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Introduction

The purpose of this dissertation is to provide a description of some appli-
cations of influence and sharp-thresholds theorems to the random-cluster
model. Originally, these results appeared in the context of Analysis of
Boolean functions and have been used in many areas.

The influence of an agent or event on another one is a topic of great
interest in physics, statistics, computer science, economics, philosophy and
many other areas. In the mathematical setting, the influence of a variable in
a Boolean function has been a fundamental notion for many developments
in Fourier analysis (of such functions), probability, combinatorics, statistical
physics and percolation.

A Boolean function, f(x) = f(x1, ..., xN ), takes values on {0, 1}, and its
entries xk are Boolean variables on {0, 1} . A variable is called pivotal if
by flipping the bit xk, the value of f changes. Each variable xk assumes
1 independently with probability p ∈ [0, 1]; thus the hypercube {0, 1}N is
endowed with the product measure. The influence of the kth variable of a
Boolean function f is the probability that the kth variable is pivotal. This
definition and more general ideas of influence were introduced in [3] in the
context of “collective coin flipping”.

In response to a conjecture of Ben-Or and Linial [3], Kahn, Kalai and
Linial [13] proved that, in the above context, there always exists a variable
k so that its influence on f is at least cVar[f ] logN/N , where c is a positive
constant independent of f and N . The proof uses harmonic analysis on
Z
N
2 , which as a set is just the N -dimensional discrete cube, and the group

structure allows one to make use of the tools of that theory. In [3], the authors
gave an example of a function whose influence is just logN/N , proving that
the bound is sharp. One of the main applications of KKL theorem is to sharp
thresholds of graph properties [7].

Intimately related to the combinatorial notions of influence and pivotality,
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threshold phenomena occur when the probability of an event changes swiftly
as some underlying parameter varies. They play an important role in prob-
ability theory and statistics, physics and computer science, and are related
to issues studied in economics and political science [14]. Sharp threshold
theorems were originally introduced for product measures and are a powerful
tool for the study of phase transitions [4].

In many cases, however, the variables xk are not independent. An impor-
tant example concerns the random-cluster model. This may be viewed as a
parametric family of probability measures φp,q on a finite graph G, having
two parameters, an edge-weight p ∈ [0, 1] and a cluster-weight q ∈ (0,∞).
The probability of a configuration is proportional to

p|open edges|(1− p)|closed edges|q|clusters|.

For q ≥ 1, this model can be extended to infinite-volume lattices where it
exhibits a phase transition at some critical parameter pc(q), which depends
on the lattice.

Graham and Grimmett [11], extended the KKL theorem, and a sharp
threshold result, to monotonic measures. As a consequence, they derived a
lower bound for the probability of an open crossing of a rectangle on the
square lattice for the random-cluster model. Afterwards the same authors
proved a sharp threshold theorem [12], now with no assumption of symmetry,
for such probabilities for the random- cluster model near the self-dual point.

In the case of planar graphs, the dual of the random-cluster model is
random-cluster model also, with the same cluster-weight q and p, pd related
by pd/(1− pd) = q(1− p)/p. The unique fixed point of the mapping p �→ pd
is the self-dual point psd(q), given by

√
q

(1+
√
q)
. Thus the self-duality of the

square lattice gives rise to the conjecture that pc(q) = psd(q), q ∈ [1,∞).
The inequality pc(q) ≥ psd(q) was proved in [9] using Zhang’s argument (the
same used to prove that pc ≥ 1

2
for bond percolation in two dimensions).

On the other hand, the reverse inequality, pc(q) ≤ psd(q), was more intri-
cate. There were two steps enough to imply it: firstly, that the probability
of crossing a box [−m,m]2 approaches 1 as m → ∞, when p > psd(q); and
secondly, that this implies the existence of an infinite cluster. The first of
these two claims was proved in [12] and is in this text. Beffara and Duminil-
Copin [2] proved the conjecture, by generalizing the Russo-Seymour-Welsh
theorem for percolation to the random-cluster model; and also by showing
that the probability of crossings goes to 1 when p > psd(q).
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The dissertation presents a collection of influence and sharp thresholds
theorems and a resultant theorem about box crossings for the random-cluster
model. The text is organized as follows. In Chapter 1, we present some basic
definitions and results of analysis of Boolean functions. Chapter 2 introduces
monotonic measures and extends the notions and results about influence and
sharp thresholds to this context. Finally, Chapter 3 is devoted to the random-
cluster model and to the theorems about box crossings.
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Chapter 1

Boolean functions

This chapter is devoted to the basics of Analysis of Boolean functions and
the KKL theorem. We follow [8, Chapters 1, 3, 4, 5]; for more details on this
topic, see [16]

1.1 Introduction

Let ΩN := {−1, 1}N be the hypercube. An element of ΩN will be denoted by
ω = ωN = (x1, · · · , xN), where x1, · · · , xN are its N bits. A function from
ΩN into {−1, 1} or {0, 1} is called Boolean function, which is canonically
identified with a subset Af ⊆ Ω by Af := f−1({1}) = {ω : f(ω) = 1}.

ΩN will be endowed with the product measure Pp = P
N
p = ((1 − p)δ−1 +

pδ1)
⊗N , p ∈ [0, 1], and Ep will denote the corresponding expectation. When

p = 1
2
, we will write P = P

N
1
2

= (1
2
δ−1 + 1

2
δ1)

⊗N and E will denote the

corresponding expectation.
Given an element ω ∈ ΩN , we will often consider, for each i ∈ [N ] :=

{1, · · · , N}, ωi ∈ ΩN , obtained from ω by flipping the i-th coordinate and
keeping unchanged the others. We also define, for ε ∈ [0, 1], the random
element ωε ∈ ΩN drawn according to the rule: for each i ∈ [N ] independently,
xεi = xi, with probability 1− ε, and xεi is uniformly random, with probability
ε. Notice that ω and ωε have the same distribution and, for each i ∈ [N ]
(since xi ∈ {−1, 1}), they satisfy E[xi] = E[xεi ] = 0 and E[xix

ε
i ] = (1− ε).

Let us consider some examples.

1 Dictator. DICTN(x1, · · · , xN ) := x1; the first bit determines the result.
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2 Parity. PARN(x1, · · · , xN) :=
∏N

i=1 xi; this function tells us whether
the number of −1’s is even or odd.

3 Majority. For N odd, MAJN (x1, · · · , xN) := sgn(
∑N

i=1 xi).

4 Iterated 3-majority. For any positive integer k, define inductively
M3 = MAJ⊗1

3 = MAJ3 and Mk+1
3 = MAJk+1

3 = (x(1), · · · , x(3)) =
M3(M

⊗k
3 (x(1)),M⊗k

3 (x(2)),M⊗k
3 (x(3))), x(i) ∈ ΩNk , i = 1, 2, 3. Thus the

bits are indexed by the leaves of a rooted 3-ary tree of depth k and one
iteratively applies M3 to obtain values at the vertices at level k−1 and
so on until the root is assigned a value.

5 Tribes Let k, b be positive integers and consider k subsequent blocks
of size b. Define TRk,b to be 1 if there exists at least one block which
contains all 1’s, and 0 otherwise.

6 Clique containment. If r =
(
N
2

)
for any positive integer N , then Ωr can

be identified with the set of labelled graphs on N vertices (xi = 1 if,
and only if, the i-th edge is present). Recall that a clique of size k of
a graph G = (V,E) is a complete graph on k vertices embedded in G.
Now for any 1 ≤ k ≤

(
N
2

)
, let CLIQk

N be the indicator function of the
event that the random graph Gω defined by ω ∈ Ωr contains a clique
of size k.

We say that a function f : ΩN → {−1, 1} is monotone (increasing) if
f(ψ) ≤ f(ω), whenever ψ ≤ ω coordinate-wise. A subset A ⊆ ΩN is said
to be monotone when its indicator function is monotone. We call a Boolean
function symmetric, if f(ωπ) = f(ω) for all permutations π ∈ SN (where
SN is the permutation group of N elements and ωπ = (ωπ(1), · · · , ωπ(N)));
and transitive-symmetric, if for all i, i′ ∈ [N ] there exists a permutation
π ∈ SN taking i to i′ such that f(ωπ) = f(ω), for all ω ∈ ΩN . Finally, when
f : ΩN → {−1, 1} satisfies E[f ] = 0, it is called balanced.
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1.2 The Fourier decomposition of a function

on ΩN

We consider the space L2(ΩN), of real functions on ΩN = {−1, 1} endowed
with the inner product:

〈f, g〉 :=
∑

x1,···xN

2−Nf(x1, · · · , xN)g(x1, · · · , xN) (1.1)

= E[fg] ( ∀f, g ∈ L2(ΩN ) ). (1.2)

For each subset S ⊆ [N ], let χS be the function on ΩN defined for any
ω = (x1, · · · , xN ) by (χ∅ ≡ 1)

χS(ω) :=
∏
i∈S

xi. (1.3)

Lemma 1.1. The family of 2N functions {χS}S⊆[N ] forms an orthonormal
basis of L2(ΩN ).

