
|·|Fk|q in Lemma 8 and obtain

∣∣d2
k+1

∣∣Fk

∣∣
q

≤ d2
k + ĉ

[
β̃LĈ(x∗)√

Nk

+
Ĉ(x∗)2

Nk

]
(
1 + d2

k

)
(67)

for all k ∈ N0 and x∗ ∈ X∗. Using the fact that
∣∣∣
∣∣·
∣∣Fk

∣∣
q

∣∣∣
q

= |·|q, we take |·|q in (67) and sum from k0 to

k − 1 in order to obtain, for all k > k0,

|dk|2p ≤ |dk0 |2p + ĉβ̃LĈ(x∗)

k−1∑

i=k0

1 + |di|2p√
N i

+ ĉĈ(x∗)2
k−1∑

i=k0

1 + |di|2p
Ni

. (68)

By Assumption 5(i), we can choose k0 ∈ N0 and γ > 0 as in (66). In particular,
∑

i≥k0
Ni < γ2.

Given an arbitrary a > |dk0 |p, define: τa := inf{k > k0 : |dk|p ≥ a}. Suppose first that τa < ∞ for all
a > |dk0 |p. By (66), (68) and the definition of τa, we have

a2 ≤ |dτa
|2p ≤ |dk0 |2p + ĉβ̃LĈ(x∗)

τa−1∑

i=k0

1 + a2

√
N i

+ ĉĈ(x∗)2
τa−1∑

i=k0

1 + a2

Ni
(69)

≤ |dk0 |2p + ĉβ̃LĈ(x∗)
φ(1 + a2)

ĉβ̃LĈ(x∗)
+ ĉĈ(x∗)2 φ2(1 + a2)

ĉ2Ĉ(x∗)2

≤ |dk0 |2p + (φ + φ2)(1 + a2),

using the fact that ĉ ≥ 1. Relation (69) and the fact that 0 < φ + φ2 < 1 imply

a2 ≤
|dk0 |2p + 1

1 − φ − φ2
. (70)

Since (70) holds for an arbitrary a > |dk0 |p and φ + φ2 ∈ (0, 1), it follows that supk≥k0
|dk|2p ≤

[
1 − φ − φ2

]−1
[
1 + |dk0 |2p

]
. This contradicts the initial assumption that τa < ∞ for all a > |dk0 |p.

Hence there exists ā > |dk0 |p such that â := supk≥k0
|dk|p ≤ ā < ∞, by the definition of τā. For any

k > k0, we use the fact that |di|p ≤ â for k0 ≤ i < k in (68) obtaining

|dk|2p ≤ |dk0 |2p + ĉβ̃LĈ(x∗)γ(1 + â2) + ĉĈ(x∗)2γ2(1 + â2), (71)

where γ := φ

ĉ max{1,β̃L}Ĉ(x∗)
is the constant in the right hand side of (66). Note that (71) holds trivially for

k := k0. Thus, after taking the supremum over k ≥ k0 in (71), we proceed as done after the inequalities
(69)-(70) but with â substituting for â, proving the required claim.

We now proceed to the convergence rate result for Algorithm 1. We need first the following lemma:
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Lemma 14 (Lower bound on stepsize) Consider Assumptions 2 and 4 with δ = 1. Define L̃k :=
1

Nk

∑Nk

j=1 L(ξk
j ). If Algorithm 1 does not stop at iteration k + 1, then

1 − λ

θβk
≤ αkL̃k. (72)

Proof By the definition of the linear search rule (12), we have that, for ẑk = zk(θαk),

λ‖xk − Π(gk)‖2 > βk〈F̂ (ξk, ẑk), xk − Π(gk)〉

= βk〈F̂ (ξk, ẑk) − F̂ (ξk, xk), xk − Π(gk)〉 + 〈βkF̂ (ξk, xk), xk − Π(gk)〉

= βk〈F̂ (ξk, ẑk) − F̂ (ξk, xk), xk − Π(gk)〉 + 〈xk − gk, xk − Π(gk)〉

≥ βk〈F̂ (ξk, ẑk) − F̂ (ξk, xk), xk − Π(gk)〉 + ‖xk − Π(gk)‖2,

using Lemma 1(v) in the last inequality. From (73) and the fact that λ ∈ (0, 1), we get

(1 − λ)‖xk − Π(gk)‖2 ≤ βk〈F̂ (ξk, xk) − F̂ (ξk, ẑk), xk − Π(gk)〉

≤ βk‖F̂ (ξk, xk) − F̂ (ξk, ẑk)‖‖xk − Π(gk)‖

≤ βkL̃kθαk‖xk − Π(gk)‖2, (73)

using the Lipschitz-continuity of F (ξk
j , ·) for every j ∈ [Nk] and the fact that xk − ẑk = θαk[xk − Π(gk)]

in the last inequality. Since xk 6= Π(gk), (73) proves the claim in (72).

Define âk
0 :=

∑k
i=0

1√
Ni

, ak
0 :=

∑k
i=0

1
Ni

and bk
0 :=

∑k
i=0

1
N2

i

. In the remainder of the subsection we

will invoke the definitions given in Lemma 10 and Proposition 1.

Theorem 8 (Convergence rate) Consider Assumptions 1-6. Suppose that F (ξ, ·) is Lipschitz-continuous,
i.e., that Assumption 4 holds with δ = 1. Moreover, assume that Algorithm 1 generates an infinite se-

quence. Take M > 0 such that supk∈N0

∣∣∣‖F̂ (ξk, zk)‖
∣∣∣
4

≤ M . Given x∗ ∈ X∗, take φ ∈ (0,
√

5−1
2 ) and

k0 ∈ N such that:
∑

k≥k0

1√
Nk

≤ φ

ĉ max{1, β̃L}Ĉ(x∗)
. (74)

Define

Ĵ(x∗) :=
1 + max0≤k≤k0 E[‖xk − x∗‖2]

1 − φ − φ2
,

J̃(x∗) := 2
λ2(1 − λ)2

θ2β̃2|L(ξ)|24M2
C2

2 n2σ(x∗)4.

Then for all ǫ > 0 there exists Kǫ ∈ N such that

E

[
r

β̂
(xKǫ)2

]
≤ ǫ ≤ Q̂∞(x∗)√

Kǫ

,

where, for all k ∈ N0 ∪ {∞},

Q̂k(x∗)2 :=
4θ2β̃4|L(ξ)|24M2

λ2(1 − λ2)
.

