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Abstract

This work is about conformally invariant equations from a geometric point of view. In other words,
given a solution to an elliptic conformally invariant equation in a subdomain of the sphere, following
ideas of Espinar-Gálvez-Mira, we construct an elliptic hypersurface in the Hyperbolic space. We can
related analytic conditions of the solution to the conformally invariant elliptic equation and the geometry
of the hypersurface.

In this work we show a non-existence theorem for degenerate elliptic problems for conformal metrics
on the closed hemisphere Sm

+ with minimal boundary. Using the work of Fabian M. Spiegel [46], we can
generalize the above result to simply-connected locally conformally flat manifolds with boundary. On
the compact annulus A(r), 0 < r < π/2, we prove a uniqueness result for degenerate problem with
minimal boundary. We prove a non-existence theorem for degenerate problems on the compact annulus
A(r), 0 < r < π/2, under the hypothesis that there is a solution on Sm

+ \{n} that satisfies certain property.
We show that a solution for elliptic problems of conformal metrics on the punctured domain Sm \ {n}
with minimal boundary is rotationally invariant. For the non-degenerate case on the punctured domain
Sm
+ \{n} we have that solutions with minimal boundary are rotationally invariant.

Keywords: Conformally invariant equations, geometric methods, Maximum principle, non-existence,
rotationally invariant metrics, horospherically concave hypersurfaces, non-degenerate elliptic problems,
degenerate elliptic problems.
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Resumo

Este trabalho é sobre equações conformemente invariantes do ponto de vista geométrico. Em out-
ras palavras, dada uma solução de uma equação conformemente elíptica num subdomínio da esfera,
seguindo as ideias de Espinar-Gálvez-Mira, podemos construir uma superfície elíptica no espaço hiper-
bólico. Podemos relacionar condições analíticas da solução de uma equação elíptica conformemente
invariante e a geometria da hipersuperfície.

Neste trabalho mostramos um teorema de não existência para problemas elípticos de métricas con-
formes no hemisfério fechado Sm

+ com bordo mínimo. Usando o trabalho de Fabian M. Spiegel [46],
podemos generalizar o resultado acima para variedades riemannianas simplesmente conexas, conforme-
mente planas localmente com bordo. No anel compacto, provamos um resultado de unicidade para
problemas degenerados com bordo mínimo. Provamos um teorema de não existência para problemas
degenerados no anel compacto A(r), 0 < r < π/2, sob a hipótese de que existe uma solução em Sm

+ \{n}
que satisfaz certa propriedade. Mostramos que uma solução para o problemas elípticos de métricas con-
formes no domain Sm

+ \{n} com bordo mínimo é rotacionalmente invariante. Para o caso não degenerado
no domain Sm

+ \{n} temos que as soluções com bordo mínimo são rotacionalmente invariantes.

Palavras-chave: Equações conformemente invariantes, métodos geométricos, princípio do máximo, não
existência, métricas rotacionalmente invariantes, hipersuperfícies horoesfericamente côncavas, proble-
mas elípticos não degenerados, problemas elípticos degenerados.
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Introduction

Let (M ,g0) be a compact Riemannian manifold without boundary and consider g = e2ρg0, ρ ∈C∞ (M ),
a conformal metric. The Yamabe Problem is to find a conformal metric g = e2ρg0 such that the scalar
curvature of (M ,g) is constant. Yamabe [49] claimed the solution to such problem, but the proof given
by himself had a mistake. This problem got the attention of the community and it was solved by a series
of works by mathematicians as Trudinger [48], Aubin [1] and finally Schoen [43], who gave a complete
answer to the problem.

When the manifold (M ,g0) is complete but not compact, the existence of a conformal metric solving
the Yamabe Problem does not hold in general, as we can see in the work of Zhiren [50].

When the manifold (M ,g0) is compact with boundary, the Yamabe Problem with Boundary is to
find a conformal metric g = e2ρg0 such that the scalar curvature is constant and the mean curvature of
the boundary of M is constant. This line was started by J. Escobar [14, 15, 16, 17] and continued by
F.C. Marques [38] among others. We will also refer to this problem as the Escobar Problem.

Regarding to the existence of solutions, J. Escobar proved the following

Theorem [17]. Let Ω ⊂ Rm, m > 6, be a bounded domain with smooth boundary. There
exists a smooth metric g conformally related to the Euclidean metric such that the scalar
curvature of g is zero and the mean curvature of the boundary with respect to the metric g is
(positive) constant.

Also, J. Escobar proved:

Theorem [15]. Any bounded domain in a Euclidean space Rm, with smooth boundary and
m≥ 3, admits a metric conformal to the Euclidean metric having (non-zero) constant scalar
curvature and minimal boundary.

Regarding to the classification of solutions to the Escobar Problem, in the case that (M ,g0) is the
closed Euclidean ball Bm, J. Escobar showed that the solution to the Yamabe Problem with Boundary
must have constant sectional curvature. Even, he proved that the space of solutions in the Euclidean ball
is empty when the scalar curvature is zero and the mean curvature is a non-positive constant [14].

The existence of solutions to the Yamabe problem on non-compact manifolds (M ,g0) with compact
boundary is proved for a large class of manifolds in the work of F. Schwartz [45]. He proved that the

ix



x INTRODUCTION

Riemannian manifolds that are positive and their ends are large have a conformal metric zero of scalar
curvature and constant mean curvature on its boundary (see [45] for details). Even more, F. Schwartz
proved the following:

Theorem [45]. Any smooth function f on ∂M can be realized as the mean curvature of a
complete scalar flat metric conformal to g0.

The Yamabe Problem opened the door to a rich subject in the last few years: the study of con-
formally invariant equations. More precisely, given a smooth functional f (x1, . . . ,xm), does there ex-
ist a conformal metric g = e2ρg0 on M such that the eigenvalues λi of its Schouten tensor satisfies
f (λ1, . . . ,λm) = c on M ?

Given (M ,g) a Riemannian manifold, for m≥ 3, the Schouten tensor of g is given by

Sch(g) :=
1

m−2

(
Ric(g)− Scal(g)

2(m−1)
g
)

where Ric(g) and Scal(g) are the Ricci tensor and the scalar curvature function of g respectively.
Note that, when f (x1, . . . ,xm) = x1 + · · ·+ xm we have the Yamabe Problem. Of special interest is

when we consider f (λ ) ≡ σk(λ )
1/k, λ = (λ1, . . . ,λm), where σk(λ ) is the k−th elementary symmetric

polynomial of its arguments λ1, . . . ,λm and set it to be a constant, i.e., σk(λ ) = constant, such problem
is known as the σk−Yamabe Problem. This is an active research topic and has interactions with other
fields as Mathematical General Relativity [5, 25].

Interesting problems arise in this context of conformally invariant equations. One of them is the
classification of complete conformal metrics satisfying a Yamabe type equation on a subdomain of the
sphere, in the line of Y.Y. Li [29, 30]. Also, it is interesting to find non-trivial solutions to conformal
metrics on subdomains of the sphere prescribing the scalar curvature in the interior, or other elliptic
combination of the Schouten tensor, and the mean curvature of the boundary, such problem is related to
the Min-Oo conjecture when we consider the scalar curvature inside. S. Brendle, F.C. Marques and A.
Neves [4] showed the existence of such non-trivial metric in the hemisphere, however such metric is not
conformal to the standard one on the sphere. In other words, could one find conditions on the interior
and the boundary that imply that such conformal metric is unique (see [36])? In this work we will focus
in the case M is the m−dimensional sphere Sm or a subdomain of it.

Let us explain in more detail the meaning of a fully non-linear conformally invariant elliptic equation.
Originally, these type of equations are second order elliptic partial differential equations on Rm. The
problem is to find a function u > 0 satisfying an identity of the type

F (·,u,∇u,∇2u) = c,

where c is a constant.
Such kind of equation is called conformally invariant if for all Möbius transformation ψ in Rm and

any positive function u ∈C2 (Rm), it holds

F
(
·,uψ ,∇uψ ,∇

2uψ

)
= F

(
·,u,∇u,∇2u

)
◦ψ, (1)
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where uψ is defined by

uψ := |Jψ|
m−2
2m u◦ψ,

and Jψ is the Jacobian of ψ . For more details see [33].
One can check that if there is a smooth positive function u : Rm→ R such that

F
(
·,u,∇u,∇2u

)
= c = cte,

then, from (1), we have that
F
(
·,uψ ,∇uψ ,∇

2uψ

)
= c

for any Möbius transformation in Rm.
Aobing Li and YanYan Li proved a fundamental relation between solutions of this type of equations

and the eigenvalues of the Schouten tensor of a conformal metric related to such solution. Specifically:

Theorem [33]. Let F (·,u,∇u,∇2u) be conformally invariant on Rm. Then

F
(
·,u,∇u,∇2u

)
= F

(
0,1,0,−m−2

2
Au
)
,

where

Au :=− 2
m−2

u−
m+2
m−2 ∇

2u+
2m

(m−2)2 u−
2m

m−2 ∇u⊗∇u− 2
(m−2)2 u−

2m
m−2 |∇u|2 I

and I is the m×m identity matrix. Moreover, F (0,1,0, ·) is invariant under orthogonal
conjugation, i.e.,

F

(
0,1,0,−m−2

2
O−1AO

)
= F

(
0,1,0,−m−2

2
A
)
∀A ∈S m×m, O ∈ O(n),

where S m×m is the set of m×m symmetric matrices .

Thus the behavior of F
(
·,u,∇u,∇2u

)
is determined by the matrix Au, such matrix is nothing but the

Schouten tensor of the conformal metric g = u
4

n−2 gEucl . Then, in order to define a conformally invariant
equation, we use functions F ∈C1 (U)∩ ∈CO

(
U
)
, where U is an open subset of S m×m, such that the

following conditions hold:

1. for all O ∈ O(m): O−1AO ∈U for all A ∈U ,

2. for all t > 0: tA ∈U for all A ∈U ,

3. for all P ∈P: P ∈U , where P ⊂S m×m is the set of m×m positive definite symmetric matrices,

4. for all P ∈P: A+P ∈U for all A ∈U ,
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5. 0 ∈ ∂U .

Also, the second order differential equation will be elliptic if the function F satisfies

1. for all O ∈ O(m): F
(
O−1AO

)
= F(A) for all A ∈U ,

2. F > 0 in U ,

3. F |∂U = 0,

4. for every M ∈U : (
∂F

∂Mi j

)
∈P.

The above conditions on (F,U) allow us to simplify the function to a functional acting on the eigen-
values of the Schouten tensor, i.e., on the eigenvalues of Au. In order to make this explicit, let us define
the following subsets:

Γm ={x ∈ Rm : xi > 0, i = 1, . . . ,m},
Γ1 ={x ∈ Rm : x1 + · · ·+ xm > 0} .

Let Γ⊂ Rm be a symmetric open convex cone and f ∈C1 (Γ)∩C0
(
Γ
)

such that

1. Γm ⊂ Γ⊂ Γ1,

2. f is symmetric,

3. f > 0 in Γ,

4. f |∂Γ = 0,

5. f is homogeneous of degree 1,

6. for all x ∈ Γ it holds ∇ f (x) ∈ Γm.

Now, we will see how to obtain the open set U ⊂ Rm and the function F : U→ R satisfying the above
properties from the data Γ and f . The pair ( f ,Γ) is called elliptic data. From f : Γ→ R we define

U =
{

A ∈S m×m : λ (A) ∈ Γ
}
,

where λ (A) = (λ1, . . . ,λm) are the eigenvalues of A. Since Γ is symmetric it is well defined. Also we
define

F(A) = f (λ (A)).

Observe that the function F : U → R is in C1(U) and it can be continuously extended to U such that
F |∂U = 0. Then, this function F : U → R and the set U satisfy the properties listed above.
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Hence, the problem with elliptic data ( f ,Γ) for conformal metrics in a domain Ω ⊂ Sm is to find a
conformal metric g = e2ρg0 to the standard metric g0 such that

f (λ (g)) = c in Ω,

where λ (g) = (λ1, . . . ,λm) is composed by the eigenvalues of the Schouten tensor of g = e2ρg0 and c is a
constant. We can also distinguish two cases, when c > 0 is a positive constant, without loss of generality
we can consider c = 1, the problem is called non-degenerate. When the constant satisfies c = 0, the
problem is called degenerate.

By the stereographic projection, any domain of Rm corresponds to a domain in Sm. Moreover, the
stereographic projection is conformal, hence, any conformal equation in a domain of Rm can be seen as
a conformal equation in the corresponding domain in Sm, and vice-versa. Therefore, henceforth we will
consider conformally invariant equations in subdomains of the sphere (Sm,g0) endowed with its standard
metric.

Now, take g = e2ρg0 on Ω⊆ Sm. The Yamabe problem for Scal(g) = 1 and h(g) = c, where h(g) is
the boundary mean curvature with respect to the outward unit normal vector field, is equivalent to find a
smooth function ρ on Ω such that{

λ1 + · · ·+λm = 1
2(m−1) , in Ω,

h(g) = c, on ∂Ω.
(2)

Posed in this form, problem (2) can be generalized to other functions of the eigenvalues of the
Schouten tensor. For instance, one may consider the σk-Yamabe problem on Sm

+ considering the k-
symmetric function of the eigenvalues of the Schouten tensor [40, 41]. In this work we are interested
in the fully nonlinear case of this problem, in the line opened by A. Li and Y.Y. Li [35]. Namely, given
( f ,Γ) an elliptic data and, b≥ 0 and c∈R, find ρ ∈C∞(Sm

+) so that g= e2ρg0 is a solution of the problem
f (λ (g)) = b, λ (g) ∈ Γ in Sm

+,

h(g) = c, on ∂Sm
+.

(3)

M.P. Cavalcante and J.M. Espinar [7] have shown by geometric methods that

Theorem [7]. If g = e2ρg0 is a conformal metric on Sm
+ that satisfies{

f (λ (g)) = 1, in Sm
+,

h(g) = c, on ∂Sm
+,

then, there is a conformal diffeomorphism Φ : Sm→ Sm such that g = Φ∗
(

g0
∣∣
Sm
+

)
.

Using analytic methods, A. Li and Y.Y. Li [35] proved the result above. Nevertheless, M.P. Caval-
cante and J.M. Espinar went further and they dealt with annular domains, as J. Escobar did [14] for the
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scalar curvature, in the fully nonlinear elliptic case. Let us denote by n ∈ Sm
+ ⊂ Sm the north pole and let

r < π/2. Denote by Br(n) the geodesic ball in Sn centered at n of radius r. Note that, by the choice of r,
∂Sm

+∩∂Br(n) = /0.
Denote by A(r) = Sm

+ \Br(n) the annular region determined by Sm
+ and Br(n). Note that the mean

curvature of ∂Br(n) with respect to g0 and the inward orientation along ∂A(r) is a constant h(r) depend-
ing only on r. Let us consider the problem of finding a conformal metric on A(r) satisfying an elliptic
condition in the interior and whose boundary components ∂Br(n) and ∂Sm

+ are minimal.
In other words, given ( f ,Γ) an elliptic data, find ρ ∈C∞(A(r)) so that the metric g = e2ρg0 satisfies

f (λ (g)) = 1, in A(r),

h(g) = 0, on ∂Br(n)∪∂Sm
+.

(4)

In the above situation, M.P. Cavalcante and J.M. Espinar obtained:

Theorem [7]. Let ρ ∈C∞(A(r)) be a solution to (4). Then, g = e2ρg0 is rotationally sym-
metric metric on A(r).

This work is organized as follows. In Chapter 1, we establish the preliminary results from differential
geometry necessary along this work. There, we review the different models of the Hyperbolic Space
and its isometries. Also we explore the Hyperbolic Space as a conformally compact manifold and, in
particular, we study its conformal infinity. Then, we recall the definition of the Schouten tensor of
a conformal metric to the standard metric on the sphere, a capital object in this work. To close this
chapter, we define the notion of elliptic data in the context of elliptic problems for conformal metrics on
domains of the sphere and, the notion elliptic data in the context elliptic problems for hypersurfaces of
the Hyperbolic space. Most of this chapter can be tracked down from the references [2, 3, 8, 19, 47].

Chapter 2 is devoted to the local relationship between horospherically concave hypersurfaces in
Hm+1 and conformal metrics on Sm. We begin by giving the definition of the Hyperbolic Gauss map
for an oriented immersed hypersurface in Hm+1. In such definition, we use the boundary at infinity of
the Hyperbolic space, also called ideal boundary of Hm+1, that is, the sphere Sm. There are sufficient
and necessary conditions for the hyperbolic Gauss map to be a local diffeomorphism. One of these
conditions is related to the regularity of the light cone map of an oriented hypersurface that will be
defined in Subsection 2.1.2. Others conditions are related to the principal curvatures of the given oriented
hypersurface.

Then, we define one of the important objects in our study, horospherically concave hypersurfaces
in Hm+1. These hypersurfaces are oriented and they have the property that its Hyperbolic Gauss map
is a local diffeomorphism. The importance of this class of hypersurfaces is that, locally, we can give a
conformal metric over the image of the Hyperbolic Gauss map (conformal to the standard metric g0 on
the sphere Sm). Suppose that g = e2ρg0 is this conformal metric, ρ ∈C∞ (Ω), where Ω is a small open set
that is contained in the image of the Hyperbolic Gauss map, the function ρ has a geometric interpretation
that is related to tangent horospheres to the original hypersurface. In the Poincaré ball model, ρ is the
signed hyperbolic distance between the tangent horosphere and the origin of the Poincaré ball model.
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We have to recall now the Local Representation Theorem:

Local Representation Theorem [19]. Let φ : Ω ⊆ Sm −→ Hm+1 be a piece of horospheri-
cally concave hypersurface with Gauss map G(x) = x. Then, it holds

φ =
eρ

2
(
1+ e−2ρ

(
1+ |∇ρ|2

))
(1,x)+ e−ρ(0,−x+∇ρ).

Moreover, the eigenvalues λi of the Schouten tensor of the horospherical metric ĝ = e2ρg0
and the principal curvatures κi of φ are related by

λi =
1
2
− 1

1+κi
.

Conversely, given a conformal metric ĝ = e2ρg0 defined on a domain of the sphere Ω ⊆ Sm

such that the eigenvalues of its Schouten tensor are all less than 1/2, the map φ given by
(2.7) defines an immersed, horospherically concave hypersurface in Hm+1 whose Gauss map
is G(x) = x for x ∈Ω and whose horospherical metric is the given metric ĝ.

The Local Representation Theorem says that the function ρ is all that we need to recover the origi-
nal hypersurface. Such theorem is of great importance, because we can obtain horospherically concave
hypersurfaces with injective Gauss map from conformal metrics on domains Ω of the sphere Sm if we im-
pose certain conditions. This conformal metric is called the horospherical metric of the horospherically
concave hypersurface in Hm+1.

In Section 2.4, we study how isometries in the Hyperbolic space Hm+1 affect the horospherical metric,
more precisely, how the horosherical metric of the hypersurface changes when we apply an isometry to
this hypersurface. In particular, in Section 2.5, if the horospherically concave hypersurface is invariant
under an isometry in Hm+1 then the associated horospherical metric is invariant under the conformal
diffeomorphism of Sm associated to the isometry, and vice-versa.

We finalize this chapter introducing the elliptic problems for conformal metric on domains on the
sphere Sm, elliptic problems for hypersurfaces in the hyperbolic space Hm+1 and how they are related
under the Local Representation Theorem.

We see how a horospherically concave hypersurface in Hm+1 gives rise to a (locally) well defined
conformal metric on a subdomain on Sm. Also, such metric is global if we assume that the Hyperbolic
Gauss map is injective. So, in Chapter 3 we study the opposite, that is, given a subdomain Ω ⊂ Sm and
ρ ∈C∞ (Ω), consider the conformal metric g = e2ρg0, then the question is: what can we say about the
hypersurface given by the representation formula?

It is known [3, 19] that if we impose certain conditions on the given conformal metric g = e2ρg0, we
have a horospherically concave hypersurface with injective map Gauss. Moreover, we can obtain that
such horospherically concave hypersurface is proper. Specifically,
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Theorem 3.1. Given ρ ∈C1 (Ω), the map φ : Ω→Hm+1 is proper if, and only if, |ρ|1,∞ (x)→
∞ when x→ p, for every p ∈ ∂Ω.

Using this theorem, we can give a condition on a complete conformal metric that guaranties that the
associated map is proper.

Theorem 3.3. Let g = e2ρg0 be a complete metric on Ω, such that σ = e−ρ is the restriction
of a continuous function that is defined on Ω. Then φ : Ω→Hm+1 is a proper map.

In the following, we make use of the parallel flow of a horospherically concave hypersurface, this
flow is defined using the negative of the orientation of the hypersurface. More precisely, let η be the
normal vector field of φ , that is the orientation of φ , then for every t > 0, we define the map φt : Ω→Hm+1

as the map that we get from φ using the vector field −η in a time t. More precisely,

φt(x) = γ (t,φ(x),−η(x)) ∀x ∈Ω,

where γ (·,φ(x),−η(x)) is the geodesic in the Hyperbolic space Hm+1 passing through φ(x) and has
velocity −η(x) at that point.

In fact, the map φt is a horospherically concave hypersurface in the Hyperbolic space Hm+1 for every
t > 0. The horospherically metric of φt : Ω→ Hm+1 is the conformal metric gt = e2tg, where g is the
horospherical metric of φ . It is remarkable that the property of properness is invariant under the parallel
flow.

Proposition 3.4. Assume that φ : Ω→ Hm+1 is proper, then φt : Ω→ Hm+1 is also proper
for every t ∈ R.

Using the Local Representation Theorem we can say that the horospherically concave hypersurfaces
that we get using the parallel flow of an horospherically concave hypersurface correspond to dilations of
the horospherical metric of the original horospherically concave hypersurface.

Also, we will see that if we impose some extra conditions on the conformal metric, then we get
embeddedness of horospherically concave hypersurfaces using the parallel flow.

Theorem 3.6. Let ρ ∈C∞ (Ω∪V1) be such that σ = e−ρ ∈C∞ (Ω∪V1) satisfies:

1. σ ·σ can be extended to a C1,1 function on Ω.
2. 〈∇σ ,∇σ〉 can be extended to a Lipschtiz function on Ω.

Then, there is t0 > 0 such that for all t > t0 the map ϕt : Ω∪V1 → Hm+1 associated to
ρt = ρ + t is an embedded horospherically concave hypersurface.