Proof. Let S1, S2 ⊆ [N ] be arbitrary subsets. Then

〈χS1 , χS2〉 =
∑

x1,··· ,xN

2−N
∏
i∈S1

xi
∏
j∈S2

xj =
∑

x1,··· ,xN

2−N
∏

i∈S1∪S2\S1∩S2

= 0, (1.4)

for χS is a balanced function, ∀S ⊆ [N ]. Also,

〈χS, χS〉 =
∑

x1,···xN

2−N
∏
i∈S

x2i = 1; (1.5)

hence the family is orthonormal.
By identifying canonically each f ∈ L2(ΩN ) with a vector in RN , we see

that dimL2(ΩN ) = 2N . Since there are 2N functions χS, we conclude that
they form an (orthonormal) basis of L2(ΩN).

Thus, any function f ∈ ΩN can be decomposed as

f =
∑
S⊆[N ]

f̂(S)χS, (1.6)

where {f̂(S)}S⊆[N ] are the so-called Fourier coefficients of f , that satisfy

f̂(S) = 〈f, χS〉 = E[fχS]. (1.7)
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Notice that f̂(∅) = E[f ] and, since {χS}S⊆[N ] is an orthonormal basis, the
Parseval’s formula is valid:

E[f 2] = 〈f, f〉 = 〈
∑
S⊆[N ]

f̂(S)χS,
∑

S′⊆[N ]

f̂(S ′)χS′〉

=
∑
S⊆[N ]

∑
S′⊆[N ]

f̂(S)f̂(S ′)〈χS, χS′〉

=
∑
S⊆[N ]

f̂(S)2〈χS, χS〉

=
∑
S⊆[N ]

f̂(S)2 (1.8)

Definition 1.1. For any f ∈ L2(ΩN), the energy spectrum Ef is defined by

Ef (m) :=
∑
|S|=m

f̂ 2(S) (1.9)

1.3 Pivotality and Influence

Given a Boolean function f and a variable i ∈ [N ], we say that i is pivotal
for (f, w) if f(ω) �= f(ωi). The event [i is pivotal for f ] is the set of
configurations for which i is pivotal for (f, w). Notice that this event is
measurable with respect {xj}j 
=i; it is independent of the bit xi. The pivotal
set for f , Pf , is the random set of [N ] given by

Pf (ω) := {i ∈ [N ] : i is pivotal for (f, ω)}. (1.10)

The influence of the i-th bit, Ii(f), is defined by Ii(f) := P[i is pivotal for f ] =
P{i ∈ P}. The influence vector, Inf(f), is the collection of all the influences,
{Ii}i∈[N ]. The total influence, I(f), is defined by

I(f) :=
N∑
i=1

Ii(f) = ||Inf(f)||1 = E[|P|]. (1.11)

Lemma 1.2. For any Boolean function f , I(f) =
|∂E(Af )|
2N−1 , where ∂E(Af )

denotes the edge boundary of Af ⊆ ΩN (e.g., it is the set of edges where
exactly one of the endpoints is in A).
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Proof. By the definitions above and the uniformity of P, we have

I(f) =
N∑
i=1

Ii(f) =
N∑
i=1

P{ω : f(ω) �= f(ωi)} =
N∑
i=1

1

2N
|{ω : f(ω) �= f(ωi)}|.

(1.12)
Now, ∀i ∈ [N ], it is clear that ω and ωi are neighbours and, if f(ω) �=

f(ωi), then either ω ∈ Af and ωi ∈ Af or ω �= Af and ωi ∈ Af . On
the other hand, if the edge e = 〈ω, ωi〉 ∈ ∂E(Af), then f(ω) �= f(ωi) and
ω, ωi ∈ {ω : f(ω) �= f(ωi)}. Thus

N∑
i=1

|{ω : f(ω) �= f(ωi)}| = 2|∂E(Af)| (1.13)

Now, we evaluate the influences for some examples introduced before.

• For f(ω) = DICTN(ω) = x1, P = {1} and I1(f) = I(f) = 1.

• For f(ω) = PARN(ω) =
∏N

i=1 xi, P = [N ], Ii(f) = 1 (∀i ∈ [N ]) and
I(f) = N .

• For f(ω) = MAJN (x1, · · · , xN ) = sgn(
∑N

i=1 xi) (Nodd), i ∈ [N ] is
pivotal if, and only if,

∑
j 
=i xj = 0; hence

⎧⎨
⎩
P(ω) = ∅ if ∀i ∈ [N ],

∑
j 
=i xj �= 0

|P(ω)| = N+1
2

if ∃i ∈ [N ];
∑

j 
=i xj = 0,
(1.14)

where in the second case, the pivotal variables are those whose bit is
equal to majority’s value. Thus

Ii(f) = P[
∑
j 
=i

xj = 0] =

(
N−1
N−1

2

)
2N−1

, (1.15)

for all i ∈ [N ], for f is symmetric. By Stirling’s approximation, this

quantity is ∼
√

2
πN

.
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• For iterated 3-majority, i ∈ [3k] is pivotal if, and only if, the other two
bits in the subtree are different. Since xi is independent of the other
bits and MAJ3 is applied k times, we have that

Ii(f) = P[i is pivotal for f ] = 2−k, (1.16)

for the probability of the event {given a variable, the other two bits in
the same subtree are different} is 2−1.

Theorem 1.1. Let A be an increasing event in ΩN . Then

d(Pp(A))

dp
=

∑
i

Ipi (A) (1.17)

Proof. Let us consider that each variable xi has its own parameter pi and let
Pp1,··· ,pN and Ep1,··· ,pN be the corresponding probability measure and expec-
tation. It suffices to show that

∂(Pp1,··· ,pN (A))
∂pi

= I
(p1,··· ,pN )
i (A). (1.18)

Without loss of generality, take i = 1. Now,

Pp1,··· ,pN (A) = Pp1,··· ,pN (A\{1 ∈ PA}) + Pp1,··· ,pN (A ∩ {1 ∈ PA}). (1.19)

The event in the first term is measurable with respect to the other variables
and hence this term does not depend on p1, while the second term is

p1Pp1,··· ,pN ({1 ∈ PA}), (1.20)

for A is increasing implies that A ∩ {1 ∈ PA} is the event {x1 = 1} ∩ {1 ∈
PA}.

Proposition 1.1. For any monotone Boolean function on ΩN , f ,

I
1
2 (f) ≤ I

1
2 (MAJN ) (1.21)

Proof. Since [f = 1] is a monotone event, we apply Russo formula so that
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(in the following, |ω| denotes the number of positive bits in ω)

Ip(f) =
d

dp
Pp[f = 1] =

d

dp

∑
ω∈ΩN

1{f=1}(ω)p|ω|(1− p)N−|ω| (1.22)

=
∑
ω∈Ω

1{f=1}(ω)[|ω|p|ω|−1(1− p)N−|ω| − p|ω|(N − |ω|)(1− p)N−|ω|−1]

(1.23)

=
∑
ω∈ΩN

1{f=1}(ω)p|ω|−1(1− p)N−|ω|−1(|ω| −Np) (1.24)

≤
∑

|ω|>Np

1{f=1}(ω)p|ω|−1(1− p)N−|ω|−1(|ω| −Np) (1.25)

≤
∑

|ω|>Np

p|ω|−1(1− p)N−|ω|−1(|ω| −Np). (1.26)

By taking f(ω) = 1, if |ω| > Np, and f(ω) = −1 or 0, otherwise, we get
equality in the last estimate; when p = 1

2
, such f is MAJN .

Corollary 1.1. The total influence at p = 1
2
of any monotone Boolean is at

most O(
√
N).

Proof. Since I(MAJN ) ∼
√

2
π

√
N , the conclusion follows from Proposition

1.

Proposition 1.2. If f : ΩN → {0, 1}, then for all k,

Ik(f) = 4
∑
S:k∈S

f̂(S)2 and (1.27)

I(f) = 4
∑
S⊆[N ]

|S|f̂(S)2 (1.28)

Proof. Let us consider f : ΩN → R and introduce the functions, for each
k ∈ [N ],

∇kf :ΩN → R

ω �→ f(ω)− f(σk(ω)), (1.29)

where σk acts on ΩN by flipping the k-th bit.
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Notice that

∇kf(ω) =
∑
S⊆[N ]

f̂(S)[χS(ω)− χS(σk(ω))]

=
∑

S⊆[N ];k∈S
2f̂(S)χS(ω), (1.30)

from which it follows that for all S ⊆ [N ],

∇kf̂(S) =

{
2f̂(S), if k ∈ S
0, otherwise.

