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ABSTRACT. This dissertation presents the Kakeya sets and the relationship with anal-
ysis. The construction discussed is a variant of the one originally given by Besicovitch
which is simple but it is surprising the connection with problems in other areas seem-
ingly unrelated, the Fefferman theorem is treated as a disproof of the disk conjecture,
this is an example of use the Kakeya construction to obtain an analysis result. The
abstract definition of multiplier give us certain important results that we use to study
the Bochner-Riesz multipliers as example of operators with kernel less singular that

the ball multiplier and obtain a critical value for the boundedness of them,



In the class of the figures in which a segment of length 1 can be turned around through 360°, remaining

always within the figure, which one has the smallest area?

The three-cornered hypocycloid inscribed in a circle of diameter 3/2 also belongs to the class ..., thus
if we let one end of the segment describe the hypocycloid while keeping the segment touching the
hypocycloid, we have the other end of the segment also moving on the hypocycloid and so the whole
of the segment remains all the time within the hypocycloyd. The area of the hypocycloid is §. That
is exactly half of the area of a circle of diameter 1. It was conjectured that the hypocycloid was the

figure of minimum area.

My solution shows that the hypocycloid conjecture is false, and that in fact, there are figures of
arbitrarily small area which permit a unit segment to change its direction by 360 while moving

continuously within them.

A. S. BesicoviTcH in The Kakeya Problem.

Let ABC be any triangle of altitude h and area «. Divide its base AB into n equal parts and join
the points of division to the vertex C'. Then the triangle ABC' is divided into n elementary triangles.
Perform an arbitrary translation of each elementary triangle along the side AB (i.e. translation which
leaves the base of an elementary triangle on the line AB). Now the question is, is it possible to choose
the number n and to perform the translations in such a way that the area covered by the elementary

triangles in their new position is as small as we please.

A. S. BESICOVITCH in On Kakeya Problem and a similar one.

Rougly speaking, the idea is as follows. By duality it suffices to consider the case p > 2. Let R be
a large number, and let T be a cilindrical tube in R” with length R and radius v R and oriented in
some direction wy. Let ¥ be a bump function adapted to the tube T, and let T be a shift of T by

2R units in the wr direction. Then a computation shows that

‘Sl (627rin-z¢T(I))| ~1
for all z € T. To exploit this computation, one uses the Besicovitch construction to find a collection
Fefferman’s theorem is an example of how a geometric construction can be used to show the unbound-
edness of various oscillatory integral operators. The point is that while the action of these operators

on general functions is rather complicated, their action on "wave packets” such as e? ™7 Z¢p(z) is

fairly easy to analyze . . .

TERENCE TAO in From Rotating Needles to Stability of Waves: Emerging Conections between
Combinatorics, Analysis, and PDE.
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Introduction

The Fourier transform is an important operator in analysis and PDE because is linear and it allows us
to change differential polynomials by multiplication operators of polynomial functions (in particular
it diagonalizes the laplacian). As a consequence of this if we apply the Fourier transform to certain
linear PDE we obtain linear ODE which are simple. Now the problem is to return to obtain the
solution of the initial PDE, this problem is difficult because the surjectivity of the Fourier transform
depends of the domain of definition, however with a suitable conditions on the space of solutions is

possible to return and thus to solve the PDE.

Define for every R > 0 the operator ST;f = XB(o, R)f, if f is a well behaved function (it is suffices
to take f in the Schwartz space 8(R™), see [7, Chapter 7] for a definition) we have that Spf(x) =
fIIEIISR F(€)e2 ¢ d¢. We are interested to know if ngnoo |Srf — fll, = 0. By the uniform boundedness
principle and a suitable dense subset of LP(R™) we note that it is equivalent to find a constant C), > 0
independent of R such that ||Srfl|, < Cp|/f]l,.- Moreover a simple calculation shows that is enough

consider the case R = 1. In this case the operator Sg is known as the ball multiplier. By definition:
Sif=xsf

here B is the unit ball.

By the Plancherel theorem the answer is affirmative for p = 2 in any dimension n > 1. What about
with the other values of 1 < p < c0?. In one dimension we will see that S; is bounded; however for

n > 2 the answer is surprising as stated the following:

Fefferman’s theorem: The operator S; is not bounded for every n > 2 and p different of 2.

To prove this theorem we begin with a revision of the main topics in Harmonic Analysis and study
certain class of operators that generalize the definition of the Fourier integrals. The characterization
of these operators give us de Leeuw’s theorem and the duality property. Together, they show that
is enough to give the proof of Fefferman’s theorem for dimension 2 and p > 2. At this stage we are

under influence of the plane geometry.

The Kakeya sets are compact sets that contains a unit line segment (needle) in every direction, in



1926 A. S. Besicovitch showed that there exist Kakeya sets of arbitrarily small area. We use the
Schonberg’s construction which is a variant of this to obtain a family of disjoint rectangles and a
family of significant overlapping sets. Quite surprinsingly, this construction will give us a proof of

Fefferman’s result.



CHAPTER 1

Preliminaries in Harmonic Analysis

In this chapter we fix the notation and prove some basic facts about the Fourier transform that we
use in the next chapters. The principal value p.v(%) is treated as a tempered distribution and is used
to define the Hilbert transform. The chapter concludes with an appendix that dicusses properties of
the Bessel functions; the most important of these are the assymtotic properties. The book [7, cap 7]

is a good reference for the results in this chapter.

1.1 The Fourier Transform and its properties

For 1 < p < 0o we define the set LP(R™) = {f : R" = R | [5, |f(2)[" dz < oo} this is a Banach space
with norm || £, = (fy. [£(2)]” dz) """ the space

L*R") ={f:R"=R|(3C>0)(f(z)|<C, ae xzeR™)}

is also a Banach space with the norm || f|| ., = esssup(|f]) =inf {C >0 |f(z)| < C, ae zeR"}
The functions of L!(R™) are called integrable, in this space is possible to define a function f: R™ — R,
given by f(f) = Jgn f(x) exp(—2miz - §)dx, the map taking f to £ is called the Fourier transform and
is denoted by .#. Note that H]?H < ||f|l; this implies that the map % : L'(R") — L*°(R") is

continuous.

The recognized Riemann-Lebesgue lemma says that H£lHim f(f) = 0 and the dominated convergence
—00

theorem give us that fis continuous, this implies that Im (%) C Cy(R™) the set of continuous functions

that vanishes at infinity. However, for our purpose we need that the Fourier transform can be defined

in a dense subset of LP(R") such that the image of .% is contained in this set, for this we define the
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Schwartz class of functions with rapid decrease:
8(R") = {f € C*(R") | pap(f) < o0,a, 3 € N"}

where pa g(f) = sup,epn |2°0° f(2)| and we use the multi-index notation z® = a{'..a%", |o| =
a1+ ...+ ap.

The space S§(R™) is a Frechet space with topology induced by the countable family of seminorms
{Pa,s}, genn and the set of smooth functions with compact support satisfies Cg°(R) C S(R"). The
following result is stronger than this.

Proposition 1.1. The set C5°(R™) is dense on S(R™) with the metric topology given by the family of

seminorms {pa.s}, genn-

Proof. We see that Cg°(R") = $(R™) in the metric topology of §(R"). Let ¢ € C§°(R™) such that

¢(x) = 1, for every x € B(0,1), supp(¢) C B(0,2), if f € 8(R") we define fip(x) = ¢(%)f(x), by the
Leibnitz rule:

o5ie) = ¥ ()@ (1) @@
v<B

- ¥ (O)mea(5) e nw+e(f) @ nw

Y<B,|y1>0

for every 5 € N”, then:

o - s X (0@ ()|l e

v<pin>0 N ko
+[o (3) -1 @ n)@)]

for every x € R", a, € N". We note that fr € C§°(R"), supp(fi) C B(0,2k), also by the mean

value inequality:

‘¢(%)—1‘§‘¢(%)—¢(0)‘§Sup{|\¢’(t)|\|tER”}@§ > ”(b”w@

weN |w|=1

<[ X 6. (;'1')

weN", |w|=1




1.1. The Fourier Transform and its properties 12

for every z € R™. Then

’l’aa'@fk(flf) — xaaﬁf($)’ S Z (ﬁ) kW‘ H¢HO Y Hf”a Y

Y<Bs|vI1>0

B> >

weN™ |w|=1 0EN |0]=|a|+1

for every x € R", hence:

TSRS DI (4 o T

Y<B,|v[>0
1
+r S élo > 1fllg.5 | =k—oc O
weNT |w|=1 0EN™ |0|=|a|+1

then Cg°(R") is dense in S(R") with the topology induced by the family of seminorms {pa,s},, zeyn-

O

The inversion theorem tell us .# : §(R") — §(R™) has period 4, hence .73 = Z~1. (See [7], Pages
182-189). By the theorem of change of variables we have:

fl@)y= [ Fee*=tde

R'Vl
for every f € §(R™).

With this space we have the complete machinery, because §(R"™) C LP(R") for every 1 < p < oo, and

Z : §(R™) — S§(R™) is an topological isomorphism, i.e is a homeomorphism and linear transformation.

As C§°(R™) is dense in LP(R™) we have that S(R™) is dense in LP(R"), letting f, g € S(R™) using the

inversion formula:

[t = [ ([ foema) s

_ / fe ( [ mem-fdx) s~ [ Fomeas

the Parseval formula. If ¢ = f we obtain that

11, = || 7], (1:2)

for every f € $(R™), then .# : §(R™) — $(R™) is an isometric isomorphism with respect to the norm
Il as S(R™) is dense in L?(R™) this map can be extended uniquely to a map ¥ : L*(R™) — L*(R"™),
obviously this map is an isometric isomorphism and is called the Fourier-Plancherel transform, in this

v
thesis we continue using the notation .%,.# ! and f, f for f € L*(R") instead of ¥, =1 and ¥(f),
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U—L(f) respectively..

By a simple argument of density the formula (1.2) is true for every f € L?(R"™). This is called the

Plancherel theorem, using the polarization identity we obtain

~

(fs g>L2(]R" =(f,9)r> ®r), Vf, g€ L2(Rn)- (1.3)

That is precisely the Parseval formula.

In the following theorem we summarize some properties of the Fourier transform in

8
Proposition 1.2. If f € §(R"), a € R", A >0, 0, A e O( ) we deﬁne i) = f

Az), using the

notations My (x) = ™% 1, f(z) = f(x +a): M, f =71 of f)\ (f)x, foA=foA.

Proof. Let a € R™, then M, f(£) = Jon Ma(2) f(x)e 2@ 8dy = [L, f(x)e 2o E-)dy = fle—a) =
(T-a D))

Let A > 0, then fA = [e(N@e 2 o8de = [, f(Az)e ™ 8dy =[5, f(y)ef%”%'fi—‘z =
3 Jan F)e2m 3 dy = %f(%) = (N3

Let A € O(n), by definition of Fourier transform f(A¢) = Jgn f(2) exp(—2miz - (AE))dx,

but A € O(n) 1mphes that 2 - AL =< 2, AL >=< A*z, & >=< A7 'n, & >= (A7 1a) - &, so

fo A& = = [gn f(x) exp(—2mi(A~ 2 ) §)dx =[5, f(Ay) exp(—2miy - §)

| det(A) | dy = f]R" (Ay) exp(—2miy - {)dy = f o foA. For all & € R” this completes the proof. O

The elements of the topological dual space §(R)" = {T": §(R) — C | T is linear and continuous} are
called tempered distributions. It is easy to see that 7' € §(R)’ if and only if there exists C > 0, N € N
such that:

T@)|<C Y pap(d), VoeSR).

lal,|B|<N

We define the convolution of two functions f,g € 8(R) by (f * g)(z) = [z, [(y)g(z — y)dy. We also
define the convolution of a tempered distribution T' € §(R)”" and a function f € $(R) as the distribution
(T * f)(¢) = T(f * ¢), here f(z) = f(—z). We conclude the section with a powerful interpolation
theorem

Theorem 1.1. Consider a linear operator T, which maps the measure space (X, p) to the measure

space (Y,v). Suppose that po, qo,p1,q1 € [1,00] and

p po P ¢ @ @

1 1-—t t 1 1—-t t
— + —

fort € (0,1). If gqo = g1 = oo, we further suppose that v is semifinite. If T maps LP°(u)+ LP*(u) into

Lo (v) 4+ L% (v) and we have ||Tf|\q0 < M, ||f||p0 for f € LPo and ||Tf||q1 < M, ||f||p1 for f e LP

for constants My, My > 0. Then T is bounded on LP and furthermore, ||Tf||q < M&ftMlt Hf||p for

felrLr.
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The proof of this theorem can be found in [J, Pags. 52-53].