In Section 4 of Chapter 3, we will study how conditions on the boundary of a complete conformal
metric (cf. Definition 3.5) influence the boundary of the associated horospherically concave hypersur-
face. We begin with geodesic balls of Sm and we identify their boundaries with ideal boundaries of
totally geodesic hypersurfaces in Hm+1, that is, given a geodesic ball of the sphere Sm+1, its boundary is
the ideal boundary of a totally geodesic hypersurface in the Hyperbolic space Hm+1 and the converse is
true. More specifically,
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Proposition 3.9. The ideal boundary of a totally geodesic hypersurface of Hm+1 given by
E(a,0), a = (a0, ā), � a,a�= 1, is the boundary of a geodesic ball Br(p) of Sm, where
p = 1

|a|a and r ∈ (0,π) satisfies cot(r) = a0. Reciprocally, given the boundary of a geodesic
ball ∂Br(p) ⊂ Sm, the ideal boundary of the totally geodesic hypersurface E(a,0) ⊂ Hm+1

is ∂Br(p), where a = (cot(r),csc(r)p).

In the case of domains that are closed geodesic balls Br(p) of the sphere Sm, where 0 < r ≤ π/2,
if we impose the condition that the horospherical metric g = e2ρg0 has constant mean curvature along
the boundary ∂Br(p), then we get information about the location of the boundary of the horospherically
concave hypersurface, we get this from the Local Representation Theorem. There, we will see that the
boundary lies in an equidistant hypersurface.

Proposition 3.10. Assuming that V1 contains a component which is the boundary of a
geodesic ball ∂Br(p), p ∈ Sm, r ∈ (0,π), and h(g) = c = cte along ∂Br(p), then

φ (∂Br(p))⊂ E(a,−c),

where E(a,−c) is the totally geodesic hypersurface equidistant to E(a,0) given by

E(a,−c) =
{

y ∈Hm+1 :� y,a�=−c
}

and a = (cot(r),csc(r)p).

We will see how, using the parallel flow, we can get horospherically hypersurfaces in one of the com-
ponents in the Hyperbolic space Hm+1 determined by the equidistant hypersurface where its boundary is
contained. For simplicity we give the statement assuming that p = n and r = π/2.

Theorem 3.12. Let g = e2ρg0, ρ ∈ C∞ (Ω∪V1), be a conformal metric on Ω such that
∂Sm

+ ⊂ V1 and
h(g) = c on ∂Sm

+,

where c ∈ R is a constant. Assume that

lim
x→q

(
1+ e2ρ(x)+ |∇ρ(x)|2

)
=+∞ for all q ∈ V2.

Then, there exists t0≥ 0 such that for every t > t0, the set ϕt (Ω∪V ′1 ) is contained in the half-
space determined by E(−e−tc) and contains n at its ideal boundary, where V ′1 = V1 \∂Sm

+.

Finally, we see how the parallel flow affects to the elliptic problem for conformal metrics.
In Chapter 4, we deal with degenerate and non-degenerate elliptic problems for conformal metrics

on the closed hemisphere Sm
+ , on compact annulus on the sphere Sm and on semi-annulus on the sphere

Sm.
As said above, J. Escobar proved in [14] that for the Yamabe problem with boundary for the case Bm,

if the scalar curvature is zero then the mean curvature can not be negative. In this work, we generalize
this for degenerate fully nonlinear conformally invariant equations, that is,



xviii INTRODUCTION

Theorem 4.1. Let ( f ,Γ) be an elliptic data for conformal metrics and let c≤ 0 be a constant.
Then, there is no conformal metric g = e2ρg0 on Sm

+, where ρ ∈C∞
(
Sm
+

)
, such that{

f (λ (g)) = 0 on Sm
+,

h(g) = c on ∂Sm
+,

where λ (g) = (λ1, . . . ,λm) is composed by the eigenvalues of the Schouten tensor of g =
e2ρg0.

That theorem can be extended to m-dimensional compact, simply-connected, locally conformally flat
manifold (M ,g0) with boundary ∂M that is umbilic, and Scal(g0) ≥ 0 on M , using a result of F. M.
Spiegel [46],

Theorem 4.2. Set ( f ,Γ) an elliptic data for conformal metrics and c ≤ 0 a constant. Let
(M ,g0) be a m-dimensional compact, simply-connected, locally conformally flat manifold
(M ,g0) with umbilic boundary, and Scal(g0)≥ 0 on M . Then, there is no conformal metric
g = e2ρg0, ρ ∈C∞ (M ), such that{

f (λ (g)) = 0 in M ,
h(g) = c on ∂M ,

where λ (g) = (λ1, . . . ,λm) is composed by the eigenvalues of the Schouten tensor of the
metric g = e2ρg0.

Also, using [46], we can extended the result of Cavalcante-Espinar [7] for the non-degenerate case.
Specifically,

Theorem 4.3. Set ( f ,Γ) an elliptic data for conformal metrics and c ≤ 0 a constant. Let
(M ,g0) be a m-dimensional compact, simply-connected, locally conformally flat manifold
(M ,g0) with umbilic boundary, and Scal(g0)≥ 0 on M . If there exists a conformal metric
g = e2ρg0, ρ ∈C∞ (M ), such that{

f (λ (g)) = 1 in M ,
h(g) = c on ∂M ,

where λ (g) = (λ1, . . . ,λm) is composed by the eigenvalues of the Schouten tensor of the
metric g = e2ρg0, then M is isometric to a geodesic ball on the standard sphere Sm.

Next, we deal with degenerate problems on the compact annulus A(r), 0 < r < π/2. Using the same
techniques that M. Cavalcante and J. Espinar [7], every solution to the degenerate problem on A(r) with
minimal boundary is rotationally invariant. Also, if there is a solution to such problem then it is unique
up to dilations.
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Theorem 4.6. Set r ∈ (0,π/2). If there is a solution g = e2ρg0 of the following problem{
f (λ (g)) = 0 on A(r),

h(g) = 0 on ∂A(r),

then it is rotationally invariant and unique up to dilations.

Now, we assume that there is a solution g = e2ρg0 on Sm
+ \{n} of{

f (λ (g)) = 0 in Sm
+ \{n},

h(g) = 0 on ∂Sm
+,

(5)

such that σ = e−ρ can be extended to a C2 function σ̃ on Sm
+ with σ̃(n) = 0. Such solution is called

punctured solution of the problem (5), and we have the following theorem for r ∈ (0,π/2),

Theorem 4.10. Set r ∈ (0,π/2). If the problem (5) admits a punctured solution, then there
is no solution to the following degenerate elliptic problem:{

f (λ (g)) = 0 on A(r),
h(g) = 0 on ∂A(r).

In the case of the ring A
(
r, π

2

]
, 0 < r <

π

2
, if we impose some conditions, we obtain,

Theorem 4.11. Let r ∈ (0,π/2), c ≥ 0 be a non-negative constant and g = e2ρg0 be a
conformal metric on A

(
r, π

2

]
that is solution of the following degenerate elliptic problem:{
f (λ (g)) = 0 in A(r,π/2],

h(g) = c on ∂Sm
+,

If e2ρ + |∇ρ|2 : A(r,π/2]→ R is proper then λ (g) is no bounded.

In the non-degenerate case, we have,

Theorem 4.12. Let 0 < r < π/2, c ∈ R be a constant and g = e2ρg0 be a conformal metric
on A

(
r, π

2

]
that is solution of the following non-degenerate elliptic problem:

f (λ (g)) = 1 in A(r,π/2],
h(g) = c on ∂Sm

+,
lim
x→q

ρ(x) = +∞ ∀q ∈ ∂Br(n).

Let σ = e−ρ . If |∇σ |2 is Lipschitz then ∇2(σ2) is no bounded.
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In the degenerate case case on the punctured geodesic ball with minimal boundary, we have

Theorem 4.4. Let g = e2ρg0 be a conformal metric on Sm
+ \ {n} that is solution of the

following degenerate elliptic problem:{
f (λ (g)) = 0 in Sm

+ \{n},
h(g) = 0 on ∂Sm

+,

Then g is rotationally invariant.

Finally, in the non-degenerate case on the punctured closed geodesic ball, we have

Theorem 4.5. Let g = e2ρg0 be a conformal metric on Sm
+ \ {n} that is solution of the

following non-degenerate elliptic problem:{
f (λ (g)) = 1 in Sm

+ \{n},
h(g) = 0 on ∂Sm

+,

Then g is rotationally invariant.

In the last section of Chapter 4, we see that we can extend the definition of the Schouten tensor for
conformal metrics to the standard one on domains of the sphere S2. So, we can extend the notion of
eigenvalues of the Schouten tensor and we can also speak of elliptic problem for conformal metrics on
domains of the sphere S2. There, we observe that the Yamabe Problem reduces to the classical Liouville
Problem. Hence, fully nonlinear equations for conformal metrics on domains on S2 can be regarded
as a generalization of the Liouville Problem. We see that theorems that we got in Chapter 4 have an
analogous in the case of dimension 2. It is remarkable that there is a solution to the Yamabe Problem
on the compact annulus with zero scalar curvature and minimal boundary, however, in dimension higher
does not exist such kind of solution. In fact, Theorem 4.10 is an extension to Escobar Theorem, that is,
if m≥ 3, then the Yamabe Problem on the compact annulus does not have solution with scalar curvature
equals to zero and minimal boundary, however, this result can not be extended to m = 2 as we see in
Chapter 4.



Chapter 1

Preliminaries

We establish the preliminary results from differential geometry necessary along this work. Here, we
review the different models of the Hyperbolic Space and its isometries. Also we explore the Hyperbolic
Space as a conformally compact manifold and, in particular, we study its conformal infinity. Then, we
recall the definition of the Schouten tensor of a conformal metric to the standard metric on the sphere,
a capital object in this work. To close this chapter, we define the notion of elliptic data in the context
of elliptic problems for conformal metric on domains of the sphere and the notion elliptic data in the
context elliptic problems for hypersurfaces of the Hyperbolic space. Most of this chapter can be tracked
down from the references [2, 3, 8, 19, 47].

1.1 Basics on Riemannian geometry

Let M be a smooth oriented manifold. Now, we assume that the manifold M is provided with a metric,
this means a symmetric and positive definite (2,0)-tensor, denoted by g. So, for each p ∈M , one has
gp : TpM ×TpM → R. For an arbitrary local chart (U,ϕ) at p ∈U , gp can be written as

g =
n

∑
i, j=1

gi jdxi⊗dx j,

where gi j ∈C∞(U) so that gi j = g ji and ⊗ is the tensorial product. Hence, the pair (M ,g), a manifold
M provided with a metric g, is called a Riemannian manifold. The functions gi j, i, j = 1, . . . ,n, are the
coefficients of the metric g in the local chart (U,ϕ).

For a Riemannian manifold (M ,g), it is not necessary to distinguish between X(M ) and X(M )∗.
In fact, we can identify each element X ∈ X(M ) with an unique 1-form ω ∈ X(M )∗ using the equality

ω(Y ) = g(Y,X) for all Y ∈ X(M ) . (1.1)

We will use the word tensor when valued in X(M ) and form when valued in C∞(M ). We will

1
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denote the Lie bracket of the vector fields in X(M ) by [ , ], that is,

[X ,Y ] = XY −Y X for all X ,Y ∈ X(M ).

Given a Riemannian manifold (M ,g), there exists a unique affine connection ∇ such that

(i) ∇ is symmetric, i.e.,
∇X Y −∇Y X = [X ,Y ];

(ii) ∇ is compatible with g, i.e.,
Xg(Y,Z) = g(∇X Y,Z)+g(Y,∇X Z),

for all X ,Y,Z ∈X(M ). This leads us to define such unique connection ∇ as the Levi-Civita connection
on M associated to g.

Let ∇ be the Levi-Civita connection associated to a Riemannian metric g and { ∂

∂xi
}n

i=1 be the basis
associated to a local chart (U,ϕ ≡ (x1, . . . ,xn)). Consider the functions Γk

i j ∈C∞(U), i, j,k = 1, , . . . ,n,
given by

∇ ∂

∂xi

∂

∂x j
=

n

∑
k=1

Γ
k
i j

∂

∂xk
, (1.2)

then, the coefficients Γk
i j are called the Christoffel symbols of the connection ∇ on U associated to the

metric g.
Associated to the Levi-Civita connection ∇ on a Riemannian manifold (M ,g), the Curvature Ten-

sor R is defined by
R(X ,Y )Z = ∇Y ∇X Z−∇X ∇Y Z + ∇[X ,Y ] Z . (1.3)

It is well-known that R is C∞(Σ)-linear with respect to X ,Y,Z and skew-symmetric with respect to
X ,Y .

Definition 1.1:
Let (M ,g) be a Riemannian manifold with Curvature Tensor R. Given Xp,Yp ∈ TpM linearly indepen-
dent, we define the sectional curvature, K p(Xp,Yp), related to g at p ∈M for the plane generated by
{Xp,Yp}, by

K p(Xp,Yp) =
g(R(Xp,Yp)Xp,Yp)

‖Xp∧Yp‖2 , (1.4)

where
‖Xp∧Yp‖=

√
‖Xp‖2‖Yp‖2−g(Xp,Yp)2 .

The definition of K p(Xp,Yp) does not depend on the choice of the vectors Xp, Yp, just on the plane
generated by them. Moreover, the curvature tensor R is completely determined by the sectional curvature
when K is constant at every point and any plane, and we can recovered it as

R(X ,Y )Z = K (g(X ,Z)Y −g(Y,Z)X) . (1.5)
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We will recall now other natural curvature tensors one can define on a Riemanniann manifold (M ,g).

Ricci tensor and Scalar curvature

Let {ei} ⊂ X(U), U ⊂M open and connected, be a local orthonormal frame of the tangent bundle
TU ⊂ TM . Let us establish our definition for the Ricci Curvature and Scalar Curvature in M , i.e,

Ric(g)(X ,X) =
n

∑
i=1

R(X ,ei,Y,ei),

Scal(g) =
n

∑
i=1

Ric(g)(ei,ei),

respectively, here X ∈ X(M ).

Schouten Tensor

Let m > 2. Let M be a m-dimensional Riemannian manifold with metric g. We define the Schouten
tensor of g as the following symmetric 2-tensor:

Sch(g) =
1

m−2

(
Ric(g)− Scal(g)

2(m−1)
g
)
, (1.6)

where Ric(g) is the Ricci tensor of g and Scal(g) is the scalar curvature, as defined above.

1.1.1 Hypersurfaces Theory

Here, we will remind the most important concepts on hypersurface theory. Along these notes we denote
by (M ,〈,〉) a (m+ 1)-dimensional connected Riemannian manifold, and let Σ ⊂M be an immersed,
two-sided hypersurface in M . Let us denote by ~N the unit normal vector field along Σ. Moreover, 〈,〉 is
the metric on M and g is the induced metric on Σ. Let ∇ and ∇ be the Levi-Civita connection associated
to 〈,〉 and g, respectively. Denote by X(Σ) and X(M ) the linear spaces of smooth vector fields along Σ

and M respectively. We also denote by I the induced metric on Σ, that is, I ≡ g.

Remark 1:
We will identify I, g and 〈,〉 when no confusion occurs.

Let {ei}m+1
i=1 ⊂ X(U), U ⊂M open and connected, be a local orthonormal frame of the tangent

bundle TU ⊂ TM , then we denote
Ri jkl = 〈R(ei,e j)ek,el〉

and, from Definition 1.1, the sectional curvatures in M are given by

Ki j := 〈R(ei,e j)ei,e j〉= Ri ji j.
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The Gauss Formula (see [8]) says

∇XY = ∇XY + 〈S(X),Y 〉~N for all X ,Y ∈ X(Σ),

where S : X(Σ)→ X(Σ) is the Weingarten (or Shape) operator and it is given by

S(X) :=−(∇X~N)T ,

that is, S(X) is the tangential component of −∇X~N. In fact, we do not need to take the tangential part in
the above definition when we are dealing with orientable hypersurfaces in orientable manifolds, but we
use the general definition for the sake of completeness.

Since S :X(Σ)→X(Σ) is a self-adjoint endomorphism, we denote the mean curvature and extrinsic
curvature as

H =
1
m

Tr(S) and Ke = det(S),

where Tr and det denote the trace and determinant respectively.
Let X(Σ)⊥ be the orthogonal complement of X(Σ) in X(M ). Let us denote~S :X(Σ)×X(Σ)→X(Σ)⊥

the Vector Second Fundamental Form of Σ, that is,

~S(X ,Y ) := (∇XY )⊥, X ,Y ∈ X(Σ),

here (·)⊥ means the normal part. Therefore, ~S induces a symmetric quadratic form on Σ given by

〈~S(X ,Y ),~N〉= 〈S(X),Y 〉, X ,Y ∈ X(Σ),

which is called the Second Fundamental Form, and we also write it as

II(X ,Y ) = I (S(X),Y ) , X ,Y ∈ X .

Hence, the mean curvature vector of Σ is given by

m ~Hp = Tr
(
~Sp

)
=

m

∑
i=1

~Sp(vi,vi),

where {v1, . . . ,vm} is a orthonormal basis of TpΣ.
Also, we define the Third Fundamental Form by

III(X ,Y ) = I (SX ,SY ) for all X ,Y ∈ X ,

where S is the shape operator of Σ. Since S : X(Σ)→ X(Σ) is self-adjoint, it is diagonalizable and hence
let {e1, . . . ,em} be principal directions, i.e.,

S(ei) =−∇ei
~N = κiei,
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where κi are the principal curvatures, i = 1, . . . ,m, in other words, {e1, . . . ,em} are the eigendirections
of S and κi, i = 1, . . . ,m, its eigenvalues.

We say that a point p ∈ Σ is an umbilic point if κ1(p) = . . .= κm(p), which is equivalent to say that
II is proportional to I at p.

Let R and R denote the Riemann Curvature tensors of M and Σ respectively. Then, by the Gauss
Formula we can relate R and R as

R(X ,Y )Z = R(X ,Y )Z + 〈S(Y ),Z〉S(X)−〈S(X),Z〉S(Y ) for all X ,Y,Z,W ∈ X(Σ).

There is another important equation that Σ ⊂M must verify, the Codazzi Equation. Given X ,Y ∈
X(Σ), recall that SX =−∇X~N ∈ X(Σ), the Gauss formula yields

R(X ,Y )~N = ∇Y ∇X~N−∇Y ∇X~N +∇[X ,Y ]~N

= ∇X SY −∇Y SX−S[X ,Y ]

= ∇X SY −∇Y SX−S[X ,Y ]−〈SX ,SY 〉~N + 〈SY,SX〉~N
= ∇X SY −∇Y SX−S[X ,Y ],

that is, R(X ,Y )~N ∈ X(Σ) and the following Codazzi Equation holds

R(X ,Y )~N = ∇X SY −∇Y SX−S[X ,Y ], X ,Y ∈ X(Σ).

Assume that the ambient manifold is a Space Form M = Mm+1(κ), κ ∈ R, that is, a complete
simply connected (m+1)−manifold of constant sectional curvature κ at every point p ∈Mm+1(κ) and
any tangent plane. So, by Cartan Theorem [8], we have

Mm+1(κ) =


Sm+1(κ) if κ > 0,

Rm+1 if κ = 0,

Hm+1(κ) if κ < 0.

Hence, from (1.5), the Riemann curvature tensor R can be recovered as

R(X ,Y )Z = κ(g(X ,Z)Y −g(Y,Z)X), X ,Y,Z ∈ X(Mm+1(κ)).

Therefore, the Gauss and Codazzi Equations become:

Ki j = κiκ j +κ

and
∇X SY −∇Y SX−S[X ,Y ] = 0, X ,Y ∈ X(Σ),

respectively.
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1.2 Hyperbolic Space Hm+1

The Hyperbolic Space Hm+1(κ) of dimension m+1 is the simply connected (m+1)−dimensional man-
ifold of constant sectional curvature κ < 0. When κ =−1, we just denote Hm+1. To describe Hm+1, we
will use different models.

1.2.1 Hyperboloid model

In this model, Hm+1(κ) is the hyperquadric in Lm+2 given by

Hm+1(κ) =

{
(x0,x1, . . . ,xm+1) ∈ Lm+2 : −x2

0 +
m+1

∑
i=1

x2
i =

1
κ
, x0 > 0

}
,

with the induced metric� ,�=−dx2
0+∑

m+1
i=0 dx2

i . Here, Lm+2 denotes the standard (m+2)−dimensional
Lorentzian space, that is, Lm+2 is nothing but Rm+2 with the standard Lorentzian metric� ,�, i.e., for
every x = (x0, . . . ,xm+1) and y = (y0 . . . ,ym+1) in Lm+2, the standard Lorentzian metric is given by

� x,y�=−x0y0 + x1y1 + . . .+ xm+1ym+1.

Denoting x = (x0,x), where x = (x1, . . . ,xm+1), we can write

� x,y�=−x0y0+< x,y >,

where < x,y > is the usual Euclidean inner product in Rm+1.
The isometries of Hm+1 are the restrictions to Hm+1 of O↑(1,m+2), where O↑(1,m+2) is the set of

all vectorial transformations of Lm+2 that preserve the metric and keep invariant the light cone

Nm+1
+ =

{
(x0,x1, . . . ,xm+1) ∈ Lm+2 : −x2

0 +
m+1

∑
i=1

x2
i = 0, x0 > 0

}
.

Geodesic curves

The geodesics in the Hyperbolic space Hm+1, using the Hyperboloid model, have an easy formula if it
is known one point of the geodesic and the velocity in that point. More precisely, the geodesic in Hm+1

passing through p ∈ Hm+1 with velocity v ∈UpHm+1 ≡ Sn is given by

γ(p,v)(t) = cosh(t) p+ sinh(t)v ,

where t is the arc length parameter of γ . Here, UpHm+1 denotes the unitary tangent vectors at p.

Totally umbilic hypersurfaces

The totally umbilical hypersurfaces in Hm+1 are non-trivial intersections of the hyperplanes of Lm+2 with
Hm+1.
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Totally geodesic hypersurfaces

One of the most important totally umbilic hypersurfaces in Hm+1 are the totally geodesic hypersurfaces.
Every totally geodesic hypersurface in Hm+1 can be defined using a unit space vector a = (a0,a)∈ Lm+2,
such that� a,a�= 1 and a0 > 0. More precisally, the totally geodesic hypersurface is

E(a,0) =
{

y ∈ Hm+1 :� y,a�= 0
}
. (1.7)

It is called the totally geodesic hypersurface associated to a.

Equidistant hypersurfaces

Other important totally umbilic hypersurfaces in Hm+1 are the equidistant hypersurfaces to a totally
geodesic hypersurface. Given a = (a0,a) ∈ Lm+2, such that� a,a�= 1 and a0 > 0, and given c ∈ R,
the following set

E(a,c) =
{

y ∈ Hm+1 :� y,a�= c
}
, (1.8)

is an equidistant hypersurface to the the totally geodesic hypersurface E(a,0).