(1.31)

Since f takes values in {0, 1}, ∇kf ∈ {−1, 0, 1} and, therefore, Ik(f) =
P[|∇k(f)| = 1] = E[|∇kf |] = ||∇kf ||1 = ||∇kf ||22 = E[(∇2f)

2]. By using the
Parseval formula for ∇kf and (1.31), we obtain Ik(f) = 4

∑
S:k∈S f̂(S)

2.
By summing over k and exchanging the order of summation, we obtain

I(f) =
∑
k

4
∑
S:k∈S

f̂(S)2 =
∑
S⊆[N ]

4|S|f̂(S)2. (1.32)

If f takes values in {−1, 1}, then∇kf ∈ {−2, 0, 2} and Ikf =
∑

S:k∈S f̂(S)
2,

I(f) =
∑

S |S|f̂(S)2.
Proposition 1.3. If f : ΩN → {0, 1} is monotone, then for all k,

Ik(f) = 2f̂({k}). (1.33)

If f maps into {−1, 1}, then Ik(f) = f̂({k}).
Proof.

f̂({k}) := E[fχ{k}] = E[fχ{k}1{k/∈P}] + E[fχ{k}1{k∈P}] (1.34)

The first term is zero, for if k is not pivotal for f , then χk and f1k/∈P are
independent; thus, E[fχ{k}1{k/∈P ] = E[χ{k}]E[f1{k/∈P}] = 0 (χ{k} is balanced).

Notice that, since f is monotone, [f = 1]∩{k ∈ P} = [xk] = 1∩{k ∈ P}.
Thus, as the fact of k being pivotal is independent of the bit xk,

E[fχ{k}1{k∈P}] = P[f = 1, xk = 1, k ∈ P] (1.35)

= P[xk = 1]P[k ∈ P] = Ik(f)

2
(1.36)
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Proposition 1.4. If f : ΩN → {−1, 1} is monotone, then I(f) ≤
√
N .

Proof. By Proposition 3, we have that

I(f) =

N∑
k=1

Ik(f) =

N∑
k=1

f̂({k}) ≤
( N∑

k=1

f̂ 2({k})
) 1

2
√
N, (1.37)

by the Cauchy-Schwarz inequality. The Parseval formula tells us that

N∑
k=1

f̂ 2({k}) ≤ E[f 2] ≤ 1. (1.38)

Theorem 1.2 (Poincar inequality). Let f : ΩN → {−1, 1} be a Boolean
funtion. Then

V ar[f ] ≤
N∑
i=1

Ii(f). (1.39)

Hence there exists i ∈ [N ] such that Ii(f) ≥ V ar[f ]
N

.

Proof. Notice that 2P[f(ω) �= f(ω̃)] = V ar[f ], where ω, ω̃ are i.i.d. uniforms
on ΩN . Indeed,

E[(f(ω)− f(ω̃))2] = E[f 2(ω)− 2f(ω)f(ω̃) + f 2(ω)] (1.40)

= 2E[f 2(ω)]− 2E[f(ω)]E[f(ω̃)] (1.41)

2V ar[f ], (1.42)

by independence and identical distributions. On the other hand, since f
takes values in {−1, 1}, E[(f(ω)− f(ω̃))2] = 4P[f(ω) �= f(ω̃)].

Now define ωi ∈ ΩN by

ωi(j) =

{
ω(j), if j ≤ i
ω̃(j), if j > i

(i, j ∈ [N ]), ω0 = ω̃ and ωN = ω, (1.43)

so that ωi ∼ Unif(ΩN ), because ω, ω̃ are i.i.d. Unif(ΩN ).
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If f(ω) �= f(ω̃), then f(ωi) �= f(ωi+1) for some i. Thus,

P[f(ω) �= f(ω̃)] ≤
N∑
i=0

P[f(ωi �= ωi+1)] (1.44)

=

N∑
i=0

P[ω(i+ 1) �= ω̃(i+ 1), i+ 1 ∈ P] (1.45)

=
1

2

N∑
i=0

Ik+1(f), (1.46)

by the independence of the events and the fact that P[ω(i+1) �= ω̃(i+1)] = 1
2
.

Therefore, V ar[f ] = 2P[f(ω) �= f(ω̃)] ≤ I[f ].
An alternative proof is possible by using the Fourier decomposition of f .

Notice that

V ar[f ] = E[f 2]− E[f ]2 = 1− f̂(∅)2; and by Proposition 2, (1.47)

I(f) :=

N∑
i=1

Ii(f) =
∑
S⊆[N ]

|S|f̂(S)2 (1.48)

≥
∑
S⊆

[N ]f̂ (S)2 − f̂(∅)2 = ||f ||22 − f̂(∅)2 (1.49)

= 1− f̂(∅)2 = V ar[f ]. (1.50)

1.4 The Kahn, Kalai and Linial Theorem

Theorem 1.3 (Hypercontractivity). Consider R
N with standard Gaussian

measure. Let Kt be the heat kernel on R
N . If 1 < q < 2, then there exists

t = t(q) > 0 (independent of the dimension N) such that for any f ∈ Lq(RN),

||Kt ∗ f ||2 ≤ ||f ||q (1.51)

For any ρ ∈ [0, 1] and any f : ΩN → R, we define the noise operator by

Tρf : ω → E[f(ω1−ρ)|ω]. (1.52)
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This noise operator acts in a very simple way on the Fourier coefficients:

(Tρf)(ω) = E[
∑
S⊆[N ]

f̂(S)χS(ω
1−ρ)|ω] (1.53)

=
∑
S⊆[N ]

f̂(S)E[χS(ω
1−ρ)|ω] (1.54)

=
∑
S⊆[N ]

f̂(S)E[
∏
i∈S

ω1−ρ(i)|ω] (1.55)

=
∑
S⊆[N ]

f̂(S)
∏
i∈S

E[ω1−ρ|ω] (1.56)

=
∑
S⊆[N ]

f̂(S)ρ|S|
∏
i∈S

ω(i) (1.57)

=
∑
S⊆[N ]

f̂(S)ρ|S|χS(ω). (1.58)

Theorem 1.4 (Bonomi-Gross-Beckner). For any f : ΩN → R and any
ρ ∈ [0, 1]

||Tρf ||2 ≤ ||f ||1−ρ2 (1.59)

Theorem 1.5 (Kahn-Kalai-Linial). If f : ΩN → {0, 1} is a Boolean func-
tion, then there exist a universal c > 0 and i ∈ [N ] such that

Ii(f) ≥ cV ar[f ]
(logN)

N
(1.60)

Proof. We divide the analysis into the following two cases.
Case 1. Suppose that there is some k ∈ [N ] such that Ik(f) ≥ N−3/4V ar[f ].

Then the bound (1.60) is satisfied for a small c > 0 (for all n ∈ N, log (n) ≥
log log (n)⇒ 1

4
log (n) ≥ c log log (n), c < 1

4
, n−3/4 ⇒ c′ log (n)

n
).

Case 2. Suppose that for all k ∈ [N ], Ik(f) = ||∇k(f)||22 ≤ V ar[f ]N−3/4.
We will show that in this case, most of the Fourier spectrum of f is concen-
trated on high frequencies. Let M ≥ 1, whose value will be chosen later.
We want to bound from above the bottom part (up to M) of the Fourier
spectrum of f .∑

1≤|S|≤M

f̂(S)2 ≤
∑

1≤|S|≤M

|S|f̂(S)2 ≤ 22M
∑
|S|≥1

(
1

2
)2|S||S|f̂(S)2 (1.61)

=
1

4
22M

∑
k

||T 1
2
(∇kf)||22 (see Proposition 2.) (1.62)
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By applying the Theorem 4 with ρ = 1
2
to the above sum, we obtain

∑
1≤|S|≤M

f̂(S)2 ≤ 1

4
22M

∑
k

||∇kf ||25/4 (1.63)

≤ 22M
∑
k

Ik(f)
8/5 ((∇kf)

5/4 ∈ {0, 1}) (1.64)

≤ 22MNV ar[f ]8/5N− 3
4
. 8
5 (hypothesis Case 2) (1.65)

≤ 22MN− 1
5V ar[f ] (f is Boolean, V ar[f ] ≤ 1) (1.66)

Now with M := � 1
20
log2N�,∑

1≤|S|≤ 1
20

log2 N

≤ N1/10−1/5V ar[f ] = N−1/10V ar[f ]. (1.67)

This shows that under the assumption in Case 2, most of the Fourier
spectrum is concentrated above Ω(logN). Thus

sup
k
Ik(f) ≥

∑
k Ik(f)

N
=

4
∑

|S|≥1 |S|f̂(S)2

N
≥ 1

N

[ ∑
|S|>M

|S|f̂(S)2
]

(1.68)

≥ M

N

[ ∑
|S|>M

f̂(S)2
]
=
M

N

[
V ar(f)−

∑
1≤|S|≤M

f̂(S)2
]

(1.69)

≥ M

N
V ar[f ][1−N−1/10] (1.70)

≥ V ar[f ]
logN

N
, (1.71)

with c1 =
1

20 log 2
(1 − 2−1/10). By combining with the constant given in Case

1, this completes the proof.

