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Diego Rodŕıguez Guzmán

Rio de Janeiro
2016



ii
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Resumo

Esta tese tem como objetivo o estudo da topologia das folhas genéricas de uma
folheação logaŕıtmica genérica em espaços projetivos complexos.

Partindo da teoria de Lefschetz para seções hiperplanas de hipersuperf́ıcies,
provamos que os grupos de homotopia de uma seção hiperplana de uma folha
genérica de dimensão menor que a dimensão da seção são isomorfos aos grupos
de homotopia da folha genérica da mesma dimensão. Para condições genéricas
sobre a 1-forma logaŕıtmica fechada que define a folheação, explicitamos o grupo
fundamental de uma folha genérica.

No caso de folheações no plano projetivo, isto é, em dimensão 2, provamos
que a folha genérica de uma folheação logaŕıtmica genérica é homeomorfa ao
monstro do lago Ness, isto é, um plano ao qual colamos uma infinidade de
alças.

Palavras-chave: Folheações, Logaŕıtmica, Topologia das folhas.
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Introduction

Motivation

This thesis studies the topology of generic leaves of codimension one singular
holomorphic foliations on complex projective manifolds. The focus is on the
topology of generic leaves of generic logarithmic foliations on the complex
projective space Pn+1. A non singular leaf of a codimension one holomorphic
foliation on Pn+1 is a immersed complex manifold of codimension one in Pn+1.
If this leaf is algebraic, i.e. the closure of such leaf in Pn+1 is a projective
variety, we know topological properties of its closure. In particular, we have
the following result about hyperplane sections of a projective variety.

Theorem 0.0.1 (Lefschetz theorem of hyperplane sections). [M2, Theorem 7.4]
Let X be a smooth projective variety of complex dimension n which lies in the
projective space Pm. Let H ⊂ Pm be a hyperplane whose intersection H ∩X is
a smooth hyperplane section of X. Then the inclusion map

H ∩X ↪→ X

induces isomorphisms of homotopy groups of dimension less than n − 1.
Furthermore, the induced homomorphism

πn−1(H ∩X)→ πn−1(X)

is onto.

From the above theorem, it follows that the claims below hold true for
smooth hyperplane sections H ∩X.

(L1) If the dimension of X is greater than one, then the hiperplane section
H ∩X is connected.

(L2) If the dimension of X is greater than two, then the fundamental groups
of H ∩X and X are isomorphic.

The next claims are another known facts about the topology of a smooth
hypersurface of Pn+1.

(L3) Let X ⊂ Pn+1 be a smooth hypersurface. If n is greater equal than two,
then X is simply connected.

xiii
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(L4) Let X ⊂ P2 be a smooth complex curve. If the degree of X is d, then the
genus of X is

(d− 1)(d− 2)

2
.

But in general a generic leaf of a codimension one holomorphic foliation F
on Pn+1 is not algebraic. Based on the above claims, Dominique Cerveau in [C,
Section 2.10] proposes to study topological properties of a generic leaf L of F
through the following questions.

Let H ⊂ Pn+1 be a general hyperplane with respect to a generic leaf L of F .

(C1) If n > 1, is the hyperplane section H ∩ L connected?

(C2) If n > 2, are the fundamental group of H ∩ L and L isomorphic?

(C3) If n ≥ 2, is the generic leaf L simply connected?

Also, in [C, Section 2.10], he remarks that the generic leaf of a foliation on
P3, defined in homogeneous coordinates by the 1-form

λ0
dx0

x0
+ λ1

dx1

x1
+ λ2

dx2

x2
+ λ3

dx3

x3
,

with λ0, λ1, λ2, λ3 general complex numbers satisfying λ0 + λ1 + λ2 + λ3 = 0, is
biholomorphic to C2.

For the general hyperplane H passing through [0 : 0 : 0 : 1] the topology of
the generic leaf of the foliation restricted to H was studied by Ferrán Valdez in
[V]. There he proves that for λ0, λ1, λ2 and λ3 sufficiently general the generic leaf
is homeomorphic to the Loch-Ness Monster, i.e. the real plane with infinitely
many handles attached.

Loch Ness Monster

In general, the non singular leaf of a holomorphic foliation on P2 is a non
compact Riemann surface. Kerékjártó theorem (see Theorem 2.2.9) gives us a
topological classification of orientable non compact real surfaces, based in the
description of the following topological invariants.

(a) The space of ends of a surface S, which is compact and totally
disconnected.

(b) The genus, which is finite or infinite.
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In this sense, we know that for holomorphic foliations on C2 defined by
a generic analytic vector field all leaves, except for at most countably many,
are contractible and the rest are topological cylinders. This result is due to
Tanya Firsova [F]. For foliations defined by generic polynomial vector fields an
analogous result is not known.

Let Bn be the space of foliations on P2 defined by the 1-form

Q(x, y)dx− P (x, y)dy,

where the polynomials P,Q have degree at most n in each affine chart. Natalya
Goncharuk and Yury Kudryasov in [G-K] prove that there is a dense subset B′n
of Bn such that any foliation contained in B′n has a leaf with at least

(n+ 1)(n+ 2)

2
− 4

handles. Moreover, if the polynomials satisfy

P (x,−y) = −P (x, y), Q(x,−y) = Q(x, y)

in a chart, then all leaves of F have infinite genus.

Main Results

The object of this thesis is, more precisely, to provide a topological description of
generic leaves of generic logarithmic foliations on Pn+1 using homotopy theory.
Here are some of the main results, which will be proved in Chapters 3 and 4.

Theorem 1 (Theorem 4.1.2 of Chapter 4). Let L be a generic leaf of a
generic logarithmic foliation F on Pn+1. Let H ⊂ Pn+1 be a sufficiently
general hyperplane. Then the morphisms of homotopy groups

(i)∗ : πl(L ∩H)→ πl(L),

induced by the inclusion i : L ∩H ↪→ L are

(1) isomorphims if l < n− 1;

(2) epimorphisms if l = n− 1.

The above theorem is an analogue of Theorem 0.0.1 for a generic leaf of
a logarithmic foliation. Moreover the Theorem 1 implies that (C1) is true for
generic leaves of generic logarithmic foliations, with n > 1, and (C2) holds true
when n > 2.

Recall that the complement of a simple normal crossing divisor D = D0 +
· · ·+Dk in Pn+1 has fundamental group isomorphic to

π1(Pn+1 −D) ∼= Zk+1/(d0, . . . , dk)Z,

where dj is the degree of the irreducible component Dj of D. Thus we have the
statement below.
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Theorem 2 (Theorem 4.1.1 of Chapter 4). Let F be a logarithmic foliation on
Pn+1 defined by a closed logarithmic 1-form ω with simple normal crossing polar
divisor D = D0 + · · · + Dk. If n ≥ 2 then the fundamental group of a generic
leaf L of F is isomorphic to the subgroup G of π1(Pn+1 −D) defined by

G :=

(m0, . . . ,mk) ∈ Zk+1/(d0, . . . , dk)Z|
∑
j=0

λjmj = 0

 ,

where dj is the degree of the irreducible component Dj of D and λj is the residue
of ω around Dj.

Thus (C3) is true when the above group G is trivial, which happens for
sufficiently generic logarithmic foliations (see Corollary 4.4.3 for more details).

In order to prove these results we exhibit a relation between the homotopy
groups of Pn+1 −D and of a generic leaf L of F , where D is the polar locus of
the 1-form defining F . The existence of such a relation relies on the following
result.

Theorem 3 (Theorem 4.3.1 of Chapter 4). Let ω be a closed logarithmic 1-form
on a projective manifold X of dimension n + 1. Assume that D is a normal
crossing polar divisor of ω and the singularities of ω outside D are isolated.
Consider a normal covering space

ρ : Y → X −D,

over which the function

g(y) =

∫ y

y0

ρ∗ω (1)

is well defined for y ∈ Y . If the singularities of ω outside D are isolated then
the relative homotopy group πl(Y, g

−1(c)) is zero for l ≤ n, with c ∈ C.

The above theorem is an adaptation of [S, Corollary 21] of Carlos Simpson,
which concerns the topology of integral varieties of a closed holomorphic 1-form
on a projective variety X.

The phenomenon observed by Cerveau is more general, as Corollary 4.4.3
proves that for sufficiently generic logarithmic foliation on P3 the generic leaf is
simply connected. Furthermore the restriction of the foliation to a sufficiently
general hyperplane gives a logarithmic foliation satisfying the hypothesis of the
result below.

Theorem 4 (Theorem 3.4.7 of Chapter 3). Let F be a logarithmic foliation
defined by a closed logarithmic 1-form ω on P2. Assume that the polar divisor
D = ∪kj=0Dj of ω is a supported on k + 1 > 3 curves and has only normal
crossing singularities. If the residues λj/λl ∈ C−R, then a generic leaf L of F
is homeomorphic to the Loch-Ness monster.

The proof of this result relies on the description of the topological invariants
(a,b) for a generic leaf of the generic logarithmic foliation on P2.

If F is a Riccati foliation on a projective surface, then we can give a precise
description of the topology of a generic leaf of F . In particular we show the
result below.
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Theorem 5 (Theorem3.1.1 of Chapter 3). Let F be a Riccati foliation (singular
or not) on a compact complex surface X. Assume that global holonomy

ρ : π1(Σg,k)→ PSL(2,C)

of F is infinite, where Σg,k is a open subset of the base C of the rational fibration
π : X → C associated to the Riccati foliation F . Then any leaf of F outside a
countable set of leaves CL is homeomorphic to one of the following real surfaces:

1) the plane,

2) the Loch Ness monster, i.e. the real plane with infinitely many handles
attached,

3) the cylinder,

4) the Jacob’s ladder, i.e. the cylinder with infinitely many handles attached
to both directions,

5) the Cantor tree, i.e. the sphere without a Cantor set,

6) the blooming Cantor tree, i.e. the Cantor tree with infinitely many handles
attached to each end,

7) the plane without an infinite discrete set

8) the Loch Ness monster without an infinite discrete set,

9) the Jacob’s ladder without an infinite discrete set

10) the Cantor tree without an infinite discrete set,

11) the blooming Cantor tree without an infinite discrete set.

Furthermore, any two leaves outside CL are biholomorphic.

Blooming Cantor tree Jacob’s ladder

Figure 0

It is to be observed that Ghys in [Gh] showed that a generic leaf of Riemann
surfaces laminations on compact spaces is homeormophic to one of the real
surfaces (1,2,3,4,5,6).
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Plan

Chapter 1 starts with a presentation of basic definitions and results about
singular holomorphic foliations F in compact complex manifolds. This chapter
presents the concepts of holonomy, which describes the behaviour of the leaves
in a neighborhood of a fixed leaf.

Chapter 2 begins with a survey of the classification of surfaces. In
particular, we present the classification of open surfaces due to Kerékjártó.
Then we restrict our attention to the normal covers and Cayley graphs
associated to a group, which acts properly discontinuously on a normal cover.
Next, we make a description of normal covers of bordered Riemann surfaces.
Particularly, we give a total description of abelian covers, which gives us a tool
for the topological description of generic leaves of a foliation with invariant
algebraic curve.

In Sections 1 and 2 of Chapter 3 we give a topological description of generic
leaves of Riccati foliations on projective surfaces and homogeneous foliations
in C2. In Section 3 we study the genus of leaves of dimension one singular
holomorphic foliations on a complex manifold with invariant compact complex
curve. In Section 4 we give the proof of Theorem 4.

Chapter 4 provides a detailed exposition of Theorems 1, 2 and 3.



Chapter 1

Preliminaries

We start this Chapter by recalling definitions of holomorphic foliations and
presenting some basic facts about them. Next we will also collect properties
of logarithmic and Riccati foliations. To do this, we follow [C-M], [Bn], [I-Y],
[L-S].

1.1 Foliations

There are several ways to define foliations. Here we introduce them following
[I-Y].

Definition 1.1.1. [I-Y] The standard holomorphic foliation of dimension n
(respectively of codimension m) of a polydisk

Dn+m = {(x, y) ∈ Cn × Cm
∣∣ |x| < 1, |y| < 1}

is the representation of Dn+m as the disjoint union of n-disks, called plaques,

Dn+m =
⊔
|y|<1

Ly, Ly =
{
{|x| < 1} × {y} ⊆ Dn+m

}
.

Definition 1.1.2. A holomorphic foliation F of dimension n of a complex
analytic manifold M of dimension n+m is a partition M = tαLα of the latter
into a disjoint union of connected subsets Lα, called leaves, which locally is
biholomorphic to the standard foliation of dimension n, i.e. each point p ∈ M
admits an open neighborhood U ′ and a biholomorphism φ : U ′ → Dn+m of U ′

onto the polydisk Dn+m, which sends the connected components of U ′ ∩ Lα,
to the plaques of the standard holomorphic foliation, i.e. for each α there is a
subset Y (α) of {|y| < 1} such that

φ(Lα ∩ U ′) =
⊔

y∈Y (α)

Ly.

The pairs {U ′, φ} are called trivial neighborhoods of F .

1



2 CHAPTER 1. PRELIMINARIES

Example 1.1.3. Let ω be a closed 1-form on a complex manifold Mn without
zeros. For each point p ∈ M we are able to choose an open neighborhood Up
where the Poincaré lemma holds for ω. Explicitly, there exists a holomorphic
function f : Up → C such that df = ω. By the implicit function Theorem, we
have a neighborhood U ′p ⊂ Up biholomorphic to polydisk Dn−1×D and f ◦ φ−1

has level hypersurfaces of the form {y = a}, where φ is the biholomorphism.
Therefore ω defines a holomorphic foliation F of dimension n− 1 on M .

Definition 1.1.4. A singular foliation of dimension n (or codimension m) in
a complex analytic manifold Mn+m is a holomorphic foliation F with complex
n-dimensional leaves in the complement M − Sing(F) of an analytic subset
Sing(F) of codimension ≥ 2, called the singular locus of F .

Example 1.1.5. Let M be a complex manifold and {Uj}j∈Λ an open covering
of it. Take a collection of holomorphic 1-forms ωj ∈ Ω1

M (Uj) with singular locus
Sing(ωj) of codimension ≥ 2 and such that

dωj ∧ ωj = 0 and ωj = fijωi on Ui ∩ Uj = Uij , fij ∈ O∗M (Uij).

By the Frobenius theorem, we have a foliation F of codimension 1 on the
complement of ∪jSing(ωj). By definition ∪jSing(ωj) is an analytic subset,
hence F is a singular foliation on M .

Definition 1.1.6. Let D be an analytic hypersurface of M and F be a foliation
defined by holomorphic 1-forms ωj ∈ Ω1

M (Uj) as above, where {Uj} is an open
cover of M . The hypersurface D is called F-invariant if and only if in each
open Uj the local equation {fj = 0} = D ∩ Uj satisfies

ωj ∧ dfj = fjη,

where η is a holomorphic 2-form in Ω2
M (Uj).

1.2 Holonomy

The holonomy defined below plays a central role in the topological description
of leaves of foliations. The following definitions agree with the ones given in
[I-Y] and [P-S].

Definition 1.2.1. A cross section to a leaf L of a foliation F of codimension m
on M at a point o ∈ M is a holomorphic map τ : (Cm, 0) → (M,o) transverse
to L. Very often we identify the cross section with the image of the map τ .

Definition 1.2.2. Let L be a leaf of a holomorphic foliation F and let τ , τ ′

be two cross sections at the points o, o′ ∈ L. Let also γ : [0, 1] → L be a path
connecting o = γ(0) to o′ = γ(1). We take an open finite cover {Uj} of γ([0, 1])
such that the flow-box theorem holds in each open Uj . One can take a partition
{0 = t0, t1, . . . , tk = 1} such that the image γ([tj , tj+1]) belongs to Uj . Consider
the cross sections τj , j = 0, . . . , k, τ0 = τ , τk = τ ′ to L at the points γ(tj). In
this way we define the correspondence map on γ|[tj ,tj+1]) as

hj : (τj , γ(tj)) → (τj+1, γ(tj+1))
α(τj) 7→ α(τj+1),
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where α(τj) = Lα ∩ τj , α(τj+1) = Lα ∩ τj+1. The set Lα is a connected leaf of
the foliation F restricted at Uj , such that if it is sufficiently close to L∩Uj then
intersects each cross section once. The composition

hγ = hk ◦ · · · ◦ h0 : (τ, o)→ (τ ′, o′)

is a holomorphic map, also called the holonomy map along the path γ.

Definition 1.2.3 (Holonomy representation). We take a point o on a leaf L of
a foliation F and a cross sections τ at o. Closed paths γ starting at o contained
in the corresponding leaf of the foliation induce germs of biholomorphisms hγ :
(τ, o) → (τ, o) which not depend on the homotopy class of the path. The
holonomy representation of π1(L, o) is the morphism defined by

Hol(L,F) : π1(L, o) → Diff(τ, o)
[γ] 7→ hγ ,

(1.1)

and the holonomy group of the foliation along L is the image of this map
(which will be confounded with the representation itself). Different points in
the leaf and different sections give rise to representations conjugated by germs
of holomorphic diffeomorphisms.

Example 1.2.4. [L-S] Let F be a singular foliation defined by a closed
holomorphic 1-form ω on a complex manifold Mn. Take a leaf
L ⊂ M − Sing(F) and a closed path γ : [0, 1] → L, γ(0) = γ(1) = o. We will
prove that the holonomy map on γ is trivial. The 1-form ω is closed and
regular in each point of γ, thus we can choose trivializing charts
{(xji ), Uj}j=1,...,r which is also an open finite cover of γ([0, 1]) satisfying:

i) the sets Uj ∩ Uj+1 are simply connected,

ii) ω|Uj = dxjn,

iii) {xjn = 0} ⊃ γ ∩ Uj .