Horospheres

One of the most important totally umbilic hypersurfaces in Hm+1 for our present work are horospheres.
We say that a = (a0,a) ∈ Lm+2 is a light vector of Lm+2 if

� a,a�= 0.

One can easily see that every horosphere is given by

Ha :=
{

y ∈Hm+1 :� y,a�=−1
}
,

where a = (a0,a) ∈ Lm+2 is a light vector such that a0 > 0. Hence, we denote this horosphere by Ha.
The exterior unit normal vector field along the horosphere Ha, i.e., the unit normal vector field to

the horosphere Ha such that its principal curvatures are −1, is given by

n(y) = y−a for every y ∈Ha. (1.9)

The Space of Horospheres

We can parametrize the set of horospheres in Hm+1 as R+×Sm by

(a0,u) ∈ R+×Sm 7→ a = (a0,a0u).

Also, we can parametrize the set of horospheres in Hm+1 as the cylinder R×Sm by

(t,x) ∈ R×Sm 7→ a = et(1,x). (1.10)
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1.2.2 Half-space model

Consider the subset of Rm+1 given by

Rm+1
+ =

{
(x1, . . . ,xm+1) ∈ Rm+1 : xm+1 > 0

}
with the metric

ds2
κ =

1
−κx2

m+1

(
dx2

1 + · · ·+dx2
m+1
)
.

A straightforward computation shows that (Rm+1
+ ,ds2

κ) has constant sectional curvature κ < 0. More-
over, we can see that the map

(x0, . . . ,xm+1) 7−→
1

x0 + xm+1

(
x1, . . . ,xm,

1√
−κ

)
,

from Hm+1(κ) to (Rm+1
+ ,ds2

κ) is an isometry between these spaces.
The expression of the metric says that the rotations around some vertical axis and horizontal transla-

tions are isometries of Rm+1
+ . Other isometries associated to each point (y,0), y ∈ Rm ≡ {xm+1 = 0} are

the following:

• Vertical Hyperbolic Translations given by

(x,xm+1) 7−→ (et(x− y),etxm+1),

with x ∈ Rm, xm+1 > 0, t ∈ R. That is, Euclidean homoteties of center (y,0) and scale et .

• Reflections or hyperbolic isometries given by

(x,xm+1) 7−→ (y,0)+
t2

|x− y|2 + x2
m+1

(x− y,xm+1) ,

where x ∈ Rm, xm+1 > 0, t > 0 and | · | denotes the Euclidean metric in Rn. That is, they are
Euclidean inversions (in the half-plane) with respect to a sphere of radius t centered at (y,0).
Moreover, Euclidean symmetries with respect to vertical planes also are considered hyperbolic
reflections centered at infinity.

It is easy to show that the group of isometries of the half-space model Iso(Rm+1
+ ) corresponds to the

subgroup of conformal transformations of Rm+1, Conf(Rm+1), preserving the half-space, that is,

Iso(Rm+1
+ ) =

{
Φ ∈ Conf(Rm+1) : Φ(Rm+1

+ ) = Rm+1
+

}
.

Furthermore, it is clear that the fixed points of these isometries are either vertical affine subspaces or
half-spheres of any radius, of dimension k ≤ m+1, that intersect orthogonally the hyperplane {xm+1 =
0}. Therefore, these are the totally geodesics submanifolds of (Rm+1

+ ,ds2
κ). In particular, the semicircles

cutting orthogonally the hyperplane {xm+1 = 0} and the vertical straight lines are the geodesics of this
model.
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1.2.3 Poincaré ball model

Consider the open ball B(1/
√
−κ) ⊂ Rm+1 centered at the origin of radius 1/

√
−κ , with the metric of

constant sectional curvature κ given by

gκ =
4

(1+κ|x|2)2 (dx2
1 + · · ·+dx2

m+1) ,

where x= (x1, . . . ,xm) and | · | is the Euclidean norm in Rm. It is easy to see that the map from (Rm+1
+ ,ds2

κ)
to (B(1/

√
−κ),gκ) given by

(y,ym+1) 7−→
1√

−κ(|y|2 +(ym+1 +1)2)
(2y, |y|2 + y2

m+1−1) ,

where y ∈ Rm and ym+1 > 0, is an isometry between these spaces. In fact, the group of isometries of
the Poincaré ball model Iso(B(1/

√
−κ)) corresponds to the subgroup of conformal transformations of

Rm+1, Conf(Rm+1), preserving B(1/
√
−κ), that is,

Iso(B(1/
√
−κ)) =

{
Φ ∈ Conf(Rm+1) : Φ(B(1/

√
−κ)) = B(1/

√
−κ)

}
.

As a direct observation from the expression of the metric in this model, the restriction to B(1/
√
−κ)

of each element of O(m+ 1) is an isometry of this space. In particular, the rotations with respect to a
vertical straight line passing through the origin and the Euclidean reflections with respect to hyperplanes
passing through the origin are isometries. Moreover, the hyperbolic reflections in this model are given
by the reflections with respect to hyperplanes passing through the origin and inversions with respect to
spheres that meet orthogonally the sphere at infinity Sm

∞(κ) = ∂B(1/
√
−κ).

Note that each exterior point to the ball, that is, each p ∈ Rm+1 \B(1/
√
−κ) is the center of a unique

sphere that meet orthogonally Sm
∞(κ), whose radius r is given by r =

√
1/κ + |p|2. So, each radial axis

of the ball determine an one-parameter family of that reflections.
The totally geodesic submanifolds in this model are the spheres caps with dimension k ≤ m+ 1

and the disks that meet orthogonally Sm
∞(κ). In particular, the geodesics are traces of circles that meet

orthogonally the boundary at infinity and traces of straight lines passing though the origin.

Horospheres in the Poincaré ball model

In the Poincaré model, the horosphere defined by the light vector a = (a0,a) ∈ Lm+2, a0 > 0, is given by

Ha =

{
u ∈ Bm+1 :

∣∣∣∣u− 1
1+a0

a
∣∣∣∣2 = ( 1

1+a0

)2
}
.

Let Sa be the Euclidean sphere with centered at c0 =
1

1+a0
a and radius r = 1

1+a0
, then

Ha = Sa \{a∞},
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where a∞ = 1
a0

a. The point a∞ is called the point at infinity of the horosphere Ha. In other words, the
point at infinity of the horosphere Ha is the unique intersection point of Sa and ∂Bm+1 = Sm, that is,
a∞ = 1

a0
a.

Hence, in the Poincaré ball model, we can parametrize horospheres (t,x) ∈ R×Sm using (1.10) by

Hx(t)≡Ha,

where a = (a0, ā) ∈ Lm+2 given by
a0 = et and ā = etx.

1.2.4 Klein model

The Klein model of the Hyperbolic space Hm+1 is the Euclidean ball Bm+1 = {x ∈ Rm+1 : |x|2 < 1}
endowed with the distance between two points p and q in the open ball defined as follows: let a and b
the two ideal points that we get when we intersect the Euclidean line that contains p and q ordered as a,
p, q, b, i.e., if |ap| is the Euclidean length of the segment ap then |ap|< |aq| and |qb|< |pb|. Then the
hyperbolic distance between p and q is defined

d(p,q) =
1
2

log
(
|aq|
|ap|
|pb|
|qb|

)
. (1.11)

The transformation T : Hm+1 ⊂ Lm+2→ Bm+1 ⊂ Rm+1 defined as

T (y) =
1
y0

y for all y ∈Hm+1 ⊂ Lm+2, (1.12)

is a diffeomorphism. So, if we induce the Hyperbolic metric of Hm+1 in Bm+1, via T , we get a metric
such that its distance is given by (1.11). The metric in the Klein model is defined for every x ∈ Bm+1 by

gK(u,v) =
1

(1−|x|2)2 〈u,x〉〈v,x〉+
1

1−|x|2
〈u,v〉 for all u,v ∈ TxBm+1,

where |u| is the Euclidean norm of u and 〈·, ·〉 is the Euclidean metric. This metric gK has constant
sectional curvature κ =−1.

In the Klein model the totally geodesic hypersurfaces are intersections of Euclidean hyperplanes with
Bm+1 as we can see. Every totally geodesic hypersurface Σ in the hyperboloid model has the following
equation

Σ :=
{

y ∈ Lm+2 :� y,c�= 0
}

where c ∈ Lm+2 satisfies� c,c�= 1. Using (1.12) we have that for every y ∈ Σ it holds

〈T (y),c〉= c0,

where 〈·, ·〉 is the Euclidean inner product in Rm+1. Hence, every geodesic is only a Euclidean line
inside of Bm+1 and it has two ideal points in the boundary of Bm+1. Even more, a geodesic γ in the
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Hyperbolic space Hm+1 has the same ideal point for the Klein model and the Poincaré model as we can
see using the generic form of a geodesic in the hyperboloid model and (1.12). In fact, every geodesic in
the hyperboloid model has the following form

γ(t) = cosh(t)p+ sinh(t)v, t ∈ R,

where p ∈ Hm+1 and v ∈ TpHm+1 with� v,v�= 1. Then, using (1.12), we have that the ideal points
are:

lim
t→−∞

T (γ(t)) =
p− v

p0− v0
and lim

t→+∞
T (γ(t)) =

p+ v
p0 + v0

,

that are the same ideal points in the Poincaré model as one can easily verify.

Remark 2:
From now on, unless specifically stated, we will consider κ =−1, and we will omit the dependence of κ .

1.3 The Sm as the Boundary at infinity

In the previous section we have claimed that Sm
∞ is the infinity of Hm+1, which looks obvious using the

Poincaré ball model. Nevertheless, we shall make this clear.
Let Xm+1 denote the interior of a smooth compact manifold Xm+1 with boundary M m = ∂Xm+1. A

smooth function r : Xm+1→ R is said to be a defining function for M in X if

r > 0 in X , r = 0 on M and dr 6= 0 on M .

A Riemannian metric g on X is then said to be conformally compact if for a defining function r, the
conformal metric g = r2g extends to a metric on X . The metric g restricted to M induces a metric ĝ on
M , which rescales by conformal factor upon change in defining function and, hence, defines a conformal
structure (M , [ĝ]) called the conformal infinity of (X ,g).

So, in the case of the Poincaré Ball Model, it is easy to check that the defining function r : B→ R
given by

r(x) :=
1−|x|2

2
,

gives the standard conformal structure of the m−sphere (Sm, [g0]), g0 denotes the standard metric on Sm,
as the conformal infinity of Hm+1 ≡ (Bm+1,g−1). We denote such conformal infinity as ∂∞Hm+1 ≡ Sm.

1.3.1 Boundary at infinity

Let vi (i = 1,2) be two unit vectors in THm+1 and let γvi(t), i = 1,2, be two unit-speed geodesics on Hm

satisfying γ ′vi
(0) = vi. We say that two geodesics γv1(t) and γv2(t) are asymptotic if there exists a constant

c such that the distance d(γv1(t),γv2(t)) is less than c for all t > 0. Similarly, two unit vectors v1 and v2
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are asymptotic if the corresponding geodesics γv1(t), γv2(t) have this property. It is easy to find that being
asymptotic is an equivalence relation on the set of unit-speed geodesics or on the set of unit vectors on
Hm+1. Every element of these equivalence classes is called a point at infinity.

Denote by ∂∞Hm+1 the set of points at infinity, and denote by γ(+∞) or v(∞) the equivalence class
of the corresponding geodesic γ(t) or unit vector v.

We will see now that the definition of boundary at infinity ∂∞Hm+1 given here agrees with the defini-
tion of conformal infinity given above.

It is well-known that for two asymptotic geodesics γ1 and γ2 in Hm+1, the distance between the two
curves γ1|[t0,+∞), γ2|[t0,+∞) is zero for any t0 ∈ R. Besides, for any x,y ∈ ∂∞Hn, there exists a unique
oriented unit speed geodesic γ(t) such that γ(+∞) = x and γ(−∞) = y.

For any point p∈Hm+1, there exists a bijective correspondence between a set of unit vectors at p and
∂∞Hm+1. In fact, for a point p ∈ Hm+1 and a point x ∈ ∂∞Hm+1, there exists a unique oriented unit speed
geodesic γ such that γ(0) = p and γ(+∞) = x. Equivalently, the unit vector v at the point p is mapped to
the point at infinity v(∞). Therefore, ∂∞Hm+1 is bijective to a unit sphere, i.e., ∂∞Hm+1 ≡ Sm

∞, or just, if
no confusion occurs, we denote the boundary at infinity by Sm.

Set Hm+1 = Hm+1 ∪ ∂∞Hm+1. For a point p ∈ Hm+1, let U be an open set in the unit sphere of the
tangent space TpHm+1. For any r > 0, define

T (U ,r) :=
{

γv(t) ∈ Hm+1 : v ∈U , r < t 6+∞

}
.

Then we can construct a unique topology T on Hm+1, called the cone topology, as follows: the
restriction of T to Hm+1, T|Hm+1 , is the topology induced by the Riemannian distance; the sets T (U ,r)
containing a point x ∈ ∂∞Hm+1 form a neighborhood basis at x. We call such topology the ideal topology
of Hm+1. Clearly, the ideal topology T satisfies the following properties:

(A1) T|Hm+1 coincides with the topology induced by the Riemannian distance;

(A2) for any p ∈ Hm+1 and any homeomorphism h : [0,1]→ [0,+∞], the function ϕ , from the closed
unit ball of TpHn to Hm+1, given by ϕ(v) = expp(h(‖v‖)v) is a homeomorphism. Moreover, ϕ

identifies ∂∞Hn with the unit sphere;

(A3) for a point p ∈Hm+1, the mapping v→ v(∞) is a homeomorphism from the unit sphere of TpHm+1

onto ∂∞Hm+1.

(A4) with this topology, Hm+1 is the natural conformal compactification of Hm+1 (see [24]).

Using the notion of the cone topology one can define the boundary at infinity of a subset of Hm+1.
In fact, given a subset O⊆ Hm+1, we denote O∞ the closure in Hm+1 with the cone topology. Denote by
∂∞O the boundary at infinity of O, that is, ∂∞O = O∞∩∂∞Hm+1. Also, denote by int(·) the interior of a
given set of points.
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1.3.2 Mean Curvature of geodesic balls

As we did in the hyperbolic space Hm+1, we shall study totally umbilic hypersurfaces in its conformal
infinity (Sm,g0). In this case, it is well-known that the only totally umbilic hypersurfaces are geodesic
spheres, that is, the boundary of geodesic balls in the sphere.

Given p ∈ Sm and 0 < r < π , we denote Br(p) the open ball of Sm with center p and radius r, i.e.,

Br(p) =
{

q ∈ Sm : dSm(q, p)< r
}
.

Moreover,
Br(p) =

{
q ∈ Sm : dSm(q, p)≤ r

}
.

We denote for r ∈ (0,π):
Sr(p) =

{
q ∈ Sm/dSm(q, p) = r

}
.

The definition of Sr(p) also is valid for r = 0, in that case S0(p) = {p}.
Note that for any r ∈ (0,π):

Sr(p) = ∂Br(p)

The inward unit normal vector field to ∂Br(p) is given by

ν(x) =
1

sin(r)
p− cot(r)x,

for all x ∈ ∂Ω. The (normalized) mean curvature h0 of the boundary ∂Ω with respect the inward unit
normal vector field ν is the constant h0 = cot(r). Here, we have considered Sm ⊂ Rm+1 with the induced
Euclidean metric.

1.3.3 Schouten tensor for a conformal metric on domains on the sphere Sm

Here g0 denote the standard metric on the sphere Sm. Let us denote the Schouten tensor of g0 by Sch0. It
is not difficult to see from (1.6) that

Sch0 =
1
2

g0.

Let g = e2ρg0 be a conformal metric on a domain Ω of the sphere Sm, ρ ∈C∞(Ω). We have that

Schg = Sch0 +dρ⊗dρ−∇
2
ρ− 1

2
|∇ρ|2 ·g0,

where ∇ ,∇2 are the gradient and the hessian with respect the metric g0 respectively, and |·| the norm
with respect of g0.

Let A0 and A be the self-adjoint endomorphisms associated to Sch0 and Sch with respect to g0 and
g, respectively. The existence and uniqueness of the above self-adjoint endomorphisms follows since the
Schouten tensor is a symmetric (2,0)−tensor. Then, we have the following relation

A+
1
2
|∇σ |2 Id = σ

2A0 +σ ·∇2
σ ,
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where σ = e−ρ , Id is just the identity operator. That is,

A+
1
2
|∇σ |2 Id =

1
2

σ
2Id +σ ·Hess(σ).

Theorem 1.2:
Given x ∈ Ω, let s1, . . . ,sm denote the eigenvalues of (∇2σ)x : TxΩ→ TxΩ. Then, the eigenvalues of Ax

are
λi = si ·σ(x)+

1
2

(
σ

2(x)−|∇σ(x)|2
)

for i = 1, . . . ,m. (1.13)

1.4 Isometries and Conformal Diffeomorphism

Since Sm is the conformal infinity (endowed with the standard conformal structure) of the hyperbolic
space Hm+1, it is natural to expect that there is a one-to-one relation between the conformal diffeomor-
phism of Sm, Conf(Sm), and the isometries of Hm+1, Iso(Hm+1). We will see here how they are related.

1.4.1 Conformal diffeomorphisms in Bm+1

The space of conformal diffeomorphisms in Bm+1, Conf(Bm+1) are generated by:

• Inversions Ip : Bm+1→ Bm+1, where p ∈ Rm+1 such that |p|> 1, that are defined by

Ip(y) =
r2

|y− p|2
(y− p)+ p for every y ∈ Bm+1, (1.14)

here r2 = |p|2−1, and

• Euclidean orthogonal transformations preserving Bm+1.

Clearly every conformal diffeomorphism on Bm+1 extends, as a diffeomorphism, to the closure, i.e.,
B : Bm+1→ Bm+1.

Let us see how we can recover all Euclidean reflections by hyperplanes passing through the origin
from the inversions in Rm+1 that leave Bm+1 invariant. Let u ∈ Sm be a unitary vector and P = {x ∈
Rm+1 : 〈x,u〉= 0} be the hyperplane passing through the origin orthogonal to u. Let Ru : Bm+1→ Bm+1

be the Euclidean reflection with respect to P restricted to Bm+1. If we take p = 2u and q = 3u, then

Ip ◦ Iq = Ru ◦ I(−5u).

Therefore, we have recovered all Euclidean reflections preserving Bm+1. Note also that every rotation
in Rm+1 is the composition of two Euclidean reflections in Rm+1. Then, we can recover all the orthogonal
transformations of Rm+1 from the inversions that leave Bm+1 invariant.

In conclusion, the space of conformal diffeomorphisms in Bm+1 are generated by inversions Ip :
Bm+1→ Bm+1, where |p|> 1, acting by composition.
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1.4.2 Isometries in Hm+1: Conformal diffeomorphisms on Bm+1

When we work in the Poincaré model, the isometries are the conformal diffeomorphism on Bm+1.
One can observe that inversions on Conf(Bm+1) correspond to reflections in the Hyperbolic space

with respect to totally geodesic hypersurfaces. More precisely,

Proposition 1.3:
Let p ∈ Rm+1 such that |p| > 1, then the isometry T : Hm+1 ⊂ Lm+2→ Hm+1 ⊂ Lm+2 that is related to
the inversion Ip : Rm+1 \{p}→ Rm+1 \{p} is given by

T (y) = y−2
� y,(1, p)�

r2 (1, p) for all y ∈Hm+1,

where r2 = |p|2−1.

That is, an inversion is a reflection with respect to the totally geodesic hyperplane {y ∈ Hm+1
/
�

y,(1, p)�= 0}.

Remark 3:
We would like to remark that the totally geodesic hypersurface given in Proposition 1.3 is the set {x ∈
Bm+1 : |x− p|2 = |p|2−1} in the Poincaré model.

Hence, by Proposition 1.3, we have:

Proposition 1.4:
The space of isometries of Hm+1 is generated by reflections with respect to totally geodesic hypersurfaces
in Hm+1.

As we said, these conformal diffeomorhpisms on Bm+1 can be naturally extended to a conformal
diffemorphisms on Bm+1. Hence, when we have an isometry T : Hm+1 → Hm+1, we obtain a natural
conformal diffeomorphism B : Bm+1→ Bm+1 that induces a diffeomorphism B : Sm→ Sm which is also
a conformal diffeomorphism.

1.4.3 Conformal Diffeomorphisms of Sm

We know that every conformal diffeomorphism on the ball Bm+1 induces a natural conformal diffeomor-
phism on Sm (see Subsections 1.4.1 and 1.4.2), also the reciprocal is true.

Proposition 1.5:
Every conformal diffeomorphism of Sm can be extended to a conformal diffeomorphism of Bm.
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Proof. Let B : Sm→ Sm be a conformal diffeomorphism. Let Q : Rm+1→Rm+1 be the Euclidean orthog-
onal linear transformation such that Q(B(n)) = n. Then QB : Sm→ Sm is a conformal diffeomorphism.
Hence, we only need to prove the proposition for conformal diffeomorphisms B : Sm → Sm such that
B(n) = n.

Let Π : Sm \{n} → Rm be the stereographic projection and consider the conformal diffeomorphism
C =ΠBΠ−1 :Rm+1→Rm+1. Recall that P=Π is conformal and therefore, the composition is conformal.

Liouville’s Theorem implies that C is the composition of a rotation, a translation and a dilation, i.e.,
there exist a orthogonal linear transformation Q1 : Rm→ Rm, a vector v ∈ Rm and λ > 0 such that

C = λQ1 + v on Rm.

Let C1 be the translation in Rm associated to the vector v, C2 be the dilation in Rm by λ > 0, and C3
be the orthogonal linear transformation Q1, then

C =C1C2C3 on Rm.

Observe that B1 = P−1C1P, B2 = P−1C2P and B3 = P−1C3P are the restrictions of conformal diffeo-
morphism on Bm+1.

1. B1: If v 6= 0, one can see that the translation C1 in Rm by v satisfies:

B1 = P−1C1P = Ru ◦ Ip on Sm \{n},

where Ru is a linear Euclidean reflection in Rm+1 and Ip is an inversion in Rm+1 (see Subsection
1.4.1). More specifically, the reflection is with respect to the hyperplane passing through the origin
and orthogonal to (0,v), and the inversion Ip is with respect to the point p =

(
− 2
|v|2 v,1

)
.

If v = 0, then B1 is the restriction of the identity in Rm+1.

2. B2: If λ 6= 1, the dilation C2 in Rm by λ satisfies:

B2 = P−1C2P = Ru ◦ Ip on Sm \{n},

where Ru is a linear Euclidean reflection in Rm+1 and Ip is an inversion in Rm+1 (see Subsection
1.4.1). More specifically, the reflection is with respect to the hyperplane passing through the origin
and orthogonal to n, and the inversion Ip with respect to the point p = 1+λ

1−λ
em+1.

