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Abstract

Since the stock market crash in 1987, many generalizations of Black-Scholes model have been
introduced, in order to incorporate the so-called volatility smile effect. In this master thesis
we study the numerical aspects of the stochastic volatility inspired (SVI) parameterization of
implied volatility smile. Introduced at the end of 1990’s, this model - which is basically a
parameterized functional form - presents a nice smile adherence, which made it popular within
market practitioners mainly by its low computational cost. We present numerical experiments
using real data, evaluating how reliable would the fitted parameters be on calculating volatilities
for future dates.

Key words: Financial Options, Financial Derivatives, Volatility Smile, Black-Scholes Formula,
SVI fit, Stochastic Differential Equation, Variance Modelling.
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Introduction

The price of securities such as bonds, stocks or futures cannot be predicted. Because it is
subjected to different sources of risk and shocks, derivative contracts were introduced to protect
market practitioners and companies from such randomness.

As an example, an European call (or European put) option is a contract that gives to its
holder the right to buy (or sell) a given amount of an asset at a specific maturity time for a
fixed strike price. In contrast, American options can be exercised at any time until its maturity.
These so-called Vanilla options are the most liquid and intuitively reflect the market expectation
of the asset price future behaviour.

More complex derivatives are key tools in hedging and trading strategies, however, they
may be not sufficiently liquid to avoid arbitrage opportunities, i.e., they must be appropriately
priced with mathematical models, taking into account the available market information.

In the classical Black-Scholes model [2], the dynamics of the instantaneous logarithmic of
returns of an asset is given by an Itô process with constant coefficients, the asset’s drift and the
volatility. Under no-arbitrage arguments, European call option price is given by the well-known
Black-Scholes formula.

In practice, volatility is not constant as we can see when we use Black-Scholes formula to
identify it. It changes with strike and maturity. These volatilities are the so-called implied
volatilities. The volatility smile can be seen when we plot such implied volatilities with the
option’s time to maturity fixed and vary the strike price. This name comes from its shape,
since volatility usually presents lower levels for strike prices close to the underlying asset price,
or at-the-money strikes, and higher levels as we go far from the at-the-money.

After the stock market crash in 1987, many generalizations of Black-Scholes model were
proposed, where the volatility (or diffusion) coefficient is assumed stochastic. More precisely,
let the asset price evolution be given by:

dSt = µtStdt+
√
vtStdWt, t ≥ 0,

where µt is the drift, vt the variance (the square of volatility) and {Wt, t ≥ 0} is a Wiener
process. One possible way to model the variance vt as a stochastic process is the following [23]:

dvt = α(St, vt, t)dt+ τβ(St, vt, t)
√
vtdZt,

α and β are continuous and well-behaved functions, τ is a constant and {Zt, t ≥ 0} is another
Wiener process, correlated with Wt. In a first observation, this assumption clearly adds ran-
domness sources into the model. Also, note that setting τ = 0 and µt as a constant, we would
have the standard time dependent Black-Scholes variance.

The stochastic volatility models describe in a more precise way the evolution of the under-
lying asset prices within a period of time. This is of particularly importance, when we want to
evaluate path-dependent derivatives. However, the simulation of theses models have a higher
computational cost.

1



2 Introduction

A market where every contingent claim can be replicated through a portfolio of negotiable
assets is called a complete market [16]. This is equivalent to the existence of a unique equiva-
lent martingale measure, which gives, for example, unique European call prices. A necessary
condition for this property to hold is the number of sources of uncertainty be less or equal to
the number of underlying assets in a portfolio. So, a portfolio of assets modeled by stochastic
volatility models fails to satisfy such condition, since the number of sources of uncertainties is
in general higher than the number of assets.

Local volatility models introduced in [6] and [5], can be seen as a particular class of stochastic
volatility models (see [11]), where the diffusion coefficient, or local volatility surface, of the asset
price dynamics is a deterministic function of the underlying asset’s current price and time. This
model is interesting because it keeps the market completeness and the possibility of hedging
positions through the derivatives. Moreover, in [6] it is proved that the local volatility is the
unique diffusion coefficient consistent with quoted European option prices. However, local
volatility calibration is an ill-posed inverse problem, and some regularization technique must
be applied. See [4, 7, 8, 21].

Even though there is a map between local and implied volatilities, in practice, its eval-
uation involves a complicated tridimensional interpolation method, which is not necessarily
well-behaved in terms of smoothness and continuity, since the maturity dates are discrete and
sparse.

Therefore, the quest for a model which is simple and easy to calibrate, that fits the market
smile and satisfies non-arbitrage conditions brought the community to study some simplifica-
tions of stochastic volatility models. Among them, there are the stochastic volatility inspired
(SVI) models [10, 13], which consists in techniques to parametrize the implied volatility smile.
It was firstly developed at Merryl Lynch in 1990 and publicly disseminated in [10].

Since it is relatively easy to implement and has interesting properties such as absence of
static arbitrage, SVI models have been largely studied by the community in the past two
decades. In addition, it has been shown in [12] that SVI is not arbitrary, since the large
maturity limit of Heston implied volatility holds SVI non-arbitrage properties.

This master thesis aims to explore the problem of modeling implied volatility smiles in order
to guarantee some important properties such as absence of calendar-spread arbitrage and static
arbitrage, good fit to bid-ask implied volatilities and good behavior under extreme strikes and
maturities. To do so, we will apply known SVI parameterization techniques over real data from
liquidly traded European options and compare this fixed parameters with the realized implied
volatilities for the next trading days.

Structure of the thesis In Chapter 1, we present the derivation of Dupire’s partial dif-
ferential equation and the inverse problem of local volatility surface calibration from quoted
European option data through the implied diffusion process for the underlying asset’s price
observed from the option prices for different strikes. In Chapter 2, we make a review of the-
oretical results concerning SVI models. Chapter 3 is concerned with implied volatility surface
modeling for real data. Some backtest techniques for market data are described in Chapter 4.
In Chapter 5 we draw some concluding remarks.



Chapter 1

Local Volatility Surface and Dupire’s
Equation

It is well-known that the the probability density of the underlying asset price at the option’s
maturity time can be inferred from European vanilla option prices [3, 19]. In [6, 5], it was
shown that there exists a unique state-dependent diffusion coefficient consistent with these
distributions. Such parameter, denoted by σL(S, t), is known as local volatility surface.

There are at least two interesting interpretations of local volatility surface, it can be seen as
an average of all possible instantaneous volatilities in a stochastic process, this was the initial
intuition of practitioners. Another one, it determines how the implied volatilities evolve, since,
by no-arbitrage arguments, there is a one-to-one map between both quantities. Below, we
explain both concepts.

1.1 Derivation of Dupire Equation

Suppose the stock price follows the diffusion process below:

dSt
St

= µtdt+ σL(St, t;S0)dWt, t ≥ 0,

where {Wt, t ≥ 0} is a standard Brownian Motion, µt = rt −Dt is the risk-neutral drift, given
by the risk-free rate rt minus the dividend yield Dt, and σL(St, t) is the local volatility surface.