The above theorem is sharp. Indeed, it turns out that the tribes function
has all influences smaller than c(logN)/N , for some c < ∞. Let b > 0 be
a parameter, which will be determined later. Consider a partition [N ] =
B1 ∪ · · · ∪ Bn/b into N/b disjoint parts, called tribes, of size b each. Now we
choose the parameter b that makes this function f = TRN

b
,b balanced. The

probability that at least one bit in a given tribe is −1 is 1− 2−b, so

P[f = 0] = (1− 2−b)
N
b . (1.72)
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We define b as the number that makes this probability equal to 1/2 (since the
exact bmay not be an integer or not a divisor ofN , we ignore a probable small
error). Using the estimate (1−2−b)

N
b ∼ e−2−bN/b and solving for b, we see that

b+log2 b = log2N−log2 (ln 2 + o(1)), whence b = log2N−log2 log2N+O(1).
In order to determine the influences Ik(f), consider the tribe that xk

belongs to, say k ∈ B1. Then flipping the variable xk affects the value of
f(ω) if, and only if, for each tribe Bj with j �= 1, xi = −1 for at least one
i ∈ Bj, and xi ∈ B1\{k}. Thus,

Ik(f) = (1− 2−b)N/b−1 · 2−b+1 =
1
2
· 2 · 2−b

1− 2−b
= c

( logN
N

)
. (1.73)

Theorem 1.6. There exits a universal c > 0 such that for any f : ΩN →
{0, 1},

||I(f)|| = ||Inf(f)||1 ≥ cV ar[f ] log
( 1

||Inf(f)||∞
)

(1.74)

Proof. Let f : ΩN → {0, 1} and δ := ||Inf(f)||∞ = supk Ik(f). Assume that
δ ≤ 1/1000. Exactly like the previous theorem,∑

1≤|S|≤M

f̂(S)2 ≤ 22M
∑
k

Ik(f)
8/5 (1.75)

≤ 22Mδ3/5
∑
k

Ik(f) (1.76)

= 22Mδ3/5I(f). (1.77)

Now,

V ar[f ] =
∑
|S|≥1

f̂(S)2 ≤
∑

1≤|S|≤M

f̂(S)2 +
1

M

∑
|S|>M

|S|f̂(S)2 (1.78)

≤
[
22Mδ3/5 +

1

M

]
I(f). (1.79)

Choose M = 3
10
log2(δ

−1) − 1
2
log2 log2 δ

−1. Since δ ≤ 1/1000, M ≥
1
10
log2 (δ

−1), which leads us to

V ar[f ] ≤
[ 1

log2 (1/δ)
+

10

log2 (1/δ)

]
I(f) (1.80)

which gives I(f) = ||Inf(f)||1 ≥ 1
11 log 2

V ar[f ] log
(

1
||Inf(f)||∞

)
. This gives us

the result for δ ≤ 1/1000.
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If δ ≥ 1/1000, by the Poincar inequality (I(f) ≥ V ar[f ]), the claim is
true if we take c to be 1/ log 1000. Since 1/ log 1000 > 1/11 log 2, we have
the result with c = 1/11 log 2.

In [5, Theorem, 1], this result is extended to the case Pp[f = 1] = p ≤ 1
2

and for any product space XN , for a probability space X. In this context, the
influence of the k-th variable on f is defined as follows: for x = (x1, · · · xN −
1) ∈ XN−1, consider the set sk(x) = {(x1, · · · , xk−1, t, xk, · · · , xN−1) : t ∈
X}.

Ik(f) = Pp{x ∈ XN−1 : f is not constant on sk(x)}. (1.81)

Theorem 1.7 (BKKKL). Consider [0, 1]N as a measure space with the uni-
form measure. Let f : [0, 1]N → {0, 1}, with Pp[f = 1] = p ≤ 1

2
. Then there

exist a constant c > 0 and k ∈ [N ] such that

Ik(f) ≥ cp
logN

N
(1.82)

The proof of this theorem is modified in [7, Theorem 3.4], by using a
convexity argument, to give the following:

Theorem 1.8. For every function f : X → {0, 1} with Pp[f = 1] = p ≤ 1
2
,

if Ik(f) ≤ δ for every k, then there exists a constant c > 0 such that

N∑
k=1

Ik(f) ≥ cp log (1/δ) (1.83)

Here we follow the approach of [6], according to which Theorem 1.7 is
derived from the discrete case, or more specifically, from Theorem 1.8 with
X = {0, 1}N . It is worth noting that the Influence theorem in the discrete
case away from the uniform measure is also proved in [18].

Proof.

Claim 1.1. Given a function g : [0, 1]N → {0, 1}, there is a monotone
function f : [0, 1]N → {0, 1} such that Ik(g) ≥ Ik(f) for every k.

The proof of this claim is a combinatorial argument and is presented in
[5, Lemma 1]. Restrict g to the segment sk(x). Define Tk(g) as the function
which is monotone on sk(x) and satisfies

PN−1(Tk(g)
−1(0)∩ sk(x)) = PN−1(g

−1(0)∩ sk(x)) ∀x ∈ [0, 1]N−1. (1.84)
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Notice that Ik(g) = Ik(Tk(g)) and Ij(g) ≥ Ij(Tk(g)), j �= k. Repeated
applications of these operations yields a function which is fixed under all Tk,
hence monotone.

Thus we may consider that f : [0, 1]N → {0, 1} is a monotone function.
Let k = 3 logN and subdivide [0, 1]N into 2kn equal subcubes, by subdividing
each one of the base intervals into 2k equal parts. Since f is monotone and
assumes 0/1-values, f is constant on each of the small subcubes except on
the ’mixed’ subcubes (where f changes from 0 to 1).

The number of ’mixed’ subcubes is no more than the number of subcubes
that touch the boundary of [0, 1]N . Indeed, for N = 2, each segment sk(x),
k = 1, 2, x ∈ [0, 1] has at most one point separating, within the segment,
the points that take 0 (before the point) and those that assume 1 (after the
point). Hence, there are at most 2 · 2k mixed cubes. Suppose this is valid
for all 1 < m < N, for a given N . Since each fiber sk(x), k = 1, · · · , N ,
x ∈ [0, 1]N−1 has at most (N − 1)2k ’mixed’ N − 1-dimensional subcubes,
and there are 2k subcubes along the axis excluded in the fiber, we conclude
that the cube [0, 1]N has at most N2k ’mixed’ subcubes. Thus, this property
holds for all N ∈ N.

Now f corresponds in a natural way to a function on the discrete cube
g : {0, 1}kN → {0, 1}, by replacing the interval [r2−k, (r + 1)2−k] with the
binary expansion of r:

g(ω1(1), · · · , ω1(k), · · · , ωN(1), · · · , ωN(k)) (1.85)

= f(

k∑
j=1

ω1(j)2
j−k, · · · ,

k∑
j=1

ωN(j)2
j−k). (1.86)

Every variable i ∈ [N ] is replaced by k variables ij : 1 ≤ j ≤ k, the
k bits of the binary expansion of r. We write a vector in {0, 1}kN as
(ω−i, ω) = (ω1, · · · , ωi−1, ω, ωi+1, · · · , ωN), ω−i ∈ {0, 1}k(N−1) and ω ∈ {0, 1}k
to emphasize the entries corresponding to the ith variable.

For each i ∈ [N ] and a fixed ω−i ∈ {0, 1}k(N−1), define g
ω−i

i : {0, 1}k →
{0, 1} by ω �→ g(ω−i, ω). Notice that

k∑
j=1

Ij(g
ω−i

i ) = E[

k∑
j=1

P[j is pivotal for g
ω−i

i |ω−i]], (1.87)

and that Ij(g
ω−i

i ) = P[j is pivotal for g
ω−i

i |ω−i]. By [5, Lemma 3], if h :
{0, 1}m → {0, 1} is a monotone function, then

∑m
k=1 Ik(h) ≤ 2. Thus, the

expression in (1.87) is less than 2.
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By noting Ii(f) = E[P[f is not constant in ω−i|ω−i]] and that this con-
ditional probability is 1 in {x ∈ [0, 1]N−1; f is not constant in si(x)}, we
obtain for each i ∈ [N ]

k∑
j=1

Iij (g) ≤ 2P{x ∈ [0, 1]N−1; f is not constant in si(x)} (1.88)

= 2E[P[f is not constant in ω−i|ω−i]] (1.89)

= 2Ii(f) (1.90)

This implies, by Theorem 1.8, that∑
i,j

Iij (g) ≥ cp logN (1.91)

and, using (1.88)-(1.90), ∑
i

Ii(f) ≥
c

2
p logN. (1.92)

In particular, there exists a variable i such that

Ii(f) ≥
c

2
p
logN

N
(1.93)
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Chapter 2

Monotonic measures

We introduce the monotonic measures and show that they feature positive
association and the FKG inequality. By defining the conditional influence,
we present an influence theorem for such measures, an analogue to the KKL
Theorem, which leads to a sharp threshold theorem in this context. Corre-
sponding results are valid for probability measures on the cube [0, 1]N that
are absolutely continuous with respect to Lebesgue measure. This chapter is
based on [10, Chapter 2] and [11].

2.1 Stochastic ordering of measures

Let E be a finite, |E| = N , or countably infinite set. Consider Ω = ΩE :=
{0, 1}E, whose members are 0/1-vectors ω = (ω(e) : e ∈ E), and F , the set
of all subsets of Ω. Henceforth, thinking of our applications, E will be the
edge-set of a graph, and thus we regard the variables i ∈ [N ] as edges e ∈ E.