If λ = 1, then B2 is the restriction of the identity in Rm+1.

3. B3: In this case, one can see that

B3(x) = P−1C3P(x) = (C3(x1, . . . ,xm),xm+1) for all x ∈ Sm \{n},

which is a restriction of a Euclidean orthogonal linear transformation in Rm+1 that leaves the xm+1-
axis invariant.



1.5. CONFORMALLY INVARIANT EQUATIONS AND GEOMETRIC EQUATIONS 17

Then,
B = B1 ◦B2 ◦B3 on Sm \{n}.

is the restriction of a conformal diffeomorphism on Bm+1. This concludes the proof.

Since inversions (1.14) generate Conf(Bm+1), then the maps

Ip(y) :=
r2

|y− p|2
(y− p)+ p,

where p ∈ Rm+1, |p|> 1, and r2 = |p|2−1, generate Conf(Sm) by composition. Therefore, we have:

Proposition 1.6:
Any isometry of Hm+1 induces a unique conformal diffeomorphism on its boundary at infinity Sm, and
viceversa.

1.4.4 Isometries of Hm+1 using the Hyperboloid model

We know that all the isometries are generated by inversions in the Poincaré ball model. In the Hyper-
boloid model they are restrictions of linear aplications on Lm+2, they are reflections with respect to vector
with Lorentzian norm positive (see Proposition 1.3).

Then, every isometry of the Hyperbolic space Hm+1 is the restriction to Hm+1 of certain linear map
in Lm+2. This property is very useful when we apply isometries to hypersurfaces in the Hyperbolic space
Hm+1. Since the map is linear, all vector fields along the new hypersurface are just compositions of the
isometry with the original vectors fields.

If the isometry in the Poincaré model is a restriction to the Poincaré ball of an orthogonal linear
transformation in Rm+1 then the corresponding isometry in the Hyperboloid model is the restriction of a
linear map of Lm+2.

Proposition 1.7:
The isometry I : Hm+1 → Hm+1 ⊂ Lm+2 associated to a Euclidean orthogonal linear transformation
B : Rm+1→ Rm+1 has the following correspondence rule:

I(y) = I(y0,y) = (y0,By) for every y ∈Hm+1.

1.5 Conformally Invariant Equations and Geometric Equations

In this section, we will define the kind of conformally invariant equations in Sm and geometric equations
for hypersurfaces in Hm+1 we will work with.
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1.5.1 Elliptic problems for conformal metrics on domains of Sm

Consider g = e2ρg0 a conformal metric, ρ ∈ C2(Ω), Ω ⊆ Sm, and denote by λ (g) = (λ1, . . . ,λm) the
eigenvalues of the Schouten tensor of g.

We want to study partial differential equations for ρ relating the eigenvalues of the Schouten tensor.
For instance, the simplest example one may consider are the σk-Yamabe problem on Ω⊆ Sm, that is, the
k-symmetric functions of the eigenvalues of the Schouten tensor.

We are interested in the fully nonlinear case of this problem, in the line opened by A. Li and Y.Y.
Li (see [33, 34] and references therein). Namely, given ( f ,Γ) an elliptic data, find ρ ∈ C2(Ω) so that
g = e2ρg0 is a solution of the problem

f (λ (g)) = 1 in Ω.

We must properly define the meaning of elliptic data ( f ,Γ) for conformal metrics. Define

Γm = {x = (x1, . . . ,xm) ∈ Rm : xi > 0, i = 1, . . . ,m}

and

Γ1 =

{
x = (x1, . . . ,xm) ∈ Rm :

m

∑
i=1

xi > 0

}
.

Let Γ⊂ Rm be a convex open set satisfying:

(C1) It is symmetric. If (x1, . . . ,xm) ∈ Γ, then (xi1 , . . . ,xim) ∈ Γ, for every permutation (i1, . . . , im) of
(1, . . . ,m).

(C2) It is a cone. For every t > 0, we have that t(x1, . . . ,xm) ∈ Γ for every (x1, . . . ,xm) ∈ Γ.

(C3) Γm ⊂ Γ⊂ Γ1.

Then, we are ready to define:

Definition 1.8:
We say that ( f ,Γ) is an elliptic data for conformal metrics in Sm if Γ ⊂ Rm is a convex cone satisfying
(C1), (C2) and (C3) and f ∈C0

(
Γ
)
∩C1 (Γ) is a function satisfying

1. f is symmetric in Γ.

2. f |∂Γ = 0.

3. f |Γ > 0.

4. f is homogeneous of degree 1.

5. ∇ f (x) ∈ Γm for every x ∈ Γ.
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This elliptic data is necessary for the defintion of non-degenerate elliptic problems and degenerate
elliptic problems.

Definition 1.9 (Elliptic problems of conformal metrics):
Given an ( f ,Γ) an elliptic data for conformal metrics and Ω a domain of Sm:

1. The non-degenerate elliptic problem in Ω ⊆ Sm is find to a conformal metric g = e2ρg0 to the
standard g0 such that

f (λ (g)) = 1 on Ω

where λ (g) = (λ1, . . . ,λm) is composed by the eigenvalues of the Schouten tensor of g.

2. The degenerate elliptic problem in Ω⊆ Sm is find to a conformal metric g = e2ρg0 to the standard
g0 such that

f (λ (g)) = 0 on Ω

where λ (g) = (λ1, . . . ,λm) is composed by the eigenvalues of the Schouten tensor of g.

Of special importance in our work are regular elliptic data that we define now:

Remark 4 (Regular elliptic data):
Let ( f ,Γ) be an elliptic data for conformal metrics on subdomains on Sm. Since f is positive in Λ and it
is homogeneous of degree 1, the elliptic data ( f ,Γ) is regular, i.e., there is constant λ > 0 such that

f (λ , . . . ,λ ) = 1.

That means, that for every domain Ω ⊂ Sm, the dilation g = e2t0g0, where t0 ∈ R satisfies e−2t0 = 2λ , is
a solution to the non-degenerate problem associated to the pair ( f ,Γ) on Ω.

Let us see two results of YanYan Li [32] that we will use in Chapter 4.

Theorem 1.10 (YanYan Li, [32]):
Set m≥ 2 and Ω is a domain in Sm such that Ω 6= Sm. Let g1 = e2ρ1g0 and g = e2ρ1g0 be solutions of the
degenerate problem associate to ( f ,Γ) on Ω. If

ρ1 > ρ on ∂Ω

then
ρ1 > ρ on Ω.

Theorem 1.11 (YanYan Li, [32]):
Set m≥ 3. Let g = e2ρ1g0 be a conformal metric on Sm \{n,s} such that

f (λ (g)) = 0 on Sm \{n,s},

then g is rotationally invariant.
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1.5.2 Elliptic problems for hypersurfaces in the Hyperbolic space Hm+1

Now, we want to focus on elliptic problems for hypersurfaces in Hm+1 in terms of its principal curvatures.
The baby case we shall think about are hypersurfaces whose, for example, mean curvature is constant. In
other words, we will consider Σ⊂ Hm+1 that satisfies an elliptic equation (W ,Γ∗) for a given curvature
function depending on its principal curvatures (see [27] and references therein); that is,

W (κ) = 1 on Σ,

where κ = (κ1, . . . ,κm) is composed by the principal curvatures of the hypersurface Σ.
We must properly define the meaning of elliptic data (W ,Γ∗) for hypersurfaces. Let U ⊂ Rm be a

convex open set and define its translation

Γ
∗ = {x ∈ Rm : x = y− (1, . . . ,1),y ∈U}

such that Γ∗ satisfies

(G1) Γ∗ is symmetric.

(G2) Γm ⊂ Γ∗ ⊂ Γ1.

Analogously, we can define:

Definition 1.12:
We say that (W ,Γ∗) is an elliptic data for hypersurfaces in Hm+1 if given a convex cone U ⊂ Rm the
new cone Γ∗ defined above satisfies (G1) and (G2) and W ∈C0

(
U
)
∩C1 (U) is a function satisfying:

1. W is symmetric in U.

2. W |U > 0.

3. W |∂U = 0

4. ∂W
∂yi

(y)> 0 for every y ∈U and i = 1, . . . ,m.

Definition 1.13 (Elliptic problems of hypersurfaces in Hm+1):
Given an (W ,U) an elliptic data for hypersurfaces in Hm+1:

1. The non-degenerate elliptic problem is find an oriented immersed hypersurface Σ in Hm+1 such
that

W (κ1, . . . ,κm) = 1 on Σ

where κ1, . . . ,κm are the principal curvatures of Σ.
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2. The degenerate elliptic problem is find an oriented immersed hypersurface Σ in Hm+1 such that

W (κ1, . . . ,κm) = 0 on Σ

where κ1, . . . ,κm are the principal curvatures of Σ.

Remark 5:
In the case of degenerate elliptic problems of hypersurfaces in Hm+1: Since W (1, . . . ,1) = 0, then the
horospheres with the natural orientation given by its mean curvature vector is a solution of the degenerate
problem associate to the data (W ,U).

As above, of special importance in our work are regular elliptic data that we define now:

Definition 1.14:
Given W ∈C0

(
U
)
∩C1 (U) an elliptic data for hypersurfaces in Hm+1, we say that (W ,U) is regular if

there is a constant κ0 > 1 such that
W (κ0, . . . ,κ0) = 1.

Remark 6:
In the case of non-degenerate elliptic problems of hypersurfaces in Hm+1 with regular elliptic data,
we have geodesic spheres as solutions of that kind of problems, such spheres are the totally umbilic
hypersurfaces with constant umbilic equals to κ > 1.
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Chapter 2

Local Representation

In this Chapter we will recall the local equivalence between horospherically concave hypersurfaces in
Hm+1 and conformal metrics on Sm.

We begin by giving the definition of the Hyperbolic Gauss map for an oriented immersed hypersur-
face in Hm+1. In such definition, we use the boundary at infinity of the Hyperbolic space, also called
ideal boundary of Hm+1, that is, the sphere Sm. There are sufficient and necessary conditions for the hy-
perbolic Gauss map to be a local diffeomorphism. One of these conditions is related to the regularity of
the light cone map of an oriented hypersurface that will be defined in Subsection 2.1.2. Others conditions
are related to the principal curvatures of the given oriented hypersurface.

Then, we define one of the important objects in our study, horospherically concave hypersurfaces
in Hm+1. These hypersurfaces are oriented and they have the property that its Hyperbolic Gauss map
is a local diffeomorphism. The importance of this class of hypersurfaces is that, locally, we can give
a conformal metric over the image of the Hyperbolic Gauss map (conformal to the standard metric g0
on the sphere Sm). Suppose that g = e2ρg0 is this conformal metric, ρ ∈ C∞ (Ω), where Ω is a small
open domain that is contained in the image of the Hyperbolic Gauss map, the function ρ has a geometric
interpretation that is related to tangent horospheres to the original hypersurface. In the Poincaré ball
model, ρ is the signed hyperbolic distance between the tangent horosphere and the origin of the Poincaré
ball.

Beside that we get a conformal metric on the image of the Hyperbolic Gauss map, if this is in-
jective, The Local Representation Theorem (cf. Theorem 2.10) says that the function ρ is all that we
need to recover the original hypersurface. Such theorem is of great importance, because we can obtain
horospherically concave hypersurfaces from conformal metrics on domains Ω of the sphere Sm if we im-
pose certain conditions. This conformal metric is called the horospherical metric of the horospherically
concave hypersurface in Hm+1.

In Section 2.4, we study how isometries in the Hyperbolic space Hm+1 affect the horospherical met-
ric, more precisely, how the horosherical metric of the hypersurface changes when we apply an isometry
to this hypersurface. In particular, Section 2.5, if the horospherically concave hypersurface is invari-
ant under an isometry in Hm+1 then the associated horospherical metric is invariant under a conformal

23
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diffeomorphism of Sm.
We finalize this chapter introducing the elliptic problems for conformal metric on domains on the

sphere Sm and elliptic problems for hypersurfaces in the hyperbolic space Hm+1 and their relation under
the Local Representation Theorem.

2.1 Horospherically Concave Hypersurfaces in Hm+1

Here, we study the hypersurfaces in Hm+1 with regular hyperbolic Gauss map in terms of their principal
curvatures and their tangent horospheres.

2.1.1 Horospheres and the hyperbolic Gauss map

From the hypersurface theory viewpoint, horospheres are the only flat totally umbilical hypersurfaces
in Hm+1, and they are complete and embedded. All of this suggests that horospheres can be naturally
regarded in many ways as hyperplanes in the hyperbolic space Hm+1, even though they are not totally
geodesic.

We shall work in the Hyperboloid model of Hm+1. From now on, φ : Σ→ Hm+1 ⊂ Lm+2 will denote
an oriented immersed hypersurface and η : Σ −→ Sm+1

1 its unit normal, here Sm+1
1 denotes the de-Sitter

space
Sm+1

1 =
{

x ∈ Lm+2 :� x,x�= 1
}
.

Definition 2.1 ([11, 12, 6]):
Let φ : Σ→Hm+1 be an oriented immersed hypersurface with unit normal vector field η . The Hyperbolic
Gauss map of that oriented hypersurface is the map G : Σ→ Sm

∞, that associates every point p ∈ Σ the
point at infinity of the unique horosphere in Hm+1 passing through φ(p) and whose inner unit normal at
p agrees with −η(p) [cf. Figure 2.1].

Let us point out here that horospheres are globally convex, what allows us to talk about either the
outward or the inward orientation of a horosphere, meaning this simply that the unit normal points either
at the concave or convex side of the horosphere. With respect to the inner orientation, the second funda-
mental form of a horosphere is positive definite. Moreover, it turns out that innerly oriented horospheres
are the only hypersurfaces in Hn+1 with constant hyperbolic Gauss map.

There is an equivalent definition: the hyperbolic Gauss map G : Σ→ Sm
∞ sends each p∈ Σ to the point

G(p) at the ideal boundary Sm
∞ reached by the unique geodesic γ of Hm+1 that starts at φ(p) with initial

speed −η(p). In certain sense, the hyperbolic Gauss map is the analogous concept in the hyperbolic
space to the classical Gauss map for hypersurfaces of Rm+1.

It must however be remarked that the a priori chosen orientation for the hypersurface matters for
the hyperbolic Gauss map. Indeed, if we change the orientation of Σ, then G turns into the negative
hyperbolic Gauss map G− : Σ→ Sm, whose behavior is totally different to that of G.
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Figure 2.1: The Hyperbolic Gauss map
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2.1.2 Regularity of the hyperbolic Gauss map

We shall work in the Hyperboloid model of Hm+1. Let φ : Σ→ Hm+1 be an immersed oriented hyper-
surface, and let η : Σ→ Sm+1

1 denote its unit normal. Then, we can define a normal map associated to φ

taking values in the light cone as
ψ = φ −η : Σ→ Nm+1

+ . (2.1)

The map ψ is strongly related to the hyperbolic Gauss map G : Σ→ Sm
∞ of φ . Indeed, the ideal

boundary of Nm+1
+ coincides with Sm

∞, and can be identified with the projective quotient space Nm+1
+ /R+.

So, with all of this, we have G = [ψ] : Σ→ Sm
∞ ≡ Nm+1

+ /R+. The map ψ is called the light cone map of
the oriented hypersurface φ : Σ→Hm+1.

Moreover, if we write ψ = (ψ0, . . . ,ψm+1), then we may interpret G as the map G : Σ→ Sm given by

G =
1

ψ0
(ψ1, . . . ,ψm+1). (2.2)

In this way, if we label eρ := ψ0, we get the useful relation

ψ = eρ(1,G) : Σ→ Nm+1
+ . (2.3)

Observe also that, by differentiating (2.3) it follows that

� dψ,dψ �= e2ρ〈dG,dG〉Sm . (2.4)

We introduce thus the following terminology, in analogy with the Euclidean setting.

Definition 2.2:
The smooth function ρ : Σ→ R will be called the horospherical support function, or just the support
function, of the hypersurface φ : Σ→ Hm+1.

Besides, if {e1, . . . ,em} denotes an orthonormal basis of principal directions of φ at p, and if κ1, . . . ,κm

are the associated principal curvatures, it is immediate that

� dψ(ei),dψ(e j)�= (1+κi)
2
δi j. (2.5)

Thus, we have:

Lemma 2.3:
Let φ : Σ→ Hm+1 be an oriented hypersurface. The following conditions are equivalent at p ∈ Σ.

(i) The hyperbolic Gauss map G is a local diffeomorphism.

(ii) The associated light cone map ψ in (2.1) is regular.
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(iii) All principal curvatures of Σ are 6=−1.

The regularity of the hyperbolic Gauss map gives rise to a notion of convexity specific of the hyper-
bolic setting, and weaker than the usual geodesic convexity notion.

Definition 2.4 ([42]):
Let Σ ⊂ Hm+1 be an immersed oriented hypersurface with η : Σ→ Sm+1

1 its unit normal, and let Hp

denote the horosphere in Hn+1 that is tangent to Σ at p, and whose interior unit normal at p agrees with
−η(p). We will say that Σ is horospherically concave at p if there exists a neighborhood V ⊂ Σ of p so
that V \{p} does not intersect Hp, V \{p} is contained in the concave side of Hp, and in addition the
distance function of the hypersurface to the horosphere does not vanish up to the second order at p in
any direction [cf. Figure 2.2].

As we already pointed out, in the Hyperboloid model, the (outward) unit normal vector field to the
horosphere is given by n(y) = y− a for every y in the horosphere [see the equation (1.9)]. Then, the
horosphere that contains the point p ∈ Σ and has outward unit normal η(p) is given by a = p−η(p).

Hence, given φ : Σ→Hm+1 a horospherically concave hypersurface with unit normal vector field η ,
we have that the principal curvatures are greater than−1 for every p∈ Σ. Let us explain this. Let ξ =−η

be the new unit normal vector field along φ . Take p ∈ Σ and consider horosphere Hp that contains p
and its inward unit normal agrees with ξ (p). Since the hypersurface is locally outside the horoball
determined by Hp, the principal curvatures of the hypersurface φ with respect to ξ are less or equal to
1. Then, if we consider the original orientation of φ , that is, η =−ξ , then the principal curvatures of φ

at p with respect to η are greater or equal to −1. If the Gauss map is a local diffeomorphism then all the
principal curvatures are different from −1. Therefore, this definition can be immediately characterized
as follows.

Corollary 2.5:
An oriented hypersurface Σ ⊂ Hm+1 is horospherically concave at p ∈ Σ if and only if all the principal
curvatures of Σ at p verify simultaneously κi(p)>−1.

In particular, if Σ is horospherically concave at p any of the equivalent conditions in Lemma 2.3
holds.

2.1.3 Horospherical ovaloids

We will study first the compact case.

Definition 2.6:
A compact immersed hypersurface φ : Σ→Hm+1 will be called a horospherical ovaloid of Hm+1 if it can
be oriented so that it is horospherically concave at every point.
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Figure 2.2: Horospherically concave hypersurface
in the Poincaré ball model
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Equivalently, a compact hypersurface is a horospherical ovaloid if and only if it can be oriented so
that its hyperbolic Gauss map is a global diffeomorphism. This equivalence follows directly from Lemma
2.3 and Corollary 2.5 by a simple topological argument, bearing in mind that every compact hypersurface
in Hm+1 has a point p at which |κi(p)|> 1 for every i. In particular, Σ is diffeomorphic to Sm.

It is also immediate from the existence of this point with |κi(p)|> 1 that every horospherical ovaloid
has a unique orientation such that κi > −1 everywhere for every i = 1, . . . ,n. We call this orientation
the canonical orientation of the horospherical ovaloid. It follows that the hyperbolic Gauss map of a
canonically oriented horospherical ovaloid is always a global diffeomorphism. This is not necessarily
true anymore for the other possible orientation. Let us also point out that if p is a point of a canonically
oriented horospherical ovaloid Σ ⊂ Hm+1, with canonical orientation η , then Σ lies around p in the
concave part of the unique horosphere that passes through p and whose interior unit normal at p agrees
with −η(p).

Recall that a compact hypersurface Σ⊂ Hm+1 is a (strictly convex) ovaloid if all its principal curva-
tures are non-zero and of the same sign. Thus, any ovaloid is a horospherical ovaloid, but the converse is
not true.

Nonetheless, let us point out that a horospherical ovaloid is not necessarily embedded (cf. [19]). For
instance, take a regular curve α : [0,1]→ H2 with geodesic curvature smaller than 1 at every point, and
such that α(0) = α(1) and, moreover, α ′(0) = −α ′(1). Then by considering H2 as a totally geodesic
surface of H3 and after rotating α across the geodesic of H2 that meets α orthogonally at α(0), we get a
surface of revolution in H3 that is a non-embedded horospherical ovaloid.

This lack of embeddedness shows that one cannot talk in general about the outer orientation of a
horospherical ovaloid, and justifies the way we introduced the canonical orientation for them.

2.1.4 Parallel Flow

Another interesting feature of canonically oriented horospherical ovaloids is its good behavior regarding
the parallel flow. As usual, the parallel flow of an oriented hypersurface φ : Σ→ Hm+1 is defined for
every t ∈ R as φt : Σ→ Hm+1,

φt(p) = expφ(p)(−tη(p)) : Σ→ Hm+1, (2.6)

where exp denotes the exponential map of Hm+1, and η(p) is the canonical unit normal of φ at p. It
is then easy to check that if φ is a canonically oriented horospherical ovaloid, then the forward flow
{φt}t , t ≥ 0, is made up by regular canonically oriented horospherical ovaloids. This is no longer true in
general for the backwards flow (i.e. t < 0) due to the possible appearance of wave front singularities of
the hypersurfaces (cf. [37]).

2.1.5 The horospherical metric

It will be important for our purposes to associate a natural metric to the space of horospheres in Hm+1.
This construction has appeared in other works previously, but we reproduce it here in order to put special
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emphasis on some aspects.
Let M denote the space of horospheres in Hm+1. As we have see at the Introduction, we can

parametrize M as the cylinder R×Sm, where a horosphere H ∈M correspond to a point (t,x)∈R×Sn

as x is the point at infinity of H and t is the (signed) hyperbolic distance of H to a fixed point p∈Hm+1

that, without loss of generality, we can assume that p is the origin when we consider the Poincaré Ball
Model of Hm+1. Here, t is negative if p is contained in the convex domain bounded by H .

Let us now construct a natural metric on this space of horospheres. Points of the form (0,x) corre-
spond to horospheres passing through the origin in the Poincaré ball model. It is then natural to endow
each of these points with the canonical metric g0 of Sm evaluated at x.