The undiscounted risk-neutral price C̃ = C exp
(∫ T

t
rtdt

)
of an European option with strike

K and maturity T is given by:

C̃(S0;K,T ) = E [max{0, ST −K}|S0] =

∫ ∞
K

(ST −K)ϕ(ST , T ;S0)dST ,

with ϕ(ST , T ;S0) the probability density of the stock price St at time t = T (conditional to
S0). It evolves according to the Fokker-Planck equation:

1

2

∂2

∂S2
T

(σ2
LS

2
Tϕ)− ∂

∂ST
(µSTϕ) =

∂ϕ

∂T
.

Now, assuming that ϕ satisfies sufficient conditions such that we can differentiate under the
integral sign, it follows that:

3



4 CHAPTER 1. LOCAL VOLATILITY SURFACE AND DUPIRE’S EQUATION

∂C̃

∂K
= −

∫ ∞
K

ϕ(ST , T ;S0)dST ,

∂2C̃

∂K2
= ϕ(K,T ;S0),

and in T:
∂C̃

∂T
=

∫ ∞
K

(ST −K)
∂

∂T
ϕ(ST , T ;S0)dST ,

By the Fokker-Planck equation, the later equation is equivalent to∫ ∞
K

(ST −K)

(
1

2

∂2

∂S2
T

(σ2
LS

2
Tϕ)− ∂

∂ST
(µSTϕ)

)
dST .

Using some algebra tricks and integrating by parts twice, we find Dupire’s equation:

∂C̃

∂T
=
σ2
LK

2

2

∂2C̃

∂K2
+ µ(T )

(
C̃ −K ∂C̃

∂K

)
. (1.1.1)

Now, we can isolate the volatility term to get the so-called Dupire’s formula:

σ2
L(K,T ;S0) =

∂C

∂T
− µ(T )

(
C̃ −K ∂C̃

∂K

)
1

2
K2 ∂

2C

∂K2

, (1.1.2)

which is well-defined due to the static no-arbitrage condition

∂2C

∂K2
> 0

when K > 0.
This is the most important conclusions in Dupire’s article [6]. In theory, the term in the right-
hand of (1.1.2) can be easily evaluated with a complete set of European options prices, moreover,
this represents the unique expression for local volatility surface. In what follows, we shall use
equation (1.1.2) as the definition of local volatility surface. Note that, in practice, Dupire’s
formula is highly unstable, since we must interpolate noisy and scarce data and differentiate it,
in other words, local volatility surface calibration is an ill-posed inverse problem. See [4, 7].

1.2 Local Volatility and Implied Volatility

As one could guess, it is possible to express local volatility in terms of the implied volatility, con-
ditional to K, T and S0, derived from the Black-Scholes formula, and denoted by σBS(K,T ;S0).
In this section, we follow [11] closely.

Firstly, define the variables:

FT = S0 exp

(∫ T

0

µtdt

)
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is the forward price of the stock at t = 0,

y = log

(
K

FT

)
is the log-strike, and

ω(S0, y, T ) = σ2
BS(S0, FT ey, T )T

is the Black-Scholes total implied variance. In terms of the above variables, the Black-Scholes
formula for the future value of the option price becomes:

CBS(FT , y, ω) = FT [N (d1)− eyN (d2)]

= FT

[
N
(
− y√

ω
+

√
ω

2

)
− eyN

(
− y√

ω
+

√
ω

2

)]
.

(1.2.1)

Defining u(T ) =
∫ T
t

(rt −Dt) dt, v(y, T ) = C̃(FT ey, T ) and νL(y, T ) = σL(FT ey, T )2 (the
local variance), the PDE in (1.1.1) can be rewritten as:

∂v

∂T
=
νL
2

(
∂2v

∂y2
− ∂v

∂y

)
+ µ(T )v. (1.2.2)

Differentiating the Black-Scholes formula in (1.2.1), we have:

∂2CBS
∂ω2

=

(
−1

8
− 1

2ω
+

y2

2ω2

)
∂CBS
∂ω

,

∂2CBS
∂y∂ω

=

(
1

2
− y

ω

)
∂CBS
∂ω

,

∂2CBS
∂y2

=
∂CBS
∂y

+ 2
∂CBS
∂ω

. (1.2.3)

Now, we want to describe equation (1.2.2) in terms of the implied variance σBS. Since, for every
y and T , v(y, T ) = CBS(FT , y, ω), differentiating the equation above by y and T , it follows that:

∂v

∂y
=
∂CBS
∂y

+
∂CBS
∂ω

∂ω

∂y
, (1.2.4)

∂2v

∂y2
=
∂2CBS
∂y2

+ 2
∂2CBS
∂y∂ω

∂ω

∂y
+
∂2CBS
∂ω2

(
∂ω

∂y

)2

+
∂CBS
∂ω

∂2ω

∂y2
, (1.2.5)

∂v

∂T
=
∂CBS
∂ω

∂ω

∂T
+ µ(T )v. (1.2.6)

The expression in (1.2.6) can be rewritten as:

∂CBS
∂ω

∂ω

∂T
=
∂v

∂T
− µ(T )v,

and by (1.2.2), the right-hand side of the above equation is equal to:

∂v

∂T
− µ(T )v =

νL
2

(
∂2v

∂y2
− ∂v

∂y

)
.
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So, it follows that,
∂CBS
∂ω

∂ω

∂T
=
νL
2

(
∂2v

∂y2
− ∂v

∂y

)
.

Substituting the terms
∂2v

∂y2
and

∂v

∂y
by the expressions in (1.2.4) and (1.2.5) in the PDE (1.2.2),

we have:

∂CBS
∂ω

∂ω

∂T
=
νL
2

∂CBS
∂ω

[
2− ∂ω

∂y
+

(
1

2
− y

ω

)
∂ω

∂y
+

(
−1

8
− 1

2ω
+

y2

2ω2

)(
∂ω

∂y

)2

+
∂2ω

∂y2

]
,

and simplifying:

∂ω

∂T
= νL

[
1− y

ω

∂ω

∂y
+

1

4

(
−1

4
− 1

ω
+
y2

ω2

)(
∂ω

∂y

)2

+
1

2

∂2ω

∂y2

]
.

So, we just have to invert the above equation to isolate the local variance:

νL =

∂ω

∂T

1− y

ω

∂ω

∂y
+

1

4

(
−1

4
− 1

ω
+
y2

ω2

)(
∂ω

∂y

)2

+
1

2

∂2ω

∂y2

(1.2.7)

The intuitive conclusion of this result is that the local variance is expressed as the forward

Black-Scholes implied volatilities distorted by the skew
∂ω

∂y
.

Even though this work doesn’t aim to calibrate the local volatility surface, but the implied
volatility one, this relation composes an important background to the overall understanding
of the problem of pricing options using different approaches to the variance other than the
constant one assumed in the Black-Scholes model.

