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Abstract. This dissertation presents the Kakeya sets and the relationship with anal-

ysis. The construction discussed is a variant of the one originally given by Besicovitch

which is simple but it is surprising the connection with problems in other areas seem-

ingly unrelated, the Fefferman theorem is treated as a disproof of the disk conjecture,

this is an example of use the Kakeya construction to obtain an analysis result. The

abstract definition of multiplier give us certain important results that we use to study

the Bochner-Riesz multipliers as example of operators with kernel less singular that

the ball multiplier and obtain a critical value for the boundedness of them,



In the class of the figures in which a segment of length 1 can be turned around through 360°, remaining

always within the figure, which one has the smallest area?

The three-cornered hypocycloid inscribed in a circle of diameter 3/2 also belongs to the class ..., thus

if we let one end of the segment describe the hypocycloid while keeping the segment touching the

hypocycloid, we have the other end of the segment also moving on the hypocycloid and so the whole

of the segment remains all the time within the hypocycloyd. The area of the hypocycloid is π
8 . That

is exactly half of the area of a circle of diameter 1. It was conjectured that the hypocycloid was the

figure of minimum area.

My solution shows that the hypocycloid conjecture is false, and that in fact, there are figures of

arbitrarily small area which permit a unit segment to change its direction by 360 while moving

continuously within them.

A. S. Besicovitch in The Kakeya Problem.

Let ABC be any triangle of altitude h and area α. Divide its base AB into n equal parts and join

the points of division to the vertex C. Then the triangle ABC is divided into n elementary triangles.

Perform an arbitrary translation of each elementary triangle along the side AB (i.e. translation which

leaves the base of an elementary triangle on the line AB). Now the question is, is it possible to choose

the number n and to perform the translations in such a way that the area covered by the elementary

triangles in their new position is as small as we please.

A. S. Besicovitch in On Kakeya Problem and a similar one.

Rougly speaking, the idea is as follows. By duality it suffices to consider the case p > 2. Let R be

a large number, and let T be a cilindrical tube in Rn with length R and radius
√
R and oriented in

some direction ωT . Let ψT be a bump function adapted to the tube T , and let T̃ be a shift of T by

2R units in the ωT direction. Then a computation shows that

∣∣S1(e
2πiωT ·xψT (x))

∣∣ ≈ 1

for all x ∈ T̃ . To exploit this computation, one uses the Besicovitch construction to find a collection

...

Fefferman’s theorem is an example of how a geometric construction can be used to show the unbound-

edness of various oscillatory integral operators. The point is that while the action of these operators

on general functions is rather complicated, their action on ”wave packets” such as e2πiωT ·xψT (x) is

fairly easy to analyze . . .

Terence Tao in From Rotating Needles to Stability of Waves: Emerging Conections between

Combinatorics, Analysis, and PDE.
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Introduction

The Fourier transform is an important operator in analysis and PDE because is linear and it allows us

to change differential polynomials by multiplication operators of polynomial functions (in particular

it diagonalizes the laplacian). As a consequence of this if we apply the Fourier transform to certain

linear PDE we obtain linear ODE which are simple. Now the problem is to return to obtain the

solution of the initial PDE, this problem is difficult because the surjectivity of the Fourier transform

depends of the domain of definition, however with a suitable conditions on the space of solutions is

possible to return and thus to solve the PDE.

Define for every R > 0 the operator ŜRf = χB(0,R)f̂ , if f is a well behaved function (it is suffices

to take f in the Schwartz space S(Rn), see [7, Chapter 7] for a definition) we have that SRf(x) =∫
‖ξ‖≤R f̂(ξ)e

2πix·ξdξ. We are interested to know if lim
R→∞

‖SRf − f‖p = 0. By the uniform boundedness

principle and a suitable dense subset of Lp(Rn) we note that it is equivalent to find a constant Cp > 0

independent of R such that ‖SRf‖p ≤ Cp ‖f‖p. Moreover a simple calculation shows that is enough

consider the case R = 1. In this case the operator SR is known as the ball multiplier. By definition:

Ŝ1f = χB f̂

here B is the unit ball.

By the Plancherel theorem the answer is affirmative for p = 2 in any dimension n ≥ 1. What about

with the other values of 1 < p < ∞?. In one dimension we will see that S1 is bounded; however for

n ≥ 2 the answer is surprising as stated the following:

Fefferman’s theorem: The operator S1 is not bounded for every n ≥ 2 and p different of 2.

To prove this theorem we begin with a revision of the main topics in Harmonic Analysis and study

certain class of operators that generalize the definition of the Fourier integrals. The characterization

of these operators give us de Leeuw’s theorem and the duality property. Together, they show that

is enough to give the proof of Fefferman’s theorem for dimension 2 and p > 2. At this stage we are

under influence of the plane geometry.

The Kakeya sets are compact sets that contains a unit line segment (needle) in every direction, in



9

1926 A. S. Besicovitch showed that there exist Kakeya sets of arbitrarily small area. We use the

Schönberg’s construction which is a variant of this to obtain a family of disjoint rectangles and a

family of significant overlapping sets. Quite surprinsingly, this construction will give us a proof of

Fefferman’s result.



CHAPTER 1

Preliminaries in Harmonic Analysis

In this chapter we fix the notation and prove some basic facts about the Fourier transform that we

use in the next chapters. The principal value p.v( 1x ) is treated as a tempered distribution and is used

to define the Hilbert transform. The chapter concludes with an appendix that dicusses properties of

the Bessel functions; the most important of these are the assymtotic properties. The book [7, cap 7]

is a good reference for the results in this chapter.

1.1 The Fourier Transform and its properties

For 1 ≤ p <∞ we define the set Lp(Rn) =
{
f : Rn → R |

∫
Rn |f(x)|p dx <∞

}
this is a Banach space

with norm ‖f‖p =
(∫

Rn |f(x)|p dx
)1/p

the space

L∞(Rn) = {f : Rn → R | (∃C > 0) (|f(x)| ≤ C, a.e x ∈ Rn)}

is also a Banach space with the norm ‖f‖∞ = ess sup(|f |) = inf {C > 0 | |f(x)| ≤ C, a.e x ∈ Rn}.
The functions of L1(Rn) are called integrable, in this space is possible to define a function f̂ : Rn → R,

given by f̂(ξ) =
∫
Rn f(x) exp(−2πix · ξ)dx, the map taking f to f̂ is called the Fourier transform and

is denoted by F . Note that
∥∥∥f̂
∥∥∥
∞

≤ ‖f‖1 this implies that the map F : L1(Rn) → L∞(Rn) is

continuous.

The recognized Riemann-Lebesgue lemma says that lim
‖ξ‖→∞

f̂(ξ) = 0 and the dominated convergence

theorem give us that f̂ is continuous, this implies that Im(F ) ⊂ C0(R
n) the set of continuous functions

that vanishes at infinity. However, for our purpose we need that the Fourier transform can be defined

in a dense subset of Lp(Rn) such that the image of F is contained in this set, for this we define the
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Schwartz class of functions with rapid decrease:

S(Rn) = {f ∈ C∞(Rn) | pα,β(f) <∞, α, β ∈ Nn}

where pα,β(f) = supx∈Rn

∣∣xα∂βf(x)
∣∣ and we use the multi-index notation xα = xα1

1 ...xαn
n , |α| =

α1 + ...+ αn.

The space S(Rn) is a Frechet space with topology induced by the countable family of seminorms

{pα,β}α,β∈Nn and the set of smooth functions with compact support satisfies C∞
0 (R) ⊂ S(Rn). The

following result is stronger than this.

Proposition 1.1. The set C∞
0 (Rn) is dense on S(Rn) with the metric topology given by the family of

seminorms {pα,β}α,β∈Nn.

Proof. We see that C∞
0 (Rn) = S(Rn) in the metric topology of S(Rn). Let φ ∈ C∞

0 (Rn) such that

φ(x) = 1, for every x ∈ B(0, 1), supp(φ) ⊂ B(0, 2), if f ∈ S(Rn) we define fk(x) = φ(xk )f(x), by the

Leibnitz rule:

∂βfk(x) =
∑

γ≤β

(
β

γ

)
1

k|γ|
(∂γφ)

(x
k

)
(∂β−γf)(x)

=
∑

γ≤β,|γ|>0

(
β

γ

)
1

k|γ|
(∂γφ)

(x
k

)
(∂β−γf)(x) + φ

(x
k

)
(∂βf)(x)

for every β ∈ Nn, then:

∣∣xα∂βfk(x)− xα∂βf(x)
∣∣ ≤

∑

γ≤β,|γ|>0

(
β

γ

)
1

k|γ|

∣∣∣(∂γφ)
(x
k

)∣∣∣
∣∣xα(∂β−γf)(x)

∣∣

+
∣∣∣φ
(x
k

)
− 1
∣∣∣
∣∣xα(∂βf)(x)

∣∣

for every x ∈ Rn, α, β ∈ Nn. We note that fk ∈ C∞
0 (Rn), supp(fk) ⊂ B(0, 2k), also by the mean

value inequality:

∣∣∣φ
(x
k

)
− 1
∣∣∣ ≤

∣∣∣φ
(x
k

)
− φ(0)

∣∣∣ ≤ sup {‖φ′(t)‖ | t ∈ Rn} ‖x‖
k

≤
∑

ω∈Nn,|ω|=1

‖φ‖0,ω
‖x‖
k

≤


 ∑

ω∈Nn,|ω|=1

‖φ‖0,ω



(

n∑

i=1

|xi|
k

)
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for every x ∈ Rn. Then

∣∣xα∂βfk(x)− xα∂βf(x)
∣∣ ≤

∑

γ≤β,|γ|>0

(
β

γ

)
1

k|γ|
‖φ‖0,γ ‖f‖α,γ

+
1

k


 ∑

ω∈Nn,|ω|=1

‖φ‖0,ω




 ∑

θ∈Nn,|θ|=|α|+1

‖f‖θ,β




for every x ∈ Rn, hence:

pα,β(fk − f) ≤
∑

γ≤β,|γ|>0

(
β

γ

)
1

k|γ|
‖φ‖0,γ ‖f‖α,γ

+
1

k


 ∑

ω∈Nn,|ω|=1

‖φ‖0,ω




 ∑

θ∈Nn,|θ|=|α|+1

‖f‖θ,β


→k→∞ 0

then C∞
0 (Rn) is dense in S(Rn) with the topology induced by the family of seminorms {pα,β}α,β∈Nn .

♦

The inversion theorem tell us F : S(Rn) → S(Rn) has period 4, hence F 3 = F−1. (See [7], Pages

182-189). By the theorem of change of variables we have:

f(x) =

∫

Rn

f̂(ξ)e2πix·ξdξ

for every f ∈ S(Rn).

With this space we have the complete machinery, because S(Rn) ⊂ Lp(Rn) for every 1 ≤ p ≤ ∞, and

F : S(Rn) → S(Rn) is an topological isomorphism, i.e is a homeomorphism and linear transformation.

As C∞
0 (Rn) is dense in Lp(Rn) we have that S(Rn) is dense in Lp(Rn), letting f, g ∈ S(Rn) using the

inversion formula:

∫

Rn

f(x)g(x)dx =

∫

Rn

(∫

Rn

f̂(ξ)e2πix·ξdξ

)
g(x)dx

=

∫

Rn

f̂(ξ)

(∫

Rn

g(x)e2πix·ξdx

)
dξ =

∫

Rn

f̂(ξ)ĝ(ξ)dξ

(1.1)

the Parseval formula. If g = f we obtain that

‖f‖2 =
∥∥∥f̂
∥∥∥
2

(1.2)

for every f ∈ S(Rn), then F : S(Rn) → S(Rn) is an isometric isomorphism with respect to the norm

‖·‖2, as S(Rn) is dense in L2(Rn) this map can be extended uniquely to a map Ψ : L2(Rn) → L2(Rn),

obviously this map is an isometric isomorphism and is called the Fourier-Plancherel transform, in this

thesis we continue using the notation F ,F−1 and f̂ ,
∨
f for f ∈ L2(Rn) instead of Ψ, Ψ−1 and Ψ(f),
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Ψ−1(f) respectively..

By a simple argument of density the formula (1.2) is true for every f ∈ L2(Rn). This is called the

Plancherel theorem, using the polarization identity we obtain

〈f, g〉L2(Rn) = 〈f̂ , ĝ〉L2(Rn), ∀f, g ∈ L2(Rn). (1.3)

That is precisely the Parseval formula.

In the following theorem we summarize some properties of the Fourier transform in S(R).

Proposition 1.2. If f ∈ S(Rn), a ∈ Rn, λ > 0, A ∈ O(n) we define fλ(x) = f(λx), using the

notations Ma(x) = e2πix·a, τaf(x) = f(x+ a): M̂af = τ−af̂ , f̂λ = 1
λn (f̂) 1

λ
, f̂ ◦A = f̂ ◦A.

Proof. Let a ∈ Rn, then M̂af(ξ) =
∫
Rn Ma(x)f(x)e

−2πix·ξdx =
∫
Rn f(x)e

−2πix·(ξ−a)dx = f̂(ξ − a) =

(τ−af̂)(ξ).

Let λ > 0, then f̂λ(ξ) =
∫
Rn(fλ)(x)e

−2πix·ξdx =
∫
Rn f(λx)e

−2πix·ξdx =
∫
Rn f(y)e

−2πi y
λ
·ξ dy

λn =
1
λn

∫
Rn f(y)e

−2πiy· ξ
λ dy = 1

λn f̂(
ξ
λ) =

1
λn (f̂) 1

λ
(ξ).

Let A ∈ O(n), by definition of Fourier transform f̂(Aξ) =
∫
Rn f(x) exp(−2πix · (Aξ))dx,

but A ∈ O(n) implies that x · Aξ =< x,Aξ >=< A∗x, ξ >=< A−1x, ξ >= (A−1x) · ξ, so:
f̂ ◦A(ξ) = f̂(Aξ) =

∫
Rn f(x) exp(−2πi(A−1x) · ξ)dx =

∫
Rn f(Ay) exp(−2πiy · ξ)

| det(A) | dy =
∫
Rn f(Ay) exp(−2πiy · ξ)dy = f̂ ◦A. For all ξ ∈ Rn this completes the proof. ♦

The elements of the topological dual space S(R)′ = {T : S(R) → C | T is linear and continuous} are

called tempered distributions. It is easy to see that T ∈ S(R)′ if and only if there exists C > 0, N ∈ N

such that:

|T (φ)| ≤ C
∑

|α|,|β|≤N

pα,β(φ), ∀φ ∈ S(R).

We define the convolution of two functions f, g ∈ S(R) by (f ∗ g)(x) =
∫
Rn f(y)g(x − y)dy. We also

define the convolution of a tempered distribution T ∈ S(R)′ and a function f ∈ S(R) as the distribution

(T ∗ f)(φ) = T (f ∗ φ), here f(x) = f(−x). We conclude the section with a powerful interpolation

theorem

Theorem 1.1. Consider a linear operator T , which maps the measure space (X,µ) to the measure

space (Y, ν). Suppose that p0, q0, p1, q1 ∈ [1,∞] and

1

p
=

1− t

p0
+

t

p1
,

1

q
=

1− t

q0
+

t

q1

for t ∈ (0, 1). If q0 = q1 = ∞, we further suppose that ν is semifinite. If T maps Lp0(µ)+Lp1(µ) into

Lq0(ν) + Lq1(ν) and we have ‖Tf‖q0 ≤ M0 ‖f‖p0
for f ∈ Lp0 and ‖Tf‖q1 ≤ M1 ‖f‖p1

for f ∈ Lp1

for constants M0,M1 > 0. Then T is bounded on Lp and furthermore, ‖Tf‖q ≤ M1−t
0 M t

1 ‖f‖p for

f ∈ Lp.
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The proof of this theorem can be found in [9, Pags. 52-53].

1.2 Principal Values

Sometimes we have a family of integrable functions {Qt}t>0 such that Q(x) = lim
t→0+

Qt(x) is not

locally integrable, so we can not define neither the convolution with a regular function nor its Fourier

transform. This problem can be solved using principal values. For our purposes we consider the

special case when Qt(x) =
x

π(x2+t2) and Q(x) = 1
πx , for x nonzero, that is not locally integrable (take

[0, 1] which is compact). This motivates the following definition:

Definition 1.1. We define p.v( 1x ) : S(R) → R, p.v( 1x )(ϕ) = lim
ǫ→o

∫
|x|>ǫ

ϕ(x)dx
x

We obtain an alternative expression for p.v( 1x), take ǫ > 0:

∫

|x|>ǫ

ϕ(x)dx

x
=

∫ −ǫ

−∞

ϕ(x)dx

x
+

∫ ∞

ǫ

ϕ(x)dx

x
,

let u = −x in the first integral, then:

∫

|x|>ǫ

ϕ(x)dx

x
=

∫ ǫ

∞

ϕ(−u)du
u

+

∫ ∞

ǫ

ϕ(x)dx

x
=

∫ ∞

ǫ

(ϕ(x) − ϕ(−x))dx
x

as

lim
x→0

ϕ(x) − ϕ(−x)
x

= lim
x→0

ϕ(x) − ϕ(0)

x
+ lim

x→0

ϕ(0)− ϕ(−x)
x

= ϕ′(0) + ϕ′(0) = 2ϕ′(0)

there exist lim
ǫ→0

∫∞
ǫ

(ϕ(x)−ϕ(−x))dx
x , hence:

p.v

(
1

x

)
(ϕ) =

∫ ∞

0

ϕ(x) − ϕ(−x)
x

dx

note that p.v( 1x ) is linear, also

∣∣∣∣p.v
(
1

x

)
(ϕ)

∣∣∣∣ =
∣∣∣∣
∫ ∞

0

ϕ(x) − ϕ(−x)
x

dx

∣∣∣∣ ≤
∫ 1

0

∣∣∣∣
ϕ(x)− ϕ(−x)

x

∣∣∣∣ dx+

∫ ∞

1

∣∣∣∣
ϕ(x) − ϕ(−x)

x

∣∣∣∣ dx

=

∫ 1

0

1

x

∣∣∣∣
∫ x

−x

ϕ′(t)dt

∣∣∣∣ dx+

∫ ∞

1

|ϕ(x)|+ |ϕ(−x)|
x

≤
∫ 1

0

1

x
(2x) ‖ϕ‖0,1 dx+

∫ ∞

1

2 ‖ϕ‖1.0
x2

dx

= 2 ‖ϕ‖0,1
∫ 1

0

dx+2 ‖ϕ‖1.0
∫ ∞

1

1

x2
= 2 ‖ϕ‖0,1+2 ‖ϕ‖1.0

[
− 1

x

]∞

1

= 2(‖ϕ‖0,1+‖ϕ‖1,0) = 2
∑

|α|,|β|≤1

‖ϕ‖α,β

then p.v( 1x ) is continuous, this implies that p.v( 1x) ∈ S(R)′ is a tempered distribution, if ψǫ(x) =
1
xχ{|x|>ǫ} then ψǫ define tempered distributions for every ǫ > 0, moreover lim

ǫ→0+
ψǫ = p.v( 1x) in S(R)′,
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in fact:

∣∣∣∣p, v
(
1

x

)
(ϕ)− ψǫ(ϕ)

∣∣∣∣ =
∣∣∣∣
∫ ǫ

0

ϕ(x)− ϕ(−x)
x

dx

∣∣∣∣ ≤ 2 ‖ϕ‖0,1
∫ ǫ

0

dx = 2ǫ ‖ϕ‖0,1 →ǫ→0+ 0

Proposition 1.3. lim
t→0+

Qt =
1
πp.v(

1
x ) in S(R)′

Proof. As lim
ǫ→0+

ψǫ = p.v( 1x) we have that if ϕ ∈ S(R):

lim
t→0+

(
Qt −

1

π
p.v

(
1

x

))
(ϕ) = lim

t→0+

(
Qt(ϕ)−

1

π
p.v

(
1

x

)
(ϕ)

)

= lim
t→0+

(
1

π

∫ ∞

−∞

xϕ(x)

x2 + t2
dx− 1

π

∫

|x|>t

ϕ(x)

x
dx

)

=
1

π
lim
t→0+

(∫

|x|<t

xϕ(x)

x2 + t2
dx+

∫

|x|>t

xϕ(x)

x2 + t2
dx−

∫

|x|>t

ϕ(x)

x
dx

)

=
1

π
lim
t→0+

(∫

|x|<t

xϕ(x)

x2 + t2
dx+

∫

|x|>t

(
x

x2 + t2
− 1

x

)
ϕ(x)dx

)

=
1

π
lim
t→0+

(∫

|x|<t

xϕ(x)

x2 + t2
dx+

∫

|x|>t

t2ϕ(x)

x(x2 + t2)
dx

)

let u = x
t then:

lim
t→0+

(
Qt −

1

π
p.v

(
1

x

))
(ϕ) =

1

π
lim
t→0+

(∫

|u|<1

uϕ(tu)

u2 + 1
du +

∫

|u|>1

ϕ(tu)

u(u2 + 1)
du

)

as ϕ ∈ S(R) the functions (u → uϕ(tu)
u2+1 ) ∈ L1(R) and (u → ϕ(tu)

u(u2+1) ) ∈ L1(R) for every t > 0, by the

dominated convergence theorem:

lim
t→0+

(
Qt −

1

π
p.v

(
1

x

))
(ϕ) =

1

π

(∫

|u|<1

uϕ(0)

u2 + 1
du+

∫

|u|>1

ϕ(0)

u(u2 + 1)
du

)
= 0

given that the functions u→ u
u2+1 and u→ 1

u(u2+1) are odd functions and the sets {u ∈ R | |u| < 1},
{u ∈ R | |u| > 1} are symmetric with respect the origin. ♦

1.3 Harmonic extensions and the Hilbert transform

In this section we study the harmonic extension of a function f ∈ S(R) to the upper half-plane and use

this to define the Hilbert transform H and prove the Riesz Theorem that asserts that H ∈ B(Lp(R))

for 1 < p < ∞. By abuse of notation we identify the vector (x, t) ∈ R2 with the complex number

z = x+ it.
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1.3.1 Harmonic extensions

Let f ∈ S(R). The harmonic extension of f to H = {z ∈ C | Im(z) > 0} is given by u(z) = Pt ∗ f(x)
where z = x+ it and Pt(x) =

t
π(x2+t2) is the Poisson kernel. (Note that this extension is not unique if

f = 0 take the functions u1 ≡ 0, u2(x, y) = y, however the extension that we use is the given by the

Poisson kernel). We are going to prove that in fact, u is harmonic in H. As Pt ∈ L1(R) for every t > 0

we take the Fourier transform in the x variable P̂t(ξ) = e−2πt|ξ|, basic properties of the exponential

function proves that P̂t ∈ L1(R) for every t > 0. Using inverse Fourier transform:

u(z) = Pt ∗ f(x) = (P̂tf̂)
∨(x) =

∫

R

P̂t(ξ)f̂(ξ)e
2πixξdξ

=

∫

R

e−2πt|ξ|f̂(ξ)e2πixξdξ =

∫ 0

−∞
e2πtξf̂(ξ)e2πixξdξ +

∫ ∞

0

e−2πtξf̂(ξ)e2πixξdξ

=

∫ ∞

0

f̂(ξ)e2πizξdξ +

∫ 0

−∞
f̂(ξ)e2πizξdξ.