But now, the horosphere (t,x) is the parallel hypersurface to the horosphere corresponding to (0,x),
and the induced metric of Hm+1 in this parallel horosphere is a dilation of the one of H ≡ (0,x), by the
factor e2t . Thus, the natural metric to define at (t,x) is the dilated metric e2tg0 evaluated at x, here g0 is
the standar metric on Sm. Consequently, we may view the space of horospheres in Hm+1 as the product
R×Sm endowed with the natural degenerate metric

〈,〉∞ := e2tg0.

Observe that the vertical rulings of R×Sm are null lines with respect to this degenerate metric.

Definition 2.7:
Let φ : Σ→ Hn+1 denote an oriented hypersurface in Hm+1, and let ψ : Σ→ Lm+2 be its light map. We
define the horospherical metric g∞ of φ as

g∞ := ψ
∗ (�,�) ,

i.e. as the pullback metric via the light map ψ of the Lorentzian metric�,�.

It turns out that the horospherical metric is everywhere regular if and only if the hyperbolic Gauss
map of the hypersurface is a local diffeomorphism. This is a consequence of Lemma 2.3 and the follow-
ing interpretation of the horospherical metric in the Hyperboloid model of Hm+1. Recall that horospheres
of Hm+1 ⊂ Lm+2 are the intersections of affine degenerate hyperplanes of Lm+2 with Hm+1. Note that a
horosphere is horospherically concave if we consider its outward orientation η , that is, the orientation
pointing at the concave side. Then, a simple calculation shows that horospheres are characterized by
the fact that its associated light cone map is constant, i.e., φ −η = v ∈ Nm+1

+ . Moreover, if we write
v = eρ(1,x), we see that x ∈ Sm is the point at infinity of the horosphere, and that parallel horospheres
correspond to collinear vectors in Nn+1

+ . This shows that the space of horospheres in Hm+1 is naturally
identified with the positive null cone Nm+1

+ . Thus, it is natural to endow this space with the canonical
degenerate metric of the light cone, and it is quite obvious from the above construction that this light
cone metric coincides with the degenerate metric 〈,〉∞ defined above.

Consequently,
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Proposition 2.8:
The horospherical metric on a hypersurface in Hm+1 is the pullback metric of its associated light cone
map. Thus, it is regular if and only if the hyperbolic Gauss map is a local diffeomorphism.

Remark 7:
All this construction is clearly reminiscent of the usual identification of the space of oriented vector
hyperplanes in Rm+1 with the unit sphere Sm. In this sense, just as the canonical Sm metric is used in
order to measure geometric quantities associated to the Euclidean Gauss map of a hypersurface in Rm+1,
we will use the horospherical metric for measuring geometrical quantities with respect to the hyperbolic
Gauss map. Let us explain in more detail this consideration, that was first done by Epstein [13].

First, observe that the ideal boundary Sm
∞ of Hm+1 does not carry a geometrically useful metric (al-

though it has a natural conformal structure), so we cannot endow G with a pullback metric from the ideal
boundary. Nonetheless, let us observe that for defining the hyperbolic Gauss map G we need to know
the exact point p ∈ Hm+1 at which we are working (this does not happen for the Euclidean Gauss map).
The additional knowledge of this point is then equivalent to the knowledge of the tangent horosphere to
the hypersurface at the point. So, it is natural to use the horospherical metric for measuring lenghts
associated to the hyperbolic Gauss map. An alternative justification can be found in [13] in connection
with the parallel flow of hypersurfaces.

It is interesting to observe that the horospherical metric has played an important role in several
different theories. For instance, it is equivalent to the Kulkarni-Pinkall metric [28] (see [42]). It also
happens that the area of a Bryant surface in H3 with respect to the horospherical metric is exactly the
total curvature of the induced metric of the surface.

2.1.6 The support function

Let φ : Σ→Hm+1 ⊂ Lm+2 be an oriented immersion with unit normal vector field η . Remember that we
can associate a horosphere Hp to every point p ∈ Σ. That horosphere is the horosphere that contains p
and its interior normal agrees with −η(p) at p. Set (t,x) = p−η(p). Recall the geometric meaning of
the hyperbolic support function:

Definition 2.9:
We define the support function as the function that associates every p ∈ Σ, the signed distance between
the tangent horosphere Hp and the origin (1,0).

The signed distance is positive if the origin is outside of the horoball that defines the horosphere,
and negative in the other case, i.e., if the origin is inside of the horoball. That is, the support function
ρ : Σ→ R is defined

ρ(p) = log(t),

where (t,x) = p−η(p) ∈ Nm+1
+ , and log is the natural logarithm function.
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2.1.7 Support function, Horospherical Metric and Hyperbolic Gauss map

Let φ : Σ→Hm+1 be an oriented immersion with unit normal vector field η . Given p ∈ Σ, we associate
one light vector as (t,x) = p−η(p) ∈ Nm+1

+ , so we have

ψ(p) = (t,x) = t
(
1, t−1x

)
,

i.e.,
ψ(x) = eρ(p) (1,G(p)) ,

where G(p) is the horospherical Gauss map at the point p. Then, the horospherical metric satisfy

g∞ (v,w) = e2ρ(p)g0 (dGp(v),dGp(w)) , for every x ∈ Σ and v,w ∈ TxΣ,

here g0 is the standard inner product on the sphere Sm, at the point G(p).

2.2 Injective Gauss map and Representation Formula

Let φ : Σ→Hm+1 be an horospherically concave hypersurface with canonical orientation η . We assume
that its horospherical Gauss map G : Σ→ Sm is regular and injective, then, Ω = G(Σ) is a domain in the
sphere Sm. Hence, we can parametrize the manifold Σ using the inverse of G, G−1 : Ω→ Σ, then we can
consider the immersion ϕ = φ ◦G−1 : Ω→Hm+1 with the unit normal vector field η̃ = η ◦G−1.

Therefore, we have that the hyperbolic Gauss map is just the inclusion of Ω in the sphere Sm, that
is, x ∈ Ω 7→ G̃(x) = x. If we still denote by ρ the support function of ϕ : Ω ⊂ Sm → Hm+1, then the
horospherical metric of ϕ is just

g∞ = e2ρ ·g0,

where g0 is the restriction of the usual metric on Sm to Ω.
Thus, identifying φ with ϕ and η with η̃ , one can recover the immersion φ in terms of the hyperbolic

support function when the hyperbolic Gauss map is injective.

Theorem 2.10 (Local Representation Theorem [19]):
Let φ : Ω⊆ Sm −→Hm+1 be a piece of horospherically concave hypersurface with Gauss map G(x) = x.
Then, it holds

φ =
eρ

2
(
1+ e−2ρ

(
1+ |∇ρ|2

))
(1,x)+ e−ρ(0,−x+∇ρ). (2.7)

Moreover, the eigenvalues λi of the Schouten tensor of the horospherical metric ĝ = e2ρg0 and the
principal curvatures κi of φ are related by

λi =
1
2
− 1

1+κi
. (2.8)
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Conversely, given a conformal metric ĝ = e2ρg0 defined on a domain of the sphere Ω ⊆ Sm such
that the eigenvalues of its Schouten tensor are all less than 1/2, the map φ given by (2.7) defines an
immersed, horospherically concave hypersurface in Hm+1 whose Gauss map is G(x) = x for x ∈ Ω and
whose horospherical metric is the given metric ĝ.

Remark 8:
The above Representation Formula can be seen as the hyperbolic analog to the representation formula
for convex ovaloid in Rm+1 (cf. [21, 22])

Note that Theorem 2.10 is local in nature, that is, the hyperbolic Gauss map is (locally) a global
diffeomorphism (onto its local image) and, therefore, one can use Theorem 2.10 to (locally) parametrize
any horospherically concave ovaloid.

In the Poincaré ball model, the Representation formula is

ϕP(x) =
1− e−2ρ(x)+ |∇e−ρ(x)|2(
1+ e−ρ(x)

)2
+ |∇e−ρ(x)|2

x− 1(
1+ e−ρ(x)

)2
+ |∇e−ρ(x)|2

∇
(
e−2ρ

)
(x), ∀x ∈Ω. (2.9)

In the Klein model, the Representation formula is

ϕ(x) =
1− e−2ρ(x)+ |∇e−ρ(x)|2

1+ e−2ρ(x)+ |∇e−ρ(x)|2
x− 1

1+ e−2ρ(x)+ |∇e−ρ(x)|2
∇
(
e−2ρ

)
(x), ∀x ∈Ω.

Let σ = e−ρ , then the Representation formula in the Klein model can be written

ϕ(x) =
1−σ2(x)+ |∇σ(x)|2

1+σ2(x)+ |∇σ(x)|2
x− 1

1+σ2(x)+ |∇σ(x)|2
∇
(
σ

2)(x), ∀x ∈Ω. (2.10)

This formula in the Klein model will be used in Chapters 3 and 4.

2.3 From conformal metric to hypersurfaces

A consequence of Theorem 2.10 is that, if G is injective, the horospherical metric g = e2ρg0 is well-
defined on Ω. Now, we want to invesitgate the converse.

In this section we work with the hyperboloid model of the Hyperbolic space Hm+1, that is, Hm+1 ⊂
Lm+2 and�,� will denote the Lorentzian metric of Lm+2.

Let Ω be a domain in the sphere Sm and ρ : Ω→ R a smooth function. Then, we can define the map
φ : Ω→Hm+1 by

φ(x) = λ (x)(1,x)+ e−ρ(x) (0,−x+∇ρ(x)) ,

where x ∈ Ω, λ (x) =
eρ(x)

2

(
1+ e−2ρ(x)

(
1+ |∇ρ(x)|2

))
, and ∇ρ(x) is the gradient of ρ w.r.t. g0 at the

point x.
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The map defined above is not necessary an immersion. Such map will be an immersion if the con-
formal metric g = e2ρg0 satisfies certain conditions. More precisely we have:

Theorem 2.11:
The map φ : Ω→Hm+1 defined as

φ(x) = λ (x)(1,x)+ e−ρ(x) (0,−x+∇ρ(x)) ,

for x ∈Ω, is an immersion, if only if, all the eigenvalues of the Schouten tensor of g = e2ρg0 are different
from 1/2.

The above Theorem can be found in [19]. Nevertheless, we will give a different proof here. We can
re-write φ as

φ(x) = λ (x)(1,x)−σ(x)(0,x)− (0,∇σx) , (2.11)

for every x ∈Ω, where σ = e−ρ . Consider the eigenvalues of the Hessian of σ w.r.t. the standard metric
g0. Fix x ∈ Ω and let s be one eigenvalue of Hess(σ)x and u ∈ TxΩ be a unit eigenvector associated to
the eigenvalue s. We have that

dφx(u) =
(

1
2
−λ

)
[dψx(u)+(0,u)] ,

where

λ = s ·σ(x)+
1
2

(
σ(x)2−|∇σx|2

)
and ψ : Ω→Hm+1 is defined like ψ(x) = eρ(x) (1,x) for every x∈Ω. Let {u1, . . . ,um} be an orthonormal
base of TxΩ that diagonalize the symmetric operator Hess(σ)x, that is, there are s1, . . . ,sm ∈ R such that

Hess(σ)x(ui) = si ·ui for i = 1, . . . ,m.

We have,

Proposition 2.12:
Let {u1, . . . ,um} be an orthonormal base of TxΩ, with respect to g0, that diagonalize the symmetric
operator Hessx(σ), then

� dφx(ui),dφx(u j)�=

(
1
2
−λi

)(
1
2
−λ j

)
δi j,

where i, j = 1, . . . ,m and

λi = si ·σ(x)+
1
2

(
σ(x)2−|∇σx|2

)
.
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We note that the map η = φ −ψ defines a unit normal vector field along φ , and also ψ is its light
map. Its horospherical Gauss map is just the inclusion Ω ↪→ Sm as we can see easily. In particular, this is
an oriented immersion with injective Hyperbolic Gauss map, whose horospherical metric is g = e2ρg0.

We summarize this in the following theorem:

Theorem 2.13:
If all eigenvalues of the Schouten tensor of g = e2ρg0 are different of 1

2 , then the map φ : Ω→ Hm+1

defines an immersion, and η = φ −ψ is a unit normal vector field along φ such that the horosperical
Gauss map of φ is the inclusion Ω ↪→ Sm.

Using Proposition 2.12, we obtain the reciprocal statement:

Theorem 2.14:
Let φ : Ω→Hm+1 be an oriented hypersurface whose horospherical Gauss is the inclusion Ω ↪→ Sm and
support function ρ . Then, all the eigenvalues of the Schouten tensor of its horospherical metric g = e2ρg0
are different of 1

2 .

2.4 Changing the horospherical metric by an isometry in Hm+1

Let φ : Ω→Hm+1 be an oriented horospherically concave hypersurface with unit normal vector field η

and T : Hm+1→ Hm+1 be an isometry. We can consider the hypersurface T φ : Ω→ Hm+1 with normal
T η : Ω→ Sm+1

1 . Let g be the horospherical metric of φ and g1 be the horosppherical metric of T φ .
In this section we will see that there is a natural relation between the horospherical metrics g1 and

g0.

Proposition 2.15:
Let φ : Ω→ Hm+1 be an oriented horospherically concave hypersurface with unit normal vector field
η such that its hyperbolic Gauss map is the inclusion Ω ↪→ Sm, g is the horospherical metric of φ and
T : Hm+1→ Hm+1 is an isometry. If g1 is the horospherical metric of T φ : Ω→ Hm+1 with respect the
orientation T η and B is the conformal diffeomorphism on Sm associated to T , then

B∗ (g1) = g on Ω.

Proof. First, we compute the light map of T φ ,

ψ
′ = T φ −T η = T (ψ) on Ω,

where ψ is the light map of φ . Let ψ = eρ (1,G) where G is the inclusion Ω ↪→ Sm then

ψ
′ = eρT (1,G) on Ω.
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Therefore, ψ ′(x) = eρ(x)
∣∣det(JB−1)BG(x))

∣∣ 1
m+1 (1,BG(x)), where J(B−1) is the Jacobian of B−1. We

observe that Ω̂ = BG(Ω) is the image of the hyperbolic Gauss map of T φ . Then

g1 = e2ρG−1B−1 ∣∣det(JB−1)
∣∣ 2

m+1 g0 on Ω̂.

Since G(x) = x for all x ∈Ω, we have

g1 = e2ρB−1 ∣∣det(dB−1)
∣∣ 2

m+1 g0 on Ω̂.

Then, B∗ (g1) = e2ρ
∣∣det(dB−1)B

∣∣ 2
m+1 |det(dB)|

2
m+1 g0 or, in other words, B∗ (g1) = g on Ω̂. This con-

cludes the proof.

2.5 Invariance of hypersurfaces and invariance of conformal metrics

Let ρ ∈C∞ (Ω) be such that its associated map φ : Ω→Hm+1 is a horospherically concave hypersurface
with unit normal vector field η : Ω→ Sm+1

1 ⊂ Lm+1, i.e., the canonical orientation of φ . Let T : Hm+1→
Hm+1 be an isometry such that it leaves invariant Σ = φ (Ω), i.e., T (Σ) = Σ.

In this subsection we prove that if we consider the horospherically concave hypersurface T ◦φ : Ω→
Hm+1 with the orientation ηT = η ◦ (φ−1T φ), then the image of its hyperbolic Gauss map agrees with
the image of hyperbolic Gauss map of φ , in particular, the horospherically metric of T φ on Ω coincides
with the one of φ on Ω.

Proposition 2.16:
Let φ : Ω→ Hm+1 be horospherically concave hypersurface with orientation η : Ω→ Sm+1

1 ⊂ Lm+2

whose hyperbolic Gauss map is injective and T : Hm+1 → Hm+1 an isometry. If T leaves φ invari-
ant, i.e., T (Im(φ)) = φ then the hypersurface T φ : Ω→ Hm+1 with orientation ηφ−1T φ has the same
horospherical metric that φ : Ω→Hm+1.

Proof. We assume that the hyperbolic Gauss map of φ is the inclusion Ω ↪→ Sm and its horospherical
metric is g = e2ρg0 on Ω. First, we compute the light map cone of T φ as

ψ
′(x) = T φ(x)−η

(
φ
−1T φ (x)

)
for all x ∈Ω.

Let y = φ−1T φ (x) then

ψ
′(x) = φ(y)−η(y) = eρ(y)(1,y) for all y ∈Ω = φ

−1T φ (Ω) .

Then the image of the hyperbolic Gauss map of T φ : Ω→Hm+1 is Ω and its horospherical metric is
given by g′∞ = e2ρg0 on Ω. This concludes the proof.
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Next, we show that if φ : Ω→Hm+1 is invariant under an isometry T : Hm+1→Hm+1 as above, then
B∗(g) = g on Ω, where B : Bm+1→ Bm+1 is the associated conformal diffeomorphism to T .

Proposition 2.17:
Let g = e2ρg0 be a conformal metric on Ω ⊂ Sm+1 such the map associated φ : Ω→ Hm+1 is a horo-
spherically concave hypersurface in Hm+1 with orientation η . Let T : Hm+1→Hm+1 be an isometry and
B : Bm+1 → Bm+1 be the associated conformal diffeomorphism to T . If T leaves invariant Σ = Im(φ)
and T η = ηT then

B∗(g) = g on Ω,

i.e., g is invariant under B|Sm : Sm→ Sm.
In particular, if Σ = φ : Ω→Hm+1 is invariant under a group of isometries on Hm+1, then the metric

g is invariant under the associated group of conformal diffeomorphisms in Bm+1.

Proof. Let g1 be the horospherical metric of T φ , then by Proposition 2.16, g1 is defined on Ω and g1 = g.
Thus, Proposition 2.15 implies

B∗(g1) = g = B∗(g) on Ω,

which concludes the proof.

2.6 Conformal problems on Sm and Weingarten problems in Hm+1

In this section we see how we can get an elliptic data for problems for hypersurfaces in the Hyperbolic
space Hm+1 from an elliptic data of an elliptic problem for conformal metrics.

The key formula to get a good transformation from an elliptic data of conformal metrics to elliptic
data of hypersurfaces in Hm+1 is the formula (2.8), that can be written as

κi =
2

1−2λi
−1 ∀i = 1, . . . ,m.

We consider a problem for conformal metrics on Ω⊂ Sm given by an elliptic function f : Γ→ R.
First, let V ⊂ Rm be the open set defined by

V =

{
x = (x1, . . . ,xm) ∈ Rm : xi 6=

1
2
, for i = 1, . . . ,m

}
⊂ Rm,

and
W = {y = (y1, . . . ,ym) ∈ Rm : yi 6=−1, for i = 1, . . . ,m} ⊂ Rm.

We have the following diffeomorphism A : V ⊂ Rm→W ⊂ Rm defined by

A (x1, . . . ,xm) =

(
2

1−2x1
−1, . . . ,

2
1−2xm

−1
)

for (x1, . . . ,xm) ∈U. (2.12)
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Let

Λ = Λ(Γ) =

{
x = (x1, . . . ,xm) ∈ Γ : xi <

1
2
, i = 1, . . . ,m

}
,

and we consider the following open set of Rm given by U = A (Λ). The open set U ⊂ Rm has the
following properties:

1. It is symmetric.

2. It is convex.

3. Γm ⊂ ΓU ⊂ Γ1.

where ΓU is the translation ΓU =U− (1, . . . ,1).
Then, the elliptic function W : U → R for problems of hypersurfaces in Hm+1 associated to f is

defined by
W (y) = f

(
A −1 (y)

)
for every y ∈U .

This function satisfies the following properties:

1. W is symmetric in U .

2. W |U > 0.

3. W |∂U = 0

4. For every y ∈U , it holds
∂W

∂yi
(y)> 0 for i = 1, . . . ,m.

Also, if f is regular data elliptic for problems of conformal metrics, i.e., there is a constant λ > 0
with 2λ < 1 such that f (λ , . . . ,λ ) = 1, then, there is a constant κ = (1+2λ )(1−2λ )−1 > 1 such that

W (κ, . . . ,κ) = 1,

that is, (W ,U) is regular data elliptic for problems of hypersurfaces in Hm+1.
Moreover, one can observe that we can perform the inverse process and, from an elliptic data (W ,U)

for hypersurfaces in Hm+1 we can get an elliptic data f for conformal metrics.



Chapter 3

Hypersurfaces via Conformal metrics

We saw how a horospherically concave hypersurface in Hm+1 gives rise to a (locally) well defined con-
formal metric on a subdomain on Sm. Also, such metric is global if we assume that the hyperbolic Gauss
map is injective.

In this chapter we study the opposite case, that is, given a subdomain Ω ⊂ Sm and ρ ∈ C∞ (Ω),
consider the conformal metric g = e2ρg0, then the question is: what can we say about the hypersurface
given by the representation formula?

We will see that if we impose certain conditions on the given conformal metric g = e2ρg0, we will
obtain a horospherically concave hypersurface with injective Gauss map, moreover, such horospherically
concave hypersurface is proper. Also, with some extra conditions on the conformal metric, we get an
embedded horospherically concave hypersurfaces using the parallel flow. We see in this chapter, in
the case of domains that are closed geodesic balls Bp(r) of the sphere Sm, where r ≤ π/2, that if we
impose the condition of constant mean curvature on the boundary ∂Bp(r) then we get information about
the location of the boundary of the horospherically concave hypersurface, that we get from the Local
Representation Theorem. There, we will see that the boundary is in an equidistant hypesurface.

Moreover, using the parallel flow, we can get horospherically hypersurfaces in one of the components
in the Hyperbolic space Hm+1 that is determined by the equidistant hypersurface where its boundary is
contained. Finally, we will study how the parallel flow affects the elliptic problem for conformal metrics.

First, we introduce some notation. Let k ≥ 0 be an integer and set

1. Ck (Ω) = { f : Ω→ R : f is k times differentiable and the k-derivative is continuous on Ω}.

2. We define the norm |·|k,∞ in Ck (Ω): Given f ∈Ck (Ω) then

| f |k,∞ =
k

∑
i=0

∣∣∣ f (i)∣∣∣
∞

,

where ∣∣∣ f (i)∣∣∣
∞

= sup
Ω

∣∣∣ f (i)∣∣∣ for i = 0, . . . ,k.

39
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In this chapter we use the Klein model of the Hyperbolic space Hm+1, unless we state the contrary.
Given ρ ∈ C∞ (Ω), the horospherically concave hypersurface associated to ρ in the Klein model is ϕ :
Ω→Hm+1 where

ϕ(x) = x− 2

1+ e2ρ(x)+ |∇ρ(x)|2
x+

2

1+ e2ρ(x)+ |∇ρ(x)|2
∇ρ(x), x ∈Ω.

Remark 9:
Observe that ϕ is nothing but the map φ : Ω→Hm+1, given in Theorem 2.10, composed with the isometry
that takes the Hyperboloid model of Hm+1 onto the Klein model of Hm+1. Setting σ = e−ρ , this is the
formula (2.10) that we saw after the Local Representation Theorem.