By ii) the 1-form dxjn − dxj+1
n vanishes on Uj ∩ Uj+1, thus the function

xjn − xj+1
n is constant. Hence xjn and xj+1

n coincide in Uj ∩ Uj+1. Consider a
partition {0 = t1 < t2 < · · · < tr = 1} of [0, 1] such that γ(tj+1) ∈ Uj ∩ Uj+1.
Then we choose some transversals τj at γ(tj) with the property that

(xji )(γ([tj , tj+1])) × (xji )(τj+1) ⊂ Uj , and such that

(xji )(τj+1) = (xj1(γ(tj+1)), . . . , xjn−1(γ(tj+1)), xjn). Thus the holonomy in each
γ([tj , tj+1]) is trivial. Therefore the composition of them is trivial, which is the
holonomy on γ.

Example 1.2.5. Let F be a singular foliation on a complex surface M . By the
Camacho-Sad Theorem for each singular point p of a foliation F there exist at
least one separatrix, this means that for a neighborhood U of p there exist at
least one local leaf C ⊂ U such that p ∈ C̄ and C̄ ∩ U is an analytic set in U ,
which is F-invariant in U . Let τ a cross section at a regular point o ∈ C, thus
the holonomy map on a closed curve γ : I → C ∩ U around p and based on o
has the form

hγ(z) = exp(2πiCS(C, p))z + h.o.t.,

where CS(C, p) is the Camacho-Sad index of p in C.
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1.3 Closed logarithmic forms and logarithmic
foliations

As in the Example 1.1.5 we shall define logarithmic foliations by closed
logarithmic 1-forms. This subsection follows [Bn], [CkSoV], [I-Y], [L-S] and
[Pa2].

Definition 1.3.1. Let M be a connected complex manifold, and let D ⊂ M
be a union of complex hypersurfaces Dj . A closed logarithmic 1-form ω on M
with poles on D is a meromorphic 1-form with the following property: for any
p ∈ M there exists a neighborhood U of p in M such that ω|U can be written
as

ω0 +

r∑
j=1

λj
dfj
fj
, (1.2)

where ω0 is a closed holomorphic 1-form on U , λj ∈ C∗ and fj ∈ O(U) , and
{fj = 0}, j = 1, . . . , r, are the reduced equations of the irreducible components
of D ∩ U . The set D is known as the polar divisor of ω. The holomorphic
foliation F of M defined by ω is called logarithmic foliation.

The following result is an adaptation of the [I-Y, Theorem11.26] and [L-S]
for logarithmic foliations on complex manifolds M .

Theorem 1.3.2. The holonomy group associated with any leaf of a
logarithmic foliation F with poles in D = ∪Dj is abelian and linearizable (it is
isomorphic to a subgroup of C∗). Moreover, if M is simply connected then
Hol(Dj − Sing(F),F) is a subgroup of the group generated by {exp(2πiλkλj )},
where λj is the residue of each irreducible component Dj of D.

Proof. Let us first notice that a closed logarithmic 1-form ω on Mn is a closed
holomorphic 1-form in M −D. In particular the holonomy group of any leaf L
of F in M −D is trivial, as we proved in the Example 1.2.4. The hypersurfaces
Dj of Definition 1.3.1 without the singular locus of ω are leaves of F . Take a
trivializing chart (U, (xj)) around a regular point o in D1 − Sing(F) = D′1 such
that passing to the chart (xj) we have D′1 ∩ U = {xn = 0}. In this chart the
leaves are {xn = const.}, therefore we can write ω as the 1-form

λ1
dxn
xn

+ g(x1, . . . , xn)dxn,

where g(x1, . . . , xn)dxn is a holomorphic 1-form. The 1-form ω is closed, thus
g depend only of xn. Consider the primitive h of λ−1

1 g(xn)dxn, we have

λ1
dy

y
= λ1

dxn
xn

+ g(xn)dxn, y = xn exp(h).

Take a closed path γ : [0, 1] → D′1 with γ(0) = o, thus by Example 1.2.4
and the equation above we can take an open cover {Uj , (xji )} and a partition
{0 = t1, . . . , tk = 1} of γ satisfying:

i) the sets Uj ∩ Uj+1 are simply connected,
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ii) γ([tj , tj+1]) ⊂ Uj

iii) ω|Uj = λj1
dxjn
xjn

iv) {xjn = 0} ⊃ γ ∩ Uj ,

also we take the transversals τj as in Example 1.2.4. At the intersection Uj∩Uj+1

we have that

λj1
dxjn

xjn
= λj+1

1

dxj+1
n

xj+1
n

.

The residues are equal around zero, thus λj1 = λj+1
1 . Writing the holonomy

hj : τj → τj+1 and the equations

dxj+1
n

xj+1
n

=
h′j(x

j
n)dxjn

hj(x
j
n)

=
dxjn

xjn
,

we obtain that xjnh
′
j(x

j
n) = hj(x

j
n), thus h′j is constant. Therefore hγ is linear.

Since the charts only depend of ω, we can choose the same chart (U, (xj)) around
o for any path γ ∈ π1(D′1, o). Consequently, Hol(D1,F) is abelian and linear.

Let γ̃ be the lifting of γ to a leaf L ∩ {∪Uj} such that γ̃(0) = z ∈ τ and
γ̃(1) = hγ(z). Define a path α : I → τ joining z and hγ(z) without passing
through o. Consider the integral∫

γ̃∗α
ω =

∫
γ̃

ω +

∫
α

ω =

∫
α

λ1
dz

z
= 2πiµ,

where µ is a finite integer combination of the residues λj of ω. Hence hγ(z) =
exp(2πiµ/λ1)z.

We now assume that M is simply connected. Thus the residues of ω only can
be the residues λj of each irreducible component Dj of D, which is the desired
conclusion.

Consider the complex projective space Pn, with homogeneous coordinates
x0, . . . , xn. Codimension one foliations on Pn are defined in homogeneous
coordinates by

ω =

n∑
0

Fjdxj ,

where {Fj} are homogeneous polynomials of the same degree satisfying

n∑
j=0

Fjxj = 0, dω ∧ ω = 0 and codim(Sing(ω)) ≥ 2.

Definition 1.3.3. Without the condition
∑
Fjxj = 0, the 1-form defines a

foliation on Cn+1 known as homogeneous foliation, which can be extended to a
foliation on Pn+1.

We will study these foliations in Chapter 3.

Definition 1.3.4. The degree of a codimension one foliation F on Pn, degF ,
is the number of tangences of the leaves of F with a generic one-dimensional
linear subspace of Pn.
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It is easy to check that deg(F) = d − 2 if the 1-form defining F has
components Fj of degree d − 1. In this way a logarithmic foliation on Pn can
be seen as

ω =

r∏
j=0

Fj

r∑
j=0

λj
dFj
Fj

=

r∑
j=0

λjF̂jdFj

for some homogeneous polynomials Fj of degree dj and λj ∈ C such that∑
λjdj = 0. The next statement from [CkSoV, Theorem 3] shows us the kind

of singular locus of a logarithmic foliation in Pn (n ≥ 3) when the
hypersurfaces defined by Fj = 0 are smooth and in general position, and
λj 6= 0 for all j = 0, . . . , r.

Theorem 1.3.5. Let F be a logarithmic foliation on Pn, with n ≥ 3, given by

ω =

r∑
j=0

λj
dFj
Fj

,

and satisfying that the irreducible components of the polar divisor are smooth
and intersect transversely, λj 6= 0, j = 0, . . . , r. Then the singular locus Sing(F)
can be written as a disjoint union

Sing(F) = Z ∪R

where

Z = ∪i 6=jDi ∩Dj

and R is a finite set.

Definition 1.3.6. A hypersurface D of a complex manifold Mn is simple
normal crossing divisor if each of its irreducible components Dj , where
∪j=1,...,lDj = D, is smooth and locally near of each point D can be
represented in a chart (z1, . . . , zn) : U → M as the locus {z1 · · · zk = 0} with
1 < k ≤ n.

Lemma 1.3.7. Let ω a closed logarithmic 1-form in a smooth projective variety
X. If the polar locus D ⊂ X of ω is simple normal crossing and a singular point
p is not in Sing(D). Then the connected component Sp of {x ∈ X|ω(x) = 0},
which contains p, has empty intersection with D, i.e. Sp ∩D = ∅.

Proof. [CkSoV] Suppose that Sp ∩D is non empty. Let q be a point in Sp ∩D.
Since ω is a closed logarithmic 1-form with simple normal crossing polar divisor,
there is a coordinate chart (U, (xj)) of q such that ω can be written as

k∑
j=0

λj
dxj
xj

+ dh,

where k ≤ dim(X) and h is a holomorphic function. Consider the change of
coordinates given by

y0 = exp(h/λ0)x0 and yj = xj if j ∈ {1, . . . , k}.
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In this new coordinates ω looks like

(y−1)∗ω =

k∑
j=0

λj
dyj
yj
. (1.3)

If k is equal zero, formula (1.3) implies that q is a regular point contradicting
our assumption.

Since k is greater than 1, formula (1.3) shows that the singularities of ω in
the chart U are contained in ⋃

i 6=j

Di ∩Dj ,

with i, j = 0, . . . , k. By the compactness of Sp, we have a finite number of this
coordinates charts (Ui, (x

i
j)) covering Sp. Therefore, the set Sp is contained in

the union of intersections of irreducible components of D. This contradicts our
assumption.

1.4 Riccati Foliations

The aim of this subsection is to introduce a family of foliations known as Riccati
foliations, following [L-M], [GM] and [Bn].

Consider a 2-dimensional vector bundle V and a meromorphic connection
∇ over an analytic smooth curve Σg of genus g. Over a trivializing chart
(z, (y1, y2)) : U ⊂ V→ D× C2 of V, we have the meromorphic system

d

dz

(
y1

y2

)
=

(
a(z) b(z)
c(z) d(z)

)(
y1

y2

)
defined by ∇. Take the projectivization PV of V, the flat sections of the
meromorphic connection ∇ can be projected on PV = M , which in affine
coordinate (y : 1) = (y1, y2) results in solutions of the Riccati equation

dy

dz
= −c(z)y2 + (a(z)− d(z))y + b(z).

As ∇ is integrable this projection defines a foliation F known as Riccati foliation
with respect the projection π : M → Σg with fiber P1 (see [Bn, p.50] for more
details). Analogously to Example 1.1.5, we define in a trivialization {Uα} of F
a collection of holomorphic vector fields {vα}

vα = fαβvβ on Uα ∩ Uβ ,

where vα is the vector field defining F in Uα. In our case in the trivial chart
the vector field looks like

∂z + (−c(z)y2 + (a(z)− d(z))y + b(z))∂y.

We introduce the tangent bundle TF of F as the line bundle on the total space
M defined by the collection {f−1

αβ } of nonvanishing holomorphic function.

From the homological point of view, we can associate an element of H2(M,Z)
to each line bundle over M . Since M is a ruled surface, H2(M,Q) is generated
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by the homology class of σh and F ; where σh is any holomorphic section and F
is any fibre. Let us choose σh ∈ H2(M,Z) with self-intersection:

σh · σh = 0, F · F = 0, and F · σh = 1.

By the local representation of the Riccati foliation F we know that the generic
fibre F is transversal to the foliation. We conclude from the formula for not
F-invariant compact curve C, [Bn, Proposition 2,p.23],

TF · C = C · C − tang(F , C) (1.4)

that TF · F = 0.

Considering the exact sequence

0→ TF → TM → π∗(TΣg)→ 0, (1.5)

where TF ↪→ TM is the subline bundle defined as the kernel of the Jacobian of
π. Also we have the following commutative diagram

TF

�� !!
0 // TF // TM

Dπ // N // 0;

where N = π∗(TΣg).

Example 1.4.1. Let ρ : C̃ → C be the universal cover of a compact complex
curve C and π1(C) be the fundamental group of C. Consider a representation

% : π1(C)→ PSL(2,C),

where the image %(γ) of an element γ ∈ π1(C) is an automorphism of P1. We
define the action of π1(C) on C̃ × P1 to be the left action

π1(C)× (C̃ × P1) → C̃ × P1

(γ, (z, w)) 7→ (ψγ(z), %(γ)(w)),

where ψγ ∈ Aut(C̃, ρ) is given by the isomorphism between π1(C) and the group

of deck transformations Aut(C̃, ρ). Since the action of π1(C) on C̃ × P1 is free
and properly discontinuous, we have that the quotient space

M = C̃ × P1/π1(C)

is a complex surface. This construction is known as the suspension of the
homomorphism %. The foliation on C̃×P1 with leaves C̃×{w}, for all w ∈ P1, is
invariant by the action of π1(C). Therefore, it passes to a holomorphic foliation
F of M . By [Cnd-Cln, Theorem 3.1.4,v.I] the foliation F is a Riccati foliation
with adapted fibration π : M → C, where π is given by

C̃ × P1 //

##

M

π

��
C

.
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Proposition 1.4.2. [GM]Let F be a Riccati foliation with TF = aF , then

1 Counting multiplicities there are 2−2g−a ≥ 0 fibres of the ruling that are
leaves of the foliation (after removing the singular points on them), and all
the rest of the leaves of the foliation intersect transversely the remaining
fibres of the ruling.

2 After removing the fibres that are leaves of F , the foliation is obtained by
suspending a representation % : π1(Σg,r)→ PSL(2,C).

Proof. (1) We know that F can be thought as a section of T ∗F ⊗TM , but by the
above commutative diagram also it induces a section of T ∗F ⊗N , which zeros are
the F-invariant fibres. Thus the intersection number T ∗F ⊗N · σh = 2− 2g − a
is the number (counted with multiplicities) of F-invariant fibres.

(2) Let {F1, . . . , Fr} be the F-invariant fibres and pj = π(Fj) their
projections. We choose a leaf L of the foliation and a point o therein. As L is
a regular covering of Σg − {p1, . . . , pr} = Σg,r we can lift a curve
γ : [0, 1] → Σg,r with γ(0) = π(o). The holonomy on the lifting γ̃ of a
representant γ of π1(Σg,r, π(o)) and the transversality of the fibres give us that
hγ̃ is a biholomorphis of P1. Hence we can define the morphism

% : π1(Σg,r, π(o))→ PSL(2,C).

Then the foliation F in M − {F1, . . . , Fr} = M∗ is biholomorphic to the
suspension of %.

Brunella [Bn, p.52-56] gives a study of invariant fibres, which is resumed in
the following proposition.

Proposition 1.4.3. [Bn, p.56] Let F be a Riccati foliation on a compact
connected surface M , with adapted fibration π : M → Σg. Then there exists a
birational map f : M 99KM ′ such that:

i) f is biregular on M∗; in particular, the transform F ′ of F by f is still
Riccati, with adapted fibration π′ = π ◦ f−1 : M ′ → Σg;

ii) π′ has no singular fibre;

iii) each F-invariant fibre of π′ belongs to one of the following classes:

iii.1) nondegenerate fibre: around the fibre, the foliation has equation

λwdz − zdw = 0 (z, w) ∈ D× P1, λ /∈ Z

or
dz − zdw = 0 (z, w) ∈ D× P1;

iii.2) semidegenerate fibre: the fibre contains two saddle nodes, of the same
multiplicity, whose strong separatrices are contained in the fibre;

iii.3) nilpotent fibre: the fibre contains only one singularity, generated by a
vector field with nilpotent and nontrivial linear part.
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Chapter 2

Topology of Riemann
Surfaces

This chapter presents a description of the normal covers of orientable bordered
surfaces, particularly abelian covers, via Cayley graphs. We show the following
result

Theorem 2.0.1. If X̃G(Σg,n) is an infinite normal cover of a compact surface

of genus g minus n points, Σg,n. Then X̃G(Σg,n) is homeomorphic to one of
the following surfaces

1) the plane,

2) the Loch Ness monster,

3) the cylinder,

4) the Jacob’s ladder,

5) the Cantor tree,

6) the blooming Cantor tree,

7) the plane without an infinite discrete set

8) the Loch Ness monster without an infinite discrete set,

9) the Jacob’s ladder without an infinite discrete set

10) the Cantor tree without an infinite discrete set,

11) the blooming Cantor tree without an infinite discrete set.

Although this result seems to be well-known we could only find in the
literature a proof for normal covers of compact Riemann surfaces [G1]. We use
Kerékjártó’s classification of non-compact Riemann surfaces together with
standard in geometric group theory to deduce it. It is worthwhile mentioning
that the classification of infinite normal cover of compact Riemann surfaces
coincides with Ghys’ classification of generic leaves of laminations by Riemann
surfaces of compact spaces.

11
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2.1 Compact Riemann surfaces

We recall that every compact surface S can be constructed from a polygon P2n

with 2n-sides by identifying pairs of edges. The 2n edges of the polygon
become a union of n circles in the surface, all intersecting in a single point.
The interior of the polygon can be thought of as open disk attached to the
union of the n circles. Choose a orientation of the boundary of P2n. A pair of
edges identified will be labeled by the letter a if the direction for attaching
correspond to the orientation ∂P2n or a−1 if it is counter the orientation.

Figure 1

a1

a2 b2

b1a1

b−1
2

b1

a−1
1

b−1
1

a2

b2

a−1
2

π

Example 2.1.1. We will name the boundary with a ”word” formed by the
labels of the edge, as shown in the examples below.

a) The sphere corresponds to a polygon with two edges and boundary cc−1.

b) The real projective plane corresponds to a polygon with two edges and
orientation cc.

c) The torus corresponds to a polygon with four edges and boundary
aba−1b−1.

d) The orientable compact surface Σg of genus g corresponds to a polygon
with 4g edges and boundary a1b1a

−1
1 b−1

1 · · · agbga−1
g b−1

g . The figure above
shows the case g = 2, where π is the attaching map.

Note that this representation is not unique. The sphere also corresponds to a
polygon of four edges with boundary abb−1a−1.

