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Abstract

The optimum portfolio selection is at the core of utility maximization problems and,

accordingly, it has been extensively investigated during the past decades.

Nowadays, although there are various methodologies available to portfolio managers,

the most widely adopted one still relies on the traditional mean-variance approach, mainly

because of its mathematical tractability. However, it is well known that mean-variance

optimum portfolios can be heavily distorted due to the non-robustness of the classical

mean and covariance estimates (e.g. sample mean and covariance matrix of asset returns).

Under this approach, optimum portfolios may be composed by counterintuitive and/or

extreme asset weights, may be unstable and sensitive to new information, and may perform

poorly out of the sample. Practical consequences are: excessive transaction costs due to

rebalancing policies and lack of adherence with investors views.

In this work we address this issue replacing the sample classical estimates of location

and scatter as inputs in the portfolio problem by their robust counterparts. We propose

the use of the high breakdown point, affine equivariant MVE, MCD, S and Stahel-Donoho

estimators and compare the performance and stability of respective portfolios.

By dynamically determining breakdown points for the robust estimators and by em-

ploying a semi-parametric bootstrapping procedure, in order to formally address hypothe-

ses tests, we find that robust portfolios present higher stability than the classical non-

robust one and relative performance conditioned to the level of transaction costs in a

financial market, possibly rewarding in less developed economies. Also, results prove to

be robust both to the change of the analyzed portfolio and to modifications in the port-

folio optimization restrictions. We find that 𝑆 portfolios present the best stability profile

and, accordingly, the best relative performance as well.

Keywords: Robust Estimation, Portfolio Optimization, Multivariate Robust Estimators.
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Resumo

A seleção de portfolios ótimos encontra-se no cerne de problemas de maximização de

utilidade e, dessa forma, vem sendo estudado extensivamente nas últimas décadas.

Atualmente, apesar de existirem diversas metodologias dispońıveis aos gerentes de

carteiras, sem dúvida a mais utilizada relaciona-se com a abordagem clássica de média-

variância, principalmente por ser de fácil implementação e entendimento sob o ponto de

vista matemático. No entanto, é bem conhecido o fato de que portfolios ótimos gera-

dos de acordo com essa metodologia carregam distorções decorrentes da não-robustez dos

estimadores clássicos (média e covariância amostrais). Sob essa abordagem, é posśıvel

que sejam verificados, entre outros: pesos extremos ou contra-intuitivos em certos ativos

componentes dos respectivos portfolios ótimos, sensibilidade às novas informações advin-

das do mercado e performance inferior fora da amostra. Custos de transação excessivos

em decorrência de poĺıticas de rebalanceamento e perda de aderência aos objetivos dos

investidores são algumas das consequências práticas.

Neste trabalho, abordamos esse problema substituindo os estimadores amostrais clássicos

por alternativas robustas nos respectivos problemas de otimização. Mais especificamente,

propusemos o uso de estimadores invariantes por transformações afins e com altos pontos

de ruptura (MVE, MCD, S e Stahel-Donoho) e comparamos métricas de performance e

estabilidade vis-à-vis os resultados obtidos sob a metodologia clássica. Além disso, de-

terminamos os pontos de ruptura de maneira dinâmica e empregamos metodologia de

bootstrapping semi-paramétrico para viabilizar a execução de testes de hipóteses.

Em linhas gerais, os resultados demonstram que os portfolios robustos são mais estáveis

e que o excesso de performance relativamente ao portfolio clássico é condicionado aos cus-

tos de transação existentes no mercado, podendo ser recompensador em economias menos

desenvolvidas. Os resultados obtidos se mostraram robustos à mudança do portfolio efi-

ciente considerado na análise e a modificações nas restrições do problema de otimização

correspondente. Entre os estimadores utilizados, consideramos que os portfolios gera-

dos a partir da estimação 𝑆 são os que apresentaram o melhor perfil de estabilidade e

performance.

Palavras-chaves: Estimação Robusta, Otimização de Portfólios, Estimadores Robustos

Multivariados.
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CHAPTER 1

Introduction

I
t is no novelty that most classical statistical inferential methods rely explicitly or

implicitly on a number of assumptions. On several occasions, gaussian distributions

are considered to model observed data behavior, under exact parametric models

premises, and the respective random variables are assumed to be independent and iden-

tically distributed (i.i.d). The theories of classical parametric statistics propose optimal

procedures and estimators, but do not clarify the effects on their properties in the likely

event that the suppositions made were violated. In fact, in most real cases, especially

when financial variables are analyzed, assumptions made are at most approximations to

reality and, indeed, have a negligible probability to be exactly observed. In a loose, non-

technical sense, robust statistics seeks to provide solutions that emulate popular statistical

methods, but which are not unduly affected by outliers or other small departures from

model assumptions, while retaining good properties at them.

The optimum portfolio selection is at the core of utility maximization problems and,

accordingly, it has been extensively investigated during the past decades. In general

terms, it deals with the problem of seeking an optimal combination of securities that best

suits a particular investor needs in an uncertain environment. Nowadays, although there

are various methodologies available to portfolio managers, the most widely adopted one

still relies on the mean-variance approach, pioneered by Markowitz, mainly because of its

mathematical tractability. In simple terms, its main goal is to maximize expected return

for a given level of risk and a given set of investment or budget constraints. However, this

optimization problem is highly dependent on its inputs, the estimated measures of risk

and return which, in turn, depend on the ways the investor choses to model, estimate,
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assess and manage uncertainty.

One of the most know criticism to the mean-variance approach regards the fact that the

sample mean and the sample covariance structure of asset returns are assumed to properly

represent the expected return and risk estimates, respectively, in the asset allocation

problem. These are the maximum likelihood estimates of location and scatter, considering

that i.i.d random variables follow the multivariate gaussian law. Under this hypothesis,

they possess optimum properties. However, due to the stylized facts in finance, these

characteristics are rarely observed in empirical data. More often than not, fatter tails than

what would be expected in a normal distribution are present in unconditional distribution

of asset returns. Also, they often exhibit strong serially conditional heteroscedasticity of

the type characterized by ARCH or GARCH models.

In this sense, mean-variance optimum portfolios can be distorted due to the non-

robustness of the sample mean and covariance estimates. Usually, these portfolios are

composed by counterintuitive and/or extreme asset weights, are very unstable and sensi-

tive to new information, and tend to perform poorly out of the sample. Possible conse-

quences are: excessive transaction costs due to rebalancing policies and lack of adherence

to the investors’ views.

In this work we address this issue replacing the sample estimates of location and

scatter, the mean-variance portfolio problem inputs, by robust alternatives. We propose

the use of the high breakdown point, affine equivariant Minimum Volume Ellipsoid (MVE),

Minimum Covariance Determinant (MCD), S and Stahel-Donoho multivariate estimators

and compare the performance and stability of respective portfolios both using empirical

data for collected securities and simulated random variables realizations. The process of

portfolio weights estimation is known in the related literature as the two-step approach, in

the sense that first we robustly compute the asset returns location and scatter estimates

which, in a second instance, feed the optimum portfolio optimization.

As far as we know, there is not an extensive list of academic works in this theme. Most

papers that we found examine one or two robust estimators in the context of portfolio

optimization and there is a narrow space for controversy regarding their results.

In this sense, this work tries to distinguish from previous ones by simultaneously using

a larger set of robust estimators than what can be found in the literature, providing a

more complete comparative outlook of robust portfolios performance and stability. Also,

breakdown points for the robust estimators are dynamically determined, in the sense that

they are not set as fixed values regardless of the corresponding data sample used for

estimation purposes. Allowing breakdown points to freely vary attempts to increase the

estimator’s level of efficiency, without sacrificing the level of robustness required by the

existing contamination in each estimation sample. Finally, the traditional contamination

2



model extensively used in past works is replaced by a resampling technic directly employed

in the collected sample, in order to formally address hypotheses tests on the parameters

of portfolios performance and stability. A sensitivity analysis is also provided with the

purpose to cover a more varied range of investors and their respective investment policies

and objectives.

After this brief introduction, the rest of this work is organized as follows: Chapter 2

presents general concepts in robustness and the multivariate estimators of location and

scatter used in this work, alongside with their key properties and practical implementation

issues. Chapter 3 introduces the main features of modern portfolio theory, focusing on the

mean-variance framework, its problems, criticisms and alternatives. In its last section,

we cite past studies that used robust statistics in asset allocation problems. Chapter

4 presents the performance and stability results of robust portfolios both in terms of

empirical data and simulated one and a sensitivity analysis is provided that relaxes some

of the decisions made through this work that might have influenced the results. Finally,

Chapter 5 concludes the work.
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CHAPTER 2

Robust Statistics

I
n this chapter we address the main concepts surrounding robust statistics, starting

from introductory concepts and measures of robustness and gradually moving to the

multivariate analysis and the respective robust estimators employed in this work.

Sections 2.1 and 2.2 present key ideas on robustness that can be easily found in the

related technical literature. Therefore, only in these sections, for the sake of convenience

we chose to not explicitly reference every topic to its source, but the reader should find

further details on [17], [14], [37], [26], [21] and [51].

2.1 Introductory Concepts

2.1.1 Statistical Functionals

Let {Ω,𝒜, 𝑃} be a probability space. A parametric model consists of a family ℱ of

distribution functions 𝐹𝜃 defined on the sample space Ω, where the unknown parameter

𝜃 belongs to some parameter space Θ.

In the classical theory of statistical inference, one adheres to this parametric model,

while in robust statistics, the model ℱ := {𝐹𝜃; 𝜃 ∈ Θ} is a mathematical abstraction which

is only an idealized approximation of the reality. Thus, procedures that still behave fairly

well under deviations of this model must be in place.

In the one-dimensional case, let 𝐺𝑛 be the empirical distribution associated with a

particular sample (𝑋1, ..., 𝑋𝑛), or else:

4



𝐺𝑛(𝐴) =
1

𝑛

𝑛∑︁
𝑗=1

1{𝑋𝑗∈𝐴}, 𝐴 ∈ 𝒜

As estimators of 𝜃 we consider real-valued statistics 𝑇𝑛 = 𝑇𝑛(𝑋1, ..., 𝑋𝑛) = 𝑇𝑛(𝐺𝑛), or

else, a sequence of statistics {𝑇𝑛;𝑛 ≥ 1}, one for each possible sample size 𝑛. In the field

of robustness one generally consider estimators which are statistical functionals1, in the

sense that 𝑇𝑛(𝐺𝑛) = 𝑇 (𝐺𝑛),∀𝑛. This means that we assume that there exists a functional

𝑇 : domain(𝑇 ) → R, where domain(𝑇 ) is the set of all distributions for which 𝑇 is defined.

If 𝐺 is the true distribution function governing data behavior, example 1 illustrates

the variance estimator as a statistical functional.

Example 1.

𝑇 (𝐺) = 𝑉𝐺(𝑋) =

∫︁
R
𝑥2𝑑𝐺(𝑥)− (E[𝑋])2

𝑇 (𝐺𝑛) = 𝑉𝐺𝑛(𝑋) =
1

𝑛

𝑛∑︁
𝑖=1

𝑋2
𝑖 − �̄�2

If (𝑋1, ..., 𝑋𝑛) are 𝑖.𝑖.𝑑 random variables at the true distribution 𝐺, then the Glivenko-

Cantelli theorem states that 𝐺𝑛(𝑥)
𝑎.𝑠−→ 𝐺(𝑥). But nothing is said about the convergence

of the functional 𝑇 (𝐺𝑛), as it should tend to 𝑇 (𝐺), when 𝑛 → ∞, with respect to some

type of convergence considering an appropriate metric. Moreover, note that 𝐺 does not

even have to belong to the parametric model considered in the first instance. In fact,

it will often deviate slightly from it. In this sense, we need to study the behavior of

𝑇 (𝐺𝑛) in a neighborhood of 𝐺 and we can perform this by an expansion of the statistical

functional similar to the Taylor one. To analyze estimators behavior in a neighborhood

of the assumed model is one of the main contributions of robust statistics.

2.1.2 Differentiable Statistical Functionals

If one wants to perform an expansion of the functional 𝑇 (·) around 𝐺, analogous

to the Taylor expansion, then the concept of a statistical functional derivative must be

introduced. It happens that there is more than one possible definition for this derivative.

In this work we consider two of them, the Gateaux derivative and the Fréchet derivative,

and compare their properties from the statistical point of view.

1In general terms, a functional is a function from a vector space into its underlying scalar field, or
a set of functions of the real numbers. In other words, it is a function that takes a vector as its input
argument, and returns a scalar. Commonly the vector space is a space of functions, thus the functional
takes a function for its input argument and it is sometimes considered a function of a function.
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Definition 1. Let 𝐹,𝐺 ∈ ℱ and let 𝑡 ∈ [0, 1]. Then the probability distribution

𝐺𝑡(𝐹 ) = (1− 𝑡)𝐺+ 𝑡𝐹

is called the contamination of 𝐺 by 𝐹 in ratio 𝑡.

Definition 2. A functional 𝑇 is differentiable in the Gateaux sense in 𝐺 in direction 𝐹 ,

if there exists the limit

𝑇 ′
𝐹 (𝐺) = 𝑙𝑖𝑚

𝑡→0+

𝑇 (𝐺+ 𝑡(𝐹 −𝐺))− 𝑇 (𝐺)

𝑡
=

𝑑

𝑑𝑡
𝑇 (𝐺+ 𝑡(𝐹 −𝐺))

⃒⃒⃒⃒
𝑡=0

where 𝑇 ′
𝐹 (𝐺) is called the Gateaux derivative 𝑇 in 𝐺 in direction 𝐹 .

Define the function 𝜙(𝑡) = 𝑇 ((1−𝑡)𝐺+𝑡𝐹 ) = 𝑇 (𝐺+𝑡(𝐹−𝐺)), 0 ≤ 𝑡 ≤ 1. This function

enables the evaluation of an estimator under a contaminated distribution. Then, the

Gateaux derivative is simply its right derivative at the point 𝑡 = 0, or else, 𝑇 ′
𝐹 (𝐺) = 𝜙′(0+).

In other words, the Gateaux derivative of a statistical functional can be understood as an

estimator’s rate of variation as the original distribution is infinitesimally contaminated.

Continuing with the variance example provided in the last subsection, lets see the

form of the Gateaux derivative of its estimator.

Example 2.

𝑇 (𝐺) = 𝑉𝐺(𝑋) = E𝐺[𝑋
2]− (E𝐺[𝑋])2

𝜙(𝑡) = 𝑇 ((1− 𝑡)𝐺+ 𝑡𝐹 ) =

∫︁
𝑥2𝑑((1− 𝑡)𝐺+ 𝑡𝐹 )−

[︂ ∫︁
𝑥𝑑((1− 𝑡)𝐺+ 𝑡𝐹

]︂2
=

= (1− 𝑡)E𝐺[𝑋
2] + 𝑡E𝐹 [𝑋

2]− (1− 𝑡)2(E𝐺[𝑋])2 − 𝑡2(E𝐹 [𝑋])2 − 2𝑡(1− 𝑡)E𝐺[𝑋]E𝐹 [𝑋] =⇒

𝜙′(𝑡) = −E𝐺[𝑋
2] + E𝐹 [𝑋

2] + 2(1− 𝑡)(E𝐺[𝑋])2 − 2𝑡(E𝐹 [𝑋])2 − 2(1− 2𝑡)E𝐺[𝑋]E𝐹 [𝑋] =⇒

𝑙𝑖𝑚
𝑡→0+

𝜙′(𝑡) = 𝑇 ′
𝐹 (𝐺) = E𝐹 [𝑋

2]− E𝐺[𝑋
2]− 2E𝐺[𝑋]E𝐹 [𝑋] + 2(E𝐺[𝑋])2

Definition 3. A functional 𝑇 is differentiable in the Fréchet sense in 𝐺 if there exists a

linear functional 𝐿𝐺(𝐹 −𝐺), such that

𝑙𝑖𝑚
𝑡→0

𝑇 (𝐺+ 𝑡(𝐹 −𝐺))− 𝑇 (𝐺)

𝑡
= 𝐿𝐺(𝐹 −𝐺)

where 𝐿𝐺(𝐹 −𝐺) is called the Fréchet derivative of 𝑇 in 𝐺 in direction 𝐹 .

In [17] the author demonstrates that if a functional is Fréchet differentiable then it is

Gateaux differentiable as well, as the former implies higher strict conditions on functionals.

In Section 2.2 we mainly adhere to the concepts of Gateaux differentiability, thus we will

not explore here any further theoretical aspects behind Fréchet differentiability.
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2.2 Measures of Robustness

Generally speaking, the following characteristics are desirable for any estimator:

∙ Consistency: A consistent sequence of estimators is a sequence that converges in

probability to the real parameter. In other words, increasing the sample size in-

creases the probability of the estimator being close enough to the unknown quantity

being estimated;

∙ Asymptotic Unbiasedness Normality: An asymptotically unbiased normal estimator

is an estimator whose distribution centered on the true parameter approaches a

normal distribution with standard deviation shrinking in proportion to 1/
√
𝑛 as the

sample size 𝑛 grows;

∙ Efficiency: Among unbiased estimators, there often exists one with the lowest vari-

ance, called the minimum variance unbiased estimator (MVUE). In some cases, an

unbiased efficient estimator also exists, which, in addition to having the lowest vari-

ance among unbiased estimators, satisfies the Cramér–Rao bound, an absolute lower

bound for the variance. Later in this section we will explore this topic;

∙ Robustness: The next subsections present the most useful tools to measure the ro-

bustness of an estimator. They are: Influence Function; Maximum Bias and Maxi-

mum Variance; Gross Error Sensitivity and Local Shift Sensitivity; and Breakdown

Point.

2.2.1 Influence Function

Definition 4. The Influence Function (𝐼𝐹 ) of 𝑇 at 𝐺 is given by

𝐼𝐹 (𝑥, 𝑇,𝐺) = 𝑙𝑖𝑚
𝑡→0+

𝑇 (𝐺+ 𝑡(𝛿𝑥 −𝐺))− 𝑇 (𝐺)

𝑡

in those 𝑥 where the limit exists and where 𝛿𝑥 is the Dirac distribution which gives mass

1 to {𝑥}.

Based on definition 2, it is clear that the Influence Function is the Gateaux derivative

of an estimator when 𝐹 is replaced by 𝛿𝑥. In this respect, the IF measures the rate

of variation of an estimator, when the original distribution is contaminated only in one

single point. It describes the effect of an infinitesimal contamination at the point 𝑥 on

the estimator, standardized by the mass of the contamination.

Moreover, the Influence Function provides a valuable way to describe the properties

cited in the beginning of this section, more specifically, the asymptotic normality, efficiency
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and the Cramér–Rao bound. To perform this, let 𝐻 be some distribution “near” 𝐺.

Employing the first-order Von Mises expansion2 of the functional 𝑇 at 𝐺 evaluated in 𝐻

it is possible to reach that

𝑇 (𝐻) = 𝑇 (𝐺) +

∫︁
𝐼𝐹 (𝑥, 𝑇,𝐺)𝑑(𝐻 −𝐺)(𝑥) + remainder (2.1)

If the reminder is considered as negligible, then the IF dictates the extent that the

estimator is impacted when evaluated at a close, but different distribution. One impor-

tant application of (2.1) uses the convergence properties of an empirical distribution 𝐺𝑛

dictated by Glivenko-Cantelli theorem, as already mentioned before, in the sense that If

the observations are 𝑖.𝑖.𝑑. according to 𝐺, the true distribution, then for sufficient large

𝑛 we can replace 𝐻 by 𝐺𝑛 to get that

𝑇 (𝐺𝑛) ≈ 𝑇 (𝐺) +

∫︁
𝐼𝐹 (𝑥, 𝑇,𝐺)𝑑(𝐺𝑛 −𝐺)(𝑥) = 𝑇 (𝐺) +

∫︁
𝐼𝐹 (𝑥, 𝑇,𝐺)𝑑𝐺𝑛(𝑥) (2.2)

where we used the clear fact that
∫︀
𝐼𝐹 (𝑥, 𝑇,𝐺)𝑑𝐺(𝑥) = 0.

However, note that the last term in (2.2) may be expressed as∫︁
𝐼𝐹 (𝑥, 𝑇,𝐺)𝑑𝐺𝑛(𝑥) = E𝐺𝑛 [𝐼𝐹 (𝑥, 𝑇,𝐺)] =

1

𝑛

𝑛∑︁
𝑖=1

𝐼𝐹 (𝑋𝑖, 𝑇,𝐺)

which by the central limit theorem is asymptotically normal.

Bringing these pieces together we can see the important relationship between the Influ-

ence Function and the asymptotic normality and the asymptotic variance of an estimator:

√
𝑛(𝑇 (𝐺𝑛)− 𝑇 (𝐺)) ∼ 𝑁(0, 𝑉 (𝑇,𝐺)), where 𝑉 (𝑇,𝐺) =

∫︁
(𝐼𝐹 (𝑥, 𝑇,𝐺))2𝑑𝐺(𝑥)

Also, for a pair of estimators {𝑇𝑛;𝑛 ≥ 1} and {𝑆𝑛;𝑛 ≥ 1} it is relatively simple to

compute de Asymptotic Relative Efficiency (ARE), as

𝐴𝑅𝐸𝑇,𝑆 =
𝑉 (𝑆,𝐺)

𝑉 (𝑇,𝐺)
=

∫︀
(𝐼𝐹 (𝑥, 𝑆,𝐺))2𝑑𝐺(𝑥)∫︀
(𝐼𝐹 (𝑥, 𝑇,𝐺))2𝑑𝐺(𝑥)

Regarding the Cramér–Rao bound we already know that it expresses a lower bound

for the variance of estimators. In its simplest form, it states that the variance of any

unbiased estimator is at least equal to the inverse of the Fisher information, 𝐽(·). An

unbiased estimator that achieves this lower bound is said to be fully efficient.

2For more details on the Von Mises calculus, please refer to [44].
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Suppose a sequence of estimators {𝑇𝑛;𝑛 ≥ 1} for which the corresponding functional 𝑇

is consistent, in the sense that if we estimate the true parameter 𝜃 using the empirical dis-

tribution 𝐺𝑛 by the rule 𝜃𝑛 = 𝑇 (𝐺𝑛), then the functional applied to the true distribution

would recover the true parameter, 𝜃 = 𝑇 (𝐺).

For a fixed 𝜃* ∈ Θ and the corresponding distribution 𝐺* = 𝐺𝜃* , the Fisher Informa-

tion is

𝐽(𝐺*) =

∫︁ (︂
𝜕

𝜕𝜃
(𝑙𝑛𝑔𝜃(𝑥))𝜃*

)︂2

𝑑𝐺*

where 𝑔𝜃 is the density of 𝐺𝜃.