We say that the map φ = (φ0, . . . ,φm+1) : Ω→ Hm+1 ⊂ Lm+2 is Ck,α if for all i = 0, . . . ,m+ 1, the
function φi : Ω→ R is in Ck,α (Ω). First, notice that from the Local Representation Theorem we have
that, if ρ ∈Ck,α (Ω), then φ : Ω→ Hm+1 is a Ck−1,α−map. And moreover, from the expression of the
normal, we have that η ∈Ck−1,α(Ω). As a consequence, the coefficients of the first and second form of
Σ are of class Ck−2,α (as functions defined on Ω).

The map ϕ also can be seen as a map from Ω to Rm+1 since the Klein model of the Hyperbolic space
Hm+1 is diffeomorfic to the open ball {x ∈ Rm+1 : |x|2 < 1}, then we can refer the map ϕ : Ω→ Rm+1

associated to ρ ∈C∞ (Ω). So, we get

ϕ(x) = x− 2σ2(x)

1+σ2(x)+ |∇σ(x)|2
x− 2σ(x)

1+σ2(x)+ |∇σ(x)|2
∇σ(x), x ∈Ω.

3.1 Properness

In this section we study how the behavior of φ : Ω→Hm+1 depends on ρ .

Theorem 3.1:
Given ρ ∈C1 (Ω), the map φ : Ω→Hm+1 is proper if, and only if, |ρ|1,∞ (x)→ ∞ when x→ p, for every
p ∈ ∂Ω.

Proof. Let φ : Ω→ Hm+1 ⊂ Lm+2 be given by the representation formula. Let T : (Hm+,��)→(
Bm+1,gK

)
the isometry that takes the hyperboloid model into the Klein model. Then, ϕ = T ◦φ : Ω→(

Bm+1,gK
)

is given by

ϕ(x) = x− 2σ2(x)

1+σ2(x)+ |∇σ(x)|2
x− 2σ(x)

1+σ2(x)+ |∇σ(x)|2
∇σ(x),

for all x ∈Ω, where σ(x) = e−ρ(x). Taking the Euclidean norm of ϕ we obtain

|ϕ(x)|2 = 1−
(

2σ(x)
1+σ(x)2 + |∇σ(x)|2

)2

for every x ∈Ω. (3.1)
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Hence, ϕ is proper if, and only if,

lim
x→p

(
1

σ(x)
+σ(x)+

|∇σ(x)|2

σ(x)

)
=+∞ for all p ∈ ∂Ω.

This is equivalent to

lim
x→p

(
2cosh(ρ(x))+

|∇ρ(x)|2

eρ(x)

)
=+∞ for all p ∈ ∂Ω.

Finally, that is equivalent to

lim
x→p

[
ρ(x)2 + |∇ρ(x)|2

]
=+∞ for all p ∈ ∂Ω.

In particular, we have

Corollary 3.2:
If ρ : Ω→ R is a proper smooth function then φ : Ω→Hm+1 is proper.

It is interesting to note that φ : Ω→Hm+1 is proper if only if β = Ω→ R diverges at the boundary,
where

β (x) =
(
|∇ρ|2 +ρ

2
)
(x), x ∈Ω.

Also, as a consequence of the proof of the above theorem, we obtain another condition on ρ that
makes φ proper when g = e2ρg0 is complete.

Theorem 3.3:
Let g = e2ρg0 be a complete metric on Ω, such that σ = e−ρ is the restriction of a continuous function
defined on Ω. Then φ : Ω→Hm+1 is a proper map.

Proof. Since g = e2ρg0 is a complete metric on Ω⊂ Sm, we have limsupx→p ρ(x) = +∞ for all p ∈ ∂Ω,
that is equivalent to liminfx→p [−ρ(x)] = −∞ for all p ∈ ∂Ω. Let H : Ω→ R the continuous extension
of σ : Ω→ R, then

H(p) = lim
x→p

σ(x) = liminf
x→p

σ(x) = 0 for all p ∈ ∂Ω.

Thus, limx→p ρ(x) = +∞ for all p ∈Ω, which implies that

lim
x→p

[
ρ(x)2 + |∇ρ(x)|2

]
=+∞ for all p ∈ ∂Ω,

that is, φ : Ω→Hm+1 is proper.
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3.1.1 Invariance of the properness

An interesting relation between conformal metrics and horospherically concave hypersurface is how
they are related by dilation and geodesic flow. Let us explain this in more detail. We assume that
φ : Ω→ Hm+1 is an horospherically concave hypersurface in Hm+1. When we move the hypersurface
φ : Ω→ Hm+1 using the unit normal vector field −η , we have a family of horospherically concave
hypersurfaces

{
φt : Ω→Hm+1 : t > 0

}
. For every t > 0,

φt(x) = cosh(t)φ(x)− sinh(t)η(x) for all x ∈Ω,

i.e.,

φt(x) =
et+ρ(x)

2

[
1+ e−2(t+ρ(x)) |∇ρ(x)|2

]
(1,x)+ e−(t+ρ(x)) (0,−x+∇ρ(x)) for all x ∈Ω,

then the map φt : Ω→Hm+1 is well-defined with horospherical metric g = e2tg = e2(t+ρ)g0. That is, the
map φt : Ω→ Hm+1 is just obtained from the conformal metric gt = e2tg by the Local Representation
Theorem. Since the eigenvalues of the Schouten tensor of gt are just the dilation by a factor of e−2t of
the eigenvalues of the Schouten tensor of g, i.e., given x ∈Ω and let λ1, . . . ,λm be the eigenvalues of the
Schouten tensor of g at the point x, then the eigenvalues of the Schouten tensor of gt at the point x ∈ Ω

are

λi,t = e−2t
λi ≤ λi <

1
2

for all i = 1, . . . ,m, (3.2)

then the map φt : Ω→ Hm+1 is a horospherically concave hypersurface, and clearly its horospherical
metric is gt = e2tg = e2(t+ρ)g0. In conclusion, if we take t > 0, the conformal metric gt = e2tg give rise
to a horospherically concave hypersurface φt : Ω→Hm+1 with the natural orientation ηt given by

ηt(x) = φt(x)− et+ρ(x)(1,x) for all x ∈Ω. (3.3)

Then, one observation is the following:

Proposition 3.4:
Assume that φ : Ω→Hm+1 is proper, then φt : Ω→Hm+1 is also proper for every t ∈ R.

Proof. Let t ∈ R. Since φ is proper, we have that limx→p
[
ρ(x)2 + |∇ρ(x)|2

]
=+∞ for all p ∈ ∂Ω, then

lim
x→p

[
[ρ(x)+ t]2 + |∇ρ(x)|2

]
=+∞ for all p ∈ ∂Ω.

Therefore, φt : Ω→Hm+1 is proper.
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3.2 From immersed to embedded

So far we have seen that the geodesic flow preserves the regularity of a horospherically concave hy-
persurface. In this section, we will study how, under the geodesic flow, such immersed horospherically
concave hypersurface becames embedded.

We start by defining the meaning of a complete conformal metric in our situation.

Definition 3.5:
Let Ω ⊂ Sm be an open domain such that ∂Ω = V1 ∪V2 where V1 and V2 are disjoint submanifolds.
We say that a conformal metric g = e2ρg0, ρ ∈ C∞ (Ω∪V1), is complete if given a divergent curve
γ : [0,1)→Ω then either

• lim
t→1

γ(t) ∈ V1 and
∫ 1

0 |γ ′(t)|g dt <+∞, or

• lim
t→1

γ(t) ∈ V2 and
∫ 1

0 |γ ′(t)|g dt =+∞.

In other words, g is a complete metric on the manifold with boundary Ω∪V1.

In this definition, a submanifold that composes V2 can be one point, that is, it is permitted submani-
folds that have dimension zero, or, even V2 could be empty.

The next theorem shows that if we impose some extension condition on certain functions that are
related to σ = e−ρ we can move along the geodesic flow and then we get an embedded hypersurface ϕt

for t big. The hypersurface ϕt : Ω∪V1→Hm+1 is obtained moving the point ϕ(x) along to the geodesic
γ(t) passing through ϕ(x) and tangent vector −η(x) at that point, i.e., γ(t) = ϕt(x), in other words, in
the Klein model

ϕt(x) = x−2
e−2tσ2(x)

1+ e−2t
[
σ2(x)+ |∇σ(x)|2

]x− e−2t

1+ e−2t
[
σ2(x)+ |∇σ(x)|2

]∇σ
2(x),

for all x ∈Ω∪Γ1.

Theorem 3.6:
Let ρ ∈C∞ (Ω∪Γ1) be such that σ = e−ρ ∈C∞ (Ω∪V1) satisfies:

1. σ2 can be extended to a C1,1 function on Ω.

2. 〈∇σ ,∇σ〉 can be extended to a Lipschitz function on Ω.

Then, there is t0 > 0 such that for all t > t0 the map ϕt : Ω∪V1→Hm+1 associated to ρt = ρ + t is
an embedded horospherically concave hypersurface.
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Proof. Let ζ : Sm → R be a C1,1-extension of σ2 such that ζ > −1
3

, and l ∈ C∞ (Sm) be a Lipschitz

extension of |∇σ |2 such that also l > −1
3

. Then for t > 0 we have the following Lipschitz extension of
ϕt :

Φt(x) = x−2
e−2tζ (x)

1+ e−2t [ζ (x)+ l(x)]
x− e−2t

1+ e−2t [ζ (x)+ l(x)]
∇ζ (x), x ∈ Sm.

Since {Φt}t>0 converges to the inclusion Sm ↪→ Rm+1 uniformly on Sm, there is t0 > 0 such that for
every t > t0, the map Φt is embedded. Then there is t0 > 0 such that for every t > t0 the map ϕt is
embedded [23].

Also, from the equation:

g−1Sch(g)+
1
2
|∇σ |2Id + 〈∇σ , ·〉∇σ =

1
2

σ
2Id +∇

2
σ

2 on Ω

and the hypothesis, we have that the eigenvalues of the Schouten tensor of g = e2ρg0 are bounded in Ω,
so, we can choose t0 > 0 large, such that for every t > t0, the map φt : Ω→ Hm+1 is a horospherically
concave hypersurface (cf. Equation 3.2). This concludes the proof.

3.3 Tangency at infinity using the Klein model

In the previous sections we have studied when the associated horospherically concave hypersurface φ :
Ω→ Hm+1 to ρ ∈C∞(Ω) (we omit regularity conditions), is proper. In this section, we will study how
a proper horospherically concave hypersurface approaches the boundary at infinity. To do so, we will
work on the Klein Model and we will see that the hypersurface ϕ : Ω∪V1→Hm+1 is tangent to the ideal
boundary Sm+1 of Hm+1.

Proposition 3.7:
Let σ = e−ρ , ρ ∈C∞ (Ω∪V1), be such that the functions σ ·σ , 〈∇σ ,∇σ〉 admit smooth extensions on
Sm. Let ϕ : Ω∪V1 → Hm+1 be the associated horospherical hypersurface and Φ : Sm → Rm+1 be the
smooth extension on Sm. If ϕ is proper then for every x ∈ V2:

dΦ(x) ∈ TxSm.

Proof. Let ζ : Sm→ R be a smooth extension of σ2 such that ζ > −1
3

and let l : Sm→ R be a smooth

extension of 〈∇σ ,∇σ〉 such that l >−1
3

. Then ϕ has the following extension:

Φ(x) = x− 2ζ (x)
1+ζ (x)+ l(x)

x− 1
1+ζ (x)+ l(x)

∇ζ (x), x ∈ Sm.
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Since ϕ is proper, the equation (3.1) implies that for each x ∈ V2:√
ζ (x)

1+ζ (x)+ l(x)
= 0 and

1
1+ζ (x)+ l(x)

∇ζ (x) = 0

then
ζ (x) = 0 and ∇ζ (x) = 0 ∀x ∈ Γ2.

So, for every v ∈ TxSm, we have

dΦx(v) = v−2
1

1+ l(x)
Hess(ζ )x(v), ∀x ∈ V2,

where Hess(ζ ) is the Hessian of ζ with respect to the standard metric on Sm. This concludes the proof.

Using the geodesic flow, we obtain

Proposition 3.8:
Let σ = e−ρ , ρ ∈C∞ (Ω∪V1), be a function satisfying the assumptions of Proposition 3.7. Then, there
exists t0 > 0 such that for every t > t0 it holds

dΦt(x) ∈ TxSm and 〈dΦt(x)(v),v〉>
1
2
|v|2 for all x ∈ V2 and for all v ∈ TxSm.

Let us see the difference between the Klein and Poincaré models with a simple example. Let Σ be the
horospherically concave hypersurface given by the function σ : Ω= {(x,y,z)∈ S2 : |z|< cos(π/4)}→R
given by

σ(x,y,z) =
2

2+
√

2

(√
1− z2− cos(π/4)

)
for all x ∈Ω.

One can easily observe (cf. Figure 3.1a), that in the Poincaré Model Σ is transversal to the ideal
boundary. Nevertheless, in the Klein model, Σ is tangent to the ideal boundary (cf. Figure 3.1b).

As we can see, the function σ can be smoothly extended to S2 \ {±e3}, in fact, Figure 3.1(b) is
a smooth extension of the surface in R3 in order to see the tangency of the surface with S2, the ideal
boundary of H3.

3.4 Conditions along the boundary

Let Ω ⊂ Sm be a domain such that ∂Ω = V1 ∪V2 and ρ ∈C∞ (Ω∪V1). Assume that ρ is complete on
Ω (see Definition 3.5). We want to study how conditions on ρ along V1, or imposing some geometric
conditions on Γ1, influence the boundary of Σ.

In general, if (M ,g0) is a Riemannian manifold with boundary ∂M , ν is a unit normal vector field
along ∂M, g = e2ρg0 is a conformal metric to g0, h0 the mean curvature of ∂M with respect the the



46 CHAPTER 3. HYPERSURFACES VIA CONFORMAL METRICS

(a) Poincaré model: The surface is transversal to
the ideal boundary.

(b) Klein model: The surface is tangent to the ideal
boundary.

Figure 3.1: Rotational surface

metric g0 and the unit normal vector field ν , h(g) the mean curvature of the ∂M with respect the metric

g and the normal vector field νg =
1
eρ

ν , then

eρ ·h(g)+ ∂ρ

∂ν
= h0 on ∂M , (3.4)

Take σ = e−ρ , then we have the following relation

∂σ

∂ν
+h0 ·σ = h(g) on ∂M , (3.5)

If we consider the scaled metric gt = e2tg on M , where t ∈ R, then the mean curvature of ∂M with
respect to the unit normal vector field νt =

1
et νg is

h(gt) = e−th(g) on ∂M . (3.6)

Therefore, if ∂M is compact then h(gt) goes to 0 when t goes to infinity. In our case M = Ω∪V1
and ∂M = V1.
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3.4.1 Boundary of a geodesic ball

We begin by recalling some notation. Given p ∈ Sm and r ∈
(

0,
π

2

]
, the geodesic ball of Sm centered at

p and radius r is
Br(p) = {q ∈ Sm : dSm (q, p)< r}

and its inward unit normal along ∂Br(p) is given by

ν(x) = csc(r)p− cot(r)x , x ∈ ∂Br(p).

We will see that any geodesic ball Br(p) has associated a unique totally geodesic hypersurface
E(a,0)⊂Hm+1, here we use the Hyperboloid model,such that

∂Br(p) = ∂∞E(a,0),

where a ∈ Lm+2 is a spacelike unit vector and E(a,0) is defined by equation (1.7), i.e.,

E(a,0) =
{

y ∈Hm+1 :� y,a�= 0
}
.

We can explicitly get the vector a from the center p and the radius r, and vice-versa.

Proposition 3.9:
The ideal boundary of a totally geodesic hypersurface of Hm+1 given by E(a), a = (a0, ā),� a,a�= 1,
is the boundary of a geodesic ball Br(p) of Sm, where p = 1

|a|a and r ∈ (0,π) satisfies cot(r) = a0.
Reciprocally, given the boundary of a geodesic ball ∂Br(p) ⊂ Sm, the ideal boundary of the totally
geodesic hypersurface E(a,0)⊂ Hm+1 is ∂Br(p), where a = (cot(r),csc(r)p).

Proof. Let us see that the ideal boundary of a totally geodesic hypersurface E(a,0), where� a,a�= 1,
is the boundary of a geodesic ball of Sm. If a0 6= 0 then, in the Poincaré model, the totally geodesic
hypersurface E(a,0) is given by {

x ∈ Bm+1 :
∣∣∣∣x− 1

a0
a
∣∣∣∣= 1

a2
0

}
.

The ideal boundary of this set is the boundary of the geodesic ball ∂Br(p) in Sm where

p =
1
|a|

a and cot(r) = a0, r ∈
(

0,
π

2

)
.

If a0 = 0, then the ideal boundary ∂E(a,0) of the totally geodesic hypersurface E(a,0) is

∂B π

2
(a)⊂ Sm,
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i.e., in this case p =
1
|a|

a, and cot
(

π

2

)
= 0 = a0.

Then, the ideal boundary of E(a,0) where� a,a�= 1 and a0 ≥ 0 is the boundary ∂Br(p) of the
geodesic ball Br(p) in Sm where

p =
1
|a|

a and cot(r) = a0 r ∈
(

0,
π

2

]
.

Reciprocally, we consider the geodesic ball Br(p) in Sm, where r ∈
(

0,
π

2

]
, then the boundary ∂Br(p)

is the ideal boundary of the totally geodesic hypersurface E(a,0), where

a =

(
cot(r),

1
sin(r)

p
)
. (3.7)

If r ∈
(

π

2
,π
)

then s = (π− r) ∈
(

0,
π

2

)
and ∂Bs(−p) = Br(p), i.e., ∂Br(p) is the ideal boundary of

a totally geodesic hypersurface of Hm+1.

Now, we will study the boundary φ (∂Br(p)) of the associated horospherically hypersurface φ to ρ

when the boundary of Br(p) has constant mean curvature with respect the metric g = e2ρg0. Consider a
complete conformal metric g = e2ρg0 on a domain Ω∪V1 ⊂ Br(p) such that ∂Br(p) ⊂ V1. Let h(g) be
the mean curvature of ∂Br(p) with respect to g and the inward unit normal vector field νg =

1
eρ ν along

∂Br(p), and h0 = cot(r).
Let φ : Ω→Hm+1 be the associated horospherically concave hypersurface to the complete conformal

metric g on Ω∪V . Then, a straightforward computation shows

� φ(x),h0 (1,x)+(0,ν(x))�=−h(g) along ∂Br(p),

where ν is the inward unit normal vector field along ∂Br(p) with respect to the standard metric g0.
Assume that h(g) = c = cte, then

� φ(x),h0 (1,x)+(0,ν(x))�=−c for all x ∈ ∂Br(p), (3.8)

where
ν(x) = csc(r)p− cot(r)x for all x ∈ ∂Br(p).

Since h0 = cot(r) and a = h0 (1,x)+(0,ν(x)), we have

a =

(
cot(r),

1
sin(r)

p
)

for all x ∈ ∂Br(p),

i.e., a only depends of p and r.
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Remark 10:
In the particular case that r = π/2 and p = n, the north pole, we have

a = (0, . . . ,0,1) = (0,em+1) . (3.9)

Then, from (3.8) and (3.9), we have that

φ (∂Br(p))⊂ E(a,−c) =
{

y ∈Hm+1 :� y,a�=−c
}

which is an equidistant hypersurface to E(a,0), see equation (1.8). Summarizing, we have (see [7],
Claim E):

Proposition 3.10:
Under the conditions above, assuming that V1 contains a component which is the boundary of a geodesic
ball ∂Br(p), p ∈ Sm, r ∈ (0,π), and h(g) = c = cte along ∂Br(p), then

φ (∂Br(p))⊂ E(a,−c),

where E(a,−c) is the totally geodesic hypersurface equidistant to E(a,0) given by

E(a,−c) =
{

y ∈Hm+1 :� y,a�=−c
}

and a = (cot(r),csc(r)p).

In the above conditions, we can say even more. We will see that, in fact, Σ = φ (Ω) makes a constant
angle with E(a,−c) along φ (∂Br(p)). Hence, without loss of generality and for simplicity, we will
assume V1 = ∂Br(p). A unit normal vector field to E(a,−c) is given by N(y) = 1√

1+c2 (a− cy), for all
y ∈ E(a,−c). Since ∂Σ⊂ E(a,−c), we have the following result (see also [7], Claim D):

Proposition 3.11:
Under the above conditions, it holds

� N,η �=
−c√
1+ c2

along φ (∂Br(p)) .

In other words, the angle α between Σ and E(a,−c) along φ (∂Br(p)) is constant, where

cos(α) =− c√
1+ c2

.

Proof. We will work in the Hyperboloid model for simplicity. For every x ∈ ∂Br(p), it holds

� N (ϕ(x)) ,η(x)�=
1√

1+ c2
� a− cϕ(x),η(x)�,
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where a =

(
cot(r),

1
sin(r)

p
)

, then

� N (ϕ(x)) ,η(x)�=
1√

1+ c2
� a,η(x)�

=
1√

1+ c2
� a,ϕ(x)− eρ(x)(1,x)� .

Since� a,(1,x)�= 0 for all x ∈ ∂Br(p), then

� N (ϕ(x)) ,η(x)�=− c√
1+ c2

for all x ∈ ∂Br(p).

In the case that a = (0, . . . ,0,1), we just denote

E(−c) = E(a,−c).

3.5 Moving the hypersurface along the geodesic flow

In this section we will show the following boundary half-space property: let Ω ⊂ Sm
+ be an open set

such that ∂Ω = V1 ∪V2, V1 ∩V2 = /0, where the subset V1 is a compact hypersurface (not necessary
connected) of Sm that contains ∂Sm

+, and V2 is a finite union of disjoint compact submanifolds of Sm. Let
ρ ∈C∞ (Ω∪V1) be such that

lim
x→q

(
e2ρ(x)+ |∇ρ(x)|2

)
=+∞ for all q ∈ V2.

Set
V ′1 = V1 \∂Sm

+,

we will show that, if h(g) = c = cte on ∂Sm
+, then there exists t1 ≥ 0 such that

Σt = ϕt
(
Ω∪V ′1

)
⊂Ct for all t ≥ t1,

where Ct ⊂Hm+1 is the half-space determined by the equidistant E(−e−tc) that contains n at its boundary
at infinity. Specifically (see [7], Claim C):

Theorem 3.12:
Let g = e2ρg0, ρ ∈C∞ (Ω∪V1), be a conformal metric on Ω such that ∂Sm

+ ⊂ V1 and

h(g) = c on ∂Sm
+,
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where c ∈ R is a constant. Assume that

lim
x→q

(
1+ e2ρ(x)+ |∇ρ(x)|2

)
=+∞ for all q ∈ V2.