(1.4)

If we define iv(z) =
∫∞
0 f̂(ξ)e2πizξdξ −

∫ 0

−∞ f̂(ξ)e−2πizξdξ and F = u+ iv, F (z) =
∫∞
0 f̂(ξ)e2πizξdξ is

holomorphic, in fact if ∆ ⊂ H is a triangle

∫

∆

F (z)dz =

∫

∆

∫ ∞

0

f̂(ξ)e2πizξdξdz =

∫ ∞

0

∫

∆

f̂(ξ)e2πizξdzdξ

(Fubini’s theorem because f ∈ S(R) and so f̂ ∈ S(R) )

=

∫ ∞

0

f̂(ξ)

∫

∆

e2πizξdzdξ = 0

the last step followed from the fact the function z ∈ H 7→ e2πizξ is holomorphic for every ξ ∈ (0,∞).

Morera’s theorem implies that F is holomorphic. Clearly u is real. Note that v is also real, in fact:

iv(z) =

∫ ∞

0

f̂(ξ)e2πizξdξ −
∫ 0

−∞
f̂(ξ)e−2πizξdξ =

∫ ∞

0

f̂(ξ)e2πizξdξ

−
∫ 0

−∞
f̂(ξ)e−2πizξdξ =

∫ ∞

0

f̂(−ξ)e−2πizξdξ +

∫ 0

−∞
f̂(−ξ)e−2πizξdξ

on every integral let w = −ξ on each integral.

iv(z) =

∫ −∞

0

f̂(w)e2πiz̄w(−dw) −
∫ 0

∞
f̂(w)e2πizw(−dw)

=

∫ 0

−∞
f̂(w)e2πiz̄wdw −

∫ ∞

0

f̂(w)e2πizwdw = −iv(z)

hence −iv(z) = −iv(z), so v(z) = v(z) and v is real. Therefore u and v are real and F = u + iv is

holomorphic we have that u and v are harmonic.
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We will need an alternative expresion for v:

iv(z) =

∫ ∞

0

f̂(ξ)e2πizξdξ −
∫ 0

−∞
f̂(ξ)e2πizξdξ =

∫ ∞

0

f̂(ξ)e2πixξ−2πtξdξ −
∫ 0

−∞
f̂(ξ)e2πixξ+2πtξdξ

=

∫ ∞

0

e−2πt|ξ|f̂(ξ)e2πixξdξ −
∫ 0

−∞
e−2πt|ξ|f̂(ξ)e2πixξdξ =

∫ ∞

0

sng(ξ)e−2πt|ξ|f̂(ξ)e2πixξdξ

+

∫ 0

−∞
sng(ξ)e−2πt|ξ|f̂(ξ)e2πixξdξ =

∫ ∞

−∞
sng(ξ)e−2πt|ξ|f̂(ξ)e2πixξdξ

where sgn is the sign function, hence v(z) =
∫∞
−∞ −isng(ξ)e−2πt|ξ|f̂(ξ)e2πixξdξ moreover

v(x, t) =

∫ ∞

−∞
−isng(ξ)e−2πt|ξ|

∫ ∞

−∞
f(η)e−2πiηξdηe2πixξdξ =

∫ ∞

−∞

∫ ∞

−∞
−isng(ξ)e−2πt|ξ|f(η)e−2πiηξe2πixξdηdξ

=

∫ ∞

−∞

∫ ∞

−∞
−isng(ξ)e−2πt|ξ|f(η)e2πi(x−η)ξdηdξ =

∫ ∞

−∞
f(η)

(∫ ∞

−∞
−isng(ξ)e−2πt|ξ|e2πi(x−η)ξdξ

)
dη.

Let Qt(x) =
∫∞
−∞ −isng(ξ)e−2πt|ξ|e2πixξdξ. Then

v(x, t) =

∫ ∞

−∞
f(η)Qt(x− η)dη = (Qt ∗ f)(x).

Note that Qt(x) =
∫∞
−∞ −isng(ξ)e−2πt|ξ|e2πixξdξ = (−isng(ξ)e−2πt|ξ|)∨(x), by the Fourier´s inversion

Theorem we have Q̂t(ξ) = −isgn(ξ)e−2πt|ξ| but we can to find an explicit expression:

Qt(x) =

∫ ∞

−∞
−isng(ξ)e−2πt|ξ|e2πixξdξ =

∫ 0

−∞
ie2πtξ+2πixξdξ +

∫ ∞

0

−ie−2πtξ+2πixξdξ

= i

∫ 0

−∞
e2πξ(t+ix)dξ − i

∫ ∞

0

e2πξ(ix−t)dξ = i

[
e2πξ(t+ix)

2π(t+ ix)

]0

−∞
− i

[
e2πξ(ix−t)

2π(ix− t)

]∞

0

=
i

2π(t+ ix)
+

i

2π(ix− t)
=

i

2π

(
1

t+ ix
+

1

ix− t

)
=

i

2π

(
ix− t+ t+ ix

−x2 − t2

)
=

x

π(x2 + t2)

as Pt(x) + iQt(x) =
t

π(x2+t2) +
ix

π(x2+t2) =
t+ix

π(x2+t2) =
i(x−it)
π(x2+t2) =

i
π(x+it) =

i
πz is holomorphic in H we

have that Qt is the conjugate Poisson kernel.

As consequence of the proposition 1.3

lim
t→0+

Qt ∗ f(x) =
1

π
p.v

(
1

x

)
(f)(x)

we see that:

p.v

(
1

x

)
(f)(x) = lim

ǫ→0+

∫

|x|>ǫ

f(y − x)

x
dx,
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in fact, for every ϕ ∈ S(R):

(
p.v

(
1

x

)
∗ f
)
(ϕ) = p.v

(
1

x

)
(f̄ ∗ ϕ) = lim

ǫ→0+

∫

|x|>ǫ

(f̄ ∗ ϕ)(x)
x

dx

= lim
ǫ→0+

∫

|x|>ǫ

1

x

(∫

R

f̄(x − y)ϕ(y)dy

)
dx = lim

ǫ→0+

∫

|x|>ǫ

∫

R

f(y − x)ϕ(y)

x
dydx

= lim
ǫ→0+

∫

R

∫

|x|>ǫ

f(y − x)ϕ(y)

x
dxdy =

∫

R

ϕ(y)

(
lim
ǫ→0+

∫

|x|>ǫ

f(y − x)

x
dx

)
dy

then (
p.v

(
1

x

)
∗ f
)
(y) = lim

ǫ→0+

∫

|x|>ǫ

f(y − x)

x
dx,

hence

lim
t→0+

Qt ∗ f(x) =
1

π
lim
ǫ→0+

∫

|y|>ǫ

f(x− y)

y
dy.

By the continuity of F : S(R)′ → S(R)′ we have

(
1

π
p.v

(
1

x

))∧
(ξ) = lim

t→0+
Q̂t(ξ) = lim

t→0+
−isng(ξ)e−2πt|ξ| = −isng(ξ)

.

1.3.2 Hilbert Transform

Definition 1.2. Hilbert Transform

We define by any one of the following equivalent expressions H : S(R) → S(R),

H f = lim
t→0+

Qt ∗ f,

H f =
1

π
p.v

(
1

x

)
∗ f,

(H f)∧(ξ) = −isgn(ξ)f̂(ξ)

the third equation and the Plancherel theorem allows us extend the definition to L2(R) and see that

‖H f‖2 =
∥∥∥f̂
∥∥∥
2
= ‖f‖2, for f ∈ L2(R). Moreover if f ∈ S(R):

H (H f)(ξ) = (−isng(ξ)(H f)∧(ξ))∨ = ((−isng(ξ))2f̂(ξ))∨ = −f(ξ) (1.5)

for every ξ ∈ R, H (H f) = −f , and if f is real then u and v are real functions, in the above notation

u(x, t) = Pt ∗ f(x), v(x, t) = Qt ∗ f(x) in particular H f(x) = lim
t→0

v(x, t), then the Hilbert transform
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of a real function is real, using the Parseval identity:

∫

R

H f(ξ)g(ξ)dξ = 〈H f, g〉L2(R) = 〈Ĥ f, ĝ〉L2(R) = 〈−isng(ξ)f̂ , ĝ〉L2(R)

= −〈f̂ ,−isgn(ξ)ĝ〉L2(R) = −〈f,H g〉L2(R) = −
∫

R

f(ξ)H g(ξ)dξ

(1.6)

The following theorem will be useful in the chapter 2:

Theorem 1.2. (Riesz)

H : Lp(R) → Lp(R) is bounded for every 1 < p <∞, i.e there exists Cp > 0 such that

‖H f‖p ≤ Cp ‖f‖p ,

for every f ∈ Lp(R)

Proof. If we have F : H → C, F = u + iv holomorphic and f ∈ S(R), f(x) = u(x, 0) then H f(x) =

v(x, 0) this implies that F (x, 0) = f(x)+ iH f(x) then applying this to F 2 = (u2−v2)+2iuv we have

that H(f2 − (Hf)2) = 2fHf applying H and using (1.5) we have −f2 + (H f)2 = 2H (fH f), so

(H f)2 = f2 + 2H (fH f) (1.7)

now we have the following result

⊛ if ‖H f‖p ≤ Cp ‖f‖p, ∀f ∈ S(R) then ‖H f‖2p ≤ (2Cp + 1) ‖f‖2p, ∀f ∈ S(R).

In fact, ‖H f‖22p =
∥∥(H f)2

∥∥
p
≤
∥∥f2

∥∥
2p

+ 2 ‖H (fH f)‖p ≤
∥∥f2

∥∥
2p

+ 2Cp ‖fH f‖p, but ‖fH f‖p =

‖fp(H f)p‖1/p1 ≤ ‖fp‖1/p2 ‖(Hf)p‖1/p2 = (‖fp‖22)
1
2p (‖(H f)p‖22)

1
2p = ‖f‖2p ‖H f‖2p, then

‖H f‖22p ≤ ‖f‖22p + 2Cp ‖f‖2p ‖H f‖2p .

We have two posibilities:

> If ‖H f‖2p ≤ ‖f‖2p then ‖H f‖22p ≤ ‖f‖22p + 2Cp ‖f‖22p = (2Cp + 1) ‖f‖22p
≤ (2Cp + 1)2 ‖f‖22p, so ‖H f‖2p ≤ (2Cp + 1) ‖f‖2p.

> If ‖f‖2p ≤ ‖H f‖2p, then ‖H f‖22p ≤ ‖f‖22p + 2Cp ‖f‖2p ‖H f‖2p ≤ (2Cp + 1) ‖f‖2p ‖H f‖2p, so
‖H f‖2p ≤ (2Cp + 1) ‖f‖2p.

this complete the proof of ⊛. By induction we prove that for every k ≥ 1, ‖H f‖2k ≤ (2k−1) ‖f‖2k ,for
k = 1 is obvious because H is and isometric isomorphism, suppose that this is true for k, for k + 1

using ⊛: ‖H f‖2k+1 ≤ (2(2k − 1) + 1) ‖f‖2k+1 = (2k+1 − 1) ‖f‖2k+1 . The Riesz-Thorin theorem (See

[8]) applied to ‖H f‖2 = ‖f‖2 and ‖H f‖2k ≤ (2k − 1) ‖f‖2k implies that H is bounded in Lp(Rn)

for all p ∈ [2, 2k] for every k ≥ 1 therefore H is bounded in Lp(Rn) for every p ∈ [2,∞).
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For 1 < p < 2 we use the following argument of duality given that the conjugate exponent satisfies

q ≥ 2, by (1.6):

‖H f‖p = sup

{∣∣∣∣
∫

R

H f(x)g(x)dx

∣∣∣∣ | ‖g‖q ≤ 1

}
= sup

{∣∣∣∣
∫

R

f(x)H g(x)dx

∣∣∣∣ | ‖g‖q ≤ 1

}

≤ ‖f‖p sup
{∣∣∣‖H g‖q

∣∣∣ | ‖g‖q ≤ 1
}
≤ Cq ‖f‖p

(1.8)

then ‖H f‖p ≤ Cp ‖f‖p, for every f ∈ S(R), 1 < p < ∞, but S(R) is dense in Lp(R) so ‖H f‖p ≤
Cp ‖f‖p for every f ∈ Lp(R), this complete the proof. ♦

1.4 Other important estimates

This section compiles some technical results which we will use later. It may be skipped on a first

reading.

1.4.1 Approximation of the norm ‖·‖Lp(Rn)

Proposition 1.4. For every f ∈ Lp(Rn), ‖f‖p = sup{
∣∣∫

Rn f(x)g(x)dx
∣∣ | ‖g‖q = 1, g ∈ C∞

0 (Rn)},
1
p + 1

q = 1.

Proof. In fact, by the Holder inequality:

∣∣∣∣
∫

Rn

f(x)g(x)dx

∣∣∣∣ ≤
∫

Rn

|f(x)| |g(x)| dx ≤ ‖f‖p ‖g‖q

for every g ∈ C∞
0 (Rn), so

C := sup

{∣∣∣∣
∫

Rn

f(x)g(x)dx

∣∣∣∣ | ‖g‖q = 1, g ∈ C∞
0 (Rn)

}
≤ ‖f‖p

note that if f = 0 we have the inequality immediately, if f is nonzero let E = {x ∈ Rn | f(x) = 0},
as f is mensurable E is mensurable, define g = |f |p

f(‖f‖p+χE)p−1 , as
1
p + 1

q = 1 we have p
q = p − 1 so

p = (p− 1)q, also as f is mensurable g is mensurable, moreover

∫

Rn

|g(x)|q dx =

∫

Rn

|f(x)|p dx
(‖f‖p + χE)p

=

∫

Rn−E

|f(x)|p dx
‖f‖pp

=

∫

Rn

|f(x)|p dx
‖f‖pp

= 1

so g ∈ Lq(Rn), ‖g‖q = 1, moreover:

∣∣∣∣
∫

Rn

f(x)g(x)dx

∣∣∣∣ =
∣∣∣∣∣

∫

Rn

|f(x)|p dx
(‖f‖p + χE(x))p−1

∣∣∣∣∣ =
∫

Rn−E

|f(x)|p dx
‖f‖p−1

p

=
1

‖f‖p−1
p

∫

Rn

|f(x)|p dx = ‖f‖p
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as g ∈ Lq(Rn) there exists {gk}k∈N ⊂ C∞
0 (Rn), such that lim

k→∞
‖gk − g‖q = 0 in particular there exists

{gkl
}l∈N subsequence of {gk}k∈N such that g(x) = lim

l→0
gkl

(x) a.e x ∈ Rn, as lim
l→∞

‖gkl
‖p = ‖g‖q = 1

we can put hl =
gkl

‖gkl‖q

∈ C∞
0 (Rn), ‖hl‖q = 1, lim

l→∞
hl(x) = g(x) a.e x ∈ Rn, so {fhl}l∈N ⊂ L1(Rn)

satisfies that lim
l→∞

(fhl)(x) = (fg)(x) a.e x ∈ Rn, moreover fg ∈ L1(Rn), the dominated convergence

theorem implies that lim
l→∞

‖fhl − fg‖1 = 0, in special:

C ≥ lim
l→∞

∣∣∣∣
∫

Rn

f(x)hl(x)dx

∣∣∣∣ =
∣∣∣∣
∫

Rn

f(x)g(x)dx

∣∣∣∣ = ‖f‖p

this completes the proof. ♦

1.4.2 Fourier transform of radial functions and Bessel func-

tions

The Fourier transform of a radial function is obtained in terms of the Bessel function for this is

necessary study some properties of that functions in the origin and in the infinity.

Definition 1.3. Let k ∈ R, k > − 1
2 the Bessel function of order k is defined by:

Jk(t) =

(
t
2

)k

Γ(k + 1
2 )Γ(

1
2 )

∫ 1

−1

eits(1− s2)k−
1
2 ds

the following properties will be used in this thesis.

Proposition 1.5. (1) If f(x) = f0(‖x‖), x ∈ Rn, f ∈ L1(Rn), then

f̂(ξ) = 2π ‖ξ‖1−n
2

∫ ∞

0

f0(s)Jn
2
−1(2π ‖ξ‖ s)s

n
2 ds

(2) If j > − 1
2 , k > −1, and t > 0, then

Jj+k+1(t) =
tk+1

2kΓ(k + 1)

∫ 1

0

Jj(ts)s
j+1(1− s2)kds

(3) Jµ(t) = O(tµ) if t→ 0 and Jµ(t) ∼ t−
1
2 if t→ ∞.

Proof. (1) Let s = ‖x‖, x = su, r = ‖ξ‖, ξ = rv then by the polar coordinates formula:

f̂(ξ) =

∫

Rn

f(x)e−2πix·ξdx =

∫

Rn

f0(‖x‖)e−2πix·ξdx =

∫ ∞

0

∫

Sn−1

f0(s)e
−2πirsu·vsn−1dσ(v)ds

=

∫ ∞

0

f0(s)s
n−1

∫

Sn−1

e−2πirsu·vdσ(v)ds
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we calculate the inner integral, for this let:

Lθ(u) =
{
v ∈ Sn−1 | u · v = cos θ

}

by influence of the geometry this set is called a paralell, note that σ(Lθ(Au)) = σ(Lθ(u)) for every

A ∈ O(n), in fact, v ∈ Lθ(Au) ⇔ (Au) · v = u · (A−1v) = cos θ ⇔ A−1v ∈ Lθ(u) ⇔ v ∈ A(Lθ(u))

so Lθ(Au) = A(Lθ(u)), as σ is invariant by rotations σ(Lθ(Au)) = σA(Lθ(u)) = σ(Lθ(u)) this

allows us to choose u = en, then Lθ(en) =
{
v ∈ Sn−1 | vn = cos θ

}
, but v ∈ Lθ(en) ⇔ ‖v‖ =

1, vn = cos(θ),
∥∥v(n−1)

∥∥2 = 1 − v2n = 1 − cos2 θ = sin2 θ ⇔
∥∥v(n−1)

∥∥ = sin θ, then Lθ(en) ={
(v(n−1), cos θ) ∈ Rn |

∥∥v(n−1)
∥∥ = sin θ

}
but σ is invariant by traslations then σ(Lθ(en)) = σ(Sn−2

sin θ ×
{0}) = σn−2(S

n−2
sin θ ) = σn−2(S

n−2) sinn−2 θ so

∫

Sn−1

e−2πirsu·vdσ(v) =

∫ π

0

∫

Lθ(u)

e−2πirsu·vdσ(v)dθ =

∫ π

0

∫

Lθ(u)

e−2πirs cos θdσ(v)dθ

=

∫ π

0

e−2πirs cos θ

∫

Lθ(u)

dσ(v)dθ =

∫ π

0

e−2πirs cos θσ(Lθ(u))dθ =

∫ π

0

e−2πirs cos θσn−2(S
n−2) sinn−2 θdθ

but ωn = π
n
2

Γ(n
2 +1) =

π
n
2

n
2 Γ(n

2 ) =
2π

n
2

nΓ(n
2 ) then σ(S

n−1) = nωn = 2π
n
2

Γ(n
2 ) , take t = − cos(θ), if θ = 0 ⇒ t = −1,

if θ = π ⇒ t = 1, dt = sin(θ)dθ, then

∫

Sn−1

e−2πirsu·vdσ(v) =
2π

n−1
2

Γ(n−1
2 )

∫ 1

−1

e2πirst(1− t2)
n−3
2 dt =

2π
n−1
2

Γ(n−1
2 )

Γ(12 )Γ(
n−1
2 )

(πrs)
n−2

2

Jn−2
2
(2πrs)

= 2π(rs)−
n−2
2 Jn−2

2
(2πrs)

so

f̂(ξ) =

∫ ∞

0

f0(s)s
n−1(2π)(rs)−

n−2
2 Jn−2

2
(2πrs)ds = 2π ‖ξ‖1−n

2

∫ ∞

0

f0(s)Jn
2 −1(2π ‖ξ‖ s)sn/2ds

(2) As Jk(t) =
( t

2 )
k

Γ(k+ 1
2 )Γ(

1
2 )

∫ 1

−1
eits(1 − s2)k−

1
2 ds =

( t
2 )

k

Γ(k+ 1
2 )Γ(

1
2 )
(
∫ 0

−1
eits(1− s2)k−

1
2 ds

+
∫ 1

0 e
its(1−s2)k− 1

2 ds) for the first integral let s = −s, if s = −1 ⇒ s = 1, if s = 0 ⇒ s = 0, ds = −ds,
hence Jk(t) =

( t
2 )

k

Γ(k+ 1
2 )Γ(

1
2 )

(∫ 0

1 e
−its(1− s2)k−

1
2 (−ds) +

∫ 1

0 e
its(1− s2)k−

1
2 ds
)
=

2( t
2 )

k

Γ(k+ 1
2 )Γ(

1
2 )

∫ 1

0 cos(ts)(1−
s2)k−

1
2 ds using the Taylor’s expansion for cos we have

cos(its) =

∞∑

j=0

(−1)j(ts)2j

(2j)!
=

∞∑

j=0

(−1)jt2js2j

(2j)!

hence

Jk(t) =
2
(
t
2

)k

Γ(k + 1
2 )Γ(

1
2 )

∞∑

j=0

(−1)jt2j

(2j)!