{
‖x0 − x∗‖2 +

[
1 + Ĵ(x∗)

] [
ĉβ̃LĈ(x∗)âk

0 + ĉĈ(x∗)2ak
0

]
+ J̃(x∗)

[
1 + Ĵ(x∗)2

]
bk

0

}
.
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Proof Take total expectation in Proposition 1(i) and obtain, for all k ∈ N and x∗ ∈ X∗,

E
[
‖xk+1 − x∗‖2

]
≤ E

[
‖xk − x∗‖2

]
− E

[
‖yk − xk‖2

]

+ĉ

[
β̃LĈ(x∗)√

Nk

+
Ĉ(x∗)2

Nk

]
(
1 + E

[
‖xk − x∗‖2

])
, (75)

using the hereditary property E[E[·|Fk]] = E[·].
Denote temporarily Hk := F̂ (ξk, ·) and ̺k := E

[
r

β̃
(Hk, xk)2

]
. From the linear search rule (12), the

definition of γk and the fact that xk − zk = αk(xk − Π(gk)), we get

‖yk − xk‖2 = γ2
k‖F̂ (ξk, zk)‖2 =

〈F̂ (ξk, zk), xk − zk〉2

‖F̂ (ξk, zk)‖4
‖F̂ (ξk, zk)‖2

≥ λ2α2
k‖xk − Π(gk)‖4

β2
k‖F̂ (ξk, zk)‖2

≥ λ2(1 − λ)2‖xk − Π(gk)‖4

θ2L̃2
k‖F̂ (ξk, zk)‖2β4

k

≥
λ2(1 − λ)2r

β̃
(Hk, xk)4

θ2L̃2
k‖F̂ (ξk, zk)‖2β̃4

(76)

using the bound of Lemma 14 in the second inequality and the facts that xk − Π(gk) = rβk
(Hk, xk) and

0 < βk ≤ β̃, together with Lemma 2, in the last inequality. We take E[
√·] in (76), obtaining

̺k = E

[
r

β̃
(Hk, xk)2

]
≤ θβ̃2

λ(1 − λ)
E

[
L̃k‖F̂ (ξk, zk)‖‖yk − xk‖

]

≤ θβ̃2

λ(1 − λ)

∣∣L̃k

∣∣
4

·
∣∣∣‖F̂ (ξk, zk)‖

∣∣∣
4

·
∣∣‖yk − xk‖

∣∣
2

≤ θβ̃2

λ(1 − λ)
|L(ξ)|4 ·

∣∣∣‖F̂ (ξk, zk)‖
∣∣∣
4

·
∣∣‖yk − xk‖

∣∣
2
, (77)

using Hölder’s inequality in the second inequality, and the fact that ξk is an i.i.d. sample of ξ in the
last inequality. We now observe that from Assumptions 4 and 6 and Proposition 4, |L(ξ)|4 < ∞ and

supk∈N0

∣∣∣‖F̂ (ξk, zk)‖
∣∣∣
4

≤ M for some M > 0. Hence, we define

̟ :=
λ2(1 − λ)2

θ2β̃4|L(ξ)|24M2
. (78)

We observe that

r
β̂
(xk)2 ≤ rβk

(xk)2 ≤ 2‖xk − Π(gk)‖2 + 2
∥∥Π

[
xk − βkT (xk)

]
− Π(gk)

∥∥2

≤ 2r
β̃
(Hk, xk)2 + 2β̃2‖ǭk

1‖2, (79)

using the fact that β 7→ rβ(H, x) is a non-decreasing function for any x ∈ Rn and any operator H , the
fact that (a + b)2 ≤ 2a2 + 2b2 and Lemma 1(iii). We take E[·] in (79) and obtain

̺̂k := E

[
r

β̂
(xk)2

]
≤ 2̺k + 2β̃2E

[
‖ǭk

1‖2
]

≤ 2̺k + 2β̃2C2nσ(x∗)2 1 + E
[
‖xk − x∗‖2

]

Nk
, (80)

using Lemma 5, the fact that xK ∈ FK and the independence between ξK and FK in the second
inequality.

In view of (75)-(78), taking squares in (80) and using the convexity of t 7→ t2, we get for all k ∈ N0

and x∗ ∈ X∗,

E
[
‖xk+1 − x∗‖2

]
≤ E

[
‖xk − x∗‖2

]
− ̟

4
̺̂2

k

+ĉ

[
β̃LĈ(x∗)√

Nk

+
Ĉ(x∗)2

Nk

]
(
1 + E

[
‖xk − x∗‖2

])
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+
2̟β̃2C2

2 n2σ(x∗)4

N2
k

(
1 + E

[
‖xk − x∗‖2

]2)
. (81)

We sum (81) with i from 0 to k, obtaining:

̟

4

k∑

i=0

̺̂2
i ≤ ‖x0 − x∗‖2 + ĉβ̃LĈ(x∗)

k∑

i=0

1 + E
[
‖xi − x∗‖2

]
√

N i

+ĉĈ(x∗)2
k∑

i=0

1 + E
[
‖xi − x∗‖2

]

Ni
+ 2̟β̃2C2

2 n2σ(x∗)4
k∑

i=0

1 + E
[
‖xi − x∗‖2

]2

N2
i

≤

≤ ‖x0 − x∗‖2 +

(
1 + sup

0≤i≤k
E
[
‖xi − x∗‖2

])
(

ĉβ̃LĈ(x∗)
k∑

i=0

1√
N i

+ ĉĈ(x∗)2
k∑

i=0

1

Ni

)

+2̟β̃2C2
2 n2σ(x∗)4

(
1 + sup

0≤i≤k
E
[
‖xi − x∗‖2

]2
) k∑

i=0

1

N2
i

≤ ‖x0 − x∗‖2 +
[
1 + Ĵ(x∗)

] [
ĉβ̃LĈ(x∗)âk

0 + ĉĈ(x∗)2ak
0

]

+ J̃(x∗)
[
1 + Ĵ(x∗)2

]
b

k
0 =

̟

4
Q̂k(x∗)2, (82)

using in the last inequality (66) and Proposition 4 for p = 2, which imply

sup
k≥k0

E[‖xk − x∗‖2] ≤ 1 + E[‖xk0 − x∗‖2]

1 − φ − φ2
≤ 1 + max0≤k≤k0 E[‖xk − x∗‖2]

1 − φ − φ2
= Ĵ(x∗),

and, hence, supk≥0 E[‖xk − x∗‖2] ≤ Ĵ(x∗), since 1 − φ − φ2 ∈ (0, 1).
Given ǫ > 0, define

K = Kǫ := inf {k ∈ N0 : ̺̂k ≤ ǫ} .