1.2 Principal Values

Sometimes we have a family of integrable functions {Q:},., such that Q(z) = tl_i}r& Q+(x) is not
locally integrable, so we can not define neither the convolution with a regular function nor its Fourier
transform. This problem can be solved using principal values. For our purposes we consider the
special case when Q(z) = W and Q(z) = -L, for = nonzero, that is not locally integrable (take
[0, 1] which is compact). This motivates the following definition:

Definition 1.1. We define p.v(1) : $(R) = R, p.v(2)(p) = lim f\r\>é plz)de

e—o x

We obtain an alternative expression for p.v(1), take € > 0:

x

/ p(x)dx _ /’E o(x)dx n /°° (p(:z:)d:z:’
o> T e T . x

let v = —x in the first integral, then:

/| | p(x)dx /6 p(-wdu /°° p(z)dr /00 (p(@) — p(—a))de

X (7 X

oo

as
L 9@) = e(=2)
z—0 x z—0 x x—0 x

there exist lir% [ @) =e(=z)de 1 ance:
e—

note that p.v(1) is linear, also

po (L) 0] = | [ Hme < /

1 xT o0 1 o

1 _ 1 9

= / _ / (pl(t)dt d:Z? +/ M S / —(217) H@HQ 1 dx +/ Hsﬁymdx
o & —x 1 0o T 5 1 T

x
1 e
1 1
=2 ”‘PHo,l/(; dx+2 ”‘PHLQ/; 2 2 H‘P”o,f"z el .0 [_E] = 2([|¢| 0,1+||<P| 1,0) =2 Z ”‘P”a,ﬁ
1
o], | B]<1

olz) — ol—2) "

wi [ }w(:r) )

then p.v(2) is continuous, this implies that p.v(L) € S(R)’ is a tempered distribution, if ¢¢(z) =

x

L X{jz|>¢} then 1. define tempered distributions for every e > 0, moreover lim+ Ye = po(2) in $(RY,
e—0
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in fact:

o (3) (0 - 0el0)| =

oy . 1 1\ -
Proposition 1.3. tLlI(I)lJr Qi = p-v(5) in S(R)

/6 pla) — (=) .
0 z

< 2[lollo. / 0 = 2 gl 1 —esor 0

Proof. As lirél+ ¥e = p.v(2) we have that if ¢ € §(R):
e—

Jim (Qt - %p-v G)) (p) = lim (Qt(so) - %p-v G) (s@))

Il
3
I=
3B
/N
—
A
8,
+
~+
NJ
v
7N
&
()
_|_
~
(™)
HI)—‘
N—————
5
=
IS
8
N———

I
3=
=
<
7N
—
A
8,
+
~+
NJ
i\
v
&
s
(v}
_|_
~
I\D
N———

let u =  then:

. 1 1 1 up(tu) p(tu)
t1—1>%1+ (Qt B ;p.v (E)) (¥) = T t1—1>I(§l+ </u|<1 u? +1 du+ /u>1 u(u? + l)du>

as ¢ € §(R) the functions (u — “ﬁ(ﬁ)) € LY(R) and (u — u@(;i)l)) € L'(R) for every t > 0, by the

dominated convergence theorem:

A (Qt - %p'v (3) =7 </|u<1 Z i)ld i /|u>1 %d‘b) -0

given that the functions u — 5 and u — m are odd functions and the sets {u € R | |u| < 1},

{u € R| |u| > 1} are symmetric with respect the origin. O

1.3 Harmonic extensions and the Hilbert transform

In this section we study the harmonic extension of a function f € $(R) to the upper half-plane and use
this to define the Hilbert transform .7 and prove the Riesz Theorem that asserts that ¢ € Z(LP(R))
for 1 < p < oo. By abuse of notation we identify the vector (z,t) € R? with the complex number
z =+ it.
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1.3.1 Harmonic extensions

Let f € 8(R). The harmonic extension of f to H = {z € C | Im(z) > 0} is given by u(z) = P, = f(z)
where z = x +it and P;(z) = m
f = 0 take the functions uq = 0, ua(z,y) = y, however the extension that we use is the given by the

is the Poisson kernel. (Note that this extension is not unique if

Poisson kernel). We are going to prove that in fact, u is harmonic in H. As P, € L'(R) for every ¢t > 0
we take the Fourier transform in the x variable 1%(5) = e~ 2m¢l basic properties of the exponential

function proves that ﬁt € L*(R) for every t > 0. Using inverse Fourier transform:

o~

u(z) = P+ f(z) = (Bf)V(z) = / By () fle)e* ¢ de

/ —27rt|£\f 27rzw£d€ / 27rt£f é-) 271'm£d§ +/ —Qﬂ'tff/\(é')e%fiiﬂﬁdé' (14)

/ €)emi= g +/ f )e2miZE e

If we define iv(z) = [5° F(€)e2m#ede — [°_ f(€)e 27 d¢ and F = u+ iv, F(z) = [ F(£)e¥™*¢d¢ is
holomorphic, in fact if A C H is a triangle

[ = [ [T Reenstaci = [ [ foerua

(Fubini’s theorem because f € $(R) and so f € S(R) )

- /0 "o /A €2 ddg = 0

the last step followed from the fact the function z € H + €>%*¢ is holomorphic for every & € (0, 00).
Morera’s theorem implies that F' is holomorphic. Clearly u is real. Note that v is also real, in fact:

9] 0 [e'e]
_ Pl p2mizé JE 206 p—2miZE JE (e p2mizg
9= | Foemcae= [ fieesmmac = [ Foea

0 o - o |
_L f(€)€72m?§d§: | f(_g)ef%rzzfdg_'_/i f(_g)ef%rzzgdg

on every integral let w = —¢& on each integral.

o~

W= [ Fwper ) - / Py (—dw)
/ Frupe=i=vau - [ flu)er=vin = ~inz)

hence —iv(z) = —iv(z), so v(z) = v(z) and v is real. Therefore u and v are real and F = u + iv is

holomorphic we have that v and v are harmonic.
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We will need an alternative expresion for v:
o0 -~ . 0 ~ _ o0 Y ) 0 =R )
— / f(§)62mZEd§ _ / f(€)627”Z£d§ — / f(g)e%rmgf%rtgdg _ / f(§)€2ﬂsz+2ﬂtfd§
/ 72ﬁt‘5‘f 2mx£d§ / 727rt|5\f(€) 2mz£d€ / sng 2wt\£\f(§)€2ﬂ-ix§d§
0

0
+ / sng 27rt\§|f(§) 2ﬂzx§d§ / sng 27rt\§|f/\(§)627rix§d§

oo

where sgn is the sign function, hence v(z) = [ —isng(&)e2tEl £(£)e2miE d¢ moreover
oest) = [ —isngl@eme [ aetrinanernia = [ [ isngleemm e nnsanag
/ / —isng(& 27rt\£|f( Je 2mi(z— ’7)5d77d§ / f(n (/ —isng(&)e Qﬂt|£|62ﬂi(rn)£d§) d
Let Qu(z) = [, —isng(€)e2mHEl 2w g¢  Then
oet) = [ FQue = i = @i (o)

Note that Q4(z) = [~ —isng(&)e 2"t kle?mi@eq¢ = (—isng(&)e=2"t)V (2), by the Fourier s inversion

Theorem we have @({) = —isgn(£)e= 2™l but we can to find an explicit expression:

00 0 0o
Qt(x) _ / _isng(é-)e—%rﬂf\e%riwfdé- _ / ie2ﬂ't£+2ﬂ'i;ﬂ£d§ +/ _ie—27rt£+27riw£d§

—o00 0

0 ‘ oo . 2 (t+iz) 19 2 (im—t) 7
_ Z/ e27r£(t+m)d€ _ Z/ e27r£(zac—t)d€ — |:6 ' :| i |: e ' :|
o 0 27(t +ix) | _ 2m(ix —t) |,

- v n 1 i 1 n 1 i (i —t+ttir) x
C2n(t+ix)  2n(iz—t) 27 \t4ix dix—t) 2 —x2 —t? oz +12)

as Py(z) +1iQu(z) = F(m2t+t2) + ﬂ(miﬁrtz) = W(;§ﬂ2) = Fi((;z_iz) = w(mi—it) = - is holomorphic in H we

have that Q; is the conjugate Poisson kernel.

As consequence of the proposition 1.3
tim, Qo+ f(2) = —po () (@)
t—0+ K n 7Tp'

we see that:

pv <1> )= 1m [ L8P,

T e—0Tt |z >e T



1.3. Harmonic extensions and the Hilbert transform 18

in fact, for every ¢ € §(R):

R Ly

= lim </ >dx— lim / /f dydx
=0t Jig|se & €=0F Jjz|>e

lim // ()dxdy—/go() hm/ de dy

e—0t lz|>e x R e=0" Jiz|>e T

then )
pul=]*f)(y)= lim de,
T =0 Jiz|>e x
hence
lim @ * f(z) = — lim f(x_y)dy.
T e—0t ly|>e Yy

By the continuity of .Z : §(R)" — §(R)" we have

Gp.v (1>) (©) = im @u(6) = lim —isng(€)e>™] = —isng(¢)

X

1.3.2 Hilbert Transform
Definition 1.2. Hilbert Transform

We define by any one of the following equivalent expressions 7 : §(R) — S(R),

%f: lim Qt*fa
t—0+

%f=1pv( ) /.

~

(A f)" (&) = —isgn(§)f(§)

the third equation and the Plancherel theorem allows us extend the definition to L?(R) and see that
|2 flly = HJ?HQ = |If|l,, for f € L*(R). Moreover if f € 8(R):

o~

H(HF)(€) = (—isng()(A )" ()" = ((—isng(€))* F(£)" = ~f(€) (1.5)

for every £ € R, S (°f) = —f, and if f is real then u and v are real functions, in the above notation
u(x,t) = Py x f(x), v(x,t) = Q¢ * f(x) in particular S f(x) = %ir%v(:zr, t), then the Hilbert transform
—
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of a real function is real, using the Parseval identity:

~

/R HF(E)g(E)dE = (AT, g)12m) = (T 5oy = (—isng(€) ) 1oe
(1.6)

o~

= (F—isgn(©F) e = —(f A G) oz = — /R 1(6) 7 9(6)de

The following theorem will be useful in the chapter 2:

Theorem 1.2. (Riesz)
H : LP(R) — LP(R) is bounded for every 1 < p < oo, i.e there exists Cp, > 0 such that

12 fll, < Coll £,

for every f € LP(R)

Proof. If we have F': H — C, F = u + v holomorphic and f € 8(R), f(z) = u(x,0) then Jf(x) =
v(z,0) this implies that F(z,0) = f(x)+is2 f(z) then applying this to F? = (u? —v?) + 2iuv we have
that H(f? — (Hf)?) = 2fH f applying H and using (1.5) we have —f? + (' f)? = 2¢(f 3 f), so

(Hf) = f*+2(fAf) (1.7)
now we have the following result
@ if [ fll, < Cpllfll,, VS € S(R) then [ f[|,, < (2Cp + 1) [[fllz,, Vf € S(R).

In fact, [\ f (3, = (12|, < || £2]l,, + 212 (FAf)ll, < || £2[l,, +2C, | £ £l but | 2], =
L2 DPI < 121 I P = (2013 % P53 = 1flly, 15 |15y, then

1 £ 115, < I£ll5, + 2Cp | fllo, 192 £l -

We have two posibilities:

# 18 (|7 fllyp < |l then 1 f|l5, < I£Il5, + 2Cy [If1l5, = (2C, + 1) [ £]5,
< (20, + 12 || fl3, 50 152 £l < (2C + 1) | £y

# If || flly, < I17F]lyy, then | 2FIl5, < [1£15, + 2Cp | £llap 192 £ll5, < (2Cp + 1) || £lla, 172 F Lo, 50
1 fllyy, < (2C, + 1) [|fl,.

this complete the proof of ®. By induction we prove that for every k > 1, || f||o. < (28 —1) || f||,x for
k = 1 is obvious because 7 is and isometric isomorphism, suppose that this is true for k, for k + 1
using ®: || f|lgper < (228 = 1) + 1) || fllger = (2871 — 1) || fllg5+1. The Riesz-Thorin theorem (See

[8]) applied to || f]ly, = ||f|ly and | f|lox < (28 — 1) || f||,» implies that # is bounded in LP(R™)

for all p € [2,2*] for every k > 1 therefore ## is bounded in LP(R™) for every p € [2,00).
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For 1 < p < 2 we use the following argument of duality given that the conjugate exponent satisfies
q > 2, by (1.6):

s, = sup{' [ f@atayda| gl < 1} - sup{] | f@g(ayas| gl < 1}

< 71, 5w {17291, | 1 91l < 1} < €471,

(1.8)

then [[JZf, < Cp || fll,, for every f € S(R), 1 < p < oo, but 8(R) is dense in LP(R) so [|Zf]], <
Cyp [If1, for every f € LP(R), this complete the proof. O

1.4 Other important estimates

This section compiles some technical results which we will use later. It may be skipped on a first
reading.
1.4.1 Approximation of the norm ||| 1, g

Proposition 1.4. For every f € LP(R"), | f[l, = sup{| [z f(@)g(z)dz| | lgll, = 1,9 € C°(R™)},

1 1 _
lyl=1

Proof. In fact, by the Holder inequality:

f(@)g(x)dx
R

< [ 1f@llgta)lde < 111, lol,

for every g € C§°(R™), so

c=sw{| [ sty

lgll, = 1g € 03°<R”>} <71,

note that if f = 0 we have the inequality immediately, if f is nonzero let £ = {z € R™ | f(x) = 0},
as%—l—%:lwehavegfp—lso

as f is mensurable E is mensurable, define g = P =

LfF1”
FAF,+xm)P=t0
p= (p—1)q, also as f is mensurable g is mensurable, moreover

v [ U@Pde [ @l [P de
/n'g‘f"d /Rn<|f|p+xE>p /E TR / .

so g € LY(R"), [|g]|, = 1, moreover:

- @) de
» (T, + xe@)P?

F@)g(a)dr [ BB [ ir@r =,

-1 —1
115 11

R
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as g € LY(R™) there exists {gx }ren C C5°(R™), such that klirn llgr. — gll,, = 0 in particular there exists
— 00

{91, }1en subsequence of {gr}ren such that g(z) = }iixg)gkl (x) a.e z € R™, as llggo gk l, = llgll, =1
we can put h; = ﬁ € C(R™), fhll, =1, llim hi(z) = g(z) a.e z € R™, so {fhi}ien € LY(R™)
iy ||, —00

satisfies that llim (fh)(x) = (fg)(z) a.e z € R™, moreover fg € L*(R™), the dominated convergence
—00

theorem implies that llim || fhi — fgll, =0, in special:
—00

C > lim

=0

f(@)h(x)d

R~

f(@)g(x)dz

R~

=171,

this completes the proof. O

1.4.2 Fourier transform of radial functions and Bessel func-

tions

The Fourier transform of a radial function is obtained in terms of the Bessel function for this is

necessary study some properties of that functions in the origin and in the infinity.

Definition 1.3. Let £ € R, k > —% the Bessel function of order k is defined by:

_ (%)k ! its —%
Jk(f) = m ‘/_1 e (1 — 82)k ds

the following properties will be used in this thesis.