∫ 1

0

s2j(1− s2)k−
1
2 ds
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take u = s2, du = 2sds, ds = du
2
√
u
then:

∫ 1

0

s2j(1− s2)k−
1
2 ds =

∫ 1

0

uj(1 − u)k−
1
2
du

2
√
u
=

1

2

∫ 1

0

uj−
1
2 (1− u)k−

1
2 du

=
1

2

∫ 1

0

u(j+
1
2 )−1(1− u)(k+

1
2 )−1du =

1

2
B

(
j +

1

2
, k +

1

2

)
=

1

2

Γ(j + 1
2 )Γ(k +

1
2 )

Γ(j + k + 1)

given that j > − 1
2 , so

Jk(t) =
2
(
t
2

)k

Γ(k + 1
2 )Γ(

1
2 )

∞∑

j=0

(−1)jt2j

(2j)!
· 1
2
· Γ(j +

1
2 )Γ(k +

1
2 )

Γ(j + k + 1)
=

2
(
t
2

)k

Γ(12 )

∞∑

j=0

(−1)jt2j

(2j)!

Γ(j + 1
2 )

Γ(j + k + 1)

but Γ(j + 1
2 ) = (j − 1

2 )Γ(j − 1
2 ) = (j − 1

2 )(j − 3
2 )Γ(j − 3

2 ) = ... = (j − 1
2 )(j − 3

2 )...(j −
2j−1
2 )Γ(12 ) =

(2j−1)(2j−3)...(3)(1)
2j Γ(12 ) =

(2j)!
22jj!Γ(

1
2 ) implies that

Jk(t) =
2
(
t
2

)k

Γ(12 )

∞∑

j=0

(−1)jt2j

(2j)!

(2j)!Γ(12 )

22jj!Γ(j + k + 1)
=

∞∑

j=0

(−1)j( t2 )
k+2j

j!Γ(j + k + 1)

hence

∫ 1

0

Jj(ts)s
j+1(1− s2)kds =

∫ 1

0

( ∞∑

l=0

(−1)l(ts/2)j+2l

l!Γ(l+ j + 1)

)
sj+1(1 − s2)kds

=
∞∑

l=0

(−1)l( t
2 )

j+2l

l!Γ(l + k + 1)

∫ 1

0

s2j+2l+1(1− s2)kds

let r = s2, then dr = 2sds,

∫ 1

0

s2j+2l+1(1− s2)kds =
1

2

∫ 1

0

(s2)j+l(1− s2)k(2sds) =
1

2

∫ 1

0

rj+l(1 − r)kdr

=
1

2
B(j + k + 1, k + 1) =

1

2

Γ(j + k + 1)Γ(k + 1)

Γ(l + j + k + 2)

given that k > −1. Hence

∫ 1

0

Jj(ts)s
j+1(1− s2)kds =

∞∑

l=0

(−1)l( t
2 )

j+2l

l!Γ(l + j + 1)
· 1
2
· Γ(j + l + 1)Γ(k + 1)

Γ(l + j + k + 2)

=
∞∑

l=0

(−1)l( t2 )
j+2l

2l!Γ(l+ j + k + 2)
· Γ(k + 1) =

∞∑

l=0

(−1)l( t2 )
j+k+1+2l

2l!Γ(l+ j + k + 2)
· Γ(k + 1)

(t/2)k+1

=
2kΓ(k + 1)

tk+1

∞∑

l=0

(−1)l( t2 )
j+k+1+2l

l!Γ(l + j + k + 2)
=

2kΓ(k + 1)

tk+1
Jj+k+1(t)

so Jj+k+1(t) =
tk+1

2kΓ(k+1)

∫ 1

0
Jj(ts)s

j+1(1− s2)kds.
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(3) These properties can be found in [8, Pags. 158-159] ♦

Corollary 1.1. Let δ > 0, Φδ : R
n → R,

Φδ(t) = max
{
(1− ‖t‖2)δ, 0

}
=





(1− ‖t‖2)δ if ‖t‖ ≤ 1

0 if ‖t‖ > 1

then Φ̂δ(ξ) = π−δΓ(δ + 1) ‖ξ‖−n
2 −δ

Jn
2
+δ(2π ‖ξ‖).

Proof. As Φδ is radial the part (1) the previous proposition implies that:

Φ̂δ(ξ) = 2π ‖ξ‖1−n
2

∫ 1

0

(1 − s2)δJn
2
−1(2π ‖ξ‖ s)sn/2ds = 2π ‖ξ‖1−n

2

∫ 1

0

Jn
2
−1(2π ‖ξ‖ s)sn/2(1− s2)δds

= 2π ‖ξ‖1−n
2 Jn

2 +δ(2π ‖ξ‖) ·
2δΓ(δ + 1)

(2π ‖ξ‖)δ+1
Part (2) of the previous proposition

= π−δΓ(δ + 1) ‖ξ‖−n
2 −δ Jn

2
+δ(2π ‖ξ‖)

♦



CHAPTER 2

Introduction to Fourier Multipliers

In this chapter we define the Fourier multipliers and study their principal properties, the Hilbert

transform is used to prove that a characteristic function of an interval is a multiplier, this fact with

the extension Theorem for multipliers give the generalization for a convex polyhedron in Rn, we

conclude the chapter with the complete proof of the restriction Theorem of de Leeuw.

2.1 Basic definitions and results

Definition 2.1. If m ∈ L∞(Rn) and 1 < p <∞, Tm : Lp(Rn) → Lp(Rn), if T̂mf = mf̂ is a bounded

operator we say that m is a multiplier on Lp(Rn) and the norm of this is |m|p = ‖Tm‖.

For example by the Riesz Theorem (Theorem 1.1) m(ξ) = −isng(ξ) is a multiplier on Lp(R).

Proposition 2.1. If m is a multiplier on Lp(Rn), ma(ξ) = m(ξ+ a), a ∈ Rn, mλ(ξ) = m(λξ), λ > 0,

m ◦A, A ∈ O(n) are multipliers on Lp(Rn), moreover |m|p = |ma|p = |mλ|p = |m ◦A|p.

Proof. Take f ∈ S(Rn), let a ∈ Rn, then using the Proposition 1.2, Tmaf(x) =
∫
Rn m

a(ξ)f̂(ξ)e2πix·ξdξ

=
∫
Rn m(ξ + a)f̂(ξ)e2πix·ξdξ =

∫
Rn m(ξ)f̂(ξ − a)e2πix·(ξ−a)dξ =

∫
Rn m(ξ)(τ−af̂)(ξ)e

2πix·(ξ−a)dξ

=
∫
Rn m(ξ)M̂af(ξ)e

2πix·(ξ−a)dξ =M−a(x)
∫
Rn m(ξ)M̂af(ξ)e

2πix·ξdξ =M−a(x)Tm(Maf)(x).

Then ‖Tmaf‖p = ‖M−aTm(Maf)‖p = ‖Tm(Maf)‖p ≤ |m|p ‖Maf‖p = |m|p ‖f‖p, soma is a multiplier

and |ma|p ≤ |m|p = |(ma)−a|p ≤ |ma|p, i.e |m|p = |ma|p.

Let λ > 0, if g(x) = f(λx), using the Proposition 1.2, Tmλ
f(x) =

∫
Rn mλ(ξ)f̂(ξ)e

2πix·ξdξ

=
∫
Rn m(λξ)f̂(ξ)e2πix·ξdξ =

∫
Rn m(η)f̂( ηλ )e

2πix· η
λ

dη
λn = 1

λn

∫
Rn m(ξ)f̂( ξλ )e

2πi x
λ
·ξdξ =

∫
Rn m(ξ)ĝ(ξ)e2πi

x
λ
·ξdξ

= (Tmg)(
x
λ).
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Then ‖Tmλ
f‖pp =

∫
Rn |(Tmλ

f)(x)|p dx =
∫
Rn

∣∣(Tmg)(xλ)
∣∣p dx =

∫
Rn |(Tmg)(z)|p λndz = λn ‖Tmg‖pp ≤

|m|pp λn ‖g‖pp = |m|pp λn
∫
Rn |g(x)|p dx = |m|pp

∫
Rn |f(y)|p dy = |m|pp ‖f‖

p
p, so mλ is a multiplier and

|mλ|p ≤ |m|p = |(mλ)λ−1 |p ≤ |mλ|p, i.e |m|p = |mλ|p.

Let A ∈ O(n), using the Proposition 1.2, f̂ ◦A = f̂ ◦A then:

(Tm◦Af)(x) =

∫

Rn

(m ◦A)(ξ)f̂ (ξ)e2πix·ξdξ =
∫

Rn

m(η)f̂ (A−1η)e2πix·A
−1ηdη

=

∫

Rn

m(η)f̂(A−1η)e2πiAx·ηdη =

∫

Rn

m(η) ̂f ◦A−1(η)e2πiAx·ηdη = (Tm(f ◦A−1))(Ax).

Then ‖Tm◦Af‖pp =
∫
Rn |(Tm◦Af)(x)|p dx =

∫
Rn

∣∣(Tm(f ◦A−1))(Ax)
∣∣p dx =

∫
Rn

∣∣(Tm(f ◦A−1))(y)
∣∣p dy =∥∥Tm(f ◦A−1)

∥∥p
p
≤ |m|p

∥∥f ◦A−1
∥∥p
p
= |m|pp

∫
Rn

∣∣(f ◦A−1)(x)
∣∣p dx = |m|pp

∫
Rn |f(y)|p dy = |m|pp ‖f‖

p
p,

so m ◦A is a multiplier and |m ◦A|p ≤ |m|p =
∣∣(m ◦A) ◦A−1

∣∣
p
≤ |m ◦A|p, i.e |m|p = |m ◦A|p. ♦

Let M(Lp(Rn)) be the set of multipliers of Lp(Rn). The following Theorem is a powerfull characteri-

zation for Fourier multipliers.

Theorem 2.1. m ∈ M(Lp(Rn)) if and only if there exists C > 0 such that for every f, g ∈ C∞
0 (Rn)

∣∣∣∣
∫

Rn

m(x)f̂ (x)ĝ(−x)dx
∣∣∣∣ ≤ C ‖f‖p ‖g‖q , (2.1)

where 1
p + 1

q = 1, moreover

|m|p = inf

{
C > 0 |

∣∣∣∣
∫

Rn

m(x)f̂(x)ĝ(−x)dx
∣∣∣∣ ≤ C ‖f‖p ‖g‖q , ∀f, g ∈ C∞

0 (Rn)

}
.

Proof. Suppose that m ∈ M(Lp(Rn)), then Tm : Lp(Rn) → Lp(Rn), (Tmf)
∧ = mf̂ is bounded, let

f, g ∈ C∞
0 (Rn), ‖f‖p = ‖g‖q = 1, then f̂ , ĝ ∈ L2(Rn), (Tmf)

∧ = mf̂ ∈ L2(Rn) we can use the

Parseval identity:

∣∣∣∣
∫

Rn

m(x)f̂(x)ĝ(−x)dx
∣∣∣∣ =

∣∣∣∣
∫

Rn

(mf̂)(x)ǧ(x)dx

∣∣∣∣ =
∣∣∣∣
∫

Rn

(Tmf)(x)g(x)dx

∣∣∣∣

≤ sup

{
sup

{∣∣∣∣
∫

Rn

(Tmf)(x)g(x)dx

∣∣∣∣ | ‖g‖q = 1

}
| ‖f‖p = 1

}
= sup

{
‖Tm‖p | ‖f‖p = 1

}
= ‖Tm‖

we note that (2.1) is valid if f = 0 or g = 0, if f and g are nonzero then:

∣∣∣∣
∫

Rn

m(x)f̂(x)ĝ(−x)dx
∣∣∣∣ =

∣∣∣∣∣

∫

Rn

m(x) ‖f‖p

(
f

‖f‖p

)∧

(x) ‖g‖q

(
g

‖g‖ q

)∧

(−x)dx
∣∣∣∣∣

=

∣∣∣∣∣

∫

Rn

m(x)

(
f

‖f‖p

)∧

(x)

(
g

‖g‖ q

)∧

(−x)dx
∣∣∣∣∣ ‖f‖p ‖g‖q ≤ ‖Tm‖ ‖f‖p ‖g‖q
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Conversely suppose that (2.1) is valid and 1 ≤ p ≤ 2, using the previous Proposition with f ∈ C∞
0 (Rn):

‖Tf‖p = sup

{∣∣∣∣
∫

Rn

(Tf)(x)g(x)dx

∣∣∣∣ | ‖g‖q = 1, g ∈ C∞
0 (Rn)

}

= sup

{∣∣∣∣
∫

Rn

(mf̂)(x)ǧ(x)dx

∣∣∣∣ | ‖g‖q = 1, g ∈ C∞
0 (Rn)

}

= sup

{∣∣∣∣
∫

Rn

m(x)f̂ (x)ĝ(−x)dx
∣∣∣∣ | ‖g‖q = 1, g ∈ C∞

0 (Rn)

}
≤ C ‖f‖p

since C∞
0 (Rn) is dense in Lp(Rn) we have that Tm is bounded and |m|p = ‖Tm‖ ≤ C.

For p > 2 we use the following argument of duality:

‖Tf‖p = sup

{∣∣∣∣
∫

Rn

(Tmf)(x)g(x)dx

∣∣∣∣ | ‖g‖q = 1, g ∈ C∞
0 (Rn)

}

= sup

{∣∣∣∣
∫

Rn

(mf̂)(x)ĝ(x)dx

∣∣∣∣ | ‖g‖q = 1, g ∈ C∞
0 (Rn)

}

= sup

{∣∣∣∣
∫

Rn

(mĝ)(x)f̌ (x)dx

∣∣∣∣ | ‖g‖q = 1, g ∈ C∞
0 (Rn)

}

= sup

{∣∣∣∣
∫

Rn

(Tmg)(x)f (x)dx

∣∣∣∣ | ‖g‖q = 1, g ∈ C∞
0 (Rn)

}

≤ ‖Tmg‖Lq(Rn)

∥∥f
∥∥
p
≤ ‖Tm‖B(Lq(Rn)) ‖f‖p ≤ C ‖f‖p

for every f ∈ C∞
0 (Rn), given that 1 ≤ q ≤ 2 and we saw that m ∈ M(Lp(Rn)), if 1 ≤ p ≤ 2, here

f(x) = f(−x), and we use that
∥∥f
∥∥
p
= ‖f‖p for every f ∈ Lp(Rn).

Again as C∞
0 (Rn) is dense in Lp(Rn) we have that Tm is bounded. This completes the proof. ♦

Corollary 2.1. Let m ∈ M(Lp(Rn)) then:

(a) |m|2 = ‖m‖∞
(b) |m|p = |m|q, 1

p + 1
q = 1

(c) ‖m‖∞ ≤ |m|p for 1 < p <∞.

Proof. Let m ∈ M(Lp(Rn)), the Plancherel Theorem implies that:

‖Tmf‖2 = ‖(Tmf)∧‖2 =
∥∥∥mf̂

∥∥∥
2
≤ ‖m‖∞

∥∥∥f̂
∥∥∥
2
= ‖m‖∞ ‖f‖2

then |m|2 = ‖Tm‖ ≤ ‖m‖∞ take ǫ > 0 arbitrary and A ⊂ {x ∈ Rn | |m(x)| > ‖m‖∞ − ǫ}, A mensu-

rable, since F : L2(Rn) → L2(Rn) is an isometric isomorphism there exists f ∈ L2(Rn) such that

f̂ = Ff = χA, hence:

‖Tmf‖22 = ‖(Tmf)∧‖22 =
∥∥∥mf̂

∥∥∥
2

2
= ‖mχA‖22 =

∫

Rn

|(mχA)(x)|2 dx

=

∫

A

|m(x)|2 dx ≥ (‖m‖∞ − ǫ)2vol(A) = (‖m‖∞ − ǫ)2 ‖χA‖22 = (‖m‖∞ − ǫ)2 ‖f‖22
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then |m|2 = ‖Tm‖ ≥ ‖m‖∞ − ǫ, for every ǫ > 0, so |m|2 ≥ ‖m‖∞, this proves (a). By the previous

argument |m|2 = ‖m‖∞. The previous Theorem implies that if f, g ∈ C∞
0 (Rn),

∣∣∣∣
∫

Rn

m(x)f̂(x)ĝ(−x)dx
∣∣∣∣ ≤ C ‖f‖p ‖g‖q

but f, g ∈ C∞
0 (Rn), we have:

∣∣∣∣
∫

Rn

m(x)ĝ(x)f̂ (−x)dx
∣∣∣∣ =

∣∣∣∣
∫

Rn

m(x)f̂ (x)ĝ(−x)dx
∣∣∣∣ ≤ |m|p

∥∥f
∥∥
p
‖g‖q = |m|p ‖f‖p ‖g‖q

hence |m|q ≤ |m|p, where 1
p+

1
q = 1, interchanging p and q we obtain that |m|p ≤ |m|q, so |m|p = |m|q,

this proves (b). As for every f ∈ C∞
0 (Rn), ‖f‖2 = 1, ‖Tmf‖2 =

∥∥(Tmf)2
∥∥1/2
1

≤ ‖Tmf‖1/2p ‖Tmf‖1/2q ≤
|m|1/2p |m|1/2q = |m|p we have that ‖m‖∞ = |m|2 = ‖Tm‖

B(L2(Rn)) ≤ |m|p, this proves (c).

♦

The set M(Lp(Rn)) can be submerged in B(Lp(Rn)) as prove the following:

Theorem 2.2. M(Lp(Rn)) is isometrically isomorphic to a Banach subalgebra of B(Lp(Rn)).

Proof. Let m1,m2 ∈ M(Lp(Rn)) and α ∈ C then for every f ∈ S(Rn):

Tm1+m2f = ((m1 +m2)f̂)
∨ = (m1f̂ +m2f̂)

∨ = (m1f̂)
∨ + (m2f̂)

∨ = Tm1f + Tm2f = (Tm1 + Tm2)f

Tαm1f = (αm1f̂)
∨ = α(m1f̂)

∨ = αTm1f

Tm1Tm2f = Tm1(Tm2f) = Tm1(m2f̂)
∨ = (m1m2f̂)

∨ = Tm1m2f

as S(Rn) is dense in Lp(Rn) we have that m1 + m2 ∈ M(Lp(Rn)), αm1 ∈ M(Lp(Rn)), m1m2 ∈
M(Lp(Rn)). Let {mj}j∈N

⊂ M(Lp(Rn)) a Cauchy sequence, in the proof of the previous lemma we

saw that ‖m‖∞ ≤ |m|p for every m ∈ M(Lp(Rn)) so {mj}j∈N
⊂ L∞(Rn) is a Cauchy sequence but

this is a Banach space, there exists m ∈ L∞(Rn) such that ‖mj −m‖∞ →j→∞ 0.