From the definition of K we have, for every k < K,

̟

4
ǫ2(k + 1) ≤ ̟

4

k∑

i=0

̺̂2
i . (83)

We claim that K is finite. Indeed, if K = ∞, then (82)-(83) hold for all k ∈ N. Hence, we arrive
at a contradiction by letting k → ∞ and using the fact that b∞

0 ≤ a∞
0 ≤ â∞

0 < ∞, which holds by
Assumption 5(i). Since K is finite, we have that ̺̂K ≤ ǫ by definition. Setting k := K −1 in (82)-(83), we

get Kǫ2 ≤ Q̂K−1(x∗)2 ≤ Q̂∞(x∗)2, using the definition of Q̂k(x∗). Invoking this fact and the definition
of ̺̂K in (80), we establish the result.

We now give the oracle complexity of Algorithm 1 for a natural choice of the sampling rate.

Proposition 5 (Rate and oracle complexity) Assume that the hypotheses of Theorem 8 hold. De-
fine Nk as

Nk =
⌈
Θnσ(x∗)2(k + µ)2(ln(k + µ))2+2b

⌉

for any Θ > 0, b > 0, ǫ > 0 and 2 < µ ≤ ǫ−1. Choose φ ∈ (0,
√

5−1
2 ) and let k0 be the minimum natural

number satisfying

k0 ≥ exp

[(
ĉ max{1, β̃L} max{Cp, Cp,L}β̃

φb
√

Θλ

)1/b
]

− µ + 1. (84)

Define

Λ1 :=
ĉβ̃2L max{Cp, Cp,L}

λ
, Λ2 :=

ĉβ̃2 max{C2
p , C2

p,L}
λ2

, Λ3 :=
2λ2(1 − λ)2C2

2

θ2β̃2|L(ξ)|24M2
,

Â :=
Λ1

b(ln(µ − 1))b
, B̂ :=

Λ2

(µ − 1)(1 + 2b)[ln(µ − 1)]1+2b
, C :=

Λ3

3(µ − 1)3
.
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Then Theorem 6 holds, and for all ǫ > 0 there exists K := Kǫ ∈ N such that E[r
β̂
(xK)2] ≤ ǫ and

ǫ ≤ 2θβ̃2|L(ξ)|4M max{1, Θ−1}
λ

√
1 − λ2

√
K

×
{

‖x0 − x∗‖ +
[
Â + B̂

]− 1
2

[
1 +

√
Ĵ(x∗)

]
+

√
C
[
1 + Ĵ(x∗)

]}
, (85)

K∑

k=1

2Nk . max{1, Θ−6} max{1, Θnσ(x∗)2} P̂(x∗)

ǫ6
Î(x∗),

P̂(x∗) :=
{

ln
[
(Q̂∞(x∗) + ǫ)ǫ−2

]}2+2b

+ 2µ−2,

Î(x∗) .
θ6β̃12|L(ξ)|64M6

λ6(1 − λ2)3

{
‖x0 − x∗‖6 + (Â + B̂)3

[
1 + Ĵ(x∗)3

]
+ C3

[
1 + Ĵ(x∗)6

]}
. (86)

Proof For φ ∈ (0,
√

5−1
2 ), we look for k0 satisfying (74). We have

∑

k≥k0

1√
Nk

≤ Θ−1/2n−1/2σ(x∗)−1
∑

k≥k0

1

(k + µ)(ln(k + µ))1+b

≤ Θ−1/2n−1/2σ(x∗)−1

∫ ∞

k0−1

dt

(t + µ)(ln(t + µ))1+b

=
Θ−1/2n−1/2σ(x∗)−1

b(ln(k0 − 1 + µ))b
. (87)

From (74) and (87), it is enough to choose k0 as the minimum natural number such that the right hand

side of (87) is less than φ

ĉ max{1,β̃L}Ĉ(x∗)
. In view of the definition of Ĉ(x∗), it suffices to choose k0 as in

(84).

We now give an estimate of Q̂∞(x∗). Using the definitions of Ĉ(x∗) and Nk, we get the bound

ĉβ̃LĈ(x∗)âk
0 + ĉĈ(x∗)2

a
k
0 ≤

∫ ∞

−1

Λ1Θ−1/2dt

(t + µ)(ln(t + µ))1+b
+ (88)

+

∫ ∞

−1

Λ2Θ−1dt

(t + µ)2(ln(t + µ))2+2b
≤ Λ1Θ−1/2

b(ln(µ − 1))b
+

Λ2Θ−1

(µ − 1)(1 + 2b)[ln(µ − 1)]1+2b
.

From the definitions of J̃(x∗) and Nk we also have

J̃(x∗)bk
0 ≤

∫ ∞

−1

Λ3Θ−2dt

(t + µ)4(ln(t + µ))4+4b
≤ Λ3Θ−2

3(µ − 1)3
. (89)

At this point, we obtain (85) from Theorem 8, (88)-(89) and the definitions of Q̂∞(x∗), Ĵ(x∗), J̃(x∗), Â,

B̂ and C
We now prove (86). Using the facts that K := Kǫ ≤ Q̂∞(x∗)2/ǫ2, µǫ ≤ 1 and Nk ≤ Θnσ(x∗)2(k +

µ)2(ln(k + µ))2+2b + 1, we have

K∑

k=1

2Nk ≤ max{Θnσ(x∗)2, 1}
K∑

k=1

2
[
(k + µ)2(ln(k + µ))2+2b + 1

]

≤ max{Θnσ(x∗)2, 1}2K(K + µ)2

[
(ln(K + µ))2+2b +

2

(K + µ)2

]

≤ max{Θnσ(x∗)2, 1} Q̂∞(x∗)2

ǫ2

(
Q̂∞(x∗)2 + ǫ

ǫ2

)2

·
{[

ln
((

Q̂∞(x∗)2 + ǫ
)

ǫ−2
)]2+2b

+ 2µ−2

}
.

The definitions of Q̂∞(x∗), Ĵ∞(x∗), J̃∞(x∗), Â, B̂ and C, (88)-(89) and the convexity of t 7→ t6 imply
(86).
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3.3.2 The stochastic extragradient method with linear search

The following result gives explicit bounds on the p-norm of the sequence generated by Algorithm 2. The
proofline is identical to that of Proposition 4 in [11] up to changes in the values of certain constants due
to the introduction of the linear search and the use of Lemma 6 in Proposition 2, and hence we skip the
proof.