Proposition 1.5. (1) If f(x) = fo(||z|)), = € R, f € LY(R™), then

fie) = 2w 61" % [ fos) 75 m el )5t as

(2)Ifj>—%, k>—1, and t > 0, then

thtt ! i1 2\k
Jjrr41(t) = m/o Jj(ts)s” (1 — s%)"ds

(3) Ju(t) = O(t") if t — 0 and J,(t) ~t72 if t = oo.
Proof. (1) Let s = ||z||, x = su, r = ||{||, £ = rv then by the polar coordinates formula:
for = [ s i [ pllalpemetdo= [ plse s lao)ds
R™ R" 0o Jgn-1
_ / fQ(S)Sn_l / e—27rirsu»'ud0,(,u)ds
0 gn—1
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we calculate the inner integral, for this let:
Lo(u) ={veS" ' |u-v=cos}

by influence of the geometry this set is called a paralell, note that o(Lg(Au)) = o(Lg(u)) for every
A € O(n), in fact, v € Lo(Au) & (Au) -v = u- (A7) = cosd & A v € Ly(u) & v € A(Lp(u))
so Lg(Au) = A(Lg(u)), as o is invariant by rotations o(Lg(Au)) = cA(Lg(u)) = o(Lg(u)) this
allows us to choose u = ey, then Ly(e,) = {v e S" | v, =cosb}, but v € Ly(e,) & [Jv]| =
1,v, = cos(f Hv (n=1) H2 =1-1v2 =1-cos’0 = sin’0 & Hv("’l)H = sin6, then Lg(e,) =
{1V cosf) € R™ | |[v»=D| =sin6} but o is invariant by traslations then o(Lg(e,)) = (Sl 5 %
{0}) = on_g(Sgng) 0n_2(8""2)sin" 20 so

/ e*Qﬂzrsu 'ud / / 727717"571 vdo, de — / / 7271'17“5 cos 9d ( )d9

Sn—1 Lg(u) Lg(u)

_ / 672771'7"5 cos / dU(’l))d@ _ / 672771'7"5 cos 90’([/9 (u))de _ / 67271'1'7“5 cos 00n—2(sn72) Sinn72 0do
0 Lo (u) 0 0

but w, = (Z‘il) (2%) 277(2) then o(S" 1) = nw,, = (
sin

ifd=r=1t=1, dt = n(#)do, then

taket = —cos(0),if0 =0=t = —1,

M|§ .\,‘3

)’

n—

. 9 1 . - 92 n-1 r 1 r n—1
/ 6727rlrsu~vdo_(v> _ T2 ) / e27rm"st(1 _ t2)T%dt = T (2) ( 2 )Jn 2 (27TTS)
Sgn—1 -1

F(% F(%) (m“s)"T

= 27r(7°s)7n772 Jo2 (27rs)

SO

= [ fols)s™H2mrs) " Supa (2mrs)ds = 2 g / o) T2 (2w €] )57 2ds
0 2 0

)" 1 its -1 ZS -3

(2) As Ji(t) = ﬁ [ et (1= s?)ads = F(k+ )F f Leit (1 —s)kads

—i—fol €5 (1—s2)k~2ds) for the first integral let 5 = —s, if s = —1 =35=1,ifs=0=5=0,ds = —ds,
)" 0 —its = zs -5 2(3 '

hence Ji(t) = #))F(%) (fl e~ i3 (1 — 52k~ 2 (—ds) + f elts(1 — s2)k 5ds) = (kfi))F) fo cos(ts)(1—

1 . .
s2)*=2ds using the Taylor’s expansion for cos we have

s s ]t2] 2j
cos zts Z Z i
Jj= Jj=0
hence
1 > JtZJ v 1
Jilt) = = 21 = [ e
5 5 =0 0
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take u = 52, du = 2sds, ds = ;f“f then:
1 1 1
; du 1 i1
(1—s%) 2ds:/ W (1 =)z :_/ wT2(1—w)"" 2du
/0 0 2Vu 2y
1 | 1 1 1T+ Dk + 1)
i G+3)=1(1 — ) F+3)-10u = =B Z k4| =
241‘ (1—u) “ SRARECY RIS Yy ey
given that j > —3, so

J (t) =

© 1)7t%
INEY) Z (29)!

TG+PPE+Y)  2(5)° QN (W T +)
2 3=0 Z

1
2 TGHkEDTR) & @) TGEED

MI)—A l\ilw-

|
|
—
<
|
NIEg
N~—
—
<.
|
NI

) = EFHE(3) =

but T(j+3) =G -3 -3)=0G-H0 -G -3)=..=
(25— 1)(272J3) (3)1 (%) 2J)‘ im

Y I'(1) implies that

k

2(%) ﬁ;i Jtzﬂ (2/)'T(3) __j;i (—1)7(5)F+%
r(3) ot (25)! %UTQ+k+U_'ﬂjTQ+k+U

hence

ri+j+1)

1 Jj(ts S ds = 3 ﬂ) S — s2)kds
| B A Q; (1-s
)g+2l

2j+21+1 1— 2 kd
;:ZFU+k+1L/S (1=s7)"ds

let r = s2, then dr = 2sds,

1 1
. 1 1 .
/ sHTAHL (] = —/ DIt - s%)k (2sds) = —/ P = r)kdr
0 2 2 Jo
1T +Ek+DI(k+1)
2

FE+1,k+1
Bl L R X (R sy

given that k > —1. Hence

1 1 Jj+21 .

/ J(ts)8]+l( dS_Z ( )(2) l.l—‘(]"f'l"".l)r(k'i_l)
0 l'Fl+]+1) 2 T(+j+k+2)
1 j+2l O (—1)(L)iTRFLF2l
_23 (—1)'(%) F(,Hl):Z( )(5) Tk + 1)

201 +j+k+2) <201 +j+k+2) (t/2)F!
2kF(k4-1 1)H(L)Frkrit2t 2kF(k4—1)J
e E:HFI+J—Fk+2) gt ik ()

tk+1

SO Jj+k+1(t = QkF(kJrl) fO tS SJJrl 1—s )de
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(3) These properties can be found in [8, Pags. 158-159] O
Corollary 1.1. Let § >0, &5 : R" — R,

(L= [le*)> if el <1
@5(t) = max { (1 - 1#)))°, 0} =
0 iof It >1

then @5 (&) = 7 °T(8 + 1) €] %~ Jgys(2r i€])),

Proof. As ®; is radial the part (1) the previous proposition implies that:

1 1
5(€) = 2m [l€]|" 2 /0 (1= 5%)° Tz 1 (2 |[€]| 8)s™/2ds = 2m €] ~% /0 Jz-1(2m [I€]| 8)s™/(1 = s*)°ds

20T(6 + 1)
(2m [I€][)o+?
= 7T + 1) 1€ 20 Japs(2m |l€ll)

=2m €)' "% Jeys(2m|lE]) - Part (2) of the previous proposition



CHAPTER 2

Introduction to Fourier Multipliers

In this chapter we define the Fourier multipliers and study their principal properties, the Hilbert
transform is used to prove that a characteristic function of an interval is a multiplier, this fact with
the extension Theorem for multipliers give the generalization for a convex polyhedron in R", we

conclude the chapter with the complete proof of the restriction Theorem of de Leeuw.

2.1 Basic definitions and results

Definition 2.1. If m € L*(R") and 1 < p < o0, T}y, : LP(R™) — LP(R™), if Tof = mf is a bounded
operator we say that m is a multiplier on LP(R") and the norm of this is |m|, = [|T},]|.

For example by the Riesz Theorem (Theorem 1.1) m(§) = —isng(§) is a multiplier on LP(R).

Proposition 2.1. If m is a multiplier on LP(R™), m®(&) = m({ +a),a € R™, mx(§) = m(A§), A > 0,
mo A, A€ O(n) are multipliers on LP(R"), moreover |m|, = [m®|, = [m,[, = [mo A| .

Proof. Take f € 8( ™), let a € R™, then using the Proposition 1.2, maf = [gnm ({) £)e?mimE d¢
= Jgnm §+a F©exmieede = [ m(€)f(€ - a)e 2””'(5_“)6%:_ Jonm T—af)(ﬁ) s (Ea )d§

= Jan M) MaF (€)™ €D dg = M_y () [ m(E)Ma(€)e> S dE = M—a( )T (Mo f)(x).
ThenHTmafll IM_ T (Ma ), = 1T (Ma )N, < Iml, [Mafll, = |ml, [|f]l,, so m® is a multiplier

and [m*|, < |m|, = [(m®)~*], < |ma| Le |m| = [m"],.
Let A > 0, if g(z) = f(\z), using the Proposition 1.2, mef( fRn mA(ﬁ)f(ﬁ) miw-€ ¢

= fon MmO F(E)e>m = 8dE = [ m(n) f(1)e 2’”“§Z= - )2k Ede = [ m(€)G(E)e* ™ Edg
= (Trng)(2).
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Then || Ton, flly = Jou (T /)@ dz = [ [(Tng) (5[ do = [ou [(Tmg)(2)]" A"dz = A" | Tingllyy <
mfp A" lglly = 1mlp A" Jeu lg(@)[” do = |ml} fRn If( )Ipdy = |mly [If];, so mx is a multiplier and

|m)\|p S |m|p - |(m)\))\ 1|p — |m>\|p5 l'e |m|p |m)\|p'

Let A € O(n), using the Proposition 1.2, m = fo A then:

~

Tnea$@) = [ o AY@OF @ 5ag = [ mmFa—tnperi=sray

—

B /n m(n) f(A™n)e?™ A dy = /n m(n)f o A=Y (n)e*™ AN dy = (T, (f o A1) (Ax).

ThenHTmoApr Jon (Tnoa f)(@)|F dx = [o. |(T foA )(Az) [P do = [o, |(Ton(f o A1) ()| dy =
[Tuts 0 A < i 0 A2 = o (5 0 A~ |”dx = Il Jo 11 )7 dy = |m|5 111,
S0 mOA is a multiplier and [m o A|, < [m[, = |(mo A) OA_l}p <|moA|, ie|m|,=[moAl,. O

Let M(LP(R™)) be the set of multipliers of LP(R™). The following Theorem is a powerfull characteri-

zation for Fourier multipliers.

Theorem 2.1. m € M(LP(R™)) if and only if there exists C > 0 such that for every f,g € C5°(R™)

[ m@Fi(-ads| < sl ol 1)

where % + % = 1, moreover

|m|p=inf{C>O|

[ m) f@ig(-o)iz

< Clfl, gl Vf.g € ce;°<R”>} |

Proof. Suppose that m € M(LP(R™)), then T, : LP(R™) — LP(R"), ( mf)’\ = mf is bounded, let
f.9 € C&®R™), |Ifll, = llgll, = 1, then f,§ € LA(R"), (T,nf)" = mf € L*(R") we can use the
Parseval identity:

| m@F)g(-a)ds

[ nP@gteyis

[ @ @sta)ds

< sup {sup {

we note that (2.1) is valid if f =0 or ¢ =0, if f and g are nonzero then:

[ m@f@goyz| =| [ mi)17], (n f”> @ ol (|g”> (~a)do
r\ o\
/Rn m(x) (m> (x) (ml) (—x)dx

[ @un@ta)ds

lally =1} 107, =1} = sup {1l 111, = 1} = 1T

£l lgllg < NTmll 11, g1l
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Conversely suppose that (2.1) is valid and 1 < p < 2, using the previous Proposition with f € C§°(R™):
11, =sw{| [ (@h@ato

—sup{
—sup{

| m@F)a(-a)ds
since C3°(R") is dense in LP(R") we have that T, is bounded and [m/|, = || T || < C.

lgll, = Lge 03°<R">}

[ mP@g(wyis

llgll, = Lo e 03°<R“>}

gl = 1.g € cg°<R">} <o,

For p > 2 we use the following argument of duality:

51, =sw{| [ @a@ateris] lal, = 1.0 € G2
—sw{| [ )G
—sup{| [ i) @iFwpa] | lal, = 1.9 < G )

—sup{| [ @@T@as | loll, = 1.9 € Cr)

<T@l o 71, < 1Tl gzoemy 11, < C 171,

I

(x)d

8

I lglly = 1,9 € C5°(R™)

N~ Y~ Y~ Y~

for every f € C°(R™), given that 1 < ¢ < 2 and we saw that m € M(LP(R")), if 1 < p < 2, here
f(z) = f(—x), and we use that ||7||p = || fll, for every f € LP(R").

Again as C§°(R™) is dense in LP(R™) we have that T}, is bounded. This completes the proof. O

Corollary 2.1. Let m € M(LP(R"™)) then:
(a) [mly = [Iml|o

— 1 1 _
(c) Imllo < Iml, for 1 <p < oo.

Proof. Let m € M(LP(R™)), the Plancherel Theorem implies that:

1T flly = W@ )Ny = [mF) < Il [F]], = Il 171

then |m|y, = || 1| < ||m]|,, take € > 0 arbitrary and A C {z € R" | |m(z)| > ||m]|, — €}, A mensu-
rable, since .# : L?(R") — L?(R™) is an isometric isomorphism there exists f € L*(R") such that
f: Z f = xa, hence:

2
T30 15 = 1T )1 = [ F], = ol = [ oma)@)P da

= /A [m(x)|* dz > (|ml|, — €)*vol(4) = (mllo = % Ixally = (Imllo = % 1 /1l3
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then |m|y, = |Th|| > [|m| — €, for every € > 0, so |m|, > ||m]|,, this proves (a). By the previous

argument |m|, = ||m|| . The previous Theorem implies that if f,g € C5°(R"),

<Clfl,llgll,

/ (@) fl)g(-r)dr

but f,g € C°(R"), we have:

< |ml, |[]], Igll, = [ml, 111, gl

/ (@) f(-r)de

[ m@F @)z

hence |m[, < [m|,, where %—F% = 1, interchanging p and g we obtain that [m[, < [m|,, so |m|, = |m|,

1 %) n 1/2
this proves (b). As for every f € C°(R™), | flly = 1, [T flls = [T £y < 1T f 12 1T fI1L? <
ml/? |ml,/* = |m|, we have that |m||, = [mly = | Tl (2 (ny) < |ml,. this proves (c).

The set M(LP(R™)) can be submerged in Z(L?(R™)) as prove the following:
Theorem 2.2. M(LP(R™)) is isometrically isomorphic to a Banach subalgebra of Z(LP(R™)).

Proof. Let my,mg € M(LP(R™)) and « € C then for every f € S§(R"):

~

Ty tms f = (M1 +ma2) )Y = (maf +maf)V = (maf)” + (maf)V = Tony f + Ty f = (Tony + Tony) f

o~ o~

Tonrnf = (amlf)v = a(mlf)v = aTm1f
Tmle2f = Tml (Tm2f) = Tml (me)v = (mlm?.f)v = Tm1m2f

as 8(R™) is dense in LP(R™) we have that my + ma € M(LP(R™)), am; € M(LP(R™)), mimsa €
M(LP(R™)). Let {m;},
saw that [[m[|, < |m|, for every m € M(LP(R")) so {m;},y C L>(R") is a Cauchy sequence but
this is a Banach space, there exists m € L>(R"™) such that [[m; —m||_ —; 00 0.