Let f ∈ S(Rn), by definition Tmj
f = (mj f̂)

∨, Tmf = (mf̂)∨, as
{
mj f̂

}
j∈N

∪
{
mf̂
}

⊂ L1(Rn) the

dominated convergence Theorem implies that:

(Tmj
f)(x) =

∫

Rn

mj(ξ)f̂ (ξ)e
2πix·ξdξ →j→∞

∫

Rn

m(ξ)f̂(ξ)e2πix·ξdξ = (Tmf)(x)

a.e x ∈ Rn, as {mj}j∈N
⊂ M(Lp(Rn)) is a Cauchy sequence is bounded, let M = supj∈N

|mj |p < ∞,

by the Fatou lemma:

∫

Rn

|(Tmf)(x)|p dx ≤ lim inf
j→∞

∫

Rn

∣∣(Tmj
f)(x)

∣∣p dx = lim inf
j→∞

∥∥Tmj
f
∥∥p
p
≤ lim inf

j→∞
|mj |p ‖f‖pp ≤Mp ‖f‖pp

hence ‖Tmf‖p ≤ M ‖f‖p for every f ∈ S(Rn), but S(Rn) is dense in Lp(Rn), Tm ∈ B(Lp(Rn)), so

m ∈ M(Lp(Rn)).
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We note that the previous argument implies that if {kj}j∈N
⊂ M(Lp(Rn)) and kj(x) →j→∞ k(x) a.e

x ∈ Rn then k ∈ M(Lp(Rn)), moreover:

|k|p ≤ lim inf
j→∞

|kj |p (2.2)

for l ∈ N fixed we define kj := mj −ml then k = m−ml, using the equation (2.2)

|m−ml|p ≤ lim inf
j→∞

|mj −ml|p

as {mj}j∈N
⊂ M(Lp(Rn)) is a Cauchy sequence we have that:

lim sup
l→∞

|m−ml|p ≤ lim
l→∞

lim inf
j→∞

|mj −ml|p = lim
j,l→∞

|mj −ml|p = 0

so |ml −m|p →l→∞ 0, by definitionM(Lp(Rn)) is a Banach algebra, on the other hand Φ : M(Lp(Rn)) →
B(Lp(Rn)), Φ(m) = Tm is an isometric monomorphism, then M(Lp(Rn)) is isometrically isomorphic

to Im(Φ) that is a Banach subalgebra of B(Lp(Rn)). ♦

2.2 Intervals and one dimensional multipliers

Let I = [a, b], we define T̂If = χI f̂ , as M̂cf = τ−cf̂ for every c ∈ R we have:

(McH M−cf)
∧(ξ) = τ−c(H M−cf)

∧(ξ) = τ−c(H (M−cf))
∧(ξ) = τ−c(−isng(ξ)(M−cf)

∧(ξ))

= τ−c(−isng(ξ)τcf̂(ξ)) = −iτ−csng(ξ)τ−cτcf̂(ξ) = −iτ−c(sng(ξ))f̂(ξ) = −isng(ξ − c)f̂(ξ)

then m(ξ) = −isng(ξ − c) is a multiplier on Lp(R) given that Ma is an isometric isomorphism of

Lp(Rn) for every a ∈ Rn and H is bounded by the Riesz Theorem. Note that i
2 ((MaH M−a −

MbH M−b)f)
∧(ξ) = i

2 (−isng(ξ − a) + isng(ξ − b))f̂(ξ) = 1
2 (sng(ξ − a)− sng(ξ − b))f̂(ξ), but a ≤ b

implies that ξ ∈ I, sng(ξ − b) = −1, sng(ξ − a) = 1, if ξ > b then sng(ξ − b) = 1, sng(ξ − a) = 1, if

ξ < a then sng(ξ−b) = −1, sng(ξ−a) = −1 so sng(ξ−b)−sng(ξ−a) = 2χI(ξ) hence
i
2 ((MaH M−a−

MbH M−b)f)
∧(ξ) = χI(ξ)f̂(ξ) = (TIf)

∧(ξ), then (TIf)
∧ = i

2 ((MaH M−a−MbH M−b)f)
∧ so TIf =

i
2 (MaH M−a −MbH M−b)f for every f ∈ S(R), then

TI =
i

2
(MaH M−a −MbH M−b).

We have the proof of the following Theorem:

Theorem 2.3. There exists Cp > 0, 1 < p < ∞ independent of I such that ‖TIf‖p ≤ Cp ‖f‖p, for
every f ∈ Lp(R).

We note that I can be every interval in R, even I unbounded because Ma is an isometry for every

a ∈ R and the previous Theorem gives a constant independent of I, if we take I = [−R,R] then the
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operator of partial sum T[−R,R]f(x) =
∫ R

−R
f̂(ξ)e2πixξdξ is bounded for every R > 0; the previous

Theorem says that the constant Cp > 0 is independent of R > 0, this prove the following:

Corollary 2.2. If f ∈ Lp(R), 1 < p <∞ then lim
R→∞

∥∥T[−R,R]f − f
∥∥
p
= 0.

the proof of the previous Corollary is a particular case of the Corollary 2.3 bellow.

2.3 Higher dimensional extensions

The following Proposition extend a multiplier m ∈ M(Lp(Rn1)) to m ∈ M(Lp(Rn)), with n > n1.

Theorem 2.4. extension Theorem

If m ∈ M(Lp(Rn1)), let n = n1 + n2, m : Rn → R, m(ξ, η) = m(ξ), then m ∈ M(Lp(Rn)), moreover

|m|p ≤ |m|p.

Proof. Let f ∈ S(Rn), ω = (ξ, η), f̂(ω) =
∫
Rn f(t)e

−2πit·ωdt =
∫
Rn f(x, y)e

−2πix·ξ−2πiy·ηdt

=
∫
Rn1

e−2πix·ξ (∫
Rn2

f(x, y)e−2πiy·ηdy
)
dx =

∫
Rn1

e−2πix·ξ(Fn2f)(x, η)dx = Fn1(Fn2f(·, η))(ξ), here
Fk is the Fourier transform acting in dimension k, if z = (x, y) this implies that:

(Tmf)(z) = (mf̂)∨(z) =

∫

Rn

(mf̂)(ω)e2πiz·ωdω =

∫

Rn

m(ω)f̂(ω)e2πiz·ωdω =

∫

Rn

m(ξ)f̂(ω)e2πiz·ωdω

=

∫

Rn1

∫

Rn2

m(ξ)f̂(ω)e2πiz·ωdηdξ =

∫

Rn1

m(ξ)e2πix·ξ
∫

Rn2

f̂(η, ω)e2πiy·ηdηdξ

=

∫

Rn1

m(ξ)e2πix·ξ
∫

Rn2

Fn1(Fn2f(·, η))(ξ)e2πiy·ηdηdξ

=

∫

Rn1

m(ξ)e2πix·ξFn1

(∫

Rn2

Fn2f(·, η)e2πiy·ηdη
)
(ξ)dξ

=

∫

Rn1

m(ξ)e2πix·ξFn1(f(·, y))(ξ)dξ = (Tmf(·, y))(x)

where the penultimate equality is given by the Fourier inversion Theorem, then

‖Tmf‖pLp(Rn) =

∫

Rn

|Tmf(x)|p dx =

∫

Rn2

(∫

Rn1

|Tmf(·, y)(x)|p dx
)
dy

=

∫

Rn2

‖Tmf(·, y)‖pLp(Rn1) dy ≤
∫

Rn2

|m|pp ‖f(·, y)(x)‖
p
p dy

= |m|pp
∫

Rn2

∫

Rn1

|f(x, y)|p dxdy = |m|pp
∫

Rn

|f(x)|p dx = |m|pp ‖f‖
p
p

so ‖Tmf‖Lp(Rn) ≤ |m|p ‖f‖p, Tm is bounded and m is a multiplier, moreover |m|p ≤ |m|p. ♦

Corollary 2.3. If m ∈ M(Lp(R)), let m : Rn → R, m(ξ, η) = m(ξ), then m ∈ M(Lp(Rn)), moreover

|m|p ≤ |m|p.
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Proof. Is a immediate consequence of the Theorem with n1 = 1. ♦

The previous Proposition using the multiplier m = χ(0,∞) implies thatm = χ(0,∞)×Rn−1 is a multiplier

of a half-space, using the Proposition 2.1 we have that χL is a multiplier where L is an arbitrary half-

space, if we take P convex polyhedron of N faces this is the intersection of N half-spaces L1, ..., LN ,

but χP = χL1 ...χLN
using the Theorem 2.1 χP is a multiplier, this prove the following Corollary:

Corollary 2.4. There exists Cp > 0, 1 < p <∞, independent of λ > 0 such that ‖TλP f‖p ≤ Cp ‖f‖p,
for every f ∈ Lp(Rn), where TλP = Φ(χλP ) and λP = {λx ∈ Rn | x ∈ P}.

Proof. As λP is a polyhedron for every λ > 0 we have that χλP is a multiplier, as |χλP |p = |χλP0 |p
with P0 = [−R1, R1] × ... × [−Rn, Rn] a cube with edges parallel to the axis then χλP0(x) =

χ[−λR1,λR1](x1)...χ[−λRn,λRn](xn) = χ[−λR1,λR1](x)...χ[−λRn,λRn](x), then

χλP0 = χ[−λR1,λR1]...χ[−λRn,λRn]

by the Theorem 2.3 we have that there exists Bp > 0 such that
∣∣χ[−λRj ,λRj ]

∣∣
p
≤ Bp for every λ > 0,

j ∈ {1, ..., n} then |χλP |p ≤
∣∣χ[−λR1,λR1]...χ[−λRn,λRn]

∣∣
p
≤
∣∣χ[−λR1,λR1]

∣∣
p
...
∣∣χ[−λRn,λRn]

∣∣
p
≤ Bn

p for

every λ > 0, if we take Cp = Bn
p then |χλP |p ≤ Cp, by definition ‖TλP f‖p ≤ Cp ‖f‖p, for every

f ∈ Lp(Rn), λ > 0. ♦

Corollary 2.5. Let P be a convex polyhedron of Rn that contains the origin. If 1 < p <∞ then

lim
λ→∞

‖TλP f − f‖p = 0,

where TλP = Φ(χλP ).

Proof. We consider F : S(Rn) → S(Rn), as F is a topological isomorphism (i.e homeomorphism that

is linear) the Proposition 1.1 implies that F−1(C∞
0 (Rn)) is dense in S(Rn) in the metric topology.

Let f ∈ F−1(C∞
0 (Rn)) then Ff = f̂ ∈ C∞

0 (Rn). There exists λ0 > 0 such that supp(f̂) ⊂ λ0P then

(χλP f̂)(ξ)e
2πix·ξ = f̂(ξ)e2πix·ξ for every λ > λ0, so that

(TλP f)(x) =

∫

Rn

(χλP f̂)(ξ)e
2πix·ξdξ =

∫

Rn

f̂(ξ)e2πix·ξdξ = f(x)

Let f ∈ Lp(Rn) since S(Rn) is dense in Lp(Rn) there exists {fk}k∈N ⊂ S(Rn) such that lim
k→∞

‖fk − f‖p =

0. Let ǫ > 0 arbitrary and k0 ∈ N such that ‖fk0 − f‖p < ǫ
4(1+Cp)

, since fk0 ∈ S(Rn) there

exists {fk0,l}l∈N ⊂ F−1(C∞
0 (Rn)) such that lim

l→∞
‖fk0,l − fk0‖α,β = 0 for every α, β ∈ Nn, then

lim
l→∞

‖fk0,l − fk0‖p = 0, there exists l0 ∈ N such that ‖fk0,l0 − fk0‖p < ǫ
4(1+Cp)

, since lim
λ→∞

‖TλP fk0,l0 − fk0,l0‖p =

0 there exists λ1 > 0 such that if λ > λ1 then ‖TλP fk0,l0 − fk0,l0‖p < ǫ
2 , using the Corollary 2.4 we
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have:

‖TλP f − f‖p ≤ ‖TλP f − TλP fk0‖p + ‖TλP fk0 − fk0‖p + ‖fk0 − f‖p ≤ ‖TλP f − TλP fk0‖p
+ ‖TλP fk0 − TλP fk0,l0‖p + ‖TλP fk0,l0 − fk0,l0‖p + ‖fk0,l0 − fk0‖p + ‖fk0 − f‖p

= ‖TλP (f − fk0)‖p + ‖TλP (fk0 − fk0,l0)‖p + ‖TλP fk0,l0 − fk0,l0‖p + ‖fk0,l0 − fk0‖p + ‖fk0 − f‖p
≤ Cp ‖fk0 − f‖p + Cp ‖fk0,l0 − fk0‖p + ‖TλP fk0,l0 − fk0,l0‖p + ‖fk0,l0 − fk0‖p + ‖fk0 − f‖p

= (1 + Cp)(‖fk0,l0 − fk0‖p + ‖fk0 − f‖p) + ‖TλP fk0,l0 − fk0,l0‖p < ǫ

if λ > λ1, i.e lim
λ→∞

‖TλP f − f‖p = 0, this completes the proof. ♦

Corollary 2.6. The operator Tcube : L
p(Rn) → Lp(Rn) is bounded for every 1 < p <∞.

2.4 de Leeuw’s Theorem

In this section we prove de Leeuw’s Theorem. The proof given here is due to [1].

Theorem 2.5. (de Leeuw)

Let m ∈ M(Lp(Rn)), n = n1 + n2, then for almost every x ∈ Rn, mx(·) = m(x, ·) ∈ M(Lp(Rn2)) and

|mx|p ≤ |m|p. The restriction is possible in

Ω = {x ∈ Rn1 | (x, y) is a Lebesgue point of m, a.e y ∈ Rn2} .

Proof. Let m ∈ M(Lp(Rn)) by Theorem 2.1 we have that there exists C > 0 such that for every

f∗, g∗ ∈ C∞
0 (Rn),

∣∣∣∣
∫

Rn

m(x)f̂∗(x)ĝ∗(−x)dx
∣∣∣∣ ≤ C ‖f∗‖p ‖g∗‖q

for every x ∈ Ω, we define mx : Rn2 → R, mx(y) = m(x, y) and take f, ϕ ∈ C∞
0 (Rn), g, ψ ∈ C∞

0 (Rn),

then f∗(x, y) = f(x)g(y), g∗(x, y) = ϕ(x)ψ(y) satisfies f∗, g∗ ∈ C∞
0 (Rn), let’s assume first that m is

continuous and define:

I : Rn1 → R, I(x) =

∫

Rn2

m(x, y)ĝ(y)ψ̂(−y)dy

then the Fubini’s Theorem implies that:

∣∣∣∣
∫

Rn1

I(x)f̂ (x)ϕ̂(−x)dx
∣∣∣∣ =

∣∣∣∣
∫

Rn1

(∫

Rn2

m(x, y)ĝ(y)ψ̂(−y)dy
)
f̂(x)ϕ̂(−x)dx

∣∣∣∣

=

∣∣∣∣
∫

Rn

m(ξ)f̂∗(ξ)ĝ∗(−ξ)dx
∣∣∣∣ ≤ |m|p ‖f∗‖p ‖g∗‖q = |m|p ‖f‖Lp(Rn1) ‖g‖Lq(Rn2) ‖ϕ‖Lp(Rn1) ‖ψ‖Lq(Rn2 )

=
(
|m|p ‖g‖Lq(Rn2) ‖ψ‖Lq(Rn2)

)
‖f‖Lp(Rn1) ‖ϕ‖Lp(Rn1 )
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by the Theorem 2.1, I ∈ M(Lp(Rn1)) moreover |I|p ≤ |m|p ‖g‖Lq(Rn2) ‖ψ‖Lq(Rn2).

By the Corolary 2.1:

∣∣∣∣
∫

Rn2

mx(y)ĝ(y)ψ̂(−y)dy
∣∣∣∣ =

∣∣∣∣
∫

Rn2

m(x, y)ĝ(y)ψ̂(−y)dy
∣∣∣∣ = |I(x)| ≤ ‖I‖∞ ≤ |m|p ‖g‖Lp(Rn2) ‖ψ‖Lq(Rn2)

(2.3)

again by the Theorem 2.1 mx ∈ Lp(Rn2), moreover |mx|p ≤ |m|p.

In the general case we eliminate the continuity restriction, if m ∈ L∞(Rn) we have that m ∈ L1
loc(R

n),

in fact if K ⊂ Rn is compact:

∫

K

|m(x)| dx ≤ ‖m‖∞ vol(K) <∞

this implies that almost every x ∈ Rn is a Lebesgue point of m, (see [10] Theorem 19.21), this let us

define:

Ω = {x ∈ Rn1 | (x, y) is a Lebesgue point of m, a.e y ∈ Rn2}

also vol(Rn − Ω) = 0. Let mǫ : R
n → R,mǫ = m ⋆ ǫ−nχ[− ǫ

2 ,
ǫ
2 ]

n , then for every f∗, g∗ ∈ C∞
0 (Rn):

∣∣∣∣
∫

Rn

mǫ(ξ)f̂∗(ξ)ĝ∗(−ξ)dξ
∣∣∣∣ =

∣∣∣∣
∫

Rn

(∫

Rn

m(ξ − η)ǫ−nχ[− ǫ
2 ,

ǫ
2 ]

n(η)dη

)
f̂∗(ξ)ĝ∗(−ξ)dξ

∣∣∣∣

=

∣∣∣∣
∫

Rn

∫

Rn

m(ξ − η)ǫ−nχ[− ǫ
2 ,

ǫ
2 ]

n(η)f̂∗(ξ)ĝ∗(−ξ)dηdξ
∣∣∣∣

=

∣∣∣∣
∫

Rn

∫

Rn

m(ξ − η)ǫ−nχ[− ǫ
2 ,

ǫ
2 ]

n(η)f̂∗(ξ)ĝ∗(−ξ)dξdη
∣∣∣∣

let µ = ξ − η, then ξ = µ+ η the Theorem of change of variables applies to the internal integral:

∣∣∣∣
∫

Rn

mǫ(ξ)f̂∗(ξ)ĝ∗(−ξ)dξ
∣∣∣∣ =

∣∣∣∣
∫

Rn

∫

Rn

m(ξ − η)ǫ−nχ[− ǫ
2 ,

ǫ
2 ]

n(η)f̂∗(ξ)ĝ∗(−ξ)dξdη
∣∣∣∣

=

∣∣∣∣
∫

Rn

∫

Rn

m(µ)ǫ−nχ[− ǫ
2 ,

ǫ
2 ]

n(η)f̂∗(µ+ η)ĝ∗(−µ− η)dµdη

∣∣∣∣

=

∣∣∣∣
∫

Rn

ǫ−nχ[− ǫ
2 ,

ǫ
2 ]

n(η)

∫

Rn

m(µ)f̂∗(µ+ η)ĝ∗(−µ− η)dµdη

∣∣∣∣

=

∣∣∣∣
∫

Rn

ǫ−nχ[− ǫ
2 ,

ǫ
2 ]

n(η)

∫

Rn

m(µ) ̂(Mηf∗)(µ) ̂(M−ηg∗)(−µ)dµdη
∣∣∣∣

≤
∫

Rn

ǫ−nχ[− ǫ
2 ,

ǫ
2 ]

n(η)

∣∣∣∣
∫

Rn

m(µ) ̂(Mηf∗)(µ) ̂(M−ηg∗)(−µ)dµ
∣∣∣∣ dη

≤
∫

Rn

ǫ−nχ[− ǫ
2 ,

ǫ
2 ]

n(η) |m|p ‖Mηf
∗‖p ‖M−ηg

∗‖q dη

= |m|p ‖f∗‖p ‖g∗‖q
∫

Rn

ǫ−nχ[− ǫ
2 ,

ǫ
2 ]

n(η)dη = |m|p ‖f∗‖p ‖g∗‖q

(2.4)

by the Theorem 2.1 mǫ ∈ M(Lp(Rn)), moreover |mǫ|p ≤ |m|p, for every ǫ > 0 >.
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The expression mǫ(ξ) =
∫
Rn m(η)ǫ−nχ[− ǫ

2 ,
ǫ
2 ]

n(ξ − η)dη = 1
ǫn

∫
ξ+[− ǫ

2 ,
ǫ
2 ]

n m(η)dη and the dominated

convergence Theorem implies that mǫ is continuous, if ξ = (x, y) with x ∈ Ω then ξ is a Lebesgue

point for almost every y ∈ Rn2 , then

m(ξ) = lim
ǫ→0

1

ǫn

∫

ξ+[− ǫ
2 ,

ǫ
2 ]

n
m(η)dη = lim

ǫ→0
mǫ(ξ)

in special:

mx(y) = m(x, y) = lim
ǫ→0

mǫ(x, y) = lim
ǫ→0

(mǫ)x(y)

a.e y ∈ Rn2 , since mǫ is continuous we have that mǫ ∈ L1
loc(R

n), the dominated convergence Theorem,

|(mǫ)x|p ≤ |mǫ|p for every ǫ > 0 and > implies that

∣∣∣∣
∫

Rn2

mx(y)ĝ(y)ψ̂(−y)dy
∣∣∣∣ = lim

ǫ→0

∣∣∣∣
∫

Rn2

(mǫ)x(y)ĝ(y)ψ̂(−y)dy
∣∣∣∣ ≤ lim

ǫ→0
|(mǫ)x|p ‖g‖Lp(Rn2) ‖ψ‖Lq(Rn2)

≤ lim
ǫ→0

|mǫ|p ‖g‖Lp(Rn2) ‖ψ‖Lq(Rn2) ≤ |m|p ‖g‖Lp(Rn2) ‖ψ‖Lq(Rn2)

for every g, ψ ∈ C∞
0 (Rn), by the Theorem 2.1 mx ∈ M(Lp(Rn2)), |mx|p ≤ |m|p, this completes the

proof.

♦



CHAPTER 3

Bochner-Riesz multipliers vs. Ball multipliers

In this Chapter we study the Bochner-Riesz multipliers as a class of continuous operator. We know

that the characteristic function of a cube is a multiplier for every value 1 < p < ∞ but this function

is discontinuous in every point of the boundary of the cube, by reasons of correspondence we expect

that the Bochner-Riesz multipliers are multipliers for 1 < p < ∞ but in this chapter we are going to

see that this is false.

3.1 Introduction

Consider the operators (TRf)(x) =
∫
‖ξ‖<R

f̂(ξ)e2πix·ξdξ, f ∈ S(Rn) so that (̂TRf) = χB(0,R)f̂ and

TR : Lp(Rn) → Lp(Rn) is the operator with Fourier multiplier χB(0,R). We would like to know if

lim
R→∞

‖TRf − f‖p = 0, f ∈ Lp(Rn).

By the Corollary 2.2 of the Chapter 2 we know that it is true for n = 1, 1 < p < ∞, for n > 1.