Proposition 6 (Uniform boundedness in Lp) Let Assumptions 1-6 hold. Take p ∈ {2} ∪ [4, ∞).
Assume that Algorithm 2 generates an infinite sequence. Then, for every x∗ ∈ X∗, there exist constants
{D(x∗), Bp(x∗)}, with B2(x∗) = 0, for which, given k0 := k0(x∗) ∈ N and γ := γ(x∗) > 0 such that

β(x∗) := Bp(x∗)
√

γ + D(x∗)γ + D(x∗)2γ2 < 1,
∑

k≥k0

1

Nk
< γ,

the following estimate holds:

sup
k≥k0

∣∣‖xk − x∗‖
∣∣2
p

≤ cp(x∗)
[
1 +

∣∣‖xk0 − x∗‖
∣∣2
p

]
,

with c2(x∗) = [1 − β(x∗)]−1 and cp(x∗) = 4[1 − β(x∗)]−2 for p ≥ 4.

Remark 2 The following bounds, in terms of the variance and the space dimension, hold for the con-
stants guaranteed by Proposition 6:

D(x∗) . C2
pnσ(x∗)2,

Bp(x∗) . CqCpσ(x∗)
[
(1 + Lα̂)2 + (1 + Lα̂)Cp

√
nσ(x∗) + C2

pnσ(x∗)2
]

.

Remark 3 In the statement of the proposition, for p = 2, it is sufficient to set φ ∈ (0,
√

5−1
2 ) and

k0 := k0(x∗) such that
∑

k≥k0
N−1

k ≤ φD(x∗)−1 in order to obtain

sup
k≥k0

E[‖xk − x∗‖2] ≤ 1 + E[‖xk0 − x∗‖2]

1 − φ − φ2
.

We now state the convergence rate estimate for Algorithm 2. The proof of Theorem 9 uses Propositions
3 and 6 for p = 2 with a proofline similar to that of Theorem 4 in [11]. A minor modification is the need
of the lower bound:

E
[
rαk

(xk)2
∣∣Fk

]
≥ E

[
α2

k

∣∣Fk

]
r(xk)2 ≥ λ2θ2

|L(ξ)|22
r(xk)2,

which follows from Lemmas 2, 13 and the fact that xk ∈ Fk.

Theorem 9 (Convergence rate) Consider Assumptions 1-6. Assume that Algorithm 2 generates an

infinite sequence. Given x∗ ∈ X∗, take φ ∈ (0,
√

5−1
2 ) and k0 ∈ N such that:

∑

k≥k0

1

Nk
≤ φ

D(x∗)
.

Define

J(x∗) :=
1 + max0≤k≤k0 E[‖xk − x∗‖2]

1 − φ − φ2
.

Then for all ǫ > 0 there exists Kǫ ∈ N such that E[r(xKǫ )2] ≤ ǫ ≤ Q∞(x∗)
Kǫ

, where

Qk(x∗) :=
2|L(ξ)|22

(1 − 6λ2)λ2θ2

{
‖x0 − x∗‖2 + [1 + J(x∗)]

[
D(x∗)ak

0 + D(x∗)2bk
0

]}

for all k ∈ N0 ∪ {∞}.

Finally we state the oracle complexity result for a specific choice of sample rate. The proof of Propo-
sition 7 uses Theorem 9 and follows a proofline identical to that of Proposition 6 in [11], so that we skip
it.

Note that the estimate of D(x∗) presented in Remark 2 can be rewritten in a more precise way as
D(x∗) ≤ cC2

pnσ(x∗)2 for some constant c > 0 which satisfies c . α̂2L2. We will use this constant c in the
statement of the following proposition.



24 A. N. Iusem et al.

Proposition 7 (Rate and oracle complexity) Assume that the hypotheses of Theorem 9 hold. De-
fine Nk as

Nk =
⌈
Θnσ(x∗)2(k + µ)(ln(k + µ))1+b

⌉

for any Θ > 0, b > 0, ǫ > 0 and 2 < µ ≤ ǫ−1. Choose φ ∈ (0,
√

5−1
2 ) and let k0 be the minimum natural

number satisfying

k0 ≥ exp



(

2cα̂2C2
p

φbΘ

)1/b

− µ + 1.

Define

Λ := 2cα̂2C2
p , A :=

Λ

b(ln(µ − 1))b
, B :=

Λ2

(µ − 1)(1 + 2b)[ln(µ − 1)]1+2b
.

Then Theorem 7 holds and for all ǫ > 0, there exists K := Kǫ ∈ N such that E[r(xK )2] ≤ ǫ and

ǫ ≤ 2|L(ξ)|22 max{1, Θ−2}
(1 − 6λ2)λ2θ2K

·
{

‖x0 − x∗‖2 + (A + B) [1 + J(x∗)]
}

,

K∑

k=1

2Nk ≤ 12 max{1, Θ−2} max{1, Θnσ(x∗)2}P(x∗)

ǫ2
I(x∗),

P(x∗) :=
{

ln
[
(Q∞(x∗) + 1)ǫ−1

]}1+b
+ µ−1,

I(x∗) :=

[
|L(ξ)|22

(1 − 6λ2)λ2θ2

]2

‖x0 − x∗‖4 +

[
|L(ξ)|22

(1 − 6λ2)λ2θ2

]2

(A + B)2 [1 + J(x∗)]
2

+ 1.

Remark 4 (Number of oracle calls in linear search) A notable difference between Algorithm 2
and Algorithm (5)-(6) in [11] (which uses explicitly the Lipschitz constant L), is that during the lin-
ear search (18) of iteration k, the oracle is called jk := log 1

θ

(
αk

α̂

)
times. This is the price to be paid when

no information on L is available. Nevertheless, Lemma 13 implies the upper bound jk ≤ 1 + log 1
θ

(
λ

α̂L̃k

)
.

Note that, since αk is a random variable, this bound holds in an almost sure sense. Hence, with respect
to the tolerance ǫ > 0, the total number of oracle calls is a.s. not greater than

Kǫ∑

k=1

jk · 2Nk .

[
1 + log 1

θ

(
λ

α̂

)
− min

k∈[Kǫ]
log 1

θ
L̃k

]
·
[
ln(ǫ−1)

]1+b

ǫ2
, (90)

in view of Proposition 7. Hence, even though the absence of the Lipschitz constant requires more oracle
calls than with its knowledge, the additional multiplicative constant in estimate (90) is not significantly

higher for practical purposes. We remark also that, by the strong law of large numbers, a.s. limk→∞ L̃k =
L and, under light-tail assumptions on L(ξ), we can infer that L̃k ≈ L with high-probability for large
enough k or Θ.