Then, there exists t0 ≥ 0 such that for every t > t0, the set ϕt (Ω∪V ′1 ) is contained in the half-space
determined by E(−e−tc) and contains n at its ideal boundary.

Proof. Set K = Sm
+ \Ω and int(K) = K \ ∂K. For every t > 0 we define the continuous extensions

Φt : Sm
+ \ int(K)→ Rm+1 of ϕt : Sm

+ \K→Hm+1 given by

Φt(x) =
{

ϕt(x) , x ∈Ω∪V1,
x , x ∈ V2.

Observe that {Φt}t>0 converge to the inclusion Sm
+ \ int(K) ↪→ Rm+1 when t→ ∞. We take an open

set V such that
K ⊂V ⊂V ⊂ Sm

+.

Since V \ int(K) is compact, there exists t1 > 0 such that, for all t > t1, the set ϕt
(
V \K

)
is in the

half-space determined by the equidistant E(|c|) and contains em+1 at its ideal boundary.
Now we consider the map ϕ : Sm

+ \V →Hm+1. We will prove that there is t0 > t1 such that, for every
t > t0, the set ϕt

(
Sm
+ \V

)
is contained in the half-space determined by E(−e−tc) and contains n at its

ideal boundary. That will finish the proof.
Since ϕt converges to the inclusion Sm

+ \V ↪→ Rm+1 uniformly and ∂V is compact, there is t1 > 0
such that, for all t > t1, ϕt (∂V ) is in the half-space determined by E(|c|) and contains em+1 at its ideal
boundary.

From the equation (3.6), the mean curvature of ∂Sm
+ with respect to the scaled metric gt = e2tg, where

t ∈ R, is
h(gt) = e−tc on ∂Sm

+.

By the Proposition 3.10, φt
(
∂Sm

+

)
⊂ E(−e−tc). We consider the following unit normal vector field

along E(−e−tc):

N(y) =
1√

1+ s2
1

[
(0,n)− (e−tc) · y

]
, y ∈ E(−e−tc),

then the principal curvatures of the umbilic hypersurface E(−e−tc) with respect to N are equals to

ce−t
√

1+ c2e−2t
.

Let κ1,t , . . . ,κm,t be the principal curvatures of ϕt . From the Local Representation Theorem, we have
that for all t > 0:

1
2
= e−2t

λi +
1

1+κi,t
on Sm

+ \V, for all i = 1, . . . ,m,
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where λ1, . . . ,λm are the eigenvalues of the Schouten tensor of g.
Since κi,t goes to 1 uniformly on Sm

+ \V when t goes to infinity, for i = 1, . . . ,m, then there exists
t0 > t1 such that

κi,t >
1
2
>− ce−t
√

1+ c2e−2t
for all t > t0, for all i = 1, . . . ,m, (3.10)

on Sm
+ \V .

We claim that for every t > t0, the set ϕt
(
Sm
+ \V

)
is contained in the half-space determined by

E(−e−tc) and contains n at its ideal boundary. If this were not the case, we consider the foliation by
equidistant hypersurfaces {E(s)}s∈R of the Hyperbolic space Hm+1, given by

E(s) =
{

y ∈Hm+1 :� y,(0,em+1)�= s
}

We consider the first equidistant hypersurface E(s1) that intersect ϕt
(
Sm
+ \V

)
, i.e.,

E(s1)∩ϕt
(
Sm
+ \V

)
6= /0 and E(s)∩ϕt

(
Sm
+ \V

)
= /0 for all s < s1.

In the figure 3.2a, we see an equidistant that does not intersect the hypersurface. In the figure 3.2b, we
see the first equidistant that intersect the hypersurface.

Clearly s1 ≤−ct =−e−tc. We note that E(s1)∩ϕt (∂V ) = /0 since s1 ≤ |c|. Then

E(s1)∩ϕt
(
Sm
+ \V

)
6= /0.

We claim that E(s1)∩ ϕt
(
Sm
+ \V

)
= /0, otherwise there would exists an interior contact point of

ϕt
(
Sm
+ \V

)
, say x ∈ Sm

+ \V such that w = ϕt(x) ∈ E(s1).
Consider the normal vector field along E(s1) that is defined in the Hyperboloid model by N(y) =
1√

1+ s2
1

[(0,n)+ s1 · y], for all y ∈ E(s). The principal curvatures of E(s1) with this normal are equal to

− s1√
1+ s2

1

.

In the horospherically concave hypersurface φt , we consider the inverted orientation, i.e, the unit
normal vector field ξt = −ηt (see equation (3.3)). Then the principal curvatures are κ̃i,t = −κi,t with
respect to that normal.

In the figure 3.2c, we see that the normal N to the equidistant E(s1) agrees with the inverted orienta-
tion ξt at the contact point.

Since the Hyperbolic Gauss map is the inclusion Sm
+ \V ↪→Rm+1, the normal vector field ξ coincides

with the normal N of the equidistant E(s) at the point w.
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(a) The equidistant E(s) does not intersect to the
hypersurface.

(b) The equidistant E(s1) intersects to the hyper-
surface.

(c) Inverted orientation of the Σ = Im(φt).

Figure 3.2: Process of getting the first contact equidistant
in the Poincaré ball model.
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The principal curvature of E(s1) with respect N at the point w satisfies

− s1√
1+ s2

1

≥ ct√
1+ c2

t

since − s1 ≥ ct .

Moreover, since ϕt
(
Sm
+ \V

)
is more convex than E(s1) at the point w we have that

κ̃i,t ≥−
s1√

1+ s2
1

at the point w.

That is,
κi,t ≤

s1√
1+ s2

1

at the point w.

So, at the point w, we have
κi,t ≤−

ct√
1+ c2

t

,

but this is a contradiction with (3.10).
Then, for every t > t0, the set ϕt

(
Sm
+ \V

)
is contained in the half-space determined by E(−e−tc) and

contains n at its ideal boundary.

3.6 Dilation and elliptic problems for conformal metric

Given a conformal metric g = e2ρg0, ρ ∈C∞ (Ω), that satisfies an elliptic problem for conformal metrics
on Ω⊂ Sm, i.e.,

f (λ (g)) = 1 on Ω,

where f : Γ→ R is an elliptic function for conformal metrics (see Subsection 1.5.1), one can naturally
ask the following question: given t0 ∈ R, is the metric gt0 = e2t0g a solution of an elliptic problem for
conformal metrics on Ω? The answer is affirmative in the non-degenerate case and in the degenerate
case. Let see in the non-degenerate case.

Proposition 3.13:
Given a solution g = e2ρg0, ρ ∈C∞ (Ω), of an elliptic problem with elliptic data ( f ,Γ) and t0 ∈ R, then
gt0 = e2t0g is a solution of an elliptic problem that is given for the elliptic data ( ft0 ,Γ) where

ft0(x) = f
(
e2t0x

)
for all x ∈ Γ.

Proof. Since Γ⊂ Rm is a cone then e−2t0Γ = Γ. Also ∂Γ = e−2t0∂Γ, then

ft0(x) = f (e2t0x) = 0 for all x ∈ ∂Γ,
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and
∇ ft0(x) = e2t0∇ f (e2t0x) ∈ Γm for all x ∈ Γ.

It is clear that ft0 : Γ→ R is symmetric and

ft0(λ (gt0)) = ft0
(
e−2t0λ (g)

)
= f (e2t0e−2t0λ (g)) = 1 on Ω.

Then, the conformal metric gt0 = e2t0g is a solution of the elliptic problem for conformal metrics
given by the elliptic data ( ft0 ,Γ).

In the case that the elliptic data is regular, i.e., there is a constant 0 < λ < 1/2, such that

f (λ , . . . ,λ ) = 1,

then for every t0 > 0, we have that 0 < e−2t0λ < 1/2 and

ft0
(
e−2t0(λ , . . . ,λ )

)
= 1,

then the ellitpic data ( ft0 ,Γ) is regular.
We remember that if all the eigenvalues of the Schouten tensor of g = e2ρg0 are less than one half

then, for every t > 0, the eigenvalues of gt = e2(t+ρ)g0 are less than one half since the eigenvalues of
the Schouten tensor of gt are obtained by multiplying e−2t by the eigenvalues of the Schouten tensor of
g, that is, if we move positively along the parallel flow of a horospherically concave hypersurface with
injective Gauss map, we get horospherically concave hypersurfaces.

Remark 11:
Observe that if we assume that every eigenvalue of the Schouten tensor of g is less than one half, then
for every t > 0 we have that the associated map φt : Ω→Hm+1 of gt is a horospherically concave hyper-
surface. Moreover, since gt is solution of an elliptic problem given by an elliptic data, the hypersurface
φt : Ω→Hm+1 is a solution of an elliptic problem for hypersurfaces in Hm+1.
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Chapter 4

Escobar Type Problems

In this chapter, we will study Escobar type problems. Since the Schouten tensor is defined for manifolds
with dimension greater that 2, then we will suppose that m ≥ 3 unless there is an explicit statement to
the contrary. In Section 4.1, we obtain a non-existence theorem for conformal metrics on the compact
hemisphere Sm

+ for degenerate elliptic problems with minimal boundary condition, and, more general,
with boundary that has nonpositive constant mean curvature. Our result can be extended to simply-
connected locally conformally flat manifolds with umbilic boundary, we explain this in Subsection 4.1.1.
In Section 4.2, we see that solutions on Sm

+\ with minimal boundary are rotationally invariant and we,
also, prove this in the non-degenerate case. In Section 4.3, we work with degenerate problems on closed
annulus A(r), r ∈ (0,π/2). First, we prove that if there is a solution to a degenerate problem with
minimal boundary then it is rotational invariant and it is unique up to dilations. Then, we will see that
if there is a solution g = e2ρg0 to the degenerate problem on Sm

+ \{n} with minimal boundary such that
the function σ = e−ρ can be extended to a C2 function σ̃ on Sm

+ with σ̃(n) = 0, then there is no solution
for the degenerate problem with minimal boundary on A(r). In Section 4.4, we study some degenerate

and non-degenerate problems on the non-compact annulus A
(

r,
π

2

]
, 0 < r < π/2, we will get necessary

conditions for existence of solutions, if certain conditions are satisfied.
Finally, in Section 4.5, we also see that one can establish some similar results when the dimension is

2 and we observe the difference between the dimension 2 and higher dimension case.
Along this chapter, the regularity conditions on ρ can be relaxed.

4.1 A non-existence Theorem on Sm
+

As we have said at the Introduction, Escobar [15, 16] proved that there is no conformal metric g =
e2ρgEucl on the compact Euclidean unit ball Bm with zero scalar curvature and nonpositive constant
mean curvature along boundary, i.e., h(g) ≤ 0 constant. We extend here such result for degenerate
elliptic equations.

57



58 CHAPTER 4. ESCOBAR TYPE PROBLEMS

We will explain the idea of our proof in the minimal case for simplicity. Assume that there exists
ρ ∈C∞(Sm

+) so that the conformal metric g = e2ρg0 satisfies{
f (λ (g)) = 0 in Sm

+,
h(g) = 0 on ∂Sm

+,

where λ (g) = (λ1, . . . ,λm) is composed by the eigenvalues of the Schouten tensor of g and ( f ,Γ) is an
elliptic data for conformal metrics on domains of Sm. Then, we consider the horospherically concave
hypersurface Σ associated to ρ given by Theorem 2.10. We observe that the boundary of Σ is contained
in a totally geodesic hypersurface E of the hyperbolic space Hm+1 (cf. Proposition 3.10). Without loss
of generality, we can suppose that Σ is embedded and contained in one of the half-spaces determined by
the totally geodesic hypersurface E, see Theorem 3.12. Using Section 2.6, the horospherical concave
hypersurface is a solution to an elliptic problem. Also, the horospheres are solutions for such problem of
hypersurfaces in the Hyperbolic space Hm+1.

We can parametrize the horospheres, with the south pole as the point at infinity of such family, with
the signed distance of those horospheres to the origin in the Poincaré ball model. When the parameter
is large negatively, the horospherically concave hypersurface Σ is inside the horosphere, i.e., it is in the
convex side of the horosphere. Then we increase the parameter until we have a first horosphere that
touches to the hypersurface Σ. We have a contact point between the horosphere and the hypersurface Σ.
We notice that such point happens at the interior of Σ and there is no boundary contact point. Then using
Theorem 1.10 we get a contradiction.

Theorem 4.1:
Let ( f ,Γ) be an elliptic data for conformal metrics and let c ≤ 0 be a constant. Then, there is no
conformal metric g = e2ρg0 on Sm

+, where ρ ∈C∞
(
Sm
+

)
, such that{

f (λ (g)) = 0 on Sm
+,

h(g) = c on ∂Sm
+,

where λ (g) = (λ1, . . . ,λm) is composed by the eigenvalues of the Schouten tensor of g = e2ρg0.

Proof. The proof will be done by contradiction. Assume that there exists a conformal metric on Sm
+,

g = e2ρg0, where ρ ∈C∞
(
Sm
+

)
, that solves the above problem.

Since Sm
+ is compact, up to a dilation of g, we can assume (see Section 3.6), without loss of generality,

that all the eigenvalues of Sch(g) are less that 1/2. By Theorems 3.6 and 3.12, we can assume that the
associated horospherically concave hypersurface φ : Sm

+→Hm+1 is embedded and it is contained in the
half-space determined by the equidistant hypersurface E(−c) to the totally geodesic hypersurface E(0),
and such component contains n at its ideal boundary.

We notice that, in the Poincaré ball model, since −c ≥ 0, the equidistant E(−c) is contained in the
half-space determined by the totally geodesic hyperplane E(0) that contains n at its ideal boundary.
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We consider the horospherically concave hypesurface Σ = φ
(
Sm
+

)
in the Hyperbolic space Hm+1 that

is associated to ρ .
Since, for all t > 0, we have

1
2
= e−2t

λi +
1

1+κi,t
, i = 1, . . . ,m,

where ki,t are the principal curvatures the hypersurface Σt that we get from the parallel flow at the time
t > 0. Then, for t big, all the ki,t are positive. So, we can assume that all the principal curvatures of φ

with respect the normal η are positives. So, we can assume the normal η points to the convex side of Σ.
Let D the bounded component that is determined by ∂Σ in E(−c). It is important to note that if we

consider the topological sphere D∪Σ, then the normal η points inward, since the hyperbolic Gauss map
G is just the inclusion Sm

+→ Sm.
Moreover, the degenerate elliptic problem for the conformal metric implies a degenerate elliptic

problem for the Weingarten hypersurface in the Hyperbolic space Hm+1 (see Section 2.6), where the
hypersurface Σ is, now, a solution, that is,{

W (κ1, . . . ,κm) = 0 in Σ,

cos(α) = − c√
1+ c2

on ∂Σ,

where κ1, . . . ,κm are the principal curvatures of Σ with its natural orietation η : Sm
+ → Sm+1

1 given by
η(x)= φ(x)−eρ(x)(1,x), where x∈ Sm

+, and α is the angle between the hypersurface Σ and the equidistant
hypersurface E(−c) along ∂Σ, this follows from Proposition 3.11.

Recall that horospheres are solutions of the above degenerate elliptic problem for hypersurfaces in
Hm+1. Now, we consider a foliation of the Hyperbolic space Hm+1 by horospheres, {H(s)}s∈R, that have
the same point at the ideal boundary of the Hyperbolic Space, p∞ = s. We parametrize s ∈ R by the
signed distance to the origin of the Poincaré ball model.

Since Σ is compact, for s large enough negatively, Σ is completely contained in the mean-convex side
of the horosphere H(s) (cf. Figure 4.1(a) for the case c = 0). We continue increasing s until we have the
first contact point with Σ, let us say s1 (cf. Figures 4.1(b), 4.1(c) 4.1(d) for the case c = 0). This means,
for every s < s1, the hypersurface Σ is in the interior of H(s), H(s)∩Σ = /0, and H(s1)∩Σ is not empty.

We note that
cos(α) =− c√

1+ c2
≥ 0.

Since the angle α between the normal η and the upward normal of E(−c) is acute or π/2, we get
that the contact point is in the interior of Σ.

The horosphere H(s1) with its natural orientation has its own representation formula over Sm \ {s}.
We consider such formula restricted to Sm

+ and we denote its support function by ρ1. Since this horosphere
is the first contact horosphere, we have that ρ1 ≥ ρ on Sm

+. Also, there is no boundary contact point of Σ,
so there is x ∈ Sm

+ such that ρ1(x) = ρ(x) and

ρ1 > ρ on ∂Sm
+,
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(a) The hypersurface Σ is in the convex side of the
horosphere H(s).

(b) The horosphere H(s) does not intersect to Σ.

(c) The horosphere H(s) does not intersect to the
hypersurface Σ.

(d) The horosphere H(s1) touches the hypersurface
Σ.

Figure 4.1: Process of getting the first contact horosphere
in the Poincaré ball model. Case c = 0.
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then, by Theorem 1.10, ρ1 > ρ on Sm
+, that is a contradiction, since there is x ∈ Sm

+ such that ρ1(x) =
ρ(x).

In the case non-degenerate on a closed northern hemisphere, see the article of M. Cavalcante and J.
Espinar. [7].

4.1.1 Simply-Connected Locally Conformally Flat Manifolds

In the case that we consider a m-dimensional compact, simply-connected, locally conformally flat mani-
fold (M ,g0) with boundary ∂M that is umbilic, and Scal(g0)≥ 0 on M , we have,

Theorem 4.2:
Set ( f ,Γ) an elliptic data for conformal metrics and c ≤ 0 a constant. Let (M ,g0) be a m-dimensional
compact, simply-connected, locally conformally flat manifold (M ,g0) with umbilic boundary, and Scal(g0)≥
0 on M . Then, there is no conformal metric g = e2ρg0, ρ ∈C∞ (M ), such that{

f (λ (g)) = 0 in M ,
h(g) = c on ∂M ,

where λ (g) = (λ1, . . . ,λm) is composed by the eigenvalues of the Schouten tensor of the metric g= e2ρg0.

Proof. By a result of F. M. Spiegel [46], there exists a conformal diffeomorphism between the Rieman-
nian manifold (M ,g0) and the standard closed hemisphere Sm

+. This is done by the developing map Φ

of Schoen-Yau [44] and observing that umbilicity is preserved under conformal transformations. Hence,
the boundary ∂M maps into a hypersphere in Sm by Φ and therefore, Φ maps M into the interior of a
ball.

Thus, the statement follows from Theorem 4.1.

Observe that the above argument can be used into the non-degenerate case studied by Cavalcante-
Espinar [7]. Specifically,

Theorem 4.3:
Set ( f ,Γ) an elliptic data for conformal metrics and c ≤ 0 a constant. Let (M ,g0) be a m-dimensional
compact, simply-connected, locally conformally flat manifold (M ,g0) with umbilic boundary, and Scal(g0)≥
0 on M . If there exists a conformal metric g = e2ρg0, ρ ∈C∞ (M ), such that{

f (λ (g)) = 1 in M ,
h(g) = c on ∂M ,

where λ (g) = (λ1, . . . ,λm) is composed by the eigenvalues of the Schouten tensor of the metric g= e2ρg0,
then M is isometric to a geodesic ball on the standard sphere Sm.
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Proof. So, as above, there exists a conformal diffeomorphism from M to a ball into Sn whose boundary
has constant mean curvature. Moreover, the elliptic problem on M pass to an elliptic problem for the
pushforward metric on the geodesic ball. Thus, by [7, Theorem 1.1], such pushforward metric has
constant Schouten tensor, i.e., all the eigenvalues of the Schouten tensor are equal to the same constant.
Hence, M is isometric to the geodesic ball in the sphere by the work of F. M. Spiegel [46].

4.2 Punctured geodesic ball

Now, we see that any solution to degenerate problem on the punctured geodesic ball Sm
+ \ {n} with

minimal boundary is rotationally invariant.

Theorem 4.4:
Let g = e2ρg0 be a conformal metric on Sm

+ \ {n} that is solution of the following degenerate elliptic
problem: {

f (λ (g)) = 0 in Sm
+ \{n},

h(g) = 0 on ∂Sm
+,

Then g is rotationally invariant.

Proof. Let us define ρ̃ : Sm \{n,s}→ R as

ρ̃(x) =
{

ρ(x1, . . . ,xm) x ∈ Sm
+ \{n},

ρ(x1, . . . ,−xm) x ∈ Sm
− \{s}.

First, we show that ρ̃ is C1. Since

∂ρ

∂xm+1
= 0 on ∂Sm

+

then ρ̃ ∈C1 (Sm \{n,s}). Then we have the following vector field ∇ρ̃ : Sm \{n,s}→ TSm is continuous

∇ρ̃(x) =
{

∇ρ(x) x ∈ Sm
+ \{n},

R∇ρ(R(x)) x ∈ Sm
− \{s},

where R : Rm+1 → Rm+1 is the Euclidean reflection R(x1, . . . ,xm) = (x1, . . . ,−xm), for (x1, . . . ,xm) ∈
Rm+1.

Now, let us see that ρ̃ ∈C2, that is ∇ρ̃ is C1. Let X1 = ∇ρ|Sm
+\{n}

and X2 = ∇ρ̃|Sm
−\{s}

.

Since X1 = X2 on ∂Sm
+, given x ∈ ∂Sm

+ and v ∈ Tx(∂Sm
+) we have ∇vX1 = ∇vX2.

Also, assume for a moment that R(∇2ρ(x)(em+1)) = −∇2ρ(x)(em+1) for all x ∈ ∂Sm
+. We

have that for x ∈ ∂Sm
+ and vm = em+1,

∇−vmX2 =
∂X2

∂ (−vm)
(x)−<X2(x),−vm > x=

∂X2

∂ (−vm)
(x)=R∇vmX1 =R

(
∇

2
ρ(x)(em+1)

)
=−∇vmX1
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then ∇ρ̃ is C1, then, ρ̃ is C2.

Since ρ̃ : Sm \{n,s}→ R is C2 and it is a solution of a degenerate problem, from Theorem 1.11, e2ρ̃g0 is
rotationally invariant, thus g is rotationally invariant.

In order to conclude the proof, let us see that R(∇2ρ(x)(em+1)) = −∇2ρ(x)(em+1) for all
x ∈ ∂Sm

+: for every v ∈ Tx∂Sm
+ we have that < ∇2ρ(x)(v),em+1 >= 0 then ∇2ρx(V ) ⊂

V where V = Tx∂Sm
+. Since ∇2ρ(x) : V → V is symmetric, ∇2ρ(x)(em+1)‖em+1. Thus

R(∇2ρ(x)(em+1)) =−∇2ρ(x)(em+1).