Two surfaces are homeomorphic if and only if they have the same Euler
characteristic, and are either both orientable or else both nonorientable. The
classification theorem of closed surfaces states that any connected closed surface
is homeomorphic to some member of one of these three families:

a) the sphere;

b) the connected sum of g tori, for g ≥ 1;

c) the connected sum of k real projective planes, for k ≥ 1.
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2.2 Non-compact Riemann surfaces

Definition 2.2.1. A compact connected surface S is called a bordered surface
if it is homeomorphic to a closed subset U of a compact surface Σg and Σg −U
is the union of k connected sets, where each component is homeomorphic to the
disk and with k <∞.

We are able to associate to a bordered surface S a polygon Pn with n-sides
by identifying pairs of edges and leaving free some edges. In this case there are
edges without association to any letter or direction, and this edges correspond
to arcs of boundary curves. This identification in Pn gives a compact surface
with boundary. The bordered surfaces are classified by the next theorem due
to Brahana.

Theorem 2.2.2. [B] Two triangulated bordered surfaces are homeomorphic if
and only if they both have the same number of boundary curves, the same Euler
characteristic, and are either both orientable or else both nonorientable.

According to Brahana Theorem any compact surface S, with or without
border, is homeomorphic to a connected sum of the sphere with m tori and n
real projective planes and a finite number of open disks removed. We define the
genus g(S) of S as follows:

g(S) =

{
1
2 (2− χ(S)− r) if S is orientable

2− χ(S)− r if S is nonorientable,

where χ(S) is the Euler characteristic of S and r the number of boundary
components of S. From the above theorems we have three topological invariants
of a compact surface with or without boundary: the orientability, the number
of boundary curves and the genus. In particular, the interior of a bordered
surface is classified by this invariants. But not every separable non-compact
surface is a subset of a compact surface. The canonical counterexample is the
Loch Ness monster, which is a non compact surface with infinite genus obtained
from C by attaching a infinite number of handles. It is necessary to consider
the invariants defined below in order to state the classsifiation of non compact
surfaces. We will present the classification following the works [R, G1, G2]. In
what follows, we will call by a bordered surface a compact surface with boundary
or its interior.

Definition 2.2.3. A boundary component of a surface S is a nested sequence
P1 ⊃ P2 ⊃ · · · of connected unbounded regions in S such that:

i) the boundary of Pn in S is compact for all n;

ii) for any bounded subset A of S, this is that the closure of A in S is compact
in S, Pn ∩A = ∅ for n sufficiently large.

We say that two boundary components P1 ⊃ P2 · · · and P ′1 ⊃ P ′2 · · · are
equivalent if for any n there is a corresponding integer N such that Pn ⊂ P ′N
and vice versa. The equivalence class e∗ is called an end of S.
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Definition 2.2.4. The ideal boundary Ends(S) of a surface S is the topological
space having the ends of S as elements, and endowed with the following topology:
for any open subset U ⊂ S whose boundary in S is compact, we define U∗ to be
the set of all ends e∗, represented by some e = P1 ⊃ P2 · · · , such that Pn ⊂ U
for n sufficiently large; we take the set of all such U∗ as a basis for the topology
of Ends(S).

A surface is called planar if every compact subsurface in it is of genus zero.

Definition 2.2.5. Let e∗, represented by e = P1 ⊃ P2 · · · , be an end of S.
We say that e∗ is planar and/or orientable if the sets Pn are planar and/or
orientable for all sufficiently large n.

Following Definition 2.2.5, we shall consider the ideal boundary to be a
nested triple of sets Ends(S) ⊃ Ends′(S) ⊃ Ends′′(S), where Ends(S) is the
whole ideal boundary and:

a) If e∗ ∈ Ends′(S) then for any representative e = P1 ⊃ P2 · · · there is N ∈
N such that Pn is not planar for n > N , i.e., there exist a bounded subset
A in Pn, which closure is compact bordered surface in S and considering
that A is a bordered surface we have that it has genus zero, g(A) = 0.

b) If e∗ ∈ Ends′′(S) then for any representative e = P1 ⊃ P2 · · · there is
N ∈ N such that Pn is not orientable for n > N , this implies that there
exist a bounded subset A of Pn, which closure is compact in S and it is
nonorientable.

Definition 2.2.6. A noncompact surface S is of infinite genus and/or infinitely
nonorientable if there is no bounded subset A ⊂ S such that S − A is of genus
zero and/or orientable.

Remark 2.2.7. Definitions above do not depend on the representative e chosen
for the equivalence class e∗.

Definition 2.2.8. We define four orientability classes of surfaces. The surface S
may either orientable or nonorientable. If for any compact subset K ⊂ S, S−K
is nonorientable we say that S is infinitely nonorientable. If for some compact
subset K, S −K is orientable, then S is called of even or odd nonorientability
according as K contains a subset homeomorphic to a connected sum of an even
or an odd number of real projective planes without a disk.

Now we can state Kerékjártó’s Theorem, see [R] for more details.

Theorem 2.2.9. Let S and S′ be two separable surfaces of the same genus and
orientability class. Then S and S′ are homeomorphic if and only if their ideals
boundaries (considered as the triples of spaces (Ends(S),Ends′(S),Ends′′(S)))
are topologically equivalent.

Remark 2.2.10. Using the Stone Representation Theorem William S.
Massey proved that the boolean ring of continuous functions from Ends(S) to
Z2 is isomorphic to H0

e (S,Z2). Where Hq
e stands for the Alexander-Spainer

cohomology. Recall that from the very definition of Alexander-Spainer
cohomology, H0

e (S,Z2) is the ring of functions from S to Z2 continuous outside
a compact set. This study of Massey gives the following statement.
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Lemma 2.2.11. Let {Uα}α∈∆ be the collection of subsets of S having compact
complement. For every α there is a map φ : Hq(Uα) → Hq

e (S) and the direct
limit of Hq(Uα) (with respect to the maps i∗ : Hq(Uα′) → Hq(Uα) induced by
inclusions Uα ⊂ Uα′) is isomorphic to Hq

e (S).

From this lemma we obtain the following result, which will be use throughout
this text.

Lemma 2.2.12. Let S be a separable non-compact surface. Suppose that for
every compact K ⊂ S there exist a compact K ⊂ K ′ ⊂ S such that S −K ′ has
n connected components. Then Ends(S) is a set of n points.

Proof. By the above, we can construct a exhaustion {Kj} such that the number
of components of the complement of each Kj in S is n. We will denote by Uj
the subset S−Kj . Applying the Lemma 2.2.11 to the collection {Uj} it follows
that Ends(S) is a set of n points.

2.3 Cayley graphs and covering spaces of a
bouquet of circles

This subsection presents some relations between groups and topology of graphs,
like in Geometric Group Theory and Combinatory Topology, which support the
further development in this text.

We start by recalling some basic definitions about normal covering spaces
of topological space X. These kind of spaces include surfaces and the Cayley
graphs defined below.

Definition 2.3.1. Let X be a topological space. A normal covering space of
X is a topological space X̃ with a surjective map ρ satisfying the following
conditions:

∗ For each point p ∈ X there exist a neighborhood U such that ρ−1(U) is a
disjoint union of open sets in X̃, each of which is mapped by ρ
homeomorphically onto U .

∗ For each x ∈ X and each pair of points x̃, x̃′ in ρ−1(x) there is a
automorphism g : X̃ → X̃ taking x̃ to x̃′, such that ρ ◦ g(x) = ρ(x) for all
x ∈ X̃. These automorphisms form a group Aut(X̃, ρ).

Remark 2.3.2. These are also called regular coverings, and omitting the last
condition we obtain the usual definition of covering space.

Proposition 2.3.3. [H, Prop.1.36] Let X a path-connected and locally path-
connected topological space. Then for every normal subgroup H < π1(X,x0)
there is a normal covering space ρ : XH → X such that ρ∗(π1(XH , x̃0)) = H
for a suitably chosen base point x̃0 in XH and Aut(XH , ρ) ' π1(X,x0)/H.

Proposition 2.3.4. [H, Prop.1.37] If X is a path-connected and locally path-
connected topological space, then two normal covering spaces ρ1 : X̃1 → X
and ρ2 : X̃2 → X are homeomorphic via a homemorphism f : X̃1 → X̃2
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taking a base point x̃1 ∈ ρ−1
1 (x0) to a base point x̃2 ∈ ρ−1

2 (x0) if and only
if ρ1∗(π1(X̃1, x̃1)) = ρ2∗(π1(X̃2, x̃2)).

Definition 2.3.5. Let ρu : X̃ → X the universal covering map, i.e.
ρu∗(π1(X̃, x̃)) is the trivial subgroup of π1(X,x). A fundamental domain of
this cover is a subset D ⊂ X̃ such that

1. the union of γD over all γ ∈ π1(X,x) covers X̃,

2. the collection γD◦ is mutually disjoint,

3. ρu(D) = X and the restriction ρu|D◦ : D◦ → X is homeomorphic onto its
image.

The image ρu(D◦) will be confunded with the fundamental domain itself.

Definition 2.3.6. Given a group G and a generating set S = {a1, . . . , ar}, one
defines the Cayley graph of G with respect to S. This is a graph Cayley(G;S)
such that

a) its set of vertices is G;

b) its set of edges is (g, gaj), with aj ∈ S.

Example 2.3.7. The next figure represents the Cayley graphs for Z2 with
respect to the canonical basis Sc2 = {(1, 0), (0, 1)} and for the free group F2

with respect to the set of generators S2 = {a1, a2}

Figure 2

Cayley(Z2,Sc2) Cayley(F2,S2)

Definition 2.3.8. Let H be a normal subgroup of G. The quotient graph of
Cayley(G,S) by H is the graph Cayley(G,S)/H such that

a) its set of vertices is G/H;

b) its set of edges is (Hg,Hgaj), with aj ∈ S. It may happen that g, gaj
defines the same class Hg′. In this case the edge (Hg,Hgaj) is a loop.
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Example 2.3.9. Recall that the wedge sum ∨nk=1S
1
ak

of n circles is called
a bouquet of circles. Both graphs in Figure 2 are normal covering spaces of
∨2
k=1S

1
ak

. Since Cayley(F2,S2) is simply connected, it is a universal cover of
∨2
k=1S

1
ak

. By Proposition 2.3.3 there exists a group H acting on Cayley(F2,S2),
such that Cayley(F2,S2)/H ' Cayley(Z2,Sc2).

If Cayley(G,S) is a normal cover of some space ∨nk=1S
1
ak

then the quotient
graph by the normal subgroupH < G still is a normal covering space of ∨nk=1S

1
ak

.
The group of automorphism of this cover is G/H.

Example 2.3.10. The next figure shows different quotients of the form

Cayley(Z2,Sc2)
/

(a, b)Z,

with gcd(a, b) = 1 and a 6= 0 6= b, and also the case a = 0, b = 1.

Figure 3

a = 0, b = 1

a = 1, b = 1

a = 2, b = 1

a = 3, b = 1

All these graphs are normal covering space of ∨2
k=1S

1
ak

with automorphism
group

Aut
(
Cayley(Z2,Sc2)

/
(a, b)Z, ρ

)
isomorphic to Z.

Definition 2.3.11. A path αv,w in a graph Γ connecting the vertex v to the
vertex w is a finite sequence of edges {ej}j=1,...,n, such that ∪nj ēj is connected
and contains v and w. The length |αv,w| of αv,w is the number of differents
edges in {ej}.

Definition 2.3.12. (Word metric) Let Cayley(G,S) be a Cayley graph with
vertices V and edges E. Then the map

d : V × V → R≥0

(v, w) 7→ min{r ∈ N| r = |αv,w| for some path αv,w}.

The map d is a metric on V . A ball B(N, v) of radius N ∈ N at a vertex v in
this metric will be the union ∪wαv,w, where |αv,w| ≤ N .

Let ρ : S̃ → S be a normal covering of a orientable closed surface S and
G = Aut(S̃, ρ) be the group of automorphisms of the cover. We know that G is
generated by the automorphisms

ψj : (S̃, õ)→ (S̃, õj),
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where õj is the end point of the lift in a fixed point õ ∈ ρ−1(o) of a generator γj
of π1(S, o). Therefore, we can associate the Cayley graph of G with generating
set {ψj} to the cover ρ : S̃ → S as follows:

∗ its set of vertices is ρ−1(o).

∗ its set of edges is the lift of γj at õ with end point ψj(õ), where õ ∈ ρ−1(o)
and ψj defined as above.

When S is compact the group G is called cocompact.

Definition 2.3.13. Let G be a group acting properly discontinuous on a surface
S̃. If G is cocompact we define ends of G as follows

Ends(G) = Ends(S̃)

.

The definition above is equivalent to [Lo, Definition 8.2.1] but phrased in a
slightly different manner, more adapted for our purposes.

We can associate a surface S̃ to a Cayley graph of a finitely generated group
G with generating set {aj}j=1,...,k as follows. Take an embedding of

∨
j S

1
aj in

R3 and a tubular neighborhood N of it. The boundary of N is a compact surface
S. We take the normal cover S̃ of S with automorphism group isomorphic to G.
This implies that any finitely generated group G is the group of automorphisms
of a normal covering S̃ → S of a compact Riemann surface.

Hopf [Hp] proved that any normal cover S̃ of a compact space S must have
either zero or one or two or a Cantor set of ends. From the definition of Ends(G),
it follows the next result.

Theorem 2.3.14 (Possible number of ends of groups.). [Lo, Theorem 8.2.8]
Let G be a finitely generated group. Then G has 0, 1, 2 or infinitely many ends.

This facts and the classification of open surfaces lead to the following
statement.

Theorem 2.3.15. [G1, Theorem 15.2] If S is an infinite normal covering
surface of an orientable closed surface Σg, with g > 0, then S is homeomorphic
to one of the following six surfaces:

1) the plane,

2) the Loch Ness monster, i.e. a plane having infinite handles, Ends(S) =
Ends′(S),

3) the cylinder,

4) the Jacob’s ladder, i.e. a cylinder having handles converging to both ends,
Ends(S) = Ends′(S),

5) the Cantor tree, i.e. a sphere without a Cantor set or a branching tree,

6) the blooming Cantor tree, i.e. a branching tree with handles converging to
each end, Ends(S) = Ends′(S).
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We will also make use of the following nontrivial result.

Theorem 2.3.16. [Lo, Theorem 8.2.9]

1. A finitely generated group has no ends if and only if it is finite.

2. A finitely generated group has exactly two ends if and only if it is virtually
Z.

3. Stallings’s decomposition theorem A finitely generated group has infinitely
many ends if and only if it is a nontrivial free amalgamated product over
a finite group or if it is a nontrivial HNN-extension over a finite group.

Remark 2.3.17. From item 3. it follows that abelian groups G have no ends,
one end or two ends.

2.4 Normal and abelian covers

We will now restrict our attention to normal covers of orientable compact
surfaces of genus g minus n points, Σg,n.

A normal cover ρG : X̃G(Σg,n)→ Σg,n is quotient of the universal cover Σ̃g,n
of Σg,n by normal subgroups G < π1(Σg,n, o). They are given by covering maps

πG : Σ̃g,n → X̃G(Σg,n), with automorphism group Aut(Σ̃g,n, πG) isomorphic to
G. We associate the quotient Cayley graph

Cayley(π1(Σg,n, o))
/
G

to each X̃G(Σg,n). Notice that G is the kernel of the morphism

%G : π1(Σg,n, o) → Aut(X̃G(Σg,n), ρG)
γ 7→ ψγ ,

(2.1)

where ψγ is the automorphism taking õ0 ∈ ρ−1
G (o) to the end point õ1 ∈ ρ−1

G (o)
of the lift γ̃ of γ starting at õ0.

Definition 2.4.1. An abelian cover of a manifold S will be a normal covering
space

ρG̃ : X̃G̃(S)→ S,

such that the group Aut(X̃G̃(S), ρG̃) is an abelian group. Let G be an abelian

subgroup of π1(S)/[π1(S), π1(S)] corresponding to the subgroup G̃ < π1(S), we
will denote by

ρG : AG(S)→ S

the above abelian cover. We will write it simply A(S) when G is trivial, and in
this case A(S) is called the maximal abelian cover.

Example 2.4.2. The universal cover of
∨n

S1 is the Cayley graph of the free
group Fn generated by a set of n elements, Sn = {a1, . . . , an}. Abelian covers
of
∨n

S1 come from the quotient of Cayley(Fn,Sn) by normal subgroups G̃ /
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π1(
∨n

S1) = Fn containing the commutator subgroup [Fn, Fn]. The group of
automorphism of the cover Cayley(Fn,Sn)

/
G̃ with projection

ρG̃ : Cayley(Fn,Sn)
/
G̃→

n∨
k=1

S1
ak

is isomorphic to group Fn/G̃. As the quotient group Fn/[Fn, Fn] is isomorphic
to Zn we have that the maximal abelian cover A(

∨n
S1) is Cayley(Zn,Scn).

According to Proposition 2.3.3 the abelian covers AG(
∨n

S1) are associated
to the quotient of Cayley(Zn,Scn) by subgroups G of Zn. We can visualize
Cayley(Zn,Scn) as Zn inside of Rn and Scn as translations by vectors of the
canonical basis of Rn, i.e. Scn = {vj = (δ1j , . . . , δnj)}nj=1. The case n = 2 is
illustrated by Figures 2 and 3. In what follows, Cayley(Zn) denotes the Cayley
graph Cayley(Zn,Scn) .

2.4.1 Proof of Theorem 2.0.1

Note that for finite normal covers of Σg,n, we can complete these to finite
ramified covers. Thus the topological classification of finite normal covers is
given by the Riemann-Hurwitz formula. To prove Theorem 2.0.1 about infinite
normal covers, we will describe the sets Ends(X̃G(Σg,n)) and

Ends′(X̃G(Σg,n)), which are topological invariants of the classification of open
orientable surfaces.