C M(LP(R™)) a Cauchy sequence, in the proof of the previous lemma we

~ o~

Let f € 8(R™), by definition Tp,,, f = (m;f)Y, T f = (mf)Y, as {mjf}‘ . U {mf} C L'(R") the
JE
dominated convergence Theorem implies that:

(T, @) = [ my(©F ()T =100 / m(©F()e* 0 dg = (T ) (2)

Rn

a.e x € R", as {m;}, .y C M(LP(R")) is a Cauchy sequence is bounded, let M = sup;¢y [m;|, < oo,
by the Fatou lemma:

/ (T f)(2)|F da < liminf/ \(Tm.f)(a:)|”dx = lim inf ||Tm.pr < liminf [m;|” ||f|2 < MP||f||?
n Jj—oo n 7 j—ro0 7o p j—00 p

hence [T, f, < M ||f||, for every f € S(R"), but $(R") is dense in LP(R"), T,, € Z(LP(R")), so
m € M(LP(R™)).
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We note that the previous argument implies that if {k;},_ € M(LP(R")) and k;(z) —j—o0 k(2) a.e
x € R™ then k € M(L?(R™)), moreover:

k|, < hjrr_l>£f Ik;l, (2.2)
for I € N fixed we define k;j := m; —m; then k = m — my, using the equation (2.2)
| — ml|p < hjrgggf |m; — ml|p
as {m;};cy C M(LP(R")) is a Cauchy sequence we have that:

limsup [m — my|, < hrn liminf [m; —my|, = hrn lm; —mul, =0

I—o0 j—ro0 Jil—o0
80 [my — m|[, =00 0, by definition M(LP(R™)) is a Banach algebra, on the other hand & : M(LP(R")) —
PB(LP(R™)), ®(m) = T}, is an isometric monomorphism, then M(LP(R™)) is isometrically isomorphic
to Im(®) that is a Banach subalgebra of Z(LP(R™)). O

2.2 Intervals and one dimensional multipliers

Let I = [a, b], we define f[? =x1f, as ]\7[c\f = 7_.f for every ¢ € R we have:

(McAM_of)" () = T-o( A M_cf)NE) = T-o(H(M_c )" (&) = T-c(—isng(§)(M-.f)"(£))

~

= T_o(—isng(€)Tef(€)) = —it_csng(€)T_cTef(€) = —iT_c(sng(€)) F(€) = —isng(€ — ¢) F(€)

then m(§) = —isng(§ — ¢) is a multiplier on LP(R) given that M, is an isometric isomorphism of
LP(R") for every a € R™ and J# is bounded by the Riesz Theorem. Note that &((M,#M_, —
My M) fYNE) = §(—ismg(€ — a) + isng(é — b)) F(E) = L(sng(€ — a) — sng(€ — b)) F(E), but a < b
implies that £ € I, sng(§ —b) = —1, sng(§ —a) =1, if £ > b then sng(§ —b) =1, sng( a) =1, if
¢ < athen sng(§—b) = —1, sng(é—a) = —1so sng({—b)—sng({ a) = 2x1(£) hence £((Mq ' M_o—
My A M) FYNE) = xi(©)F(E) = (Trf)M(€), then (T1f)" = &(MyAM_o— Myt M_4)f)" 50 1 =
LMy A M_q — My M_y) f for every f € §(R), then

Ty = %(Maij_a — My M_y).

We have the proof of the following Theorem:
Theorem 2.3. There exists C, > 0, 1 < p < oo independent of I such that ||Trf|, < Cyp | fll,. for
every f € LP(R).

We note that I can be every interval in R, even I unbounded because M, is an isometry for every
a € R and the previous Theorem gives a constant independent of I, if we take I = [—R, R| then the
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operator of partial sum Tj_g g f(z f F(&)e?™ie d¢ is bounded for every R > 0; the previous
Theorem says that the constant C’ >0 is 1ndependent of R > 0, this prove the following:

Corollary 2.2. If f € LP(R), 1 < p < oo then Rlim HT[—R,R}f - pr =
— 00

the proof of the previous Corollary is a particular case of the Corollary 2.3 bellow.

2.3 Higher dimensional extensions

The following Proposition extend a multiplier m € M(LP(R™)) to m € M(LP(R™)), with n > n;.

Theorem 2.4. extension Theorem
If m € M(LP(R™)), let n = nq +ne, M : R" = R, m(&,n) = m(E), then m € M(LP(R™)), moreover
|m|p S |m|p

Proof. Let f € S(R™), w = (§,1), = [o fO)e 2™ 0wdt = [L, f(a,y)e 2o s=2miyn gy

= Jam €72 (Jrua F@y)e” 2V ”dy) dz = me e 2 ( Ty ) (@ m)dx = Fy (Fny f(-,m))(€), here
F, is the Fourier transform acting in dimension k, if z = (x,y) this implies that:

o~

(Fnf)(e) = @H() = | @™o = [ mef@er=do = [ mn@fwe=d;

n

~

/ / 27rzz wd’l]df m(é-)eQﬂ'ix{ / f(,m W)62my'nd77d€
R™1 JR™2 R™1 Rn2
= /]R m(é-)eQTrix{ & jﬂl (jfm f(7 n))(g)SQﬂzyndndg
ni no

= [ ez ([ Fttaean) i
= /R m()e*™ ¢ T, (f(9))(€)dE = (T f () (x)

where the penultimate equality is given by the Fourier inversion Theorem, then

T ey = | Tt o= [ ([ masen@r i) ay
= /R [T f o ey Ay < /R m[2 (1 (- y)(@)]1E dy

—tmlg [ [ 1)l dady = mly [ 5@ do = il 111
R™2 JR™1 R™

80 | T fl pogny < Iml, [ f1l,» T is bounded and T is a multiplier, moreover [m]|, < |m/,,. O

Corollary 2.3. If m € M(LP(R)), let m : R" — R, m(&,n) = m(§), then m € M(LP(R™)), moreover
|m|p S |m|p
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Proof. Is a immediate consequence of the Theorem with n; = 1. O

The previous Proposition using the multiplier m = X (g, o) implies that M = X (0,0c)xrn-1 is a multiplier
of a half-space, using the Proposition 2.1 we have that xr is a multiplier where L is an arbitrary half-
space, if we take P convex polyhedron of N faces this is the intersection of N half-spaces L, ..., Ly,

but xp = xr,..-XLy Using the Theorem 2.1 y p is a multiplier, this prove the following Corollary:

Corollary 2.4. There exists Cp >0, 1 < p < oo, independent of A > 0 such that |Txp f||, < Cp || f1|,,»
for every f € LP(R™), where Th\p = ®(xap) and AP = {\x € R" | x € P}.

Proof. As AP is a polyhedron for every A > 0 we have that y,p is a multiplier, as |X)\P|p = |X)\p0|p
with Py = [-Ri,R1] X ... X [=R,, Ry] a cube with edges parallel to the axis then xap,(z) =

X[=AR AR (T1) o X[ AR AR (Tn) = X[CARI AR (Z) - X[—ARn ARy (2), then

XAPy = X[=AR1,AR1]**X[=ARn,ARy]

by the Theorem 2.3 we have that there exists B, > 0 such that |X[—,\Rj,,\Rj] |p < B, for every A > 0,
J € {1, .;n} then |xapl, < [NEXRAR XA Rn AR |y < [XARARL | -+ [ XA R AR |, < By for
every A > 0, if we take C;, = B} then [xap|, < Cp, by definition |Thpf[l, < Cpl/f|,. for every
feLP(R™), A>0. O

Corollary 2.5. Let P be a convex polyhedron of R™ that contains the origin. If 1 < p < oo then
Jim [Typf — ], =0,
where Tap = ®(xap).

Proof. We consider .7 : §(R™) — 8§(R™), as .Z is a topological isomorphism (i.e homeomorphism that
is linear) the Proposition 1.1 implies that % ~1(C§°(R™)) is dense in §(R™) in the metric topology.
Let f € Z71(Cg°(R™)) then Z f = fe C§°(R™). There exists Ag > 0 such that supp(f) C Ao P then
Oopf)(E)eX™ ™€ = F(€)e2™ ¢ for every A > Ao, so that

@ehe) = [ Cor@emta = [ foemia = i)

Let f € LP(R™) since §(R™) is dense in LP(R™) there exists { fx }ken C S(R™) such that klim I fx = £, =
— 00
0. Let ¢ > 0 arbitrary and ko € N such that |fs, — fll, < griey, since fy, € S(R™) there
exists {froutien C F 1O (R™)) such that llim [ frot = frolly 3 = O for every o, 8 € N", then
—00 ’
llirgo kaoyl — fko ”p = 0, there exists lo € N such that kaoylo - fko ”p < m, since AILH;O HTAPfko,lo — fk0710 Hp =

0 there exists Ay > 0 such that if A > Ay then || Txpfroto — frooll, < 5, using the Corollary 2.4 we
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have:

ITxpf = fll, < Tapf = Tapfroll, + 1 Tap fro = froll, + 1feo — fll, < ITapf — Tap froll,

1 T5p fro = Tar frosioll, + 1TxP frosto = Frostoll, + I frosto = Froll, + 1 fke — I,

= Txp(f = fro)ll, + ITAP(fro — froto)ll, + ITNP Frosto = Frostoll, + [ froste = Froll, + 1o — £1I,
< Cpllfro = flly + Co l frosto = froll, + 1 T5P froto = Frostoll, + 1 frosto = Frolly, + 1o — f1I,

= (L+ Cp)lfrosto = froll, + [1fro = Fll) + TP frosto = Froutoll, < €

it A >\, ie /\lim [Txpf — fll, = 0, this completes the proof. O
—00

Corollary 2.6. The operator Teype : LP(R™) — LP(R™) is bounded for every 1 < p < co.

2.4 de Leeuw’s Theorem

In this section we prove de Leeuw’s Theorem. The proof given here is due to [1].

Theorem 2.5. (de Leeuw)
Let m € M(LP(R™)), n = ny + na, then for almost every v € R"™, m,(-) = m(z,-) € M(LP(R™?)) and

|mw|p < |m|p. The restriction is possible in
Q={zxeR"™|(z,y) isa Lebesgue point of m, a.e yeR™}.

Proof. Let m € M(LP(R™)) by Theorem 2.1 we have that there exists C' > 0 such that for every
[r9" € G (R"),

[ m@F @3 (~a)da| <1571, 1],

for every x € Q, we define m, : R™ — R, my,(y) = m(z,y) and take f,p € C(R"), g,¢ € C§°(R™),
then f*(z,y) = f(2)g(y), ¢*(z,y) = p(x)Y(y) satisfies f*, g* € C5°(R™), let’s assume first that m is

continuous and define:
I'R™ >R, I(z)= /R m(:v,y)ﬁ(y)@(—y)dy
n2
then the Fubini’s Theorem implies that:

/Rnl (/Rn m(z, y)if(y)@(—y)dy) F@)p(~a)dz

| 1@F)aa

< |m|p ||f*||p ||9*||q = |m|p ”f”LP(]R"l) ||9||Lq(1an) ||‘P||LP(RM) ||¢||Lq(]an)

[ m@F € (-¢)da

= (lmlp ||9||Lq(an) ||¢||Lq(an)) Hf”LP(]R"l) ||90||Lp(Rn1)
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by the Theorem 2.1, I € M(LP(R™)) moreover 1|, < |m|, ||l o mnz) 1P]l pognz)-

By the Corolary 2.1:

/R mx<y>§<y>1$<—y)dy‘ _

/R m(e, y)GW)H(—~y)dy| = [1@)] < lle < Iml, 190 o gray 190 o)
no
(2.3)

again by the Theorem 2.1 m, € LP(R"2), moreover [my|, < [m|,.

In the general case we eliminate the continuity restriction, if m € L>(R™) we have that m € L], (R"),

in fact if K C R™ is compact:
/ |m(x)|dx < ||m||  vol(K) < oo
K

this implies that almost every x € R™ is a Lebesgue point of m, (see [10] Theorem 19.21), this let us
define:
Q={xe R"|(x,y) isa Lebesgue point of m, a.e yecR"}

also vol(R" — Q) = 0. Let m¢ : R” — R,m. = m* e*"X[ " then for every f*,¢g* € C§°(R™):

£ £
202

/Rn (/Rn m(§ — n)e‘"x[_g,g]n(n)dn) F(©)g* (—€)de

me<§)ﬁ<§>&<—£>d§] =

R

L[ mie=me g g 0F (O (~€)dnd

[ mie=memx g 00F ©F (~dedn

let p =& —n, then £ = p+ n the Theorem of change of variables applies to the internal integral:

me<§)ﬁ<§>&<—£>d§] =

R

/n € "X[g, 5] (M) /n m() f* (1 +0)g* (= — n)dudn

[y @) [ m)OLF) ) (g ) -dpdn| (24

< [

= / X g ) () [l [V £ Mg

[ ) OB, 7)) BT °) () i

= ml, 171, 9”1l L€ X g (mdn = [ml, 1], g™l

by the Theorem 2.1 m. € M(LF(R")), moreover |me|, < |m|,, for every € > 0 .
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The expression m¢(§) = [pn 771(77)6*")([7s _]n(§ —n)dn = % f§+[7£ 5" m(n)dn and the dominated
272 272
convergence Theorem implies that m, is continuous, if £ = (z,y) with x €  then £ is a Lebesgue

point for almost every y € R"?, then

m@mepléﬂeermmmW—gym@

e—0 €™

in special:

ma(y) = m(z,y) = limme (2, 5) = lim(me)a(y)

e—0

a.e y € R™, since m. is continuous we have that m, € L}OC(R"), the dominated convergence Theorem,

[(me)zl, < |mel, for every e > 0 and * implies that

mm(y)ﬁ(y)zz(—y)dy} = lim

e—0

B [ m0)at)i=s)dy| < lim o)l ol 19]50ens

< gg% |me|p HgHLP(R"Z) ||¢||Lq(]an) < |m|p Hg||LP(R"2) ”"/JHLQ(R"z)

for every g, € C5°(R"), by the Theorem 2.1 m, € M(LP(R"?)), |[mg|, < |m],, this completes the

proof.



CHAPTER 3

Bochner-Riesz multipliers vs. Ball multipliers

In this Chapter we study the Bochner-Riesz multipliers as a class of continuous operator. We know
that the characteristic function of a cube is a multiplier for every value 1 < p < oo but this function
is discontinuous in every point of the boundary of the cube, by reasons of correspondence we expect
that the Bochner-Riesz multipliers are multipliers for 1 < p < co but in this chapter we are going to

see that this is false.