While Dupire’s result provided the discussion with a stronger theoretical background, the
models which aim to interpolate and extrapolate the implied volatility surface from given market
data is more straightforward and simpler to implement, with market smile adherence. Thus,
the implied variance can also be expressed as a function of local volatilities.



Chapter 2

SVI Parameterization: An
Introduction

Given the computational and theoretical difficulties related to the simulation of stochastic
volatility models, it makes sense to search for simpler techniques that are easy to implement,
arbitrage-free and that fit the market implied smile. One possible approach is the arbitrage-free
interpolation for implied volatility surfaces, such as [9] and [14]. However, these models are
not well suited to extrapolate the implied smile, and there is no closed-formula for volatilities.
So, we choose the SVI model introduced in [10], which has a closed-form representation for the
implied volatility function and guarantees the absence of static arbitrage.

In this chapter we shall present the definitions of different static arbitrage conditions and
how to prevent them in the formulation of the SVI model. More precisely, we shall state
sufficient conditions for the existence of a non-negative martingale defined in the probability
space where European call options prices are defined as the expected value of their payoffs,
under the risk-neutral measure. We shall show also that the model is free of calendar-spread
arbitrage, which means that the total variance must increase with the maturity. Visually, this
means that if we plot several slices of volatility smiles (one for each maturity time) in the same
log-strike × implied volatility chart, the curves must not cross each other.

Another important characteristic that the SVI model has is the consistency with respect to
Roger Lee’s moment formula [18], which set bounds for the tail slopes of implied volatility at
extreme maturities.

2.1 Roger Lee’s Moment Formula

In [18], the author presented the moment formula of implied volatilities, which implies some
properties of the implied volatility tail slopes at large and small-strikes, setting bounds for these
slopes, which can be interpreted as arbitrage bounds. We shall review these results.

Let us recall the notation

y = log

(
K

FT

)
, and ω(y) = σ2

BS(S0; y, T )T,

where the latter is the total implied variance of Black-Scholes model for a given maturity T.
Let β be defined by β|y|/T = ω(y).

Roger Lee’s moment formula shows that, when calculating

βR = lim sup
y→∞

β and βL = lim sup
y→−∞

β,

7
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it follows that βR, βL ∈ [0, 2]. Also, it states the following:

Theorem 1 (Roger Lee’s Moment Formula for Implied Volatility).

1

2βR
+
βR
8
− 1

2
= sup

{
p : E[S1+p

T ] <∞
}

,

and
1

2βL
+
βL
8
− 1

2
= sup

{
q : E[S−qT ] <∞

}
.

In [18], the theorem above is proved when the asset ST has an arbitrary distribution.
Theorem 1 shows that the best constant for the tails slopes depend only on the number of

finite moments of the distribution of the underlying asset.
Despite we shall not give the complete proof of Theorem 1 since it is not the focus of the

present work, we shall demonstrate two important lemmas that help us to understand why SVI
parameterization is consistent with Roger Lee’s moment formula.

Define β0 = exp
(
−
∫ T
0
µtdt

)
as a discount factor and write the Black-Scholes option price

for the strike K(y) as Ĉ(K(y)) = CBS(y, ω(y)), where K(y) = FT exp(y) is the strike at the
log-moneyness y. We have the following lemmas:

Lemma 1. There exists y∗ > 0 such that for every y > y∗,

ω(y) >
√

2|y|/T .

Proof. Since CBS is strict monotone, the lemma follows from this:

CBS(y, ω(y)) < CBS(y,
√

2|y|/T ),

If x > x∗. On the left hand side of the above equation we have:

lim
y→∞

Ĉ(K(y)) = lim
K→∞

β0E(ST −K)+ = 0,

which is guaranteed by the Dominated Convergence Theorem, since E(ST − K)+ < ∞. By
L’Hôpital rule, the right-hand limit can be written as:

lim
y→∞

CBS(y,
√

2|y|T ) = β0FT

[
Φ(0)− lim

y→∞
exp(y)Φ(−

√
2y|)

]
= β0FT/2,

which completes the proof.

Lemma 2. For any β > 2 there exists y∗ such that for all y < y∗,

ω(y) >
√
β|y|/T .

Hence, for β = 2 the conclusion holds if and only if P(ST = 0) < 1/2.

Proof. For β > 2 there exists y∗ such that for all y < y∗,

P(ST < FT exp(y)) < Φ(−
√
f−(β)|y|)− exp(−y)Φ(−

√
f+(β)|y|),

where f is the characteristic function of the underlying asset’s price at t = T .
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The stated above is true since, as y → ∞ the second part converges to P(ST = 0), and
the first part approaches 1 (or 1/2 in case β = 2 for the special case stated in the lemma).
Therefore, due to the strict monotonicity of the Black-Scholes price of an European put option
PBS:

PBS(y, ω(y)) = β0E(K(y)− ST )+ ≤ β0K(y)P(ST < FT exp(y)) < PBS(y,
√
β|y|/T ),

for all y < y∗.

The stated above shows that the large and small tails slopes are not larger than 2 and, as a
consequence, the implied Black-Scholes variance is linear in the log-strike y as |y| → ∞. These
are characteristics that the SVI parameterization must hold.

2.2 Static Arbitrage

We want to find an implied volatility surface that is free of static arbitrage, which means that
there exists a non-negative martingale model such that:

C̃(K,T ) = EQ[(ST −K)+],

that is, the undiscounted European call option price at maturity can be written as the expected
value of its final payoff in the risk-neutral measure Q for some process St.

Definition 1. A volatility surface ω is free of static arbitrage if and only if:

(i) is free from calendar spread arbitrage;

(ii) is free of butterfly arbitrage at each single time slice.

Note that, Item (i) of Definition 1 guarantees the monotonicity of European call option
prices with respect to theirs maturities, while Item (ii) guarantees the existence of a probability
density. For more information about static arbitrage and implied volatilities, please see [20].
From now on this chapter shall review some theoretical aspects exposed in [13].

2.2.1 Calendar Spread Arbitrage

Consider two European call options of strike K and maturities T1 and T2 with T1 > T2. Since
T1 > T2 we would intuitively expect that the price of the option with the larger maturity
is higher than the other one. That happens because the more time we have ahead, the more
uncertainty we suppose we will be exposed, so we would expect a higher total variance, therefore
a higher price. That is why, whenever this condition is not respected, the calendar spread
arbitrage is characterized.

In order to have an accurate model to price options, one would suppose that this condition
must be respected, that is, the implemented model must guarantee monotonicity for the call
options with same strike and different maturities. That leads us to the following definition:

Definition 2. A volatility surface ω is free of calendar spread arbitrage if

∂ω

∂t
(y, t) ≥ 0,

for all y ∈ R and t > 0.
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This definition is motivated by the following lemma:

Lemma 3. Considering a constant proportional to the underlying asset prices dividends (if
applicable), the volatility map ω is free of calendar spread arbitrage if and only if:

∂ω

∂t
(y, t) ≥ 0,

for all y ∈ R and t > 0.