We begin by recalling some definitions and facts.

Definition 2.4.3. Let K be a compact bordered subsurface in S, it is called
canonical subsurface if it has the following properties:

i) the closure of each connected component U of S −K is non-compact and
meets K in exactly one simple closed curve.

ii) each connected component of S −K is either planar or of infinite genus.

Moreover, a collection K0,K1, . . . of canonical subsurfaces of S such that S =
∪∞j=0Kj and Kj ⊂ Int(Kj+1), it is called canonical exhaustion.

When n > 0 there is a continuous retraction R from Σg,n to the wedge sum
of 2g + (n − 1) circles S1

ak
touching at a single point o ∈ Σ◦g,n, denoted by∨2g+n−1

k=1 S1
ak

. The map

R : Σg,n →
2g+n−1∨
k=1

S1
ak

(2.2)

induces an isomorphism between the fundamental groups π1(Σg,n, o) and

π1(
∨2g+n−1
k=1 S1

ak
, o). The group is generated by the homotopy class of each

circle S1
ak

and it is the free group F2g+n−1,

F2g+n−1 :=
{
bx1
1 · · · b

xk
k · · · b

xl
l

∣∣xk ∈ Z, bk ∈ {a1, . . . , a2g+n−1} and l ∈ N
}
.
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Definition 2.4.4. Let γ be a simple closed curve in a non-compact surface
Σg,n = Σg,0 − {p1, . . . , pn} around a point pj ∈ {p1, . . . , pn}, we call it a border
cycle. Its homotopy class [γ] is called a boundary class (which will be confounded
with the curve itself).

Now, we can state our first result.

Lemma 2.4.5. Let G be the kernel of %G, defined as in 2.1, and let γ a border
cycle of Σg,n, n > 0. If there exists a ∈ Z∗ such that γa ∈ G then

Ends(X̃G(Σg,n)) contains a subset of planar ends with discrete topology.

Otherwise, if there is no border cycle with this property then Ends(X̃G(Σg,n))
is a single point.

Proof. Let γ̃ the lift of γ in X̃G(Σg,n) through a point õ ∈ ρ−1
G (o). Assume that

γa ∈ G for some a ∈ Z∗ and |a| is minimal with this property . Therefore γ̃a is
a closed curve and a finite cover of γ, which is boundary of a pointed disk D∗ =
D−p in Σg,n. The inverse image of D∗ under ρG has a connected component D̃,

whose boundary in X̃G(Σg,n) contains γ̃a. Hence D̃ is a finite normal cover of

D∗. Therefore D̃ give us an element open and closed in Ends(X̃G(Σg,n)), which
is planar. In the same manner we can see that each connected component
of ρ−1

G (D∗) give us an planar end, which is an element open and closed in

Ends(X̃G(Σg,n)), hence Ends(X̃G(Σg,n)) contains a subset of planar ends with
discrete topology.

In the case that no boundary class is in the kernel G, we take a compact
subset K in X̃G(Σg,n) and let Γ be the Cayley graph corresponding to X̃G(Σg,n).
By [H, Proposition 1.33] there exists a lifting of the retraction R (2.2)

R̃ : X̃G(Σg,n)→ Γ,

Since Γ is the Cayley graph of π1(Σg,n, o)/G there exist a compact KΓ such that

the image R̃(K) ⊂ KΓ and either Γ−KΓ is connected or it has finite connected
components. Therefore there is a compact connected neighbourhood K ′ of KΓ

in X̃G(Σg,n) such that K ⊂ K ′ and R̃|K′ is a retraction from K ′ to KΓ. Since
ρ(K ′) is compact in Σg,n, we are able to choose a representative γ of a border
cycle which is simple (no self-intersections) does not meet ρ(K ′). Since no
boundary class is in G, we have that ρ−1(γ) is the union of unbounded curves,
which does not intersect K ′. Thus we can follow an unbounded connected
component of ρ−1(γ) to connect any two points in X̃G(Σg,n) − K ′. We can

apply Lemma 2.2.12 to conclude that Ends(X̃G(Σg,n)) is a single point.

Remark 2.4.6. Think of the surface Σg,n, with g, n > 0, as a punctured
polygon Pn4g ⊂ P4g of 4g edges without n points {p1, . . . , pn} of its interior and

with boundary a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g . We can choose the generators of
Σg,n to be {a1, b1, . . . , ag, bg, c1, . . . , cn−1}, where aj , bk correspond to the edges
of Pn4g and the curves cj ,with j = 1, . . . , n are the cycles around each point pj .
These generators of π1(Σg,n) will be called canonical generators and they have
the following intersection indices:

aj ∩ bk =

{
0 if j 6= k

1 if j = k
,
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the autointersection index is zero for any curve aj , bj and cj and

cj ∩ ak = 0 = cj ∩ bk for any

{
j ∈ {1, . . . , n}
k ∈ {1, . . . , g}

.

To prove the Theorem 2.0.1, we need a better understanding of the set End′

of normal covers.

Lemma 2.4.7. For any infinite normal cover X̃G(Σg,n) the set

Ends′(X̃G(Σg,n)) is empty, a single point, two points or infinitely many ends.

Proof. We can attach the border cycles {cgj}j=1,...,n of Σg,n to the border cycles

{c0j}j=1,...,n of Σ0,n to obtain the closed surface Σg+n−1 = Σg+n−1,0. It is
possible to choose the canonical generators of π1(Σg,n) such that under the
monomorphism i∗ : π1(Σg,n)→ π1(Σg+n−1) they coincide with the complement
of the subset {b′g+1, . . . , b

′
g+n−1} of the canonical generators {a′j , b′j}j=1,...,g+n−1

of π1(Σg+n−1), i.e. i∗(a
g
j ) = a′j , i∗(b

g
j ) = b′j and i∗(c

g
j ) = a′g+j . Therefore

we can embed any normal cover X̃G(Σg,n) in an normal cover X̃H(Σg+n−1)
where H is the subgroup of π1(Σg+n−1) which is the normal closure of the set
{i∗(G)} ∪ {b′g+1, . . . , b

′
g+n−1}. The last condition combined with Proposition

2.3.3 ensure that the automorphism group of both covers are isomorphic. Since
the surface X̃H(Σg+n−1) is a normal cover, the Theorem 2.3.15 shows that

X̃H(Σg+n−1) is homeomorphic to one of following six surfaces: the plane, the
Loch Ness monster, the cylinder, the Jacob’s ladder, the Cantor tree, or the
blooming Cantor tree.

If X̃H(Σg+n−1) is homeomorphic to the plane, to the cylinder or the

Cantor tree then X̃G(Σg,n) is planar and Ends′(X̃G(Σg,n)) is empty. Assume

X̃H(Σg+n−1) is homeomorphic to the Jacob’s ladder and X̃G(Σg,n) is

nonplanar. There exists a canonical exhaustion {Kj} of X̃H(Σg+n−1) such

that X̃H(Σg+n−1) − Kj has two connected components P ′j and P ′′j and the
sequences {P ′j} and {P ′′j } are nested.

If for all border cycles cl of Σg,n there are some integers ml ∈ Z∗ such that
mlcl is contained in G, then is possible to construct a canonical exhaustion {K ′j}
of X̃G(Σg,n) as follows

K ′j = Kj ∩ X̃G(Σg,n)− ∪nl=1ρ
−1
G (Qjl ),

where the set {Qlj}j∈N is the nested sequence of the planar end of Σg,n

surrounded by cl. The sequences {Q′j} = {P ′j ∩ X̃G(Σg,n) − ∪lρ−1
G (Q̄lj)} and

{Q′′j } = {P ′′j ∩ X̃G(Σg,n) − ∪lρ−1
G (Q̄lj)} are representatives of elements in the

set of ends of X̃G(Σg,n).

As X̃G(Σg,n) is nonplanar, we can find a inclusion ι of the torus without a

disk T∗ in AG(Σg,n), which closer in X̃H(Σg+n−1) is compact. Hopf showed

[Hp, Holsfsatz 3’,p.90] that if e∗ is an end of a normal cover X̃H(Σg+n−1), for
any open P ′l of a representation sequence {P ′l } and a compact ι(T∗) subset

then there is an automorphism ψ ∈ Aut(X̃H(Σg+n−1), ρH) such that

ψ(ι(T∗)) ⊂ P ′l . By the choice of H, the group Aut(X̃G(Σg,n), ρG) is
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isomorphic to Aut(X̃H(Σg+n−1), ρH). Then the sequences {Q′j} and {Q′′j }
represent elements in Ends′(X̃G(Σg,n)). As any connected component of

ρ−1
G (Qlj) belongs to one of the sets Kj ∩ i∗(X̃G(Σg,n)), which have finite genus,

then the set Ends′(X̃G(Σg,n)) has only two points represented by the
sequences {Q′j} and {Q′′j }. Now assume that mjcj /∈ G for any integer

mj ∈ Z∗ and j 6= 1. According to Lemma 2.4.5, Ends(X̃G(Σg,n)) has one

point,. Consequently then Ends′(X̃G(Σg,n)) is one point. If some mjcj are in
G and others are not, we can plug the holes surrounded by the connected
components of ρ−1(mjcj) to reduce to the latter case.

The proof for X̃H(Σg+n−1) homeomorphic to the Loch Ness monster or to
the blooming Cantor tree is similar.

Proof of Theorem 2.0.1. Theorem 2.3.15 gives us the possible infinite
normal covers of Σg,0. For infinite normal covers X̃G(Σg,n) of Σg,n, when

n 6= 0, Lemma 2.4.5 implies that Ends(X̃G(Σg,n)) is either a single point or an

infinite set of points. If Ends(X̃G(Σg,n)) is a single point, then X̃G(Σg,n) is
homeomorphic to Loch Ness Monster or the plane. Otherwise Lemma 2.4.7
guaranties that X̃G(Σg,n) is homeomorphic to one of the surfaces

* the plane without an infinite discrete set,

* the Loch Ness monster without an infinite discrete set,

* the Jacob’s ladder without an infinite discrete set

* the Cantor tree without an infinite discrete set,

* the blooming Cantor tree without an infinite discrete set.

This completes the proof.

2.4.2 Abelian covers

In particular, we are interested in a good understanding of the topology of
infinite abelian covers of Σg,n. The results below give a description of the
infinite abelian covers depending of the genus g of Σg,n.

Theorem 2.4.8. If AG(Σ0,n) is an infinite abelian cover of
Σ0,n ' D− {p1, . . . , pn−1} and if n ≥ 3 then AG(Σ0,n) is homeomorphic to one
of the surfaces 2,7 or 8 of the list of Theorem 2.0.1.
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Figure 4
A(Σ0,3)

Corollary 2.4.9. If AG(Σ1,n) is an infinite abelian cover of Σ1,n and if n 6= 0
then it is homeomorphic to one of the surfaces 2,3,7 or 8 of the list of Theorem
2.0.1.

Corollary 2.4.10. If AG(Σg,n) is an infinite abelian cover of Σg,n and if g ≥ 2
then it is homeomorphic to one of the following surfaces 2,4,8 or 9 of the list of
Theorem 2.0.1.

Note that the abelian covers of Σ0,1 ' D and Σ0,2 ' D∗ are clearly D or D∗.
For n ≥ 3 the situation is considerably more involved (see Figure 4).

Proof of Theorem 2.4.8. The surface Σ0,n is homeomorphic to a disk
without n − 1 points, it has n border cycles γj . There is no loss of generality

in assuming that the retraction R : Σ0,n →
∨n−1

S1
ak

identifies γ1, . . . , γn−1

with the circles S1
a1 , . . . , S

1
an−1

. Let us lift γj to Cayley(Zn−1). It follows that

γ̃j = vj for j = 1, . . . , n− 1 and γ̃n is homotopic to
∑n−1
j=1 vj in the notation of

Example 2.4.2.

We first prove that the maximal abelian cover for Σ0,3 is the Loch Ness
monster, based on the proof given in [V, Theorem 1]. Define a fundamental
domain U of Σ0,3 such that it is simply connected and Ū = Σ0,3, as in the figure
below.
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Figure 5

β+ β−

α+

α−

Fundamental domain for Σ0,3

α

β

If we attach the fundamental domain U at every vertex of Cayley(Z2), then
we obtain Figure 4.

The lifting of the curves [γ2, γ1] = γ−1
1 γ−1

2 γ1γ2 and [γ−1
2 , γ1] through the

origin (0, 0) are closed curves in A(Σ0,3). The union V = U(0,0)∪U(1,0)∪U(0,1)∪
U(1,1) of the fundamental domains lifted to vertices (0, 0), (1, 0), (0, 1) and (1, 1)
is homeomorphic to a ring. The boundary of V in A(Σ0,3) contains two edges of
kind α− (as in the Figure 5), each one of them belongs to different components
of the border of the ring(see Figure 6). Since the lifting b2 of [a−1

2 , a1] intersects
these edges, it follows that the intersection index of b1 ∩ b2 is 1 (see Figure 6).
Hence A(Σ0,3) has infinite genus.

Figure 6

U(0,0)

b1 b1
V

V

b2

b2

∼=

Since we can embed the fundamental domain for Σ0,3 in the fundamental
domain for Σ0,n, for n > 3; the argument above works for the maximal abelian
cover of Σ0,n for any n. By Lemma 2.4.5 the set End(A(Σ0,n)) is a single point,
thus A(Σ0,n) is homoemorphic to the Loch Ness monster.

Let us now deal with the case of abelian covers which are not maximal. The
Riemann-Hurwitz formula implies that the only finite covers of Σ0,3 of genus
zero are Σ0,4,Σ0,6. Any other finite cover has genus and contains the subgraph
T (see Figure 7). The infinite abelian covers have locally structure of an open
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subset of a finite cover, thus the existence of genus in AG(Σ0,n) depends of
the existence of two cycles with intersection 1 and the minimal subgraph which
ensures that this is the case, is the subgraph T .

By Lemma 2.4.5 we have two alternatives for Ends(AG(Σ0,n)), it is a single
point or it contains an infinite countable set of planar ends with discrete
topology. When Ends(AG(Σ0,n)) is a single point the kernel of %G does not
contain any lifting of boundary classes. Thus the kernel of %G from (2.1) is
generated by elements with homotopic type

∑
bkvk, which have at least two

coefficients different from zero and if 0 6= bk for any k then bk 6= bj for at least
one coefficient. Therefore for each vk there is at least one vk′ such that
v̄k ∩ v̄k′ = {(0, . . . , 0)} and v̄k′ is not a loop. Since vak is not in G for any
a ∈ Z∗, we have that the lifts of γ−1

k and γ−1
k′ · γk · γk′ · γ

−2
k · γ−1

k′ through
(0, . . . , 0) = o is a subgraph T . Consequently, the quotient graph associated to
AG(Σ0,n) contains infinite copies of the subgraph T . Whence AG(Σ0,n) has
infinite genus, and so it is homeomorphic to Loch Ness monster.

Figure 7

subgraph T

o

When Ends(AG(Σ0,n)) contains an infinite discrete set of planar ends, the
genus will depends of the existence of an inclusion of the subgraph T in the
quotient graph Cayley(Zn−1)/G. If AG(Σ0.n) has an inclusion of T then there
is an automorphism ψ of AG(Σ0.n) such that it is infinite, hence T has infinite
copies. Therefore AG(Σ0.n) has infinite genus, otherwise it is planar, i.e. the
set Ends′(AG(Σ0,n)) is empty.

Assume AG(Σ0,n) has infinite genus. As AG(Σ0,n) is an infinite cover we
have some boundary class γk which is not contained in G. Each inclusion of
the subgraph T in AG(Σ0,n) intersects a connected component of ρ−1

G (γk), this
means that the genus of AG(Σ0,n) accumulates in the corresponding end to
ρ−1
G (γk). Therefore the set Ends′(AG(Σ0,n)) is a single point.

Example 2.4.11. Take the abelian covers with Cayley graph equal to the
graphs of the Figure 3 of the Example 2.3.10. Note that the first two covers do
not contain the subgraph T , then they are planar. The last two contain infinite
copies of the subgraph T . Therefore, they have infinite genus.

Lemma 2.4.12. Let A(Σg,n) be the maximal abelian cover of Σg,n, with g ≥ 1.
Then A(Σg,n) is homeomorphic to

∗ the Loch Ness monster if n > 1 or n = 0 and g > 1,
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∗ the Loch Ness monster without an infinite subset with discrete topology if
n = 1 and g > 1,

∗ the plane if n = 0 and g = 1,

∗ the plane without an infinite subset with discrete topology if n = g = 1.

Proof. We first prove that the maximal abelian cover for Σg,0 = Σg is the Loch
Ness monster if g > 1, based in the proof given in [Ne].

In the notation of Remark 2.4.6, the surface Σg can be thought of as 4g
polygon attached to the connected sum of 2g circles S1

aj , S
1
bj
⊂ Σg at point

o ∈ Σ,
∨g
o S

1
aj ∨

∨g
o S

1
bj

. The group Z2g is the automorphism group of the cover

A(Σg). The abelian cover of
∨g
o S

1
aj ∨

∨g
o S

1
bj

inside A(Σg) is Cayley(Z2g).

Next, starting at every vertex of the graph Cayley(Z2g) we attach a two-cell
via the attaching map a1b1a

−1
1 b−1

1 · · · agbga−1
g b−1

g . The resulting two-complex is
homeomorphic to A(Σg). Every edge of A(Σg) meets a pair of two-cells while
every vertex meets 2g two-cells. For every compact K ⊂ Σg we can construct
a compact K ⊂ K ′ ⊂ Σg such that K ′ is the union of closed two-cells with
nonempty intersection with a closed ball in R2g and containing K. Therefore
Σg −K ′ is connected and Ends(A(Σg)) is just one point according to Lemma
2.2.12.