4 Appendix

4.1 Recursion lemmas

Proof of Lemma 8

Proof By Lemma 7(ii), we have that γk > 0. Thus

‖xk+1 − x‖2 = ‖Π(yk) − x‖2

≤ ‖yk − x‖2 − ‖yk − Π(yk)‖2

≤ ‖yk − x‖2

= ‖(xk − x) − γk(T (zk) + ǭk
2)‖2

= ‖xk − x‖2 + γ2
k‖T (zk) + ǭk

2‖2 − 2γk〈T (zk) + ǭk
2 , xk − x〉, (91)
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using Lemma 1(ii) in the first inequality. Concerning the last term in the rightmost expression of (91),
we have

−2γk〈T (zk) + ǭk
2 , xk − x〉 = −2γk〈T (zk) + ǭk

2 , xk − zk〉 +

2γk〈T (zk), x − zk〉 + 2γk〈ǭk
2 , x − zk〉

= −2γk(γk‖T (zk) + ǭk
2‖2)

+2γk〈T (zk), x − zk〉 + 2γk〈ǭk
2 , x − zk〉

≤ −2γ2
k‖T (zk) + ǭk

2‖2 + 2γk〈ǭk
2 , x − zk〉, (92)

using the definition of γk in the second equality, and the facts that γk > 0 and 〈T (zk), x−zk〉 ≤ 0 (which
follows from the pseudo-monotonicity of T , and the facts x ∈ X∗, zk ∈ X) in the inequality. Combining
(91)-(92) we get

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + γ2
k‖T (zk) + ǭk

2‖2 − 2γ2
k‖T (zk) + ǭk

2‖2 + 2γk〈ǭk
2 , x − zk〉

= ‖xk − x‖2 − γ2
k‖T (zk) + ǭk

2‖2 + 2γk〈ǭk
2 , x − zk〉

= ‖xk − x‖2 − ‖yk − xk‖2 + 2γk〈ǭk
2 , x − zk〉, (93)

using the fact that ‖yk − xk‖ = γk‖T (zk) + ǫk
2‖ (which follows from the definition of γk), in the last

equality.

Proof of Lemma 12

Proof We shall modify part of the proof of Lemma 3 in [11]. Relations (A.1)-(A.3) in the proof of Lemma
3 in the Appendix of [11] imply that, for all x∗ ∈ X∗ and k ∈ N0,

‖xk+1 − x∗‖2 ≤ ‖xk − x‖2 − ‖xk − zk‖2 + 2α2
k‖F̂ (ηk, zk) − F̂ (ξk, xk)‖2

+2〈x − zk, αkF̂ (ηk, zk)〉. (94)

The last term in the rightmost expression of (94) is bounded by

2〈x∗ − zk, αkF̂ (ηk, zk)〉 = 2〈x∗ − zk, αk(T (zk) + ǫk
2)〉

= 2〈x∗ − zk, αkT (zk)〉 + 2〈x∗ − zk, αkǫk
2〉 (95)

≤ 2αk〈x∗ − zk, ǫk
2〉,

using the fact that 〈x∗ − zk, T (zk)〉 ≤ 0 (which follows from Assumption 3 and the facts that x∗ ∈ X∗,
zk ∈ X), in the last inequality.

Concerning the third term in the right hand side of (94), we have

α2
k‖F̂ (ηk, zk) − F̂ (ξk, xk)‖2 ≤ 3α2

k‖F̂ (ξk, zk) − F̂ (ξk, xk)‖2

+3α2
k‖F̂ (ηk, zk) − T (zk)‖2 + 3α2

k‖F̂ (ξk, zk) − T (zk)‖2

≤ 3λ2‖zk − xk‖2 + 3α̂2‖ǫk
2‖2 + 3α̂2‖ǫk

3‖2, (96)

using (18)-(19) and the convexity of t 7→ t2 in the first inequality and the linear search (18) in the last
inequality.

Since zk = Π [xk − αk(T (xk) + ǫk
1)], we get

rαk
(xk)2 = ‖xk − Π [xk − αkT (xk)]‖2

≤ 2‖xk − zk‖2 + 2‖Π [xk − αk(T (xk) + ǫk
1)] − Π [xk − αkT (xk)]‖2

≤ 2‖xk − zk‖2 + 2α̂2‖ǫk
1‖2, (97)

using Lemma 1(iii) in the second inequality. We complete the proof invoking (94)-(97) and the fact that
0 < 1 − 6λ2 < 1.
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4.2 Proof of Lemma 6

In this subsection we will establish Lemma 6, for which we need first some preliminary results, bounding
the supremum of the empirical average of the oracle error on a closed ball. As usual, ‖ ·‖ is the Euclidean
norm. B[x, R] denotes the closed Euclidean ball with center x ∈ Rn and radius R > 0. Q[x, R] denotes
the set of points in B[x, R] with rational coordinates.

Fix R > 0, x∗ ∈ X and choose an i.i.d sample ξN := {ξj}N
j=1 of ξ. We need to bound the following

empirical process:

Z := Z(ξN ; x∗, R) : = sup
x∈B[x∗,R]

1

N

∥∥∥∥∥∥

N∑

j=1

ǫ(ξj , x) − ǫ(ξj , x∗)

∥∥∥∥∥∥

= sup
u∈B[0,1]

1

N

∥∥∥∥∥∥

N∑

j=1

ǫ(ξj , x∗ + Ru) − ǫ(ξj , x∗)

∥∥∥∥∥∥

= sup
u∈Q[0,1]

1

N

∥∥∥∥∥∥

N∑

j=1

ǫ(ξj , x∗ + Ru) − ǫ(ξj , x∗)

∥∥∥∥∥∥
(98)

= sup
u∈Q[0,1]

1

N
sup

α∈B[0,1]

〈
N∑

j=1

ǫ(ξj , x∗ + Ru) − ǫ(ξj , x∗), α

〉

= sup
u∈Q[0,1]

sup
α∈Q[0,1]

1

N

N∑

j=1

〈ǫ(ξj , x∗ + Ru) − ǫ(ξj , x∗), α〉 ,

We mention that the third equality follows from the fact that F (ξ, ·) is continuous, while the fourth
equality requires the fact that ‖v‖ = supu∈B[0,1]〈u, v〉, for all v ∈ Rn. For every j ∈ [N ] and for every

(u, α) ∈ Q[0, 1]2 we shall use the notation t := (u, α), T := Q[0, 1]2 and

Xj,t :=
1

N
〈ǫ(ξj , x∗ + Ru) − ǫ(ξj , x∗), α〉 , (99)

Xt :=

N∑

j=1

Xj,t. (100)

With the notation above, we have Z = supt∈T Xt = supt∈T |Xt|.
We shall invoke next Theorem 2. As we shall see, concerning Z := Z(ξN ; x∗, R) in Definition (98),

bounding |M |p and σ̂2 is not so difficult. In order to bound the expected value E[Z] we shall need the
following lemma. Its proof follows the proofline of Lemma 13.1 in [3] with minor modifications. We must
also recall the definition of metric entropy given in the Preliminaries.