Proof. Let (Xt)t≥0 be a martingale and L ≥ 0, 0 ≤ t1 < t2. Then, the following relation is true:

E[(Xt2 − L)+] ≥ E[(Xt1 − L)+]

Now, let C̃1 and C̃2 be options with strikes K1 and K2, and maturities t1 and t2, respectively,
and with the same log-strike or log-moneyness:

K1

Ft1
=
K2

Ft2
= exp(y)

Then, the process {Xt}t≥0 defined by St

Ft
for t ≥ 0 is a martingale and we have the following

relation:

C̃2

K2

= exp(−y)E[(Xt2 − exp(y))+] ≥ exp(−y)E[(Xt1 − exp(y))+] =
C̃1

K1

,

if the dividends are proportional.

This relation means that, for constant moneyness, option prices are non-decreasing in time to
maturity. If this relation stands for Black-Scholes prices CBS(y, ω(y, t)) then, ω(y, t) is strictly
increasing.

2.2.2 Butterfly Arbitrage

In this subsection we shall define butterfly arbitrage over a time slice of the volatility surface.
Thus, we shall use ω(y) in order to simplify the notation, since the time will be hold fixed.
Now, recalling the Black-Scholes formula:

CBS(y, ω(y)) = S(N (d+(y))− exp(y)N (d−(y))), for all y ∈ R

with N the Gaussian cumulative distribution function and d±(y) := −y/
√
ω(y)±

√
ω(y)/2.

Now, let g : R→ R be a function defined by:

g(y) :=

(
1− yω′(y)

2ω(y)

)2

− ω′(y)2

4

(
1

ω(y)
+

1

4

)
+
ω′′(y)

2
. (2.2.1)

Definition 3. A volatility map y → ω(y) given for some maturity is free of butterfly arbitrage
if the corresponding asset’s probability density is non-negative. Please refer to the 1 for the
realtion between ω(y) and the underlying asset probability density.

Lemma 4. A volatility map y → ω(y) given for some maturity is free of butterfly arbitrage if
and only if g(y) ≥ 0 for all y ∈ R and lim

y→∞
d+(y) = −∞.
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Proof. As mentioned in Chapter 1, the probability density function ϕ can be inferred from a
set of option prices by:

ϕ(y) =
∂2C(y)

∂K2 =
∂2CBS(y, ω(y))

∂K2 ,

for any y ∈ R and K = Ft exp(y).
Now, differentiating the Black-Scholes formula, for any y ∈ R we have:

ϕ(y) =
g(y)√
2πω(y)

exp

(
−d−(y)2

2

)
.

It is important to notice that this density function may not always have its integral equals
1. In particular, call prices must go to 0 as y → ∞, which is equivalent to the second part of
Lemma 4.

2.3 Different SVI Formulations for Implied Volatility Slices

In this section we shall present different functional forms which have been proposed to fit the
implied volatility curve for a given maturity with real data.

Firstly, we shall see the raw SVI parameterization, which was introduced in [10], then we
will present an alternative (and equivalent) parameterization so-called natural SVI parameteri-
zation. We shall not discuss the SVI-JW (Jump-Wing) parameterization since we are interested
in time independent methods for backtesting in different dates.

2.3.1 The Raw SVI Parameterization

Let χR = {a, b, ρ,m, σ} be a set of parameters. The raw SVI parameterization of total implied
variance is:

ω(y;χR) := a+ b
[
ρ(y −m) +

√
(y −m)2 + σ2

]
, (2.3.1)

where b ≥ 0, |ρ| < 1, a ∈ R, σ > 0, and a+ bσ
√

1− ρ2 ≥ 0 to guarantee that ω(y;χR) ≥ 0 for
all y ∈ R. It is easy to see that for a given set χR, the function y → ω(y, χR) is strictly convex.

Now, we will investigate the intuitive meaning of the formulation parameters χR through
the derivatives of equation ω in (2.3.1):

∂ω

∂a
= 1,

∂ω

∂b
= ρ(y −m) +

√
(y −m)2 + σ2,

∂ω

∂ρ
= b(y −m),

∂ω

∂m
=

m− y√
(y −m)2 + σ2

− bρ,

∂ω

∂σ
=

σ√
(y −m)2 + σ2

.
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Figure 2.1 shows a generic raw SVI curve with the set of parameters χR = (0.05, 0.15, 0.40, 0.30, 0.45).
Figures 2.2-2.6 illustrate how variations on each parameter may change the shape of the volatil-
ity curve.

Figure 2.1: Generic Curve Shape of a Raw SVI Parameterization
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Figure 2.2: Increasing parameter a

Figure 2.3: Increasing parameter b
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Figure 2.4: Increasing parameter ρ

Figure 2.5: Increasing parameter m

As you can see in Figures 2.2, 2.3, 2.4, 2.5 and 2.6,
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Figure 2.6: Increasing parameter σ

• when a increases, the level of total variance also increases, that is, there is a vertical
translation of the curve;

• increasing b, the slopes of the put and call wings also increase, which represents an increase
of total variance for out-of-money strikes;

• when ρ increases, there is a reduction of the call wing total variance;

• changing m, there is a translation of the curve in the x axis;

• increasing ω, the curvature reduces in the neighborhood of the at-the-money strike.

2.3.2 The natural SVI parameterization

The natural SVI parameterization

ω(y;χR) = ∆ +
w

2

{
1 + ζρ(y − µ) +

√
(ζ(y − µ) + ρ)2 + (1− ρ2)

}
, (2.3.2)

is equivalent to the raw SVI by the following change of variables:

(a, b, ρ,m, σ) =

(
∆ +

w

2
(1− ρ2), ζw

2
, ρ, µ− ρ

ζ
,

√
1− ρ2
ζ

)
. (2.3.3)

Note that, now there are two “level variables”, ∆ which has a straight unitary derivate, and
w which doesn’t have, while in the raw formulation the only “level variable” a has unitary
derivate.
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Chapter 3

Parameters Modelling and Preliminary
Results

The goal of this chapter is to find a stable and reliable way to calibrate the raw SVI parameters
in (2.3.1) for a given set of implied volatilities observed in the market. It is well known that the
least square technique for this problem is affected by the large quantity of local minima. Other
problem regarding this modeling is that optimizing over a 5-dimensional set of parameters
usually returns non-stable results.

Therefore, the technique which will be applied is the one presented in [22] with a small mod-
ification developed for us in order to make the choice of m and σ more precise. This approach
is particularly interesting because it simplifies the problem dividing it into one linear program-
ming and one two-dimension equation optimization through a simple dimensional reduction.
Moreover, the results are impressively good and the computational cost is low, if compared to
other techniques such as stochastic volatility models.