The loops a1a2a
−1
1 a−1

1 a−1
2 a1 and b1b2b

−1
1 b−1

1 b−1
2 b1, based at the origin,

meet in exactly one point. From this we conclude that there exist a subsurface
in A(Σg) homeomorphic to a torus without a disk. As A(Σg) has infinite
automorphism group then it has infinite genus. Hence End′(A(Σg)) is non
empty and we can deduce from Theorem 2.3.15 that A(Σg) is
homomeomorphic to the Loch Ness monster.

We now turn to the case n > 1. In this case we have that the boundary
classes do not belong to the kernel of

%[F2g+n−1,F2g+n−1] : π1(Σg,n, o)→ Aut(A(Σg,n), ρ).

Hence A(Σg,n) has a single end. As in the proof of the Theorem 2.4.8 we will
define a fundamental domain for Σg,n using the punctured polygon Pn4g defined
as in Remark 2.4.6. We label the vertices of Pn4g with the numbers {1, 2, . . . , 4g−
1, 4g} in anti-clockwise order beginning with the vertex between the edges with
label b−1

g and a1. Without loss of generality we can assume that the points
{p1, . . . , pn} in the interior of P4g are equidistributed along the diagonal d1

which joins the vertex 1 to the vertex 2g + 1 and are ordered on d1 as follows
1, p1, p2, . . . , pn−1, pn, 2g + 1. The distance between two successive points is
|d1|/(n+1). We define the curves c′j as the union of the segments [2,

pj+pj+1

2 ] and

[
pj+pj+1

2 , 2g+2], where
pj+pj+1

2 is the middle point of the segment [pj , pj+1] and
with j = 1, . . . , n−1. Note that the set of cycles {a1, b1, . . . , ag, bg, c

′
1, . . . , c

′
n−1}

is a base of generators for the group π1(Σg,n), such set is called the set of Cayley
generators. We cut the polygon Pn4g by

∗ the open segments of line (pj , pj+1) = βj ,

∗ the semiopen segments [ 1+2
2 , p1) = α1, [ j+(j+1)

2 , p1) = αl for j ≥ 2g + 2
and 4g + 1 = 1,
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∗ the semiopen segments [ j+(j+1)
2 , pn) = αl for 2 ≤ j < 2g+2 and 4g+1 = 1.

To construct the fundamental domain Ug,n of Σg,n we attach the pieces using
the same attaching rules of the boundary of P4g, as the Figure 8 shows.

Figure 8

a1 a−1
1

b1

b−1
1

β1

α1

α2c′1

α+
2

β+
1α−1

α−2

β−1 α+
1

a1

c′1

b1

P 2
4 Fundamental domain of Σ1,2

Take the Cayley graph Cayley(Z2g+n−1) with the generators being the Cayley
generators of π1(Σg,n). Now, take the cycles γ1 = ajc1a

−2
j c−1

1 aj and

γ2 = bjc
−1
1 b−2

j c1bj beginning at origin. Observe that the curves aj ∩ Ug,n,
bj ∩ Ug,n have intersection one on Ug,n, hence γ1 ∩ γ2 = 1. Therefore the
maximal abelian cover A(Σg,n) has infinite genus.

It remains to analyze the case when n = 1. The surface Σg,1 corresponds
to a punctured polygon P ∗4g of 4g edges with a hole inside and with exterior

boundary a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g . The hole corresponds to a border cycle

γ1 homotopic to a1 · · · a2g · a−1
1 · · · a

−1
2g . Their maximal abelian covers have

Cayley graphs Cayeley(Z2g). Attaching infinitely the polygon P ∗4g with the
graph Cayeley(Z2g) as in the proof of the case n = 0 we obtain that

∗ A(Σ1,1) is homeomorphic to the plane without an infinite discrete set.

∗ A(Σg,1) is homeomorphic to the Loch Ness monster without an infinite
discrete set.

The case above is slightly different from the case g = 0. Note that in the
case g = 0 the generators of π1(Σg,n) are of the same topological kind and in
the case g > 0 they are not.

Lemma 2.4.13. If Σg,n with g > 1, then any infinite abelian cover AG(Σg,n)
has infinite genus.

Proof. Suppose the assertion of the lemma is false. Let {aj , bj , cl} canonical
generators. As aj ∩ Ug,n, bj ∩ Ug,n have intersection one on the fundamental
domain Ug,n, defined as above, we have that there are no integers l and k such
that alj and bkj are in G, since otherwise AG(Σg,n) would have infinite genus.
But g > 1 since the canonical generators contain the cycles a1, b1, a2 and b2.
Therefore, we take the cycles γ1 homotopic to a1b2a

−2
1 b−1

2 a1 and γ2 homotopic
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to b1b
−1
2 b−2

1 b2b1. By the properties of the canonical generators we have that the
lifts γ̃1, γ̃2 of γ1, γ2 at the same point have intersection index γ̃1 ∩ γ̃2 = 1, a
contradiction.

Proof of Corollary 2.4.10. Theorem 2.0.1 and the fact that AG(Σg,n) is an
abelian cover show that AG(Σg,n) is homeomorphic to one of the following real
surfaces: the plane, the cylinder, the Loch Ness monster, the Jacob’s ladder or
one of these without an infinite discrete set. Lemma 2.4.13 reduces the last list
in the Loch Ness monster, the Jacob’s ladder or one of these without an infinite
discrete set.

Lemma 2.4.14. Let {a1, b1, c1, . . . , cn−1} be a canonical generators of
π1(Σ1,n, o) and AG(Σ1,n) an abelian cover of Σ1,n. If one of the following
conditions holds

∗ aj1, bk1 ∈ G for some integers j, k ∈ Z,

∗ n > 2 and some cl holds c−1
l , cl /∈ G.

Then AG(Σ1,n) has genus different from zero.

Proof. We will prove that AG(Σ1,n) contains couples of cycles with intersection
index 1.

Assume the condition aj1, b
k
1 ∈ G for some integers j, k ∈ Z, which are

minimal with this property. Let γ1 and γ2 be the lifts of aj1, b
k
1 at õ ∈ ρ−1

G (o)

respectively. Since aj1, b
k
1 ∈ G and j, k are minimimal with this property, the

curves γ1, γ2 are closed and only intersect at õ. By Remark 2.4.6 the intersection
at õ is transversal. Then the abelian cover AG(Σ1,n) has couples of cycles with
intersection index equal to one. Hence g(AG(Σ1,n)) 6= 0.

We now turn to the case n > 2 and for some cl holds c−1
l , cl /∈ G. The

construction of the couple of cycles with intersection 1 depends on whether
aj1, b

k
1 are in G or not. We will give the cycles for each case:

a) aj1, b
k
1 /∈ G for every integers j, k ∈ Z. We take the lifts γ1, γ2 at a point

õ ∈ ρ−1
G (o) of a1cla

−2
1 c−1

l a1 and b1c
−1
l b−2

1 clb1, respectively.

b) aj1 ∈ G and bk1 /∈ G for every integers k ∈ Z. We take the lifts γ1, γ2 at a
point õ ∈ ρ−1

G (o) of a1cla
−2
1 c−1

l a1 and b1c
−1
l a2

1b
−2
1 cla

2
1b1, respectively.

c) bk1 ∈ G and aj1 /∈ G for every integers j ∈ Z. This case is analogues to b).

The curves γ1, γ2 are lifts of elements in G, thus they are closed. Considering
that the automorphisms ψa1 , ψb1 , ψcl , defined as in (2.1), are not trivial, we have
that γ1, γ2 intersect only at õ. By Remark 2.4.6 the intersection is transversal,
which completes the proof.

The hypothesis g > 1 in Lemma 2.4.13 is necessary because for Σ1,n the
abelian covers with group G generated by {b1, c′1, . . . , c′n−1} are planar with
Ends(AG(Σ1,n)) infinite and with discrete topology.
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Proof of Corollary 2.4.9. The existence of genus in AG(Σ1,n) for arbitrary
G will depend on the construction of cycles with intersection 1 from the lifts
of a1 and b1 adding lifts of ck, when at last one of this cycle is not trivially
contained in G, i.e. ck /∈ G. By Lemma 2.4.7 the set Ends′(AG(Σ1,n)) has
cardinality less or equal to 1, and the corollary follows.



Chapter 3

Leaves of logarithmic
foliations on surfaces

This chapter presents a topological description of generic leaves of dimension
one holomorphic foliations on projective surfaces, which are orientable real
surfaces. In particular, we prove that the generic leaf of a Riccati foliation is
homemomorphic to one of the real surfaces listed in Theorem 2.0.1. In a
similar way we get that the generic leaves of a homogeneous foliations on the
projective plane are homeomorphic to the real surfaces given by Theorem
2.4.8. Also, we show in Theorem 3.4.7 that a generic leaf of a sufficiently
generic logarithmic foliations on the projective plane is homeomorphic to the
Loch Ness monster.

3.1 Riccati foliations

Let F be a Riccati foliation on a compact complex surface M , with adapted
fibration π : M → Σg. Except for a finite number of invariant fibres, say
π−1(p1), . . . , π−1(pk), all the other leaves of F are covering spaces of Σg −
{p1, . . . , pk}. The latter set will be denoted by Σg,k. We can apply Theorem
2.0.1 to describe the topology of the non-algebraic leaves of F .

Theorem 3.1.1. Let F be a Riccati foliation (singular or not) on a compact
complex surface X. Assume that global holonomy

ρ : π1(Σg,k)→ PSL(2,C)

of F is infinite. Then any leaf of F outside a countable set of leaves is
homeomorphic to one of the following real surfaces:

1) the plane,

2) the Loch Ness monster,

3) the cylinder,

31
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4) the Jacob’s ladder,

5) the Cantor tree,

6) the blooming Cantor tree,

7) the plane without an infinite discrete set

8) the Loch Ness monster without an infinite discrete set,

9) the Jacob’s ladder without an infinite discrete set

10) the Cantor tree without an infinite discrete set,

11) the blooming Cantor tree without an infinite discrete set.

Furthermore, any two leaves outside of that countable set are biholomorphic.

Proof. Throughout the proof, P1 denotes a regular fiber π−1(o), with o ∈ Σg,k.
Let G = ρ(π1(Σg,k)) be the global holonomy group of F . Take p ∈ P1 with an
infinite G orbit and consider the leaf Lp of F through p. It is a covering space
of Σg,k, whose covering map is the restriction of π to Lp. Note that the isotropy
group IsoG(p) = {g ∈ G|g(p) = p} is a subgroup of π∗(π1(Lp)).

Since G is countable and any nontrivial element in G has at most two fixed
points, it follows that there exists a countable set C ⊂ P1 such that for every
p ∈ P1 − C the group IsoG(p) reduces to the identity. Thus any two leaves Lp
and Lq with p, q ∈ P1 − C are normal covers of Σg,k with isomorphic groups of
covering transformations. It follows that Lp and Lq are biholomorphic. Theorem
2.0.1 now shows that these leaves are homeomorphic to one of the real surfaces
of the list in this theorem.

Corollary 3.1.2. Under the hypotheses of Theorem 3.1.1. If the global
holonomy is abelian then, except for a finite number of leaves corresponding to
F-invariant fibres and leaves through finite orbits of ρ, any other leaf is
homeomorphic to one of the real surfaces 1,2,3,4,7,8 or 9 of the list of
Theorem 3.1.1.

Proof. As in the proof of Theorem 3.1.1, P1 denotes a regular fiber π−1(o), with
o ∈ Σg,k. Since the global holonomy group G is infinite and abelian, there
are not many options for the finite orbits of G. If there is a finite set on P1 of
cardinality n ≥ 3 invariant by G then we can map G in the symmetric group Sn,
and since an automorphism of P1 with three fixed points must be the identity
we obtain that this map is injective contradiction with the hypothesis on G.
Therefore the finite orbits must correspond to one or two common invariant
points for all elements of G, which will denote by I ⊂ P1. If I has length one
then G is a subgroup of the affine group Aff(C). When G has two invariant
points it is a subgroup of the multiplicative group C∗ or of the dihedral group
C∗ n Z2 = {z 7→ λz±1;λ ∈ C∗}.

Note that the isotropy group IsoG(p) of any point p ∈ P1 − I is trivial, thus
the leaf Lp through p is an abelian cover of Σg,k. It follows from Theorem 2.4.8
and Corollaries 2.4.9 and 2.4.10 that Lp must be homeomorphic to one of the
real surfaces 1,2,3,4,7,8 or 9 of the list of Theorem 3.1.1.
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Example 3.1.3. Let Σ2 the compact Riemann surface of genus 2 and
{a1, b1, a2, b2} be the canonical generators of π1(Σ2, o) for a point o in Σ2.
Consider the homomorphism

ρ : π1(Σ2, o)→ PSL(2,C)

defined by
ρ(a1) : P1 → P1

z 7→ z + 1,

and the biholmorphisms ρ(b1), ρ(a2) and ρ(b2) are the identity. From the
suspension of this homomorphism we get a non singular Riccati foliation.
Since ρ(π1(Σ2, o)) is isomorphic to Z, Theorem 2.3.16 shows that any generic
leaf L of F has two ends. We conclude from Lemma 2.4.13 that L has infinite
genus. Therefore L is homeomorphic to Jacob’s ladder.

Example 3.1.4. Let M,F as in the above example. Jacob’s ladder without
an infinite discrete set is obtained from a bimeromorphism ϕ : M →M ′, which
is the composition of one blow-up b in a regular point p in the intersection of a
fibre F with the infinite section and one blow-down on the closure of b−1(F )−
E, where E = b−1(p) (see [Bn, p.54]). The bimeromorphism sends a trivial
neighborhood U ⊂ M of a fibre F to a trivial neighborhood U ′ ⊂ M ′ with an
induced foliation, which has two singularities on the fibre F ′, one logarithmic
and one dicritical. The holonomy around F ′ is trivial. The image of the infinite
section is invariant by the new foliation and passes through the logarithmic
singularity. Therefore the generic leaf L is a normal cover of Σ2,1. Considering
that the holonomy of the border cycle is trivial, we have that L is homeomorphic
to Jacob’s ladder deprived from a discrete set.

Example 3.1.5. For each x ∈ C, let Γx be the subgroup of PSL(2,C) generated
by

e1 =

(
1 x
0 1

)
, e2 =

(
1 0
x 1

)
.

If |x| ≥ 2, the ping-pong lemma (see [Lo, Theorem 4.4.1]) implies that the
subgroup Γx is free of rank two.

Consider the suspension of the homomorphism

ρ : π1(Σ2, o) → PSL(2,C)
a1 7→ e1

a2 7→ e2

bj 7→ Id,

where aj and bj , j = 1, 2, are the canonical generators of π1(Σ2, o). This
suspension gives a nonsingular Riccati foliation F on a compact complex
surface M with adapted fibration π : M → Σ2.. Since Γx is the group of deck
transformation of the cover π|L : L → Σ2, where L is a generic leaf of F ,
Theorem 2.3.16 shows that Ends(L) is infinite. Considering that L is a
normal cover of a compact surface, Theorem 2.3.15 yields Ends(L) is a Cantor
set. Figure 8 shows that the union of the lifts of a fundamental piece D2 at
each vertex of a ball B(N, õ) of the associated Cayley graph Cayley(F2) is
homeomorphic to sphere without 3N−1(3 + 1) disks, therefore L is planar.
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Notice that {B(N, õ)} is a canonical exhaustion. Consequently L is
homeomorphic to the Cantor tree.

Figure 8

X̃ker(ρ2)(Σ2)

D2

D3

In a similar way the blooming Cantor tree is obtained as generic leaf given
by the suspension of the foliation on X̃u(Σ3)×P1 with leaves X̃u(Σ3)×{w} by
the homomorphism

% : π1(Σ3, o) → PSL(2,C)
a1 7→ e1

a2 7→ e2

a3 7→ Id
bj 7→ Id,

where aj and bj , j = 1, 2, 3, are the canonical generators of π1(Σ3, o). The
fundamental piece D3 in this case has genus 1. Thus the lifts of a fundamental
piece D3 at the vertices of a ball B(N, õ) of the associated Cayley graph

Cayley(F2) is homeomorphic to the sphere with 1 +
∑N−1
k=2 3k−1(3 + 1) handles

and 3N−1(3 + 1) open disks removed (see Figure 0).

The cases of the Cantor tree and blooming Cantor without an infinite discrete
set are obtained in a similar way to Example 3.1.4.

3.2 Homogeneous foliations

We will now consider foliations F in P2 which are defined in an affine chart by
a homogeneous 1-form

ω = h1(x, y)dx+ h2(x, y)dy,

where h1, h2 are homogeneous polynomials of the same degree ν and without
common factors. Let R = x ∂

∂x + y ∂
∂y be the radial vector field. If ω(R) = 0

then ω must be a complex multiple of xdy− ydx and the foliation defined by it
is the pencil of lines through zero. From now assume that ω(R) 6= 0.

Theorem 3.2.1. Let ω = h1(x, y)dx + h2(x, y)dy be a homogeneous 1-form
of degree at least one on C2. Assume that gcd(h1, h2) = 1 and ω(R) 6= 0.
Consider the foliation F on C2 defined by it. Except for a finite number of
leaves homeomorphic to C∗ contained in lines through the origin all the other
leaves of F are biholomorphic. Moreover they are homeomorphic to one of the
following alternatives:
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1) the plane,

2) the Loch Ness monster,

3) the plane without an infinite discrete set,

4) the Loch Ness monster without an infinite discrete set.

5) a compact Riemann surface less a finite set.