Lemma 15 Let (T , d) be a countable pseudo-metric space. Take some t0 ∈ T and let θ := supt∈T d(t, t0).
Let (Xt)t∈T be a collection of random variables such that, for some constant v > 0,

lnE[exp{λ(Xt − Xt′)}] ≤ v d(t, t′)2λ2

2
, (101)

for all t, t′ ∈ T and all λ > 0. Then
∣∣∣∣sup
t∈T

|Xt|
∣∣∣∣
2

≤
√

2|Xt0 |2+

3
√

2v

(
θ + 2

√
2

∫ θ/2

0

4
√

H(u, T ) d u + 4

∫ θ/2

0

√
H(u, T ) d u

)
.

Proof Define T0 := {t0} and, given an integer i ≥ 1, let θi := θ2−i, Ti be a θi-net for T with cardinality
N(θi, T ) and Πi : T → Ti the metric projection associated to d, that is, for any t ∈ T , Πi(t) ∈
argmint′∈Ti

d(t, t′). By the definition of a net, we have, for all t ∈ T and i ≥ 1,

d(t, Πi(t)) ≤ θi. (102)
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For any t ∈ T , we have, since limi→∞ Πi(t) = t and Π0(t) = t0,

Xt = XΠ0(t) +
∞∑

j=0

(XΠi+1(t) − XΠi(t)). (103)

From (103) we obtain

X2
t ≤ 2X2

t0
+ 2

∞∑

i=0

∞∑

k=0

|XΠi+1(t) − XΠi(t)||XΠk+1(t) − XΠk(t)|,

and hence

E

[
sup
t∈T

X2
t

]
≤ 2E[X2

t0
] + 2

∞∑

i=0

∞∑

k=0

E

[
sup
t∈T

|XΠi+1(t) − XΠi(t)||XΠk+1(t) − XΠk(t)|
]

≤ 2E[X2
t0

] + 2

∞∑

i=0

∞∑

k=0

∣∣∣∣sup
t∈T

|XΠi+1(t) − XΠi(t)|
∣∣∣∣
2

·
∣∣∣∣sup
t∈T

|XΠk+1(t) − XΠk(t)|
∣∣∣∣
2

= 2E[X2
t0

] + 2

( ∞∑

i=0

∣∣∣∣sup
t∈T

|XΠi+1(t) − XΠi(t)|
∣∣∣∣
2

)2

, (104)

using Hölder’s inequality in the second inequality. Observe that

|{(Πi(t), Πi+1(t)) : t ∈ T }| ≤ N(θi+1, T )2 = e2H(θi+1). (105)

Note that the triangular inequality implies that, for all t ∈ T ,

d(Πi(t), Πi+1(t)) ≤ 3θi+1. (106)

By assumption (101) and Theorem 3 we also have that

lnE[exp{λ(Xt − Xt′)2}] ≤ v d(t, t′)2λ +
v2 d(t, t′)4λ2

(1 − 2v d(t, t′)2λ)
(107)

for all t, t′ ∈ T and all 0 < λ < 1
2v d(t,t′)2 . Relations (105)-(107) and Lemma 3 imply

E

[
sup
t∈T

|XΠi+1(t) − XΠi(t)|2
]

≤

v d(t, t′)2 +
√

2v2 d(t, t′)42H(δi+1, T ) + 2v d(t, t′)22H(δi+1, T )

≤ 32θ2
i+1v + 2 · 32θ2

i+1v
√

H(θi+1, T ) + 4 · 32θ2
i+1vH(θi+1, T ), (108)

so that taking the square root in (108) we get
∣∣∣∣sup
t∈T

|XΠi+1(t) − XΠi(t)|
∣∣∣∣
2

≤ 3θi+1

√
v + 3θi+1

√
2v 4
√

H(θi+1, T ) + 6θi+1

√
v
√

H(θi+1, T ). (109)

Taking the square root in (104), using (109) and summing over i we finally get

∣∣∣∣sup
t∈T

|Xt|
∣∣∣∣
2

≤
√

2|Xt0 |2 + 3
√

2v

∞∑

i=1

θi+

6
√

v
∞∑

i=1

θi
4
√

H(θi, T ) + 6
√

2v
∞∑

i=1

θi

√
H(θj , T )

≤
√

2|Xt0 |2 + 3
√

2vθ+

12
√

v

∫ θ/2

0

4
√

H(u, T ) d u + 12
√

2v

∫ θ/2

0

√
H(u, T ) d u,

using the fact that H(u, T ) is a nonincreasing function of u in the last inequality.

We prove next another preliminary lemma.
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Lemma 16 Suppose that Assumptions 2 and 4 hold. Consider Definition (98). Then, for any p ≥ 2,
there exists a constant Cδ,p > 0 (depending on δ and p), such that

|Z|p ≤
Cδ,p

(
|L(ξ)|p +

∣∣∣L̂N

∣∣∣
2

)√
nRδ

√
N

,

where L̂N :=
√

1
N

∑N
j=1 L(ξj)2.

Proof We recall the definitions (98)-(100) as well as the definitions of M and σ̂2 in Theorem 2. The
statement in the lemma will follow by bounding E[Z], |M |p and σ̂ and applying Theorem 2. In the
sequel, Cδ is a constant (depending on δ) that might change from line to line.