Given a configuration ω and an edge e ∈ E, we will often consider the
configurations ωe, ωe, obtained from ω by setting 1, in the first case, and 0,
in the second, to the edge e and maintaining the other edges unchanged. An
edge e is said to be open in ω ∈ Ω if w(e) = 1, and closed otherwise.

A probability measure is said to be positive if μ(ω) > 0 for all ω ∈ Ω.
Given two probability measures μ1, μ2 in (Ω,F), we write μ1 ≤st μ2 and say
that μ1 is stochastically dominated by μ2 if

Eμ1 [X] ≤ Eμ2 [X] (for all increasing r. v. X on Ω). (2.1)

For two probability measures φ1, φ2 on (Ω,F), a coupling of φ1 and φ2 is a
probability measure κ on (Ω,F)×(Ω,F) with φ1 as the first marginal and φ2
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as the second one. The next theorem concerning couplings is just stated, we
will not prove it, for future use (for a proof, see [15, Section IV.1.2, Theorem
2.4]).

Theorem 2.1. Let μ1, μ2 be probability measures on (Ω,F). Then, μ1 ≤st μ2

if, and only if, there exists a coupling κ satisfying κ(S) = 1, where S =
{(ω1, ω2) ∈ Ω2 : ω1 ≤ ω2} is the sub-diagonal of the product space Ω2.

For ω1, ω2 ∈ Ω, we denote by ω1 ∧ ω2 and ω1 ∨ ω2 the minimum and
maximum configurations, respectively, given by

ω1 ∧ ω2(e) = min {ω1(e), ω2(e)} (e ∈ E) (2.2)

ω1 ∨ ω2(e) = max {ω1(e), ω2(e)} (e ∈ E). (2.3)

Theorem 2.2 (Holley inequality). Let μ1, μ2 be positive probability measures
on (Ω,F) such that

μ2(ω1 ∨ ω2)μ1(ω1 ∧ ω2) ≥ μ1(ω1)μ2(ω2) (ω1, ω2 ∈ Ω). (2.4)

Then

Eμ1 [X] ≤ Eμ2 [X] (for increasing functions X : Ω→ R), (2.5)

that is μ1 ≤st μ2.

Proof. Let μ be a positive probability measure on (Ω,F). We may construct
a reversible Markov chain with state space Ω and unique invariant measure
μ by choosing a suitable generator satisfying the detailed balance equations.
Let G : Ω2 → R be given by

G(ωe, ω
e) = 1, G(ωe, ωe) =

μ(ωe)

μ(ωe)
(ω ∈ Ω, e ∈ E). (2.6)

We let G(ω, ω′) = 0 for all other pairs ω, ω′ with ω �= ω′. The diagonal
elements G(ω, ω) are chosen so that∑

ω′∈Ω
G(ω, ω′) = 0 (ω ∈ Ω). (2.7)

It is straightforward that

μ(ω)G(ω, ω′) = μ(ω′)G(ω′, ω) (ω, ω′ ∈ Ω), (2.8)
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and therefore G generates a Markov chain on Ω which is reversible with
respect to μ. Now we check that the chain is irreducible. Given ω, ω′ ∈ Ω,
one may flip the zero (closed) edges one by one thus arriving at the unit
vector 1 (open configuration), and then one may flip again the states of each
edge one by one thus arriving at ω′. Since each such transition probability
is positive, the chain is irreducible. It follows that the chain has unique
invariant measure μ.

Let μ1, μ2 satisfy the hypothesis of the theorem, and let S be the set of
all ordered pairs (π, ω) of configurations in Ω satisfying π ≤ ω. We define
H : S × S → R by

H(πe, ω; π
e, ωe) = 1, (2.9)

H(π, ωe; πe, ωe) =
μ2(ωe)

μ2(ωe)
, (2.10)

H(πe, ωe; πe, ω
e) =

μ1(πe)

μ1(πe)
− μ2(ωe)

μ2(ωe)
, (2.11)

for all (π, ω) ∈ S and e ∈ E; all other off-diagonal values of H are set to be
0. The diagonal terms H(π, ω; π, ω) are chosen in such a way that∑

(π′,ω′)∈S
H(π, ω; π′, ω′) = 0 ((π, ω) ∈ S). (2.12)

Equation (2.9) specifies that, for π ∈ Ω and e ∈ E, the edge e is acquired by
π (if it does not already contain it) at rate 1; any edge so acquired is added
also to ω if it does not already contain it. (A configuration ψ contains the
edge e if ψ(e) = 1.) Equation (2.10) specifies that, for ω ∈ Ω and e ∈ E with
w(e) = 1, the edge e is removed from ω (and also from π if π(e) = 1) at the
rate given in (2.10). For e with π(e) = 1, there is an additional rate given in
(2.11) at which e is removed from π but not from ω. This additional rate is
indeed non-negative, since the required inequality

μ2(ω
e)μ1(ωe) ≥ μ1(π

e)μ2(ωe) whenever π ≤ ω (2.13)

follows from (2.4) with ω1 = πe and ω2 = ωe

Let (Yt, Zt)t≥0 be a Markov chain on S with generatorH and set (Y0, Z0) =
(0, 1), where 0 (respectively, 1) is the state of all zeros (respectively, ones).
We write P for the appropriate probability measure. Since all transitions
retain the ordering of the two components of the state, we may assume that

23



the chain satisfies P(Yt ≤ Zt, ∀ t) = 1. By examination of (2.9)− (2.11) we
see that Y = (Yt : t ≥ 0) is a Markov chain with generator given by (2.6)
with μ = μ1 and that Z = (Zt : t ≥ 0) arises similarly with μ = μ2. In the
case of Y (a similar argument holds for Z), for π ∈ Ω and e ∈ E,

P[Yt+h = πe| Yt = πe]

=
∑
ω∈Ω

P[Yt+h = πe| (Yt, Zt) = (πe, ω)]P[Zt = ω| Yt = πe] (2.14)

=
∑
ω∈Ω

[h + o(h)]P[Zt = ω| Yt = πe] (2.15)

= h+ o(h). (2.16)

Similarly, with Je the event that e is open,

P[Yt+h = πe| Yt = πe]

=
∑

ω∈Je,ω′∈Ω
P[(Yt+h, Zt+h) = (πe, ω

′)| (Yt, Zt) = (πe, ωe)]P[Zt = ωe| Yt = πe]

(2.17)

=
∑
ω∈Je

[{H(πe, ωe; πe, ωe) +H(πe, ωe; πe, ω
e)}h+ o(h)]P[Zt = ωe| Yt = πe)]

(2.18)

=
∑
ω∈Je

[μ1(πe)

μ1(πe)
h+ o(h)

]
P(Zt = ωe| Yt = πe) by (2.10 and (2.11))

(2.19)

=
μ1(πe)

μ1(πe)
h+ o(h). (2.20)

Let κ be an invariant measure for the paired chain (Yt, Zt)t≥0. Since Y
and Z have (respective) unique invariant measures μ1 and μ2, the marginals
of κ are μ1 and μ2. Since P[Yt ≤ Zt, ∀ t] = 1,

κ(S) = κ({(π, ω) : π ≤ ω}) = 1, (2.21)

and κ is the required coupling of μ1 and μ2.
Let (π, ω) ∈ S be chosen according to the measure κ. Then

Eμ1 [X] = Eκ[X(π)] ≤ Eκ[X(ω)] = Eμ2 [X ], (2.22)

for any increasing function X. Therefore μ1 ≤st μ2.
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Theorem 2.3. Let μ1, μ2 be a pair of strictly positive probability measures
on (Ω,F) such that

μ2(ω
e)μ1(ωe) ≥ μ1(ω

e)μ2(ωe) (ω ∈ Ω, e ∈ E). (2.23)

If, in addition, either μ1 or μ2 satisfies

μ(ωef)μ(ωef) ≥ μ(ωe
f)μ(ω

f
e ) (ω ∈ Ω, e, f ∈ E), (2.24)

then (2.4) holds.