3.1 Introduction
Consider the operators (Trf)(z) = fHéH<R FlO)e*iwtae, f e $(R™) so that @ = XB(O,R)? and
Tr: LP(R") — LP(R™) is the operator with Fourier multiplier x g(o,z). We would like to know if
lim |[Twf — fll, =0, f € LP(R™).
R—o00

By the Corollary 2.2 of the Chapter 2 we know that it is true for n = 1, 1 < p < o0, for n > 1.
The higher dimensional problem is more difficult for this we consider multipliers more regular that

XB(0,R), for example taking the average between 0 and R of the operators Tk, i.e

1 [P 7
[ Tt = / / ST et = / | xwon©f@em s
R Jo Ro Nz "
1 -
= —/ / XB(0,)(§ F©)e*m = drde = <§ XB(0,)(§ ) > e
n Rn
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for f € (R™), but by definition

Loaf t> |
XB(0,1)(§) =
0 if t<&]

then for ||€|| < R:

1 (B 1 €l R 1 R B <]l
E/o XB(0,) (§)dt = = </0 XB(0,0)(&)dt + /lél X B(0,t) (é)dt> =% /HEII dt =1— o

for |||l > R >t we have xp(o,)(§) = 0, hence

1- WL e <R

1 R
}—%/0 XB(0,1)(§)dt =
0, if >R

1 (R ( |§|) T oy 2mizE
— T f(x)dx = - = e d
g mede= [ (115 e

with this we obtain the operators

and so

(T 1) 1€\° 7,
@ine = (1- L) feo
+
5
where A; = max {4,0}, let m(¢) = (1 — [|€[)%. then my /() = (1 - %L by the Proposition 2.1 of
the Chapter 2 we know that if m € M(LP(R")) then m,,r € M(LP(R")), moreover ‘ml/R‘p = |ml,,

this fact allows us consider the case R = 1, that is we want to find the values of 1 < p < oo for which
m € M(LP(R™)).

Instead of considering the operator T} we are going to consider the operator

—

N0 ~
T = (1-ll?) . Fie)
+
for § > 0 these are the Bochner-Riesz multipliers. Note that

(L= €15 = (1= e [+ e eaClen] .

3.1
(1=l = (X = l1€I")% [+ €D~ =€l .

where 11,12 € C§° such that ¢ }B(O)l): g |B(071): 1, now we need the following Theorem due to

Hormander

Theorem 3.1. Let ¢ € C§°(R™) a radial function with supp(y)) C {{eR™ |3 <[]l <2} and
oo —J 2 ; oo (TRM j n
Y e oo |1/)(2 J{)‘ =1, if m € L>(R"), supj€N||m(23~)1/)||Ha(Rn) < o0 for some a > 5. Then,
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m € M(LP(R™)), 1 < p < 0.

and the Corollary

Corollary 3.1. Let m € C*(R™ — {0}) with k = [%] + 1 and

1/2
1
sup n/ |99m(€)|” de <CR LB <k
R>0 R™ Jr<|el<2r

then m € M(LP(R™)), 1 < p < co. In special this condition is satisfied if

|0%m(e)| < Cllel =7, 18] < k

the proofs of these facts can be found in [2, Pags. 163-164].

Applying the last part of the Corollary to the functions in the inside of the brackets in (3.1) we
have that these functions are Fourier multipliers (it can be seen using the Leibnitz rule and that
Y1, 9 € C§°(R™)) hence TY : LP(R™) — LP(R™) is bounded if and only if T : LP(R™) — LP(R™) is
bounded.

Since the multipliers & — (1 — [|€ ||2)ﬁ_ have singularities in S"~! we descompose these as the sum
of a convergent series of terms with support in the dyadic anullus Ay = A(1 —27F+1 1 — 27k=1) =
{€¢eR | 1—27F1 < ||¢[| <1—27F"1} note that B(0,1) = J,ey A

In fact, let {¢r},cny € CG°(R™) such that supp(¢r) C Ar,0 < ¢ < 1, ||8ﬁgak||oo < C’g%kﬂ)ﬁ for
some Cg > 0 independent of k, > 77, @i (t) = 1if ¢t € [$,1], with this take ¢q : [0,1] — R,

1=, ¢u(t), if 0<t<3

80 > peg r(t) =1, for every t € [0,1], hence:
(L= 1El®)5 = D= lEl®) exli€l)
k=0

as or(||€]]) = 0if € & Ay, also if € € Ag, 1 —27F1 < ||g] < 1 — 2751 then (1 — 27F+1)2 < ||¢|]?,
1— 227k 4272652 g2 1 — ||g||? < 227k 4 272k H2 = 97k (4 — 227F),
We define @ ([1€]]) = 2% (1 — [I€I)°@r ([I€]]), so

(1= lel®s 22 ()

then Tsf = Y30 o 27FT). f, where (T1.f)"(€) = @u(JI&]) F ().
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3.2 Norm-boundedness in L*(R") for Bochner-Riesz

operators

Lema 3.1. Let 0 < § < 1, ¢ € C§°(R) such that supp(p) C (1 — 46,1 —9), 0 < ¢ < 1,
Haﬁ(gp o ||||)HOo <C5 B if T = ®(po ||-||), then for every e > 0,

|Tof||, < Clea = +alE =y g,

Proof. Since o ||-|| € C°(R") C L*(R™) and .Z : L*(R") — L?(R") is an isometric isomorphism
there exists k € L2(R™) such that @ o ||-| = .Zk = k, take a even positive integer.

By the Plancherel Theorem

@+ 1Rl = [+ P2 )"

_ af2
2 H((I“(R”) + M[)k)"

= [+ 2o | < ool + [[(—a)/2e o 1|

2

bt 9 112 = fen GOIEIDRAE € C2 [,y crs dE < C3oolu(BO,1 - ) — vol, (B0, 1~ 10)) =
Clun (1= 8)" = (1= 46)") = 3C2w,6 ) (1= 0p (1 45)n—1—7 — T°6, hence |lpo||-|[l, < T8/2,
als0 (~A)20 |1 = (= S0y 07200 |- = £ (1) (= Ky 9V o 1. 50

g J J
MmWwMM=ZG)—XﬁawMH<in - o) pol
j=0

Jee|=2 Jee|=2
2

N

< (5)05 Wpollll, <28C5~°CsY? = Cy51/%¢
J

given that 0 < j < §, 0 < 0 < 1, implies 6% < 0%, s0 672 < §7% and the known formula

Sito (1) =2™, hence ||[(1+ ||-| )k, < Ca8'/2(1 4 679) < CsY/2—.

We claim that this fact is true for every a > 0, for s > 1 define 6(t) = (}IQ, t > 0 then 6 is

1y
continuous, but tlim o(t) = thm (i+1) = 1, so 6 is bounded, then there exists M > 0 such that
—00 —00

E+1
(141t)* < M(1+t*), take s > 1 such that as is an even positive integer we have (1 + |-[|*)* <
M+,
S0

T+ < MY +[]-|*)/*,  and by the Hélder inequality

L+ 1)l < M= || (1 + H-Ilas)l/sk (L 1" )k) ok

’ _ Ml/s

_ Ml/s
2

s as 3s s as 1/s 1/s"
< MYS |1+ 1))k 2 = MY+ (1) RN 1k

(L ]| k)2 k>

1
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where £+ 5 =1, but [|(1+ |- *)k]l, < T8>, [[kll, = [lp o |I|[l, < C6"/2, hence

I+ FI)kll, < MYeC == Tamr = C'63 .
If we take a = 5 + € then
a ay\— a ay\— 1_4 ay—
Il = [+ 10+ 117 < MA@+ TR [+ 1097, < Ca=z= [[@+ 11771,
the exists M > 0 such that (1+ ||z|)* < M(1 + ||z]|") for every z € R™, hence

, dz Mdz > ldr
Lo = [ e < [, [T
||( [1-1%) Hg e (1 [J2][)? e (1+ [2])2e o (14r)nt2e

r)—2e]> nw
(1+7) } _ M

o d
§ann/ ;—ann{
0 ( _26

14 r)lt2e 0 2¢

so ||k||; < C(e)d="= <. As T°f = K  f the Young inequality implies that

n

IT°F||, = 1K * fll, < IKIL Il < Ce)d~ "= =< fll, and
IT°F| = 1K % fllo < IKIL 1 flle < C@)6 "2 1 f]lo -

For p = 2 we have ||T°f, = (@£, = |6 IDF]|, < ool |7]|, = £l < €@ 1]y

by the Riesz-Thorin interpolation Theorem,

1
P 1 2
hence #=2—2,1-0=2—-1,s0
P P

IT°f||, < (Cle)s~*T=)1=0C(e) 111l = Cle)s~ = G | 1,

for every p € [1,2], f € LP(R™), hence ¢ o |-|| € M(LP(R™)), by the Corollary 2.1 we have that
o || € M(LY(R™)) for 1—1) + % = 1, moreover |p o ||-||[, = [ o |||, then

|7°1]|, < Ca~ =G 7, = C0a~ T 0= 7, 2<g< o
hence
HTépr < C(e)é‘<%+e)|%—l| ||pr, 1<p<oo, feLPRM).

this completes the proof. O

Lema 3.2. If m € M(LP(R™)), supp(m) is compact, then m € LP(R™).

Proof. As % : §(R™) — $(R™) is an topological isomorphism if g € C§°(R") C 8(R™) such that
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9 lsupp(m)= 1, there exists f € §(R") such that f=Ff=g sofe LP(R") given that m €
M(LP(R™)), we have T, € B(LP(R™)), so Trf € LP(R™), but (T}, f)" = mf = mg = m, hence
m=T,f € LP(R"). O

Theorem 3.2. (1) If 6 > 251, T5 € LP(R"),1 < p < o0.

(2) If 0 <6 <251 Ts € LP(R™) i

Ts ¢ LP(R™) 4

nl’

-4 <

‘> 25+1'

The value "T_l of 6 is called critical index.

Proof. (1) As Tsf = 3520 27T f, (Tef)€) = GrUIENFE), supplion) © (1 = 274411 — 27571,
the Lemma 3.1 implies that

ITef|l, < Cle2®+DCT+alE =1l 7

hence [|T5f], < Y250 274 [ Tifll, < Cle) o5 2D T +al5 =11k ) gy

Ol U+l t=0yk 1.
Ifo>2r—= thenus1ng0<‘——1‘*2
("7*1+e)

n—1

%—%‘S?-%:landtakee:é_fWehavec5> Lie>

s - 1} hence (251 +¢) |2

2 1}_5 < 0s0 322 27 I 1=0)k < o0 and Ty € B(LP(R)).

(2) 160 <6< 2L and }l - l} < b as |Tsfl, < Cle) gy 28 TOlR 1= ) gy

2 n—1"7

COX, 22’“—“”*"' B £l = Ole) g2 o (2l =2 =0y 1

leteozﬁ—(n—l)>0and0<e<%hence(n—l—i—%)%

— %} — 9 < 0 this implies that
320 (212953 20)k < o0 and Ty € B(LP(RM)).
By the part (3) of the Proposition 1.5 we have that J,(t) = O(t") if t — 0 and J,(t) = O(tz)

if ¢ = oo and the Corollary 1., &5 : R" — R, ®s5(¢) = (1 — ||§||2)fr implies &;5(5) = 7 7T(§ +
ez r Jn (2 [[€]]) then there exists C1,C2 > 0 such that

| Tas(2m [I€])] < Cullelz*?, if [I€f—0 and
Tyes@rllel) ~ Colle| ™%, i gl = oo
hence ’cpg ’ < 7008 + 1O if [|¢] — 0 and By(€) ~ 7T(S + 1)02 1El~ 5 it g — oo

So @5 € LP(R") if and only if there exists o > 0 such that |||~ (*3+0) ¢ LP(R™ — B(0,)), but

n41 Sy

( +6)P _ — E_ﬁ.é —1 _ _ n+1+5 4n—1 - 'ﬂ*(TJrS)p

Jesa €1 dg = men [ 7= CEHOP T dr = oy [ rm CEHOPIT y = nw,, | T
«

< oo for every o > 0 if and only if n — (% +0)p<0,p> "“+6 = n+1+25, hence <I>5 ¢ LP(R™) if
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p < ﬁ, by the previous Lemma ®5 ¢ M(L?(R™)), by duality ®5 ¢ M(LI(R™)) with l—i-l =1, but

1 n+1+2t5 1 _ 1 _ n41428 _ n—1-26 1 1 1426

5= <1 pgl et = D ,q2n125,hence®5§§M( P(R ))1fp_2 o
1> 1+2t5 1_1 _ 1426 11 1426 1_1 1+26

Orp—2+ Sop QS 2n Orp 222n’1e}p 2}2 2n <>

3.3 A first negative result for ball multipliers

In this section we study the multiplier for the ball i.e. T : LP(R™) — LP(R"), 7/7 = x5/[ in dimension
greater than one, here B is the unit ball, the case n = 1 is given by the Corollary 2.5 of the chapter 2
that says that Teype € B(LP(R™)), however, T is essentially different from Tiype as prove the following:

Lema 3.3. T ¢ B(LP(R")) for p ¢ (f—fl %)

Proof. 1f f = xp then f(x) = fo(||z]|) with fo = x(0,1) using the Proposition 1.5 of the Chapter 1 we
obtain f(£) = 2r ||¢||'” 2 fol Jo 127 ||€]| s)s2ds = N2 Ju (27 [[€]]), the part (3) of this propostion
implies that there exists C' > 0 such that:

|72 2 €] < C gl if g =0, Tyl ~ gl if €]} = o0

then yf<5>y<2wcif||s|\wandf<) ~ Nl CF) it il = oo, s0 [ e Lr(R™)
& (@a>0) (J1170F) e R - B(0,))), but fi, 1617 de = oy [0

n GES RTINS R
nwnf — (2 )ptn- ldr—nwn{%] < oo, forevery a > 0 — (2H)p+n <0 p <
o

n+1

P gy —

n+1, hence f ¢ LP(R™) if p < n+1, by the Lemma 3, f ¢ M(LP(R™)), by the argument of duality
proved in the de Leeuw’s Theorem f ¢ M(L?(R™)) with 1 5+ % =1, %
Bl > 2 so f ¢ M(DPRY) i p ¢ (2, 22 ). 0

nt+tl 1 _ 1 _ 1 _ n+1l __
>—2n,q—1 p<1 ==



CHAPTER 4

Kakeya sets

In this chapter we define Kakeya sets and present a construction due to I. J. Schoemberg. This
construction is the perfect ingredient to complete the proof of Fefferman’s Theorem.

4.1 Definition and Geometrical motivation

Definition 4.1. A compact set K C R" is called a Kakeya or Besicovitch set if
(Ve € S"7H(3y € K)(ly, « +y] C K),

where [a,b] = {(1 —t)a +tb |t € [0,1]}, i.e a Kakeya set contains a unit segment in every direction.