PART 1: Bound of σ̂2: We have

σ̂2 = sup
(u,α)∈T

E


 1

N2

N∑

j=1

〈ǫ(ξj , x∗ + Ru) − ǫ(ξj , x∗), α〉2




≤ sup
(u,α)∈T

{
1

N
E

[
L̂2

N

]
R2δ‖u‖2δ‖α‖

}

=
1

N

∣∣∣L̂N

∣∣∣
2

2
R2δ, (110)

using Assumption 4 in the inequality and the fact that (u, α) ∈ B[0, 1] in the last equality.
PART 2: Bound of M :

|M |pp = E

[(
max
j∈[N ]

sup
t∈T

|Xj,t|
)p]

= E

[
max
j∈[N ]

sup
t∈T

|Xj,t|p
]

≤ 1

Np

N∑

j=1

E

[
sup
t∈T

|〈ǫ(ξj , x∗ + Ru) − ǫ(ξj , x∗), α〉|p
]

≤ 1

Np

N∑

j=1

E

[
L(ξj)pRpδ sup

t∈T
‖u‖pδ‖α‖p

]

=
1

Np−1
E [L(ξ)p] Rpδ, (111)

using Assumption 4 in the first inequality and the fact that (u, α) ∈ B[0, 1] in the last equality. We take

the p-th root in (111) and note that for p ≥ 2 we have N
p−1

p ≥
√

N , obtaining

|M |p ≤
|L(ξ)|pRδ

√
N

. (112)

PART 3: Bound of E[Z]: It is sufficient to prove that for some constant Cδ > 0,

E[Z] ≤
Cδ

∣∣∣L̂N

∣∣∣
2

√
nRδ

√
N

. (113)

We proceed to prove (113).
From Theorem 5, given t = (u, α) ∈ T and t = (u′, α′) ∈ T , there exists constant C > 0 and random

variable V ≥ 0 such that for all λ > 0,

P





∣∣∣∣∣∣

N∑

j=1

(Xj,t − Xj,t′)

∣∣∣∣∣∣
≥ C

√
V (1 + λ)



 ≤ e−λ, (114)

where

V := E




N∑

j=1

((Xj,t − Xj,t′) − (Yj,t − Yj,t′))
2

∣∣∣∣∣HN


 ,
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and Yj,t := 1
N 〈ǫ(ηj , x∗ + Ru) − ǫ(ηj , x∗), α〉 with {ηj}N

j=1 an i.i.d. sample of ξ independent of {ξj}N
j=1

and HN := σ(ξj : j ∈ [N ]). Now, in view of Assumption 4 and the fact that E[Xj,t] = 0 for all t ∈ T and
all j ∈ [N ], it is not difficult to verify that for some constant Cδ > 0 (depending on δ), it holds that

V ≤ Cδ

N
Y 2

N R2δ
(
‖u − u′‖2δ + ‖α − α′‖2

)
, (115)

where L̂N :=
√

1
N

∑N
j=1 L(ξj)2 and YN :=

√
L̂2

N + E[L̂2
N ].

For any t = (u, α) ∈ T and t = (u′, α′) ∈ T , we define d(t, t′) := ‖u−u′‖δ +‖α−α′‖. From (114)-(115)
we have that for all t, t′ ∈ T and all λ > 0,

P

{
|Xt − Xt′ | ≥ Cδ

YN√
N

Rδ d(t, t′)
√

1 + λ

}
≤ e−λ. (116)

We conclude from (116) and Theorem 4 that for some constant Cδ > 0, for all t, t ∈ T and λ > 0,

lnE

[
exp

{
(Xt − Xt′)

YN
λ

}]
≤ C2

δ

R2δ d(t, t′)2

2N
λ2. (117)

Setting t0 := (0, 0) and θ := supt∈T d(t, 0) ≤ 2, from (117) and Lemma 15 we get that

∣∣∣∣sup
t∈T

∣∣∣∣
Xt

YN

∣∣∣∣
∣∣∣∣
2

≤ 3
√

2v

(
2 + 2

√
2

∫ 1

0

4
√

H(u, T ) d u + 4

∫ 1

0

√
H(u, T ) d u

)
, (118)

with
√

v := Cδ
Rδ
√

N
. Finally, applying Hölder’s inequality, we get

E[Z] = E

[
sup
t∈T

|Xt|
]

= E

[
sup
t∈T

∣∣∣∣
Xt

YN

∣∣∣∣ · YN

]
≤
∣∣∣∣sup
t∈T

∣∣∣∣
Xt

YN

∣∣∣∣
∣∣∣∣
2

· |YN |2. (119)

From Lemma 4, we also have the following bounds for T = Q[0, 1]2:

∫ 1

0

4
√

H(u, T ) d u . 4
√

n .
√

n, (120)

∫ 1

0

√
H(u, T ) d u .

√
n. (121)

Relations (118)-(121) prove (113), and then (110)-(113), together with Theorem 2, establish the result
of the lemma.

We now are ready for the proof of Lemma 6.

Proof of Lemma 6.

Proof In the following CL,p is a constant (depending on L(ξ) and p) which might change from line to
line.

Set z̃N := Π
[
xN − β

(
T (xN ) + ǫ̂(ξN , xN )

)]
, so that zN = αN z̃N + (1 − αN)xN . By Lemma 1(iv), we

have that x∗ = Π [x∗ − βT (x∗)]. Taking into account this fact and Lemma 1(iii), we get

‖x∗ − z̃N ‖ ≤ ‖x∗ − xN − β(T (x∗) − T (xN )) + βǫ̂(ξN , xN )‖
≤ ‖x∗ − xN ‖ + β‖T (xN ) − T (x∗)‖ + β‖ǫ̂(ξN , xN )‖
≤ (1 + Lβ) ‖x∗ − xN ‖ + β

∥∥ǫ̂(ξN , xN )
∥∥ , (122)

using the Lipschitz continuity of T in the last inequality.
In the sequel we use the notation ǫN := ‖ǫ̂(ξN , xN )‖. Also, for given x ∈ Rn and s > 0, we denote

R(x, s) := (1 + Lβ)‖x − x∗‖ + βs, while B[x∗; x, s] denotes the closed Euclidean ball centered at x∗

with radius R(x, s). From (122) we have z̃N ∈ B[x∗; xN , ǫN ] and trivially xN ∈ B[x∗; xN , ǫN ]. Hence, by
convexity, zN ∈ B[x∗; xN , ǫN ], since αN ∈ [0, 1].