It can be proved, as it is for example in [14], that∫︁
𝐼𝐹 (𝑥, 𝑇,𝐺*)2𝑑𝐺*(𝑥) ≥ 1

𝐽(𝐺*)

Finally, it is also possible to calculate the absolute asymptotic efficiency of an estima-

tor, which is given by

𝑒 :=
1

𝑉 (𝑇,𝐺*)𝐽(𝐺*)

As we saw in this section, Influence Functions are the cornerstone of the infinitesimal

approach as they shed light on the behavior of estimators after a single point contami-

nation. Moreover, through the past decades, these useful tools became more and more

popular allowing, among others: the investigation of several local robustness properties,

the deeper understanding of particular estimators and the formulation of new estimators

with pre-specified characteristics.

We end this subsection evaluating the Influence Function for the expected value using

its corresponding functional 𝑇 (𝐺) =
∫︀
𝑥𝑑𝐺(𝑥). Suppose, without loss of generality, that

the real parameter is 𝜃 = 0. In this case, the Influence Function takes the form:

Example 3.

𝐼𝐹 (𝑥, 𝑇,𝐺) = 𝑙𝑖𝑚
𝑡→0+

∫︀
𝑥𝑑[(1− 𝑡)𝐺+ 𝑡𝛿𝑥](𝑥)−

∫︀
𝑥𝑑𝐺(𝑥)

𝑡
=

= 𝑙𝑖𝑚
𝑡→0+

(1− 𝑡)
∫︀
𝑥𝑑𝐺(𝑥) + 𝑡

∫︀
𝑥𝑑𝛿𝑥(𝑥)−

∫︀
𝑥𝑑𝐺(𝑥)

𝑡
= 𝑙𝑖𝑚

𝑡→0+

𝑡𝑥

𝑡
= 𝑥

because
∫︀
𝑥𝑑𝐺(𝑥) = 0 by the previously adopted premise. It is not difficult to show that

the arithmetic mean enjoys most properties of a good estimator, except by the fact that

it is not robust to deviations of the assumed model. In fact, example 3 demonstrated

that its Influence Function is not bounded at all and even a single outlier can cause
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serious damage to the respective estimate. The next measures of robustness deepen the

understanding of this kind of problem.

2.2.2 Gross Error Sensitivity and Local Shift Sensitivity

Definition 5. The Gross Error Sensitivity (𝛾*) of a functional 𝑇 under a distribution 𝐺

is

𝛾* = 𝑠𝑢𝑝
𝑥
|𝐼𝐹 (𝑥, 𝑇,𝐺)|

Being the maximum absolute value of the Influence Function under 𝐺, the Gross

Error Sensitivity measures the worst influence which a small amount of contamination

of fixed size can have on the value of the estimator, considering all points 𝑥 that this

contamination may occur. In this sense, it may be understood as an upper bound on the

asymptotic bias of the estimator and, as so, a finite 𝛾* is always desirable, in which case

the estimator is called 𝐵-robust.

Definition 6. The Local Shift Sensitivity (𝜆*) of the functional 𝑇 under distribution 𝐺

is

𝜆* = 𝑠𝑢𝑝
𝑥

⃒⃒⃒⃒
𝐼𝐹 (𝑦, 𝑇,𝐺)− 𝐼𝐹 (𝑥, 𝑇,𝐺)

𝑦 − 𝑥

⃒⃒⃒⃒
Intuitively, the Local Shift Sensitivity measures the effect of shifting the contamination

slightly from the point 𝑥 to some neighboring point 𝑦, standardized by the difference

between 𝑥 and 𝑦.

The example below illustrates the difference between 𝛾* and 𝜆* when considering the

functional 𝑇 (𝐺) = E𝐺[𝑋].

Example 4.

𝑇 (𝐺) = E𝐺[𝑋] =⇒ 𝐼𝐹 (𝑥, 𝑇,𝐺) = 𝑥− E𝐺[𝑋] =⇒

𝛾* = 𝑠𝑢𝑝
𝑥
|𝐼𝐹 (𝑥, 𝑇,𝐺)| = 𝑠𝑢𝑝

𝑥
|𝑥− E𝐺[𝑋]| = ∞

𝜆* = 𝑠𝑢𝑝
𝑥

⃒⃒⃒⃒
𝐼𝐹 (𝑦, 𝑇,𝐺)− 𝐼𝐹 (𝑥, 𝑇,𝐺)

𝑦 − 𝑥

⃒⃒⃒⃒
= 𝑠𝑢𝑝

𝑥

⃒⃒⃒⃒
𝑦 − E𝐺[𝑋]− (𝑥− E𝐺[𝑋])

𝑦 − 𝑥

⃒⃒⃒⃒
= 1

which means that the arithmetic mean is not 𝐵-robust, as the worst possible contamina-

tion can potentially lead the estimator out of bounds but, on the other hand, the mean

is not sensible to local changes.
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2.2.3 Maximum Bias and Maximum Variance

Definition 7. Assume that the true distribution function 𝐺 lies in some family ℱ . The

Maximum Bias (𝑏(ℱ)) is

𝑏(ℱ) = 𝑠𝑢𝑝
𝐹∈ℱ

|𝑇 (𝐹 )− 𝑇 (𝐺)|

The family ℱ can take various forms. For example, it can be a Levy-neighborhood

ℱ𝜀 = {𝐹 ;∀𝑡, 𝐺(𝑡− 𝜀)− 𝜀 ≤ 𝐹 (𝑡) ≤ 𝐺(𝑡+ 𝜀) + 𝜀}

or, as usually considered in the robustness analysis, it can be the 𝜀-contaminated neigh-

borhood of the true distribution function 𝐺, that is:

ℱ𝜀 = {𝐹 ;𝐹 = (1− 𝜀)𝐺+ 𝜀𝐻}, 𝐻 arbitrary

However, independently of the model ℱ considered, the maximum bias is always eval-

uated considering all possible distributions in a contaminated environment. In a similar

way, it is possible to define the Maximum Variance.

Definition 8. Assume that the true distribution function 𝐺 lies in some family ℱ . The

Maximum Variance (𝑣(ℱ)) is

𝑣(ℱ) = 𝑠𝑢𝑝
𝐹∈ℱ

𝑉 (𝐹, 𝑇 )

2.2.4 Breakdown Point

Definition 9. Let 𝑋(0) = (𝑋1, ..., 𝑋𝑛) be a random sample and consider the corresponding

value 𝑇𝑛(𝑋
(0)) of a functional 𝑇 . Then, replace any 𝑚 components by arbitrary values,

possibly very unfavorable, even infinite. The new sample after the replacement denotes

𝑋(𝑚), and let 𝑇𝑛(𝑋
(𝑚)) be the pertaining value of the estimator. The Breakdown Point

(𝜀*𝑛) of estimator 𝑇𝑛 for sample 𝑋(0) is the number

𝜀*𝑛(𝑇𝑛, 𝑋
(0)) =

𝑚*(𝑋(0))

𝑛

where 𝑚*(𝑋(0)) is the smallest integer 𝑚, for which

𝑠𝑢𝑝
𝑋(𝑚)

||𝑇𝑛(𝑋(𝑚))− 𝑇𝑛(𝑋
(0))|| = ∞

In other words, the Breakdown Point is the smallest part of the observations that,

being replaced with arbitrary values, can lead 𝑇𝑛 up to infinity. For instance, the sample

mean (�̄�) can be completely upset by a single outlier. If any data value 𝑋𝑖 → ±∞, then

�̄� → ±∞. This contrasts with the sample median, which is little affected by moving
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any single value to ±∞. In fact, the median tolerates up to 50% of “bad” contamination

before it can be made arbitrarily large. So, in the context of this subsection, we say that

the sample median has a Breakdown Point of 50% whereas that for the sample mean is

0%.

2.3 Robust Multivariate Estimators

Multivariate location vectors and scatter matrices estimation is a cornerstone in mul-

tidimensional data analysis, as this process generates results that are often used as inputs

in subsequent inferential methods. The most common estimators of multivariate loca-

tion and scatter are the sample mean and the sample covariance matrix. They are easily

understood and computed by practitioners and are optimal estimators in a multivariate

gaussian context. However, they are extremely sensitive to the presence of even a few

outliers. Since the field of robustness became popular among statisticians and researchers,

different authors have proposed various robust estimators. In this section, we present the

robust alternatives chosen to be used in this work.

In this section we are considering that the multivariate dataset is composed by random

vectors X𝑖 ∈ R𝑝, 𝑖 = 1, ..., 𝑛, where 𝑛 is the sample size and 𝑝 is the problem dimension.

2.3.1 Introductory Concepts to the Multivariate Analysis

In the multivariate analysis, it is important to present three more definitions.

Definition 10. Consider the problem of estimating 𝜃 and Σ, the multivariate location

and scale parameter, by means of estimators t𝑛 and C𝑛, respectively. We say that t𝑛 and

C𝑛 are affine equivariant if:

t𝑛(AX1 + b, ...,AX𝑛 + b) = At𝑛(X1, ...,X𝑛) + b

C𝑛(AX1 + b, ...,AX𝑛 + b) = AC𝑛(X1, ...,X𝑛)A
′

for all nonsingular 𝑝× 𝑝 matrices A and b ∈ R𝑝.

The importance of affine equivariance regards the fact that in many practical occasions

a linear transformation might be applicable to an estimator and, in these cases, one

might want the estimators properties to be preserved. It makes the analysis independent

of the variables measurement scale as well as translations or rotations of the data, for

example. Not all robust estimators possess this property. According to [26], although

desirable, affine equivariance is not a mandatory property, and may in some cases be

sacrificed for other attributes such as computational speed. Another important result for
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affine equivariant estimators can be found in [10] which stated that no affine equivariant

estimator can achieve a breakdown point higher than 𝑛−𝑝+1
2𝑛−𝑝+1

which asymptotically tends

to 50%.

Also, in the multivariate context, it is common to consider the location estimates

as center of symmetry, considering a particular data cloud shape. However, while the

symmetry and the center of symmetry are uniquely determined in the univariate model

(e.g. the sample median), their extension to the multivariate model is not straightforward

and can be made in several possible ways. Usually, robust estimators are constructed

based on specific types of symmetry: spherical and elliptical.

Definition 11. The distribution of a random vector X = (X1, ...,X𝑛) is spherically sym-

metric about the location parameter 𝜃, if X − 𝜃 is orthogonally invariant, i.e, for any

orthogonal 𝑝 × 𝑝 matrix U, the distribution of U(X − 𝜃) is the same as the distribution

of X− 𝜃.

In these cases, as it is better explained in [21], if a density function exists, it has

the form 𝑔(||X − 𝜃||), where || · || stands for the Euclidean norm and 𝑔(·) is a non-

negative function. Note that the class of spherically symmetric distribution includes, for

instance, the multivariate normal distributions, the standard multivariate 𝑡 and logistic

distributions.

Definition 12. A random vector X = (X1, ...,X𝑛) follows an elliptically symmetric dis-

tribution with parameters 𝜃 and Σ if it is affinely equivalent to that of a spherically

symmetric random vector Y = (Y1, ...,Y𝑛):

X
𝑑
= A′Y + 𝜃

where A is a nonsingular 𝑝× 𝑝 matrix such that A′A = Σ.

For example, if Y is distributed according to a 𝑝-variate normal 𝑁(0, 𝜎2I) and, there-

fore, spherically symmetric, then X is 𝑝-variate normal 𝑁(𝜃,Σ), where Σ = A′A. More-

over, its characteristic function and the respective density, when it exists, has the form:

𝜙X(t) = E
[︀
𝑒𝑖t

′
X
]︀
= 𝑒𝑖t

′
𝜃Ψ(t

′
Σt)

𝑓X(𝑥) = |Σ|−
1
2 𝑔((X− 𝜃)′Σ−1(X− 𝜃))

(2.3)

for some scalar function Ψ(·) and a non-negative function 𝑔(·).
In this work we are dealing with financial data and, in this context, it is important

to note that many authors have already showed that the Gaussian distribution is not an

option for data behavior modeling. See for example, [12] and [20] regarding the depen-

dence structure of multivariate time series. Moreover, as it is clear from Definitions 11
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and 12, the spherical symmetry is a special case of the elliptical symmetry. In robustness

and nonparametric studies using financial data, elliptical distributions are a commonly

acceptable alternative retaining the workability of the normal distribution, as stated in

[35].

The next subsections are devoted to the explanation of the robust estimators used in

this work.

2.3.2 Minimum Covariance Determinant Estimator

The Minimum Covariance Determinant (MCD) estimator is one of the first affine

equivariant and highly robust estimators of multivariate location and scatter proposed in

the related literature. Although introduced in 1984, its popularity has increased among

statisticians only after the computationally efficient FAST-MCD algorithm was proposed

in [41]. Since then, the MCD has been applied in numerous fields such as medicine,

finance, image analysis, and chemistry.

Definition 13. The MCD estimators of location t𝑛 and scatter C𝑛 are determined by

t𝑛 =
1

ℎ

ℎ∑︁
𝑗=1

X𝑖𝑗

C𝑛 = 𝑐
1

ℎ− 1

ℎ∑︁
𝑗=1

(X𝑖𝑗 − t𝑛)(X𝑖𝑗 − t𝑛)
′

where the set Xℎ = {X𝑖1 , ...,X𝑖ℎ} contains the ℎ observations whose covariance matrix

has the smallest determinant among all possible subsets of size ℎ and 𝑐 is a correction

factor for consistency (see [5]).

In [18] several properties of the MCD estimator are established as, for example:

∙ Affine Equivariance: This property follows from the fact that for each set Xℎ of

size ℎ, the determinant of the covariance matrix S of the transformed data AXℎ,

for any nonsingular matrix A, equals

|S(AXℎ)| = |AS(Xℎ)A
′| = |A|2|S(Xℎ)|

Hence, the optimal set of points that minimizes |S(AXℎ)| remains the same, or else,

it also minimizes the determinant of the original data covariance matrix, |S(Xℎ)|.
Similarly, the affine equivariance of the MCD location estimator follows from the

equivariance of the mean.

14



∙ Breakdown Point: It can be proved that the MCD estimates can achieve the

highest possible breakdown point value for affine equivariant estimators, when ℎ is

chosen as ⌊(𝑛+ 𝑝+ 1)/2⌋, where ⌊𝑥⌋ indicates the floor of 𝑥.

∙ Efficiency: The raw MCD estimator is highly robust but not so efficient. To

increase efficiency while retaining robustness, a reweighting process can be applied

to the raw estimators, which yields to the estimates:

t1𝑛 =

∑︀𝑛
𝑖=1𝑊 (𝑑2𝑖 )X𝑖∑︀𝑛
𝑖=1𝑊 (𝑑2𝑖 )

C1
𝑛 = 𝑐1

1

𝑛

𝑛∑︁
𝑖=1

𝑊 (𝑑2𝑖 )(X𝑖 − t1𝑛)(X𝑖 − t1𝑛)
′ where

𝑑𝑖 =
√︀

(X𝑖 − t𝑛)C−1
𝑛 (X𝑖 − t𝑛)

is the Mahalanobis distance considering the raw MCD estimates of location and

scatter, 𝑊 (·) is an appropriate weight function and 𝑐1 is again a consistency factor.

The reweighted MCD estimates are the default choice in current implementations

of most statistical softwares.

The computation of the MCD estimates of location and scatter is far from being triv-

ial. The so-called “naive” algorithm, only feasible for small data sets, would investigate

all subsets of size ℎ to find the one with the smallest covariance matrix determinant. To

circumvent this obstacle, the FAST-MCD algorithm was proposed in [41]. According to

the authors, the key step of this algorithm is the fact that, starting from any approxi-

mation to the MCD, it is possible to compute another approximation with an even lower

determinant, which they called as “C-Step”, where the letter “C” stands for “Concentra-

tion”. Theorem 1 formalizes the idea behind “C-Step” theorem and the reader can easily

find its proof in [41].

Theorem 1. Let 𝐻1 ⊂ {1, ..., 𝑛} with #𝐻1 = ℎ and put

t1 =
1

ℎ

∑︁
𝑖∈𝐻1

X𝑖

C1 =
1

ℎ

∑︁
𝑖∈𝐻1

(X𝑖 − t1)(X𝑖 − t1)
′

If |C1| ≠ 0 define de relative distances

𝑑1(𝑖) =
√︁

(X𝑖 − t1)′C
−1
1 (X𝑖 − t1), 𝑖 = 1, ..., 𝑛
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Now take 𝐻2 such that

{𝑑1(𝑖); 𝑖 ∈ 𝐻2} := {(𝑑1)1:𝑛, ..., (𝑑1)ℎ:𝑛}

where (𝑑1)1:𝑛 ≤ (𝑑1)2:𝑛 ≤ · · · ≤ (𝑑1)𝑛:𝑛 are the ordered distances, and compute t2 and C2

based on 𝐻2. Then

|C2| ≤ |C1|

with equality, if and only if, t1 = t2 and C1 = C2.

Note that the sequence (|C1|, |C2|, |C3|, ...) is nonnegative and must converge, that is,

there must be a index 𝑚 such that |C𝑚| = 0 or |C𝑚| = |C𝑚−1|.
Finally, a note on how to build the initial subset 𝐻1. According to the authors,

instead of randomly drawing any 𝐻1, it is more efficient to focus on a random (𝑝 + 1)-

subset 𝐽 and compute t0 = 𝑎𝑣𝑒(𝐽) and C0 = 𝑐𝑜𝑣(𝐽). If |C0| = 0, 𝐽 is extended, or else,

more observations are added to 𝐽 , until |C0| > 0. Then, for 𝑖 = 1, ..., 𝑛 the distances

𝑑20(𝑖) = (X𝑖 − t0)
′C−1

0 (X𝑖 − t0) are computed and sorted. Then, the initial 𝐻1 subset is

the one which comprises the ℎ observations with smallest distance 𝑑0, when one should

remember that ℎ = ⌊(𝑛+ 𝑝+ 1)/2⌋ yields the highest breakdown value.

2.3.3 Minimum Volume Ellipsoid Estimator

The Minimum Volume Ellipsoid (MVE) estimator was first proposed in [39]. Its

rationale is related to the searching of the minimal volume ellipsoid containing, at least,

half of the data set points. In this sense, t𝑛 is taken to be the center of the minimum

volume ellipsoid while C𝑛 is its shape matrix.

More formally, define

𝐸(𝑎, 𝑆) := {X; (X− a)′S−1(X− a) ≤ 1}

as the ellipsoid centered in a with scatter matrix S and radius 1.

Definition 14. The Minimum Volume Ellipsoid (MVE) location estimator t𝑛 and scatter

estimator C𝑛 are determined by

min |C𝑛|

subject to #{𝑖; (X𝑖 ∈ 𝐸(t𝑛,C𝑛)} ≥
⌊︂
𝑛+ 1

2

⌋︂ (2.4)

In [48] several properties of the MVE estimator are considered, such as:
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∙ Affine Equivariance: This follows from the fact that the affine transformation

X → AX + b transforms an ellipsoid with center t𝑛 and scatter matrix C𝑛, con-

taining at least ⌊(𝑛+1/2)⌋ points ofX into another ellipsoid with centerAt𝑛+b and

scatter matrix A′CnA, which also contains at least ⌊(𝑛+ 1/2)⌋ points of AX+ b.

∙ Breakdown Point: It can be proved that the MVE estimates of location and

scatter achieve the highest possible breakdown point value for the class of equivariant

estimators, when the right hand side of (2.4) is replaced by ⌊(𝑛+ 𝑝+ 1)/2⌋.

∙ Efficiency: Similarly to the MCD case, a drawback of the MVE estimator also

regards to its efficiency. In [6] it is proved that the MVE estimators of location and

scatter converge at a rate 𝑛−1/3 to a non-Gaussian distribution, which implies in a

0% asymptotic efficiency. Also, the finite-sample efficiency of the MVE estimates is

low (see e.g. [37]). Therefore, once again the one-step reweighted MVE estimates

are proposed to mitigate this efficiency problem. These are given by:

t1𝑛 =

∑︀𝑛
𝑖=1𝑤𝑖X𝑖∑︀𝑛
𝑖=1𝑤𝑖

C1
𝑛 =

∑︀𝑛
𝑖=1𝑤𝑖(X𝑖 − t1𝑛)(X𝑖 − t1𝑛)

′∑︀𝑛
𝑖=1𝑤𝑖

where

𝑤𝑖 =

⎧⎨⎩ 1, if
√︀

(X𝑖 − t𝑛)C−1
𝑛 (X𝑖 − t𝑛) ≤

√︁
𝒳 2

𝑝,0.975

0, otherwise

These one-step reweighted MVE estimates are a weighted mean and covariance

where regular observations are given weight one, but outliers, according to the initial

MVE solution, are given weight zero. The one-step reweighted MVE estimators have

the same breakdown value as the initial MVE estimators, as stated in [23], but a

much better finite-sample efficiency, as indicated in [37] and [42]. Note that many

statistical softwares, such as R, report the one-step reweighted MVE estimates by

default.

Regarding the MVE estimates computation, just as like what was presented in the

MCD case, the MVE “naive” algorithm would also require an exhaustive search including

all combinations of ellipsoids containing ℎ observations, to find the one with the smallest

volume. One more time, this combinatorial problem is only feasible for small data sets in

low dimensions and, to circumvent this problem, approximate algorithms were proposed.

The standard MVE algorithm limits its search to ellipsoids determined by subsets

consisting of 𝑝 + 1 observations of X. For each subset of size 𝑝 + 1, indexed by 𝐽 =

{𝑖1, ..., 𝑖𝑝+1} ⊂ {1, ..., 𝑛}, its sample mean and sample covariance matrix given by
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t𝐽 =
1

𝑝+ 1

𝑝+1∑︁
𝑗=1

X𝑖𝑗

C𝐽 =
1

𝑝

𝑝+1∑︁
𝑗=1

(X𝑖𝑗 − t𝐽)(X𝑖𝑗 − t𝐽)
′

are calculated. If a particular C𝐽 is singular, then observations from X are added until a

subset with nonsingular sample covariance matrix is obtained. Each ellipsoid determined

by t𝐽 and C𝐽 is then inflated or deflated by the application of a scaling factor until they

contain exactly ℎ points. Normally, the scaling factor used is 𝐷2
𝐽/𝑐

2 with 𝑐 =
√︀

𝒳 2
𝑝,𝛼 and

𝐷2
𝐽 = ((X𝑖𝑗 − t𝐽)

′C−1
𝐽 (X𝑖𝑗 − t𝐽))ℎ:𝑛

where ℎ : 𝑛 indicates the ℎ-th smallest squared distance among the squared distances of

the 𝑛 observations in X.

Finally, the ellipsoid with the smallest volume is then used to obtain the MVE esti-

mates.

2.3.4 Tukey Biweight S-estimator

S-estimators were firstly introduced in [38] and in [22] for regression problems, but

there is a direct generalization to the multivariate location and dispersion estimation.