3.1 The Algorithm

Let ωTotal = ωT be the total variance. Now, applying the following change of variable on the
log-strikes:

x =
y −m
σ

,

we turn the SVI parameterization into:

ωTotal(x) = aT + bσT (ρx+
√
x2 + 1).

The equation above shows that, for fixed values of m and σ, the SVI curve is completely
specified by a, σb and ρ. Hence, if we define the parameters:

c = bσT,

d = ρbσT,

A = aT ,

then we rewrite SVI formulation such that it is linear in the variables A, c and d:

ωTotal(x) = A+ dx+ c
√
x2 + 1

17
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It is important to note that the region where the parameters A, c and d are defined must
respect the original parameters boundaries, so it is derived from these constraints. Define the
parallelepiped D:

D =
{

(A, c, d) ∈ R3 : A ∈ R, c ≥ 0, d ∈ R
}
,

which is the region in R3 where these new variables are defined. Therefore, for a given set of n
market observation pairs (xi, ω

mkt
Total(i)), we define the cost function as:

f(xi,ωmkt
Total(i)

)(A, c, d) =
n∑
i=1

(
A+ dxi + c

√
x2i + 1− ωmktTotal(i)

)2

.

So, it is only necessary to find the triplet (A∗, c∗, d∗) for which ∇f = 0 and then solve the
problem P below with the corresponding triplet (a∗, b∗, ρ∗):

(P ) min
m,σ

n∑
i=1

(ωm,σ,a∗,b∗,ρ∗(yi)− ωmarket(i))2.

The objective function in the optimization problem above is so-called sum of the squared errors.
Its square root is so-called RMSE.

3.2 The Implementation

The algorithm presented above is strongly dependent on the initial guesses of m and σ, i.e.,
it is a heuristic method. Therefore, in order to reduce such dependence, the algorithm must
be tested with different initial values of m and σ, in order to choose appropriately the initial
guesses. More precisely, the minimization is initialized with all combinations of m and σ ranging
from 0.01 to 0.99, with the step size 0.01. We choose the pair that presents the lower RMSE
values. This adds some computational cost to the problem but not sufficient to become a
problem, since each calibration takes around 2-3 minutes to be performed.

Also, a loop structure with 10 iterations has been applied for every pair of initials (m,σ).
The MATLAB@ code of the function created to calibrate these parameters can be found in
Appendix 5.

Note that, the bid-ask spread is not always well-behaved, mainly when we go far from the
at-the-money strikes. To overcome this issue, we exclude the outliers, since they do not add
relevant information to the analysis and usually are related to low trading volume options.

3.3 Illustrative Results

Before implementing a backtest strategy for the fitted parameters, we illustrate the smile ad-
herence of the SVI parameterization. The data is composed by SPX index options traded at
13th, 14th and 15th of October, 2015, with the shortest maturity time available - 21th of Oc-
tober. The resulting SVI curves compared with the market implied volatilities can be found in
Figures 3.1, 3.2 and 3.3.
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Figure 3.1: SPX Implied Volatility Curve at October, 13th 2015

Figure 3.2: SPX Implied Volatility Curve at October, 14th 2015
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Figure 3.3: SPX Implied Volatility Curve at October, 15th 2015

a b m ρ σ RMSE
SPX calls at October, 13th 0.0872 1.3634 0.0302 0.2365 0.0200 1.18x10−2

SPX calls at October, 14th 0.0537 2.1805 0.0399 0.3435 0.0299 0.90x10−3

SPX calls at October, 15th 0.0463 2.6030 0.0299 0.2067 0.0200 1.60x10−2

Table 3.1: Calibrated Parameters for the Example Curves

Table 3.1 presents the parameters values calibrated from the SPX data and used to find the
SVI curves plotted in Figures 3.1-3.3. As one can see, the curves fit the market data well and
the RMSE is low.



Chapter 4

Backtesting SVI

After presenting the SVI parameterization, now, we shall backtest it. More precisely, we shall
verify how accurate it is as a prediction method.

4.1 Backtesting Methodology

We use the following market data:

• Underlying asset end of the day price;

• Risk-free interest rate (annualized);

• Evaluate the forward price corresponding to the underlying asset (based on the end of
the day price and the risk-free interest rate);

• Time to maturity (in years);

• European call and put bid and ask prices for every strike with negotiations on the date.

Using the data above, it is possible to calculate the Black-Scholes implied volatility corre-
sponding to the bid and ask prices, and calibrate the raw SVI (2.3.1) parameters through the
algorithm described in 3. Once the parameters are identified, we apply two different tests that
verify non-arbitrage properties. The first one is to test butterfly arbitrage, where the function
defined in (2.2.1) must be non-negative in R. The second one is to test Roger Lee’s extreme
slope (1) conditions, where we take into consideration the largest and smallest log-strikes in
the data.

Now, we can calculate implied volatilities for any log-strike using the SVI function. So,
we can price any option on the considered asset/maturity pair at any time we want. In what
follows, we test how accurate the calibrated SVI curve is to predict option prices at future dates.
If D denotes the negotiation date considered in calibration, we evaluate option prices at the
dates D+1, D+3 and D+5, comparing them with market prices. We plot the corresponding
implied volatilities of the model prices with market bid and ask prices. The prediction is
considered accurate if the model implied volatilities fall between the market bid and ask ones.
These results shall be presented in the subsequent subsections.

The following functions are used to measure the distance between model prices and data,
i.e., how accurate the model is:

21
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• Data misfit for volatilities: √√√√√√√
n∑
i=1

(
σSV Ii − σMarket

i

)2
n∑
i=1

(
σMarket
i

)2 ,

where n is the total number of log-strikes in the data, σSV I is the SVI implied volatility
and σMarket is the implied volatility of the mean of market bid and ask prices.

• Normalized `2-error of prices: √√√√√√√
n∑
i=1

(
CSV I
i − CMarket

i

)2
n∑
i=1

(
CMarket
i

)2 ,

where CSV I is the Black-Scholes option price calculated with the SVI volatility for each
log-strike.

• Average error over spot: [
n∑
i=1

(
CSV I
i − CMarket

i

)]
nS0

,

where S0 is the underlying asset spot price.

4.2 DAX Index spot options

DAX Index European type options are traded daily at Eurex Exchange in EUR currency and
have a high volume of trading, so it matches our requirements for the test. We took all the
necessary data for call and put options on D =22-Jan-2016, and then, we fitted the curve and
tested the non-arbitrage properties. The fitted parameters can be found in Table 4.1.