The higher dimensional problem is more difficult for this we consider multipliers more regular that

χB(0,R), for example taking the average between 0 and R of the operators TR, i.e

1

R

∫ R

0

Ttf(x)dx =
1

R

∫ R

0

∫

‖ξ‖≤t

f̂(ξ)e2πix·ξdξdt =
1

R

∫ R

0

∫

Rn

χB(0,t)(ξ)f̂(ξ)e
2πix·ξdξdt

=
1

R

∫

Rn

∫ R

0

χB(0,t)(ξ)f̂(ξ)e
2πix·ξdtdξ =

∫

Rn

(
1

R

∫ R

0

χB(0,t)(ξ)dt

)
f̂(ξ)e2πix·ξdξ
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for f ∈ S(Rn), but by definition

χB(0,t)(ξ) =





1 if t > ‖ξ‖

0 if t ≤ ‖ξ‖

then for ‖ξ‖ ≤ R:

1

R

∫ R

0

χB(0,t)(ξ)dt =
1

R

(∫ ‖ξ‖

0

χB(0,t)(ξ)dt +

∫ R

‖ξ‖
χB(0,t)(ξ)dt

)
=

1

R

∫ R

‖ξ‖
dt = 1− ‖ξ‖

R

for ‖ξ‖ > R ≥ t we have χB(0,t)(ξ) = 0, hence

1

R

∫ R

0

χB(0,t)(ξ)dt =





1− ‖ξ‖
R , if ‖ξ‖ ≤ R

0, if ‖ξ‖ > R

and so
1

R

∫ R

0

Ttf(x)dx =

∫

‖ξ‖≤R

(
1− ‖ξ‖

R

)
f̂(ξ)e2πix·ξdξ

with this we obtain the operators

(̂T δ
Rf)(ξ) =

(
1− ‖ξ‖

R

)δ

+

f̂(ξ)

where A+ = max {A, 0}, let m(ξ) = (1−‖ξ‖)δ+ then m1/R(ξ) =
(
1− ‖ξ‖

R

)δ
+
by the Proposition 2.1 of

the Chapter 2 we know that if m ∈ M(Lp(Rn)) then m1/R ∈ M(Lp(Rn)), moreover
∣∣m1/R

∣∣
p
= |m|p,

this fact allows us consider the case R = 1, that is we want to find the values of 1 ≤ p ≤ ∞ for which

m ∈ M(Lp(Rn)).

Instead of considering the operator T δ
1 we are going to consider the operator

(̂Tδf)(ξ) =
(
1− ‖ξ‖2

)δ
+
f̂(ξ)

for δ > 0 these are the Bochner-Riesz multipliers. Note that

(1− ‖ξ‖2)δ+ = (1 − ‖ξ‖)δ+
[
(1 + ‖ξ‖)δψ1(‖ξ‖)

]
,

(1− ‖ξ‖)δ+ = (1− ‖ξ‖2)δ+
[
(1 + ‖ξ‖)−δψ2(‖ξ‖)

] (3.1)

where ψ1, ψ2 ∈ C∞
0 such that ψ1 |B(0,1)= ψ2 |B(0,1)= 1, now we need the following Theorem due to

Hormander

Theorem 3.1. Let ψ ∈ C∞
0 (Rn) a radial function with supp(ψ) ⊂

{
ξ ∈ Rn | 1

2 ≤ ‖ξ‖ ≤ 2
}

and∑∞
j=−∞

∣∣ψ(2−jξ)
∣∣2 = 1, if m ∈ L∞(Rn), supj∈N

∥∥m(2j ·)ψ
∥∥
Hα(Rn)

< ∞ for some α > n
2 . Then,
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m ∈ M(Lp(Rn)), 1 < p <∞.

and the Corollary

Corollary 3.1. Let m ∈ Ck(Rn − {0}) with k =
[
n
2

]
+ 1 and

sup
R>0

(
1

Rn

∫

R<‖ξ‖<2R

∣∣∂βm(ξ)
∣∣2 dξ

)1/2

≤ CR−|β|, |β| ≤ k

then m ∈ M(Lp(Rn)), 1 < p <∞. In special this condition is satisfied if

∣∣∂βm(ξ)
∣∣ ≤ C ‖ξ‖−β , |β| ≤ k

the proofs of these facts can be found in [2, Pags. 163-164].

Applying the last part of the Corollary to the functions in the inside of the brackets in (3.1) we

have that these functions are Fourier multipliers (it can be seen using the Leibnitz rule and that

ψ1, ψ2 ∈ C∞
0 (Rn)) hence T δ

1 : Lp(Rn) → Lp(Rn) is bounded if and only if Tδ : Lp(Rn) → Lp(Rn) is

bounded.

Since the multipliers ξ → (1 − ‖ξ‖2)δ+ have singularities in Sn−1 we descompose these as the sum

of a convergent series of terms with support in the dyadic anullus Ak = A(1 − 2−k+1, 1 − 2−k−1) ={
ξ ∈ Rn | 1− 2−k+1 < ‖ξ‖ < 1− 2−k−1

}
, note that B(0, 1) =

⋃
k∈N

Ak.

In fact, let {ϕk}k∈N
⊂ C∞

0 (Rn) such that supp(ϕk) ⊂ Ak, 0 ≤ ϕk ≤ 1,
∥∥∂βϕk

∥∥
∞ ≤ Cβ2

(k+1)β for

some Cβ > 0 independent of k,
∑∞

k=1 ϕk(t) = 1 if t ∈
[
1
2 , 1
]
, with this take ϕ0 : [0, 1] → R,

ϕ0(t) =





1−∑∞
k=1 φk(t), if 0 ≤ t ≤ 1

2

0, if t ≥ 1
2

so
∑∞

k=0 ϕk(t) = 1, for every t ∈ [0, 1], hence:

(1− ‖ξ‖2)δ+ =

∞∑

k=0

(1− ‖ξ‖2)δϕk(‖ξ‖)

as ϕk(‖ξ‖) = 0 if ξ 6∈ Ak, also if ξ ∈ Ak, 1 − 2−k+1 < ‖ξ‖ < 1 − 2−k−1, then (1 − 2−k+1)2 < ‖ξ‖2,
1− 22−k + 2−2k+2 < ‖ξ‖2, 1− ‖ξ‖2 < 22−k + 2−2k+2 = 2−k(4 − 22−k).

We define ϕ̃k(‖ξ‖) = 2kδ(1 − ‖ξ‖)δϕk(‖ξ‖), so

(1− ‖ξ‖2)δ+ =

δ∑

k=0

2−kδϕ̃k(‖ξ‖)

then Tδf =
∑∞

k=0 2
−kδTkf , where (Tkf)

∧(ξ) = ϕ̃k(‖ξ‖)f̂(ξ).
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3.2 Norm-boundedness in Lp(Rn) for Bochner-Riesz

operators

Lema 3.1. Let 0 < δ < 1, ϕ ∈ C∞
0 (R) such that supp(ϕ) ⊂ (1 − 4δ, 1 − δ), 0 ≤ ϕ ≤ 1,∥∥∂β(ϕ ◦ ‖·‖)

∥∥
∞ ≤ Cδ−|β|, if T δ = Φ(ϕ ◦ ‖·‖), then for every ǫ > 0,

∥∥T δf
∥∥
p
≤ C(ǫ)δ−(n−1

2 +ǫ)| 2p−1| ‖f‖p .

Proof. Since ϕ ◦ ‖·‖ ∈ C∞
0 (Rn) ⊂ L2(Rn) and F : L2(Rn) → L2(Rn) is an isometric isomorphism

there exists k ∈ L2(Rn) such that ϕ ◦ ‖·‖ = Fk = k̂, take a even positive integer.

By the Plancherel Theorem

‖(1 + ‖·‖a)k‖2 =
∥∥∥((1 + (‖·‖2)a/2)k)∧

∥∥∥
2
=
∥∥∥((IL2(Rn) +M

a/2

‖·‖2)k)
∧
∥∥∥
2

=
∥∥∥(I + (−∆)a/2)ϕ ◦ ‖·‖

∥∥∥
2
≤ ‖ϕ ◦ ‖·‖‖2 +

∥∥∥(−∆)a/2ϕ ◦ ‖·‖
∥∥∥
2

but ‖ϕ ◦ ‖·‖‖22 =
∫
Rn ϕ(‖ξ‖)2dξ ≤ C2

∫
1−4δ<‖ξ‖<1−δ dξ ≤ C2(voln(B(0, 1− δ))− voln(B(0, 1− 4δ)) =

C2ωn((1 − δ)n − (1 − 4δ)n) = 3C2ωnδ
∑n−1

j=0 (1 − δ)j(1 − 4δ)n−1−j = C
2
δ, hence ‖ϕ ◦ ‖·‖‖2 ≤ Cδ1/2,

also (−∆)a/2ϕ ◦ ‖·‖ = (−∑|α|=2 ∂
α)a/2ϕ ◦ ‖·‖ =

∑a
2

j=0

( a
2
j

)
(−∑|α|=2 ∂

α)jϕ ◦ ‖·‖, so

∥∥∥(−∆)a/2ϕ ◦ ‖·‖
∥∥∥
2
=

∥∥∥∥∥∥∥

a
2∑

j=0

(a
2

j

)
−

∑

|α|=2

∂α




j

ϕ ◦ ‖·‖

∥∥∥∥∥∥∥
2

≤
a
2∑

j=0

(a
2

j

)
∥∥∥∥∥∥∥


−

∑

|α|=2

∂α




j

ϕ ◦ ‖·‖

∥∥∥∥∥∥∥
2

≤
a
2∑

j=0

(a
2

j

)
Cδ−2j ‖ϕ ◦ ‖·‖‖2 ≤ 2

a
2Cδ−aCδ1/2 = C1δ

1/2−a

given that 0 ≤ j ≤ a
2 , 0 < δ < 1, implies δa < δ2j , so δ−2j < δ−a, and the known formula∑m

l=0

(
m
l

)
= 2m, hence ‖(1 + ‖·‖a)k‖2 ≤ C2δ

1/2(1 + δ−a) ≤ Cδ1/2−a.

We claim that this fact is true for every a > 0, for s > 1 define θ(t) = (1+t)s

1+ts , t > 0 then θ is

continuous, but lim
t→∞

θ(t) = lim
t→∞

( 1
t
+1)s

1
ts

+1
= 1, so θ is bounded, then there exists M > 0 such that

(1 + t)s ≤ M(1 + ts), take s > 1 such that as is an even positive integer we have (1 + ‖·‖a)s ≤
M(1 + ‖·‖as),
so

1 + ‖·‖a ≤M1/s(1 + ‖·‖as)1/s, and by the Hölder inequality

‖(1 + ‖·‖a)k‖2 ≤M1/s
∥∥∥(1 + ‖·‖as)1/sk

∥∥∥
2
=M1/s

∥∥∥((1 + ‖·‖as)k)1/sk1/s′
∥∥∥
2
=M1/s

∥∥∥((1 + ‖·‖as)k)2/sk2/s′
∥∥∥
1/2

1

≤M1/s
∥∥((1 + ‖·‖as)k)2

∥∥ 1
2s

1

∥∥k2
∥∥ 1

2s′

1
=M1/s ‖(1 + ‖·‖as)k‖1/s2 ‖k‖1/s

′

2
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where 1
s + 1

s′ = 1, but ‖(1 + ‖·‖as)k‖2 ≤ Cδ
1
2−as, ‖k‖2 = ‖ϕ ◦ ‖·‖‖2 ≤ Cδ1/2, hence

‖(1 + ‖·‖a)k‖2 ≤M1/sC
1
2s−aCδ

1
2s′ = C′δ

1
2−a.

If we take a = n
2 + ǫ then

‖k‖1 =
∥∥(1 + ‖·‖a)k(1 + ‖·‖a)−1

∥∥
1
≤ ‖(1 + ‖·‖a)k‖2

∥∥(1 + ‖·‖a)−1
∥∥
2
≤ C′δ

1
2−a

∥∥(1 + ‖·‖a)−1
∥∥
2

the exists M > 0 such that (1 + ‖x‖)a ≤M(1 + ‖x‖a) for every x ∈ Rn, hence

∥∥(1 + ‖·‖a)−1
∥∥2
2
=

∫

Rn

dx

(1 + ‖x‖a)2 ≤
∫

Rn

Mdx

(1 + ‖x‖)2a =Mnωn

∫ ∞

0

rn−1dr

(1 + r)n+2ǫ

≤Mnωn

∫ ∞

0

dr

(1 + r)1+2ǫ
=Mnωn

[
(1 + r)−2ǫ

−2ǫ

]∞

0

=
Mnωn

2ǫ
= C(ǫ)

so ‖k‖1 ≤ C(ǫ)δ−
n−1
2 −ǫ. As T δf = K ⋆ f the Young inequality implies that

∥∥T δf
∥∥
1
= ‖K ⋆ f‖1 ≤ ‖K‖1 ‖f‖1 ≤ C(ǫ)δ−

n−1
2 −ǫ ‖f‖1 and

∥∥T δf
∥∥
∞ = ‖K ⋆ f‖∞ ≤ ‖K‖1 ‖f‖∞ ≤ C(ǫ)δ−

n−1
2 −ǫ ‖f‖∞ .

For p = 2 we have
∥∥T δf

∥∥
2
=
∥∥(T δf)∧

∥∥
2
=
∥∥∥(φ ◦ ‖·‖)f̂

∥∥∥
2
≤ ‖φ ◦ ‖·‖‖∞

∥∥∥f̂
∥∥∥
2
= C ‖f‖2 ≤ C(ǫ) ‖f‖2,

by the Riesz-Thorin interpolation Theorem,

1

p
=

1− θ

1
+
θ

2
= 1− θ

2
=

2− θ

2
, θ ∈ [0, 1] ,

hence θ = 2− 2
p , 1− θ = 2

p − 1, so

∥∥T δf
∥∥
p
≤ (C(ǫ)δ−

n−1
2 −ǫ)1−θC(ǫ)θ ‖f‖p = C(ǫ)δ−(n−1

2 +ǫ)( 2
p
−1) ‖f‖p

for every p ∈ [1, 2], f ∈ Lp(Rn), hence ϕ ◦ ‖·‖ ∈ M(Lp(Rn)), by the Corollary 2.1 we have that

ϕ ◦ ‖·‖ ∈ M(Lq(Rn)) for 1
p + 1

q = 1, moreover |ϕ ◦ ‖·‖|p = |ϕ ◦ ‖·‖|q then

∥∥T δf
∥∥
q
≤ C(ǫ)δ−(n−1

2 +ǫ)( 2
p
−1) ‖f‖q = C(ǫ)δ−(n−1

2 +ǫ)(1− 2
q ) ‖f‖q , 2 ≤ q ≤ ∞.

hence

∥∥T δf
∥∥
p
≤ C(ǫ)δ−(n−1

2 +ǫ)| 2p−1| ‖f‖p , 1 ≤ p ≤ ∞, f ∈ Lp(Rn).

this completes the proof. ♦

Lema 3.2. If m ∈ M(Lp(Rn)), supp(m) is compact, then m̂ ∈ Lp(Rn).

Proof. As F : δ(Rn) → S(Rn) is an topological isomorphism if g ∈ C∞
0 (Rn) ⊂ S(Rn) such that
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g |supp(m)≡ 1, there exists f ∈ S(Rn) such that f̂ = Ff = g, so f ∈ Lp(Rn) given that m ∈
M(Lp(Rn)), we have Tm ∈ B(Lp(Rn)), so Tmf ∈ Lp(Rn), but (Tmf)

∧ = mf̂ = mg = m, hence

m̂ = Tmf ∈ Lp(Rn). ♦

Theorem 3.2. (1) If δ > n−1
2 , Tδ ∈ Lp(Rn),1 ≤ p ≤ ∞.

(2) If 0 < δ ≤ n−1
2 , Tδ ∈ Lp(Rn) if

∣∣∣ 1p − 1
2

∣∣∣ < δ
n−1 , Tδ /∈ Lp(Rn) if

∣∣∣ 1p − 1
2

∣∣∣ > 2δ+1
2n .

The value n−1
2 of δ is called critical index.

Proof. (1) As Tδf =
∑∞

k=0 2
−kδTkf , (Tkf)

∧(ξ) = ϕ̃k(‖ξ‖)f̂(ξ), supp(ϕk) ⊂ (1 − 2−k+1, 1 − 2−k−1),

the Lemma 3.1 implies that

‖Tkf‖p ≤ C(ǫ)2(k+1)( n−1
2 +ǫ)| 2p−1| ‖f‖p

hence ‖Tδf‖p ≤∑∞
k=0 2

−kδ ‖Tkf‖p ≤ C(ǫ)
∑∞

k=0 2
(k+1)(n−1

2 +ǫ)| 2p−1|−kδ ‖f‖p
= C(ǫ)

∑∞
k=0(2

(n−1
2 +ǫ)| 2p−1|−δ)k ‖f‖p.

If δ > n−1
2 then using 0 ≤

∣∣∣ 2p − 1
∣∣∣ = 2

∣∣∣1p − 1
2

∣∣∣ ≤ 2 · 1
2 = 1 and take ǫ =

δ−n−1
2

2 we have δ > n−1
2 + ǫ ≥

(n−1
2 +ǫ)

∣∣∣2p − 1
∣∣∣ hence (n−1

2 +ǫ)
∣∣∣2p − 1

∣∣∣−δ < 0 so
∑∞

k=0(2
(n−1

2 +ǫ)| 2p−1|−δ)k <∞ and Tδ ∈ B(Lp(Rn)).

(2) If 0 < δ ≤ n−1
2 and

∣∣∣ 1p − 1
2

∣∣∣ < δ
n−1 , as ‖Tδf‖p ≤ C(ǫ)

∑∞
k=0 2

k(n−1
2 +ǫ)| 2p−1|−kδ ‖f‖p

= C(ǫ)
∑∞

k=0 2
2k(n−1

2 +ǫ)| 1p− 1
2 |−kδ ‖f‖p = C(ǫ)

∑∞
k=0(2

(n−1+2ǫ)| 1p− 1
2 |−δ)k ‖f‖p

let ǫ0 = δ

| 1p− 1
2 | − (n − 1) > 0 and 0 < ǫ < ǫ0

2 hence (n − 1 + 2ǫ)
∣∣∣ 1p − 1

2

∣∣∣ − δ < 0 this implies that

∑∞
k=0(2

(n−1+2ǫ)| 1p− 1
2 |−δ)k <∞ and Tδ ∈ B(Lp(Rn)).

By the part (3) of the Proposition 1.5 we have that Jµ(t) = O(tµ) if t → 0 and Jµ(t) = O(t
1
2 )

if t → ∞ and the Corollary 1., Φδ : Rn → R, Φδ(t) = (1 − ‖ξ‖2)δ+ implies Φ̂δ(ξ) = π−δΓ(δ +

1) ‖ξ‖−n
2 +δ

Jn
2 +δ(2π ‖ξ‖) then there exists C1,C2 > 0 such that

∣∣Jn
2
+δ(2π ‖ξ‖)

∣∣ ≤ C1 ‖ξ‖
n
2 +δ , if ‖ξ‖ → 0 and

Jn
2 +δ(2π ‖ξ‖) ∼ C2 ‖ξ‖−1/2

, if ‖ξ‖ → ∞

hence
∣∣∣Φ̂δ(ξ)

∣∣∣ ≤ π−δΓ(δ + 1)C1 if ‖ξ‖ → 0 and Φ̂δ(ξ) ∼ π−δΓ(δ + 1)C2 ‖ξ‖−(n+1
2 −δ)

if ‖ξ‖ → ∞.

So Φ̂δ ∈ Lp(Rn) if and only if there exists α > 0 such that ‖·‖−(n+1
2 +δ) ∈ Lp(Rn − B(0, α)), but

∫
‖ξ‖>α ‖ξ‖−(n+1

2 +δ)p
dξ = nωn

∫∞
α r−(n+1

2 +δ)prn−1dr = nωn

∫∞
α r−(n+1

2 +δ)p+n−1dr = nωn

[
rn−(n+1

2
+δ)p

n−( n+1
2 +δ)p

]∞

α

< ∞ for every α > 0 if and only if n − (n+1
2 + δ)p < 0, p > n

n+1
2 +δ

= 2n
n+1+2δ , hence Φ̂δ 6∈ Lp(Rn) if
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p ≤ 2n
n+1+2δ , by the previous Lemma Φδ 6∈ M(Lp(Rn)), by duality Φδ 6∈ M(Lq(Rn)) with 1

p+
1
q = 1, but

1
p ≥ n+1+2δ

2n , 1
q ≤ 1− 1

p ≤ 1− n+1+2δ
2n = n−1−2δ

2n , q ≥ 2n
n−1−2δ , hence Φδ 6∈ M(Lp(Rn)) if 1

p ≤ 1
2 − 1+2δ

2n

or 1
p ≥ 1

2 + 1+2δ
2n so 1

p − 1
2 ≤ − 1+2δ

2n or 1
p − 1

2 ≥ 1+2δ
2n , i.e

∣∣∣ 1p − 1
2

∣∣∣ ≥ 1+2δ
2n . ♦

3.3 A first negative result for ball multipliers

In this section we study the multiplier for the ball i.e. T : Lp(Rn) → Lp(Rn), T̂ f = χB f̂ in dimension

greater than one, here B is the unit ball, the case n = 1 is given by the Corollary 2.5 of the chapter 2

that says that Tcube ∈ B(Lp(Rn)), however, T is essentially different from Tcube as prove the following:

Lema 3.3. T /∈ B(Lp(Rn)) for p /∈
(

2n
n+1 ,

2n
n−1

)
.