The following are simple examples:

In R2, D (0,%) = {z eER?||z|| < %}

In general in R", B (0,3) = {z e R" | |z| < $}.
\/ig.

The deltoid or Hypocycloid of Steiner with area g.

Equilateral triangle of height 1 and area

In 1917 S. Kakeya posed the problem to find a Kakeya set of minimum area, this problem was solved
by A. Besicovitch in 1927. Surprisingly there exists Kakeya sets with arbitrarily small area. We have
a strong type of Kakeya set that includes a condition of continuity in the rotation:

Definition 4.2. A Kakeya needle set is a Kakeya set K such that

(3N € K)(v0 € 0,27])(A()N C K), A(6) = (‘;fjgzg ‘Csls?é?) € SO, (R)

here N = (21 — 3,32 + 3) x {22}, with = (21, 22) € K i.e there exists a unit line segment (needle)
contained in K that can be rotated continuosly 360°.
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Figure 4.1: the equilateral triangle of height 1 and area —=

Figure 4.2: the deltoid is a Kakeya set

1
V3

is a Kakeya set
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Figure 4.3: example of Kakeya set that is not Kakeya needle set
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Examples:

e InR2 D(0,1) ={zeR?| |z < i}.

e Equilateral triangle of height 1 and area \/Lg

Remark

We see that in fact the Definition 4.2 is stronger than the Definition 4.1. Figure 4.3 show an example
of this, take a AC a unit line segment, let B the midpoint of AC, R a circle with center O and radius %
such that AB is a diameter of R, the blue curve « is constructed as follows, if we take a point D € OR
there exists a unique point E such that B € DE and |DE| = 1, if we vary the point D € OR the set
of points E obtained in this way defines this curve, let [ be the perpendicular line that contains the
point B, we call G the green region bounded by the line [ and v (included the boundary), note that
by construction K = R U G contains a needle through B in every direction, but the regions R and
G do not contain needle that can be rotate 360°, as RN G = {B} the unique posibility is the needle
AC, but this needle can not be rotated 360°, then K is a Kakeya set that is not a Kakeya needle set.

The problem for Kakeya needle set is analogous, find a Kakeya needle sets of minimum area. For a
long time was believed that the solution was the deltoid (three-cuspec hypocycloid) with area § (see
figure 4.2), however Besicovitch surprinsingly showed that there exist Kakeya needle sets of arbitrarily
small area. In 1921 J. Pal showed that the solution of this problem in the convex case is given by the

equilateral triangle of area % (see figure 4.1).

In the following section we study the construction of Kakeya sets given by I. J. Schoenberg using
sprouts of triangles.

4.2 Sprouting Triangles

Let a,b.c € R? noncollinear points, suppose that the side ab is the base of the triangle Aabc and that
height is h. We extend the sides @¢ and bc to segments aa’ and bb’ such that the triangles Aaba/,
Aabb’ have the same height h' > h. Let d = “T“’. The triangles A’ = Aada’ and A" = Abdb’ are
called sprouts from de height h to h'. (See Figure 4.4).

4.3 Sequence of Rectangles and Besicovitch sets

In this section we use the sprouting of triangles for construct an increasing sequence { E(k)}, oy of sets

that we call Besicovitch approximation and the union E of this sequence is a Besicovitch or Kakeya
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Figure 4.4: the triangles A’ = Aada’ and A” = Abdlb’ arise as A sprouts from height h
to b’
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set. The following lemma is enough for our final purpose, i.e the proof of the Fefferman’s Theorem.

Lema 4.1. Let n > 0, there exists E C R?, a sequence of rectangles {Rj};.nzl, and a sequence of sets
{E} such that:
j=1
(DR, N Ry =0 if j,1 are different,
(2) |Rj| = 2|R;)

(3) ‘Rj QE‘ > 15 ‘Rj

(Bl <03, IRl
Proof. As the proof is extremely long we divide it into steps.

e Construction and estimates of Besicovitch sets. Let

V3 oy
23

Aoz{(x,y)€R2|O§y§ <z<l1-

w
Sl

}

and {h},. a increasing sequence of real numbers such that ho = @zheigh‘c of Ag. Sprouting
Ag from hg to h; we obtain two triangles A7 and Ajs, again sprouting these triangles from
hy to ho we obtain triangles Aoq, Ago, Agz, Aoy continue sprouting in the step k we obtain 2
triangles Ay;, 1 < j < 2%, everyone with base 27% and height hy, we define E(k) = U?il Ay,
we claim that |E(k)| < 3, for every k € N.

For prove this claim we use the Figure 4.5, the triangle AABC with base of length AB = b gives
rise to the triangles AAM F and ABM E, we take the difference AAMFUABME —AABC =
AGCFEUAHCEF and called the triangles AGCE and AHCF arms and note that [AGCE| =

|[AHCF|, now we compute the area of each arm. We claim that |AGCE| = %(Z;L:_hzz?

We note that the triangles ABME and ACNE are similar, thus

heigth(ACNE)  base(ACNE)
height(ABME) — base(ABME)’




4.3. Sequence of Rectangles and Besicovitch sets 48

hy

Figure 4.5: the triangle AABC with base of length AB = b gives rise to the triangles
AAMF and ABME.
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i.e
hi —hy NC
hi b2’

We trace the half line parallel to GC that passes by M. It intercepts to the line of equation
y = ho in an unique point D, then CD = AM = b/2. Since the triangles ANGC and AMDN

are similar we have that

heigth(ANGC)  base(ANGC)
height(AMDN) — base(AMDN)

(4.2)

i.e
height(ANGC)  NC NC B NC
ho ~ ND NC+CD NC+b/2
hence
b hl - hO . - hQNO
NC_§( T ), hezght(ANGC)—NC+b/2

h1—h
so NC +b/2 = & (bazhe) 4 b/2 = & (24=R0) and height(A(NGC)) = % _
2

hy

(hl ho)ho
T T hence

NC - height(AN N —h
IAGCE| = |ANGC]| + |aNEC] = XE “92( ¢o) | O( 0)

b (hlh—lho) (hy — ho)ho 9<h1h—1h0>(h _hg)y = b= o) o b(hl ho)?

1 oh; —ho 4 42h1 ho hl 1

_ b (b —ho)? ho 1 _ b(hi=ho)?® (ho+2hi —ho\ _ )2
T4 m 2hy1 — ho T4 2hy1 — ho n 2h1

9 ho>
2 2h1 ho

(4.3)
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To fix ideas we take the sequence

2
V3 11
ho =22 (14242

2 2<+2+3)

V3 1 1
hj=-=1(1 —
T2 ( “L2+3“L - +1)

we note that E(k — 1) = Uf:ll Ax_1,; C E(k) = U?; Ay, for every k € N, we de-
note the arms of Ay ; by Aj |, and A7, ; called k — arms. This allows us to write
U?il Agj — Uj:ll Ag_1,j = Ul 1 U Aﬁc 1;» by an application of the equation (4.3) w

have that }Aécfl,j} = (%) for every 1 < j < 2k-1 [ € {1,2}.

We estimate the area of E(k) as the sum of the area of Ay and the area of the s — arms

for 1 < s < k, in fact {Al |1<j<257h1e{1,2}} = {s—arms} and E(k) = Ag U

s—1,5

US 1UJ 1 Ul L AL, this implies that:

ko257t
\/g (hs_hsf)Q
B = 8ol + 32 30 3|l = + 3 G

s=1 j=1 I=1 s=1

—

ol

3 and hy — hs_1 = \/31 SO

but 2hs — hy_1 = hs + (hs — hs_1) > L

1 k
(s+1)2 @ Z
V32

s=1 2 s=1 s=

[N

Mpr

+

]S
w\%

,_.
w
Il
—

for every k € N.
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e Construction of the family of rectangles {R;},_\ that satisfies (1), (2), (3) and (4).

Note that the base of each triangle Ay;, 1 < j < 2% k € N is an dyadic interval in [0,1], let

D([0,1]) = {I | I = [2k, o } 0<j<2" 1 ke N} = {dyadic intervals on [0, 1]}

S(Ao) = {Arj |1 <j < 2" ke N} = {sprouts of Ao}

P(A) P(Ax)

Figure 4.6: sprouting the triangle Ay we obtain a bijection 7 : S(A¢) — D(|0, 1])

then the map 7 : S(Ag) — D([0,1]), 7(Axj) = [, Z&] is surjective, moreover by construction

for every I € D([0,1]), I = [, Jzikl} corresponds an only A(I) € S(Ag) whose base is I and

the upper vertex belongs to the line y = hy (See figure 4.6), so 7 is bijective, let P(I) this

vertex, using A(I) we are going to construct a rectangle R(I), as in the figure 4.9.

We write A; = (5,0), Brj = (55,0), then Ay; = AAy; BijCrj where Cij = P(Ay;) the up-
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per vertex, we note that max ({|Aijkj| [1<5< 2’“} U {|Bkj0kj| 1< < 2’“}) = |Ag1 B,
because Ay1 By is a diagonal of a yellow rectangle of the figure 4.7, and the segments Ay; By
and By;Cy; are contained in this rectangle for 1 < j < 2F=1 but the set E(k) is symmet-
ric with respect to the line with equation = = %, as |[AC| = 1, sin(f) = @ = \A,ﬁikckw SO
| Ak1Cr1| = %ﬁhk-
k+1 gz k J+1 da k i+l dz k 1 1 1

Aslogk+1) = [ =3 [ T2 F =S qr =3+t we
have %ﬂhk <3 (1 +5+..+ k_-lH) < 3 (1+1log(k+1)) < 3log(k + 2) the later inequality is

true because e < 3 and k > 1, implies e(k + 1) < 4(k + 1) < k? + 4k +4 = (k + 2)? and so

1+ log(k+1) < 2log(k + 2).

Now we use the figure 4.9 and note that the previous paragraph implies that Ay; C E;:J
because max (| Ax;Ck;jl, |AkjBrj|) < 3log(k +2) and By; or Cy; belongs to the diagonal of the

—— k2 g k41 i+l g k+1 i+l g k+1 1
upper part of Ryj. Also log(k +2) = [ 2 = > it P > it fj G < > it ;=

1+%+...+k%r1 = hy, as Ag; C E, we have that ‘R\;; N E} > |Agj| = 227Fhy, > 27k log(k+2).

We apply the law of the sines to the triangle AAy; By; Dy;, to obtain

[ Ak Dij|l | Ak; Br;|
sin(< Aijijkj) sin(< Aijijkj)
27k sin(< Aijijkj)

sin(< Aijijkj)

| Akj Dij| =

. Ar;Chrj Ap;iDyj
as sm(< Aijijkj) = Zhizhi > Zhi—hi

= oDe 2 0D = cos(=< Ay;Dy;Byj) we have that

27k
COS(-< Aijijkj)

| Akj Dij| <

by the law of the cosines applied to the triangle Ay; and the estimates hy, < |Ag;jCh;l, |Br;Crj| <
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A h,

| Akj Cij|* + | Brj Crj|* — | Ary Bis |
cos(< ApiCl:Bri) = : : :
(= Ak; Cs Bry) 2|Ak;jCh; | Br;iCryl|
R AR -2 omEoo 3
2T m 7

hence |Ay;Dy;| < 10- 2-k _5.91-k 4nd

. 5
|Ris 0V E| = 275 Vog(k +2) = = 21 log(k + 2)

20
) _ 1 1 1 |=
= =217 3log(k +2) = = |4, Dyl |41, Qul = 55 | Rigl = 135 | g
c Ch; Co2
24
A \ / \ / 021
A
hs
ho
|

A=Ay f \ B
B21 = AQQ A23 = B22

Figure 4.7: the triangles AAg;By;Cy; for 1 < j < 281 are contained in the yellow

rectangle with diagonal Ay;Cy, this figure represents this for £ = 2.

To see (4) we use that |E| < 3, if D, = {I € D([0,1]) | [I| =27%}, Ry = {R(I) | I € Dy} we

27
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-—— — - . ——

R(D)

—_~—

Figure 4.8: the set R(I) has area the double of the area of the rectangle R([).
compute a lower bound for |Ay; Dy;|, by the law of the sines applied to the triangle AAy; By Dy;:

Y I | Ak Bij|
Sin(-< Aijijkj) Sin(-< Aijijkj)
ksin(< Aijijkj)

sin(< Aijijkj)

|AkjDij| =27

SO

2k Sin(< Aijijkj)
Sin(< Aijijkj)

k!

2

| Ag; Drj| > > 27 sin (2) > 2

ol

hence |R(I)| = |A(I)DI)||ADQ(I)] > 27%=! x 3log(k + 2) for every R(I) € Ry. But

Card(Ry,) = 2*, hence

Z |R(I)| > 2% - 27771 . 3log(k +2) = glog(k+2).
I1€Dy,
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A1) = ()

D,

3log(k +2) x  axis

~[ T

Figure 4.9: the rectangle R(I) has area at least 27%~! - 3log(k + 2)
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If k+2 > en we have that |E| < 3 <n3log(k+2) <0 cp, IR, to end we see that if

and J are different then R(I) N R(J) = 0. This is a consequence of the following lemma.

Lema 4.2. Let I, Is € Dy, if I lies to the left of I then P(I3) lies to the left of P(I).

Proof. We use the notation I; < Iy if and only if I; lies to the left of I, P(I2) < P(Iy)
if and only if P(I3) lies to the left of P(I7), the statement of the lemma is Iy < I implies
P(L,) < P(I)).

If A C R? is a triangle with base in the z-axis and vertices in the points (0, a), (b,0), (c,d),

a < b then the lines that contains the sides have equations:

(a,0)

Figure 4.10: the region A is called the shadow of A
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llly:O

. T-ae_c-a c—a B +c—a

2 y - d ) €T a = d Y, r=a d Yy

r—b c¢c—b c—b c—b

3 y d ) x d Y, Y + d Yy

we note that as A is a nondegenerate triangle d is nonzero, define
~ —b _

A_{(x,y)€R2|b+cTy§z§a+¥y, yzd} (4.4)

and called it the shadow of A (See Figure 4.10). Now we have the following claims («), (8), ()

——~—

Figure 4.11: representation of the claim («), If I; C I then A(;) C A(1y).
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and the lemma is a direct consequence of this, in fact:

e~

(a) If I; C I then A(Il) C A(IQ)

P S —_—~

(B) If I, I are the halves of I, I} < Iy then A(l1) N A(lz) = 0 and A(lz) < A(IL).

—~—— e~ =~

("y) If 11712 S Dk, L1 NIy, = @, I, < I then A(Il) N A(IQ) = () and A(IQ) < A(Il)

— Proof of (a). For this we assume without loss of generality that |I1| = 27%71 || = 27*.