Proof. Let μ be strictly positive probability measure satisfying (2.24). We
show first that μ satisfies (2.4) with μ1 = μ2 = μ, that is

μ(ω1 ∨ ω2)μ(ω1 ∧ ω2) ≥ μ(ω1)μ(ω2). (2.25)

We will prove this by induction on the Hamming distance H(ω1, ω2). The
Hamming distance between two configurations is given by

H(ω1, ω2) =
∑
e∈E
|ω1(e)− ω2(e)|, (ω1, ω2 ∈ Ω). (2.26)

Inequality (2.25) is trivial when: either H(ω1, ω2) = 1, or the ωi are
ordered (in that either ω1 ≤ ω2, or vice-versa). The only non-trivial case
with H(ω1, ω2) = 2 is of the form: ω1 = ωe

f , ω2 = ωf
e where e, f are distinct

edges. This is handled by assumption (2.24).
Let h ≥ 3 and suppose that (2.25) holds for all pairs ω1, ω2 satisfying

H(ω1, ω2) < h. Let ω1, ω2 ∈ Ω be such H(ω1, ω2) = h, and furthermore such
that neither ω1 ≤ ω2 nor ω1 ≥ ω2. There exist integers a, b such that a, b ≥ 1
and a + b = h, and disjoint subsets A,B ⊆ E with cardinalities a and b
respectively, such that:

if e ∈ A, (ω1(e), ω2(e)) = (1, 0), (2.27)

if e ∈ B, (ω1(e), ω2(e)) = (0, 1), (2.28)

if e ∈ E\(A ∪ B), ω1(e) = ω2(e). (2.29)

We fix an ordering (ei : i = 1, 2, · · · , |E|) of the set E in which edges in A
are indexed 1, 2, · · · , a, and edges in B are indexed a + 1, a + 2, · · · , a + b.
A configuration ω may be written as a word ω(e1) · ω(e2) · ... · ω(e|E|); we
write 0x for a sub-word of length x every entry of which is 0, with a similar
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meaning for 1y. Since the entries of the configurations ω1, ω2, ω1∨ω2, ω1∧ω2

are constant off A ∪ B, we omit explicit reference to these values. Thus, for
example, ω1 = 1a · 0b and ω2 = 0a · 1b.

Since h = a + b ≥ 3, either a ≥ 2 or b ≥ 2; it suffices by symmetry to
assume a ≥ 2. By the induction hypothesis,

μ(1a+b)μ(0a−1 · 1 · 0b) ≥ μ(1a · 0b)μ(0a−1 · 1b+1) (2.30)

since H(1a · 0b, 0a−1 · 1b+1) = h− 1, (2.31)

μ(0a−1 · 1b+1)μ(0a+b) ≥ μ(0a−1 · 1 · 0b)μ(0a · 1b) (2.32)

since H(0a−1 · 1 · 0b, 0a · 1b) = b+ 1 < h , (2.33)

whence

μ(1a+b)μ(0a−1 · 1 · 0b) ≥ μ(1a · 0b)μ(0a−1 · 1b+1)μ(0a+b) (2.34)

≥ μ(1a · 0b)μ(0a−1 · 1 · 0b)μ(0a · 1b). (2.35)

Therefore,
μ(1a+b)μ(0a+b) ≥ μ(1a · 0b)μ(0a · 1b), (2.36)

and the induction step is complete.
We identify a configuration ω ∈ Ω with the set of indices η(ω) at which

ω takes the value 1. Let ξ1, ξ2 ∈ Ω and write Ak = η(ξk). Let B = A1\A2 =
{b1, · · · br} and write Bs = {b1, · · · bs} for s ≥ 1. Assume ξ1 �= ξ2 and without
loss of generality that r ≥ 1. By (2.23),

μ2(ξ1 ∨ ξ2)
μ2(ξ2)

=
μ2(A2 ∪Br)

μ2(A2 ∪ Br−1)
· μ2(A2 ∪Br−1)

μ2(A2 ∪Br−2)
· · · μ2(A2 ∪B1)

μ2(A2)
(2.37)

≥ μ1(A2 ∪ Br)

μ1(A2 ∪ Br−1)
· μ1(A2 ∪ Br−1)

μ1(A2 ∪ Br−2)
· · · μ1(A2 ∪ B1)

μ1(A2)
(2.38)

=
μ1(ξ1 ∨ ξ2)
μ1(ξ2)

. (2.39)

If μ1 satisfies (2.24), then it satisfies (2.25) and (2.4) follows with ξi = ωi, i ∈
{1, 2}.
Theorem 2.4. A pair μ1, μ2 of positive probability measures on (Ω,F) sat-
isfies (2.4) if, and only if, the one-point conditional probabilities satisfy:

μ2(ω(e) = 1| ω(f) = ζ(f) for all f ∈ E\{e})
≥ μ1(ω(e) = 1| ω(f) = ξ(f) for all f ∈ E\{e}), (2.40)

for all e ∈ E and all pairs ξ, ζ ∈ Ω satisfying ξ ≤ ζ.
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Proof. Notice that inequality (2.40) is equivalent to

μ2(ζ
e)

[μ2(ζe) + μ2(ζe)]
≥ μ1(ξ

e)

[μ1(ξe) + μ1(ξe)]
, (2.41)

or, equivalently,
μ2(ζ

e)μ1(ξe) ≥ μ1(ξ
e)μ2(ζe). (2.42)

Assume (2.42) holds. By using the same argument and notation at the
end of the last proof, we have that

μ2(ξ1 ∨ ξ2)
μ2(ξ2)

=
μ2(A2 ∪Br)

μ2(A2 ∪ Br−1)
· μ2(A2 ∪Br−1)

μ2(A2 ∪Br−2)
· · · μ2(A2 ∪B1)

μ2(A2)
(2.43)

≥ μ1((A1 ∩ A2) ∪ Br)

μ1((A1 ∩ A2) ∪ Br−1)
· μ1((A1 ∩ A2) ∪Br−1)

μ1((A1 ∩ A2) ∪Br−2)
· · · μ1((A1 ∩ A2) ∪B1)

μ1(A1 ∩A2)
(2.44)

=
μ1(ξ1)

μ1(ξ1 ∧ ξ2)
. (2.45)

Conversely, if (2.4) holds, then so does (2.42) for ξ ≤ ζ .

2.2 Positive association

A probability measure μ on Ω is said to have the FKG lattice property if it
satisfies the so-called FKG lattice condition:

μ(ω1 ∨ ω2)μ(ω1 ∧ ω2) ≥ μ1(ω1)μ2(ω2) (ω1, ω2 ∈ Ω). (2.46)

Theorem 2.5 (FKG inequality). Let μ be a positive probability measure on
Ω satisfying the FKG lattice condition. Then

Eμ[XY ] ≥ Eμ[X]Eμ[Y ] (2.47)

for increasing functions X, Y : Ω→ R.

Proof. Assume that μ satisfies the FKG lattice condition and let X and Y
be increasing functions. Let a > 0 and Y ′ = Y + a. Since

Eμ[XY
′]− Eμ[X ]Eμ[Y

′] = Eμ[XY ]− E[X]E[Y ], (2.48)
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it suffices to prove (2.47) with Y replaced by Y ′. We may pick a sufficiently
large that Y ′(ω) > 0, for all ω ∈ Ω. Thus, it suffices to prove (2.47) under
the additional hypothesis that Y is positive; so we assume henceforth that
this holds. Define the positive probability measures μ1 and μ2 on (Ω,F) by
μ1 = μ and

μ2(ω) =
Y (ω)μ(ω)∑

ω′∈Ω Y (ω′)μ(ω′)
(ω ∈ Ω). (2.49)

Since Y is increasing,

μ2(ω1 ∨ ω2)μ1(ω1 ∧ ω2) ≥ μ1(ω1)μ2(ω2) (2.50)

follows from the FKG lattice condition. By the Holley inequality (Theorem
2.2), Eμ2 [X] ≥ Eμ1 [X], which is to say that∑

ω∈ΩX(ω)Y (ω)μ(ω)∑
ω′∈Ω Y (ω

′)μ(ω′)
≥

∑
ω∈Ω

X(ω)μ(ω). (2.51)

Any probability measure μ satisfying (2.47) is said to have the property
of positive association.

Let X = (X1, · · · , Xr) be a vector of random variables taking values in
{0, 1}r. We speak of X as being positively associated if its law on {0, 1}r is
positively associated. Let Y = h(X) where h : {0, 1}r → {0, 1}s is a non-
decreasing function. Then the vector Y is positively associated whenever X
is positively associated. Let A,B be increasing subsets of {0, 1}s. Then

P[Y ∈ A ∩ B] = P[X ∈ h−1(A) ∩ h−1(B)] (2.52)

≥ P[X ∈ h−1(A)]P[X ∈ h−1(B)] (2.53)

= P[Y ∈ A]P[Y ∈ B], (2.54)

since h−1(A) and h−1(B) are increasing subsets of {0, 1}r.
A pair ω1, ω2 ∈ Ω is called comparable, if either ω1 ≥ ω2 or ω1 ≥ ω2, and

incomparable, otherwise.

Theorem 2.6. A positive probability measure μ on (Ω,F) satisfies the FKG
lattice condition if, and only if, this condition (2.46) holds for all incompa-
rable pairs ω1, ω2 ∈ Ω with H(ω1, ω2) = 2.