Figures 4.1 and 4.3 show the calibrated SVI curve for DAX Index options expiring in 15-
Mar-2016. Note that, the fitted curve for put options in Figures 4.3 is not free of butterfly
arbitrage, since the function g(y) defined in (2.2.1), and plotted in Figure 4.4 has negative
values. It can also be observed in Figure 4.3, since one can notice that the curve presents non-
desirable concavity. The same does not happen with call prices, as we can see in Figures 4.1
and 4.2, where the volatility curve is convex and the function g(y) is non-negative.

a b m ρ σ
DAX Index Spot Call Options 0.1083 48.6448 0.1600 0.9807 0.0100
DAX Index Spot Put Options 0.2552 -0.2282 0.01 4.0272 0.0303

Table 4.1: Calibrated Parameters for DAX Index Spot Options
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Figure 4.1: DAX Index Call Options’ SVI Fitted Curve (expiring: March/16)

Figure 4.2: g(y) function for DAX Index Calls Options SVI Fit

Figure 4.3: DAX Index Put Options’ SVI Fitted Curve (expiring: March/16)
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Figure 4.4: g(y) function for DAX Index Puts Options SVI Fit

4.2.1 Backtest Results for DAX Index Spot Options

Figures 4.6, 4.10, 4.14, 4.8, 4.12 and 4.16 show the comparison between market prices and the
predicted prices at the dates D + 1, D + 3 and D + 5. The predictions are evaluated with the
SVI volatilities calibrated at D.

Figures 4.5, 4.9, 4.13, 4.7, 4.11 and 4.15 compares market implied volatilities of bid and ask
prices and the volatilities of prices predicted by the SVI model.

Even though the SVI volatilities curve do not fall perfectly inside the bid-ask spread, the
predicted prices presented good adherence to the market ones.

Calls D+1 D+3 D+5
Data misfit for vols. 1.07.10−1 1.53.10−1 2.3.10−1

Normalized `2-error of prices 2.31.10−1 6.02.10−2 9.76.10−2

Average error over spot 1.01.10−3 3.20.10−3 4.10.10−3

Puts D+1 D+3 D+5
Data misfit for vols. 3.25.10−2 3.02.10−2 4.76.10−2

Normalized `2-error of prices 3.40.10−2 3.84.10−2 4.87.10−2

Average error over spot 8.20.10−4 5.45.10−4 6.93.10−4

Table 4.2: Quantitative Indexes for DAX Index Spot Options
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Figure 4.5: D+1 Market vs SVI Implied Vols. Comparison for DAX Call Options

Figure 4.6: D+1 Market Prices vs Model Prices Comparison for DAX Call Options

Figure 4.7: D+1 Market vs SVI Implied Vols. Comparison for DAX Put Options
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Figure 4.8: D+1 Market Prices vs Model Prices Comparison for DAX Put Options

Figure 4.9: D+3 Market vs SVI Implied Vols. Comparison for DAX Call Options

Figure 4.10: D+3 Market Prices vs Model Prices Comparison for DAX Call Options
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Figure 4.11: D+3 Market vs SVI Implied Vols. Comparison for DAX Put Options

Figure 4.12: D+3 Market Prices vs Model Prices Comparison for DAX Put Options

Figure 4.13: D+5 Market vs SVI Implied Vols. Comparison for DAX Call Options
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Figure 4.14: D+5 Market Prices vs Model Prices Comparison for DAX Call Options

Figure 4.15: D+5 Market vs SVI Implied Vols. Comparison for DAX Put Options

Figure 4.16: D+5 Market Prices vs Model Prices Comparison for DAX Put Options



4.3. SPX INDEX SPOT OPTIONS 29

4.3 SPX Index spot options

SPX Index Spot Options are negotiated at Chicago Board Options Exchanged and is the most
liquid equity options in the world. The underlying currency is USD (American Dollar).

Figures 4.17 and 4.19 show fitted SVI curves for the SPX Index options expiring in 18-Mar-
2016 and traded at 22-Jan-2016. As one can see through Figures 4.18 and 4.20, the SVI curves
for call and put options are free of butterfly arbitrage.

a b m ρ σ
SPX Index Spot Call Options 0.1998 0.1273 0.0644 -5.5263 0.0022
SPX Index Spot Put Options 0.2381 1.2779 0.0603 0.3069 0.0200

Table 4.3: Calibrated Parameters for SPX Index Options

Figure 4.17: SPX Index Call Options’ SVI Fitted Curve (expiring: March/16)

Figure 4.18: g(y) function for SPX Index Calls Options SVI Fit
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Figure 4.19: SPX Index Put Options’ SVI Fitted Curve (expiring: March/16)

Figure 4.20: g(y) function for SPX Index Puts Options SVI Fit

4.3.1 Backtest Results for SPX Index Spot Options

Figures 4.22, 4.26, 4.30, 4.24, 4.28 and 4.32 show the comparison between market prices and
the predicted prices at the dates D + 1, D + 3 and D + 5. The predictions are evaluated with
the SVI volatilities calibrated at D.

Figures 4.21, 4.25, 4.29, 4.23, 4.27 and 4.31 compares market implied volatilities of bid and
ask prices and the volatilities of prices predicted by the SVI model.

As we can see in the figures and in Table 4.4 the prices given by the SVI model are close to
the market ones, which means that, this model can be used to predict prices.
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Calls D+1 D+3 D+5
Data misfit for vols. 1.23.10−1 1.24.10−1 1.53.10−2

Normalized `2-error of prices 2.17.10−1 2.11.10−1 1.04.10−1

Average error over spot 2.70.10−3 2.50.10−3 1.40.10−3

Puts D+1 D+3 D+5
Data misfit for vols. 7.93.10−2 8.97.10−2 6.05.10−2

Normalized `2-error of prices 4.65.10−2 9.42.10−2 8.84.10−2

Average error over spot 2.50.10−3 4.40.10−3 1.80.10−3

Table 4.4: Quantitative Indexes for SPX Index Options

Figure 4.21: D+1 Market vs SVI Implied Vols. Comparison for SPX Call Options

Figure 4.22: D+1 Market Prices vs Model Prices Comparison for SPX Call Options
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Figure 4.23: D+1 Market vs SVI Implied Vols. Comparison for SPX Put Options

Figure 4.24: D+1 Market Prices vs Model Prices Comparison for SPX Put Options

Figure 4.25: D+3 Market vs SVI Implied Vols. Comparison for SPX Call Options
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Figure 4.26: D+3 Market Prices vs Model Prices Comparison for SPX Call Options

Figure 4.27: D+3 Market vs SVI Implied Vols. Comparison for SPX Put Options

Figure 4.28: D+3 Market Prices vs Model Prices Comparison for SPX Put Options
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Figure 4.29: D+5 Market vs SVI Implied Vols. Comparison for SPX Call Options

Figure 4.30: D+5 Market Prices vs Model Prices Comparison for SPX Call Options

Figure 4.31: D+5 Market vs SVI Implied Vols. Comparison for SPX Put Options
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Figure 4.32: D+5 Market Prices vs Model Prices Comparison for SPX Put Options

4.4 PETR4 Equity Options

Petrobras PN equity options are the most liquid equity options in Brazil. They are negotiated
at BMF&Bovespa Stock Exchange in BRL (Brazilian Reais). The volume of daily trading for
these options are not as big as the ones in the examples above, which can give us less accurate
results.