Proof. The foliation defined by F extends to a foliation of P2 of degree deg(h1) =
deg(h2) leaving the line at infinity invariant. After making a linear change of
coordinates we can assume that x does not divide ω(R) = xh1 +yh2. The roots
of the polynomial

Qν+1(x, y) = xh1(x, y) + yh2(x, y) =

k∏
1

(y − tjx)νj

correspond to F-invariant lines through zero with finite slope. Blowing-up
(0, 0) ∈ C2 we obtain a Riccati foliation F ′ which, in the coordinates x and
t = y/x, is defined by the 1-form

p∗ω

tν+1
= (Qν+1(1, t)dx+ xh2(1, t)dt)

Moreover, the roots {tj} of Qν+1(1, t) are the projection of the invariant fibres
on the exceptional divisor E, which contains exactly two singularities, one at
the line at infinity and one at the exceptional divisor. If the root is simple then
the singularities are logarithmic. In case the root has multiplicity two or higher,
then the corresponding singular fibre contains two saddle nodes with the same
multiplicity, whose strong separatrices are contained in the fibre.

The holonomy around each singular fiber π−1(tj) fixes two points, which
correspond to the line at infinity and the exceptional divisor. Then it belongs to
the group C∗. Thus the global holonomy Hol(E) of F ′ is abelian and contained
in C∗. Except for the leaves corresponding to invariant fibres, the exceptional
divisor and the line at infinity, all the other leaves are homeomorphic to an
abelian cover of Σ0,k with the same covering group. If the global holonomy is
finite then the coverings are homeomorphic to compact Riemann surface without
a finite number of points. If instead the global holonomy is infinite then the
possibilities are covered by Theorem 3.1.1. Notice that the cases of Jacob’s
ladder and Jacob’s ladder without an infinite discrete set do not appear in our
list because g(E) = 0, see Theorem 2.4.8.

Example 3.2.2. Let F be a homogeneous foliation defined by a homogeneous
1-form

ω = ydx+ λxdy.

If ω(R) 6= 0 and λ /∈ Q, the above theorem shows that the leaves L of F are
biholomorphic to an infinite normal cover of C∗. Moreover, L is the universal
cover of C∗. Then it is biholomorphic to C.

In the case λ is a rational number L is biholomorphic to C∗.
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Example 3.2.3. Consider a homogeneous foliation F on P2 defined by the
closed logaritmic 1-form

ω = λ1
dx

x
+ λ2

dy

y
+ λ3

d(y − x)

(y − x)
,

where
∑
λj = 1. Note that the generic leaf is an abelian cover of the sphere

without three points, Σ0,3. If the set {λ1, λ2, λ3} is Z linearly independent, we
deduce that the Cayley graph associated to the generic leaf L as abelian cover
of Σ0,3 is Cayley(Z2). Hence L is homeomorphic to the maximal abelian cover
A(Σ0,3), see proof of Theorem 2.4.8. Therefore L is homeomorphic to the Loch
Ness Monster.

Requiring for the set {λ1, λ2, λ3} to satisfy:

λ1 ∈ R−Q, λ2 = 1 and λ3 = −λ1,

we obtain that the generic leaf L as abelian cover has Cayley graph
Cayley(Z2)/(0, 1). This graph does not contain the subgraph T (see Figure 7),
so that it is a planar surface. In the notation of Example 2.4.2, (0, 1) is a
border cycle. Lemma 2.4.5 now shows that Ends(L) contains an infinite
discrete set of planar ends. Hence L is homeomorphic to the plane without an
infinite discrete set.

Assuming the data is

λ1 ∈ R−Q, λ2 =
1

n
with n ≥ 2 and λ3 = 1− λ1 − λ2.

It follows that L has Cayley graph Cayley(Z2)/(0, n). Since n ≥ 2, we see that
Cayley(Z2)/(0, n) contains the subgraph T . By Lemma 2.4.5, Ends(L) contains
an infinite discrete set of planar ends. Consequently, L is homeomorphic to the
Loch Ness monster without an infinite discrete set.

3.3 Abelian holonomy in arbitrary dimension

Let F be a singular foliation by curves on an arbitrary complex manifold M .
Assume that F leaves invariant a compact curve C ⊂M and that the holonomy
of F along C is abelian.

To detect topology on leaves of F near C, we will use the topological
description of abelian covers of bordered surfaces obtained in Chapter 2.

Definition 3.3.1. Let τ be a cross section to F-invariant curve C at a regular
point o ∈ C and let γ = γβ1

σ1
· · · γβkσk be a closed path, where {γj}j∈Λ are a

canonical generators of π1(C −Sing(F), o), and βl ∈ Z, σl ∈ Λ. Let p ∈ τ , l ∈ N
and the leaf Lp of F through p. We define B(l, p, τ) to be

∪|γ|≤lγ̃p(I),

where γ̃p : [0, 1] → Lp is the lift of γ to Lp at p and |γ| =
∑k
j=1 |βj |. If γ̃p is

well defined for each γ, such that |γ| < l, we call B(l, p, τ) the graph ball in Lp
of radius l and center p.
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Lemma 3.3.2. Let F be a holomorphic foliation of dimension 1 of a complex
manifold M . If a compact Riemann surface C ⊂ M is F-invariant and not
contained in Sing(F) and Hol(C,F) is infinite. Then for each N ∈ N there is
an embedding

ε : (B(N, v0), v0)→ (Lp, p),
where B(N, v0) is a ball in the word metric of a related Cayley graph of a normal
cover of C − Sing(F) and Lp is a leaf through a regular point p ∈ M − C
sufficiently close to C.

Proof. Identify C − Sing(F) with Σg,n. Let τ be a cross section to C at the

regular point o ∈ Σg,k and {γj}2g+n−1
j=1 be Cayley generators of π1(Σg,n, o). Since

Hol(C,F) is infinite, for each N ∈ N there exists a point p ∈ τ sufficiently close
to o such that a holonomy map hγ on γ ∈ π1(Σg,n, o), satisfying |γ| < N , is well
defined. Therefore B(N, p, τ) is a graph ball in Lp. The principal ingredient to
prove the existence of an embedding ε is that any neighbourhood of o in τ has
points p, whose group IsoHol(C,F)(p) = {g ∈ Hol(C,F)|g(p) = p} is trivial [Go,
Proposition 2.7]. We will denote by G the kernel of the holonomy representation
Hol(C,F) (1.1). Choose a vertex v0 in the Cayley graph Cayley(π1(Σg,n, o))/G
and define a function

ε̃ : Vertices(B(N, p, τ)) → Vertices(B(N, v0))
p 7→ v0

γ̃p(1) 7→ γ̃v0(1),

where γ̃v0(1) is the lift of γ in Cayley(π1(Σg,n, o))/G at the vertex v0. Suppose
ε̃(γ̃p(1)) = ε̃(γ̃′p(1)) = vq, then γ̃v0 · γ̃′−1

vq (1) = v0, i.e. γ · γ′−1 ∈ G. Since
B(N, p, τ) is well defined and IsoHol(C,F)(p) is trivial, we have hγ·γ′ is a trivial
map and hγ′−1 ◦ hγ·γ′ = hγ . Therefore ε̃ is bijective. Since the lifts of the paths
γj at the points γ̃p(1), |γ| < N , are edges of B(N, p, τ), we can extend ε̃ to a
graph isomorphism

ε : B(N, p, τ) → B(N, v0)
p 7→ v0

edge(γ̃p(1), γ̃ · γj
±1

p (1)) 7→ edge(γ̃v0(1), γ̃ · γj
±1

v0
(1)).

Hence ε−1 is a homeomorphism of graphs. Since B(N, p, τ) is compact in M ,
the homeomorphism ε = ε−1 is an embedding.

Let F and C be as above. Identify Z2g+n−1 with the abelianization of
π1(C − Sing(F)) and denote by % the morphism from Z2g+n−1 to Hol(C,F) ⊂
Diff(CdimM−1, 0) induced by the holonomy representation of F along C:

% : Z2g+n−1 →Hol(C,F)

vj 7→ hγj ,
(3.1)

where γj are the Cayley generators of π1(C − Sing(F)).

Theorem 3.3.3. Let F be a holomorphic foliation of dimension one of a
complex manifold M with F-invariant compact Riemann surface C. Assume
that the set C ∩ Sing(F) has cardinality n and C has genus g. If Hol(C,F) is
abelian and the abelian cover AG(C − Sing(F)) of infinite genus, where
G = ker(%) defined as (3.1), then F has leaves of arbitrary genus. Moreover, if
Hol(C,F) is linearizable then there are leaves of infinite genus.
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Proof. Let τ be a cross-section to C at a regular point o of F . By the above
lemma, for each N ∈ N there exists a point p ∈ τ such that B(N, p, τ) is a
graph ball in Lp homeomorphic to the graph ball B(N, v0) in the quotient
graph Cayley(Z2g+n−1)/G associated with AG(C − Sing(F)). Let Ug,n be a
fundamental domain of C − Sing(F) = Σg,n such that it is open, simply
connected and Ūg,n = Σg,n. Choose an open subset U ⊂ Σg,n homeomorphic
to Σg,n, such that the lift Vq through q of the intersection Ug,n ∩ U = V is well
defined at each point q ∈ Vertices(B(N, p, τ)).

Since Ug,n is homeomorphic to each Vq and the attachment rules on the
boundaries ∂Ug,n(v), ∂Vq ∩ U match. Therefore the embedding ε of the above
lemma extends to the interior of surfaces

S(N, p, τ) = ∪Vε(v) ε(v) ∈ V (B(N, p, τ))

S(N, v0) = ∪Ug,n(v) v ∈ V (B(N, v0)).

Considering that AG(Σg,n) has infinite genus, there exists a minimal N0 ∈
N such that S(N0, v0)◦ has genus different of zero, g(S(N0, v0)◦) 6= 0. Since
AG(Σg,n) is normal, it follows that

g(S((a+ 1)N0, v0)) > g(S(aN0, v0)) + g(S(N0, v0))

for any a ∈ N>0. Therefore, for p ∈ τ sufficiently close to C with IsoHol(C,F)(p)
trivial there exists an embedding

εN : S(N, v0)→ S(N, p, τ) ⊂ Lp

with genus g(S(N, p)) arbitrary large.

Figure 9

S(1, v0)B(1, v0)

Assume that Hol(C,F) is linearizable. If Hol(C,F) has a contracting map
h then for a leaf Lp intersecting τ in p, the intersection Lp ∩ τ has points
arbitrarily close to C. Since Hol(C,F) is abelian and Iso(p) is trivial, we have
that Iso(hγ(p)) is trivial. Thus we can embed in Lp a surface S(N,hm(p), τ) for
any N ∈ N. It follows that Lp has unbounded genus.

Otherwise, when Hol(C,F) has not a contracting map there is a point p ∈ τ
such that h(p) ∈ τ is well defined for all h ∈ Hol(C,F) and Iso(p) is trivial.
We can now proceed analogously to the above case to show that the leaf Lp has
unbounded genus.
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3.4 Generic logarithmic foliations

We will describe the topological invariants of generic leaves of generic
logarithmic foliations in P2.

3.4.1 Ends

We begin with a description of the ends of generic leaves of logarithmic foliations.
In what follows we will say end of a leave L for an element of a boundary
component of L (see Definition 2.2.3).

Lemma 3.4.1. Let F be a logarithmic foliation on P2 with polar divisor D. Let
L be a non-algebraic leaf of F . If E is an end of L then either locally the leaf
L is a separatrix of a singularity of F on the complement of D, or E ∩D 6= ∅.

Proof. The divisor D has at least two irreducible components. Divide the set
of irreducible components in two sets, say D0 and D∞. Let F0 and F∞ be
homogeneous polynomials of the same degree on C3 defining, respectively, D0

and D∞. The quotient F0

F∞
defines a non-constant holomorphic map F : U →

C∗, where U = P2 −D is the complement of D in P2.

Let K be a compact subset of L. Let E be an end of L contained in a
connected component of L −K such that the boundary ∂LE in L is compact.
The restriction of F to E is a holomorphic function f : E → C. If f is constant
then L is an irreducible component of a fibre of the rational function and hence
is algebraic contradicting our assumptions. So f : E → C is a non-constant
holomorphic function.

Let V = f(E) ⊂ C be the image of f . Since f is holomorphic and non-
constant V is an open subset of C. If it contains ∞ or 0 in its closure then
the lemma follows by continuity, the closure of the end E intersects D∞ or D0

respectively.

Assume from now on that ∞, 0 /∈ f(E).

Let G be the restriction of F to U−K = U ′. The boundary ∂E = E−E in U ′

is mapped by f to ∂V , the boundary of V . We point out that ∂E is invariant by
G, see [Cnd-Cln, Proposition 4.1.11]. If ∂E reduces to a point the end in question
accumulates at one of the finitely many singularity of F in U . If instead the
boundary contains infinitely many points then it follows that F (∂E) contains
infinitely many points. Therefore G contains infinitely many leaves contained in
fibres of F . Thus F has infinite algebraic leaves. Jouanolou’s Theorem implies
that every leaf of F is algebraic, contradicting again our assumptions.

Definition 3.4.2. Let ω be a closed meromorphic 1-form on a complex manifold
M with polar divisor D . If o ∈M−D then we can define a multivalued primitive
for ω on M∗ = M −D by the formula

F (z) =

∫
γo,z

ω, (3.2)

where γo,z : I → M∗ is a path joining o to z. Let U a fundamental domain
of M∗, such that it is open and simply connected. If o ∈ U then F |U defines
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a primitive for ω in U . Passing to the universal covering u : M̃∗ → M∗ and
choosing a point õ in u−1(o), we define a primitive for u∗ω as the function

F̃ : M̃∗ → C
z 7→

∫
γõ,z

u∗ω,

where γõ,z : I → M̃∗ is any path joining õ to z. Observe that the following
equation holds

F̃ |Uõ = F |U ◦ u.

Definition 3.4.3. Let F be a foliation on M defined by closed meromorphic
1-form with polar divisor D. We will say that a leaf L of F is a generic leaf if
for some connected component C of u−1(L) the value of F̃ on C is a regular
value of F̃ .

Theorem 3.4.4. [Pa2, Theorem B] Let ω be a closed logarithmic 1-form with
poles on a simple normal crossing divisor D in Mn. Suppose that the residues λj
of ω are non vanishing, and that for any pair of irreducible components Dj , Dl of
D with non empty intersection, the ratios λj/λl are not negative real numbers.
Let F be a multivaluated primitive of ω. Then there exists a fundamental system
of neighborhoods of D in M in which the fibres of F : M −D → (C,+)/H are
connected, where H is the subgroup of (C,+) generated by {2πiλj}

Proposition 3.4.5. Let F be a logarithmic foliation on P2 defined by a closed
logarithmic form ω with normal crossing polar divisor D and the ratios λj/λl
are not negative real numbers. Let L be a non-algebraic leaf of F . If L is a
generic leaf of F then Ends(L) is a single point.

Proof. Suppose the proposition is false. Then we could find a regular leaf L
and a compact subset K of L such that the complement of K in L has two
connected components E1 and E2. By Theorem 3.4.4 there is a neighbourhood
U of D whose intersections with the fibres of F (3.2) are connected. We can
choose U such that the intersection U ∩K is empty. Since L is a generic leaf,
Lemma 3.4.1 shows that the intersections Ej ∩U , j = 1, 2, are not empty. Thus
E1 and E2 intersect in the connected set U ∩ L, a contradiction.

3.4.2 Topology of leaves

Proposition 3.4.6. Let F be a logarithmic foliation defined by a closed
logarithmic 1-form ω on a projective surface M . Assume that the polar divisor
D = ∪nj=1Dj of ω is non empty and is a simple normal crossing divisor. Let
λj the residue of ω on Dj. If the residues λj/λl ∈ C − R and the irreducible
components Dj satisfy

(*) if Dj has genus different from zero, g(Dj) 6= 0, the intersection Sing(F)∩
Dj is not empty.

(**) if Dj has genus zero, the intersection Sing(F)∩Dj contains at least three
different points.

Then any generic leaf L has infinite genus.
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Proof. From Lemma 3.4.1, it follows that a generic leaf L intersects a component
of any neighborhood of the polar divisor D. Thus it is possible to find a cross
section τ to one of the irreducible components Dj of D at a regular point o ∈ Dj

such that the intersection L ∩ τ is not empty. Theorem 1.3.2 now shows that
the holonomy group Hol(Dj ,F) is abelian, in particular, it is a subgroup of C∗.
The latter property implies

IsoHol(Dj)(p) = Id

for each point p ∈ τ − o. Since λk/λj does not belong to R, there is a map
hγ ∈ Hol(Dj ,F) such that {hnγ (p)}n∈N accumulate at o, for any point p ∈ τ ∩L.

Now, we consider three cases: the case when genus of Dj is greater than 1,
equal to 1, or 0.

When g(Dj) ≥ 2 any infinite abelian cover of Dj − Sing(F) = Σg,n has
infinite genus by Lemma 2.4.13. Since λk/λj /∈ R the holonomy hcl in the
border cycle cl is hyperbolic, Theorem 3.3.3 shows that L has infinite genus.

The case g(Dj) = 1 is slightly different. Let

% : Z2n+g−1 → Hol(C,F)

defined as (3.1). The only way for Aker%(Dj − Sing(F)) being a planar surface
is that for every border cycle cl of Dj−Sing(F) the holonomy hcl is the identity
map, see Lemma 2.4.14. This contradicts our assumption λk/λj /∈ R. Therefore
Aker%(Dj − Sing(F)) has infinite genus.

We now turn to the case g(Dj) = 0. Since the ratios λk/λj /∈ R and
Sing(F) ∩Dj has at least three points, we have that the decomposition

Hol(Dj ,F) ' Zr ⊕ Zq,

has rank at least two, i.e. r ≥ 2. Therefore the Cayley graph associated to
Aker%(Dj − Sing(F)) contains infinite copies of the subgraph T . Thus it has
infinite genus.

Theorem 3.3.3 implies infinite genus in any generic leaf L.

Theorem 3.4.7. Let F be a logarithmic foliation defined by a closed logarithmic
1-form ω on P2. Assume that the polar divisor D = ∪kj=0Dj of ω is supported
on k + 1 > 3 curves and has only normal crossing singularities. If the residues
λj/λl ∈ C − R, then a generic leaf L of F is homeomorphic to the Loch-Ness
monster.