Set sN := ‖xN − x∗‖. We use the decomposition:
∣∣‖ǫ̂(ξN , zN)‖|FN

∣∣
p

=
∣∣‖ǫ̂(ξN , zN )‖I{ǫN ≤sN }|FN

∣∣
p
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+
∣∣‖ǫ̂(ξN , zN )‖I{ǫN >sN }|FN

∣∣
p

=: I1 + I2. (123)

We first bound the term I1. Recall that by Remark 1,

ω 7→ sup
x′∈B[x∗;xN (ω),sN (ω)]

‖ǫ̂(ξN (ω), x′)‖

is a measurable function. We have

I1 =
∣∣‖ǫ̂(ξN , zN)‖I{ǫN ≤sN }|FN

∣∣
p

≤
∣∣∣∣∣ sup
x′∈B[x∗;xN ,sN ]

‖ǫ̂(ξN , x′)‖
∣∣∣∣∣FN

∣∣∣∣∣
p

=

∣∣∣∣∣ sup
x′∈B[x∗;x,s]

‖ǫ̂(ξN , x′)‖
∣∣∣∣∣
p

∣∣∣∣∣
(x,s)=(xN ,sN )

, (124)

using the fact zN ∈ B[x∗; xN , ǫN ] in the first inequality, and the fact that (xN , sN ) ∈ FN , together with
the independence between ξN and FN , in the last equality. We also have, for any x ∈ Rn and s > 0,

∣∣∣∣∣ sup
x′∈B[x∗;x,s]

‖ǫ̂(ξN , x′)‖
∣∣∣∣∣
p

≤
∣∣∣∣∣ sup
x′∈B[x∗;x,s]

‖ǫ̂(ξN , x′) − ǫ̂(ξN , x∗)‖
∣∣∣∣∣
p

+
∣∣‖ǫ̂(ξN , x∗)‖

∣∣
p

≤
√

n

N
CL,pR(x, s) +

√
n

N
Cpσ(x∗), (125)

using Lemmas 5 and 16 in the second inequality. Relations (124)-(125) and the definitions of sN and
R(xN , sN ) imply that

I1 ≤
√

n

N
CL,p(1 + β + Lβ)‖xN − x∗‖ +

√
n

N
Cpσ(x∗). (126)

We bound next the term I2. Defining L̃(ξN ) := N−1
∑N

j=1 L(ξj), we note that

‖ǫ̂(ξN , zN)‖ ≤ ‖ǫ̂(ξN , zN) − ǫ̂(ξN , x∗)‖ + ‖ǫ̂(ξN , x∗)‖

≤

∥∥∥∥∥∥
1

N

N∑

j=1

[
F (ξj , zN) − F (ξj , x∗)

]
∥∥∥∥∥∥

+ ‖T (zN) − T (x∗)‖ + ‖ǫ̂(ξN , x∗)‖

≤
(

L̃(ξN ) + L
)

‖zN − x∗‖ + ‖ǫ̂(ξN , x∗)‖

≤
(

L̃(ξN ) + L
)

(1 + Lβ)‖xN − x∗‖ + β
(

L̃(ξN ) + L
)

ǫN + ‖ǫ̂(ξN , x∗)‖, (127)

using Assumption 4 in the third inequality and the fact that zN ∈ B[x∗; xN , ǫN ] in the last inequality.
From (127) we have

I2 =
∣∣‖ǫ̂(ξN , zN )‖I{ǫN >sN }|FN

∣∣
p

≤ (1 + Lβ)‖xN − x∗‖
∣∣∣
(

L̃(ξN ) + L
)
I{ǫN >sN }|FN

∣∣∣
p

+β
∣∣∣
(

L̃(ξN ) + L
)

ǫN |FN

∣∣∣
p

+
∣∣‖ǫ̂(ξN , x∗)‖|FN

∣∣
p

≤ (1 + Lβ)‖xN − x∗‖
∣∣∣L̃(ξN ) + L

∣∣∣
2p

·
∣∣I{ǫN >sN }|FN

∣∣
2p

+β
∣∣∣L̃(ξN ) + L

∣∣∣
2p

·
∣∣ǫN |FN

∣∣
2p

+
∣∣‖ǫ̂(ξN , x∗)‖

∣∣
p
, (128)

using the fact that xN ∈ FN in the first inequality and Hölder’s inequality, together with the fact that
ξN is independent of FN , in the last inequality.

With respect to the last term in the rightmost expression of (128), we have, in view of Lemma 5,

∣∣‖ǫ̂(ξN , x∗)‖
∣∣
p

≤
√

n

N
Cpσ(x∗). (129)
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Concerning the third term in the rightmost expression of (128), we observe that Lemma 5, the fact
that xN ∈ FN , and the independence between ξN and FN imply

∣∣ǫN |FN

∣∣
2p

=
∣∣‖ǫ̂(ξN , xN )‖|FN

∣∣
2p

≤
√

n

N
C2pσ(x∗)(1 + ‖xN − x∗‖). (130)

Finally, concerning the second term in the rightmost expression of (128), we have, in view of the fact
that (xN , sN) ∈ FN and the independence between ξN and FN ,

∣∣I{ǫN >sN }|FN

∣∣
2p

= 2p

√
E

[
I{‖̂ǫ(ξN ,xN )‖>sN }

∣∣∣FN

]
= 2p

√
P (‖ǫ̂(ξN , x)‖ > s)

∣∣∣
(x,s)=(xN ,sN )

. (131)

From Markov’s inequality we obtain

2p

√
P (‖ǫ̂(ξN , x)‖ > s) ≤ 2p

√
E [‖ǫ̂(ξN , x)‖2p]

s2p

=

∣∣‖ǫ̂(ξN , x)‖
∣∣
2p

s
≤
√

n

N

C2p

s
σ(x∗)(1 + ‖x − x∗‖), (132)

using Lemma 5 in the last inequality. We conclude from (131) and (132) that

∣∣I{ǫN >sN }|FN

∣∣
2p

≤
√

n

N

C2p

sN
σ(x∗)(1 + ‖xN − x∗‖). (133)

Putting together relations (128)-(130) and (133) we get

I2 ≤ (1 + Lβ)
‖xN − x∗‖

sN

∣∣∣L̃(ξN ) + L
∣∣∣
2p

√
n

N
C2pσ(x∗)(1 + ‖xN − x∗‖)

+β
∣∣∣L̃(ξN ) + L

∣∣∣
2p

√
n

N
C2pσ(x∗)(1 + ‖xN − x∗‖) +

√
n

N
Cpσ(x∗)

.L,p

√
n

N
σ(x∗)(1 + ‖xN − x∗‖), (134)

using the fact that sN = ‖xN − x∗‖. Relations (123), (126) and (134) prove the required result.
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