Definition 15. Let 𝜌 : R → [0,∞) is such that:

1. It is a symmetric function;

2. It has continuous derivative 𝜓;

3. 𝜌(0) = 0; and

4. There exists a finite constant 𝑐0 > 0 such that 𝜌 is strictly increasing on [0, 𝑐0] and

constant on [𝑐0,∞).

Then, the S estimate of multivariate location and covariance is defined as the solution

(t𝑛,C𝑛) to the problem:

min |C|

subject to
1

𝑛

𝑛∑︁
𝑖=1

𝜌(
√︀
(X𝑖 − t)′C−1(X𝑖 − t)) = 𝑏0

among all (t,C) ∈ Θ, Θ being the set of all possible pairs (t,C).
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The constant 0 < 𝑏0 < 𝑠𝑢𝑝𝜌 can be chosen in agreement with an assumed underlying

distribution. If an elliptical premise is in place, then 𝑏0 is generally chosen as E[𝜌(||X0||)],
where || · || stands for the Euclidean norm. In this case, the constant 𝑐0 can be chosen

such that:

0 <
𝑏0
𝑠𝑢𝑝𝜌

= 𝑟 ≤ 𝑛− 𝑝

2𝑛

which leads to a breakdown point 𝜀*𝑛 = ⌈𝑛𝑟⌉/𝑛, where ⌈𝑥⌉ denotes the ceiling function

applied to a generic 𝑥. For more details on this subject, please refer to [22].

It might be worthwhile to mention that S estimators of location and scatter can be

seen as a “robustification” of the least square method. If 𝑏0 = 𝑝, the problem dimension,

then using 𝜌(𝑥) = 𝑥2 in Definition 15 yields the sample mean and the sample covariance

as unique solutions. Also, note that the MVE estimator of location and scatter is a special

case of S-estimators, using a discontinuous 𝜌 function. However, in [7] the authors demon-

strated that choosing a smooth 𝜌 function greatly improves the estimator’s asymptotic

behavior. More specifically, asymptotical normality can be proved, which means that:

√
𝑛(t𝑛 − 𝜇) and

√
𝑛(C𝑛 −Σ)

both converge in distribution to a multivariate normal distribution with zero mean.

Clearly, the properties of S-estimators depend on the function 𝜌, which should be

chosen considering the existing trade-off between the robustness aspects of an estimator

and its efficiency. While there exists a variety of functions proposed by different authors,

in this study we employ a popular choice, used in most papers, the 𝜌 function defined as:

𝜌(𝑢, 𝑐0) =

⎧⎨⎩ 𝑢2

2
− 𝑢4

2𝑐20
+ 𝑢6

6𝑐40
, if |𝑢| ≤ 𝑐0

𝑐20
6
, if |𝑢| > 𝑐0

Its derivative, which is a redescending3 function, is known as Tukey’s biweight function:

Ψ(𝑢, 𝑐0) = 𝑢

(︂
1−

(︂
𝑢

𝑐0

)︂2)︂2

1[−𝑐0,𝑐0](𝑢)

Regarding the properties of S-estimators when a Tukey’s biweight function is consid-

ered, in [22] there are proofs of their affine equivariance, their bounded influence function

and their asymptotic normality, provided some conditions are met. Also the author con-

cluded that S-estimators are able to achieve the asymptotic variances attained by the well

known class of𝑀 -estimators, first proposed in [25], but in addition they have a breakdown

point that becomes considerably higher when the dimension 𝑝 increases.

3A Ψ-function is called redescending if Ψ(𝑢) = 0 for all |𝑢| > 𝑐0, for 𝑐0 < ∞.
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There are several proposed algorithms in the related literature with the aim at reduc-

ing computational time, such as those proposed in [26] and the famous algorithm proposed

in [43] based on an improved resampling technic that reduces the number of times the

objective function is evaluated and increases the speed of convergence. With this algo-

rithm, S estimates can be computed in less time than the least median squares (LMS) for

regression and the minimum volume ellipsoid (MVE) for location/scatter estimates with

the same accuracy.

Another interesting feature demonstrated in [22] relates to the fact that any solution

(t𝑛,C𝑛) to the problem stated in Definition 15 must also be a solution to following system

of equations:

1

𝑛

𝑛∑︁
𝑖=1

Ψ(𝑑𝑖)

𝑑𝑖
(X𝑖 − t) = 0

1

𝑛

𝑛∑︁
𝑖=1

[︂
𝑝
Ψ(𝑑𝑖)

𝑑𝑖
(X𝑖 − t)(X𝑖 − t)′ −Ψ(𝑑𝑖)𝑑𝑖C

]︂
= 0

and, accordingly, a numerical method for its solution could be implemented in order to

find the optimal solution.

Finally, another interesting study regarding S-estimators can be found in [36]. The

authors used a modified 𝜌 function, which they called the translated biweight function

(t-biweight) and as a starting point for the numerical algorithm they used the MVE

estimates of locations and scatter.

2.3.5 Stahel-Donoho Estimator

The Stahel-Donoho (SD) estimator was obtained independently in [45] and in [9]. Its

main idea regards the computation of an “outlyingness measure” for each data point

and the application of proper weights to them. The larger the outlyingness measure

of an observation, the lower its weight as it is considered to unlikely belongs to the

“good” portion of the data. Simplistically, the SD estimators of location and scatter are

projection-based estimators in the sense that an outlier or a high leverage point would

separate out and away from the bulk of the data when viewed from the right perspective.

Definition 16. Let 𝜇 and 𝜎 be shift and scale equivariant univariate location and scale

statistics. Then, for any direction 𝑎 ∈ R𝑝, with ||a|| = 1 the outlyingness measure 𝑟 is

defined as

𝑟(x𝑖,X) = 𝑠𝑢𝑝
𝑎∈R𝑝

|ax′
𝑖 − 𝜇(a′X)|
𝜎(a′X)

(2.5)
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Definition 17. The Stahel–Donoho (SD) estimates of location and scatter are a weighted

mean and a covariance matrix where the weights imposed to x𝑖 are the results of the

application of a nonincreasing function to their outlyingness measure 𝑟(x𝑖,X). More

precisely, let 𝑊 : R+ → R+ be a non-negative weight function. The SD estimators of

location and scatter are:

t𝑛 =

∑︀𝑛
𝑖=1𝑊 (𝑟2(x𝑖,X))x𝑖∑︀𝑛
𝑖=1𝑊 (𝑟2(x𝑖,X))

C𝑛 =

∑︀𝑛
𝑖=1𝑊 (𝑟2(x𝑖,X))(x𝑖 − t𝑛)(x𝑖 − t𝑛)

′∑︀𝑛
𝑖=1𝑊 (𝑟2(x𝑖,X))

According to [47], a popular choice for the weight function, which will be employed in

this work, is the Huber weight function defined as

𝑊 (𝑟(x𝑖,X)) = 1𝑟(x𝑖,X)≤𝑐 +
𝑐

𝑟2(x𝑖,X)
1𝑟(x𝑖,X)>𝑐

for some threshold 𝑐. As one can see, the choice of 𝑐 is a trade-off between robustness

and efficiency. Small values of 𝑐 quickly start to down weigh observations with increasing

outlyingness while larger values of 𝑐 only down weigh observations with extreme outly-

ingness value. A suggestion of 𝑐 = 𝑚𝑖𝑛(
√︁
𝒳 2

𝑝,0.5, 4) is provided in [28] for estimation in

high dimensions.

Also, define Y := AX + b. As 𝜇 and 𝜎 in Definition 16 were chosen as equivariant

univariate location and scale statistics, it can be proved, as it is for example in [52], that

𝑟(y𝑖,Y) = 𝑟(x𝑖,X), for any non-singular 𝑝×𝑝 matrix A and any vector b ∈ R𝑝. Thus, the

outlyingness measure is invariant to linear transformations and, as so, the SD estimators

are affine equivariant as well.

Actually, regarding 𝜇 and 𝜎, it is shown in [46] and in [13] that the SD estimator

attains the maximum possible breakdown point for an affine equivariant estimator, when

those univariate location statistics are taken to be, respectively, the median (MED) and

a modified version for the median absolute deviation (MAD) defined by the authors.

Also, in [27] the authors demonstrated that the SD estimators are
√
𝑛-consistent, they

studied their asymptotic bias and illustrated via simulation that they have a high relative

efficiency.

Regarding the computation of SD estimators, the practical difficulty lies in computing

𝑟(x𝑖,X), defined in (2.5). In the light of this equation computing the outlyingness mea-

sures seem hopeless since projection to all directions should be considered. To overcome

this problem, several approximate procedures have been proposed, such as those based

on the subsampling and on the pigeonhole principles, see for example [45] and [40].

For instance, the main ideas surrounding the subsampling procedure are related to
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the estimates approximation based on a large number of directions. For each subsample

J = {X𝑖1 , ...,X𝑖𝑝} of size 𝑝, let a𝐽 be a vector of norm 1 orthogonal to the hyperplane

spanned by the subsample. Then, 𝑁 subsamples 𝐽1, ..., 𝐽𝑁 are generated and (2.5) is

replaced by:

𝑟(x𝑖,X) = 𝑚𝑎𝑥
𝑘

|a𝐽𝑘x
′
𝑖 − 𝜇(a′

𝐽𝑘
X)|

𝜎(a′
𝐽𝑘
X)
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CHAPTER 3

Modern Portfolio Theory

I
n this chapter, we describe the main concepts surrounding the asset allocation prob-

lem, extensively investigated in the last decades, mainly after the seminal paper of

Harry Markowitz [24]. Our exhibition here is restricted to the relevant ideas for our

study and the concepts described, when not explicitly referenced to their sources, may be

easily found in [19], [16] and [32], among others.

Recognizing the fact that individuals’ investment decisions under uncertainty are un-

doubtedly influenced by many considerations, the expected utility hypothesis is a com-

monly accepted theory for asset choice under uncertainty that provides the underpinnings

for the analysis of asset demands. Under this hypothesis, each individual’s investment

decision is characterized as if he could determine the probabilities of possible asset payoffs,

assign an index to each possible outcome, and chose the investment policy to maximize

the expected value of that index.

Suppose that an individual at time 0 is facing a problem of how to build a portfolio

composed of 𝑝 different risky assets and one risk free asset, to be held until time 1. If his

initial wealth is 𝑊0, the final wealth will be

𝑊1 =

(︂
𝑊0 −

𝑝∑︁
𝑖=1

𝑥𝑖

)︂
(1 + 𝑟𝑓 ) +

𝑝∑︁
𝑖=1

𝑥𝑖(1 + 𝑟𝑖) = 𝑊0(1 + 𝑟𝑓 ) +

𝑝∑︁
𝑖=1

𝑥𝑖(𝑟𝑖 − 𝑟𝑓 )

where 𝑥𝑖, 𝑖 = 1, ..., 𝑝 is the amount of money invested in the 𝑖-th risk asset, with random

rate of return 𝑟𝑖 and 𝑟𝑓 is the riskless interest rate.

So, at time 1 the individual extracts utility, or satisfaction, from this final wealth,
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which can be mathematically described by a utility function, 𝑈(·), a relationship between

wealth and satisfaction of consuming this wealth. Thus, the initial problem at time 0 is

related to the proper choice of portfolio weights such that the expected value of the utility

function at time 1 is maximized. Mathematically, the portfolio problem is:

𝑚𝑎𝑥
𝑥1,...,𝑥𝑝

E[𝑈(𝑊1)] = E
[︂
𝑈

(︂
𝑊0(1 + 𝑟𝑓 ) +

𝑝∑︁
𝑖=1

𝑥𝑖(𝑟𝑖 − 𝑟𝑓 )

)︂]︂
However, as we are dealing with economies under uncertainty, it is important to char-

acterize an individual’s behavior when facing risk.

Definition 18. A gamble is actuarially fair when its expected payoff is zero,

𝑝ℎ1 + (1− 𝑝)ℎ2 = 0

for a positive return, ℎ1, with probability 𝑝 and a negative return, ℎ2, with probability

(1− 𝑝).

Definition 19. An agent is risk–averse if, at any wealth level 𝑊 , he is unwilling to accept

or is indifferent to any actuarially fair gamble, i.e.,

𝑈(𝑊0) ≥ 𝑝𝑈(𝑊0 + ℎ1) + (1− 𝑝)𝑈(𝑊0 + ℎ2) =⇒

𝑈(𝑝(𝑊0 + ℎ1) + (1− 𝑝)(𝑊0 + ℎ2)) ≥ 𝑝𝑈(𝑊0 + ℎ1) + (1− 𝑝)𝑈(𝑊0 + ℎ2)
(3.1)

By (3.1) one can see that if the possible outcomes in time 1 constitute a fair gamble,

then risk aversion implies in a concave utility function.

As with all theoretical models, the expected utility model is not without its limitations.

One of them is that it treats uncertainty as objective risk, that is, as a series of coin flips

where the probabilities are objectively known. In practice, it is very difficult to assign

probabilities to possible outcomes and to not be mistaken, to some degree, on the adopted

models and estimation procedures.

3.1 The Mean-Variance Approach

An individual’s utility function can be represented as a Taylor series expanded around

his expected end of period wealth 𝑊1.

𝑈(𝑊1) = 𝑈(E[𝑊1]) + 𝑈 ′(E[𝑊1])(𝑊1 − E[𝑊1]) +
1

2
𝑈 ′′(E[𝑊1])(𝑊1 − E[𝑊1])

2 +𝑅3 (3.2)
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where

𝑅3 =
∞∑︁
𝑛=3

1

𝑛!
𝑈 (𝑛)(E[𝑊1])(𝑊1 − E[𝑊1])

𝑛

and 𝑈 (𝑛) is the 𝑛-th derivative of 𝑈 .

Taking the expectation on both sides of (3.2):

E[𝑈(𝑊1)] = 𝑈(E[𝑊1]) +
1

2
𝑈 ′′(E[𝑊1])𝑉 𝑎𝑟(𝑊1) + E[𝑅3] (3.3)

where one can see a preference for expected wealth and an aversion to the variance of

wealth for an individual having an increasing and strictly concave utility function. How-

ever, it is important to emphasize that (3.3) clearly shows that the expected utility of the

end of period wealth, the one that we want to maximize in our asset allocation problem,

cannot be defined solely as a function of the expected value and variance of wealth for

arbitrary distributions and preferences. The remainder term 𝑅3 which involves higher

order moments may not be negligible.

In order to motivate the use of the mean-variance approach, we may distinguish be-

tween two cases involving different assumptions of distributions and preferences:

∙ Arbitrary Distributions: In these cases, one should use a quadratic utility func-

tion, as the third and higher order derivatives are all equals to zero and, therefore,

E[𝑅3] = 0. For instance, the following utility function is usually cited in most

textbooks on this subject:

𝑈(𝑊1) = 𝑊1 − 𝑏𝑊 2
1 , 𝑏 > 0

According to [16], a quadratic utility function provides a viable way to describe the

asset allocation optimization problem as being dependent solely on the mean and

the variance of the final wealth at period 1. However, it presents drawbacks, such

as: satiation and increasing absolute risk aversion.

The satiation characteristic is due to the parabolic shape of the utility function and

implies that an increase in wealth beyond the satiation point decreases utility. In

this sense, care must be taken to assure that the outcomes remain in the relevant

range of the utility function.

Regarding absolute risk aversion, the Arrow-Pratt measure 𝐴(𝑊 ) is the most com-

monly used one, which for a quadratic utility function, is computed as follows:

𝐴(𝑊 ) =
−𝑈 ′′(𝑊 )

𝑈 ′(𝑊 )
=

2𝑏

1− 2𝑏𝑊
=⇒ 𝐴′(𝑊 ) =

4𝑏2

(1− 2𝑏𝑊 )2
> 0
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Thus, it is possible to see that the quadratic utility function exhibits increasing

absolute risk aversion, which implies that risky assets are considered as inferior

goods. Intuition would suggest that as the level of wealth increases, investors would

be more tolerant to risks and not the opposite.

∙ Arbitrary Preferences: In these cases, one should assume that the statistical

behavior of rates of return on risky assets can be described by some distribution

with third and higher order moments completely expressed as functions of the first

two moments. Moreover, it is important that the linear combination of these rates

of return, or else, the rate of return of the portfolio itself, also follow the same

distribution.

Although normal distributions fit well to the above-mentioned characteristics and

are the usual choice among practitioners, according to [19] they are not the only

option. Actually, any distribution function pertaining to the family of elliptical

distributions, would be consistent with the mean-variance analysis. In (2.3) we saw

that all elements of the class of elliptical distributions are solely defined by two

parameters (location and dispersion), are symmetrical and posses the property that

linear combinations of respective random variables are completely characterized by

mean and variance.

Considering the second option above described, or else, that rates of return follow

an elliptical distribution for arbitrary preferences, we develop the mean-variance model.

Suppose that the portfolio is composed by 𝑝 risky assets which are chosen among 𝑁 ≥ 2

risky assets with finite variances traded in a frictionless economy where unlimited short

selling is allowed. Considering a risk-averse individual who wants to maximize expected

return subjected to a given level of risk, or in its dual form to minimize risk subjected to

a given level of expected return, it is possible to define the asset allocation problem as:

Definition 20. A frontier portfolio has the minimum variance among portfolios that have

the same expected rate of return. It is a frontier portfolio, if and only if, the vector of

portfolio weights w𝑝 is the solution to the quadratic program:

𝑚𝑖𝑛
w

1

2
w𝑇Σw

s.t w𝑇e = E[𝑟𝑝]

w𝑇1 = 1

w ∈ 𝒞

(3.4)

where Σ is a positive definite symmetric variance covariance matrix, w is a 𝑝-vector of

portfolio weights, e denotes the 𝑝-vector of expected rates of return of the risky assets,

26



E[𝑟𝑝] is the expected rate of return of the portfolio and the set 𝒞 denotes other constraints

that might be included depending on the type of the problem.

Note that the objective function in (3.4) is quadratic. If the set 𝒞 contains only

equality or inequality linear constraints, which is a very plausible assumption, then the

optimization problem described is know as a quadratic programming problem.

Moreover, regardless of how investment funds are allocated among the securities con-

sidered, the covariance matrix Σ should be a positive definite one as it ultimately repre-

sents the portfolio variance, a quantity strictly positive. Considering that the objective

function is twice differentiable, then one can see that

∇2

(︂
1

2
w𝑇Σw

)︂
= Σ > 0

which is the second order condition for convexity, meaning that the objective function is

convex.

Hence, provided that the set of constraints is a convex set, problem (3.4) falls in the

field of convex optimization, where the most important feature is the well-known fact that

locally optimal points are globally optimal as well.

In this context, various algorithms are available for the computation of the mean-

variance portfolio allocation, such as those based on the active set method, the interior

point method and on a trust region.

Actually, if the constraints are all affine, including those contained in the set 𝒞, then,
according to [32], an analytical solution can be computed. In order to present it, lets

ignore, for now, the arbitrary set 𝒞 of constraints in (3.4). Computing the Lagrangian

of the modified (without the set 𝒞) problem, w𝑝 is also the solution to the following

equivalent problem:

𝑚𝑖𝑛
w,𝜆,𝛾

𝐿 =
1

2
w𝑇Σw + 𝜆(E[𝑟𝑝]−w𝑇e) + 𝛾(1−w𝑇1)

for 𝜆, 𝛾 two positive constants. Then, the first order conditions are:

𝜕𝐿

𝜕w
= Σw𝑝 − 𝜆e− 𝛾1 = 0

𝜕𝐿

𝜕𝜆
= E[𝑟𝑝]−w𝑇

𝑝 e = 0

𝜕𝐿

𝜕𝛾
= 1−w𝑇

𝑝 1 = 0

which, after some manipulation, results in

w𝑝 = g + hE[𝑟𝑝]
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where

g =
1

𝐷
(𝐵(Σ−11)− 𝐴(Σ−1e))

h =
1

𝐷
(𝐶(Σ−1e)− 𝐴(Σ−11))

𝐴 = 1𝑇Σ−1e

𝐵 = e𝑇Σ−1e

𝐶 = 1𝑇Σ−11

𝐷 = 𝐵𝐶 − 𝐴2

So, for each level of expected return on the portfolio E[𝑟𝑝], it is possible to obtain

the weights for the correspondent frontier portfolios, as in Definition 20. The set of all

frontier portfolios is called the portfolio frontier.

As can be seen, w𝑝 depends directly on the estimation of e andΣ, which are in practice

often estimated by their sample counterpart, i.e. by the maximum likelihood estimates

under the hypothesis of a multivariate normal model. If this is the case, which rarely is,

these estimates are the most efficient ones, but they are not robust, in the sense that their

influence functions are unbounded (see [34]). Also, as demonstrated in [42], the effects of

atypical points on the ellipsoid associated to an estimate of the covariance structure are

at least two: they may inflate its volume; they may tilt its orientation. The first effect

is related to inflated scale estimates. The second is the worst one, and may show up as

switching the correlations signs.

The above facts should be put together with the known stylized fact that financial

variables often deviate from gaussian behavior and a contaminated environment is a much

more realistic scenario to be dealt with. In these cases, estimates may be severely impacted

by outliers and unless the mean vector and covariance matrix are robustly estimated, the

mean-variance optimizer can lead to portfolio compositions heavily influenced as well.

According to [29], portfolios constructed based on high breakdown point estimates are

meant to be used for long-term objectives, since they capture the dynamics of the majority

of the business days. On the other hand, the efficient frontier resulting from the use of

classical estimates may reflect neither the usual nor the atypical days.

Before presenting previous studies on robust estimates of location and scatter applied

to the mean-variance problem, we briefly introduce an important alternative for portfolio

selection, which in some extent can also be understood as a “robustification” of the mean-

variance approach.
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3.2 The Bayesian Approach

Suppose that the distribution of the generic random vector X assumed in this chapter

depends on a parameter 𝜃 taking values in a parameter space Θ. In Bayesian analysis,

the estimate �̂� is not a single number as it is in classical inferential procedures. Instead

it is a random variable, with a given probability density function 𝑓𝑝𝑟(𝜃), called the prior

distribution, which intends to reflect our knowledge (if any) of the parameter, before we

gather the data itself.

The outcome of the Bayesian approach is the posterior distribution 𝑓𝑝𝑜(𝜃|x), which
updates the prior beliefs considering the relevant information in the sample, represented

by the likelihood function 𝑓X|𝜃(x|𝜃). In summary, the Bayesian approach is composed by:

posteior ∝ likelihood× prior

When one applies this methodology to a financial market parameter estimation, the

main steps that should be followed are

∙ Information from the Market: Considering that the market variables are in-

dependent and identically distributed, the joint probability density function of the

respective random variables is the product of the probability density functions of

the individual variables, also known as the likelihood function:

𝑓X|𝜃(x|𝜃) = 𝑓X1(x1|𝜃) · · · 𝑓X𝑛(x𝑛|𝜃)

∙ Prior Knowledge: The investor has some prior knowledge on the parameters

based, for example, in his experience, and this is modeled by the prior density

𝑓𝑝𝑟(𝜃).