Figures 4.33 and 4.35 show fitted SVI curves for PETR4 Equity options expiring in 21-Mar-
2016 and traded at 5-Feb-2016. As one can see in Figures 4.34 and 4.36, both SVI curves are
free of butterfly arbitrage.

a b m ρ σ
PETR4 Equity Call Options 0.1998 0.1273 0.0644 -5.5263 0.0022
PETR4 Equity Put Options 0.2381 1.2779 0.0603 0.3069 0.0200

Table 4.5: Calibrated Parameters for PETR4 Index Options

Figure 4.33: PETR4 Equity Call Options’ SVI Fitted Curve (expiring: March/16)
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Figure 4.34: g(y) function for PETR4 Equity Calls Options SVI Fit

Figure 4.35: PETR4 Equity Put Options’ SVI Fitted Curve (expiring: March/16)

Figure 4.36: g(y) function for PETR4 Equity Puts Options SVI Fit
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4.4.1 Backtest Results for PETR4 Equity Options

Figures 4.38, 4.42, 4.46, 4.40, 4.44 and 4.48 show the comparison between market prices and
the predicted prices at the dates D + 1, D + 3 and D + 5. The predictions are evaluated with
the SVI volatilities calibrated at D.

Figures 4.37, 4.41, 4.45, 4.39, 4.43 and 4.47 compares market implied volatilities of bid and
ask prices and the volatilities of prices predicted by the SVI model.

As we can see in Table 4.6, the predictions are less accurate than in the previous examples,
probably due to the smaller amount of data and the smaller trading volume. However the
predicted prices presented skewness similar to the market ones, which is a nice feature.

Calls D+1 D+3 D+5
Data misfit for vols. 1.23.10−1 1.24.10−1 1.53.10−2

Normalized `2-error of prices 2.17.10−1 2.11.10−1 1.04.10−1

Average error over spot 2.70.10−3 2.50.10−3 1.40.10−3

Puts D+1 D+3 D+5
Data misfit for vols. 7.93.10−2 8.97.10−2 6.05.10−2

Normalized `2-error of prices 4.65.10−2 9.42.10−2 8.84.10−2

Average error over spot 2.50.10−3 4.40.10−3 1.80.10−3

Table 4.6: Quantitative Indexes for PETR4 Index Spot Options

Figure 4.37: D+1 Market vs SVI Implied Vols. Comparison for PETR4 Call Options
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Figure 4.38: D+1 Market Prices vs Model Prices Comparison for PETR4 Call Options

Figure 4.39: D+1 Market vs SVI Implied Vols. Comparison for PETR4 Put Options

Figure 4.40: D+1 Market Prices vs Model Prices Comparison for PETR4 Put Options
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Figure 4.41: D+3 Market vs SVI Implied Vols. Comparison for PETR4 Call Options

Figure 4.42: D+3 Market Prices vs Model Prices Comparison for PETR4 Call Options

Figure 4.43: D+3 Market vs SVI Implied Vols. Comparison for PETR4 Put Options
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Figure 4.44: D+3 Market Prices vs Model Prices Comparison for PETR4 Put Options

Figure 4.45: D+5 Market vs SVI Implied Vols. Comparison for PETR4 Call Options

Figure 4.46: D+5 Market Prices vs Model Prices Comparison for PETR4 Call Options
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Figure 4.47: D+5 Market vs SVI Implied Vols. Comparison for PETR4 Put Options

Figure 4.48: D+5 Market Prices vs Model Prices Comparison for PETR4 Put Options
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4.5 Confidence Intervals

Although we are considering volatility as a deterministic function of the log-strike, we state
confidence intervals, based on the bid-ask spread of option prices as follows:

• From D0 data, we evaluate the modulus of the difference between observed bid-ask implied
volatilities, take the maximum over strikes and denote this quantity by δ.

• Denoting the SVI curve at each log-strike k by ΣSV I(k), we consider ΣSV I(k)± δ/2 upper
and lower bounds.

• We calculate Black-Scholes prices using such bounds on the volatility to define confidence
intervals for the option prices.

4.5.1 Numerical Example

Now, we evaluate such confidence interval using the D+1 backtest data for DAX Index Calls
4.2.1.

δ = 0.0423

Figure 4.49: D+1 DAX Calls Prices Confidence Interval

We can also determine a confidence level for our interval by performing a Kupiec test [17] by
determining the number of violations, i.e., the number of market prices outside the confidence
interval. On the example above, the number of violations was 0 as we can see in Figure 4.50.
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Figure 4.50: D+1 DAX Call Model Prices with its Confidence Intervals

4.6 An Alternative Approach

As an attempt to refine the technique proposed in Section 4.1, to forecast implied volatilities
for the day D + j with maturity time T , we evaluate, by an interpolation method, implied
volatilities for the day D with maturity time T − j.

So, we use the two-dimensional interpolation method proposed in [15] and proceed as follows:

• Calculate implied volatilities smiles for several different expiring dates ti (i a set of indexes
for discrete time-to-maturity quantities) with data taken from the market;

• For each maturity t ∈ [ti, ti+1] and strike K we calculate σ2
imp(K, t)t by interpolating

linearly between σ2
imp(K, ti)ti and σ2

imp(K, ti+1)ti+1, where such values were obtained with
SVI.

• So, we evaluate the surface of implied volatilities (K, t) 7→ σ2
imp(K, t).

As an example, we calibrated the surface for SPX European Options with data taken from
@Bloomberg in May,13th. The total variance and implied volatility surfaces can be seen in
Figures 4.51 and 4.52:
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Figure 4.51: SPX European Calls - Interpolated Total Variance Surface

Figure 4.52: SPX European Calls - Interpolated Implied Volatilities Surface

As an example, we took market data on May, 18th for SPX calls expiring in May, 27th (j =
9). On the figure 4.53 you can find the SVI curve fitted with interpolated implied volatilities
for D+j on May, 13th

(
σ2
imp(K, 9)

)
as well as the bid and ask implied volatilities from market.
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Figure 4.53: SVI Backtest with Interpolated Volatility Surface

Since the Data Misfit for the volatilities was 6.47x10−2, the single example above shows us
no clear advantage in relation to the original experiment of the present work. However, we
believe it’s worth looking more carefully at it on posterior works.
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Chapter 5

Concluding Remarks

In this work we intended to backtest SVI parameterization of Black-Scholes implied volatilities
in order to see how accurate such model is to predict option prices.

After showing that SVI satisfies important non-arbitrage properties (see [18], [20], [11] and
[13]), we presented an algorithm based on techniques from [22] to calibrate the SVI parameter-
ized volatilities from market data. The algorithm included some modifications to increase the
robustness of reconstructions, in order to be less dependent on the choice of the initial guess
of the parameters m and σ. This provided us the necessary tools to start the backtest and
perform the numerical examples presented in Chapter 4.