Proof. Let D1 be an irreducible component of D. By Bézout’s Theorem D1

satisfies the hypotheses of Proposition 3.4.6, for this reason a regular leaf has
infinite genus. Proposition 3.4.5 shows that a regular leaf L has one end. Hence
L is homeomorphic to the Loch Ness Monster.

Remark 3.4.8. Consider the case when the polar divisor D of a closed
logarithmic 1-form ω is supported in 3 lines. Note that ω satisfies the
hypotheses of Theorem 3.2.1. If the residues λj/λl ∈ C − R of ω, then a
generic leaf of the foliatin defined by ω is an infinite normal cover of C∗.
Consequently, a generic leaf is homeomorphic to C.
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Chapter 4

Leaves of logarithmic
foliations on projective
spaces

In this chapter we study the topology of a general leaf L of a logarithmic foliation
F on the projective space Pn+1 (n > 1), defined in homogenous coordinates by
the closed logarithmic 1-form

ω = (

k∏
j=0

Fj)

k∑
j=0

λj
dFj
Fj

,

where Fj ∈ C[x0, . . . , xn+1] are homogeneous polynomials of degree dj , the

hypersurfaces Dj := {Fj = 0} are smooth and the residues satisfy
∑k
j=0 λjdj =

0. We will provide answers to the following questions concerning the topology
of the generic leaf L.

(1) Is the generic leaf L simply connected ?

(2) If n > 1 and H ⊂ Pn+1 is a sufficiently general hyperplane, are the
fundamental groups of L and of L ∩H isomorphic?

Question (2) was raised by Dominique Cerveau in [C, Section 2.10].

4.1 Main results

The following results answer the questions (1,2) when F is sufficiently generic.

Theorem 4.1.1. Let F be a logarithmic foliation defined by a logarithmic
1-form ω on Pn+1, n ≥ 2. If the polar divisor D =

∑k
j=0Dj of ω is a simple

normal crossing; then the fundamental group of a generic leaf L of F is

43
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isomorphic to the subgroup G of π1(Pn+1 −D) defined by

G :=

(m0, . . . ,mk) ∈ Zk+1/(d0, . . . , dk)Z|
∑
j=0

λjmj = 0

 , (4.1)

where dj is the degree of the irreducible component Dj of D and λj is the residue
of ω around Dj.

A positive answer to Question (1) when F is generic and the subgroup G
(4.1) is trivial. This leaves us a glimpse of a relation between the fundamental
group of the complement of D in Pn+1 (π1(Pn+1 − D)) and the fundamental
group of a generic leaf of F .

A Zariski-Lefschetz type Theorem [HmLe, Theorem 0.2.1] provides an
isomorphism between the homotopy groups

πl((Pn+1 −D) ∩H) ∼= πl(Pn+1 −D),

for H hyperplane sufficiently general, l ≤ (n− 1) and n ≥ 1. This theorem will
allow us to prove the following result.

Theorem 4.1.2. Let F be a logarithmic foliation defined by a logarithmic 1-
form ω on Pn+1, n ≥ 1, with a simple normal crossing polar divisor D =∑k
j=0Dj. Let H ⊂ Pn+1 be an hyperplane such that H ∩D is a reduced divisor

with simple normal crossings in H. Suppose the leaves L,L ∩ H are generic
leaves of F ,F|H respectively. Then the morphism between homotopy groups

(i)∗ : πl(L ∩H)→ πl(L),

induced by the inclusion i : L ∩H ↪→ L are

(*) isomorphisms if l < n− 1,

(*) epimorphisms if l = n− 1.

This provides a positive answer to Question (2) when n > 2.

4.2 Homotopy Theory

In this section we recall some definitions and results from Homotopy Theory that
will be used throughout this chapter. We will not provide proofs, for details see
[H, Chapter 4].

Definition 4.2.1. LetX a topological space with basepoint x0, define πn(X,x0)
to be the set of homotopy classes of maps f : (In, ∂In) → (X,x0), where
the homotopies ft are required to satisfy ft(∂I

n) = x0 for all t ∈ [0, 1] and
In = [0, 1]n. The set πn(X,x0) (n ≥ 1) has group structure with operation

(f ∗ g)(s1, s2, . . . , sn) =


f(2s1, s2, . . . , sn), s1 ∈ [0,

1

2
]

g(2s1 − 1, s2, . . . , sn), s1 ∈ [
1

2
, 1].

The definition extends to the case n = 0 by taking I0 to be a point and ∂I0 to
be empty, so π0(X,x0) is just the set of path-connected components of X.
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Definition 4.2.2. The relative homotopy group πn(X,A, x0) for a pair
(X,A) with a base point x0 ∈ A is defined by the set of homotopy classes of
maps

(In, ∂In, Jn−1)→ (X,A, x0),

where Jn−1 = ∂In − In−1 with In−1 = {(s1, . . . , sn) ∈ In|sn = 0}.

Lemma 4.2.3. The inclusions

i : (A, x0) ↪→ (X,x0), j : (X,x0, x0) ↪→ (X,A, x0)

and the restriction of (In, ∂In, Jn−1) → (X,A, x0) to (∂In, Jn−1) define the
following long exact sequence of homotopy groups

· · · → πk−1(X,x0)→ πk−1(X,A, x0)→ πk−2(A, x0)→ · · ·π0(X,x0).

Definition 4.2.4. A space X with basepoint x0 is said to be n-connected if
πk(X,x0) = 0 for k ≤ n. Analogously, the pair (X,A) is called n-connected if
πk(X,A, x0) = 0 for all x0 ∈ A with 0 < k ≤ n and for i = 0 (π0(X,A, x0) = 0)
means that each path-component of X contains points in A.

Lemma 4.2.5. The following four conditions are equivalent, for k > 0:

1) Every map (Dk, ∂Dk) → (X,A) is homotopic relative to ∂Dk to a map
(Dk, ∂Dk)→ (A,A).

2) Every map (Dk, ∂Dk) → (X,A) is homotopic through such maps to ∂Dk

to a map (Dk, ∂Dk)→ (A,A).

3) Every map (Dk, ∂Dk)→ (X,A) is homotopic relative to ∂Dk to a constant
map (Dk, ∂Dk)→ (A,A).

4) πk(X,A, x0) = 0 for all x0 ∈ A.

From now on we will assume that the spaces X and A are path connected.
The base point x0 will be omitted from the notation.

Lemma 4.2.6. If ρ : (X̃, Ã) → (X,A) is a covering space with Ã = ρ−1(A),
then the map ρ∗ : πn(X̃, Ã)→ πn(X,A) is an isomorphism for all n > 1.

Lemma 4.2.7 (Transitivity). Suppose W ⊂ V ⊂ U , and (V,W ) is l-connected.
Then (U, V ) is l-connected if and only if (U,W ) is l-connected.

Lemma 4.2.8 (Deformation). Suppose (U, V ) is a pair, and U ′ ⊂ U, and V ′ ⊂
U ′ ∩ V . Suppose f : U × [0, 1]→ U is a continuous map such that f(u, 0) = u,
f(V × [0, 1]) ⊂ V , f(U ′ × [0, 1]) ⊂ U ′, f(V, 1) ⊂ V ′, and f(U, 1) ⊂ U ′. Then
(U, V ) is l-connected if and only if (U ′, V ′) is l-connected.

Lemma 4.2.9 (Excision I). Suppose W ⊂ V ⊂ U . Suppose that the U -closures
W and U − V are disjoint. Then (U, V ) is l-connected if and only if (U−W,V −
W ) is l-connected.

Lemma 4.2.10 (Excision II). Suppose W ⊂ V ⊂ U . Suppose that there exist
W ′ ⊂ W such that W ′ ∩ U − V = ∅ and there is a deformation from the pair
(U −W ′, V −W ′) to the pair (U −W,V −W ). Then (U, V ) is l-connected if
and only if (U −W,V −W ) is l-connected.
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Lemma 4.2.11 (Exhaustion). Suppose U (respectively V ) is an infinite union
of open subsets Ui(respectively Vi), with Vi ⊂ Ui. If the pairs (Ui, Vi) are l-
connected then (U, V ) is l-connected.

The following Lefschetz-Zariski type Theorem is deduced from the homotopy
exact sequence for fibre bundles and [HmLe, Theorem 0.2.1] of Hamm and Lê
Dũn Tráng.

Theorem 4.2.12. Let D be a reduced divisor with only normal crossing
singularities in Pn+1, n > 0. Let H be a hyperplane in Pn+1, whose
intersection H ∩D is a reduced divisor with only normal crossing singularities
in H. Then the inclusion map

(Pn+1 −D) ∩H ↪→ Pn+1 −D

induces isomorphisms of homotopy groups in dimension less than n.
Furthermore, the induced homomorphism

πn((Pn+1 −D) ∩H)→ πn(Pn+1 −D)

is onto.

Finally, we also recall a theorem about the fundamental group of the
complement of hypersurfaces in Pn+1 due to Deligne and Fulton.

Theorem 4.2.13. [Di, Proposition 4.1.3 and Theorem 4.1.13] Let D ⊂ Pn+1

be a hypersurface with only normal crossing singularities and irreducible
components Di, i = 0, . . . , k and n ≥ 1. Then the fundamental group
π1(Pn+1 −D) is abelian and is isomorphic to

Zk+1

Z(d0, . . . , dk)
≡ Zk ⊕ Z

Zgcd(d0, . . . , dk)
.

This last result shows that when gcd(d0, . . . , dk) 6= 1, the fundamental group
π1(Pn+1 −D) has torsion.

4.3 Simpson-Lefschetz Theorem

The proofs of Theorems 4.1.1 and 4.1.2 rely on the following result.

Theorem 4.3.1. Let ω be a closed logarithmic 1-form on a projective manifold
X of dimension n+1, n ≥ 1. Assume that polar divisor D of ω is simple normal
crossing divisor. Consider a normal covering space

ρ : Y → X −D,

over which the function

g(y) =

∫ y

y0

ρ∗ω (4.2)

is well defined for y ∈ Y . If the singularities of ω outside D are isolated then
the pair (Y, g−1(c)) is n-connected with c ∈ C.
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Theorem 4.3.1 is an adaptation of [S, Corollary 21] which concerns the
integral varieties of a closed holomorphic 1-form on a projective manifold X.
One of the key steps in its proof consists in establishing an Ehresmann type
result for the function g outside an open neighborhood of the singularities of
ρ∗ω. Before stating this result we will need to introduce some notation and
establish some preliminary results.

Singular theory

Let {pi} be the finite set of isolated singularities of ω in X −D. Fix a metric
µ on X. Since X is compact, µ is complete. We can choose ε1 > 0 sufficiently
small such that the closed balls

Bµ(pi, ε1) = Mi (4.3)

are pairwise disjoint and the restriction of ω to an open neighbourhood of Mi

is exact. We define primitives gi(x) =
∫ x
pi
ω for x ∈Mi. Since the points pi are

isolated singularities, it follows from [M3, Theorems 4.8, 5.10] the existence of
ε2 > 0 sufficiently small such that

(i) 0 ∈ B(0, ε2) ⊂ C is the unique critical value for the primitive gi;

(ii) the intersections g−1
i (0)∩∂Mi and g−1

i (B(0, ε2))∩∂Mi = Ti are smooth,
and the restriction of ω to Ti is a 1-form on Ti which never vanishes.

Lemma 4.3.2. Let Fi = g−1
i (0) and Ei = g−1

i (c) with c ∈ B(0, ε2) − {0} be
fibres of gi restricted to

Ni = Mi ∩ g−1
i (B(0, ε2)).

For small ε2 the pair (Ni, Fi) is l-connected for every l ∈ N and the pair (Ni, Ei)
is n-connected.

Proof. For ε2 sufficiently small [M3, Theorem 5.2] implies that Fi is a
deformation retract of Ni. Therefore the pair (Ni, Fi) is l-connected for l ∈ N.

We learn from [M3, Theorems 5.11, 6.5] that Ei has the homotopy type
of a bouquet of spheres Sn ∨ · · · ∨ Sn for ε2 sufficiently small. Thus the fibre
Ei is (n − 1)-connected. Since the neighbourhood Ni can be contracted to pi
the long exact sequence from Lemma 4.2.3 implies that the pair (Ni, Ei) is
n-connected.

Remark 4.3.3. We point out that [M3, Corollary 7.3] guarantees that the
bouquet of spheres Sn ∨ · · · ∨ Sn is non-trivial in Ei. Thus we can picture what
happened in Ni as follows:
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Ehresmann type result

Let ρ : Y → X −D be a normal covering space and the function g as in (4.2).
We will use j ∈ Ji as an index set for the points p̃j of the discrete set ρ−1(pi)
and we will denoted the union ∪Ji by J . Fix ε1, ε2 > 0 sufficiently small such
that

(*) in each connected component M̃j of ρ−1(Mi) containing the point p̃j , the

restriction of ρ in M̃j is a biholomorphism; and

(*) the subsets Ni, Ti, Fi, Ei satisfy the properties mentioned above for every
i.

We define a primitive g̃j = gi ◦ ρ for the restriction of ρ∗ω to M̃j such that

g|M̃j
= g̃j + aj for some aj ∈ C, with j ∈ Ji. The subsets Ñj , T̃j , F̃j , Ẽj of M̃j

are the analogues of the subsets Ni, Ti, Fi, Ei of Mi.

We choose δ such that 0 < 5δ < ε2. For each b ∈ C, we define the subset
J(b) of J formed by the indexes j such that |b− aj | < 3δ. Let Ub = B(b, δ) ⊂ C
and define the open subset of the covering space Y

W (b) = g−1(Ub) ∩ (
⋃

j∈J(b)

Ñ◦j ),

where Ñ◦j denotes the interior of Ñj , which satisfies

(g−1(Ub)−W (b)) ∩W (b) ⊂
⋃

j∈J(b)

T̃j .

We can now formulate our Ehresmann type result.

Proposition 4.3.4. There exists a trivialization of g−1(Ub) − W (b) with
trivializing diffeomorphism

Φ : Ub × (g−1(b)−W (b))→ g−1(Ub)−W (b),

such that the restriction to the boundary satisfies

Φ(Ub × (g−1(b)−W (b)) ∩W (b)) = (g−1(Ub)−W (b)) ∩W (b).
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Proof. For each point q in the polar divisor D ⊂ X of the logarithmic 1-form
ω, we have a coordinate chart (V (q), φ) such that

ω = φ∗(

r(q)∑
j=1

λj
dzj
zj

+ η),

where η is a closed holomorphic 1-form and {
∏r(q)
j=1 zj ◦ φ = 0} = D ∩ V (q).

Choose V (q) such that η is exact in φ(V (q)) with primitive h. Consider the
coordinate change z → y defined by

y1 = z1 exp(
h

λ1
), and yl = zl with l = 2, . . . , n+ 1.

This gives a new coordinate chart (V (q), ψ) where

ω = ψ∗(

r(q)∑
j=1

λj
dyj
yj

). (4.4)

We can take a finite number of points qβ ∈ D with coordinate charts (Vβ , ψβ)
satisfying (4.4) and such that the union ∪βVβ covers D.

Let Ui ⊂ Ni be open balls containing the singular points of ω in X−D such
that the diameter of gi(Ui) is smaller than δ/10. Let {Aα} be a finite cover of

X − (
⋃
β

Vβ ∪
⋃
i

Ui)

such that ω is exact in Aα and the pi’s are not contained in any Aα.

We define the following C∞ real vector fields:

(1) the vector fields uβ , vβ in Vβ such that

Dψβ(uβ) =

r(qβ)∑
j=1

yj
λj

∂

∂yj
, Dψβ(vβ) =

√
−1

r(qβ)∑
j=1

yj
λj

∂

∂yj
,

(2) the vector fields uα, vα in Aα such that ω(uα) = 1, ω(vα) =
√
−1 and if

the intersection Aα ∩ Ti is non empty the vector fields uα, vα are tangent
to Ti;

(3) the smooth vector fields ui, vi in Ui which vanish in pi.

We take a partition of the unity subordinated to the open cover {Vβ} ∪
{Aα} ∪ {Ui} of X and we define the vector fields

u =
∑

φγuγ and v =
∑

φγvγ ,

which are complete since they are defined over all X. By definition, the vector
fields uβ , vβ leave the divisor D invariant. Therefore the vector fields u, v also
leave the divisor D invariant. It follows that the restriction of u, v to X − D
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are still complete vector fields and they satisfy ω(u) = 1, ω(v) =
√
−1 outside

of D ∪ (∪iUi).
Let ũ, ṽ be the liftings of u, v with respect to Y . Notice that the vector fields

ũ, ṽ are complete vector fields on Y , which restricted to g−1(Ub)−W (b) satisfy
ρ∗ω(ũ) = 1, ρ∗ω(ṽ) =

√
−1. It implies the existence of the diffeomorphism

Φ : Ub × (g−1(b)−W (b)) → g−1(Ub)−W (b)
(t1 + b, t2 + b)× {q} 7→ Φ1(t1,Φ2(t2, q)),

where Φ1,Φ2 are flows of ũ, ṽ, respectively. The vector fields ũ, ṽ are tangent to
T̃j for every j ∈ J . In particular, they are tangent to ∪j∈J(b)T̃j . It follows that

Φ(Ub × (g−1(b)−W (b)) ∩W (b)) = (g−1(Ub)−W (b))− (g−1(∂Ub) ∩W (b))

as wanted.

The proof of Theorem 4.3.1

Define the following sets

P (b, V ) = g−1(V ) ∪W (b),

where V is contained in Ub;

R(b) = g−1(Ub)−W (b), F (b) = g−1(b);

and the intersections

PR(b, V ) = P (b, V )−W (b), FR(b) = F (b)−W (b).