From the relation between the conditional and the joint probability density func-

tions, the joint distribution of the observations and the market parameters can be

expressed as:

𝑓X,𝜃(x,𝜃) = 𝑓X|𝜃(x|𝜃)𝑓𝑝𝑟(𝜃)

∙ Posterior Distribution: The posterior probability density function is simply the

density of the parameters conditional on current information. It follows from the

joint density of the observations and the parameters by applying Bayes rule, which

in this context reads:

𝑓𝑝𝑜(𝜃|x) =
𝑓X,𝜃(x,𝜃)∫︀

Θ
𝑓X,𝜃(x,𝜃)𝑑𝜃
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The choices of distributions that allow analytical results to be obtained are quite lim-

ited. Parametric models for the investor’s prior and the market variables that give rise to

tractable posterior distributions of the market parameters are called conjugate distribu-

tions. If analytical results are not available, one has to resort to numerical simulations.

In this context, the Black and Litterman asset allocation model applies the Bayes’

rule in order to consider the investor’s unique insights and experience in the estimation

process. This model was first introduced in [4], expanded in [3] and discussed in great

details in several other papers since then, such as in [15] and in [49].

The basic assumption behind the Black-Litterman model is that without privileged

or superior information one should consider the information from the market portfolio,

assuming that it is at equilibrium. In other words, since market prices are based on

individual investors perceptions in the whole market, then the Capital Asset Pricing

Model (CAPM) equilibrium estimates, the proxy for the market view, should be adopted

by the investor.

This argument reminds the semi-strong form of the market efficiency hypothesis, which

states that all public information has already been absorbed into the market prices, at each

point in time, and could not be explored to achieve abnormal returns. Without superior

insights, the only legitimate forecast should be backed out from the market equilibrium

portfolio and it would be optimal to simply use this forecast to construct the portfolio

and manage it passively. Starting from this, when one has private beliefs on the assets,

the forecasts should be updated based on the Bayes’ Rule.

Thus, consider that the multivariate 𝑝-random vector e of risky assets expected returns

could be modeled by a multivariate normal distribution, e ∼ 𝑁(𝜇,Σ). Also, consider

that the market is at equilibrium and all investors hold the market portfolio w𝑒𝑞. Finally,

consider that the utility function of the investor can be represented as a function of

w′Π− (𝛿/2)w′Σw, where Π is the implied return by any composition w and 𝛿 is a risk

aversion parameter, usually specified in advance by the investor according to information

on historical data.

The maximization problem of this utility function is known as reverse optimization.

Differently from the traditional mean-variance problem, one already knows the portfolio

weights (w𝑒𝑞) and wants to know about Π, the expected return implied by this compo-

sition. Practically speaking, w𝑒𝑞 can be obtained from the market capitalization of the

securities considered and the matrix Σ is usually the respective sample covariance matrix.

Considering the unconstrained optimization problem, the necessary and sufficient first

order condition (as in a convex programming) is

𝑑𝑈

𝑑w
= Π− 𝛿Σw = 0 =⇒ Π = 𝛿Σw𝑒𝑞
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Therefore, the Bayesian prior distribution 𝑓𝑝𝑟(𝜇) in the Black-Litterman model is

considered to be normal, centered at the implied equilibrium returns Π, or else

𝜇 = Π+ 𝜖, 𝜖 ∼ 𝑁(0, 𝜏Σ) =⇒

𝜇 ∼ 𝑁(Π, 𝜏Σ) =⇒

e ∼ 𝑁(𝜇,Σ)

(3.5)

where 𝜏 is a scalar and is a simplifying assumption made by Black and Litterman that

the estimate covariance structure is proportional to the covariance of the returns. Its

determination is controversy and often is a subjective choice made by investors. It could

be used, for example, to account for the uncertainty regarding the prior. In [49] there is

some discussion on how to calibrate this parameter.

Second, the investor may insert into the problem his opinion about some securities.

These views are modeled as conditional distributions and, by construction, each view is

required to be uncorrelated to the other views, which results in a diagonal matrix for their

covariance matrix. Also, the views must be fully invested, or else, either the sum of the

weights in a view is zero (relative view) or is one (an absolute view). Note that the model

does not require a view on any or all assets.

In this context, suppose the investor has opinion about 𝑘 assets, 𝑘 ≤ 𝑝. Thus, consider

a 𝑘× 𝑝 matrix P containing the asset weights for each view, a 𝑘-vector Q for the specific

returns for each view and a 𝑘 × 𝑘 diagonal matrix Ω for the views covariance structure.

As an example of how these matrices should be populated, suppose four assets and two

views. First, a relative view in which the investor believes that asset 1 will outperform

asset 3 by 2% with confidence 𝜔1. Second, an absolute view in which the investor believes

that asset 2 will return 3% with confidence 𝜔2. Note that the investor has no view on

asset 4, and thus it’s return should not be directly adjusted. These views are specified as

follows

P =

[︃
1 0 −1 0

0 1 0 0

]︃
Q =

[︃
2

3

]︃
Ω =

[︃
𝜔1 0

0 𝜔2

]︃
So, the investor views can be expressed as

Pr = Q+ 𝜉 𝜉 ∼ 𝑁(0,Ω)

where r is simply a random vector representing the expected returns.

As a consequence, the distribution of the views conditioned to the values of expected

returned 𝜇, or else, the likelihood function 𝑓Pr|𝜇(Pr|𝜇) is

31



Pr|𝜇 ∼ 𝑁(Q,Ω) (3.6)

According to [49], generally it is not possible to convert (3.6) into a useful expression

due to the existing mixture of relative and absolute views. So, instead of using (3.6), the

author suggests:

Pr|𝜇 ∼ 𝑁(P−1Q, (P′Ω−1P)−1)

Note that we have not required 𝑃 to be invertible. If this proves to be a problem, in

[33] there is a proposed method of matrix augmentation that makes 𝑃 invertible and does

not change the net results.

Regarding the views covariance matrix, Ω, it is clear that it is inversely related to

the investor confidence in his views. However, the basic Black-Litterman model does not

provide an intuitive way to quantify this matrix and, as so, several authors have proposed

some guidance on this matter. For example, [32] suggests a particularly convenient choice

for the uncertainty matrix as

Ω :=

(︂
1

𝑐
− 1

)︂
PΣP′

where 𝑐 is a positive scalar that can be used according to the confidence in the investor’s

predictive skills. Note that 𝑐 → 0 gives rise to an infinitely disperse views distribution,

which ends up having no impact at all, i.e. the investor is not trusted. In the opposite

direction, when 𝑐 → 1, the investor is trusted completely over the prior model. The case

𝑐 = 1/2 corresponds to the situation where the investor is trusted as much as the prior

model.

At this point, we can apply Bayes theory to the problem of blending the prior (3.5)

and the conditional distribution (3.6) to create the posterior distribution of the relevant

parameter conditioned to the views, 𝑓𝑝𝑜(𝜇|Pr).

𝜇|Pr ∼ 𝑁([(𝜏Σ)−1Π+P′Ω−1Q][(𝜏Σ)−1+P′Ω−1P]−1, [Σ+[(𝜏Σ)−1+P′Ω−1P]−1]) (3.7)

and a complete derivation of (3.7) can be found in [49].

Note the intuition behind (3.7). In the one-dimensional case, the posterior updated

mean vector is expressed as:

𝜋
𝜏𝜎2 +

𝑞
𝜔2

1
𝜏𝜎2 +

1
𝜔2

= 𝑧1𝜋 + 𝑧2𝑞
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where 𝑧1 =
1

𝜏𝜎2
1

𝜏𝜎2+
1
𝜔2

and 𝑧2 =
1
𝜔2

1
𝜏𝜎2+

1
𝜔2

are the confidence weights.

Thus, one can see that (3.7) simply combines the market equilibrium with the investor

views through a confidence-weighted average scheme. The more confident the investor is

about his view 𝑞, the more weight he should put on it and, therefore, the posterior forecast

is adjusted more towards 𝑞, which reflects in the resulting portfolio weights. Otherwise,

the more he should rely on the market portfolio.

Finally, in order to find the recommended portfolio weights, one must plug the op-

timization problem (3.4) with the assets expected returns and the respective covariance

matrix, which are the parameters of the posterior distribution.

3.3 Robust Estimation and Asset Allocation - Bibli-

ographic Review

As far as we know, there is not an extensive list of academic works applying robust

estimation to the optimum portfolio selection problem. Most papers that we found inves-

tigate one or two robust estimators in this context and, as far as we could verify, there is

a narrow controversy regarding their results. In this section, we provide extracts of past

studies that, in our opinion, are the most significant to this work.

According to [32], the main reason why estimation risk plays such an important role

in financial applications is the extreme sensitivity of the optimization problem to the

unknown market distribution parameters. A slightly wrong input can give rise to a very

large opportunity cost in terms of suboptimal allocation.

Actually, [8] explains that the sample mean and covariance estimates optimality un-

der the multivariate gaussian framework partly answers why these portfolios are unstable.

The efficiency of the MLE-based estimates under normality of returns is highly sensitive

to deviations from this assumed (normal) model and, in particular, the respective esti-

mators are not necessarily the most efficient ones when data behavior locates itself in a

neighborhood of the assumed model.

In this work, the authors compared the minimum-variance optimum portfolios arising

from the Markowitz framework with their robust counterparts, considering 𝑀 -estimates

and 𝑆-estimates for the mean and covariance of asset returns. The empirical data set

consisted of 11 assets, where 10 assets were portfolios tracking the 10 sectors composing

the 𝑆&𝑃500 index and the eleventh asset was the U.S. market portfolio represented by the

𝑆&𝑃500 index itself. The time span considered went from January 1981 to December 2002

and returns were expressed in excess of the 90-day T-bill. The different methodologies

were compared using a “rolling-horizon” procedure which consisted of a fixed 10-year (120
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monthly data points) estimation window, updated since a new data point was available.

The authors also assessed results under simulated data. They generated asset return

data following a distribution 𝐺 that slightly deviates from the normal distribution. Con-

cretely, they assumed that 𝐺 as a mixture of two different distributions, where one of them

was the normal distribution and the other a 𝑡-student distribution with contamination

ratios varying from 0% to 5%.

In terms of results, the authors characterized the influence functions of the𝑀 and the

𝑆 portfolio weights estimators. These influence functions demonstrated that the robust

weights estimators were less sensitive to normality deviations of the asset-return distribu-

tion when compared with the influence functions arising from the traditional minimum-

variance policy. Moreover, numerical results confirmed that the proposed policies were

indeed more stable.

According to the authors, the stability of the proposed portfolios makes them a cred-

ible alternative to the traditional portfolios since investors are generally reticent to fol-

low policies whose recommended portfolio weights change drastically over time. Overall,

the proposed 𝑀 and 𝑆 portfolios improved the stability properties of the traditional

minimum-variance portfolios while preserving (or slightly improving) their good out-of-

sample Sharpe ratios. Finally, the explanation for the good behavior of the proposed

robust portfolios regards the fact that they are based on robust estimation techniques

and, consequently, they are much less sensitive to deviations of the asset-return distribu-

tion from normality than the traditional portfolios.

In [29], the authors used the MCD location estimate both with the MCD and with the

classical covariance estimates in order to build optimal portfolios. The empirical dataset

consisted of 5 assets possessing higher than average volatility, in a global context: the

Brazilian stock index IBOVESPA; a Brazilian fixed income (CDI) benchmark for money

market yields; the American stock index S&P500; the MSCI EAFE index to represent

global stocks traded in the rest of the world; and the J. P. Morgan Latin American EMBI

to represent US dollar emerging market bonds (Brady Bonds). They used 1413 daily

returns from January 1996 to May 2001, a period embedding several extreme points due

to local and global crisis periods.

Several aspects of the out-of-sample performance of the robust and classical portfolios

were investigated. Firstly, the authors found that robust portfolios typically yield higher

accumulated returns. Also, for any given type of portfolio in the efficient frontier, the

robust portfolios showed a more concentrated distribution with higher expected returns.

Secondly, they concluded that the robust estimates were able to reduce the instability of

the optimization process, mainly due to their definition and statistical properties. Finally,

they found that this stability property carried over to the weights associated to the robust
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portfolios.

In [1], a quite interesting and somewhat different result was obtained. The author

constructed rolling minimum variance portfolios with no short-selling constraints using a

data set comprised of 5 assets from the DAX index: Adidas, Allianz, Bayer, Beiersdorf,

BMW. Daily logarithmic returns from the period between March 2003 and February 2012

were collected and an estimation window length of 120 days was set. To determine the

robust portfolio the author used the MCD estimator with 5% breakdown point, while to

determine the classic portfolio the sample mean and the sample covariance matrix were

employed.

The author characterized two important properties of robust portfolios. The first

property, a desirable one, regards the fact that extreme returns have a significantly less

influence on robust portfolio weights than what is verified in classic portfolios. However,

this fact also revealed an undesirable property of robust portfolios: non-extreme returns

have the potential to cause greater changes in weights for robust portfolios than for classic

ones.

According to the author’s opinion, decreasing sensitivity to outliers increases sensitiv-

ity to lesser observations (especially in a small sample). In practice, the share of outliers

is minor, thus for a rolling portfolio, most observations cause greater changes in weights

for robust portfolios than for classic ones, whereas only for a small number of observations

(outlying ones), robust portfolios are less sensitive than classic portfolios. Hence, as the

breakdown point for the given estimator increases, its sensitivity for lesser observations

grows, while its sensitivity to observations which are more distant from the bulk of data

decreases.

In [34], the authors studied at a theoretical level and by means of real market data and

simulation, the behavior of the optimal portfolio weights estimator when computed using

the sample mean and covariance as input (classical estimation). Then, robust estimators

were proposed and their remarkable behavior in the presence of outlying observations

were presented. More specifically, the authors analytically demonstrated that the nec-

essary and sufficient condition for the mean-variance portfolio optimizer to be robust to

local nonparametric departures from multivariate normality is that the estimators of the

model’s parameters be robust with bounded influence functions. Also, the authors devel-

oped a diagnostic tool for detecting the outlying data in the sample that can potentially

have an abnormally large influence on the optimization process.

In this work, the Rocke’s translated biweight S-estimator was employed and several

types of contamination, based on a mixture model, were considered in the simulation

exercise. The authors found that the classically estimated mean-variance efficient frontier

model suffers from model risk when data underlying its computation are not exactly
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generated by a multivariate normal distribution, and that model risk dominates estimation

risk. They also expect that robust portfolio would outperform the classical one if future

returns were generated under the same process. This is simply because robustly estimated

parameters would be closer to the true parameter values of the underlying generating

process than their classical counterparts.

In a related work, the authors in [50] employed robust estimators resulting from FAST-

MCD, Iterated Bivariate Winsorization, and Fast 2-D Winsorization procedures, in order

to investigate the possible effects on stability of portfolios and asset turnover. They

collected observed daily returns on 51 MSCI US industry sector indexes, from March

1995 to July 2005. They found these methods to be valuable tools in improving risk-

adjusted portfolio performance and in reducing asset turnover. However, the results were

achieved at the cost of significantly higher computation complexity.

Finally, in [31], the authors robustly estimated the multivariate distribution associated

to the data collected from emerging markets, more specifically, six-dimensional contem-

poraneous daily log-returns from the most traded Brazilian stocks. By using pair-copulas,

they obtained the inputs that define the robust efficient frontier and they analyzed the

trajectory of a target return and the minimum risk portfolios during a 2-years period

(out-of-sample investigation). Then, the robust portfolios were compared to their classi-

cal version based on the sample empirical estimates.

The authors found that despite the investment type, the robust methodology always

outperform the classical version. Also, they determined the best rule for restoring the

portfolio to its original balance and keep the allocations optimal. In their opinion, the

best strategy depends on the investor risk profile, and that pair-copulas based robust

minimum risk portfolios monitored by a manager which checks its composition twice a

year provides the best long run investment.

Making the connection from past studies to our work, from the computational point

of view, we follow the ideas proposed in [34] and in [29] known as the two-step approach,

in the sense that first we compute the robust mean and covariance estimates. Second,

we find the optimum portfolio by solving the classical minimum-variance problem, but

replacing the sample mean and covariance matrix by their robust counterparts.

We try to innovate, though, by departing from the 𝜀-contaminated model traditionally

used in past works in simulation exercises. In this regard, we propose a resampling technic

in order to formally address hypotheses tests on the performance and stability of portfolios.

Also, we try to distinguish from previous works by using different robust estimators, to the

greatest extent possible. A sensitivity analysis is also provided with the purpose to cover

a more varied range of investors and their respective investment policies and objectives.
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CHAPTER 4

Empirical Analysis and Simulation

I
n this chapter we analyze both the performance and stability of robust portfolios

vis-a-vis the traditional asset allocation methodology based on the mean-variance

framework. The following sections present the adopted notation, the problem mod-

eling, the chosen metrics for portfolios comparison, the specifics of each practical imple-

mentation and the respective results, including a sensitivity analysis.

4.1 Problem Modeling and Metrics for Comparison

Let 𝑆 := {𝑆1, 𝑆2} be the set of strategies contemplated in this work, 𝑆1 meaning a

buy-and-hold strategy and 𝑆2 meaning a rebalancing strategy4. These are strategies often

pursued by investors and we investigate the potential benefits generated by robust estima-

tors in both cases. Let 𝐸 := {𝐸1, 𝐸2} be the set of “environments” considered, where 𝐸1

relates to the real dataset for selected stocks and 𝐸2 means that the data selected in 𝐸1

is replaced for simulated random values. Lastly, consider that 𝑃 := {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5} is

the set of optimum portfolios investigated in this work, where 𝑃1 is the resulting portfolio

from the so-called classical mean-variance framework, or else, when the sample mean and

sample covariance matrix of past returns are used as measures of return and risk in (3.4),

respectively. Additionally, 𝑃𝑘, 𝑘 = 2, ..., 5, regard the resulting portfolios when the risk

and return estimates used in 𝑃1 are replaced by those derived from robust estimators of

location and scatter, more specifically those described in Chapter 2: the MCD, MVE, S

4In later subsections we give the motivations behind each investment strategy that make them popular
among investors.
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and SD estimators, respectively.

Let the set 𝑅 := 𝐸 × 𝑆 ×𝑃 = {(𝐸𝑖, 𝑆𝑗, 𝑃𝑘)|𝐸𝑖 ∈ 𝐸, 𝑆𝑗 ∈ 𝑆, 𝑃𝑘 ∈ 𝑃}, 𝑖 = 1, 2, 𝑗 = 1, 2,

𝑘 = 1, ..., 5 be the Cartesian product between the sets 𝐸, 𝑆 and 𝑃 . This is the set that

contains the final results segregated by type of strategy, type of environment and type of

estimator used in (3.4).

In the portfolio selection problem we allow for short selling, which means that negative

asset weights are possible. We consider that the investment policy pursued by investors

dictates a preference to keep the maximum Sharpe ratio portfolio5 (MSR) at each esti-

mated efficient frontier. Note that in Section 4.5 both premises (short selling and MSR

portfolios) are relaxed to enlarge the set of investors’ profiles covered by this work.

The risk and return estimates, inputs of the optimization problem, are based on a

7-year window of past returns (estimation window), either real or simulated, depending

on the environment considered. To compare the performance and stability of robust and

non-robust (classical) portfolios we use an 8-year window, denoted in this work as the

backtesting window. According to the notation used in this section, we say that the

whole multivariate time series (15 years) goes from 𝑡0 to 𝑇 and the optimum portfolios

are selected in 𝑡𝑤, 𝑡0 < 𝑡𝑤 < 𝑇 , in such a way that the interval [𝑡0, 𝑡𝑤] is a 7-year time

horizon and [𝑡𝑤, 𝑇 ] is an 8-year time horizon.

Finally, the robust estimates of location and scatter are computed based on dynam-

ically determined breakdown points, calibrated according to the theory and methods

described in Section 4.2.

In this chapter, results are compiled through a set of selected performance and stability

measures, presented in terms of the excess achieved by robust portfolios with respect to

the classical one. More specifically, we consider cumulative excess return, excess risk,

excess Sharpe ratio and excess transaction costs defined through (4.1) to (4.6). The

general idea embedded in this chapter is to use the real stock returns (environment 𝐸1)

to generate estimates of these metrics and hypotheses about the respective unknown

parameters. Then, in the environment 𝐸2 we simulate random variables resembling the

real data collected, using a semi-parametric bootstrapping technique, in order to get the

desired understanding on the sampling distributions of the estimates evaluated in 𝐸1.

With this in hand, hypothesis tests are performed.

In this context, let {𝐸𝑖𝑆𝑗𝑃𝑘𝑅𝑡}𝑡∈[𝑡𝑤,𝑇 ] be the sequence of the 𝑃𝑘 optimum portfolio

5The Sharpe Ratio is a widely used tool to examine the performance of an investment by adjusting
for its risk. The ex-post ratio measures the excess return (or risk premium) per unit of deviation, or else

𝑆𝑇 =
E[𝑅𝑇 ]− 𝑟𝑓

𝑆𝐷𝑇

where 𝑆𝑇 , 𝑅𝑇 , 𝑆𝐷𝑇 and 𝑟𝑓 are, respectively, the Sharpe ratio, the cumulative return of the investment
at time 𝑇 , its standard deviation and the risk-free interest rate.
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returns over the backtesting window, considering the 𝑗-th strategy and the 𝑖-th environ-

ment. In the buy-and-hold strategy 𝑆1, portfolios are not rebalanced. So, the excess

returns (𝐸𝑅𝑡)
6 of robust portfolios with respect to the classical one and the respective

cumulative excess returns (𝐶𝐸𝑅𝑡), both at an specific time 𝑡, are defined as:

𝐸𝑖𝑆1𝑃𝑘𝐸𝑅𝑡 = 𝐸𝑖𝑆1𝑃𝑘𝑅𝑡 − 𝐸𝑖𝑆1𝑃1𝑅𝑡

𝐸𝑖𝑆1𝑃𝑘𝐶𝐸𝑅𝑡 =
𝑡∏︁

𝑙=𝑡𝑤

(1 + 𝐸𝑖𝑆1𝑃𝑘𝐸𝑅𝑙)− 1

𝑖 = 1, 2; 𝑘 = 2, ..., 5; 𝑡 = 𝑡𝑤 + 1, ..., 𝑇

(4.1)

However, in the rebalancing strategy 𝑆2 one should properly account for transac-

tion costs when evaluating cumulative returns, as portfolios’ compositions are frequently

changed over the backtesting window. In this sense, consider that 𝑇 * := {𝑡𝑤, 𝑡𝑤+Δ𝑡, 𝑡𝑤+

2Δ𝑡, ..., 𝑇 −Δ𝑡} is the set that contains the dates when portfolios are evaluated, accord-

ing to a frequency Δ𝑡. Let {𝐸𝑖𝑆2𝑃𝑘𝑊𝑡}𝑡∈𝑇 * be the sequence of the 𝑃𝑘 optimum portfolio

weights considering the 𝑖-th environment and the 𝑆2 strategy, evaluated at each 𝑡 ∈ 𝑇 *.