In the case of a non-degenerate elliptic problem, we have the following

Theorem 4.5:
Let g = e2ρg0 be a conformal metric on Sm

+ \{n} that is solution of the following non-degenerate elliptic
problem: {

f (λ (g)) = 1 in Sm
+ \{n},

h(g) = 0 on ∂Sm
+,

Then g is rotationally invariant.

Proof. If ρ admits smooth extension ρ̃ : Sm
+→ R then the conformal metric g1 = e2ρ̃g0, defined on Sm

+,
is a solution to a non-degenerate problem with constant mean curvature on its boundary. Then g1 is
rotationally invariant, so, g is rotationally invariant.

If ρ does not admit smooth extension on Sm
+, then by [31], ρ is rotationally invariant, then g is

rotationally invariant.
That concludes the proof.

4.3 Compact Annulus

We consider the following degenerate elliptic problem on the compact annulus A(r), where r ∈ (0,π/2)
with minimal boundary.

We prove that any solution to that problem is rotationally invariant. Moreover, it is unique up to
dilations.

Theorem 4.6:
Set r ∈ (0,π/2). If there is a solution g = e2ρg0 of the following problem{

f (λ (g)) = 0 on A(r),
h(g) = 0 on ∂A(r),

then it is rotationally invariant and unique up to dilations.
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(a) The hypersurface Σ is between two totally
geodesic hypersurfaces: E(a,0) and E(0).

(b) Extension Σ̃ of Σ by reflection w.r.o. totally
geodesic hypersurfaces.

Figure 4.2: Extension of the compact hypersurface Σ.

Proof. Let g1 be a solution of the degenerate problem given in the theorem. First, we show that g1
is rotationally invariant. Using the same techniques than M. P. Cavalcante and J. M. Espinar [7], we
get a conformal metric on Sm \ {n,s} that is solution to the degenerate problem. Let us sketch this
for the reader convenience. Using the Local Representation Theorem, the horospherical hypersurface
associated to g1 is contained in the slab determined by two parallel hyperplanes and, by the boundary
condition, the boundaries meet orthogonally such hyperplanes (see Chapter 3, see Figure 4.2a when
g1 = g). Thus, we can reflect this annulus with respect to the hyperplanes and we repeat this process.
Then, we obtain an embedded complete horospherically concave hypersurface Σ̃1 whose boundary at
infinity are the north and south pole and, by construction, the extension Σ̃1 of Σ1 is contained in the
interior of an equidistant hypersurface to the geodesic joining the north and south pole, the radius of
such equidistant is determined by the original annulus, then its horospherical metric g̃1 it a solution to
the degenerate problem on Sm \{n,s} (cf. Figure 4.2b when g1 = g). By analogous argument in the proof
of Theorem 4.4, the metric g̃1 is C2 on Sm \{n,s}. Using Theorem 1.11, we have that g̃1 is rotationally
invariant, thus g1 is rotationally invariant.

Now, we show that it is unique up to dilations. Again, using the parallel flow, we can assume that the
associated hypersurface associated Σ1 to g1 is an embedded horospherically concave hypersurface.

By Theorems 3.6 and 3.12, we can suppose that the hypersurface is between the totally geodesic
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hypersurfaces E(0) and E(a), where a =
(

cot(r), 1
sin(r)n

)
. This can be visualized in the Poincaré ball

model. Also, it continues there along the positive parallel flow as an embedded horospherically concave
hypersurface.

Let Σ be the hypersurface associated to g. Since Σ and Σ1 are compact, we can use the parallel flow
in order that Σ1 has no intersection with Σ. That is, if we look at the Poincaré ball model, we could say
that Σ1 is on the exterior of Σ, then again we use the parallel flow on Σ until Σ touches Σ1. We have a
contact point.

We claim that there is a boundary contact point. If not, let ρ1 be the support function of Σ1 and ρ be
the support function of Σ. We have that there is x ∈ A(r) such that ρ1(x) = ρ(x), and, also,

ρ1 > ρ on ∂A(r),

by Theorem 1.10, ρ1(x)> ρ(x), which is a contradiction.
Even more, we claim that both components of ∂Σ1 have contact point with ∂Σ. Suppose that one

component of ∂Σ1 does not have contact point with ∂Σ, we reflect both hypersurfaces with respect to the
hyperplane that contain the component of ∂Σ1 that touches ∂Σ. We have an extension Σ′1 of Σ1 and an
extension Σ′ of Σ such that they have an interior contact point and there is no boundary contact point.
Then apply the same arguments of the above paragraph, we get a contraction.

Also we can say that in very level of A(r) there is a contact point between Σ1 and Σ, i.e., for every
s ∈ (r,π/2) there is x ∈ A(r), with dSm(x,n) = s, such that the support function of Σ1 and the function
support of Σ take the same value at x. The proof is also by contradiction. If there is no such x, then we
use the reflection to attain a contradiction as above.

We known that ρ1 and ρ are rotationally invariant. Since in every level of A(r), there is a point in
that level such that ρ1 and ρ are equal, we have that ρ1 = ρ on that level, then ρ1 = ρ on A(r). So, they
are equal unless a translation through the parallel flow. That is, g1 is a dilation of g.

This concludes the proof.

In the case non-degenerate on the compact annulus, see the article of M. Cavalcante and J. Espinar.
[7].

We will prove that the problem does not have solution if there is a solution g = e2ρg0 to the following
problem:

Find a conformal metric g = e2ρg0 on Sm
+ such that{

f (λ (g)) = 0 in Sm
+ \{n},

h(g) = 0 on ∂Sm
+,

(4.1)

such σ = e−ρ admits a C2-extension σ̃ : Sm
+→ R with σ̃(n) = 0.

Definition 4.7:
We say that a conformal metric g = e2ρg0 on Sm

+ \{n} is a punctured solution of the problem (4.1) if it is
a solution of (4.1) and σ = e−ρ admits a C2-extension σ̃ : Sm

+→ R with σ̃(n) = 0.
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As a first observation, we have:

Proposition 4.8:
Let g= e2ρg0 be a punctured solution to the problem (4.1) then the associated map ϕP : Sm

+\{n}→Rm+1

in the Poincaré ball model, i.e.,

ϕP(x) =
1− e−2ρ(x)+

∣∣∇e−ρ(x)
∣∣2(

1+ e−ρ(x)
)2

+
∣∣∇e−ρ(x)

∣∣2 x− 1(
1+ e−ρ(x)

)2
+
∣∣∇e−ρ(x)

∣∣2 ∇
(
e−2ρ

)
(x), ∀x ∈ Sm

+ \{n},

admits a C1- extension to Sm
+.

Also, from Theorem 4.4, we have the following proposition.

Proposition 4.9:
Punctured solutions are rotationally invariant.

Now, we are ready to prove:

Theorem 4.10:
Set r ∈ (0,π/2). If the problem (4.1) admits a punctured solution, then there is no solution to the
following degenerate elliptic problem:{

f (λ (g)) = 0 on A(r),
h(g) = 0 on ∂A(r).

Proof. We will prove this by contradiction. Suppose that there is a solution for the above problem. From
the proof of Theorem 4.6, that solution can be extended to a solution g = e2ρg0 on Sm

+ \{n}. Let Σ be the
associated hypersurface to g. Using the parallel flow, we can assume that it is horospherically concave
hypersurface through the positive parallel flow and its interior is in the component determined by E(0)
such that its ideal boundary contains n.

Let gP be a punctured solution of the problem (4.1). Since ∂Γ is a cone, the conformal metric e2sgP

is also a solution of the problem (4.1), for every s ∈ R.
There is s0 > 0, such that for all s≥ s0 the associated horospherical hypersurface φs to the punctured

solution e2sgP is embedded and its interior is contained in the same component for the above horospher-
ically concave hypersurfaces. The family of hypersufaces {Q(s)}s≥s0 = {Im(φs)}s≥s0 converges, in the
Poincaré ball model, to the inclusion Sm

+ \ {n} ↪→ Sm. Also, every Q(s) admits a C1-extension to n in
Poincaré ball model contained in Rm+1 and their tangent hyperplanes at n are parallel to the hyperplane
xm+1 = 0.

There is a t1 > 0 such the associated hypersuface Σ1 to g1 = e2t1g intersects the family {Q(s)}s≥s0 .
Without loss of generality we assume that the associated hypersurface Σ to g intersects the family
{Q(s)}s≥s0 . Also, there is s1 ≥ s0 such that
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Figure 4.3: The first hypersurface Q̃ of a punctured solution
that touches the hypesurface Σ̃.
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1. Q(s1)∩Σ 6= /0.

2. for s > s1: Q(s)∩Σ = /0.

Then, we have found a first contact point. Observe that such contact point can not be at infinity since
Σ is contained in the interior of the equidistant to a geodesic and the family Q(s) extends to n. Now, if
the first contact point is an interior point then Q(s1) and Σ are tangent at such point. If the first contact
point occurs on the boundary, Q(s1) and Σ are tangent at that point too, because all the hypersurfaces
Q(s) are orthogonal to the totally geodesic hypersurface E(0) and Σ is orthogonal to E(0) too.

We reflect with respect to the totally geodesic hypersurface E(0) the hypersurfaces Q(s1) and Σ to get
the horospherically concave hypersurfaces Q̃ and Σ̃ (cf. Figure 4.3). Their support functions are defined
on Sm \ {n,s}. Let ρ1 be the support function of Q̃ and ρ̃ be the support function of Σ̃. Since there is a
contact point in the interior of Q̃, there is 0 < δ < π/2 such that

ρ1 > ρ̃ on ∂Ω,

where Ω = {x ∈ Sm : δ < dSm(x,n) < π − δ} and there x0 ∈ Ω such that ρ1(x0) = ρ̃(x0), but this is a
contradiction with Theorem 1.10. That concludes the proof.

It is important to say that the σk-Yamabe problem on Sm
+ \ {n} admits a punctured solution when

1≤ k < m/2. That punctured solution is associated to

σ(x) =
(
(1+ xm+1)

β +(1− xm+1)
β

) 1
β

x ∈ Sm
+ \{n},

where β = 1−m/(2k) < 0, these solutions were constructed by S.-Y. A. Chang, Z. Han, and P. Yang
[10].

For example, for m = 3 and k = 1, so a = −1/2, in Figure 4.4, we can see a slice of the associated
hypersurface to 3σ(x1,x2,x3,x4) using the Poincaré ball model.

When m is even and k = m/2, the σk-Yamabe problem on the compact annulus has a solution g with
σk (λ (g)) = 0 and minimal boundary.

Also, it is good to say that the assumption on the existence of the punctured solution is not a necessary
condition for the non-existence of solutions to the degenerate problems on the compact annulus with
minimal boundary. We know that the punctured solutions are rotationally invariant (cf. Proposition
4.9). Let us consider the σk-Yamabe problem when k > m/2, in these cases there is not solution to
the degenerate problem with minimal boundary and, also, there is not a punctured solution for these
problems (cf. [10]).

4.4 Semi-annulus

Now we focus on different boundary conditions when we consider an annulus on Sm whose boundary
components are geodesic spheres, that is, the domains we will consider in this section are the sphere
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Figure 4.4: This is a slice of the hypersurface associated to 3σ using the Poincaré ball model
for m = 3 and k = 1.



70 CHAPTER 4. ESCOBAR TYPE PROBLEMS

Sm minus two geodesic balls. Observe that, up to a conformal diffeomorphism, we can assume that the
annulus is A(r,π/2] = A(r)∪ ∂Sm

+, where 0 < r < π/2. At one boundary component we will impose
mild conditions on the metric and at the other we will impose constancy of the mean curvature of the
conformal metric.

Our next result will say any conformal metric g = e2ρg0 on A(r,π/2] that satisfy certain property at
its end and this metric is solution to a degenerate problem with non-negative constant mean curvature on
its boundary, has no bounded Schouten tensor. Specifically,

Theorem 4.11:
Let r ∈ (0,π/2), c≥ 0 be a non-negative constant and g = e2ρg0 be a conformal metric on A

(
r, π

2

]
that

is solution of the following degenerate elliptic problem:{
f (λ (g)) = 0 in A(r,π/2],

h(g) = c on ∂Sm
+,

If e2ρ + |∇ρ|2 : A(r,π/2]→ R is proper then λ (g) is no bounded.

Proof. The proof is by contradiction. Suppose that λ (g) is bounded. Using the parallel flow we can
assume that φP : A(r,π/2]→ Rm is a proper horosphererically concave hypersurface and that property is
invariant by the positive parallel flow.

We have the continuous extension Φ : A(r)→ Rm+1 of ϕP : A(r,π/2]→ Rm+1, defined by

Φ(x) =
{

φP(x) x ∈ A(r,π/2],
x x ∈ Sr(n).

We consider the foliation of Hm+1 by horospheres {H(s)}s∈R that have the same ideal boundary {n},
and s is the signed distance between H(s) and the origin of the Poincaré ball model. Since r > 0, we
have that there is s1 ∈ R such that H(s1)∩ Im(Φ) 6= /0 and H(s)∩ Im(Φ) = /0 for s > s1.

Also, since c ≥ 0, the angle between Σ = Im(Φ) and the equidistant E(−c) is obtuse and the angle
between the horosphere H = H(s1) and the equidistant is acute, we have that the contact point is in
the interior of Σ (see Figure 4.5 for case c = 0). That is, there is x ∈ A(r) where ϕP(x) ∈ H. Also
φ
−1
P (H)⊂ A(r) is compact and there is r < r1 < π/2 such that

x ∈ φ
−1
P (H)⊂ A(r1).

Let ρ0 be the function support of the horosphere H restricted to A(r1) then ρ0(x) = ρ(x) and

ρ > ρ0 on ∂A(r1)

By Theorem 1.10, ρ(x)> ρ0(x), which is a contradiction. That concludes the proof.

A similar result can be obtained if we consider that the conformal metric is a solution of a non-
degenerate elliptic problem that satisfied certain mild conditions.
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Figure 4.5: The horosphere H touching the hypersurface Σ.
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Theorem 4.12:
Let 0 < r < π/2, c ∈ R be a constant and g = e2ρg0 be a conformal metric on A

(
r, π

2

]
that is solution of

the following non-degenerate elliptic problem:
f (λ (g)) = 1 in A(r,π/2],

h(g) = c on ∂Sm
+,

lim
x→q

ρ(x) = +∞ ∀q ∈ ∂Br(n).

Let σ = e−ρ . If |∇σ |2 is Lipschitz then ∇2(σ2) is no bounded.

Proof. The proof is by contradiction. We suppose that ∇2σ2 is bounded.
Using the parallel flow, we can assume that φ : A(r,π/2]→Hm+1 is a properly embedded horospher-

ically concave hypersurface.
From hypothesis h(g) = c, we have that the boundary ∂Σ is in E(−c).
Take a closed ball Q with center the origin of the Poincaré model with big radius such that ∂Σ is in

the interior of Q (see Figure 4.6 for the case c = 0). Since f is homogeneous and f (1, . . . ,1) > 0, there
is a constant λ0 > 0 such that

f (λ0, . . . ,λ0) = 1,

and using the parallel flow, we can assume that 0 < λ0 < 1/2.
We work in the Poincaré ball model. Consider the family of totally umbilic spheres in the Hyperbolic

Space with center in the xm+1−axis, {Z(s)}s∈(−1,1), such the principal curvatures are equal to

k0 =
1+2λ0

1−2λ0
> 1.

All these totally umbilic spheres, and also Σ, are solutions of the same elliptic problem for hypersur-
faces in the Hyperbolic space

W (κ1, . . . ,κm) = 1 on Σ
′,

where κ1, . . . ,κm are the principal curvatures of Σ′ ⊂ Hm+1.
We have the continuous extension Φ : A(r)→ Rm+1 of ϕP : A(r,π/2]→ Rm+1, defined by

Φ(x) =
{

φP(x) x ∈ A(r,π/2],
x x ∈ Sr(n).

Since r > 0, there is a δ > 0 such that for all s ∈ (1−δ ,1):

1. Z(s)∩Σ = /0,

2. Z(s)∩Q = /0.
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Figure 4.6: The interior of Q contains the boundary of Σ, for the case c = 0.
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We take one of them, say Z0 = Z(s). In the Poincaré ball model, move Z0 along of a circle with
radius s and center the origin 0 until we have the first contact between the totally umbilic sphere Z0 and
the hypersurface. By item 2, the contact point is at the interior (see Figure 4.7 in the case c = 0). That
is, there is x ∈A(r) such that φP(x) ∈ Z0, remember that Z0 has been rotated. We have that orientation of
the hypersurface Σ is in the same direction of the natural orientation of Z0 and Σ have the same direction.

Let ρ0 be the function support of Z0 restricted to A(r), then we have that

ρ ≥ ρ0 on A(r) and ρ(x) = ρ0(x),

then by the strong maximum principle, ρ = ρ0. So, Σ is part of a sphere, but Σ has non-empty ideal
boundary. This is contradiction.

That concludes the proof.

4.5 The 2-dimensional case

We saw that the Schouten tensor is defined for Riemannian manifolds (M m,g0) when m ≥ 3. That is,
let (M m,g0) be a Riemannian manifold where m ≥ 3, the Schouten tensor of (M ,g0) is defined by the
following symmetric 2-tensor

Sch(g0) =
1

m−2

(
Ric(g0)−

Scal(g0)

2(m−1)
g0

)
,

where Ric(g0) and Scal(g0) are the Ricci tensor and the scalar curvature of (M ,g0).
The trace of the symmetric operator associated to Sch(g0) with respect to the metric g0 gives

Tr
(
g−1

0 Sch(g0)
)
=

1
2(m−1)

Scal(g0).

Let us consider the conformal metric g = e2ρg0, where ρ ∈ C∞(M), then we have the following
relation:

Sch(g)+∇
2
ρ +

1
2
|∇ρ|2g0 = Sch(g0)+∇ρ⊗∇ρ,

where ∇ ,∇2 are the gradient and the hessian with respect the metric g0 respectively, and |·| the norm
with respect of g0.

In the case of the standard sphere (Sm,g0) (see Section 1.3.3), we know that Sch(g0) =
1
2 g0, then for

every conformal metric g = e2ρg0, we have that

Sch(g)+∇
2
ρ +

1
2
|∇ρ|2g0 =

1
2

g0 +∇ρ⊗∇ρ. (4.2)

So, we can take the above expression as a definition of the Schouten tensor for a conformal metric to
the standard one on domains of the sphere S2. Hence, we can consider Yamabe type problems on S2.
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Figure 4.7: Sphere Z0 touching the interior of Σ, for the case c = 0.
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We begin in a general setting. The Yamabe problem for the Riemannian manifold (M ,g0) can be
expressed as follows: find g = e2ρg0, ρ ∈C∞ (M), such that

Tr
(
g−1Sch(g)

)
=

1
2(m−1)

c on M

where c is a constant. Or
λ1 + · · ·+λm =

1
2(m−1)

c on M ,

where λ1, · · · ,λm are the eigenvalues of g−1Sch(g) and c is a constant. If there were a solution g = e2ρg0
then the Riemannian manifold (M ,g) has constant scalar curvature equals to c.

We assume that c = 1 for simplicity. In the case M = Sm, m≥ 3, we have the problem,

λ1 + · · ·+λm =
1

2(m−1)
on Sm,

In the case S2, the equivalent problem is given by

λ1 +λ2 =
1
2

on S2,

and it can be interpreted as the problem of finding a conformal metric g = e2ρg0 on S2 such that the
Riemannian manifold (M ,g) has constant scalar curvature Scal(g) = 1 or, in other words, with constant
Gaussian curvature, since from the equation (4.2)

Tr
(
g−1Sch(g)

)
= e−2ρ (1−∆ρ) =

1
2

Scal(g) = K,

where K is the Gaussian curvature of g = e2ρg0, i.e., the Yamabe Problem reduces to the Liouville
Problem.

This example says that the definition of the Schouten tensor for conformal metrics w.r.t. the standard
metric on domains of the sphere S2, given by (4.2), makes sense. Then, we can consider more general
elliptic problems for conformal metrics on S2, and have some analogous theorems that we saw above for
domains of S2.

We establish the theorems in the case of domains of S2 without proof. First, for geodesic disk we
have:

Theorem 4.13:
Let ( f ,Γ) be a degenerate elliptic data for conformal metrics and let c≤ 0 be a constant. Then, there is
no conformal metric g = e2ρg0 on S2

+, where ρ ∈C∞

(
S2
+

)
, satisfying{

f (λ (g)) = 0 on S2
+,

h(g) = c on ∂S2
+,

where λ (g) = (λ1,λ2) is composed by the eigenvalues of the Schouten tensor of the metric g = e2ρg0.
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Second, for compact annulus, we have the following non-existence result:

Theorem 4.14:
If the problem (4.1) with m = 2 admits a punctured solution, then there is no solution of the following
degenerate elliptic problem: {

f (λ (g)) = 0 on A(r),
h(g) = 0 on ∂A(r),

where λ (g) = (λ1,λ2) is composed by the eigenvalues of the Schouten tensor of g.

In this part, it is good to say that it is possible that the punctured solution in Theorem 4.14 might
not exist. For example, the Yamabe problem, or Liouville Problem for the annulus A(r) in S2, where
0 < r < π/2, has a solution with scalar curvature zero and minimal boundary, then there is no punctured
solution for the Yamabe problem on S2

+ \{n}.
The solution of that problem is given by the conformal metric g = e2ρg0 on A(r), 0 < r < π/2, where

e2ρ(x,y,z) =
1

σ2(x,y,z)
=

1
1− z2 for all (x,y,z) ∈ A(r).

In Figure 4.8 we can see the surface associated to σ(x,y,z) = 1
3

√
1− z2, (x,y,z) ∈ S2 \{n,s}, in the

Poincaré ball model.
Also, it good to say that, for dimension m > 2, we can define the conformal metric g = e2ρg0 on

A(r), 0 < r < π/2, analogously, i.e.,

e2ρ(x1,...,xm+1) =
1

σ2(x1, . . . ,xm+1)
=

1
1− x2

m+1
for all (x1, . . . ,xm+1) ∈ A(r),

but this conformal metric has constant scalar curvature equals to (m− 1)(m− 2) > 0. When m is even
and k = m/2, this conformal metric is a solution for the degenerate σk-Yamabe problem on the compact
annulus A(r) with minimal boundary.

In the case of semi-annulus, we have

Theorem 4.15:
Let r ∈ (0,π/2), c≥ 0 be a non-positive constant and g = e2ρg0 be a conformal metric on A

(
r, π

2

]
that

is solution of the following degenerate elliptic problem:{
f (λ (g)) = 0 in A(r,π/2],

h(g) = c on ∂Sm
+,

If e2ρ + |∇ρ|2 : A(r,π/2]→ R is proper then λ (g) is no bounded.
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Figure 4.8: Surface associated to σ = 1
3

√
1− z2 in the Poincaré ball model of H3.
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