Proof. It follows from Theorem 2.3.
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The FKG lattice condition is sufficient but not necessary for positive
association. It is equivalent for strictly positive measures to a stronger prop-
erty called strong positive association. For F ⊆ E and ξ ∈ Ω, we write
ΩF = {0, 1}F and

Ωξ
F = {ω ∈ Ω : ω(e) = ξ(e), ∀ e ∈ E\F}, (2.55)

the set of configurations that agree with ξ on the complement of F . Let μ
be a probability measure on (Ω,F) and let F, ξ be such that μ(Ωξ

F ) > 0. We
define the conditional probability measure μξ

F on ΩF by

μξ
F (ωF ) = μ(ωF | Ωξ

F ) =
μ(ωF × ξ)
μ(Ωξ

F )
(ωF ∈ ΩF ), (2.56)

where ωF × ξ denotes the configuration that agrees with ωF on F and with
ξ on its complement. We say that μ is strongly positively-associated if: for
all F ⊆ E and all ξ ∈ Ω such that μ(Ωξ

F ) > 0, the measure μξ
F is positively

associated.
We call μ monotonic if for all F ⊆ E, all increasing subsets A of ΩF and

all ξ, ζ ∈ Ω such that μ(Ωξ
F ), μ(Ω

ζ
F ) > 0,

μξ
F (A) ≤ μζ

F (A) whenever ξ ≤ ζ. (2.57)

That is, μ is monotonic if, for all F ⊆ E,

μξ
F ≤st μ

ζ
F whenever ξ ≤ ζ. (2.58)

We call 1-monotonic if (2.58) holds for all singleton sets F . That is, μ is
1-monotonic if, and only if, for all f ∈ E, μ(Jf | Ωξ

f) is a non-decreasing
function of ξ. Here, Jf denotes the event that f is open.

Theorem 2.7. Let μ be a positive probability measure on (Ω,F). The fol-
lowing are equivalent.

(a) μ is strongly positively-associated.

(b) μ satisfies the FKG lattice condition.

(c) μ is monotonic.

(d) μ is 1-monotonic.

29



Proof. (a) ⇔ (b). We prove first that (a) implies (b). By Theorem 2.6,
it suffices to prove (2.46) for two incomparable configurations ω1, ω2 that
disagree on exactly two edges. Let e, f be distinct members of E and take
e and f to be the first two bits in a given ordering (permutation) of E.
We adopt the notation used in the proof of Theorem 2.3. Thus we write
ω1 = 0 · 1 · ω and ω2 = 1 · 0 · ω for some word ω of length |E| − 2. By strong
positive-association, α(xy) = μ(x · y · ω) satisfies (take ΩF = {0, 1}{e,f}, ξ =
ω,X = 1{(0,1),(1,1)} and Y = 1{(1,0),(1,1)})

α(11)[α(00)+α(01)+α(10)+α(11)] ≥ [α(01)+α(11)][α(10)+α(11)], (2.59)

which may be simplified to obtain, as required, that

α(11)α(00) ≥ α(01)α(10). (2.60)

We prove next that (b) implies (a). Suppose (b) holds and let F ⊆
E, ξ ∈ Ω. Since (ω1)F × ξ and (ω2)F × ξ possibly differ from each other just
at variables in F , (ω1 ∨ ω2)F × ξ = ((ω1)F × ξ) ∨ ((ω2)F × ξ) (similarly for
∧). It follows from (2.56) that

μξ
F (ω1 ∨ ω2)μ

ξ
F (ω1 ∧ ω2) ≥ μξ

F (ω1)μ
ξ
F (ω2) (ω1, ω2 ∈ ΩF ). (2.61)

By Theorem 2.5, μξ
F is positively correlated.

(b) ⇒ (c) By Theorem 2.2 (Holley inequality), it suffices to prove for
ωF , ρF ∈ ΩF that

μζ
F (ωF ∨ ρF )μξ

F (ωF ∧ ρF ) ≥ μζ
F (ωF )μ

ξ
F (ρF ) (2.62)

whenever ξ ≤ ζ . This is, by (2.56), an immediate consequence of the FKG
lattice property applied to the pair ωF × ζ, ρF × ξ.

(c)⇒ (d). This is trivial.
(d)⇒ (b). Let μ be 1-monotonic. By Theorem 2.4, the pair μ, μ satisfies

(2.4), which is to say that μ satisfies the FKG lattice condition.

2.3 Influence for monotonic measures

Let A ∈ F be an increasing event and write 1A for its indicator function.
The conditional influence on A of the edge e ∈ E is defined by

IA(e) = μ(A| Je = 1)− μ(A| Je = 0), (2.63)
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where J = (Je : e ∈ E) denotes the identity function on Ω. (Je denotes both
the event {ω ∈ Ω : ω(e) = 1} and its indicator function.) The conditional
influence is not generally equal to the (absolute) influence of Chapter 1,

IA(e) = μ(1A(ω
e) �= 1A(ωe)).

Theorem 2.8 (Influence). Let A be an increasing subset of Ω = {0, 1}E. Let
μ be a positive probability measure on (Ω,F) that is monotonic. There exist
e ∈ E and a constant c ∈ (0,∞) such that

IA(e) ≥ cmin {μ(A), 1− μ(A)} logN
N

. (2.64)

Proof. The idea is to encode μ in terms of Lebesgue measure λ on the Eu-
clidean cube [0, 1]N and then to apply Theorem 1.7 (BKKKL).

Give an ordering to the set E so that E = {e1, · · · , eN}. Let x =
(x1, · · · , xN) ∈ [0, 1]N and f(x) = (f1(x), · · · , fN(x)) ∈ R

N be given re-
cursively as follows. The first coordinate f1(x) is defined by:

with a1 = μ(J1), let f1(x) =

{
1 if x1 > 1− a1
0 otherwise.

(2.65)

Suppose we know the values fi(x) for i = 1, · · · , k − 1. Let

ak = μ(Jk = 1|Ji = fi(x) for i = 1, · · · , k − 1), (2.66)

and define

fk(x) =

{
1 if xk > 1− ak
0 otherwise

(2.67)

Now we show that the function f : [0, 1]N → {0, 1}N is non-decreasing.
Let x ≤ x′ and write ak = ak(x) and a

′
k = ak(x

′) for the values in (2.65)-(2.66)
corresponding to the vectors x and x′. Clearly a1 = a′1, so that f1(x) ≤ f1(x

′).
Since μ is monotonic, a2 ≤ a′2 (Jk is increasing, for all k ∈ E), implying that
f2(x) ≤ f2(x

′). Continuing inductively, we find that fk(x) ≤ fk(x
′) for all k,

which is to say that f(x) ≤ f(x′).
Let A ∈ F be an increasing event and let B be the increasing subset

of [0, 1]N given by B = f−1(A). Notice the following facts concerning the
definition of f .
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(a) For given x, each ak depends only on x1, · · · , xk−1.

(b) Since μ is strictly positive, the ak satisfy 0 < ak < 1 for all x ∈ [0, 1]N

and k ∈ E.

(c) For any x ∈ [0, 1]N and k ∈ E, the values fk(x), fk+1(x), · · · , fN(x)
depend on x1, · · · , xk−1 only through the values f1(x), · · · , fk−1(x).

(d) The function f and the event B depend on the ordering of the set E.

Let U = (Ui : i = 1, · · · , N) be the identity function on [0, 1]N , so that U
has law λ. By the definition of f , f(U) has law μ. Hence,

μ(A) = λ(f(U) ∈ A) = λ(U ∈ f−1(A)) = λ(B). (2.68)

Let
KB(i) = λ(B| Ui = 1)− λ(B| Ui = 0), (2.69)

where the conditional probabilities are interpreted as

λ(B| Ui = u) = lim
ε↓0

λ(B| Ui ∈ (u− ε, u+ ε)) (2.70)

By Theorem 1.7, there exists a constant c <∞, independent of the choice
of N and A, such that there exists i ∈ [N ] with

KB(i) ≥ cmin {λ(B), 1− λ(B)} logN
N

. (2.71)

We choose i accordingly. We claim that

IA(ej) ≥ KB(j) for j ∈ [N ]. (2.72)

By (2.68) and (2.71), it suffices to prove (2.72). We prove first that

IA(e1) ≥ KB(1). (2.73)

By (b) and (c) above,

IA(e1) = μ(A | J1 = 1)− μ(A | J1 = 0) (2.74)

= λ(B | f1(U) = 1)− λ(B | f1(U) = 0) (2.75)

= λ(B | U1 > 1− a1)− λ(B | U1 ≤ 1− a1) (2.76)

= λ(B | U1 = 1)− λ(B | U1 = 0) (2.77)

= KB(1). (2.78)
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We turn to (2.73) with j ≥ 2. We reorder the set E to bring the index j to
the front. That is, we let F be the reordered index set F = (k1, · · · , kN) =
(j, 1, · · · , j − 1, j + 1, · · · , N). Let g = (gkr : r = 1, · · · , N) denote the
associated function given by (2.65)-(2.67) subject to the new ordering, and
let C = g−1(A). We claim that

KC(k1) ≥ KB(j). (2.79)

By (2.74)-(2.78) with E replaced by F , KC(k1) = IA(j), and (2.72) follows.
It remains to prove (2.79); we use monotonicity again for this. It suffices to
prove that

λ(C | Uj = 1) ≥ λ(B | Uj = 1), (2.80)

together with the reversed inequality given Uj = 0. Let

U = (U1, · · · , Uj−1, 1, Uj+1, · · · , UN ). (2.81)

The 0/1-vector f(U) = (fi(U) : i = 1, · · · , N), constructed sequentially by
considering the indices 1, · · · , N in turn. At stage k, we declare fk(U) equal
to 1 if Uk exceeds a certain function ak of the variables fi(U), 1 ≤ i < k.
By the monotonicity of μ, this function is non-increasing in these variables.
Notice that (i) fj(U = 1), and (ii) given this fact, it is more likely than
before that the variables fk(U), j < k ≤ N , will take the value 1. The values
fk(U), 1 ≤ k < j are unaffected by the value of Uj .