Define:

𝐸𝑖𝑆2𝑃𝑘𝑁𝑊𝑡 = ||𝐸𝑖𝑆2𝑃𝑘𝑊𝑡 − 𝐸𝑖𝑆2𝑃𝑘𝑊𝑡−Δ𝑡||1
𝑖 = 1, 2; 𝑘 = 1, ..., 5; 𝑡 ∈ 𝑇 ** := {𝑡𝑤 +Δ𝑡, 𝑡𝑤 + 2Δ𝑡, ..., 𝑇}

as the 1-norm of the difference between 𝑃𝑘 portfolio weights after and before a rebalancing

day.

We assume that at each time 𝑡 ∈ 𝑇 **, the value of 𝐸𝑖𝑆2𝑃𝑘𝑁𝑊𝑡 impacts the return

achieved by the 𝑃𝑘 portfolio through a fixed factor 𝑐, 𝑐 > 0. That is, at each time 𝑡 ∈ 𝑇 **,

securities are bought and/or sold and these operations consume financial resources. We are

accepting the premise that this consumption, at any currency unit, converts to financial

return through the constant 𝑐 and, therefore, that transaction costs are proportional to the

change in the portfolio weights7 and not to the number of buying or selling transactions.

If this is true, then, by construction, it is clear that the larger the value of 𝐸𝑖𝑆2𝑃𝑘𝑁𝑊𝑡,

the higher the related transaction cost.

So, in strategy 𝑆2 we redefine 𝐸𝑅 and 𝐶𝐸𝑅 as:

6It might be confusing that the capital letter 𝐸 is used in different contexts in this work, but please
note that there are remarkable differences in its usage. When we present expected values, we use the
E[·] notation instead of the simple 𝐸. When we reference the types of environment studied in this work,
the capital letter 𝐸 is always associated with the subscript 𝑖, or their assumed values, 1, 2 (e.g. 𝐸1, 𝐸2).
Finally, when the capital letter 𝐸 appears followed by another capital letter (e.g. 𝐸𝑅, 𝐸𝐷) then it means
the excess of some performance or stability metric.

7In later subsections we present the reasons that led to this assumption.
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𝐸𝑖𝑆2𝑃𝑘𝐸𝑅𝑡 = (𝐸𝑖𝑆2𝑃𝑘𝑅𝑡 − 𝑐𝐸𝑖𝑆2𝑃𝑘𝑁𝑊𝑡)− (𝐸𝑖𝑆2𝑃1𝑅𝑡 − 𝑐𝐸𝑖𝑆2𝑃1𝑁𝑊𝑡)

𝐸𝑖𝑆2𝑃𝑘𝐶𝐸𝑅𝑡 =
∏︁
𝑡∈𝑇 **

(1 + 𝐸𝑖𝑆2𝑃𝑘𝐸𝑅𝑡)− 1

𝑖 = 1, 2; 𝑘 = 2, ..., 5; 𝑡 ∈ 𝑇 **

(4.2)

We also define

𝐸𝑖𝑆2𝑃𝑘𝑇𝑁𝑊𝑇 =
∑︁
𝑡∈𝑇 **

𝐸𝑖𝑆2𝑃𝑘𝑁𝑊𝑡

𝑖 = 1, 2; 𝑘 = 1, ..., 5

(4.3)

as the total norm weight (TNW) over the whole backtesting window, which can be un-

derstood as a proxy for the total transaction cost resulting from all rebalancing activities,

clearly a function of the 𝑃𝑘 portfolio stability. In the same line with the metrics above

described, we define the excess total norm weights (ETNW) of robust portfolios with

respect to the classical one, as:

𝐸𝑖𝑆2𝑃𝑘𝐸𝑇𝑁𝑊𝑇 = 𝐸𝑖𝑆2𝑃𝑘𝑇𝑁𝑊𝑇 − 𝐸𝑖𝑆2𝑃1𝑇𝑁𝑊𝑇

𝑖 = 1, 2; 𝑘 = 2, ..., 5
(4.4)

Figure 4.1: Summary of the proposed modeling and metrics for comparison among portfolios.
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Regarding risk comparison we use the maximum drawdown measure which, roughly

speaking identifies the highest decline in a portfolio sequence of returns from a historical

peak. Let 𝐸𝑖𝑆𝑗𝑃𝑘𝐷𝑇 be the maximum drawdown of the 𝑃𝑘 optimum portfolio over the

whole backtesting window [𝑡𝑤, 𝑇 ] considering the 𝑗-th strategy and the 𝑖-th environment.

The excess risk or excess maximum drawdown (𝐸𝐷𝑇 ) at time 𝑇 is defined as:

𝐸𝑖𝑆𝑗𝑃𝑘𝐸𝐷𝑇 = 𝐸𝑖𝑆𝑗𝑃𝑘𝐷𝑇 − 𝐸𝑖𝑆𝑗𝑃1𝐷𝑇

𝑖 = 1, 2; 𝑗 = 1, 2; 𝑘 = 2, ..., 5
(4.5)

Finally, let 𝐸𝑖𝑆𝑗𝑃𝑘𝑆𝑇 be the Sharpe Ratio of the 𝑃𝑘 optimum portfolio considering its

performance on the backtesting window [𝑡𝑤, 𝑇 ]
8. Define the excess Sharpe ratio of robust

portfolios with respect to the classical one as:

𝐸𝑖𝑆𝑗𝑃𝑘𝐸𝑆𝑇 = 𝐸𝑖𝑆𝑗𝑃𝑘𝑆𝑇 − 𝐸𝑖𝑆𝑗𝑃1𝑆𝑇

𝑖 = 1, 2; 𝑗 = 1, 2; 𝑘 = 2, ..., 5
(4.6)

Figure 4.1 summarizes the proposed modeling and metrics for this work. The following

sections give more details of each environment and strategy implementation.

4.2 Breakdown Point Calibration and Outlier Detec-

tion

As explained in Chapter 2, the breakdown point plays a vital role in the well-known

trade-off between robustness and efficiency levels of an estimator. Its value may privilege

one of these two properties, as unnecessary high breakdown points generate estimators

that are more robust than what is required by data contamination and, this fact ends up

deteriorating the related efficiency.

The exercise presented in this section employs the concepts and methodologies de-

scribed in [37], in order to identify the proportion of existing outliers in a particular

sample. Knowing the percentage of “bad” data, the breakdown point could be easily set

at a value that the correspondent robustness would be consistent to what is required.

However, outliers are much harder to identify in multivariate data clouds than in

the univariate case. This happens mainly because one can not rely on visual inspection

anymore and, in general, it is not sufficient to look at each variable separately or even

8The Sharpe Ratio equation needs a proper value for the risk-free interest rate. Aside from the fact
that there is some controversy on which rate should be considered as the risk-free, note that this rate
is not an essential parameter in this study. Actually, any choice would equally impact all portfolios
measures of performance and results would not be relatively changed depending on the chosen value for
𝑟𝑓 . In this sense, we choose to simplify in this work by setting 𝑟𝑓 = 0.
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at all plots of pairs of variables. Indeed, the author in [37] provides examples when clear

outliers in the multidimensional context are not identified when single or pair of variables

are analyzed. In most cases, such outliers do stick out in certain projections, but this

does not make them easy to find. Most projections do not reveal anything.

The classical approach to outliers detection in the multivariate context considers the

Mahalanobis distance (𝑀𝐷), introduced in Chapter 2, using the arithmetic mean and

the sample covariance matrix as estimates of location and scatter. This distance should

inform how far a particular point is from the center of the data cloud, taking into account

its shape as well. However, it is well documented in the literature that this procedure

suffers from the masking effect, by which multiple outliers do not necessarily present large

values of 𝑀𝐷. This is due to the fact that the used estimates of location and scatter are

not robust and, therefore, a small cluster of outliers could potentially attract the location

estimate, while inflating the scatter one.

To overcome this weakness, the author in [37] suggests the usage of robust distances

(𝑅𝐷) instead of MD. 𝑅𝐷 are evaluated for each data point in the same way as the

𝑀𝐷, with the exception that the arithmetic mean and the sample covariance matrix are

replaced by robust estimators of location and scatter. Then, each distance is compared to

a chi-squared distribution critical value, 𝜒2
𝑝,𝛼, considering a specific level of significance 𝛼

and 𝑝 being the problem dimension. When 𝑅𝐷2
𝑖 > 𝜒2

𝑝,𝛼, the correspondent 𝑝-dimensional

point x𝑖 is considered an outlier.

Following the suggestion given in [37], we apply this methodology to our real dataset,

exposed in Section 4.3, using the MVE estimates of location and scatter. Figure 4.2

presents the percentage of outliers identified (𝑅𝐷2
𝑖 > 𝜒2

15,0.975) in the single estimation

window available in the 𝐸1𝑆1 strategy. Different breakdown point values, 𝜀*𝑛, in the MVE

estimation process were considered in the interval [0.01, 0.5], which includes the maximum

breakdown possible to be attained by the class of affine equivariant estimators.

The results plotted in Figure 4.2 clearly demonstrate that there is, indeed, some level

of contamination in the 𝐸1𝑆1 estimation window. Also, it is possible to see that an

assumed breakdown point smaller than 20% or higher than 25% is pointless. In the first

case, the estimator should be more robust than it is, but in the second case, there are not

so many identified outliers justifying such high values of breakdown without impairing

the estimator’s efficiency. In this sense, 22% seems to be a good choice for the breakdown

point, which precisely identifies 22.46% of outliers in this estimation window. Figure

4.3 presents the evaluated squared robust distances for points pertaining to this window,

comparatively to the threshold 𝜒2
15,0.975 = 27.488.
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Figure 4.2: Percentage of outliers identified (𝑅𝐷2
𝑖 > 𝜒2

15,0.975) in the single estimation window available in the 𝐸1𝑆1

strategy. Different breakdown point values, 𝜀*𝑛 were assumed in the MVE estimation process.
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Figure 4.3: Squared robust distances evaluated in the 𝐸1𝑆1 estimation window, considering a breakdown value of 22%.

The horizontal dashed line at 27.488 represents the critical value 𝜒2
15,0.975.
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Finally, as it will be better explained in Section 4.3.2, the rebalancing strategy 𝑆2

uses a rolling estimation window. Data set used to estimate portfolios changes frequently,

which implies that, although the 22% breakdown value proved to be adequate for the first

estimation window, it might be erroneous for the subsequent windows. Thus, following the

same rationale described in this section, Figure 4.4 presents the most proper breakdown

values for each estimation window in the 𝐸1𝑆2 strategy. Aside from two estimation

windows, where 21% and 23% were more adequate values, one can see that, indeed, 22%

is a level of contamination that represents the majority of the data.
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Figure 4.4: Estimated Breakdown Point per each window in the 𝐸1𝑆2 strategy.

4.3 Environment E1 - Real Dataset

In environment 𝐸1 we have at our disposal observed returns for collected stocks, or

else, one single realization of the subjacent stochastic process. In this sense, the only

procedure possible to be done here is to estimate statistics derived from the metrics de-

fined in Section 4.1. That is, we compute the estimates 𝐸1𝑆𝑗𝑃𝑘𝐶𝐸𝑅𝑇 , 𝐸1𝑆2𝑃𝑘𝐸𝑇𝑁𝑊 𝑇 ,

𝐸1𝑆𝑗𝑃𝑘
̂︂𝐸𝐷𝑇 and 𝐸1𝑆𝑗𝑃𝑘

̂︁𝐸𝑆𝑇 , conditioning on our sample, the specific sequence of stock

returns {𝐸1𝑆𝑗𝑃𝑘𝑅𝑡}𝑡∈[𝑡0,𝑡𝑤] observed in the market.

To accomplish this, we selected 15 stocks negotiated either at New York Stock Ex-

change (NYSE) or NASDAQ Stock Market as exhibited in Table 4.1. The rationale behind
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this stock screening guarantees that the securities collected enjoy desirable features such

as: high liquidity, long track record and differentiation, to the greatest extent possible,

regarding the respective industries and sectors.

The chosen time horizon goes from 2000/06/02 to 2015/07/01 (estimation plus back-

testing windows) that contains several market turbulences and, at least, two important

financial crises such as those known as the “.com” and the “subprime” crises. Stock prices

were collected on a daily basis.

Table 4.2 presents descriptive statistics for the returns of the stocks listed in Table 4.1.

The most important point behind these results regards the fact that there is clear evidence

suggesting that these stock returns do not follow a Gaussian distribution. Actually, one

can see that for most selected stock returns, the values obtained for excess kurtosis with

respect to the Normal reference indicate the existence of fat tails in these distributions.

Table 4.1: Selected stocks for this work and their corresponding economic sectors and

industries.

Stock Sector Industry

Alcoa Basic Materials Aluminum

Apple Consumer Goods Electronic Equipment

AT&T Technology Telecom Services

Citigroup Financial Money Center Banks

The Coca-Cola Company Consumer Goods Beverages - Soft Drinks

The Dow Chemical Company Basic Materials Chemicals - Major Diversified

Ford Motor Consumer Goods Auto Manufacturers - Major

General Electric Company Industrial Goods Diversified Machinery

Intel Corporation Technology Semiconductor - Broad Line

J. C. Penney Company Services Department Stores

JPMorgan Chase Financial Money Center Banks

Merck Healthcare Drug Manufacturers - Major

Microsoft Corporation Technology Business Software & Services

Pfizer Healthcare Drug Manufacturers - Major

The Procter & Gamble Company Consumer Goods Personal Products

Source:Bloomberg

In order to complement this first impression we performed the well known Jarque-Bera

test,9 whose results are also presented in Table 4.2. It can be seen that in all cases it is

9In general terms, it is a goodness-of-fit test of whether the sample data have the skewness and kurtosis
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possible to reject the Jarque-Bera null hypothesis that the sample in analysis comes from

a Gaussian distribution. Although this is a well-known fact concerning stock returns, this

result is particularly important for this work as it undermines the use of the sample mean

of returns and the sample covariance matrix as estimates of return and risk, respectively,

in the portfolio optimization problem. We have already seen in Chapter 2 that these

estimates are optimal when returns follow a multivariate Gaussian distribution, which

appears not to be case, but can be heavily distorted in contaminated environments or

under other multivariate distributions.

Table 4.2: Descriptive statistics for the stock returns listed in Table 4.1 and the correspond-

ing Jarque Bera test p-values. Exc. Kurt. means excess kurtosis values with respect to the

Normal reference.

Stock Mean Min. Max. Std. Dev. Skewness Exc. Kurt. JB p-val

Alcoa 0.0005 −0.1101 0.1300 0.0223 0.2142 2.3204 ≈ 0

Apple 0.0017 −0.5187 0.1316 0.0316 −2.2817 40.6138 ≈ 0

AT&T 0.0003 −0.1266 0.0911 0.0182 −0.1192 3.8077 ≈ 0

Citigroup 0.0002 −0.1573 0.1264 0.0183 −0.0907 7.4569 ≈ 0

Coca-Cola 0.0002 −0.1006 0.0781 0.0134 −0.2469 5.8545 ≈ 0

Dow Chemical 0.0005 −0.1058 0.1139 0.0195 0.1376 3.8800 ≈ 0

Ford Motor −0.0002 −0.1469 0.1562 0.0245 0.3615 4.2651 ≈ 0

G. E. 0.0001 −0.1067 0.1246 0.0175 0.2719 5.7646 ≈ 0

Intel < 10−4 −0.2203 0.2012 0.0283 −0.2271 6.9782 ≈ 0

J. C. Penney 0.0010 −0.1217 0.1761 0.0262 0.6067 4.6265 ≈ 0

JPMorgan 0.0003 −0.1811 0.1604 0.0213 0.4305 8.8133 ≈ 0

Merck 0.0002 −0.2678 0.1303 0.0178 −1.8303 31.5940 ≈ 0

Microsoft 0.0004 −0.1182 0.1957 0.0203 0.5195 9.0629 ≈ 0

Pfizer −0.0001 −0.1115 0.0771 0.0171 −0.3569 4.5016 ≈ 0

P & G 0.0005 −0.0798 0.0840 0.0125 0.0179 5.8827 ≈ 0

A final aspect that must be checked before the core exercises of this chapter are

presented, regards whether stock returns are stationary or not. In general terms, in time

matching a normal distribution. The test statistic JB is defined as

𝐽𝐵 =
𝑛

6

(︂
𝑆2 +

1

4
(𝐶 − 3)2

)︂
where 𝑛 is the number of observations, 𝑆 is the sample skewness and 𝐶 is the sample kurtosis. If the
data come from a normal distribution, the JB statistic asymptotically follows a chi-squared distribution,
and it can be used to test the hypothesis that the data comes from a normal distribution.
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series analysis, sample estimates make sense only if the quantities used in this process are

market invariants, i.e. if they display the same statistical behavior independently across

different periods, allowing the effective learning from the past.

Thus, after collecting the securities raw prices, one should extract the invariance intrin-

sic to this dataset, which for stocks are often embedded in their returns. More specifically,

we are looking for time homogenous invariants, which are defined as those quantities whose

distributions do not depend on the reference time.

Table 4.3: Specification and results for the ADF test, including the

best autoregressive order 𝑝 according to the AIC and the test statistics

with the corresponding significancy level.

Stock {𝛼, 𝛿} 𝑝 Test Stat.

Alcoa 𝛼 = 𝛽 = 0 0 −42.7827(**)

Apple 𝛼 ̸= 0, 𝛽 = 0 0 −44.7773(**)

AT&T 𝛼 = 𝛽 = 0 0 −42.7223(**)

Citigroup 𝛼 = 𝛽 = 0 0 −43.8458(**)

The Coca-Cola Company 𝛼 = 𝛽 = 0 0 −42.1991(**)

The Dow Chemical Company 𝛼 = 𝛽 = 0 0 −44.2906(**)

Ford Motor 𝛼 = 𝛽 = 0 0 −47.1242(**)

General Electric Company 𝛼 = 𝛽 = 0 0 −44.3227(**)

Intel Corporation 𝛼 = 𝛽 = 0 1 −32.3664(**)

J. C. Penney Company 𝛼 = 𝛽 = 0 1 −33.1793(**)

JPMorgan Chase 𝛼 = 𝛽 = 0 0 −44.6576(**)

Merck 𝛼 = 𝛽 = 0 0 −42.1349(**)

Microsoft Corporation 𝛼 = 𝛽 = 0 0 −43.2860(**)

Pfizer 𝛼 = 𝛽 = 0 1 −34.5363(**)

The Procter & Gamble Company 𝛼 ̸= 0, 𝛽 = 0 0 −45.7420(**)

(**) Significant at 1% level

We perform stationarity analysis on the stock returns using the Augmented Dickey

Fuller test (ADF)10, and the respective results are presented in Table 4.3. It is clear from

the test statistics exhibited that, in all cases, it is possible to reject the null hypothesis

10In order to briefly describe this test, let {𝑌𝑡} be an observed time series. The functional form of the
test can assume three different formats, but the complete version is

Δ𝑌𝑡 = 𝛼+ 𝛽𝑡+ 𝛾𝑌𝑡−1 +

𝑝∑︁
𝑗=1

(𝛿𝑗Δ𝑌𝑡−𝑗) + 𝜖𝑡
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of existence of a unit root, at significance levels lower than 1%. In this way, hereafter we

consider the selected stock returns as homogeneous market invariants.

4.3.1 E1S1 - Buy-and-Hold Strategy on Observed Returns

The buy-and-hold strategy 𝑆1 combined to the environment 𝐸1 (𝐸1𝑆1) in this subsec-

tion means that we select optimum portfolios based on the sequence of observed stock

returns between 𝑡0 and 𝑡𝑤 and that they remain unchanged until 𝑇 . Consequently, there

are no portfolios stability analyses related to rebalancing strategies in this subsection.

One could point out that this strategy is too naive to be implemented, as portfolios

would be exposed too much time to different types of market turbulences without rebal-

ancing. However, there are several arguments both in the financial theory and in the

related practice supporting this strategy. One of them relates to the efficient-market hy-

pothesis which, in general terms, states that if every security is fairly valued at all times,

then there is really no point to trade at all. In the extreme, supporters of this strategy

may advocate that a security, once bought, should never be sold, unless the investor really

needs the money. This viewpoint holds that market timing, i.e. the concept that one can

enter the market on the lows and sell on the highs, does not work and attempting to do

this would give negative results, at least for small or unsophisticated investors. It would

be better for them to simply buy and hold.

Another argument favorable to the buy-and-hold strategy is related to cost-based

grounds. Costs such as brokerage fees and bid/ask spreads are incurred in all transactions,

and the buy-and-hold strategy implies in the fewest number of transactions for a given

amount invested in the market, all other things being equal. Taxation laws also have

some effect. Tax for long-term capital gains may be lower in most jurisdictions, and tax

may be due only when the asset is sold (or never if the person dies).

Having said that, consider that 𝑡0 = 2000/06/02, 𝑡𝑤 = 2007/11/01 and 𝑇 = 2015/07/01,

which are roughly speaking, 7 years of past information of observed returns, [𝑡0, 𝑡𝑤], and

8 year for performance comparison, [𝑡𝑤, 𝑇 ].

Considering the collected data set, Figures 4.5 and 4.6 illustrate some differences

between robust and classical portfolio estimation.

Using a breakdown point of 22%, contextualized in Section 4.2, Figure 4.5 compares

where 𝛼 is a constant called drift, 𝛽 is the coefficient on a time trend, 𝛾 is the coefficient presenting process
root, 𝑝 is the lag order of the first-difference autoregressive process and 𝜖𝑡 is an independent identically
distributed error term. The focus of the test is whether the coefficient 𝛾 equals to zero, meaning that the
original time series process has a unit root.
Several authors have suggested different ways of specifying the deterministic structure, {𝛼, 𝛿} and the

lags 𝑝 for the autoregressive component. In this work, we determine the first by joint significance analysis
of estimated coefficients using 𝐹 -type tests and the second based on the Akaike Information Criteria
(AIC).
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the estimated efficient frontiers for the portfolios 𝐸1𝑆1𝑃𝑘, 𝑘 = 1, ...3. One should notice

that there is a remarkable difference between classical and robust efficient frontiers, as

the last one surrounds the former one. This fact suggests that it would be possible to

allocate assets in a way that optimum robust portfolios would enjoy less risk for the same

level of expected return or, conversely, attain higher levels of return for a given level of

risk, comparatively to the classical portfolio. Unfortunately, for market practitioners, this

evidence would be extremely important only in the unrealistic occasion that future returns

resemble past returns. This would be the case where robust portfolios would guarantee

better performance and risk profiles. Also, please note that although Figure 4.5 compares

𝑃1 solely with 𝑃2 and 𝑃3, the same pattern can be observed with 𝑃4 and 𝑃5.
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Figure 4.5: Comparison between 𝐸1𝑆1𝑃1, 𝐸1𝑆1𝑃2 and 𝐸1𝑆1𝑃3 efficient frontiers built upon 50 portfolios in each case.