Proof. If f = χB then f(x) = f0(‖x‖) with f0 = χ(0,1) using the Proposition 1.5 of the Chapter 1 we

obtain f̂(ξ) = 2π ‖ξ‖1−n
2
∫ 1

0 Jn
2 −1(2π ‖ξ‖ s)s

n
2 ds = ‖ξ‖−n

2 Jn
2
(2π ‖ξ‖), the part (3) of this propostion

implies that there exists C > 0 such that:

∣∣Jn
2
(2π ‖ξ‖)

∣∣ ≤ C ‖ξ‖n
2 if ‖ξ‖ → 0, Jn

2
(2π ‖ξ‖) ∼ ‖ξ‖− 1

2 if ‖ξ‖ → ∞

then
∣∣∣f̂(ξ)

∣∣∣ ≤ 2πC if ‖ξ‖ → 0 and f̂(ξ) ∼ ‖ξ‖−(
n+1
2 ) if ‖ξ‖ → ∞, so f̂ ∈ Lp(Rn)

⇔ (∃α > 0)
(
‖·‖−(

n+1
2 ) ∈ Lp(Rn −B(0, α))

)
, but

∫
‖ξ‖>α

‖ξ‖−(
n+1
2 )p dξ = nωn

∫∞
α
r−(

n+1
2 )p·rn−1dr =

nωn

∫∞
α r−(

n+1
2 )p+n−1dr = nωn

[
r
−(n+1

2 )p+n

−(n+1
2 )p+n

]∞

α

< ∞, for every α > 0 ⇔ −
(
n+1
2

)
p + n ≤ 0 ⇔ p ≤

2n
n+1 , hence f̂ /∈ Lp(Rn) if p < 2n

n+1 , by the Lemma 3, f /∈ M(Lp(Rn)), by the argument of duality

proved in the de Leeuw’s Theorem f /∈ M(Lq(Rn)) with 1
p + 1

q = 1, 1
p >

n+1
2n , 1

q = 1− 1
p < 1− n+1

2n =

n−1
2n , q > 2n

n−1 , so f /∈ M(Lp(Rn)) if p /∈
(

2n
n+1 ,

2n
n−1

)
. ♦



CHAPTER 4

Kakeya sets

In this chapter we define Kakeya sets and present a construction due to I. J. Schoemberg. This
construction is the perfect ingredient to complete the proof of Fefferman’s Theorem.

4.1 Definition and Geometrical motivation

Definition 4.1. A compact set K ⊂ Rn is called a Kakeya or Besicovitch set if

(∀x ∈ Sn−1)(∃y ∈ K)([y, x+ y] ⊂ K),

where [a, b] = {(1− t)a+ tb | t ∈ [0, 1]}, i.e a Kakeya set contains a unit segment in every direction.

The following are simple examples:

• In R2, D
(
0, 12
)
=
{
z ∈ R2 | ‖z‖ ≤ 1

2

}

• In general in Rn, B
(
0, 12
)
=
{
x ∈ Rn | ‖x‖ ≤ 1

2

}
.

• Equilateral triangle of height 1 and area 1√
3
.

• The deltoid or Hypocycloid of Steiner with area π
8 .

In 1917 S. Kakeya posed the problem to find a Kakeya set of minimum area, this problem was solved
by A. Besicovitch in 1927. Surprisingly there exists Kakeya sets with arbitrarily small area. We have
a strong type of Kakeya set that includes a condition of continuity in the rotation:

Definition 4.2. A Kakeya needle set is a Kakeya set K such that

(∃N ⊂ K)(∀θ ∈ [0, 2π])(A(θ)N ⊂ K), A(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
∈ SO2(R)

here N =
(
x1 − 1

2 , x2 +
1
2

)
× {x2}, with x = (x1, x2) ∈ K i.e there exists a unit line segment (needle)

contained in K that can be rotated continuosly 360◦.
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Figure 4.1: the equilateral triangle of height 1 and area 1√
3
is a Kakeya set

Figure 4.2: the deltoid is a Kakeya set
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Figure 4.3: example of Kakeya set that is not Kakeya needle set
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Examples:

• In R2, D
(
0, 12
)
=
{
z ∈ R2 | ‖z‖ ≤ 1

2

}
.

• Equilateral triangle of height 1 and area 1√
3
.

Remark

We see that in fact the Definition 4.2 is stronger than the Definition 4.1. Figure 4.3 show an example
of this, take a AC a unit line segment, let B the midpoint of AC, R a circle with center O and radius 1

4
such that AB is a diameter of R, the blue curve γ is constructed as follows, if we take a point D ∈ ∂R
there exists a unique point E such that B ∈ DE and |DE| = 1, if we vary the point D ∈ ∂R the set
of points E obtained in this way defines this curve, let l be the perpendicular line that contains the
point B, we call G the green region bounded by the line l and γ (included the boundary), note that
by construction K = R ∪ G contains a needle through B in every direction, but the regions R and
G do not contain needle that can be rotate 360◦, as R ∩G = {B} the unique posibility is the needle
AC, but this needle can not be rotated 360◦, then K is a Kakeya set that is not a Kakeya needle set.

The problem for Kakeya needle set is analogous, find a Kakeya needle sets of minimum area. For a
long time was believed that the solution was the deltoid (three-cuspec hypocycloid) with area π

8 (see
figure 4.2), however Besicovitch surprinsingly showed that there exist Kakeya needle sets of arbitrarily
small area. In 1921 J. Pal showed that the solution of this problem in the convex case is given by the
equilateral triangle of area 1√

3
(see figure 4.1).

In the following section we study the construction of Kakeya sets given by I. J. Schoenberg using
sprouts of triangles.

4.2 Sprouting Triangles

Let a, b.c ∈ R2 noncollinear points, suppose that the side ab is the base of the triangle ∆abc and that
height is h. We extend the sides ac and bc to segments aa′ and bb′ such that the triangles ∆aba′,
∆abb′ have the same height h′ > h. Let d = a+b

2 . The triangles ∆′ = ∆ada′ and ∆′′ = ∆bdb′ are
called sprouts from de height h to h′. (See Figure 4.4).

4.3 Sequence of Rectangles and Besicovitch sets

In this section we use the sprouting of triangles for construct an increasing sequence {E(k)}k∈N
of sets

that we call Besicovitch approximation and the union E of this sequence is a Besicovitch or Kakeya
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Figure 4.4: the triangles ∆′ = ∆ada′ and ∆′′ = ∆bdb′ arise as ∆ sprouts from height h
to h′
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set. The following lemma is enough for our final purpose, i.e the proof of the Fefferman’s Theorem.

Lema 4.1. Let η > 0, there exists E ⊂ R2, a sequence of rectangles {Rj}mj=1, and a sequence of sets

{
R̃j

}m

j=1
such that:

(1)Rj ∩Rl = ∅ if j, l are different,

(2)
∣∣∣R̃j
∣∣∣ = 2 |Rj |

(3)
∣∣∣R̃j ∩ E

∣∣∣ ≥ 1
120

∣∣∣R̃j

∣∣∣

(4) |E| ≤ η
∑m

j=1 |Rj |

Proof. As the proof is extremely long we divide it into steps.

• Construction and estimates of Besicovitch sets. Let

∆0 =

{
(x, y) ∈ R2 | 0 ≤ y ≤

√
3

2
,
y√
3
≤ x ≤ 1− y√

3

}

and {hl}l∈N
a increasing sequence of real numbers such that h0 =

√
3
2 =height of ∆0. Sprouting

∆0 from h0 to h1 we obtain two triangles ∆11 and ∆12, again sprouting these triangles from

h1 to h2 we obtain triangles ∆21,∆22,∆23,∆24 continue sprouting in the step k we obtain 2k

triangles ∆kj , 1 ≤ j ≤ 2k, everyone with base 2−k and height hk, we define E(k) =
⋃2k

j=1 ∆kj ,

we claim that |E(k)| ≤ 3
2 , for every k ∈ N.

For prove this claim we use the Figure 4.5, the triangle ∆ABC with base of length AB = b gives

rise to the triangles ∆AMF and ∆BME, we take the difference ∆AMF ∪∆BME−∆ABC =

∆GCE ∪∆HCF and called the triangles ∆GCE and ∆HCF arms and note that |∆GCE| =

|∆HCF |, now we compute the area of each arm. We claim that |∆GCE| = b
2
(h1−h0)

2

2h1−h0
.

We note that the triangles ∆BME and ∆CNE are similar, thus

heigth(∆CNE)

height(∆BME)
=
base(∆CNE)

base(∆BME)
, (4.1)
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Figure 4.5: the triangle ∆ABC with base of length AB = b gives rise to the triangles
∆AMF and ∆BME.
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i.e

h1 − h0
h1

=
NC

b/2
.

We trace the half line parallel to GC that passes by M . It intercepts to the line of equation

y = h0 in an unique point D, then CD = AM = b/2. Since the triangles ∆NGC and ∆MDN

are similar we have that

heigth(∆NGC)

height(∆MDN)
=

base(∆NGC)

base(∆MDN)
(4.2)

i.e

height(∆NGC)

h0
=
NC

ND
=

NC

NC + CD
=

NC

NC + b/2

hence

NC =
b

2

(
h1 − h0
h1

)
, height(∆NGC) =

h0NC

NC + b/2

so NC + b/2 = b
2

(
h1−h0

h1

)
+ b/2 = b

2

(
2h1−h0

h1

)
and height(∆(NGC)) =

b
2

(
h1−h0

h1

)
h0

b
2

(
2h1−h0

h1

) =

(h1−h0)h0

2h1−h0
, hence

|∆GCE| = |∆NGC|+ |∆NEC| = NC · height(∆NGC)
2

+
NC · (h1 − h0)

2

=
b

4

(
h1 − h0
h1

)
(h1 − h0)h0
2h1 − h0

+
b

4

(
h1 − h0
h1

)
(h1 − h0) =

b

4

(h1 − h0)
2

2h1 − h0

h0
h1

+
b

4

(h1 − h0)
2

h1

=
b

4

(h1 − h0)
2

h1

(
h0

2h1 − h0
+ 1

)
=
b

4

(h1 − h0)
2

h1

(
h0 + 2h1 − h0

2h1 − h0

)
=
b

4

(h1 − h0)
2

h1

(
2h1

2h1 − h0

)

=
b

2

(
(h1 − h0)

2

2h1 − h0

)

(4.3)
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To fix ideas we take the sequence

h1 =

√
3

2

(
1 +

1

2

)

h2 =

√
3

2

(
1 +

1

2
+

1

3

)

...

hj =

√
3

2

(
1 +

1

2
+

1

3
+ ...+

1

j + 1

)

we note that E(k − 1) =
⋃2k−1

j=1 ∆k−1,j ⊂ E(k) =
⋃2k

j=1 ∆k,j for every k ∈ N, we de-

note the arms of ∆k,j by ∆1
k−1,j and ∆2

k−1,j called k − arms. This allows us to write

⋃2k

j=1 ∆k,j − ⋃2k−1

j=1 ∆k−1,j =
⋃2

l=1

⋃2k−1

j=1 ∆l
k−1,j , by an application of the equation (4.3) we

have that
∣∣∣∆l

k−1,j

∣∣∣ = 1
2k

(
hj−hj−1

2hj−hj−1

)
for every 1 ≤ j ≤ 2k−1, l ∈ {1, 2}.

We estimate the area of E(k) as the sum of the area of ∆0 and the area of the s − arms

for 1 ≤ s ≤ k, in fact
{
∆l

s−1,j | 1 ≤ j ≤ 2s−1, l ∈ {1, 2}
}

= {s− arms} and E(k) = ∆0 ∪
⋃k

s=1

⋃2s−1

j=1

⋃2
l=1 ∆

l
s−1,j , this implies that:

|E(k)| = |∆0|+
k∑

s=1

2s−1∑

j=1

2∑

l=1

∣∣∆l
sj

∣∣ =
√
3

4
+

k∑

s=1

(hs − hs−1)
2

2hs − hs−1

but 2hs − hs−1 = hs + (hs − hs−1) ≥
√
3
2 and hs − hs−1 =

√
3
2

1
s+1 , so

|E(k)| ≤
√
3

2
+

k∑

s=1

1
(s+1)2

3
4

√
3
2

=

√
3

2
+

√
3

2

k∑

s=1

1

(s+ 1)2
=

√
3

2

k+1∑

s=1

1

s2
≤

√
3

2

∞∑

s=1

1

s2
=

√
3

2

π2

6
<

3

2
.

for every k ∈ N.
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• Construction of the family of rectangles {Rj}j∈N
that satisfies (1), (2), (3) and (4).

Note that the base of each triangle ∆kj , 1 ≤ j ≤ 2k, k ∈ N is an dyadic interval in [0, 1], let

D([0, 1]) =

{
I | I =

[
j

2k
,
j + 1

2k

]
, 0 ≤ j ≤ 2k − 1, k ∈ N

}
= {dyadic intervals on [0, 1]}

S(∆0) =
{
∆kj | 1 ≤ j ≤ 2k, k ∈ N

}
= {sprouts of ∆0}

Figure 4.6: sprouting the triangle ∆0 we obtain a bijection π : S(∆0) → D([0, 1])

then the map π : S(∆0) → D([0, 1]), π(∆kj) =
[

j
2k ,

j+1
2k

]
is surjective, moreover by construction

for every I ∈ D([0, 1]), I =
[

j
2k
, j+1

2k

]
corresponds an only ∆(I) ∈ S(∆0) whose base is I and

the upper vertex belongs to the line y = hk (See figure 4.6), so π is bijective, let P (I) this

vertex, using ∆(I) we are going to construct a rectangle R(I), as in the figure 4.9.

We write Akj =
(

j
2k , 0

)
, Bkj =

(
j+1
2k , 0

)
, then ∆kj = ∆AkjBkjCkj where Ckj = P (∆kj) the up-
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per vertex, we note that max
({

|AkjBkj | | 1 ≤ j ≤ 2k
}
∪
{
|BkjCkj | | 1 ≤ j ≤ 2k

})
= |Ak1Bk1|,

because Ak1Bk1 is a diagonal of a yellow rectangle of the figure 4.7, and the segments AkjBkj

and BkjCkj are contained in this rectangle for 1 ≤ j ≤ 2k−1 but the set E(k) is symmet-

ric with respect to the line with equation x = 1
2 , as |AC| = 1, sin(θ) =

√
3
2 = hk

|Ak1Ck1| , so

|Ak1Ck1| = 2
√
3

3 hk.

As log(k + 1) =
∫ k+1

1
dx
x =

∑k
j=1

∫ j+1

j
dx
x ≥ ∑k

j=1

∫ j+1

j
dx
j+1 =

∑k
j=1

1
j+1 = 1

2 + ... + 1
k+1 we

have 2
√
3

3 hk <
3
2

(
1 + 1

2 + ...+ 1
k+1

)
< 3

2 (1 + log(k + 1)) < 3 log(k + 2) the later inequality is

true because e < 3 and k ≥ 1, implies e(k + 1) < 4(k + 1) < k2 + 4k + 4 = (k + 2)2 and so

1 + log(k + 1) < 2 log(k + 2).

Now we use the figure 4.9 and note that the previous paragraph implies that ∆kj ⊂ R̃kj

because max (|AkjCkj | , |AkjBkj |) < 3 log(k+2) and Bkj or Ckj belongs to the diagonal of the

upper part of R̃kj . Also log(k + 2) =
∫ k+2

1
dx
x =

∑k+1
j=1

∫ j+1

j
dx
x ≤ ∑k+1

j=1

∫ j+1

j
dx
j ≤ ∑k+1

j=1
1
j =

1+ 1
2+...+

1
k+1 = hk, as ∆kj ⊂ E, we have that

∣∣∣R̃kj ∩ E
∣∣∣ ≥ |∆kj | = 1

22
−khk ≥ 2−k−1 log(k+2).

We apply the law of the sines to the triangle ∆AkjBkjDkj , to obtain

|AkjDkj |
sin(≺ AkjBkjDkj)

=
|AkjBkj |

sin(≺ AkjDkjBkj)

|AkjDkj | = 2−k sin(≺ AkjBkjDkj)

sin(≺ AkjDkjBkj)

as sin(≺ AkjDkjBkj) =
AkjCkj

CkjDkj
≥ AkjDkj

CkjDkj
= cos(≺ AkjDkjBkj) we have that

|AkjDkj | ≤
2−k

cos(≺ AkjDkjBkj)

by the law of the cosines applied to the triangle ∆kj and the estimates hk ≤ |AkjCkj | , |BkjCkj | ≤
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2
√
3

3 hk,

cos(≺ AkjCkjBkj) =
|AkjCkj |2 + |BkjCkj |2 − |AkjBkj |2

2 |AkjCkj |BkjCkj ||

≥ h2k + h2k − (2−k)2

2 · 4
3h

2
k

=
2h2k − 2−2k

8
3h

2
k

≥ 3

4
− 3 · 2−2k−2

≥ 3

4
− 3

16
=

9

16
>

1

10

hence |AkjDkj | ≤ 10 · 2−k = 5 · 21−k and

∣∣∣R̃kj ∩ E
∣∣∣ ≥ 2−k−1 log(k + 2) =

5

20
· 21−k log(k + 2)

=
5

60
· 21−k · 3 log(k + 2) =

1

60
|AkjDkj | |AkjQkj | =

1

60
|Rkj | =

1

120

∣∣∣R̃kj

∣∣∣

Figure 4.7: the triangles ∆AkjBkjCkj for 1 ≤ j ≤ 2k−1 are contained in the yellow
rectangle with diagonal Ak1Ck1, this figure represents this for k = 2.

To see (4) we use that |E| ≤ 3
2 , if Dk =

{
I ∈ D([0, 1]) | |I| = 2−k

}
, Rk = {R(I) | I ∈ Dk} we
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Figure 4.8: the set R̃(I) has area the double of the area of the rectangle R(I).

compute a lower bound for |AkjDkj |, by the law of the sines applied to the triangle ∆AkjBkjDkj :

|AkjDkj |
sin(≺ AkjBkjDkj)

=
|AkjBkj |

sin(≺ AkjDkjBkj)

|AkjDkj | = 2−k sin(≺ AkjBkjDkj)

sin(≺ AkjDkjBkj)

so

|AkjDkj | ≥
2−k sin(≺ AkjBkjDkj)

sin(≺ AkjDkjBkj)
≥ 2−k sin

(π
3

)
≥ 2−k 1

2
= 2−k−1

hence |R(I)| = |A(I)D(I)| |A(I)Q(I)| ≥ 2−k−1 × 3 log(k + 2) for every R(I) ∈ Rk. But

Card(Rk) = 2k, hence

∑

I∈Dk

|R(I)| ≥ 2k · 2−k−1 · 3 log(k + 2) =
3

2
log(k + 2).
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Figure 4.9: the rectangle R(I) has area at least 2−k−1 · 3 log(k + 2)
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If k + 2 > e
1
η we have that |E| ≤ 3

2 < η 3
2 log(k + 2) ≤ η

∑
I∈Dk

|R(I)|, to end we see that if I

and J are different then R(I) ∩R(J) = ∅. This is a consequence of the following lemma.

Lema 4.2. Let I1, I2 ∈ Dk, if I1 lies to the left of I2 then P (I2) lies to the left of P (I1).

Proof. We use the notation I1 < I2 if and only if I1 lies to the left of I2, P (I2) < P (I1)

if and only if P (I2) lies to the left of P (I1), the statement of the lemma is I1 < I2 implies

P (I2) < P (I1).

If ∆ ⊂ R2 is a triangle with base in the x-axis and vertices in the points (0, a), (b, 0), (c, d),

a < b then the lines that contains the sides have equations:

Figure 4.10: the region ∆̃ is called the shadow of ∆
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l1 : y = 0

l2 :
x− a

y
=
c− a

d
, x− a =

c− a

d
y, x = a+

c− a

d
y

l3 :
x− b

y
=
c− b

d
, x− b =

c− b

d
y, x = b +

c− b

d
y

we note that as ∆ is a nondegenerate triangle d is nonzero, define

∆̃ =

{
(x, y) ∈ R2 | b+ c− b

d
y ≤ x ≤ a+

c− a

d
y, y ≥ d

}
(4.4)

and called it the shadow of ∆ (See Figure 4.10). Now we have the following claims (α), (β), (γ)

Figure 4.11: representation of the claim (α), If I1 ⊂ I2 then ∆̃(I1) ⊂ ∆̃(I2).
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and the lemma is a direct consequence of this, in fact:

(α) If I1 ⊂ I2 then ∆̃(I1) ⊂ ∆̃(I2).

(β) If I1, I2 are the halves of I, I1 < I2 then ∆̃(I1) ∩ ∆̃(I2) = ∅ and ∆̃(I2) < ∆̃(I1).

(γ) If I1, I2 ∈ Dk, I1 ∩ I2 = ∅, I1 < I2 then ∆̃(I1) ∩ ∆̃(I2) = ∅ and ∆̃(I2) < ∆̃(I1).

– Proof of (α). For this we assume without loss of generality that |I1| = 2−k−1, |I2| = 2−k.