If I, = [23—,“ Jzikl} for some 0 < j < 2F — 1, we write P(I3) = (a, hi,) and call l; the line

that passes by P(I3) and (2%, O) and lgo the line that passes by P(I3) and (Jzikl, O). We

have:
r—3  a— J J\ v J J
I oF _ 2 Y (R A -4 _ L
k1 y hk7 T ok a ok hk’ z 2k+ a 2k
et o ks RN s B ORR o2 A O A & S GRS R
T T o ) T ok EDY:

—~

By definition A(lz) = {(:E,y) ER? |y>hp, i+ (a- L) L << &+ (a— ) i},

2F 2F ) hy, = = 2F

in this case I} = [Qj—k, 2%111} or I = [gﬂll, Jzikl} for the first case we find P(I;) the

[

point of intersection of the lines l; and the line with equation y = hg41, then P(I;) =

(;—k + (a — QJ—k) h,’;zl , hk+1), with this we find the equation of the line [x4

2541 J g\ Pk 2541
- 2J1c+1 2k + (a Qk) hi 2k+1
lka =
Yy hit1

By definition

A = {(zy) €R? |y 2 b, T + (0 - 4) 52 — ot ) s So <+ (a— 4

Let (x,y) € A(I) then y > hyt1 > hy and

2j+1 J ) heta 1 y J J\ Y
- L _ <p< L _J )L
2k+1 T <<a 2k> i 2641 ) iy = > ok +{a 2k ) hy
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—~

to see that (z,y) € A(I) is enough to prove that

j+1 J+1\ y _2i+1 7\ Pt 1 y
_ 2 < _ L _

ok +<“ ok )hk = e T\ TR ) T T ) s

27+1 J 1

:W+(“‘2—k>

2j+1 J\ ¥ Yy 1 Yy Yy
LA —_ =) = oS < —
2k+1 + <a hi 2k+1hk+1 2k+1 — Qkhk 2k+1hk+1

IN

y (1 1 Yy (2hg41 — hy
_y (1 — Y (et TR by < (2hpy — B
2k (hk 2hk+1> 2k < 2hhi41 Rk _( kL k)y
= 2hk11y — by & hihirr + by < 2he 1y & h(hrgr +y) < 2hgpy,

e~

that is clear because y > hgy1 > hy, then A(l1) C A(lz).

For the second case we find P(I;) the point of intersection of the lines lo; and the line

with equation y = hjy1, then P(I1) = ((a — 32%1) h;:l , O), with this we find the equation

of the line 3

2j+1 Jj+1 _ gL hegn 2541
loa - T — 23c+1 2F +( 2F ) I 2FFT
k3 : =

Yy P41

po Xt (i e 1 y
T 9k+1 2k hi 2k+1 hk-',-l

By definition

|

— , ‘ ‘ o
A(Il):{(%y)eRQ|y2hk+1,]zikl+(a—12ikl);;—i§iﬂ§ Ziil+((a—m) P e

e~

Let (x,y) € A(I1) then y > hgy1 > hy , and

j+1 F+1\ v 25 + 1 41N hist 1 y
— = < < —
+ (a ) <x< + a oF I + 1 ) T
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—~

to see that (z,y) € A(I) is enough to prove that

2j+1 J ) heta 1 Y J J
W%(“?«) e 2 ) g, 2k T\* TR

2j+1 Yy J\ ¥ Yy J
o AN <L -
ohF1 + Ly, + (“ % ) e 2Fhy +|a

S+ J oy oy Ly (1 _ Y (2hegr = P
2k+1 2k — Qkhk 2k+1hk+1 2k+1 = 2k hy 2Rhj41 2k 2hhi41

S hihpe1r < (2hig1 — hi)y = 2hi1y — by < hhigr + by < 2h1y © h(hirr +9) < 2hg1y

—_—~

that is clear because y > hy1 > hy, then A(I;) C A(Iy). This completes the proof of

().

— Proof of (). If [I| =27F, I = [, 2], put I = [, 21, I = [3H4, 2], By what

we have:

AL = {(@y) € B |y > hoe FH + (0 4) %2 — o) s <o <+ (- &) i)

_ L | o
A) = {(o) € B 15> hupr B+ (0 B50) £ <0< 5 (o= ) Bt + o) s )

So prove () is enough to prove that:

2j+1 ((,_i*]1 hk+1+ 1 y 241 (I hepr 1 y
2k+1 2k hi 2k+1 hk+1 2k+1 2k hi 2k+1 hk+1.

But this is equivalent to

1 J+ 1Y\ hra J O\ het 1
2k+1+(a_ 2k) b S\*T 9k ) Th T o

1 J\ hks1 P J O\ het 1
< or T (a_z_k) e 2y S\CT2F) Ty 2R

1 1 hk+1 1 hk+1

= 2k+1 + 2k+1 < Qkhk = 2k < Qkhk

& hi < hpgr,

that is true by hypothesis.

— Proof of (y). Let I; = [QJ—,C,JQL,}], I, = [QL,C,ZSF—,H, 0<jl<2—1,as; NI =0 and
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I < Iy we have j +1 < [, for n € N define Sa(n) = {r e N| 2" | n} as 1 = 2% | n we have
that 0 € S2(n) so S2(n) is nonempty, let v2(n) = max Sa(n) we call v2(n) the 2-valuation

of n, we can write n = 2"2(")t, by the maximality of v5(n), t is odd.

Let s = max{ra(n) | j+ 1 <n <I}. We claim that there exists an unique n such that
j+1<n<land s = wy(n), else ny = 251, ny = 2%ty, ny, ne different we can assume
without loss of generality that n; < ns so t1 < t3, but as t; and to are odd there exists
t even such that t; < T < to, if £ = 2u, m = 25 = 25Ty then n; = 2%, < m =
25t = 25Ty < 25ty = my, s0 j +1 < m = 25Tty < [, that contradicts the maximality

of s because vo(m) > s+ 1 > s, put n = 2% with ¢t odd we define I = [2‘5,6%1, Q,f—,s],

I3 = [th,s,;,f—}s}, we claim that I} C I , Io C I3, as n € N is the unique such that
j+1<n<l s=wvyn) wehave j <n<l+1,also2°(t—1)<jand 2°(t+1) >1+1,

hence ;,;12 < ;—k < J2ik1 < 2,% also 2,% < 2% < l;r—kl < ;,ils, this implies that I, C I7,

I, C I3, also If < I3, as tis odd t — 1 is even so t — 1 = 2w, for some w € N, hence

t+1=2(w+1), and this implies that: [* = [fUI; = [;{—,15, ;,CL}] = [Qkf“s,l , 2,}“,;11} SO
I* is an dyadic interval with |I*| = W%; we note that as [ <2 —1 and s <k —1, so

k—s—12>0.

—~—

As I, I are halves of a dyadic interval I*, I7 < I3 we apply («) to obtain A(I1) C A(I7),

—~ ——~— —~— e/~

A(Iz) € A(I3) and (B) to obtain A(I1)NA(I2) C A(IF)NA(LF) = 0, also A(I3) < A(L}),

—~ —_~—

hence A(Iz) < A(l) and A(I;) N A(Lz) = 0.

o~ e~

As P(I) € A(I), if we suppose that I; < I then A(lz) < A(Iy) in special P(Iz) < P(Iy), this

completes the proof. O

If I, I € Dy, I and I, different suppose without loss of generality that I; < I, using the

previous lemma P(Iz) < P(I1), (See Figure 4.12). If P(Iy) = (a1, hk), P(I2) = (az, hi) then

L

3 l;r—kl] and use that 7 + 1 <[, moreover:

: i g+l
as < a1, we write I; = [;—k, J2—k], Iy = [
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M)

PD) \ /

ho

hy

n I \

Figure 4.12: If I < I, then P(Iy) < P(I,) .

{xy 6R2|y>hk¢72k + (a1 %)%Sxﬁg—;—l—(al—;—g)#}and

l>

Al = {(0.0) € R 1y > b 5 + (o = ) £ <o < o+ o= ) 22 -
Let [11]:{(x,y)eR2Iyso,;—ﬁ(al—;—;)%gxﬁ#ﬂal—#)#} and

[I5] = {(x,y) ER2 |y <0, + (a2 — &) & <o < Bl + (ap — L) ,Z“’—k}wenotethatR(Il) c

hy
[I1], R(I3) C [L], [1] N (R x {0}) =1, x {0}, [Io]N (R x {0}) = I, x {0}, we claim card([I;] N
[I2]) < 1, for see this is enough to prove that JH + ( %) h—yk < 2% + ((12 — 2%) hik, for

y < 0 but this is equivalent to (al — Jzikl) h%— (a2 — 2%) h—yk < 172”%, fory<0< (al—ag)h—i—i—

(l_jjk_l) L o< l_g—k_l , ¥y < 0 that is clear because as < ay. If [I1] N [l2] = 0 we are done, if
[I[1]N[I2] is not empty, let (z,y) € [I1]N[I2] then 3+1+( %kl) == o+ (a2 — &) =y <0,
asay >asand j+1<0,1—j—-1<0,1<j+1,1=j+1, hence (al_a2)h_yk =0, so y = 0 this
implies that = o = Z&, then [N (L] = {(.,0)} = {(&5,0)}, then card([[] N [I]) < 1,

as R(Il) N R(Ig) C [Il] N [12] C R x {O} we have R(Il) n R(Ig) C [Il] N [12] C (Il n Iz) X [O],

if we take for every I € Dy, R(I) with one of the sides contained in the line I; with equation
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T = 2% + (al — Qj—k) ,Z’—k, P(I) = (ar, hg), I = [23—,” 72%1}, as the slope of [; is different of the
slope of 141, 0 < j < 2F — 1, implies that R(I;) N R(Iz) = 0 if I; N I3 is not empty, I; < I, if
Ii NIy = 0 then R(I1) N R(I2) = 0 this implies the existence of the families {R(1)};., and

{E(T) }IeDk that satisfies (1), (2), (3) and (4).



CHAPTER 5

Fefferman’s Theorem as an application of Kakeya
sets

5.1 Introduction

Let T : LP(R™) — LP(R"™), Tf = xsf. The "disc conjecture” asserts that T € PB(LP(R™)) for
D E [nQ—fl, %} We saw in Theorem 3.2 that Ty € 2(LF(R™)) for every § > %5+ and 1 < p < oo, but

the Bochner-Riesz operators and the ball multiplier are different because the disc conjecture is false.

This is the statement of the Fefferman’s Theorem that we are going to prove.

Theorem 5.1. Fefferman’s Theorem

If T : LP(R™) — LP(R™), Tf = x5 f, then T € B(LP(R™)) if and only if p = 2.

5.2 Proof overview

By the Plancherel Theorem T € Z(L*(R?)), for every n > 1, this prove sufficiency. We see the
necessity by contradiction. Note that it is enough to show that T' ¢ Z(LP(R?)) for p > 2 because de

Leeuw’s Theorem says that 7 € 2(LP(R")) implies T' € Z(LP(R""1)) and the argument of duality
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T € #(LP(R™)) if and only if T € #(L(R")) for - + ¢ = 1, given that p > 2 if and only if 1 < ¢ < 2.

If T € #B(LP(R?)), p > 2 then the following holds.

Lema 5.1. Y. Meyer

—

Let {vj}jeN C S', and H; = {x € R? | x-v; > 0}. Define {Tj}jeN C Z(LA(R?)) by Ty f = XijA.

Then for every sequence {fj}jeN C LP(R?) the following inequality follows:

MLl <c| > 151 - (5.1)
j=1 j=1

p p

So to prove the Fefferman’s Theorem it is enough to exhibit a counterexample for this Lemma for
every p > 2, we use the variant of the Kakeya construction given in the previous chapter to achieve

this goal.

5.3 Proof details

Proof of the Meyer’s Lemma

The idea is to replace every operator T by an operator associated to the disc, let r > 0, D7 = B(rvj,r)

define {77} C Z(LP(R?)), /J’? = xpjrf this allows us say that D7' C D?* if r1 < ry and

jEN
Uyso Df = Hj, in fact x € D} & ||z —rvj|| <r e r? > [z - roj||* = ||lz)|* = 2re - v + 12 < |z <
2rx - vj, this implies that if z € D' = |2]? < 2rmz-v; < 2rz-v; >z € D

AlSOxGUT>OD;:>(3T>O)(I€D;):>||IH2<2TI'UJ':>ZE-UJ'ZO:>I€HJ' and x € H; =

-0y 2 0= @ > 0)(|z]* < 2rz - v;) = w € D§ C Uyog D)

With these facts we obtain lim xpr(z) = xp,(z) for every z € R% let f € C°(R?) C §(R?)
r—>00
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Figure 5.1: D7 looks much like the half plane H; for enormous r

then f € 6(R?) C L2(R2), so ff;\f = XD;.J? € L*(R?), fl/”;‘ = Xij € L*(R?), moreover T}?(m) =

xH, () f(x) = l'gn XDy (m)f(z) = lim ff\f(:v), (r € R?), by the dominated convergence Theorem

Iy~ 135, = |

f;’?—il/}\fH —roo 0 hence lim T7 f(x) = Tjf(z) ae z € R? as f € §(R?),
2 T—00
fj’? = XDJT,]?E 5(R?), fZ/”J? = XijE §(R?) we have that 7 f,T5f € LP(R?),1 < p < oo by the

dominated convergence Theorem lim ||T7f — T} f|| = 0.
r—00 P

As Hj is a half space of R? Theorem 2.1 implies that xz, € M(LF(R?)), as we are assuming that

Xp(,1) € M(LP(R?)) this implies that xpr € M(LP(R?)), moreover ‘XD;?

= |XD(0,1)|p7 for every
P

>0, hence || T} f[|, < |XHj |p £, ||Tfpr < |XD(0,1)|p 1£1],, for every f € LP(R?).