Finding reliable option data to test our algorithms was the first difficulty we faced. We had
to gather all the necessary information about bid and ask prices of European options, choosing
the ones with high trading volume. Thats why we have chosen DAX (EUREX), SPX (CBOE)
and PETR4 (BMF&Bovespa) vanilla options.

A visual way to evaluate how accurate are the calibrated SVI curves is to observe its
position in relation to market implied volatilities. Under this perspective, SVI parameters
did not produced accurate predictions for all strikes, specially those far from the at-the-money,
however, it predicted important features presented by the market data, such as skewness.
So, this model can be advantageous for practitioners since it is computationally cheaper than
stochastic volatility models.

Moreover, using SVI functional forms to price options for future scenarios might be an
interesting tool in portfolio optimization techniques, such as the Black-Litterman inspired one,
where the user inserts returns expectations into the model. See [1]. Going further on this
research, we would like to suggest the same kind of test with smaller time frames in order to
find out if it is possible to better understand how the volatilities react considering marginal
disturbs on other variables.

47
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Appendix

MATLAB Code for Quasi-Explicit SVI Calibration

1 function [a, b, rho, m, sigma, rmse] = SVI fit(bid vols,ask vols,T,log strikes)
2

3

4

5 %defining variables
6 mid vols = (ask vols + bid vols)/2;
7 mid total vol = mid vols*T;
8 n = length(mid vols);
9 parameters matrix = zeros(9801,6);

10 u=0;
11 for m initial = 0.01 : 0.01 : 0.99
12 for sigma initial = 0.01 : 0.01 : 0.99
13

14

15 % changing variable
16

17 log strikes chg = (log strikes - m initial)/sigma initial;
18 mid total vol = mid vols*T;
19

20 % Solving the linear system to reach zero for the cost function.
21

22 A = [n sum(log strikes chg) sum(sqrt(log strikes chg.ˆ2+1));
23 sum(log strikes chg) sum(log strikes chg.ˆ2)
24 log strikes chg'*sqrt(log strikes chg.ˆ2 +1);
25 sum(sqrt(log strikes chg.ˆ2 +1)) log strikes chg'*sqrt(log strikes chg.ˆ2 +1)
26 sum(log strikes chg.ˆ2 +1)];
27

28 z = [sum(mid total vol); mid total vol'*log strikes chg;
29 mid total vol'*sqrt((log strikes chg.ˆ2 +1))];
30

31 Parameters = A\z;
32 a tilde = Parameters(1);
33 d = Parameters(2);
34 c = Parameters(3);
35

36

37 a = a tilde/T;
38 b = c/(sigma initial*T);
39 rho = d/(b*sigma initial*T);
40

41 % Now, considering a, b and rho we will minimize the problem choosing m and
42 % sigma

49
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43 i = 0;
44 m loop = m initial;
45 sigma loop = sigma initial;
46

47 while i <10
48

49 x = sym('x',[1 2]);
50

51

52 obj function = @(x) sum((a + b*(rho*(log strikes - x(1)) +
53 sqrt((log strikes - x(1)).ˆ2 + x(2)ˆ2)) - mid vols).ˆ2);
54

55 x = fminsearch(obj function,[m loop , sigma loop]);
56

57 m loop=x(1);
58 sigma loop=x(2);
59 i=i+1;
60 end
61 m=m loop;
62 sigma=sigma loop;
63

64 fitted values = a + b*(rho*(log strikes - m) +
65 sqrt((log strikes - m).ˆ2 + sigmaˆ2));
66

67 lqs = sum((mid vols - fitted values).ˆ2);
68

69 u=u+1;
70 parameters matrix(u,1)=a;
71 parameters matrix(u,2)=b;
72 parameters matrix(u,3)=rho;
73 parameters matrix(u,4)=m;
74 parameters matrix(u,5)=sigma;
75 parameters matrix(u,6)=lqs;
76 end
77 end
78

79 % defining m and sigma looking for the least square errors sum
80

81 min error = min(parameters matrix(:,6));
82 n = length(parameters matrix);
83 for r = 1:n;
84 if parameters matrix(r,6) == min error
85 a = parameters matrix(r,1);
86 b = parameters matrix(r,2);
87 rho = parameters matrix(r,3);
88 m = parameters matrix(r,4);
89 sigma = parameters matrix(r,5);
90 rmse = sqrt(parameters matrix(r,6));
91 end
92 end
93 % graphic construction for visual analysis
94

95 liminf = min(log strikes);
96 limsup = max(log strikes);
97 x axis= linspace(liminf,limsup,10000);
98 fitted curve = a + b*(rho*(x axis - m) + sqrt((x axis - m).ˆ2 + sigmaˆ2));
99 plot(log strikes,bid vols,'c*');
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100 hold on
101 plot(log strikes,ask vols,'g*');
102 plot(x axis,fitted curve,'r');
103 xlabel('Log-forward moneyness');
104 ylabel('Implied Volatilities');
105 legend('SVI Fit Imp. Vols','Bid Imp. Vols','Ask Imp. Vols');
106 hold off

MATLAB Code for Arbitrage Tests over Fitted Parameters

1 function [Result BA, Result RL] = SVI Arbitrage test( a, b, m, rho, sigma, log strikes,T )
2

3 % This function tests the SVI calibrated curves for the non-arbitrage
4 % conditions
5

6 % Butterfly Arbitrage test:
7 n = length(log strikes);
8 SVI = a + b*(rho*(log strikes-m) + sqrt((log strikes-m).ˆ2 + sigmaˆ2));
9 SVI d1 = zeros(n,1);

10 SVI d2 = zeros(n,1);
11 G func = zeros(n,1);
12 for i = 1: n
13 aux 1 = (log strikes(i) - m );
14 aux 2 = aux 1ˆ2 + sigmaˆ2;
15 SVI d1(i) = b*rho + b*aux 1/sqrt(aux 2);
16 SVI d2(i) = b*(sqrt(aux 2) - (aux 1ˆ2)/sqrt(aux 2))/aux 2;
17

18 G func(i) = (1 - log strikes(i)*SVI d1(i)/(2*SVI(i)))ˆ2 -
19 ((SVI d1(i)ˆ2) /4) *(1/SVI(i) + 1/4)+ SVI d2(i)/2;
20 end
21

22 if min(G func)<0 | | min(SVI d2)<0 ;
23

24 Result BA = 'The curve is not free of butterfly arbitrage';
25 else
26 Result BA = 'The curve is free of butterfly arbitrage.';
27 end
28

29 % Roger Lee Moments Condition test
30

31 BetaR = SVI(n)*T/abs(log strikes(n));
32 BetaL = SVI(1)*T/abs(log strikes(1));
33

34 if abs(BetaR)<2 && abs(BetaL)<2 ;
35 Result RL = 'The extreme slopes respect Roger Lee Moments Formula';
36 else
37 Result RL = 'The extreme slopes do not respect Roger Lee Moments Formula';
38 end
39

40 plot(log strikes,G func);
41 xlabel('Log-Forward Moneyness');
42 ylabel('g(y)');
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