Lemma 4.3.5. Let V ⊂ Ub be a contractible subset. If there exists a continuous
map ξ : Ub×[0, 1]→ Ub such that ξ(y, 0) = y,ξ(V ×[0, 1]) ⊂ V and ξ(Ub×{1}) ⊂
V then the pair (g−1(Ub), P (b, V )) is l-connected for every l.

Proof. For each T̃j with j ∈ J(b) we can choose a vector field νj tangent to the
level sets of g and pointing to the interior of W (b). The vector fields νj allow
us to construct a deformation h : Wb × [0, 1] → Wb such that h(y, 0) = y and
the image of h(Wb × {1}) = W ′(b) has empty intersection with R(b).

The map h(y, 1 − t) gives us a deformation of the pair
(g−1(Ub) −W ′(b), P (b, V ) −W ′(b)) to the pair (R(b), PR(b, V )). The excision
Lemma 4.2.10 implies that the pairs (g−1(Ub), P (b, V )) y (R(b), PR(b, V ))
have the same l-connectivity.

The map ξ can be lifted through the diffeomorphism Φ from Proposition
4.3.4. Hence the pair (R(b), PR(b, V )) is l-connected for every l, and the lemma
follows.

Lemma 4.3.6. Let V ⊂ Ub be as in Lemma 4.3.5. The pair (g−1(Ub), g
−1(V ))

is n-connected.
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Proof. Consider the pair (Ñ◦j ∩ g−1(Ub), Ñ
◦
j ∩ g−1(V )) = (Ub,j , Vj) with j ∈

J(b). Since V is contractible and the restriction of g to Ñj − F̃j is a trivial
fibration, Lemma 4.2.8 implies that the pair (Ub,j , Vj) is l-connected for every

l if F̃j ⊂ Vj , and n-connected if F̃j is not contained in Vj . Therefore the pair
(W (b),∪j∈J(b)Vj) is at least n-connected.

Let ν be the vector field defined in the proof of the previous lemma. The
vector field −ν points toward the interior of R(b). Analogously, we define a
deformation h : R(b)× [0, 1]→ R(b) such that the closure of the image h(R(b)×
{1}) = R′(b) has empty intersection with W (b). Lemma 4.2.10 implies that the
pair (P (b, V ), g−1(V )) is n-connected. From Lemmas 4.2.7(transitivity) and
4.3.5 we conclude that the pair (g−1(Ub), g

−1(V )) is n-connected.

Proof of Theorem 4.3.1. Take a triangulation ∆ of C with equilateral
triangles with sides of length δ, such that one of the vertices in V∆ is c ∈ C.
Let Hl be the family of concentric hexagons with center c and vertices in V∆.
Label by ci the vertices V∆ such that

(*) between ci and ci+1 it always exists an edge ei ∈ E∆ of the triangulation
∆, and c0 = c.

(**) the vertices ci with 6(l − 1)l/2 < i ≤ 6l(l + 1)/2 are in the hexagon Hl.

Consider the open sets Ui = BC(ci, δ) and Wi = ∪j≤iUj . Since the
intersection Ui ∩Wi−1 = Vi is contractible in Ui, Lemma 4.3.6 gives that the
pair (g−1(Ui), g

−1(Vi)) is n-connected.

The Wi-closures of the sets (Wi −Wi−1) and (Wi−1 − Ui) are disjoint, thus
the previous paragraph combined with Lemma 4.2.9 imply that the pair
(g−1(Wi), g

−1(Wi−1)) is n-connected for every i. From Lemma 4.2.7
(transitivity) we deduce that the pair (g−1(Wi), g

−1(W0)) is n-connected for
every i. Taking V = c in Lemma 4.3.6, we see that (g−1(W0), g−1(c)) is
n-connected. Hence (g−1(Wi), g

−1(c)) is n-connected for all i. Finally,
applying Lemma 4.2.11 (exhaustion) for the pairs (Wi, c) we conclude the
proof of Theorem 4.3.1.

Example 4.3.7. Let ω be closed logarithmic 1-form on Pn+1, with a simple
normal crossing polar divisor D = H0 + · · · + Hk and 1 ≤ k ≤ n + 1. Let
Hj be hyperplans of Pn+1. Modulo an automorphism of Pn+1 we can take
Hj = {zj = 0} where [z0 : · · · : zn+1] are homogeneous coordinates for Pn+1.
Take the universal covering

ρ : Cn+1 → Pn+1 −D
[1 : x1 : · · · : xn+1] 7→ [1 : e2π

√
−1x1 : · · · : e2π

√
−1xk : xk+1 : · · · : xn+1].

If we denote the residues by Res(ω,Hj) = λj , then the pull-back ρ∗ω admits
the following expression

2π
√
−1

k∑
j=0

λjdxj ,

which is a linear 1-form on Cn+1. In this case there are no singularities outside
the divisor and the primitive g is a linear map with g−1(c) ∼= Cn. In particular,
the pair (Cn+1, g−1(c)) is l-connected for every l.
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Example 4.3.8. Consider the closed rational 1-form

ω = d

(
x2 + y2 + z2

xy

)
in homogeneous coordinates [x : y : z] of P2. The polar divisor D of ω has only
two irreducible components D0 = {x = 0}, D1 = {y = 0}, with D = 2D0 +2D1.
The singularities of ω outside of D are the points p1 = [1 : 1 : 0], p2 = [−1 : 1 : 0].

The 1-form ω is exact in P2 −D. The leaves of the foliation F defined by ω
in P2 −D coincide with

{x2 + y2 + z2 − αxy = 0} −D with α ∈ C.

If we assume that Proposition 4.3.4 is true in this situtation, we would have for
δ > 0 sufficiently small a diffeomorphism

Φ : g−1(B(2, δ))−W (2)) ∼= B(2, δ)× (g−1(2)−W (2)).

But this is impossible since the set g−1(2) consists of two lines and the set
g−1(2)−W (2) is not connected and the set g−1(B(2, δ))−W (2)) is connected.

The construction of the vector field used to prove Proposition 4.3.4 fails in
this case, since at the singular points q1 = [1 : 0 : 1], q2 = [−1 : 0 : 1], q3 = [0 :
1 : 1], q4 = [0 : −1 : 1] the vector field

u =
x2y

x2 − y2 − z2

∂

∂x
+

y2x

y2 − x2 − z2

∂

∂y
+

2z

xy

∂

∂z

cannot be extended.

4.4 Proofs of main results

Let F be a logarithmic foliation on the projective space Pn+1 with n ≥ 1, defined
in homogenous coordinates by the logarithmic 1-form

ω = (
k∏
j=0

Fj)
k∑
j=0

λj
dFj
Fj

,

where k ≥ 1 and the residues satisfy
∑k
j=0 λjdj = 0. The polar divisor D of ω

is the reduced divisor given by
∑k
j=0Dj , where Dj := {Fj = 0} and dj is the

degree of the homogeneous polynomial Fj .

Proposition 4.4.1. Let F be a logarithmic foliation as above. Suppose that
the polar divisor D of ω is a simple normal crossing divisor. Then there exists
a normal cover ρY : Y → Pn+1 −D such that ρ∗Y ω is exact, and for a primitive
g defined by g(y) =

∫ y
y0
ρ∗Y ω the inverse image g−1(c) of a regular value c ∈ C

is biholomorphic to a generic leaf L of F .

Proof. Consider the universal cover ρ : Z → Pn+1 − D and the subgroup of
π1(Pn+1 −D)

G = {(m0, . . . ,mk) ∈ Zk+1/(d0, . . . , dk)Z|
k∑
j=0

mjλj = 0}.
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Note that the torsion subgroup of π1(Pn+1 −D) is contained in G.

Define the covering space

Y =
Z

G

of Pn+1 −D with projection ρY .

Claim. The closed 1-form ρ∗Y ω is exact.

Aiming at a contradiction assume that the claim is false. Then there exists
a closed curve γ : I → Y homotopically non trivial such that

∫
γ
ρ∗Y ω 6= 0. Let

{γj}kj=0 be representatives of generators of π1(Pn+1 −D), i.e.

1

2π
√
−1

∫
γj

dFl
Fl

= δjl,

where δjl is the Kroenecker delta. Since π1(Pn+1 −D) is abelian we can write

ρY ◦ γ = γm0
0 ∗ · · · ∗ γmkk ,

and obtain the equality ∫
γ

ρ∗Y ω =

∫
γ
m0
0 ∗···∗γmkk

ω.

The right hand side can be written as 2π
√
−1
∑k
j=0mjλj . But since the

homotopty class of γ is in π1(Y ) we deduce that ρY ◦ γ belongs to G. This is a
sought contradiction.

Claim. Let c ∈ C be a regular value of g. Then ρY |g−1(c) : g−1(c)→ L is a
biholomorphism.

Suppose not. Then there exist points y0, y1 ∈ ρ−1
Y (x0) distinct from x0 ∈ L

such that y0, y1 ∈ g−1(c).

Take γ̃ : I → Y with γ̃(0) = y0 y γ̃(1) = y1. Recall that Theorem 1.3.5
shows that the singularities outside D are isolated. Since n ≥ 1, Theorem 4.3.1
implies that the pair (Y, g−1(c)) is 1-connected. By Lemma 4.2.5 there exists γ′

contained in g−1(c) homotopic to γ̃ with fixed extremes. Therefore γ = ρ ◦ γ′
is a curve in L which is not homotopically trivial in Pn+1 −D. But since it is
contained in a leaf of the foliation we have that∫

γ

ω = 0.

Writing γ = γm0
0 · · · γmkk , we deduce that

∑k
j=0mjλj = 0. Hence γ is homotopic

to an element of G a contradiction. Thus ρ|g−1(c) is a biholomorphism.

Example 4.4.2. Let us consider the case where the polar divisor of the
logarithmic 1-form ω has only two irreducible components, say D0 and D1. If
the degrees d0, d1 are equal then the leaves L of the foliation F are contained
in elements of the pencil

{aF0 + bF1|(a : b) ∈ P1}.
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In particular the generic leaf L is of the form {aF0 + bF1 = 0} −D for (a : b)
generic. Theorem 4.2.13 implies that

π1(P3 −D) ∼= Z⊕ Z
dZ

,

where d = d0 = d1. Note that the subgroup G in this case is the torsion
subgroup of π1(P3−D). Hence Proposition 4.4.1 and Theorem 4.3.1 imply that

π1(L) =
Z
dZ

.

We are now ready to prove Theorems 4.1.1 and 4.1.2.

Proof of Theorem 4.1.1. By Theorem 1.3.5 the singularities outside D are
isolated, and we have that the covering Z/G of Pn+1 −D given by Proposition
4.4.1 satisfies the hypotheses of Theorem 4.3.1, where Z is the universal cover
of Pn+1 −D. Since n ≥ 2, Theorem 4.3.1 and Proposition 4.4.1 show that the
fundamental group π1(Z/G) and the fundamental group π1(L) of a generic leaf
are isomorphic, which is the desire conclusion.

Corollary 4.4.3. Let F , ω,D, k, n and G be as in Theorem 4.1.1. If the residues
λj of ω are non resonant and gcd(d0, . . . , dk) = 1 then the generic leaf is simply
connected.

Proof. From the hypothesis on the residues λj and gcd(d0, . . . , dk), the subgroup
G of π1(Pn+1−D) is trivial. Thus, we have that the universal cover Z of Pn+1−D
coincides with covering space given by Proposition 4.4.1. By Theorem 4.1.1 the
generic leaf is simply connected.

Proof of Theorem 4.1.2. The inclusion i : H −D(H) ↪→ Pn+1 −D induces
the morphisms

i∗ : πl(H −D(H))→ πl(Pn+1 −D) (4.5)

in homotopy, where D(H) = H ∩D. From Theorem 4.2.12 we have that i∗ is
an isomorphism for l < n and an epimorphism for l = n.

Consider the normal cover ρ : Y → Pn+1 − D given by Proposition 4.4.1.
Let g be a primitive of ρ∗ω. Let Y (H) = ρ−1(H −D(H)). Notice that Y (H) is
a connected normal covering space of H −D(H). Let gH be the restriction of g
to Y (H). Let c ∈ C be a common regular value for g and gH . Since l ≤ n− 1,
Theorem 4.3.1 implies that the morphisms

i∗ : πl(g
−1(c))→ πl(Y )

and
i∗ : πl(g

−1
H (c))→ πl(Y (H))

induced by the inclusion Y (H) ↪→ Y , are isomorphisms if l < n − 1 and
epimorphisms if l = n − 1. Considering the exact sequence from Lemma 4.2.3
we obtain the following commutative diagram for l > 0:

· · · // πl+1(Y (H), g−1
H (c)) //

��

πl(g
−1
H (c)) //

��

πl(Y (H)) //

��

· · ·

· · · // πl+1(Y, g−1(c)) // πl(g−1(c)) // πl(Y ) // · · ·



4.4. PROOFS OF MAIN RESULTS 55

From the morphism (4.5) and Lemma 4.2.6 we have that the morphisms

πl(Y (H))→ πl(Y )

are isomorphisms for l < n and epimorphisms for l = n. Analogously, Theorem
4.3.1 implies that the morphisms

πl(Y (H), g−1
H (c))→ πl(Y, g

−1(c))

are isomorphisms for l < n and epimorphisms for l = n. Applying the five
Lemma, we have that the morphisms

πl(g
−1
H (c))→ πl(g

−1(c))

are isomorphisms for l < n − 1 and epimorphisms for l = n − 1. Hence the
theorem follows from the biholomorphism given by Proposition 4.4.1.

Corollary 4.4.4. Let ω,D,G,F satisfying the hypothesis of Corollary 4.4.3.
If dj = 1 and k > n + 1, then the generic leaf L of the foliation F is (n − 1)-
connected.

Proof. Let lj ∈ C[x0, . . . , xn+1] be homogeneous polynomials of degree 1 such
that Dj = {lj = 0}. Define the linear inclusion

ϕ : Pn+1 → Pk
[x0 : · · · : xn+1] 7→ [l0 : · · · : lk].

Since the polar divisor D is normal crossing, the morphism ϕ is an embedding
and ω = ϕ∗ω̃, where

ω̃ =

k∑
j=0

λj
dzj
zj

with [z0 : · · · : zk] homogeneous coordinates of Pk.

The image ϕ(Pn+1) = Hs is a linear subspace of Pk of codimension s =
k − (n+ 1). Denote by D̃ the polar divisor of ω̃. Since the intersection Hs ∩ D̃
is normal crossing in Hs, we can construct a descending sequence

Pk = H0 ⊃ H1 ⊃ · · · ⊃ Hs−1 ⊃ Hs

of linear subspaces satisfying

(*) the codimension of Hj in Hj−1 is 1, when j > 0.

(*) the intersection Hj ∩ D̃ is normal crossing in Hj .

Let Fj be the foliation defined by the restriction of the 1-form ω̃ to Hj . Without
loss of generality we can assume that a generic leaf L0 of F0 satisfies that
Lj = L0 ∩Hj is also a generic leaf of Fj .

Iterating Theorem 4.1.2 we have that the pair (Lj−1,Lj) is (k − j − 1)-
connected. The hypothesis that the group G is trivial, Proposition 4.4.1 and
Example 4.3.7 imply that L0 is biholomorphic to Ck−1. Hence the leaf Lj is at
least (k − j − 2)-connected. Since the generic leaf L of F is homeomorphic to
Ls, we conclude that it is (n− 1)-connected.
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Matemática. IMPA, Rio de Janeiro, 2000.

[Ca-L] Camacho, C.; Lins Neto, A. Teoria geométrica das folheações. Projeto
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Ann. Sci. École Norm. Sup. 6 (1973), p.317-366

[H] Hatcher, A. Algebraic Topology Cambridge University Press (2002)
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compact Riemann surfaces Astérisque 323 (2009), pp. 223-252

[M] Milnor, J. Dynamics in one complex variable. 3rd ed. Princeton University
Press, 2006. viii, 304 p. (Annals of mathematics studies ; 160)

[M2] Milnor, J. Morse theory, Annals of Mathematics Studies, No.51, Princeton
University Press (1963)

[M3] Milnor, J. Singular points of complex hypersurfaces Annals of
Mathematics Studies, No.61, Princeton University Press (1968)

[Ne] Nead, S.(mathoverflow.net/users/1650/sam-nead)Quotient of the
hyperbolic plane with respect to commutator group of π1(Σg)
URL(version:2014-12-21) mathoverflow.net/questions/184719

[Pa1] Paul, E. Etude topologique des formes logarithmiques fermées. Inventiones
mathematicae 95.2 (1989): 395-420.

[Pa2] Paul, E. Connectedness of the fibers of a Liouvillian function Publ. Res.
Inst. Math. 33(1997),no.3, 465-481.

[P-S] Pereira, J. V.; Sad, P. On the holonomy group of algebraic curves invariant
by holomorphic foliations. Ann. Mat. Pura Appl. (4) 185 (2006), no. 2,
pp. 257-271.

[P] Pereira, J. V. Fibrations, Divisors and Transcendental Leaves Journal of
Algebraic Geometry, 15,(2006) pp. 87-110.

[R] Richards, I. On the classification of noncompact surfaces, Trans. Amer.
Math. Soc 106(1963), 259-269

[S] Simpson, C. Lefschetz theorems for the integral leaves of holomorphic one-
form Compositio Mathematica, Vol. 87, no. 1 (1993), 99-113

[Sh] Shcherbakov, A. Topological and analyticla conjugacy of non-commutative
groups of germs of conformal mappings, Trudy Sem. Petrovsk.,
Vol.10(1984), pp.170-196

[Sp] Spainer, E. H. Algebraic Topology McGraw Hill, New York (1966).

[V] Valdez, F. Billiards in polygons and homogeneous foliations on C2.
Ergodic Theory Dynam. Systems 29 (2009), no. 1, 255–271.