If I2 =
[

j
2k
, j+1

2k

]
for some 0 ≤ j ≤ 2k − 1, we write P (I2) = (a, hk) and call lk1 the line

that passes by P (I2) and
(

j
2k
, 0
)
and lk2 the line that passes by P (I2) and

(
j+1
2k
, 0
)
. We

have:

lk1 :
x− j

2k

y
=
a− j

2k

hk
, x− j

2k
=

(
a− j

2k

)
y

hk
, x =

j

2k
+

(
a− j

2k

)
y

hk

lk2 :
x− j+1

2k

y
=
a− j+1

2k

hk
, x− j + 1

2k
=

(
a− j + 1

2k

)
y

hk
, x =

j + 1

2k
+

(
a− j + 1

2k

)
y

hk

By definition ∆̃(I2) =
{
(x, y) ∈ R2 | y ≥ hk,

j+1
2k +

(
a− j+1

2k

)
y
hk

≤ x ≤ j
2k +

(
a− j

2k

)
y
hk

}
,

in this case I1 =
[

j
2k
, 2j+1
2k+1

]
or I1 =

[
2j+1
2k+1 ,

j+1
2k

]
for the first case we find P (I1) the

point of intersection of the lines lk1 and the line with equation y = hk+1, then P (I1) =

(
j
2k +

(
a− j

2k

) hk+1

hk
, hk+1

)
, with this we find the equation of the line lk4

lk4 :
x− 2j+1

2k+1

y
=

j
2k +

(
a− j

2k

) hk+1

hk
− 2j+1

2k+1

hk+1

x =
2j + 1

2k+1
+

((
a− j

2k

)
hk+1

hk
− 1

2k+1

)
y

hk+1

By definition

∆̃(I1) =
{
(x, y) ∈ R2 | y ≥ hk+1,

2j+1
2k+1 +

((
a− j

2k

) hk+1

hk
− 1

2k+1

)
y

hk+1
≤ x ≤ j

2k +
(
a− j

2k

)
y
hk

}
.

Let (x, y) ∈ ∆̃(I1) then y ≥ hk+1 ≥ hk and

2j + 1

2k+1
+

((
a− j

2k

)
hk+1

hk
− 1

2k+1

)
y

hk+1
≤ x ≤ j

2k
+

(
a− j

2k

)
y

hk
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to see that (x, y) ∈ ∆̃(I2) is enough to prove that

j + 1

2k
+

(
a− j + 1

2k

)
y

hk
≤ 2j + 1

2k+1
+

((
a− j

2k

)
hk+1

hk
− 1

2k+1

)
y

hk+1

=
2j + 1

2k+1
+

(
a− j

2k

)
y

hk
− y

2k+1hk+1
⇔ j + 1

2k
+

(
a− j

2k

)
y

hk
− y

2khk

≤ 2j + 1

2k+1
+

(
a− j

2k

)
y

hk
− y

2k+1hk+1
⇔ 1

2k+1
≤ y

2khk
− y

2k+1hk+1

=
y

2k

(
1

hk
− 1

2hk+1

)
=

y

2k

(
2hk+1 − hk
2hkhk+1

)
⇔ hkhk+1 ≤ (2hk+1 − hk)y

= 2hk+1y − hky ⇔ hkhk+1 + hky ≤ 2hk+1y ⇔ hk(hk+1 + y) ≤ 2hk+1y,

that is clear because y ≥ hk+1 ≥ hk, then ∆̃(I1) ⊂ ∆̃(I2).

For the second case we find P (I1) the point of intersection of the lines l2k and the line

with equation y = hk+1, then P (I1) =
((
a− j+1

2k

) hk+1

hk
, 0
)
, with this we find the equation

of the line lk3

lk3 :
x− 2j+1

2k+1

y
=

j+1
2k

+
(
a− j+1

2k

) hk+1

hk
− 2j+1

2k+1

hk+1

x =
2j + 1

2k+1
+

((
a− j + 1

2k

)
hk+1

hk
+

1

2k+1

)
y

hk+1

By definition

∆̃(I1) =
{
(x, y) ∈ R2 | y ≥ hk+1,

j+1
2k

+
(
a− j+1

2k

)
y
hk

≤ x ≤ 2j+1
2k+1 +

((
a− j+1

2k

) hk+1

hk
+ 1

2k+1

)
y

hk+1

}

Let (x, y) ∈ ∆̃(I1) then y ≥ hk+1 ≥ hk , and

j + 1

2k
+

(
a− j + 1

2k

)
y

hk
≤ x ≤ 2j + 1

2k+1
+

((
a− j + 1

2k

)
hk+1

hk
+

1

2k+1

)
y

hk+1
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to see that (x, y) ∈ ∆̃(I2) is enough to prove that

2j + 1

2k+1
+

((
a− j

2k

)
hk+1

hk
+

1

2k+1

)
y

hk+1
≤ j

2k
+

(
a− j

2k

)
y

hk

⇔ 2j + 1

2k+1
+

y

2k+1hk+1
+

(
a− j

2k

)
y

hk
− y

2khk
≤ j

2k
+

(
a− j

2k

)
y

hk

⇔ 2j + 1

2k+1
− j

2k
≤ y

2khk
− y

2k+1hk+1
⇔ 1

2k+1
≤ y

2k

(
1

hk
− 1

2hk+1

)
=

y

2k

(
2hk+1 − hk
2hkhk+1

)

⇔ hkhk+1 ≤ (2hk+1 − hk)y = 2hk+1y − hky ⇔ hkhk+1 + hky ≤ 2hk+1y ⇔ hk(hk+1 + y) ≤ 2hk+1y

that is clear because y ≥ hk+1 ≥ hk, then ∆̃(I1) ⊂ ∆̃(I2). This completes the proof of

(α).

– Proof of (β). If |I| = 2−k, I =
[

j
2k
, j+1

2k

]
, put I1 =

[
j
2k
, 2j+1
2k+1

]
, I2 =

[
2j+1
2k+1 ,

j+1
2k

]
. By what

we have:

∆̃(I1) =
{
(x, y) ∈ R2 | y ≥ hk+1,

2j+1
2k+1 +

((
a− j

2k

) hk+1

hk
− 1

2k+1

)
y

hk+1
≤ x ≤ j

2k +
(
a− j

2k

)
y
hk

}

∆̃(I2) =
{
(x, y) ∈ R2 | y ≥ hk+1,

j+1
2k +

(
a− j+1

2k

)
y
hk

≤ x ≤ 2j+1
2k+1 +

((
a− j+1

2k

) hk+1

hk
+ 1

2k+1

)
y

hk+1

}
.

So prove (β) is enough to prove that:

2j + 1

2k+1
+

((
a− j + 1

2k

)
hk+1

hk
+

1

2k+1

)
y

hk+1
<

2j + 1

2k+1
+

((
a− j

2k

)
hk+1

hk
− 1

2k+1

)
y

hk+1
.

But this is equivalent to

1

2k+1
+

(
a− j + 1

2k

)
hk+1

hk
<

(
a− j

2k

)
hk+1

hk
− 1

2k+1

⇔ 1

2k+1
+

(
a− j

2k

)
hk+1

hk
− hk+1

2khk
<

(
a− j

2k

)
hk+1

hk
− 1

2k+1

⇔ 1

2k+1
+

1

2k+1
<
hk+1

2khk
⇔ 1

2k
<
hk+1

2khk
⇔ hk < hk+1,

that is true by hypothesis.

– Proof of (γ). Let I1 =
[

j
2k ,

j+1
2k

]
, I2 =

[
l
2k ,

l+1
2k

]
, 0 ≤ j, l ≤ 2k − 1, as I1 ∩ I2 = ∅ and
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I1 < I2 we have j +1 < l, for n ∈ N define S2(n) = {r ∈ N | 2r | n} as 1 = 20 | n we have

that 0 ∈ S2(n) so S2(n) is nonempty, let ν2(n) = maxS2(n) we call ν2(n) the 2-valuation

of n, we can write n = 2ν2(n)t, by the maximality of ν2(n), t is odd.

Let s = max {ν2(n) | j + 1 ≤ n ≤ l}. We claim that there exists an unique n such that

j + 1 ≤ n ≤ l and s = ν2(n), else n1 = 2st1, n2 = 2st2, n1, n2 different we can assume

without loss of generality that n1 < n2 so t1 < t2, but as t1 and t2 are odd there exists

t even such that t1 < t < t2, if t = 2u, m = 2st = 2s+1u then n1 = 2st1 < m =

2st = 2s+1u < 2st2 = n2, so j + 1 ≤ m = 2s+1u ≤ l, that contradicts the maximality

of s because ν2(m) ≥ s + 1 > s, put n = 2st with t odd we define I∗1 =
[

t−1
2k−s ,

t
2k−s

]
,

I∗2 =
[

t
2k−s ,

t+1
2k−s

]
, we claim that I1 ⊂ I∗1 , I2 ⊂ I∗2 , as n ∈ N is the unique such that

j + 1 ≤ n ≤ l, s = ν2(n) we have j < n < l + 1, also 2s(t− 1) ≤ j and 2s(t+ 1) ≥ l + 1,

hence t−1
2k−2 ≤ j

2k
≤ j+1

2k
≤ t

2k−s also t
2k−s ≤ l

2k
≤ l+1

2k
≤ t+1

2k−s , this implies that I1 ⊂ I∗1 ,

I2 ⊂ I∗2 , also I
∗
1 < I∗2 , as t is odd t − 1 is even so t − 1 = 2w, for some w ∈ N, hence

t+1 = 2(w+1), and this implies that: I∗ = I∗1 ∪ I∗2 =
[

t−1
2k−s ,

t+1
2k−s

]
=
[

w
2k−s−1 ,

w+1
2k−s−1

]
so

I∗ is an dyadic interval with |I∗| = 1
2k−s−1 , we note that as l ≤ 2k − 1 and s ≤ k − 1, so

k − s− 1 ≥ 0.

As I∗1 , I
∗
2 are halves of a dyadic interval I∗, I∗1 < I∗2 we apply (α) to obtain ∆̃(I1) ⊂ ∆̃(I∗1 ),

∆̃(I2) ⊂ ∆̃(I∗2 ) and (β) to obtain ∆̃(I1)∩∆̃(I2) ⊂ ∆̃(I∗1 )∩∆̃(I∗2 ) = ∅, also ∆̃(I∗2 ) < ∆̃(I∗1 ),

hence ∆̃(I2) < ∆̃(I1) and ∆̃(I1) ∩ ∆̃(I2) = ∅.

As P (I) ∈ ∆̃(I), if we suppose that I1 < I2 then ∆̃(I2) < ∆̃(I1) in special P (I2) < P (I1), this

completes the proof. ♦

If I1, I2 ∈ Dk, I1 and I2 different suppose without loss of generality that I1 < I2, using the

previous lemma P (I2) < P (I1), (See Figure 4.12). If P (I1) = (a1, hk), P (I2) = (a2, hk) then

a2 < a1, we write I1 =
[

j
2k ,

j+1
2k

]
, I2 =

[
l
2k ,

l+1
2k

]
and use that j + 1 ≤ l, moreover:
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Figure 4.12: If I1 < I2 then P (I2) < P (I1) .

∆̃(I1) =
{
(x, y) ∈ R2 | y ≥ hk,

j+1
2k

+
(
a1 − j+1

2k

)
y
hk

≤ x ≤ j
2k

+
(
a1 − j

2k

)
y
hk

}
and

∆̃(I2) =
{
(x, y) ∈ R2 | y ≥ hk,

l+1
2k +

(
a2 − l+1

2k

)
y
hk

≤ x ≤ l
2k +

(
a2 − l

2k

)
y
hk

}
.

Let [I1] =
{
(x, y) ∈ R2 | y ≤ 0, j

2k +
(
a1 − j

2k

)
y
hk

≤ x ≤ j+1
2k +

(
a1 − j+1

2k

)
y
hk

}
and

[I2] =
{
(x, y) ∈ R2 | y ≤ 0, l

2k
+
(
a2 − l

2k

)
y
hk

≤ x ≤ l+1
2k

+
(
a2 − l+1

2k

)
y
hk

}
we note thatR(I1) ⊂

[I1], R(I2) ⊂ [I2], [I1] ∩ (R× {0}) = I1 × {0}, [I2] ∩ (R× {0}) = I2 × {0}, we claim card([I1] ∩

[I2]) ≤ 1, for see this is enough to prove that j+1
2k +

(
a1 − j+1

2k

)
y
hk

≤ l
2k +

(
a2 − l

2k

)
y
hk

, for

y ≤ 0 but this is equivalent to
(
a1 − j+1

2k

)
y
hk

−
(
a2 − l

2k

)
y
hk

≤ l−j−1
2k , for y ≤ 0 ⇔ (a1−a2) y

hk
+

(
l−j−1

2k

)
y
hk

≤ l−j−1
2k

, y ≤ 0 that is clear because a2 < a1. If [I1] ∩ [I2] = ∅ we are done, if

[I1]∩[I2] is not empty, let (x, y) ∈ [I1]∩[I2] then j+1
2k

+
(
a1 − j+1

2k

)
y
hk

= l
2k
+
(
a2 − l

2k

)
y
hk

, y ≤ 0,

as a1 > a2 and j+1 ≤ l, l− j− 1 ≤ 0, l ≤ j+1, l = j+1, hence (a1− a2)
y
hk

= 0, so y = 0 this

implies that x = l
2k = j+1

2k , then [I1]∩ [I2] =
{(

l
2k , 0

)}
=
{(

j+1
2k , 0

)}
, then card([I1]∩ [I2]) ≤ 1,

as R(I1) ∩ R(I2) ⊂ [I1] ∩ [I2] ⊂ R × {0} we have R(I1) ∩ R(I2) ⊂ [I1] ∩ [I2] ⊂ (I1 ∩ I2) × [0],

if we take for every I ∈ Dk, R(I) with one of the sides contained in the line lj with equation



4.3. Sequence of Rectangles and Besicovitch sets 63

x = j
2k

+
(
aI − j

2k

)
y
hk

, P (I) = (aI , hk), I =
[

j
2k
, j+1

2k

]
, as the slope of lj is different of the

slope of lj+1, 0 ≤ j ≤ 2k − 1, implies that R(I1) ∩R(I2) = ∅ if I1 ∩ I2 is not empty, I1 < I2, if

I1 ∩ I2 = ∅ then R(I1) ∩ R(I2) = ∅ this implies the existence of the families {R(I)}I∈Dk
and

{
R̃(I)

}
I∈Dk

that satisfies (1), (2), (3) and (4).

♦



CHAPTER 5

Fefferman’s Theorem as an application of Kakeya

sets

5.1 Introduction

Let T : Lp(Rn) → Lp(Rn), T̂ f = χB f̂ . The ”disc conjecture” asserts that T ∈ B(Lp(Rn)) for

p ∈
[

2n
n+1 ,

2n
n−1

]
. We saw in Theorem 3.2 that Tδ ∈ B(Lp(Rn)) for every δ > n−1

2 and 1 ≤ p ≤ ∞, but

the Bochner-Riesz operators and the ball multiplier are different because the disc conjecture is false.

This is the statement of the Fefferman’s Theorem that we are going to prove.

Theorem 5.1. Fefferman’s Theorem

If T : Lp(Rn) → Lp(Rn), T̂ f = χB f̂ , then T ∈ B(Lp(Rn)) if and only if p = 2.

5.2 Proof overview

By the Plancherel Theorem T ∈ B(L2(R2)), for every n ≥ 1, this prove sufficiency. We see the

necessity by contradiction. Note that it is enough to show that T /∈ B(Lp(R2)) for p > 2 because de

Leeuw’s Theorem says that T ∈ B(Lp(Rn)) implies T ∈ B(Lp(Rn−1)) and the argument of duality
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T ∈ B(Lp(Rn)) if and only if T ∈ B(Lq(Rn)) for 1
p +

1
q = 1, given that p > 2 if and only if 1 < q < 2.

If T ∈ B(Lp(R2)), p > 2 then the following holds.

Lema 5.1. Y. Meyer

Let {vj}j∈N
⊂ S1, and Hj =

{
x ∈ R2 | x · vj ≥ 0

}
. Define {Tj}j∈N

⊂ L (L2(R2)) by T̂jf = χHj
f̂ .

Then for every sequence {fj}j∈N
⊂ Lp(R2) the following inequality follows:

∥∥∥∥∥∥∥




∞∑

j=1

|Tjfj|2



1
2

∥∥∥∥∥∥∥
p

≤ C

∥∥∥∥∥∥∥




∞∑

j=1

|fj|2



1
2

∥∥∥∥∥∥∥
p

. (5.1)

So to prove the Fefferman’s Theorem it is enough to exhibit a counterexample for this Lemma for

every p > 2, we use the variant of the Kakeya construction given in the previous chapter to achieve

this goal.

5.3 Proof details

Proof of the Meyer’s Lemma

The idea is to replace every operator Tj by an operator associated to the disc, let r > 0, Dr
j = B(rvj , r)

define
{
T r
j

}
j∈N

⊂ L (Lp(R2)), T̂ r
j f = χDr

j
f̂ this allows us say that Dr1

j ⊂ Dr2
j if r1 < r2 and

⋃
r>0D

r
j = Hj , in fact x ∈ Dr

j ⇔ ‖x− rvj‖ < r ⇔ r2 > ‖x− rvj‖2 = ‖x‖2 − 2rx · vj + r2 ⇔ ‖x‖2 <

2rx · vj , this implies that if x ∈ Dr1
j ⇒ ‖x‖2 < 2r1x · vj < 2r2x · vj ⇒ x ∈ Dr2

j .

Also x ∈ ⋃r>0D
r
j ⇒ (∃r > 0)(x ∈ Dr

j ) ⇒ ‖x‖2 < 2rx · vj ⇒ x · vj ≥ 0 ⇒ x ∈ Hj and x ∈ Hj ⇒

x · vj ≥ 0 ⇒ (∃r > 0)(‖x‖2 < 2rx · vj) ⇒ x ∈ Dr
j ⊂ ⋃r>0D

r
j .

With these facts we obtain lim
r→∞

χDr
j
(x) = χHj

(x) for every x ∈ R2, let f ∈ C∞
0 (R2) ⊂ δ(R2)
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Figure 5.1: Dr
j looks much like the half plane Hj for enormous r

then f̂ ∈ δ(R2) ⊂ L2(R2), so T̂ r
j f = χDr

j
f̂ ∈ L2(R2), T̂jf = χHj

f̂ ∈ L2(R2), moreover T̂jf(x) =

χHj
(x)f̂(x) = lim

r→∞
χDr

j
(x)f̂ (x) = lim

r→∞
T̂ r
j f(x), (x ∈ R2), by the dominated convergence Theorem

∥∥T r
j f − Tjf

∥∥
2
=
∥∥∥T̂ r

j f − T̂jf
∥∥∥
2
→r→∞ 0 hence lim

r→∞
T r
j f(x) = Tjf(x) a.e x ∈ R2 as f ∈ δ(R2),

T̂ r
j f = χDr

j
f̂ ∈ δ(R2), T̂jf = χHj

f̂ ∈ δ(R2) we have that T r
j f, Tjf ∈ Lp(R2), 1 ≤ p ≤ ∞ by the

dominated convergence Theorem lim
r→∞

∥∥T r
j f − Tjf

∥∥
p
= 0.

As Hj is a half space of R2 Theorem 2.1 implies that χHj
∈ M(Lp(R2)), as we are assuming that

χD(0,1) ∈ M(Lp(R2)) this implies that χDr
j
∈ M(Lp(R2)), moreover

∣∣∣χDr
j

∣∣∣
p
=
∣∣χD(0,1)

∣∣
p
, for every

r > 0, hence ‖Tjf‖p ≤
∣∣χHj

∣∣
p
‖f‖p,

∥∥T r
j f
∥∥
p
≤
∣∣χD(0,1)

∣∣
p
‖f‖p, for every f ∈ Lp(R2).

If f ∈ Lp(R2) there exists {fl}l∈N
⊂ C∞

0 (R2) such that ‖fl − f‖p →l→∞ 0, let ǫ > 0 arbitrary, there

exists l0 ∈ N such that ‖fl0 − f‖p < ǫ
2(|χHj |p+|χD(0,1)|

p
)
, there exists r0 > 0 such that if r > r0 then

∥∥T r
j fl0 − Tjfl0

∥∥
p
< ǫ

2 , hence

∥∥T r
j f − Tjf

∥∥
p
≤
∥∥T r

j f − T r
j fl0

∥∥
p
+
∥∥T r

j fl0 − Tjfl0
∥∥
p
+‖Tjfl0 − Tjf‖p ≤

∣∣χD(0,1)

∣∣
p
‖f − fl0‖p+

∥∥T r
j fl0 − Tjfl0

∥∥
p
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+
∣∣χHj

∣∣
p
‖fl0 − f‖p <

∣∣χD(0,1)

∣∣
p

ǫ

2(|χHj |p+|χD(0,1)|
p
)
+ ǫ

2 +
∣∣χHj

∣∣
p

ǫ

2(|χHj |p+|χD(0,1)|
p
)
≤ ǫ

2 + ǫ
2 = ǫ,

if r > r0, so lim
r→∞

∥∥T r
j f − Tjf

∥∥
p
= 0, then lim

r→∞
T r
j f(x) = Tjf(x) a.e x ∈ R2.