Robust portfolios were estimated based on a breakdown point of 22%. Short Selling is allowed.

Figure 4.6 introduces the comparison among 𝐸1𝑆1𝑃𝑘 MSR portfolios weights, 𝑘 =

1, ..., 5, when estimated at 𝑡𝑤. As expected, it is possible to see high similarities among

the robust portfolios weights while they exhibit relevant differences when compared to

the classical one.

Keeping these five portfolios unchanged through the backtesting window [𝑡𝑤, 𝑇 ], Fig-

ures 4.7 and 4.8 present estimates of the cumulative excess return (𝐶𝐸𝑅𝑡), excess risk

(𝐸𝐷𝑇 ) and excess Sharpe ratio (̂︂𝐸𝑆𝑇 ), defined in (4.1), (4.5) and (4.6), respectively.
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Figure 4.6: Comparison among 𝐸1𝑆1𝑃𝑘, 𝑘 = 1, ..., 5 portfolio weights. Robust portfolios were estimated based on a

breakdown point of 22%. Short Selling is allowed.
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Considering the time frame and the dataset chosen, one can see in Figure 4.7 and in

Figure 4.8 that all robust portfolios exhibit positive excess cumulative returns, negative

excess risk and positive excess Sharpe ratio, with respect to the classical one. Or else,

robust portfolios presented better return and risk profiles, but with more pronounced

drawdowns than the classical portfolio.
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Figure 4.8: (left part) Comparison among estimates of Excess Maximum Drawdowns (𝐸1𝑆1𝑃𝑘
̂︂𝐸𝐷𝑇 , 𝑘 = 2, ..., 5) of

MSR robust portfolios. (right part) Comparison among estimates of Excess Sharpe Index (𝐸1𝑆1𝑃𝑘
̂︂𝐸𝑆𝑇 , 𝑘 = 2, ..., 5) of

MSR robust portfolios.

At this point of the work, we acknowledge this apparent superior performance but we

do not have proper foundation to assert that this is a fact, regardless of this particular

past history of returns. Only by means of simulation, to be performed in environment

𝐸2, we will be able to reach more solid conclusions.

Thus, we formulate the first group of research question in the form of hypothesis to

be tested in the simulation exercise.

Hypothesis 1. At a given confidence level, can we reject the hypotheses that

the real parameters for Excess Sharpe Index of MSR robust portfolios with

respect to the classical one are those that were presented in Figure 4.8, when
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considering a buy-and-hold strategy?

H12 : 𝐸1𝑆1𝑃2𝐸𝑆𝑇 = 0.0120

H13 : 𝐸1𝑆1𝑃3𝐸𝑆𝑇 = 0.0112

H14 : 𝐸1𝑆1𝑃4𝐸𝑆𝑇 = 0.0100

H15 : 𝐸1𝑆1𝑃5𝐸𝑆𝑇 = 0.0092

(4.7)

4.3.2 E1S2 - Rebalancing Strategy on Observed Returns

In this section, MSR optimum portfolios are estimated and rebalanced (reevaluated)

at each 𝑡 ∈ 𝑇 * = {𝑡𝑤, 𝑡𝑤 +Δ𝑡, 𝑡𝑤 + 2Δ𝑡, ..., 𝑇 −Δ𝑡}, Δ𝑡 being a specified time length. In

this process, we use a rolling-type estimation window, in the sense that for each 𝑡 ∈ 𝑇 *|𝑡 >
𝑡𝑤, the oldest Δ𝑡 values of the sample are deleted while new Δ𝑡 values arrive. Robust

portfolios are estimated considering the breakdown values presented in Figure 4.4.

In this work we chose Δ𝑡 = 90 days (quarterly rebalancing). Actually, we tried to

shorten Δ𝑡, but we faced the challenge of keeping computational effort at manageable

levels. One should notice that in the simulated environment 𝐸2, portfolios are also es-

timated at each 𝑡 ∈ 𝑇 *, but this process is repeated many times over a wide range of

simulated past returns. Robust portfolios algorithms rely mostly on resampling proce-

dures and, according to our measurement, estimating 𝑃1, ..., 𝑃5 portfolio weights lasts

approximately 40 seconds to 1 minute. So, if rebalancing activities were performed more

frequently and/or if the number of past simulated returns were higher, then environment

𝐸2 would be an important bottleneck for this study in terms of computational effort.

Figure 4.9 presents estimates of excess total norm weights (𝐸𝑇𝑁𝑊 𝑇 ), as defined in

(4.4). All estimates are negative values, which means that robust optimum portfolios

are apparently more stable, implying in relatively less transaction costs, considering the

particularities of the sample analyzed.

The stability and transaction costs relationship emerges from the norm weights defi-

nition itself. Note that, generically speaking, the estimated portfolio weights vector ̂︁𝑊𝑡

contains the percentage invested in each asset. Aside from a rare coincidence, ̂︁𝑊𝑡 is differ-

ent from ̂︁𝑊𝑡−Δ𝑡, implying that assets were bought and/or sold in the rebalancing process.

Evaluating the norm weight ||̂︁𝑊𝑡 − ̂︁𝑊𝑡−Δ𝑡||1, we account for all percentage differences

in absolute values, acknowledging the fact that it does not matter if an specific security

percentage increased or decreased in the portfolio, by means of buying or selling activities,

all else being equal. All of them would be charged, therefore impacting transaction costs.

52



P2ETNWT P3ETNWT P4ETNWT P5ETNWT

Excess Total Norm Weights

T
o

ta
l 
N

o
rm

 W
e

ig
h

ts

−
3

.0
−

2
.5

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

Figure 4.9: Comparison among estimates of Excess Total Norm Weights (𝐸1𝑆2𝑃𝑘𝐸𝑇𝑁𝑊𝑇 , 𝑘 = 1, ..., 5) of MSR robust

portfolios.

This evidence leads to our second research question formulated in hypothesis 2 which

will be tested in environment 𝐸2.

Hypothesis 2. At a given confidence level, can we reject the hypotheses that

the real parameters for Excess Total Norm Weights of MSR robust portfolios

with respect to the classical one are those that were presented in Figure 4.9,

when considering a rebalancing strategy?

H22 : 𝐸1𝑆2𝑃𝑘𝐸𝑇𝑁𝑊𝑇 = −1.9310

H23 : 𝐸1𝑆2𝑃𝑘𝐸𝑇𝑁𝑊𝑇 = −0.2181

H24 : 𝐸1𝑆2𝑃𝑘𝐸𝑇𝑁𝑊𝑇 = −3.2600

H25 : 𝐸1𝑆2𝑃𝑘𝐸𝑇𝑁𝑊𝑇 = −1.5913

(4.8)

Regarding cumulative excess returns (𝐶𝐸𝑅𝑡, 𝑡 ∈ 𝑇 **), as defined in (4.2), recall that

we are assuming that portfolio norm weights are good proxies for transaction costs and,

as such, they negatively impact portfolios returns through a proportionality constant 𝑐.

Actually, there is a long and widespread debate on the role of transaction costs in

the functioning of financial markets. Such costs can be imputed to different reasons, like:

brokerage commission fees, bid/ask spreads, time involved in acquiring knowledge and
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record keeping, transaction taxes and so on. They can be charged as a fixed value per

posted buying or selling order, they can be charged as a function of the actual amount

bought or sold, they might depend on geographical regions and their development levels,

or a combination of different criteria. Therefore, there is a wide range of transaction

costs currently being charged in financial markets, while some of its components are even

unknown to others than the investor himself.

While we do not have privileged information that supports the choice for an adequate

transaction costs “formula”, we also claim that this subject is not fundamental for the

rest of the work. Unfortunately, the chosen value of 𝑐 has the potential to change relative

performances. The left part of Figure 4.10 presents estimates of 𝐶𝐸𝑅𝑇 considering 𝑐 =

0.001, while its right part presents the same estimates for 𝑐 = 0.1. It can be seen that,

although the rebalancing activities removed the relative superiority of robust portfolios,

as measured by cumulative returns, the higher the transaction cost the better the relative

performance of these portfolios.
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Figure 4.10: (left part) Comparison among estimates of Cumulative Excess Returns (𝐸1𝑆2𝑃𝑘𝐶𝐸𝑅𝑇 , 𝑘 = 2, ..., 5) of

MSR robust portfolios, considering 𝑐 = 0.001. (right part) The same estimation, for 𝑐 = 0.1.

In this context, we claim that the core of the portfolios stability lives in the results

presented in Figure 4.9, regarding 𝐸𝑇𝑁𝑊 𝑇 , while its consequent impact on performance

depends on the chosen formula for transaction costs, even the value for the constant 𝑐 in

our simplistic model. In this work, in order to provide a more complete picture on this
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subject, we present performance results considering two values of 𝑐 (0.001 and 0.1).

Finally, note that the growing values of transaction costs might be associated with

different financial markets around the world. In an interesting work, the authors in [2]

explicitly connected an economy’s capital markets efficiency to its level of transactions

cost through an inverse relation. They concluded that as the later falls, the general effect

is that agents tend to make longer-term, transaction-intensive investments. Consequently,

a higher rate of return on savings is possible, as well as a change in its composition. In this

sense, the lower value of 𝑐 presented in this work could be associated to a more efficient

financial market, possibly belonging to a developed economy, while the opposite is true

concerning the higher value of 𝑐.
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Figure 4.11: (top) Comparison among estimates of Excess Maximum Drawdowns (𝐸1𝑆2𝑃𝑘
̂︂𝐸𝐷𝑇 , 𝑘 = 2, ..., 5) of MSR

robust portfolios. (bottom left) Comparison among estimates of Excess Sharpe Ratios (𝐸1𝑆2𝑃𝑘
̂︂𝐸𝑆𝑇 , 𝑘 = 2, ..., 5) of MSR

robust portfolios, considering 𝑐 = 0.001. (bottom right) The same estimation, for 𝑐 = 0.1.

The top of the Figure 4.11 presents evidence suggesting that MSR robust portfolios

present lower risk profile, as measured by the maximum drawdowns, while the bottom

part of this figure complements the performance analysis showing that the ex-post Sharpe

Ratio after transaction costs is also severely impacted by the chosen value of 𝑐. Again, the

higher the cost, the better is the relative performance of robust portfolios. Note that the

results plotted at the bottom part of Figure 4.11 are not inconsistent with those presented

in Figure 4.10. In the latter, cumulative returns were evaluated at the specific point in

time 𝑇 , while in the former, the Sharpe ratio accounts for the expected return over the
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whole period.

Finally, we formulate our third research question in hypothesis 3

Hypothesis 3. At a given confidence level, can we reject the hypotheses that

the real parameters for Excess Sharpe Index after transaction costs (𝑐 = 0.1)

of MSR robust portfolios with respect to the classical one are those that were

presented in Figure 4.11, when considering a rebalancing strategy?

H32 : 𝐸1𝑆2𝑃𝑘𝐸𝑆𝑇 = 0.2909

H33 : 𝐸1𝑆2𝑃𝑘𝐸𝑆𝑇 = 0.1148

H34 : 𝐸1𝑆2𝑃𝑘𝐸𝑆𝑇 = 0.3111

H35 : 𝐸1𝑆2𝑃𝑘𝐸𝑆𝑇 = 0.2797

(4.9)

To sum up the results achieved so far, we can say that MSR robust portfolios exhib-

ited relatively better performance in the buy-and-hold strategy, while in the rebalancing

strategy, performance values are impacted and conditioned to transaction costs. Regard-

ing stability, we saw that robust portfolios seem to be more stable than the classical one,

notably the S portfolio which seems to present the best stability profile. But of course, in

this section we have dealt with one single realization of the subjacent stochastic process

that governs this set of stocks behavior and, consequently, the presented results may have

occurred simply by chance. Maybe performance is not so good in the buy-and-hold strat-

egy and the same rationale applies to the stability results. Overall, this section served us

mainly to build our three research questions that will be answered in the next section by

means of simulations.

4.4 Environment 𝐸2 - Simulated Dataset

In this section we implement the simulated environment 𝐸2 with the purpose of testing,

under different past trajectories, the three research questions formulated in hypotheses 1, 2

and 3. To that end, we generate several realizations for 15 random variables mimicking the

observed behavior of the 15 stock returns collected in environment 𝐸1. All characteristics

adopted in 𝐸1 will be kept in environment 𝐸2, in the sense that the length of each

simulated time series is the same as the observed in the real data set, as they also are the

segregation between estimation and backtesting windows and the rebalancing frequency.

Aside from the fact that now we are working on a wide range of different past returns,

the same modeling, metrics and premises are used in this section, allowing a smooth and

coherent transition between environments 𝐸1 and 𝐸2.
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It remains to be answered how we generate random variables realizations resembling

the real data. To accomplish this task, we use the semi-parametric bootstrapping proce-

dure adopted in [30].

The bootstrapping method introduced in [11] is a very general resampling procedure

for estimating the distributions of statistics based on independent observations. With the

purpose to briefly describe the general characteristics of this method, consider that the

sample 𝑋1, 𝑋2, ..., 𝑋𝑛 consists of realizations of independent random variables following

a common distribution function 𝐹 and that there is an estimate 𝜃 of our interest. We

would like to know its sampling distribution, but we often face a common problem: we do

not know 𝐹 for sure. The main idea of the parametric bootstrap regards the assumption

that 𝐹 is unknown up to an unknown parameter 𝜂, i.e. 𝐹 (𝑥|𝜂). So we simulate data

from 𝐹 (𝑥|𝜂) where 𝜂 should be a good estimate of 𝜂. When 𝐹 is completely unknown,

one generally resorts to the non-parametric bootstrapping and resampling is performed

directly in the empirical c.d.f. 𝐹𝑛.

To be faithful to the data at hand we should be as close as possible to the true

multivariate distribution generating the data. In this sense, the authors in [30] propose a

semi-parametric bootstrapping procedure that parametrically takes care of all marginal

characteristics of the returns data, but also considers the existing dependence structure.

Given that we observe 𝑛 observations of 𝑝 asset returns in the real data, to obtain their

semi-parametric replications we follow the steps below:

∙ Each series of returns is modeled by an ARMA-GARCH process. Each of the result-

ing uncorrelated residuals series is unconditionally characterized by an appropriate

distribution function.

∙ From the 𝑛×𝑝matrix containing the ARMA-GARCH residuals, we generate, column

by column, a 𝑛× 𝑝 matrix R of their respective ranks.

∙ From the unconditional distributions fitted to each series of residuals we generate

𝑛𝑠𝑖𝑚 random realizations, where 𝑛𝑠𝑖𝑚 is the chosen number of simulations. In

other words, 𝑛𝑠𝑖𝑚 𝑛× 𝑝 matrices of simulated residuals are generated.

∙ Each 𝑛× 𝑝 matrices of simulated residuals leads to a corresponding 𝑛× 𝑝 matrix of

ranks R𝑚, 𝑚 = 1, ..., 𝑛𝑠𝑖𝑚.

∙ The values of each matrix R𝑚 are rearranged in order to preserve the pairing ob-

served in the original matrix R.

∙ To each rearranged matrix R*
𝑚 there is an unique 𝑛×𝑝 matrix of simulated residuals

that, in last instance, is used to build a new (simulated) time series using the ARMA-

GARCH parameters previously estimated.
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The first step of the algorithm previously described concerns the ARMA-GARCH

fitting. There are many surveys covering the mathematical and statistical properties of

ARMA-GARCH models and our intention here is to just briefly review the model and

its practical implementation. First of all, note that ARMA-GARCH means that the

conditional mean is modeled by an ARMA equation and the conditional variance by a

GARCH equation. For an univariate generic time series {𝑋𝑡}𝑡≥0, these equations are:

𝑋𝑡 = 𝜇+
𝑚∑︁
𝑖=1

𝑎𝑖𝑋𝑡−𝑖 +
𝑛∑︁

𝑗=1

𝑏𝑗𝜀𝑡−𝑗 + 𝜀𝑡

𝜀𝑡 = 𝑧𝑡𝜎𝑡

𝜎2
𝑡 = 𝜔 +

𝑝∑︁
𝑖=1

𝛼𝑖𝜀
2
𝑡−𝑖 +

𝑞∑︁
𝑗=1

𝛽𝑗𝜎
2
𝑡−𝑗

where, 𝜇 is an intercept for the conditional mean equation, 𝑎𝑖, 𝑏𝑗, 𝑚 and 𝑛 are the

autoregressive and moving average coefficients and orders, respectively, {𝜀𝑡}𝑡≥0 are the

innovations of the time series process, {𝑧𝑡}𝑡≥0 is an i.i.d process with zero mean and unit

variance, 𝜔 is an intercept for the conditional variance equation and 𝛼𝑖, 𝛽𝑗, 𝑝 and 𝑞 are

the ARCH and GARCH coefficients and orders, respectively.

Given an observed univariate return series, the maximum log-likelihood method is

often used to estimate the parameter set for a specific ARMA-GARCH. In this process,

generally {𝑧𝑡}𝑡≥0 is assumed to follow a standard normal probability function. Other

choices frequently adopted in the literature are the standard student-t distribution and

the generalized error distribution, a symmetrical unimodal member of the exponential

family, such as the double exponential and the Laplace distributions.

Having said that, one should specify the orders𝑚,𝑛, 𝑝, 𝑞 of the ARMA-GARCH model

in order to estimate its parameters. Several model selection procedures are cited in the

relevant literature and one can say that all of them present benefits and drawbacks.

In this work, we adopted the so-called specific-to-general approach11, conditional to the

simultaneous attendance to the following criteria:

∙ Models should be parsimonious;

∙ Residuals (difference between observed and fitted values) should not be autocorre-

lated to an specified number of lags and considering a specific significance level, as

judged by the Ljung Box test12; and

11In general terms, the specific-to-general approach implies that the researcher tries to explain a variable
of interest with a simple model, in the first place. The model estimation and consequent diagnostic tests
will give indications if the assumed simple model is sufficient or if a more refined model, possibly with
more explanatory variables, would be necessary.

12In order to briefly describe the Ljung Box autocorrelation test, let {𝑒𝑡}0≤𝑡≤𝑇 be the standardized
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∙ Estimated coefficients should be statistically different from zero up to a chosen

significance level.

Table 4.4: Best ARMA(m,n)-GARCH(p,q) specification

for the stock returns listed in Table 4.1. In this table, we

present the best set {𝑚,𝑛, 𝑝, 𝑞} of autoregressive orders,

the degrees of freedom of the standard-𝑡 distribution as-

sumed to represent {𝑧𝑡}𝑡≥0 behavior and the obtained

p-values for the Ljung-Box (LB) autocorrelation test,

considering 5 lags.

Stock 𝑚 𝑛 𝑝 𝑞 𝜈 LB p-value

Alcoa 0 0 1 1 6.6425 0.3313

Apple 0 0 1 1 5.1752 0.1169

AT&T 1 1 1 1 7.0672 0.7218

Citigroup 0 0 1 1 6.1120 0.5151

Coca-Cola 0 0 1 1 5.2929 0.9836

Dow Chemical 1 1 1 1 6.8063 0.9091

Ford Motor 0 0 1 1 5.4557 0.2590

General Electric 0 0 1 1 5.8215 0.8801

Intel 0 0 1 1 6.0929 0.7904

J. C. Penney 1 1 1 1 4.6453 0.3531

JPMorgan 1 0 1 1 6.2201 0.5048

Merck 0 0 1 1 4.3754 0.2509

Microsoft 1 0 1 1 4.5331 0.5490

Pfizer 1 1 1 1 6.0251 0.3322

P&G 1 1 1 1 4.8078 0.9052

residuals from fitting a generic time series regression model, and let

𝑟𝑘 =

∑︀𝑇
𝑡=𝑘+1 𝑒𝑡𝑒𝑡−𝑘∑︀𝑇

𝑡=1 𝑒
2
𝑡

𝑘 = 1, 2, ...

be their autocorrelations. The 𝑀 lag Ljung-Box statistic is defined as:

𝑄𝑀 = 𝑇 (𝑇 + 2)

𝑀∑︁
𝑘=1

𝑟2𝑘
𝑇 − 𝑘

If there is sufficient lack of autocorrelation, 𝑄𝑀 asymptotically follows a 𝜒2
(𝑀−𝑑), where 𝑑 amounts for the

number of parameters estimated. The null hypothesis of test assumes that the first 𝑀 autocorrelations
are all equal to zero. In this sense, results obtained in this test are generally accepted as important
assistances in the process of concluding about residuals independence.
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Table 4.4 presents selected models specification and diagnostics for each of the uni-

variate time series [𝑡0, 𝑇 ] collected in 𝐸1. More specifically, the following findings are

provided: the best autoregressive lag orders (𝑚,𝑛, 𝑝, 𝑞), the degrees of freedom of the

standard-𝑡 distribution assumed to represent {𝑧𝑡}𝑡≥0 behavior (there was no case where

the Gaussian distribution provided a better fit than the 𝑡 distribution) and the obtained

p-values for the Ljung-Box autocorrelation test, considering 5 lags in the residuals. As

one should notice, these p-values indicate that in all case we can not reject, at comfort-

able significance levels, the Ljung-Box null hypothesis of lack of autocorrelation in the

residuals. We consider that these results offer enough subsidies for the approximately i.i.d

residuals assumption required by the bootstrapping methodology.

Table 4.5 presents the parameter estimates for the models specified in Table 4.4.

Even though we do not indicate in Table 4.5, for convenience matters, all estimates are

statistically different from zero at a 10% significance level.

Table 4.5: Parameters estimates for the best ARMA(m,n)-

GARCH(p,q) specifications presented in Table 4.4, or else, the in-

tercepts (𝜇, 𝜔) of the mean and the volatility equations, respectively,

and the estimates for the autoregressive (𝑎1), moving average (𝑏1),

ARCH (𝛼1) and GARCH (𝛽1, 𝛽2) coefficients. All coefficients are

statistically significant at 10% significance level.