If f € LP(R?) there exists {fi},cy C C§°(R?) such that [|f; — f||, =100 0, let € > 0 arbitrary, there

exists lo € N such that [|fi, — f[, < there exists ro > 0 such that if » > 7 then

€
2(|XHj |p+|XD(O,1) |p)’

HTjrflo - ijl0||p < 5, hence

1751 = Tif ||, < |77 F =T fio ||+ TF fro = Tiiol |, + 173010 = Tifll, < XD, 1 = Juoll,HZ7 Fio = Tifio |,
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<Ets=e

N
Nl

_ € € €
+ ‘XHj ’P 520 f”p < ‘XD(O’l)‘ZD 2(|XHj|p+|XD(o,1)|p) tat ‘XHj ’p 2(|XHj|p+|XD(o,1)|p)

if r > ro, so rlggo HTJ»Tf - ijHp =0, then Tli_}rr;OTff(x) =T;f(z) a.e x € R

=

Let {fj}jen € LP(R?) then {Tj £}y © LP(R2), 50 lim (75|77 £5(@)[*)" = (S5 IT3 ()7

a.e v € R?, for every m € N, by Fatou’s Lemma:

1
2

=

Zl|ijj|2 < lirrg%)rolf ZJTJTJCJ'(‘T)‘Q
j= p

p p

this implies to prove (5.1) is enough to prove:

> |77 £ ()| <cl > 141
i=1 =1

p p

|
N

with C' > 0 independent of r > 0. As T7 is the operator with multiplier x Dr the Theorem 2.1 implies

, 7> 0, this tells us that it is enough to prove the case r = 1. However:
P

that ’XD; . ’XD;

(T} D) = | J©em=sde = / f©ermivsdg = / Fle+vj)etmin et
D} lE—vill<1 ligl<1
_ eQﬂix~vj/ f({ + vj)SQﬂix{dg _ eQﬂix~vj/ (]ﬂf)(g)e%’mfdg — 2mizv; T(vaj ()
li€ll<1 li€l<1

= (M_y,T(M_,,f))(x)

as we assume that 7' € 2(LP(R?)) there exists C' > 0 such that ITfll, < Cfll,, we claim that

M ITH)? <cl| Y 14 (5.2)
i=1 =1

p p

as we assume p > 2, £ > 1, there exists g € L(5)'(R?) such that lgll(zy, =1 (here ¢" is de dual
2

72
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exponent of ¢) and:

1012 p\ 2
m 2 m 2 v
2 2
Sirnl) | = [ (X SITs / Z 75
j=1 R\ 55 =1
P
m m 5 % 1 m 3 ’
2 2 k2 2
<o [ Sistaser| [ (Swe) | ([ |g|<>)2 <c| [y
R2 =1 R2 =1 R2 o
P
take square roots we obtain (5.2), hence:
1 1 1
m 2 m 2 m 2
2 2 2
Z’Tlfj’ = Z’MUjT(M_Ujfj)‘ = Z‘T(M—Ujfj)’
j=1 j=1 j=1
P P P
1 1
m 2 m 2
2
<c| (XM 1| =C|l{ 21h
j=1 =1
P P
then . i
m 2 m 2
> ITl <c > 147 (5.3)
j=1 =1
P P

for every m € N, letting m — oo we obtain the proof of the Lemma.

Counterexample to Meyer’s Lemma

-2
a family of switches {Rj} ;

Jj=1

Let nn > 0, by the Lemma 4.1 there exist a family of rectangles {R; } N
R; N R, = 0 if j,1 are different, £ C R? Besicovitch set such that (1) ‘RJ‘ = 2|R;],(2) ’RJ QE‘ >

3)|E| < 7723 1 |R;], take fj = xRr;,1 < j < 2k v; € St parallel to the longer sides of R; as

in the figure 5.2.

We remember that 7; : LP(R?) — LP(R?), Z/}? = XHJ-J?, we calculate some integrals that we need

later, for this we use the Laplace transform £ {G} (s) = g(s) = [;~ e *'G(t)dt, and the recognized
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Figure 5.2: Besicovitch construction

[

Vi



5.3. Proof details

70
property [;* @dt 15~ 9(s)ds, by a simple computation if G(t) = sin(at) then g(s) = i if
G(t) = cos(at) then g(s) = sz, with this [~ Md = [y s=5gzds = Fsgn(a), also

% (cos(at) — cos(Ot) e s s 1 9 . 9 9, 9\100
/0 ( ; dt = ; P ey zi[log(s + a”) —log(s +a)]0
1 1 52—|—042°O_1 0—1 a? 11 a?
=5 og$2+ﬂ2 .73 og i ogﬂ2
this implies that [ e e = I e Ecl + 17 ;”& dx in the first integral take u = —ux,
=0=u=0 2 — —00 = u — 00, 50 fR‘i%:z'&daz = fooo zmus( du) —I—f 2ﬂmsdaz =

fooo e2mi: Ed + fOO 8727”3: gd = N fOOO %dw = -2 (%Sgn(é-))

= —misgn(§).

Ty  aris

1 axis

Figure 5.3: rectangle with sides parallel to the axis, 0 < a < b < o0



5.3. Proof details 71

We assume first R; = [—a;, a;] X [=bj,b;], 0 < a <b < oo, in this case v; = (0,1). By definition

(T ) = (e, ) @) = [ v O @i = [ (@ ([ ey ) o<

a; b ) ‘
:/ XH(g) (/ / 6—2771(51771+£2772)d771d772> e2mm»£d€
R? —a; J—b;
0o a; ] b; ) ‘
:/ / / 6_27”517716{771 / 6_27”52"%[772 627Tl(w1£1+w2£2)d§1d§2
0 R —aj —b;
aj ') b
= / / J 67271'1"5177161771 eQwix1£1d§1 / /7 672771'5277261772 627riz2£2d€2
R \/—a; 0 —b;
(/ o) )2-£d) /w[e_%i&’”r 2rivata g
= —aj,a; =M s e
]RX[ 7 ]] 51 51 0 _27_‘_7/52 7bj 52
27r1b§2 _ e*Qﬂ'Z‘bEQ )
2#112E2d
X[_ajxaj] </O ( 27Tl§2 > € 52)
e2mi (x2+bj)E2 _ e27ri(m2—bj)§2
= d
X[ a;,a;] Jfl (‘/0 ( 27_”;52 ) 52)

cos(2m(z2 + bj)&2) — cos(2mi(xg bj)@)) dés

X[ Al—a;,a5)(T1) a;](z1)

21 0 ( &
a] a;]( /°° (sm (2mi(xe + bj)&2) — sin(2mi(xo bj)§2)> dt
0
1
3l

&2
_ X[‘“J:“J]
271

I2+b

T
:102 =, > +1 (g(sgn(xg +b;) — sgn(ze — bj))>
X[— X[—aj,a;]\F1) Jil

211

22 i o)

R;j = [~aj.a;j] x ([~bj, —3b;] U

=

2 for every # € R, in fact 2 € R; implies b; < |22| < 3b; if and only if b; < 2y < 3b; or —3b; <

then }(TjXRj)(xl"TQ)} z %X[—aj,aj](ml)

$2+b
x2—b;

o —bj
xTo erj

[b;,3b;]) then z € ;2; ifand only if |z1] < aj, b; < |z2] < 3bj, we claim that max{

)

. b, b,
zy < —bj, in the first case |22 T2t
Ig—bj

_Igb

20 > 2 & w9+ b > 2w0 — 2b; < x2 < 3b; that is clear, in

the second case Z—;Z”: = % >2& by — a9 > —2b;j — 2xy < x9 > —3b; that also is clear, then
J J
log 2
S R implies |(Tjxr,)(z1,22)| > “E2 > &, hence |Tjxg,| > 10X§j-

If R; is a rectangle centered at the origin then R; = A;([—a,a] x [=b,b]) with 4; : R? — R?

Aj(z1,z0) = xlij + z2vj, vjl = (—vj2,vj1), if v; = (vj1,v52), as A; € O(2) using the proposition 1.2
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and that XR; —X[—a],aj]x[ bju] Aj_ll

Ti(Xr,) = (XH, X[=a;,0; % [—b; b,]] © Aj_l)v = ((xu, 0 Aj) 0 Aj_li[faj,aj]X[fbj,bj] ° Aj_l)v
= (((xa, © A)X([aj.a;x[b;.b;]) © Aj_l)v = (((xa, © Aj)?[fajyaj]x[fbjybﬂ))v o A;t

- v _
= (XHoX(—aj.a,]x(=byby1) © A7 = ToX(—ay.a,]x(=b,.by] © A7
where Hy = {z € R? | 22 > 0}, Tof = Xu,f. As z € R, A;lx € [—aj,a;] x [-bj,b;] =

| Txr, (#)] = [(Tox(-a;.a;x(b, ) (A7 2)| 2 $5X(-aj.0,x1-b;.0,) (A7 ' 2) = T5xg; (@), where R; =

Aj([=aj,a;] x ([=3bj, —b;] U [bs, 3b;])).

The general case is when R; is a rectangle centered at the point y € R?, for this we suppose that R;
is a rectangle centered at the origin. If R;“f =y + R; then XRY = T-yXR; and 1}? =y+ E implies

x}%:y = T-yXg, then

T = [ o OXG O = || Spleemias = [ = e

= [ e TR (£ EdE = XR (£)e>™ = Ede = (Tyxg, ) (x — y) = 7y (Tjxr,)(z)
H

J

astRg@x—yeRjé’TjXR]y

= |(Tyxa, )@ — )] = Sz (@ — ) = Sxgm(@). I we wite
J
i = Xgr, where R; an artitrary rectangle with v, parallel to the longest side of R, we have that
J XR; J j J

(T} f;) ()| > 15 for every z € R;, so

2k
/Z|(ijj)( )2 d:z:_Z/|Tfj |dI>Z/ (T3 f) |d:z:>— ’EQR’
E \j=1
TN 1 &
> — | =— R,
—12000;’R3’ 6000;|J|

Q=
Il
—_
|
S
I
S
<f
V)

iftheLemma5.1wastrue,usingthatp>2,§>1,%+%:1<:>%+%:1<:>
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q= ﬁ, we apply the Holder inequality:

2k 2k
iJi )\ 2 xXr = Xz iJi )\ 2 X
[E;I(ij])( ) do= [ xet S5 | d

2 2 12
1 2k P ok 2
q p—2
< ([ erras) | [ S G| | =187 (S mme@r
=1 j=1
’ p
1112 p 2
ok 2 ok 2 P
p—2 p—2
<cip | (Sl | T | [ (Siner)
j=1 j=1

P

2
as RjN R, =0 if j,1 are different,= C2 |E|"7 (/ (XUQk R,)z dx)
R2 J=1-"7

2
p—2
=C?|E|F (/RZXU?kIRjdx> =C2|E|T Z/ da

P ok P P

= 2B Z|R| < | IR Z|Rj| = Z|R|
j=1 j=1

_p_ p—2 k
for 0 <1 < (gos00z) ¥ ° we have that C?n 7 < s hence [, ( f (T i) ()] )dx < 5055 (Z?:l |Rj|),

which is a contradiction. This complete the proof.



CHAPTER 6

Conclusions and Additional Results

In this chapter we will see two elementary consequences of Fefferman’s theorem.

Theorem 6.1. If A € GL(R"™) is a self-adjoint operator then x agy € M(LP(R™)) if and only if
p=2.

Proof. By definition and the theorem of the change of variables we have that if f € S(R"):

T = [

A(B)

Flermi=as = [ (Fo a4 = aet(a)] [ Flaye==<ag
B B
but A is self-adjoint z - A = Ax - £, using change of variables f o A = |det(A)|_1 fﬁl then
(Taf)(@) = | foA e 4dg = T(f o A™)(Ax)
Rn

for every # € R", where T is the operator associate to xp, then Taf = T(f o A=1) o A, this implies
that | Taf|} = |det(A)] " |T(foA™Y)] 2, so |Tafll, = |det(A)|_% |T(f o Ail)Hp. Let p different of
2, as T is not bounded there exists {f;},.y C C5°(R") such that [ f;||, = 1, [[Tfjll, = j, for every
jeN, let g; = |det(A)|% fj oA, then:

sl = et ()] [ 1A da = der(a)] [ 1@ [det(a™ Y @) do = [ 156 do = £ =1

_1 _ . n
moreover || Taf, = |det(A)|”7 || T(g; 0 A7V)[|, = ITfll, = j, so {gj};en © LP(R™), llgsll, = 1,
[Taf;ill, = j, for every j € N, so Ta ¢ #(LP(R")) if p is different of 2, the Plancherel theorem implies
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that Ty € B(L*(R™)), then x4(p) € M(LP(R™)) if and only if p = 2. O

Corollary 6.1. If ay,...,an > 0 then xgp ¢ M(LP(R™)) for p different of 2, where
E={¢eR"| Y a—é <1
J
is an ellipsoid.

Proof. Take the operator A associate to the matrix A = diag(aq, ..., a,) then A € GL(R™) is self-
adjoint note that A(B) = E, in fact y = Az, x € B & y; = a,x;, Z?lef <1l,1<j<ne
Z;l 1 2 <1<y € E, applying the theorem we complete the proof. O

Proposition 6.1. Let C = {¢ € R | () € B} the cylinder, n > 2 then xc € M(LP(R"*1)) if and

only if p= 2.

Proof. Let T¢ be the operator associated to x¢, then for every f € CJ(R"1):

(ch / f e2miT: fdé- // f é-(n §n+ ) 27 (™) .£ () 271'11n+15n+1d§(n d§n+1

as xp & M(LF(R™)) for p different of 2 there exists {f;},c C C§(R™) such that 1£5ll, = LTS, = g,
for everYj € Na we define gj - RnJrl — Ra gj(x(n)aInJrl) fj( )X(O 1) (szrl) then ||gJ||LP ]Rn+1) =
fRn+1 |gj(x)|p de = fRn+1 |f](x)|p ‘X(O,l)(xn-i-l)‘pdx = fO dxn-l—l fRn |f] )|pdx ) = Hfj”LP(Rn) =1,

moreover by the recognized property of the Fourier transform of functions of independent variables
Gi(€™,&nr1) = F;(€)X(0.1) (€nt1) then
Tog;)lw / / Gi(EM Guyr)e Y 2 b e dg, .

— ﬂix"+1~ n+1 n ﬂiz(n)- (n) n n
= ( RXOl Y (Ens1)e? ¢ d§n+1) (/B Fie™e? & de )) :X(O,l)(xn-i-l)(Tfj)(x( ))
hence

(Teg; (@) di = / X0y @n)|” 1T L) @) de

Rn+1

Togi ey = |

Rn+1

= ([ ) ([ || ) =175

then {gj}jeN C LP(R™), ||ngp =1, |[Tcg;|| > j, for every j € N, that is T ¢ B(LP(R"*!)) by
definition xo & M(LP(R™1)) for every p different of 2, 1 < p < co.
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On the other hand we have that yz € M(L*(R™)), note that xo (™, z,11) = x5(z™), the theorem
2.4 (extension theorem) implies that yo € M(L?(R™"1)), this completes the proof. O
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