Let {fj}j∈N
⊂ Lp(R2) then {Tjfj}j∈N

⊂ Lp(R2), so lim
r→∞

(∑m
j=1

∣∣T r
j fj(x)

∣∣2
) 1

2

=
(∑m

j=1 |Tjfj(x)|
2
) 1

2

a.e x ∈ R2, for every m ∈ N, by Fatou’s Lemma:

∥∥∥∥∥∥∥




m∑

j=1

|Tjfj |2



1
2

∥∥∥∥∥∥∥
p

≤ lim inf
r→∞

∥∥∥∥∥∥∥




m∑

j=1

∣∣T r
j fj(x)

∣∣2



1
2

∥∥∥∥∥∥∥
p

this implies to prove (5.1) is enough to prove:

∥∥∥∥∥∥∥




m∑

j=1

∣∣T r
j fj(x)

∣∣2



1
2

∥∥∥∥∥∥∥
p

≤ C

∥∥∥∥∥∥∥




m∑

j=1

|fj |2



1
2

∥∥∥∥∥∥∥
p

with C > 0 independent of r > 0. As T r
j is the operator with multiplier χDr

j
the Theorem 2.1 implies

that
∣∣∣χDr

j

∣∣∣
p
=
∣∣∣χD1

j

∣∣∣
p
, r > 0, this tells us that it is enough to prove the case r = 1. However:

(T 1
j f)(x) =

∫

D1
j

f̂(ξ)e2πix·ξdξ =

∫

‖ξ−vj‖<1

f̂(ξ)e2πix·ξdξ =

∫

‖ξ‖<1

f̂(ξ + vj)e
2πix·(ξ+vj)dξ

= e2πix·vj
∫

‖ξ‖<1

f̂(ξ + vj)e
2πix·ξdξ = e2πix·vj

∫

‖ξ‖<1

(M̂−vjf)(ξ)e
2πix·ξdξ = e2πix·vjT (M−vjf)(x)

= (M−vjT (M−vjf))(x)

as we assume that T ∈ B(Lp(R2)) there exists C > 0 such that ‖Tf‖p ≤ C ‖f‖p, we claim that

∥∥∥∥∥∥∥




m∑

j=1

|Tfj|2



1
2

∥∥∥∥∥∥∥
p

≤ C

∥∥∥∥∥∥∥




m∑

j=1

|fj |2



1
2

∥∥∥∥∥∥∥
p

(5.2)

as we assume p > 2, p
2 > 1, there exists g ∈ L( p

2 )
′

(R2) such that ‖g‖( p
2 )

′ = 1 (here q′ is de dual
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exponent of q) and:

∥∥∥∥∥∥∥




m∑

j=1

|Tfj|2



1
2

∥∥∥∥∥∥∥

2

p

=



∫

R2




m∑

j=1

|Tfj|2



p
2




2
p

=

∥∥∥∥∥∥

m∑

j=1

|Tfj|2
∥∥∥∥∥∥

p
2

=

∫

R2

m∑

j=1

|Tfj|2 g

≤ C2

∫

R2

m∑

j=1

|fj |2 g ≤ C2



∫

R2




m∑

j=1

|fj |2



p
2




2
p (∫

R2

|g|(
p
2 )

′

) 1
(
p
2
)′

≤ C2

∥∥∥∥∥∥∥




m∑

j=1

|fj |2



1
2

∥∥∥∥∥∥∥

2

p

take square roots we obtain (5.2), hence:

∥∥∥∥∥∥∥




m∑

j=1

∣∣T 1fj
∣∣2



1
2

∥∥∥∥∥∥∥
p

=

∥∥∥∥∥∥∥




m∑

j=1

∣∣MvjT (M−vjfj)
∣∣2



1
2

∥∥∥∥∥∥∥
p

=

∥∥∥∥∥∥∥




m∑

j=1

∣∣T (M−vjfj)
∣∣2



1
2

∥∥∥∥∥∥∥
p

≤ C

∥∥∥∥∥∥∥




m∑

j=1

∣∣M−vjfj
∣∣2



1
2

∥∥∥∥∥∥∥
p

= C

∥∥∥∥∥∥∥




m∑

j=1

|fj|2



1
2

∥∥∥∥∥∥∥
p

then ∥∥∥∥∥∥∥




m∑

j=1

|Tjfj |2



1
2

∥∥∥∥∥∥∥
p

≤ C

∥∥∥∥∥∥∥




m∑

j=1

|fj |2



1
2

∥∥∥∥∥∥∥
p

(5.3)

for every m ∈ N, letting m→ ∞ we obtain the proof of the Lemma.

Counterexample to Meyer’s Lemma

Let η > 0, by the Lemma 4.1 there exist a family of rectangles {Rj}2
k

j=1, a family of switches
{
R̃j

}2k

j=1
,

Rj ∩ Rl = ∅ if j, l are different, E ⊂ R2 Besicovitch set such that (1)
∣∣∣R̃j

∣∣∣ = 2 |Rj | , (2)
∣∣∣R̃j ∩E

∣∣∣ ≥

1
10

∣∣∣R̃j

∣∣∣ , (3) |E| ≤ η
∑2k

j=1 |Rj |, take fj = χRj
, 1 ≤ j ≤ 2k, vj ∈ S1 parallel to the longer sides of Rj as

in the figure 5.2.

We remember that Tj : Lp(R2) → Lp(R2), T̂jf = χHj
f̂ , we calculate some integrals that we need

later, for this we use the Laplace transform L {G} (s) = g(s) =
∫∞
0 e−stG(t)dt, and the recognized
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Figure 5.2: Besicovitch construction
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property
∫∞
0

G(t)
t dt =

∫∞
0
g(s)ds, by a simple computation if G(t) = sin(αt) then g(s) = α

s2+α2 , if

G(t) = cos(αt) then g(s) = s
s2+α2 , with this

∫∞
0

sin(αt)
t dt =

∫ α

0
α

s2+a2 ds =
π
2 sgn(α), also

∫ ∞

0

(
cos(αt)− cos(βt)

t

)
dt =

∫ ∞

0

(
s

s2 + α2
− s

s2 + β2

)
=

1

2

[
log(s2 + α2)− log(s2 + α2)

]∞
0

=
1

2

[
log

s2 + α2

s2 + β2

]∞

0

=
1

2

(
0− log

(
α2

β2

))
= −1

2
log

α2

β2

this implies that
∫
R

e−2πix·ξ

x dx =
∫ 0

−∞
e−2πix·ξ

x dx +
∫∞
0

e−2πix·ξ

x dx in the first integral take u = −x,

x = 0 ⇒ u = 0, x → −∞ ⇒ u → ∞, so
∫
R

e−2πix·ξ

x dx =
∫ 0

∞
e2πiu·ξ

(−u) (−du) +
∫∞
0

e−2πix·ξ

x dx =

∫ 0

∞
e2πix·ξ

x dx+
∫∞
0

e−2πix·ξ

x dx = −2i
∫∞
0

sin(xξ)
x dx = −2i

(
π
2 sgn(ξ)

)

= −πisgn(ξ).

Figure 5.3: rectangle with sides parallel to the axis, 0 < a ≤ b < ∞



5.3. Proof details 71

We assume first Rj = [−aj , aj]× [−bj, bj ], 0 < a ≤ b <∞, in this case vj = (0, 1). By definition

(TjχRj
)(x) = (χHj

χ̂Rj
)∨(x) =

∫

R2

χHj
(ξ)χ̂Rj

(ξ)e2πix·ξdξ =

∫

R2

χHj
(ξ)

(∫

R2

χRj
(η)e−2πiξ·ηdη

)
e2πix·ξdξ

=

∫

R2

χH(ξ)

(∫ aj

−aj

∫ bj

−bj

e−2πi(ξ1η1+ξ2η2)dη1dη2

)
e2πix·ξdξ

=

∫ ∞

0

∫

R

(∫ aj

−aj

e−2πiξ1η1dη1

)(∫ bj

−bj

e−2πiξ2η2dη2

)
e2πi(x1ξ1+x2ξ2)dξ1dξ2

=

(∫

R

(∫ aj

−aj

e−2πiξ1η1dη1

)
e2πix1ξ1dξ1

)(∫ ∞

0

(∫ bj

−bj

e−2πiξ2η2dη2

)
e2πix2ξ2dξ2

)

=

(∫

R

̂χ[−aj ,aj ](ξ1)e
2πix1ξ1dξ1

)(∫ ∞

0

[
e−2πiξ2η2

−2πiξ2

]bj

−bj

e2πix2ξ2dξ2

)

= χ[−aj ,aj](x1)

(∫ ∞

0

(
e2πibξ2 − e−2πibξ2

2πiξ2

)
e2πix2ξ2dξ2

)

= χ[−aj ,aj](x1)

(∫ ∞

0

(
e2πi(x2+bj)ξ2 − e2πi(x2−bj)ξ2

2πiξ2

)
dξ2

)

=
χ[−aj ,aj](x1)

2πi

∫ ∞

0

(
cos(2π(x2 + bj)ξ2)− cos(2πi(x2 − bj)ξ2)

ξ2

)
dξ2

+
χ[−aj ,aj ](x1)

2π

∫ ∞

0

(
sin(2πi(x2 + bj)ξ2)− sin(2πi(x2 − bj)ξ2)

ξ2

)
dξ2

=
χ[−aj ,aj](x1)

2πi

(
−1

2
log

(
x2 + bj
x2 − bj

)2

+ i
(π
2
(sgn(x2 + bj)− sgn(x2 − bj)

))

=
χ[−aj ,aj](x1)

2πi

(
− log

∣∣∣∣
x2 + bj
x2 − bj

∣∣∣∣+ πiχ[−bj ,bj ](x2)

)

then
∣∣(TjχRj

)(x1, x2)
∣∣ ≥ 1

2πχ[−aj ,aj ](x1)

∣∣∣log
∣∣∣x2+bj
x2−bj

∣∣∣
∣∣∣, but by definition R̃j = [−aj .aj ]× ([−bj ,−3bj] ∪

[bj , 3bj]) then x ∈ R̃j if and only if |x1| ≤ aj , bj ≤ |x2| ≤ 3bj, we claim that max
{∣∣∣x2+bj

x2−bj

∣∣∣ ,
∣∣∣x2−bj
x2+bj

∣∣∣
}
≥

2 for every x ∈ R̃j , in fact x ∈ R̃j implies bj ≤ |x2| ≤ 3bj if and only if bj ≤ x2 ≤ 3bj or −3bj ≤

x2 ≤ −bj , in the first case
∣∣∣ x2+bj
x2−bj

∣∣∣ = x2+bj
x2−bj

≥ 2 ⇔ x2 + bj ≥ 2x2 − 2bj ⇔ x2 ≤ 3bj that is clear, in

the second case
∣∣∣x2−bj
x2+bj

∣∣∣ = bj−x2

−bj−x2
≥ 2 ⇔ bj − x2 ≥ −2bj − 2x2 ⇔ x2 ≥ −3bj that also is clear, then

x ∈ R̃j implies
∣∣(TjχRj

)(x1, x2)
∣∣ ≥ log 2

2π ≥ 1
10 , hence

∣∣TjχRj

∣∣ ≥ 1
10χR̃j

.

If Rj is a rectangle centered at the origin then Rj = Aj([−a, a] × [−b, b]) with Aj : R2 → R2,

Aj(x1, x2) = x1v
⊥
j + x2vj , v

⊥
j = (−vj2, vj1), if vj = (vj1, vj2), as Aj ∈ O(2) using the proposition 1.2
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and that χRj
= χ[−aj ,aj ]×[−bj ,j ] ◦A−1

j :

Tj(χRj
) =

(
χHj

χ̂[−aj ,aj×[−bj ,bj ]] ◦A−1
j

)∨
=
(
(χHj

◦Aj) ◦A−1
j χ̂[−aj,aj ]×[−bj ,bj ] ◦A−1

j

)∨

=
((
(χHj

◦Aj)χ̂[−aj ,aj]×[−bj ,bj ]

)
◦A−1

j

)∨
=
((
(χHj

◦Aj)χ̂[−aj ,aj ]×[−bj ,bj ]

))∨ ◦A−1
j

=
(
χH0 χ̂[−aj ,aj]×[−bj ,bj ]

)∨ ◦A−1
j = T0χ[−aj ,aj ]×[−bj ,bj ] ◦A−1

j

where H0 =
{
x ∈ R2 | x2 ≥ 0

}
, T̂0f = χH0 f̂ . As x ∈ Rj ⇔ A−1

j x ∈ [−aj , aj] × [−bj, bj] ⇒
∣∣TχRj

(x)
∣∣ =

∣∣(T0χ[−aj ,aj ]×[−bj ,bj])(A
−1
j x)

∣∣ ≥ 1
10χ[−aj ,aj]×[−bj ,bj ](A

−1
j x) = 1

10χR̃j
(x), where R̃j =

Aj([−aj, aj ]× ([−3bj,−bj] ∪ [bj , 3bj])).

The general case is when Rj is a rectangle centered at the point y ∈ R2, for this we suppose that Rj

is a rectangle centered at the origin. If Ry
j = y + Rj then χRy

j
= τ−yχRj

and R̃y
j = y + R̃j implies

χ
R̃y

j

= τ−yχR̃j
then

(TjχRy
j
)(x) =

∫

R2

χHj
(ξ)χ̂Ry

j
(ξ)e2πix·ξdξ =

∫

Hj

χ̂Ry
j
(ξ)e2πix·ξdξ =

∫

Hj

̂τ−yχR̃j
(ξ)e2πix·ξdξ

=

∫

Hj

e−2πiy·ξχ̂Rj
(ξ)e2πix·ξdξ =

∫

Hj

χ̂Rj
(ξ)e2πi(x−y)·ξdξ = (TjχRj

)(x− y) = τ−y(TjχRj
)(x)

as x ∈ Ry
j ⇔ x − y ∈ Rj ⇒

∣∣∣TjχRy
j

∣∣∣ =
∣∣(TjχRj

)(x − y)
∣∣ ≥ 1

10χR̃j
(x − y) = 1

10χR̃y
j

(x). If we write

fj = χRj
where Rj an artitrary rectangle with vj parallel to the longest side of Rj we have that

|(Tjfj)(x)| ≥ 1
10 for every x ∈ R̃j , so

∫

E




2k∑

j=1

|(Tjfj)(x)|2

 dx =

2k∑

j=1

∫

E

|(Tjfj)(x)|2 dx ≥
2k∑

j=1

∫

E∩R̃j

|(Tjfj)(x)|2 dx ≥ 1

100

2k∑

j=1

∣∣∣E ∩ R̃j

∣∣∣

≥ 1

12000

2k∑

j=1

∣∣∣R̃j

∣∣∣ = 1

6000

2k∑

j=1

|Rj |

if the Lemma 5.1 was true, using that p > 2, p
2 > 1, 1

p
2
+ 1

q = 1 ⇔ 2
p + 1

q = 1 ⇔ 1
q = 1 − 2

p = p−2
p ⇔
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q = p
p−2 , we apply the Hölder inequality:

∫

E




2k∑

j=1

|(Tjfj)(x)|2

 dx =

∫

R2

χE(x)




2k∑

j=1

|(Tjfj)(x)|2

 dx

≤
(∫

R2

|χE |q dx
) 1

q



∫

R2




2k∑

j=1

|(Tjfj)(x)|2



p
2

dx




2
p

= |E|
p−2
p

∥∥∥∥∥∥∥




2k∑

j=1

|(Tjfj)(x)|2



1
2

∥∥∥∥∥∥∥

2

p

≤ C2 |E|
p−2
p

∥∥∥∥∥∥∥




2k∑

j=1

|fj(x)|2



1
2

∥∥∥∥∥∥∥

2

p

= C2 |E|
p−2
p



∫

R2




2k∑

j=1

|fj(x)|2



p
2

dx




2
p

as Rj ∩Rl = ∅ if j, l are different,= C2 |E|
p−2
p

(∫

R2

(
χ∪2k

j=1Rj

) p
2

dx

) 2
p

= C2 |E|
p−2
p

(∫

R2

χ∪2k
j=1Rj

dx

) 2
p

= C2 |E|
p−2
p




2k∑

j=1

∫

Rj

dx




2
p

= C2 |E|
p−2
p




2k∑

j=1

|Rj |




2
p

≤ C2η
p−2
p




2k∑

j=1

|Rj |




p−2
p



2k∑

j=1

|Rj |




2
p

= C2η
p−2
p




2k∑

j=1

|Rj |




for 0 < η <
(

1
6000C2

) p
p−2 we have that C2η

p−2
p < 1

6000 hence
∫
E

(∑2k

j=1 |(Tjfj)(x)|
2
)
dx < 1

6000

(∑2k

j=1 |Rj |
)
,

which is a contradiction. This complete the proof.



CHAPTER 6

Conclusions and Additional Results

In this chapter we will see two elementary consequences of Fefferman’s theorem.

Theorem 6.1. If A ∈ GL(Rn) is a self-adjoint operator then χA(B) ∈ M(Lp(Rn)) if and only if

p = 2.

Proof. By definition and the theorem of the change of variables we have that if f ∈ S(Rn):

(TAf)(x) =

∫

A(B)

f̂(ξ)e2πix·ξdξ =

∫

B

(f̂ ◦A)(ξ)e2πix·Aξdξ = |det(A)|
∫

B

f̂(A(ξ))e2πix·Aξdξ

but A is self-adjoint x ·Aξ = Ax · ξ, using change of variables f̂ ◦A = |det(A)|−1 ̂f ◦A−1 then

(TAf)(x) =

∫

Rn

̂f ◦A−1(ξ)e2πix·Aξdξ = T (f ◦A−1)(Ax)

for every x ∈ Rn, where T is the operator associate to χB, then TAf = T (f ◦ A−1) ◦ A, this implies

that ‖TAf‖pp = |det(A)|−1 ∥∥T (f ◦A−1)
∥∥p
p
, so ‖TAf‖p = |det(A)|−

1
p

∥∥T (f ◦A−1)
∥∥
p
. Let p different of

2, as T is not bounded there exists {fj}j∈N
⊂ C∞

0 (Rn) such that ‖fj‖p = 1, ‖Tfj‖p ≥ j, for every

j ∈ N, let gj = |det(A)| 1p fj ◦A, then:

‖gj‖pp = |det(A)|
∫

Rn

|fj(Ax)|p dx = |det(A)|
∫

Rn

|fj(x)|p
∣∣det(A−1)′(x)

∣∣ dx =

∫

Rn

|fj(x)|p dx = ‖fj‖pp = 1

moreover ‖TAf‖p = |det(A)|− 1
p

∥∥T (gj ◦A−1)
∥∥
p
= ‖Tfj‖p ≥ j, so {gj}j∈N

⊂ Lp(Rn), ‖gj‖p = 1,

‖TAfj‖p ≥ j, for every j ∈ N, so TA /∈ B(Lp(Rn)) if p is different of 2, the Plancherel theorem implies
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that TA ∈ B(L2(Rn)), then χA(B) ∈ M(Lp(Rn)) if and only if p = 2. ♦

Corollary 6.1. If a1, ..., an > 0 then χE /∈ M(Lp(Rn)) for p different of 2, where

E =



ξ ∈ Rn

∣∣∣∣∣∣

n∑

j=1

ξ2j
a2j

< 1





is an ellipsoid.

Proof. Take the operator A associate to the matrix A = diag(a1, ..., an) then A ∈ GL(Rn) is self-

adjoint, note that A(B) = E, in fact y = Ax, x ∈ B ⇔ yj = ajxj ,
∑n

j=1 x
2
j < 1, 1 ≤ j ≤ n ⇔

∑n
j=1

y2
j

a2
j

< 1 ⇔ y ∈ E, applying the theorem we complete the proof. ♦

Proposition 6.1. Let C =
{
ξ ∈ Rn+1 | ξ(n) ∈ B

}
the cylinder, n ≥ 2 then χC ∈ M(Lp(Rn+1)) if and

only if p = 2.

Proof. Let TC be the operator associated to χC , then for every f ∈ C0
0 (R

n+1):

(TCf)(x) =

∫

C

f̂(ξ)e2πix·ξdξ =

∫

R

∫

B

f̂(ξ(n), ξn+1)e
2πix(n)·ξ(n)

e2πixn+1ξn+1dξ(n)dξn+1

as χB /∈ M(Lp(Rn)) for p different of 2 there exists {fj}j∈N
⊂ C0

0 (R
n) such that ‖fj‖p = 1, ‖Tfj‖p ≥ j,

for every j ∈ N, we define gj : Rn+1 → R, gj(x
(n), xn+1) = fj(x

(n))χ(0,1)(xn+1) then ‖gj‖pLp(Rn+1) =∫
Rn+1 |gj(x)|p dx =

∫
Rn+1 |fj(x)|p

∣∣χ(0,1)(xn+1)
∣∣p dx =

∫ 1

0
dxn+1

∫
Rn |fj(x)|p dx(n) = ‖fj‖Lp(Rn) = 1,

moreover by the recognized property of the Fourier transform of functions of independent variables

ĝj(ξ
(n), ξn+1) = f̂j(ξ

(n))χ̂(0,1)(ξn+1) then

(TCgj)(x) =

∫

R

∫

B

ĝj(ξ
(n), ξn+1)e

2πix(n)·ξ(n)

e2πixn+1ξn+1dξ(n)dξn+1

=

(∫

R

χ̂(0,1)(ξn+1)e
2πixn+1·ξn+1

dξn+1

)(∫

B

f̂j(ξ
(n))e2πix

(n)·ξ(n)

dξ(n)
)

= χ(0,1)(xn+1)(Tfj)(x
(n))

hence

‖TCgj‖pLp(Rn+1) =

∫

Rn+1

|TCgj(x)|p dx =

∫

Rn+1

∣∣χ(0,1)(xn+1)
∣∣p |(Tfj)(xn)|p dx

=

(∫ 1

0

dxn+1

)(∫

Rn

∣∣∣(Tfj)(x(n))
∣∣∣
p

dx(n)
)

= ‖Tfj‖pLp(Rn)

then {gj}j∈N
⊂ Lp(Rn), ‖gj‖p = 1, ‖TCgj‖ ≥ j, for every j ∈ N, that is TC /∈ B(Lp(Rn+1)) by

definition χC /∈ M(Lp(Rn+1)) for every p different of 2, 1 < p <∞.
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On the other hand we have that χB ∈ M(L2(Rn)), note that χC(x
(n), xn+1) = χB(x

(n)), the theorem

2.4 (extension theorem) implies that χC ∈ M(L2(Rn+1)), this completes the proof. ♦
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