Stock (𝜇, 𝜔) (𝑎1, 𝑏1) (𝛼1, 𝛽1)

Alcoa (0, < 10−4) (𝑁/𝐴,𝑁/𝐴) (0.0467, 0.9493)

Apple (0.0016, < 10−4) (𝑁/𝐴,𝑁/𝐴) (0.0374, 0.9594)

AT&T (< 10−4, < 10−4) (0.8517,−0.8724) (0.0556, 0.9400)

Citigroup (0, < 10−4) (𝑁/𝐴,𝑁/𝐴) (0.0869, 0.9156)

Coca-Cola (0.0004, < 10−4) (𝑁/𝐴,𝑁/𝐴) (0.0564, 0.9368)

Dow Chem. (0.0013, < 10−4) (−0.8818, 0.8656) (0.0713, 0.9212)

Ford Motor (0, < 10−4) (𝑁/𝐴,𝑁/𝐴) (0.0659, 0.9308)

G. E. (0, < 10−4) (𝑁/𝐴,𝑁/𝐴) (0.0633, 0.9324)

Intel (0.0005, < 10−4) (𝑁/𝐴,𝑁/𝐴) (0.0382, 0.9590)

JC Penney (0, < 10−4) (−0.5529, 0.5658) (0.0339, 0.9642)

JPMorgan (0.0007, < 10−4) (−0.0414, 𝑁/𝐴) (0.0710, 0.9276)

Merck (0.0004, < 10−4) (𝑁/𝐴,𝑁/𝐴) (0.0782, 0.8995)

Microsoft (0, < 10−4) (−0.0352, 𝑁/𝐴) (0.0498, 0.9468)

Pfizer (0, < 10−4) (0.3991,−0.4266) (0.0732, 0.9148)

P&G (0, < 10−4) (0.4901,−0.5386) (0.0507, 0.9391)
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With the above-mentioned results in hand, we move forward to the next steps of the

algorithm previously presented, completing the bootstrapping procedure. The resulting

multivariate simulated time series preserves the dependence structure observed in the real

data and is treated in this chapter as a multivariate return series that did not occurred

in the past but plausibly could have occurred.

In the same way we proceeded before, short selling is also allowed in the portfolio

selection optimization problem and the assumed investment policy is that investors want

to keep MSR portfolios each time they are estimated. Regarding the simulation itself,

in both strategies 𝑆1 and 𝑆2, 500 different time series are generated and partitioned into

estimation and backtesting windows. As already mentioned before, this choice keeps

computational costs at manageable levels.

Finally, although simulated returns are generated from fixed ARMA-GARCH models,

presented in Tables 4.4 and 4.5, there is no reason to accept that the contamination levels

among different estimation windows are constant. On the contrary, from the simulation

purpose itself, it is expected that each simulated series to materially differ from the

previous one. In this sense, using a fixed breakdown point regardless of the characteristics

presented in each simulated series can be potentially misleading. To keep an adequate

balance between robustness and efficiency, we employed in this section the same rationale

presented in Section 4.2, in the sense that robust location and scatter estimates are

evaluated considering different breakdown points per estimation window. These values

are presented in due time in the next subsections.

4.4.1 E2S1 - Buy-and-Hold Strategy on Simulated Data

In this subsection we inspect and get a better understanding on the sampling distri-

butions of the statistics estimated in environment 𝐸1𝑆1 to conclude about the location

and dispersion of the respective parameters themselves. The results obtained with 500

different simulated past realizations for 15 random variables are characterized in terms

of their descriptive statistics, while for the specific metric questioned in hypothesis 1,

confidence intervals are provided and a more intimate analysis is performed.

Following the procedure described in Section 4.2, Figure 4.12 presents the most ade-

quate breakdown point to be used in each of the 500 simulated estimation window. The

interval [13%, 17%] encompasses the estimated contamination levels and the correspond-

ing adopted breakdown values for the simulated windows.

Table 4.6 presents descriptive statistics for the Cumulative Excess Returns (𝑃𝑘𝐶𝐸𝑅𝑇 ,

𝑘 = 2, ..., 5) and for the Excess Risk (𝑃𝑘
̂︂𝐸𝐷𝑇 , 𝑘 = 2, ..., 5) sampling distributions. In the

first case, it is not possible to reject at comfortable significance levels, that the sampling

distributions follow a Gaussian law. Besides that, one can verify that these distributions
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are centered at small negative values, indicating that the real parameters 𝑃𝑘𝐶𝐸𝑅𝑇 , 𝑘 =

2, ..., 5, locate themselves in a symmetrical region around values quite close to zero.
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Figure 4.12: Breakdown Points used in each of the 500 simulated estimation window for the strategy 𝐸2𝑆1. We followed

the procedure described in Section 4.2.

Table 4.6: Descriptive statistics for the Cumulative Excess Returns (𝐸1𝑆1𝑃𝑘𝐶𝐸𝑅𝑇 , 𝑘 =

2, ..., 5) and for the Excess Risk (𝐸1𝑆1𝑃𝑘
̂︂𝐸𝐷𝑇 , 𝑘 = 2, ..., 5) sampling distributions. 500

different simulated past realizations for 15 random variables were generated according to

the models specified in Tables 4.4 and 4.5.

Estimator Mean Min. Max. Std. Dev. Skewness Exc. Kurt. JB p-val

𝐸1𝑆1𝑃2𝐶𝐸𝑅𝑇 −0.0221 −0.1191 0.0720 0.0336 0.1301 −0.0315 0.4897

𝐸1𝑆1𝑃3𝐶𝐸𝑅𝑇 −0.0037 −0.0717 0.0788 0.0258 −0.0308 −0.3649 0.2598

𝐸1𝑆1𝑃4𝐶𝐸𝑅𝑇 −0.0140 −0.0821 0.0654 0.0260 0.1808 −0.0974 0.2353

𝐸1𝑆1𝑃5𝐶𝐸𝑅𝑇 −0.0188 0.1070 0.0775 0.0322 0.2836 0.0479 0.0331

𝐸1𝑆1𝑃2
̂︂𝐸𝐷𝑇 0.0001 −0.0015 0.0046 0.0005 2.0181 17.9864 ≈ 0

𝐸1𝑆1𝑃3
̂︂𝐸𝐷𝑇 0.0001 −0.0009 0.0030 0.0004 1.6887 14.4682 ≈ 0

𝐸1𝑆1𝑃4
̂︂𝐸𝐷𝑇 0.0001 −0.0012 0.0031 0.0004 1.7121 11.8140 ≈ 0

𝐸1𝑆1𝑃5
̂︂𝐸𝐷𝑇 0.0001 −0.0011 0.0037 0.0004 1.5497 9.1264 ≈ 0
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Regarding Excess Risk, sampling distributions are clearly non-gaussian and present

non-negligible right skewness that can potentially have inflated the mean values. In

summary, these results do not indicate clear performance gains due to the usage of robust

estimators.
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Figure 4.13: Sampling distributions for Excess Sharpe Ratio (𝐸1𝑆1𝑃𝑘
̂︂𝐸𝑆𝑇 , 𝑘 = 2, ..., 5) of MSR robust portfolios,

considering 500 past simulated trajectories and the models specified in Tables 4.4 and 4.5.

Table 4.7: Descriptive statistics for the Excess Sharpe (𝐸1𝑆1𝑃𝑘
̂︂𝐸𝑆𝑇 , 𝑘 = 2, ..., 5) sam-

pling distributions. 500 different simulated past realizations for 15 random variables

were generated according to the models specified in Tables 4.4 and 4.5.

Estimator Mean Min. Max. Std. Dev. Skewness Exc. Kurt. JB p-val

𝐸1𝑆1𝑃2
̂︂𝐸𝑆𝑇 −0.2183 −0.9488 0.4744 0.2103 −0.1156 0.3612 0.1323

𝐸1𝑆1𝑃3
̂︂𝐸𝑆𝑇 −0.0717 −0.6306 0.4283 0.1571 −0.1285 0.4344 0.0618

𝐸1𝑆1𝑃4
̂︂𝐸𝑆𝑇 −0.1045 −0.6675 0.4435 0.1584 0.0805 0.4933 0.0522

𝐸1𝑆1𝑃5
̂︂𝐸𝑆𝑇 −0.2035 −0.8495 0.4043 0.2051 −0.0435 0.2978 0.3372

Regarding the Excess Sharpe Ratio (𝑃𝑘
̂︁𝐸𝑆𝑇 , 𝑘 = 2, ..., 5) sampling distributions, Table

4.7 and Figure 4.13 present their main features. It is possible to observe that robust

portfolios are not rewarding in a buy-and-hold strategy, comparatively to the classical

63



one, as the Excess Sharpe sampling distributions are fairly symmetrical around small

negative values. The real unknown parameters do not locate themselves in “profitable”

regions to the point that justify the use of a more sophisticated estimation methodology.

In (4.10) we present the 95% confidence intervals built on the ̂︁𝐸𝑆𝑇 sample distribu-

tions. Regarding hypothesis 1 formulated in environment 𝐸1, conclusions are provided in

(4.11).

𝐸1𝑆1𝑃2
̂︁𝐸𝑆𝑇 ∈ [−0.6453, 0.1772]

𝐸1𝑆1𝑃3
̂︁𝐸𝑆𝑇 ∈ [−0.4023, 0.2108]

𝐸1𝑆1𝑃4
̂︁𝐸𝑆𝑇 ∈ [−0.4317, 0.2137]

𝐸1𝑆1𝑃5
̂︁𝐸𝑆𝑇 ∈ [−0.6362, 0.1981]

(4.10)

H12 : 𝐸1𝑆1𝑃2𝐸𝑆𝑇 = 0.0120 Not Rejected

H13 : 𝐸1𝑆1𝑃3𝐸𝑆𝑇 = 0.0112 Not Rejected

H14 : 𝐸1𝑆1𝑃4𝐸𝑆𝑇 = 0.0100 Not Rejected

H15 : 𝐸1𝑆1𝑃5𝐸𝑆𝑇 = 0.0092 Not Rejected

(4.11)

Note that it is not possible to reject, at 5% significance level, the higher performance

achieved by all robust portfolios, comparatively with 𝑃1. However, the key result presented

in this subsection surrounds the symmetrical shape of ̂︁𝐸𝑆𝑇 sampling distributions around

small negative values, implying that the real 𝐸𝑆𝑇 parameters locate themselves in a region

that positive or negative values occur, with fairly equal probabilities. Note that there is

evidence of robust estimation performance superiority in the specific history told by the

past returns collected in the environment 𝐸1. However, in a different context, an adverse

number of past returns for the same set of stocks could lead to negative excess Sharpe

index for robust portfolios and we would not be able to reject that. In conclusion, results

are not striking convincing favoring robust estimation in a buy-and-hold strategy.

In some sense, the inconclusiveness embedded in this section’s results corroborates

what was said about Figure 4.5. In that occasion we claimed that robust efficient frontiers

surround the classical one and that it would be possible to allocate assets in a way that

optimum robust portfolios would enjoy less risk for the same level of expected return or,

conversely, attain higher levels of return for a given level of risk, comparatively to the

classical portfolio. In other words, positive excess Sharpe ratios. But we also stated that

this evidence would be extremely important only if the unrealistic premise that future

returns resemble past returns holds. This would be the case where robust portfolios

would guarantee better performance and risk profiles.

Figure 4.5 was built based on past returns and in the buy and hold strategy, portfolios

are not rebalanced when future returns deviate form the investor perspectives. This
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strategy does not explore the potential of robust estimation to its full extent, as it is done

only one time, at 𝑡𝑤, in a period of 8 years. Next section presents the reverse occasion,

when new information is relevant for the portfolios composition.

4.4.2 E2S2 - Rebalancing Strategy on Simulated Data

In this subsection we investigate the sampling distributions of the metrics estimated

in environment 𝐸1𝑆2 (rebalancing strategy), to conclude about the respective parameters.

Results are presented following the same criteria used before, or else, descriptive statistics

are provided for general metrics, while for those specifically questioned in hypotheses 2

and 3, confidence intervals are developed and a deeper analysis is performed.
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Figure 4.14: Breakdown Points used in each of the 10500 simulated estimation window for the strategy 𝐸2𝑆2. We

followed the procedure described in Section 4.2.

In the same way we proceeded before, Figure 4.14 presents the most adequate break-

down point to be used in each of the 10500 simulated estimation window (21 estimation

windows due to rebalancing activities repeated 500 times due to different simulated tra-

jectories). The interval [13%, 17%] contains the estimated contamination levels for the

simulated windows and the corresponding adopted breakdown values.

Figure 4.15 presents sampling distributions for Excess Total NormWeights (𝑃𝑘𝐸𝑇𝑁𝑊 𝑇 ,

𝑘 = 2, ..., 5) of MSR robust portfolios. By simple inspection, one can see that these distri-
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butions concentrate mass at the negative portion of the graphics, where negative excess

total norm weights translate themselves to more stable portfolios.
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Figure 4.15: Sampling distributions for Excess Total Norm Weights (𝐸1𝑆2𝑃𝑘𝐸𝑇𝑁𝑊𝑇 , 𝑘 = 2, ..., 5) of robust portfolios,

considering 500 past simulated trajectories and the models specified in Tables 4.4 and 4.5.

Table 4.8: Descriptive statistics for the Excess Total Norm Weights (𝐸1𝑆2𝑃𝑘𝐸𝑇𝑁𝑊 𝑇 ,

𝑘 = 2, ..., 5) sampling distributions. 500 different simulated past realizations for 15 random

variables were generated according to the models specified in Tables 4.4 and 4.5.

Estimator Mean Min. Max. Std. Dev. Skewness Exc. Kurt. JB p-val

𝐸1𝑆2𝑃2𝐸𝑇𝑁𝑊𝑇 −1.3918 −3.8812 0.0532 0.5813 −0.5683 1.0973 ≈ 0

𝐸1𝑆2𝑃3𝐸𝑇𝑁𝑊𝑇 −0.3267 −3.1575 1.2807 0.6391 −0.4330 0.9075 ≈ 0

𝐸1𝑆2𝑃4𝐸𝑇𝑁𝑊𝑇 −1.8761 −4.2071 −0.3649 0.5698 −0.5949 0.9361 ≈ 0

𝐸1𝑆2𝑃5𝐸𝑇𝑁𝑊𝑇 −1.2088 −3.7501 0.3765 0.5910 −0.5611 0.9821 ≈ 0

Table 4.8 provides descriptive statistics for these sampling distributions. All dis-

tributions are fairly symmetrical around negative mean values, which corroborates the

above-mentioned stability. Note how the vast majority of simulated 𝑃𝑘𝐸𝑇𝑁𝑊 𝑇 are, in-

deed, negative values. The percentage of negative simulated 𝑃𝑘𝐸𝑇𝑁𝑊 𝑇 in each of the

four sampling distribution is, respectively: 99.6%, 70.2%, 100% and 99.4%. Except the

66



𝑃3 portfolio, the other robust portfolios present more than 99% of negative simulated

excess total norm weight. In the 𝑃4 portfolio, all of the 500 simulations produced more

stable portfolios comparatively to the classical one. In this sense, we consider that the S

robust portfolio presents the more interesting stability profile, as the corresponding 95%

confidence interval for the real parameter 𝐸𝑇𝑁𝑊𝑇 is negatively more pronounced than

those obtained from the other robust estimations.

The more stability presented by robust portfolios is undeniably the most important

result achieved in this work. In fact, during the course of the several estimations per-

formed, It was possible to verify the perverse effect caused by data contamination in the

attraction and inflation of the classical estimates. This ends up translating itself in higher

portfolio weights instability and, consequently, higher transaction costs. It is clear that

the explanation to the more stability fact resides in the high breakdown properties of

robust estimators. Robust portfolios weight vectors do not greatly change at rebalancing

days, because new transitory turbulent information is generally not taken into account,

preserving the bulk of the data to the greatest extent possible. Only persistent outly-

ing behavior, or else, permanent regime changes, has the potential to shift location and

scatter estimates to completely new different values, which by its turn, would impact the

norm weights.

Regarding the second research question proposed in this work, the 95% confidence

intervals built on the 𝐸𝑇𝑁𝑊 𝑇 sample distributions are presented in (4.12), while the

respective conclusion are provided in (4.13).

𝐸1𝑆2𝑃2𝐸𝑇𝑁𝑊 𝑇 ∈ [−2.5553,−0.4081]

𝐸1𝑆2𝑃3𝐸𝑇𝑁𝑊 𝑇 ∈ [−1.6069, 0.8289]

𝐸1𝑆2𝑃4𝐸𝑇𝑁𝑊 𝑇 ∈ [−3.0688,−0.9293]

𝐸1𝑆2𝑃5𝐸𝑇𝑁𝑊 𝑇 ∈ [−2.3698,−0.2062]

(4.12)

H22 : 𝐸1𝑆2𝑃2𝐸𝑇𝑁𝑊𝑇 = −1.9310 Not Rejected

H23 : 𝐸1𝑆2𝑃3𝐸𝑇𝑁𝑊𝑇 = −0.2181 Not Rejected

H24 : 𝐸1𝑆2𝑃4𝐸𝑇𝑁𝑊𝑇 = −3.2600 Rejected

H25 : 𝐸1𝑆2𝑃5𝐸𝑇𝑁𝑊𝑇 = −1.5913 Not Rejected

(4.13)

At 5% significance level, H24 is the only rejected hypothesis. However this does not

imply that 𝑃4 robust portfolios are less stable than the classical one. On the contrary,

we have already presented that this portfolio has the best stability profile among other

robust portfolios. The value of −3.2600 estimated considering the real data collected was

just an atypical one, according to the simulation performed.

Table 4.9 presents descriptive statistics for the 𝐸1𝑆2𝑃𝑘
̂︂𝐸𝐷𝑇 , 𝑘 = 2, ..., 5, sampling
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distributions. Note that, even though Figure 4.11 presented negative values for 𝑃𝑘
̂︂𝐸𝐷𝑇

estimates performed in environment 𝐸1, the simulation results exhibited in Table 4.9 do

not corroborate that robust portfolios are always riskier than the classical one. Actually,

𝑃𝑘
̂︂𝐸𝐷𝑇 sampling distributions can be assumed to be symmetrical around zero and, as

so, there is little that can be said about the risk characteristics of robust portfolios in a

rebalancing strategy.

Table 4.9: Descriptive statistics for the Excess Risk (𝐸1𝑆2𝑃𝑘
̂︂𝐸𝐷𝑇 , 𝑘 = 2, ..., 5) sam-

pling distributions. 500 different simulated past realizations for 15 random variables

were generated according to the models specified in Tables 4.4 and 4.5.

Estimator Mean Min. Max. Std. Dev. Skewness Exc. Kurt. JB p-val

𝐸1𝑆2𝑃2
̂︂𝐸𝐷𝑇 < 10−4 −0.0015 0.0013 0.0003 −0.0187 3.6434 ≈ 0

𝐸1𝑆2𝑃3
̂︂𝐸𝐷𝑇 < 10−4 −0.0013 0.0009 0.0002 −0.2920 4.2440 ≈ 0

𝐸1𝑆2𝑃4
̂︂𝐸𝐷𝑇 < 10−4 −0.0011 0.0007 0.0002 −0.5854 3.1824 ≈ 0

𝐸1𝑆2𝑃5
̂︂𝐸𝐷𝑇 < 10−4 −0.0013 0.0011 0.0003 −0.0849 3.1758 ≈ 0
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Figure 4.16: Sampling distributions for Excess Sharpe Ratio (𝐸1𝑆2𝑃𝑘
̂︂𝐸𝑆𝑇 , 𝑘 = 2, ..., 5) of MSR robust portfolios,

considering 500 past simulated trajectories, 𝑐 = 0.001 and the models specified in Tables 4.4 and 4.5.
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Figure 4.17: Sampling distributions for Excess Sharpe Ratio (𝐸1𝑆2𝑃𝑘
̂︂𝐸𝑆𝑇 , 𝑘 = 2, ..., 5) of MSR robust portfolios,

considering 500 past simulated trajectories, 𝑐 = 0.1 and the models specified in Tables 4.4 and 4.5.

Figures 4.16 and 4.17 present the Excess of After Cost Sharpe Ratio sampling dis-

tributions, 𝐸1𝑆2𝑃𝑘
̂︁𝐸𝑆𝑇 , 𝑘 = 2, ..., 5, considering 𝑐 = 0.001 and 𝑐 = 0.1, respectively.

Comparing both figures, its is clear that in the second case, most distributions exhibit

performance improvement. Indeed, for 𝑐 = 0.1, more weight is applied to transaction costs

and, due to the more stability presented by robust portfolios, there is a greater chance

that the real ̂︁𝐸𝑆𝑇 parameter to be even more rewarding, than there is when 𝑐 = 0.001.

Table 4.10: Descriptive statistics for the Excess After Cost Sharpe Ratio (𝐸1𝑆2𝑃𝑘
̂︂𝐸𝑆𝑇 ,

𝑘 = 2, ..., 5) sampling distributions, considering 𝑐 = 0.1. 500 different simulated past

realizations for 15 random variables were generated according to the models specified

in Tables 4.4 and 4.5.

Estimator Mean Min. Max. Std. Dev. Skewness Exc. Kurt. JB p-val

𝐸1𝑆2𝑃2
̂︂𝐸𝑆𝑇 1.7812 −1.9451 5.7765 1.2542 −0.0273 −0.2415 0.5574

𝐸1𝑆2𝑃3
̂︂𝐸𝑆𝑇 0.3916 −3.1410 4.2584 1.3287 −0.1254 −0.3156 0.1965

𝐸1𝑆2𝑃4
̂︂𝐸𝑆𝑇 2.4700 −1.1293 6.6300 1.2597 −0.0208 −0.3022 0.4056

𝐸1𝑆2𝑃5
̂︂𝐸𝑆𝑇 1.5439 −2.5087 5.5848 1.2812 −0.0548 −0.2877 0.3968

Finally, recall that hypothesis 3 was formulated solely for 𝑐 = 0.1. In this respect, Table
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4.10 presents descriptive statistics for the 𝐸1𝑆2𝑃𝑘
̂︁𝐸𝑆𝑇 , 𝑘 = 2, ..., 5 sampling distributions

and, in (4.14) and (4.15), we provide the respective 95% confidence intervals for the real

parameters and the hypothesis tests results.

𝐸1𝑆2𝑃2
̂︁𝐸𝑆𝑇 ∈ [−0.6404, 4.1555]

𝐸1𝑆2𝑃3
̂︁𝐸𝑆𝑇 ∈ [−2.3162, 2.7728]

𝐸1𝑆2𝑃4
̂︁𝐸𝑆𝑇 ∈ [0.0303, 4.7243]

𝐸1𝑆2𝑃5
̂︁𝐸𝑆𝑇 ∈ [−0.9154, 3.9647]

(4.14)

H32 : 𝐸1𝑆2𝑃2𝐸𝑆𝑇 = 0.2909 Not Rejected

H33 : 𝐸1𝑆2𝑃3𝐸𝑆𝑇 = 0.1148 Not Rejected

H34 : 𝐸1𝑆2𝑃4𝐸𝑆𝑇 = 0.3111 Not Rejected

H35 : 𝐸1𝑆2𝑃5𝐸𝑆𝑇 = 0.2797 Not Rejected

(4.15)

First of all, one can see in Table 4.10 that all sampling distributions are fairly symmet-

rical around positive values, which indicates “rewarding” regions for the location of the

unknown 𝐸𝑆𝑇 parameters. Indeed, except the 𝑃3 portfolio, the 95% confidence intervals

exhibited in (4.14) have lower bounds much more smaller, in absolute values, than the

higher bounds. This exception is consistent with the results presented in Figure 4.15,

where it is possible to verify that 𝑃3 portfolio exhibited the worst stability profile.

This indicates that there is evidence suggesting that the higher the transaction costs

the better the relative performance of most MSR robust portfolios comparatively with the

classical one. As we have already mentioned, the authors in [2] related high transaction

costs to less efficient financial markets, possibly in less developed economies. In these

cases, robust estimation might be an important tool to be used.

4.5 Sensitivity Analysis

In this chapter, several decisions have been taken through the various estimation

processes that potentially have impacted the achieved results. The adopted rebalancing

frequency, the number of simulations performed, the chosen value for the breakdown

point, the type of efficient portfolio analyzed and the portfolio optimization constraints

are, among others, important variables that should be included in a sensitivity exercise

in order to get a complete performance and stability picture of robust portfolios.

We have already presented a sensitivity analysis for the portfolios performance, consid-

ering two different values for the transaction costs 𝑐. Also, the chosen values for breakdown

point were justified based on the procedure described in Section 4.2. In this section we

extend this analysis for two important variables in order to “robustify” our conclusions
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and to enlarge the range of investors and policies covered by this work. They are:

∙ The type of efficient portfolio analyzed: During this chapter, our analysis

focused on the Maximum Sharpe Ratio efficient portfolio (MSR). Intuitively, this

portfolio seems to be a good option for investors, as the Sharpe ratio consolidates

into one single number the portfolio risk adjusted return information. However,

the set of strategies, philosophies and policies followed by investors in different

financial markets is so wide that it would be virtually impossible to contemplate

most of them in one single work. Nevertheless, there is another efficient portfolio

that is very popular among practitioners and stands out from the others: the global

minimum variance portfolio (GMV). As its name says, this portfolio has the lowest

possible volatility among all efficient portfolios. In this sense, the next paragraphs

present the robust GMV portfolios performance and stability comparatively to the

GMV traditional mean-variance portfolio.

∙ Short selling constraint: In all portfolio optimization problems performed in this

chapter short selling was allowed. Indeed, short selling transactions are frequent in

financial markets and may be motivated by a variety of objectives. Among others,

speculators may sell short in the hope of realizing a profit on an instrument that

appears to be overvalued and traders or fund managers may hedge a long position

or a portfolio through one or more short positions.

However, short selling adds risks that do not exist in traditional buying and selling

positions. First of all, “long’s” losses are limited, because the stock price can not

be negative, but gains are not, as there is no limit, in theory, on how high the price

can go. The reverse occurs to a short selling position, as gains are limited, whereas

losses can be unlimited, in theory. Besides that, a given stock may become “hard to

borrow” based on lack of availability. In these cases, a broker may charge a “hard to

borrow” fee daily, without notice. These and other risks are well documented in the

literature and mainly because of them, regulators around the world often impose

restrictions to the short selling activity. In this sense, relaxing this assumption may

enhance the target audience of this work.

Finally, note that the 𝑆2 rebalancing strategy provides a more complete picture in

terms of stability and performance than the 𝑆1 strategy (only performance). Also, we

have established in previous sections that relative performance of robust portfolios with

respect to the classical one is highly sensitive to transaction costs. In this sense, we

choose to solely present in this section the stability results for GMV portfolios and for

MSR portfolios built with no permission for short-selling, under the 𝑆2 strategy.
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Figure 4.18: Box plots for the sampling distributions of Excess Total Norm Weights (𝑃𝑘𝐸𝑇𝑁𝑊𝑇 , 𝑘 = 2, ..., 5),

considering MSR portfolios with and without short selling.
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Figure 4.19: Box plots for the sampling distributions of Excess Total Norm Weights (𝑃𝑘𝐸𝑇𝑁𝑊𝑇 , 𝑘 = 2, ..., 5),

considering MSR and GMV portfolios with short selling.
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Table 4.11: Descriptive statistics for the Excess Total Norm Weights (𝐸1𝑆2𝑃𝑘𝐸𝑇𝑁𝑊 𝑇 , 𝑘 =

2, ..., 5) sampling distributions of MSR and GMV portfolios built with short selling (MSR-SS and

GMV-SS) and MSR portfolios without short selling (MSR-noSS). 500 different simulated past

realizations for 15 random variables were generated according to the models specified in Tables

4.4 and 4.5.

Estimator Mean Min. Max. Std. Dev. Skew. Kurt. JB p-val

𝑃2𝐸𝑇𝑁𝑊𝑇 (MSR-SS) −1.3918 −3.8812 0.0532 0.5813 −0.5683 1.0973 ≈ 0

𝑃3𝐸𝑇𝑁𝑊𝑇 (MSR-SS) −0.3267 −3.1575 1.2807 0.6391 −0.4330 0.9075 ≈ 0

𝑃4𝐸𝑇𝑁𝑊𝑇 (MSR-SS) −1.8761 −4.2071 −0.3649 0.5698 −0.5949 0.9361 ≈ 0

𝑃5𝐸𝑇𝑁𝑊𝑇 (MSR-SS) −1.2088 −3.7501 0.3765 0.5910 −0.5611 0.9821 ≈ 0

𝑃2𝐸𝑇𝑁𝑊𝑇 (MSR-noSS) −0.7337 −2.0037 0.2296 0.3355 −0.4011 0.3831 0.0002

𝑃3𝐸𝑇𝑁𝑊𝑇 (MSR-noSS) −0.3477 −1.7735 0.5158 0.3593 −0.4419 0.2701 0.0001

𝑃4𝐸𝑇𝑁𝑊𝑇 (MSR-noSS) −0.8107 −2.1601 0.0173 0.3238 −0.5821 0.5980 < 10−4

𝑃5𝐸𝑇𝑁𝑊𝑇 (MSR-noSS) −0.6658 −2.0253 0.1687 0.3409 −0.4817 0.3227 < 10−4

𝑃2𝐸𝑇𝑁𝑊𝑇 (GMV-SS) −0.7158 −2.2472 0.0998 0.3495 −0.8856 1.6369 ≈ 0

𝑃3𝐸𝑇𝑁𝑊𝑇 (GMV-SS) −0.1437 −1.6832 0.7792 0.3767 −0.6638 1.0227 ≈ 0

𝑃4𝐸𝑇𝑁𝑊𝑇 (GMV-SS) −1.0595 −2.6107 −0.2898 0.3369 −0.9010 1.5882 ≈ 0

𝑃5𝐸𝑇𝑁𝑊𝑇 (GMV-SS) −0.5992 −2.1450 0.2192 0.3466 −0.9034 1.7564 ≈ 0

Results are compared with the main case studied in this work, MSR portfolios with

allowance for short selling. The associated performance results, although omitted, can

be easily inferred by the stability results and by the previous argument. The chosen

breakdown values per estimation window are the same as those presented in Figure 4.14,

as all simulations were jointly performed.

Having said that, Figure 4.18 presents the box plots for the sampling distributions of

Excess Total Norm Weights (𝑃𝑘𝐸𝑇𝑁𝑊 𝑇 , 𝑘 = 2, ..., 5), considering MSR portfolios with

and without short selling. Figure 4.19 presents the same comparison but for sampling

distributions obtained from MSR and GMV portfolios, both with short selling. In other

words, in the first comparison we assume that MSR portfolios are imposed by investors’

preference but we analyze the impact that short selling, a restriction in the optimization

problem, could have on the results. In the second comparison, short selling is allowed, and

we investigate the effect of keeping a complete different portfolio. Table 4.11 consolidates

the descriptive statistics for all of these distributions.

A few remarks are worth noting regarding these results:

1. It is clear that in all policy investments robust portfolios prove to be more stable
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than the classical one, which implies in less transaction costs irrespective of the

studied cases. The stability property seems to be robust to variations of the main

case studied in this work.

2. GMV portfolios excess transaction costs seem to be more predictable, as the real

Excess Total Norm Weights parameter locates in a narrower region than those ver-

ified in the other policy investments. This fact is a combination of the robustness

properties intrinsic to the used robust estimators and the stability property of the

GMV portfolio itself. It is well-known the fact that GMV portfolios evaluation does

not need the estimated expected returns and, as so, it is less sensitive to estimation

risk.

3. In an environment with barriers to the short selling activities, investors who choose

MSR portfolios built upon this consideration incur in more predictable transaction

costs than their counterparts who engage in short selling. This can be regarded to

the lower degrees of freedom when portfolio weights are restricted to be positive.

The perverse inflation effect that contamination can have on classical estimates is

more severe when portfolio weights are free to vary in the real line.

4. If predictability is not an important issue, than the leading case investigated in this

work, MSR portfolios with short selling, can be an interesting alternative. Note in

Table 4.11 that the maximum value obtained in all sampling distributions do no

greatly differ, but the MSR-SS minimum values are the most rewarding one. Given

that we do not know where the real parameter 𝐸𝑇𝑁𝑊𝑇 locates and the purpose

of sampling distributions is to give an idea of this location, the MSR-SS sampling

distributions are more stretched to the left, yielding more desirable possible regions,

in the sense of even less transaction costs.

5. In the same line to what was concluded in previous sections of this chapter, we con-

sider that the S robust portfolios (𝑃4) present the more interesting stability profile.

Confidence intervals for the real parameter 𝐸𝑇𝑁𝑊𝑇 built from S estimators are

negatively more pronounced than those obtained from the other robust estimations.

This fact is not conditioned to the above-mentioned predictability concerns and,

even in the GMV case (more predictability), S portfolios seem to be a better choice.
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CHAPTER 5

Final Remarks

I
n this work, we investigated the potential benefits derived from the application of

robust estimation to the asset allocation problem. More specifically, we replaced the

sample estimates of location and scatter, the conventional mean-variance portfolio

problem inputs, by robust alternatives, namely the high breakdown point, affine equiv-

ariant Minimum Volume Ellipsoid (MVE), Minimum Covariance Determinant (MCD), S

and Stahel-Donoho (SD) multivariate estimators.

In this sense, Chapters 2 and 3 presented theoretical aspects of robust estimation and

modern portfolio theory, respectively. Using those concepts, in Chapter 4 we estimated

robust and classical portfolios based both on observed and simulated data, considering

both buy-and-hold and rebalancing strategies. The assumed investor’s policy investment

dictates a preference for the maximum Sharpe ratio efficient portfolio (MSR) and that

there are no barriers to the short selling activity. These two premises were relaxed in

a sensitivity analysis exercise. In all cases, portfolios performance and stability were

assessed through a set of defined measures.

In our opinion, there are not many papers approaching the optimum portfolio problem

under the robustness perspective. Most of them investigate one or two robust estimators

and it is possible to verify a narrow controversy regarding their results. We consider that

this work innovates and aggregates to the academic discussion mainly in the following

matters:

∙ Breakdown points for the robust estimators were dynamically determined, in the

sense that they were not set as fixed values regardless of the corresponding data

sample used for estimation purposes. Mainly in rebalancing activities, estimation
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windows change as new information becomes available. Allowing breakdown points

to freely vary attempts to increase the estimator’s level of efficiency, without sacri-

ficing the level of robustness required by the existing contamination in each window;

∙ The traditional 𝜀-contaminated model extensively used in previous works, regard-

ing simulation exercises, was replaced by a resampling technic, based on the semi-

parametric bootstrapping procedure adopted in [30]. In this way, hypotheses tests

on the portfolios performance and stability unknown parameters were formally ad-

dressed and a thorough framework is provided for investors who want to check the

usefulness of robustness under different data generating processes;

∙ Most past works investigates the properties of robust estimation using one or two

estimators at the same time. This work dealt with four robust and one non-robust

estimator, allowing a more complete panorama of the performance and stability

measures; and

∙ A sensitivity analysis was provided, extending the methods and procedures used

in the course of this work to two important alternatives: the change of the type

of efficient portfolio analyzed - MSR portfolios were replaced by Global Minimum

Variance portfolios (GMV) - and the restriction to short selling activities. The

purpose here was to “robustify” our conclusions and to enlarge the range of investors

and policies covered by this work.

To accomplish the above-mentioned goals, we collected 15 daily stock prices negotiated

either at New York Stock Exchange (NYSE) or NASDAQ Stock Market, from 2000/06/02

to 2015/07/01. This was the used sample for the estimation of robust and classical

portfolios and their respective metrics of performance and stability. The results in this step

lead us to formulate three research questions structured in the form of three hypotheses

tests to be examined in the simulation exercise.

Then, ARMA-GARCH models were fitted to each time series and the semi-parametric

bootstrapping procedure suggested in [30] was employed with the purpose to generate

new (simulated) time series under the same dependence structure observed in the real

data. These are sequences of multivariate returns that did not occur in the past, but

plausibly could have occurred. 500 simulated past histories were used to generate sampling

distributions for each statistic estimated using the observed data.

In general terms, considering the collected data, its subjacent multivariate stochastic

process and the statistical behavior reproduced in the simulated time series, the conclu-

sions obtained in this work are:
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1. It is not possible to reject, at 5% significance level, the higher performance achieved

by all robust portfolios in the buy-and-hold strategy, as measured by the Excess

Sharpe Ratio, ̂︁𝐸𝑆𝑇 . However, a key result for this strategy surrounds the symmet-

rical shape of the ̂︁𝐸𝑆𝑇 sampling distributions around small negative values. This

implies that the unknown 𝐸𝑆𝑇 parameters locate themselves in regions where pos-

itive or negative values occur with fairly equal probabilities. In a different context,

an adverse number of past returns for the same set of stocks could lead to negative

excess Sharpe ratios for robust portfolios and we would not be able to reject them

as well.

In other worlds, results are not striking convincing favoring robust estimation in

the buy-and-hold strategy and, as so, the usage of a more sophisticated estimation

methodology, although robust to deviations of assumed models, might not be re-

warding. Generally speaking, this strategy does not explore the potential of robust

estimation to its full extent, as portfolio weights evaluation are performed only once,

in a period of 8 years.

2. In the rebalancing strategy, we could not reject, at 5% significance level, that ro-

bust portfolios presented higher stability than the classical one, as measured by

the Excess Total Norm Weights (𝐸𝑇𝑁𝑊 𝑇 ). We verified in the various processes

of estimation in the course of this work the perverse effect of data contamination

in the inflation of the classical estimates. This ends up translating itself in higher

portfolio weights instability and, consequently, higher transaction costs.

It is clear that the explanation for the stability property resides in the high break-

down properties of robust estimators. Robust portfolios weight vectors do not

greatly change at rebalancing days, because new transitory turbulent information is

generally not taken into account, preserving the bulk of the data to the greatest ex-

tent possible. Only persistent outlying behavior, or else, permanent regime changes,

has the potential to shift location and scatter estimates to completely new different

values. The more stability presented by robust portfolios is undeniably the most

important result achieved in this work and is compliant with the findings reported

in [29] and [8], among others.

3. There is evidence suggesting that the higher the transaction costs incurred in a

rebalancing strategy, the better the relative performance of MSR robust portfolios

comparatively with the traditional mean-variance one. As we have already men-

tioned, the authors in [2] related high transaction costs to less efficient financial

markets, possibly in less developed economies. In these cases, robust estimation

might be an important tool to be used, possibly leading to positive excess Sharpe
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ratios.

4. The above-mentioned stability results are robust both to the change of the analyzed

portfolio (e.g. GMV portfolios) and to the inclusion of the restriction to short selling

activities. In this regard, GMV portfolios excess transaction costs seem to be more

predictable, as the real Excess Total Norm Weights parameter locates in a narrower

region than those verified in the other policy investments. For MSR portfolios,

restricting short selling activities could generate more predictable transaction costs.

If predictability is not an important issue, than the leading case investigated in

this work, MSR portfolios with short selling, can be an interesting alternative, as

the respective sampling distributions are more stretched to the left, yielding more

desirable possible regions for the 𝐸𝑇𝑁𝑊𝑇 real parameter.

5. Based on the results achieved, we consider that the S robust portfolios (𝑃4) present

the more interesting stability profile, regardless of the chosen policy investment.

5.1 Suggestions for Further Research

Although the sensitivity analysis performed in Chapter 4 expanded the applicability

of this work to different investment policies alternatives, we believe that further research

would provide valuable complements, mainly in the following unanswered questions:

1. What is the impact of different rebalancing frequencies on robust portfolios stability?

Would it be true that more frequent rebalancing activities could lead to even more

relative stability and transaction costs saving?

2. Given that we assumed a simplistic transaction cost model in this work, represented

by a proportionality constant, what would be the effect of a more sophisticated

transaction cost modeling on the relative performance of robust portfolios?

3. Given that high liquid stocks with long track record, issued by global mature com-

panies, might be affected by similar risk factors and might present similar statistical

behavior, could we weakly extend the results obtained in this work to other sets of

similar stocks? Results would change with different dependence structure among

assets?

4. If investors want to hold not only risky assets, but also the risk free asset in their

portfolios, what would be the changes, if any, in the stability and performance

results?

78



Bibliography

[1] Kaszuba Bartosz, Applications of robust statistics in the portfolio theory, Mathemat-

ical Economics (2012), no. 8 (15), 63–82.

[2] Valerie R Bencivenga, Bruce D Smith, and Ross M Starr, Equity markets, transac-

tions costs, and capital accumulation: an illustration, The World Bank Economic

Review 10 (1996), no. 2, 241–265.

[3] Fischer Black and Robert Litterman, Global asset allocation with equities, bonds, and

currencies, Fixed Income Research 2 (1991), 15–28.

[4] Fischer Black and Robert B Litterman, Asset allocation: Combining investor views

with market equilibrium, The Journal of Fixed Income 1 (1991), no. 2, 7–18.

[5] Christophe Croux and Gentiane Haesbroeck, Influence function and efficiency of the

minimum covariance determinant scatter matrix estimator, Journal of Multivariate

Analysis 71 (1999), no. 2, 161–190.

[6] Laurie Davies, The asymptotics of rousseeuw’s minimum volume ellipsoid estimator,

The Annals of Statistics (1992), 1828–1843.

[7] P Laurie Davies, Asymptotic behaviour of s-estimates of multivariate location param-

eters and dispersion matrices, The Annals of Statistics (1987), 1269–1292.

[8] Victor DeMiguel and Francisco J Nogales, Portfolio selection with robust estimation,

Operations Research 57 (2009), no. 3, 560–577.

[9] David L Donoho, Breakdown properties of multivariate location estimators, Ph.D.

thesis, Harvard University, 1982.

79



[10] David L Donoho and Miriam Gasko, Breakdown properties of location estimates based

on halfspace depth and projected outlyingness, The Annals of Statistics (1992), 1803–

1827.

[11] B. Efron, Bootstrap methods: Another look at the jackknife, The Annals of Statistics

7 (1979), no. 1, 1–26.

[12] Gabriel Frahm, Markus Junker, and Alexander Szimayer, Elliptical copulas: Appli-

cability and limitations, Statistics & Probability Letters 63 (2003), no. 3, 275–286.

[13] Ursula Gather and Torsten Hilker, A note on tyler’s modification of the mad for the

stahel-donoho estimator, The Annals of Statistics (1997), 2024–2026.

[14] Frank R. Hampel, Elvezio M. Ronchetti, Peter J. Rousseeuw, and Werner A. Stahel,

Robust statistics - the approach based on influence functions, Wiley, 1986.

[15] Guangliang He and Robert Litterman, The intuition behind black-litterman model

portfolios, Available at SSRN 334304 (2002).

[16] C. Huang and R.H. Litzenberger, Foundations for financial economics, Prentice Hall,

1988.

[17] P. J. Huber, Robust statistics, Wiley New York, 1981.

[18] Mia Hubert and Michiel Debruyne, Minimum covariance determinant, Wiley inter-

disciplinary reviews: Computational statistics 2 (2010), no. 1, 36–43.

[19] J.E. Ingersoll, Theory of financial decision making, Rowman & Littlefield studies in

financial economics, Rowman & Littlefield, 1987.

[20] Markus Junker and Angelika May, Measurement of aggregate risk with copulas, The

Econometrics Journal 8 (2005), no. 3, 428–454.

[21] Jana Jureckova and Jan Picek, Robust statistical methods with r, Chapman -

Hall/CRC, 2006.

[22] Hendrik P Lopuhaa, On the relation between s-estimators and m-estimators of mul-

tivariate location and covariance, The Annals of Statistics (1989), 1662–1683.

[23] Hendrik P Lopuhaa and Peter J Rousseeuw, Breakdown points of affine equivariant

estimators of multivariate location and covariance matrices, The Annals of Statistics

(1991), 229–248.

[24] Harry Markowitz, Portfolio selection, The journal of finance 7 (1952), no. 1, 77–91.

80



[25] R.A. Maronna, Robust m-estimates of multivariate location and scatter, The Annals

of Statistics (1976), 51–67.

[26] R.A. Maronna, D.R. Martin, and V.J. Yohai, Robust statistics: Theory and methods,

Wiley Series in Probability and Statistics, Wiley, 2006.

[27] Ricardo A Maronna and Victor J Yohai, The behavior of the stahel-donoho robust

multivariate estimator, Journal of the American Statistical Association 90 (1995),

no. 429, 330–341.

[28] Ricardo A Maronna and Ruben H Zamar, Robust estimates of location and dispersion

for high-dimensional datasets, Technometrics 44 (2002), no. 4.

[29] Beatriz V. M. Mendes and Ricardo P. C. Leal, Robust modeling of multivariate fi-

nancial data, (2003).

[30] , Portfolio management with semi-parametric bootstrapping, Journal of Risk

Management in Financial Institutions 3 (2010), no. 2, 174–183.

[31] Beatriz V. M. Mendes and Daniel S. Marques, Choosing an optimal investment strat-

egy: The role of robust pair-copulas based portfolios, Emerging Markets Review 13

(2012), no. 4, 449–464.

[32] A. Meucci, Risk and asset allocation, Springer Finance, Springer, 2007.

[33] Attilio Meucci, Beyond black-litterman in practice: A five-step recipe to input views

on non-normal markets, Available at SSRN 872577 (2006).

[34] Cédric Perret-Gentil and Maria-Pia Victoria-Feser, Robust mean-variance portfolio

selection, Available at SSRN 721509 (2005).

[35] Svetlozar T Rachev, Young Shin Kim, Michele L Bianchi, and Frank J Fabozzi,
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