Consider now the 0/1-vector g(U) = (gkr(U) : r = 1, · · ·N), constructed
in the same manner as above but with the new ordering F of the index set
E. First we examine index k1(= j) and we automatically declare gk1(U) = 1
(since Uj = 1). We then construct gkr(U), r = 2, 3, · · · , N , in sequence.
Since the ak are non-decreasing in the variables constructed so far,

gkr(U) ≥ fkr(U) (r = 2, 3, · · · , N). (2.82)

Therefore, g(U) ≥ f(U), and hence

λ(C | Uj = 1) = λ(g(U) ∈ A) ≥ λ(f(U) ∈ A) = λ(B | Uj = 1). (2.83)

Inequality (2.80) has been proved. The same argument implies the reversed
inequality obtained from (2.80) by changing the conditioning to Uj = 0.
Inequality (2.79) follows and the proof is complete.
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2.4 Sharp thresholds for increasing events

Let μ be a probability measure on (Ω,F). For p ∈ (0, 1), let μp be the
probability measure given by

μp(ω) =
1

Zp

μ(ω)
{∏

e∈E
pω(e)(1− p)1−ω(e)

}
(ω ∈ Ω), (2.84)

where Zp is the normalizing constant

Zp =
∑
ω∈Ω

μ(ω)
{∏

e∈E
pω(e)(1− p)1−ω(e)

}
. (2.85)

Thus, μ = μ 1
2
and each μp is positive if, and only if, μ is positive. Since

∏
e∈E

p(ω1∨ω2)(e)+(ω1∧ω2)(e)(1− p)(ω1∨ω2)(e)+(ω1∧ω2)(e)

=
∏
e∈E

pω1(e)+ω2(e)(1− p)ω1(e)+ω2(e) (2.86)

each μp satisfies the FKG lattice condition if, and only if, μ satisfies this
condition; and it follows from Theorem 2.7 that, for positive μ, μ is monotonic
if, and only if, each μp is monotonic.

Theorem 2.9. For a random variable X : Ω→ R,

d

dp
Eμp [X] =

1

p(1− p)covp[|η|, X ] (p ∈ (0, 1)], (2.87)

where covp denotes covariance with respect to the probability measure μp and
η(ω) is the set of ω-open edges.

Notice that, since |η|(ω) =
∑

e∈E Je(ω) (ω ∈ Ω),

covp[|η|, X ] =
∑
e∈E

covp[Je, X ]. (2.88)

Proof. Write

νp(ω) = p|η(ω)|(1− p)N−|η(ω)|μ(ω) (ω ∈ Ω), (2.89)
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so that

Eμp [X] =
1

Zp

∑
ω∈Ω

X(ω)νp(ω). (2.90)

By differentiating (2.90), we obtain

d

dp
Eμp [X] =

1

Zp

∑
ω∈Ω

( |η(ω)|
p
− N − |η(ω)|

1− p
)
X(ω)νp(ω)−

Z ′
p

Zp
Eμp [X], (2.91)

where Z ′
p =

dZp

dp
. Setting X = 1, we find that

0 =
1

p(1− p)Eμp [|η| − pN ]−
Z ′

p

Zp
, (2.92)

whence

p(1− p) d
dp

Eμp [X] = Eμp [(|η| − pN)X]− Eμp [|η| − pN ]Eμp [X] (2.93)

= Eμp [|η|X ]− Eμp [|η|]Eμp[X ] (2.94)

= covp[|η|, X ] (2.95)

Let Π be the group of permutations of |E|. Any π ∈ Π acts on Ω by
πω = (ω(πe) : e ∈ E). We say that a subgroup A of Π acts transitively on
E if, for all pairs j, k ∈ E, there exists α ∈ A with αj = k. Let A be a
subgroup of Π. A probability measure φ on (Ω,F) is called A-invariant if
φ(ω) = φ(αω) for all α ∈ A. An event A ∈ F is called A-invariant if A = αA
for all α ∈ A. Thus, for any subgroup A, μ is A-invariant if and only if each
μp is A-invariant.

Theorem 2.10 (Sharp threshold). Let A ∈ F be an increasing event and μ
be a positive probability measure on (Ω,F) that is monotonic, Suppose there
exists a subgroup A of Π acting transitively on E such that μ and A are
A-invariant. Then there exists a constant c ∈ (0,∞) such that

dEμp [A]

dp
≥ cmp

p(1− p) min{μp(A), 1− μp(A)} logN (p ∈ (0, 1)),

where mp = μp(Je)(1− μp(Je)).
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Let Ip,A(e) = μp(A|Je = 1)− μp(A|Je = 0).

Lemma 2.1. Let A ∈ F . Suppose there exists a subgroup A of Π acting
transitively on E such that μ and A are A-invariant. Then Ip,A(e) = Ip,A(f)
for all e, f ∈ E and all p ∈ (0, 1).

Proof. Since μ is A-invariant, so is μp for every p. Let e, f ∈ [E] and find
α ∈ A such that αe = f , under the given conditions,

μp(A|Jf) =
∑
ω∈A

μp(ω)1Jf (ω) =
∑
ω∈A

μp(αω)1Je(αω)

=
∑
ω′∈A

μp(ω
′)1Je(ω

′) = μp(A|Je).

We deduce with A = Ω that μp(Jf) = μp(Je). On dividing we obtain that
μp(A|Jf) = μp(A|Je). A similar equality holds with Jk replaced by Jk, and
the lemma follows.

Proof of Theorem 2.10. By Lemma 2.1, Ip,A(e) = Ip,A(f) for all e, f ∈ E.
Since A is increasing and μp is monotonic, each Ip,A(e) is non-negative, and
therefore

covp(1Je, 1A) = Eμp [1Je1A]− Eμp [1Je]Eμp [1A]

= Eμp [1Je)](1− Eμp [1Je])Ip,A(e) ≥ mpIp,A(e) (e ∈ E).
Summing over the set of variables E as in Theorem 2.10, and by noting that
covp(|η| + X) =

∑
e∈E covp(1Je, X), we deduce the result by Theorem 2.8

applied to the monotonic measure μp.

2.5 Probability measures on the Euclidean

cube

The method of the proof of Theorem 2.8 may also be applied to probability
measures on the Euclidean cube [0, 1]N that are absolutely continuous with
respect to the Lebesgue measure. Any such measure μ has a density function
ρ, that is

μ(A) =

∫
A

ρ(x)λ(dx),
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for Lebesgue measurable subsets A of [0, 1]N , with λ denoting Lebesque mea-
sure.

Let N ≥ 1 and write Ω = [0, 1]N . Let ρ : Ω → [0,∞) be Lebesgue
measurable. We call ρ a density function if∫

Ω

ρ(x)λ(dx) = 1,

and in this case we denote by μρ the corresponding probability measure,

μρ(A) =

∫
A

ρ(x)λ(dx).

We call ρ positive if it is strictly positive function on Ω and we say it satisfies
the (continuous) FKG lattice condition if

ρ(x ∨ y)ρ(x ∧ y) ≥ ρ(x)ρ(y) (for all x, y ∈ Ω), (2.96)

where the operations ∨, ∧ are defined as the coordinate-wise maximum and
minimum, respectively.

Let ρ be a density function. We call μρ positively associated if

μρ(A ∩ B) ≥ μρ(A)μρ(B),

for all increasing subsets of Ω.
Let I = {1, 2, ..., N}. For J ⊆ I, let ΩJ = [0, 1]J and

Ωξ
J = {x ∈ Ω : xj = ξj for j ∈ I\J} (ξ ∈ Ω). (2.97)

The Lebesgue σ-algebra of ΩJ is denoted by FJ . Let ρ be a positive density
function. We define the conditional probability measure μξ

ρ,J on (ΩJ , FJ) by

μξ
ρ,J(E) =

∫
E

ρξJ(x)λ(d(xj : j ∈ J)) (E ∈ FJ), (2.98)

where ρξJ is the conditional density function

ρξJ(x) =
1

Zξ
J

ρ(x)�Ωξ
J
(x), Zξ

J =

∫
Ωξ

J

ρ(x)λ(d(xj : j ∈ J)).

We sometimes write μρ(E|(ξi : i ∈ I\J)) for μξ
ρ,J(E) and we recall the stan-

dard fact that μρ(·|(ξi : i ∈ I\J)) is a version of the conditional expectation
given the σ-algebra FI\J .
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We say that ρ is strongly positively associated if for all J ⊆ I and all
ξ ∈ Ω, the measure μξ

ρ,J is positively associated. We call ρ monotonic if for
all J ⊆ I, all increasing subsets A of ΩJ and all ξ, ζ ∈ Ω,

μξ
ρ,J(A) ≤ μζ

ρ,J(A) whenever ξ ≤ ζ, (2.99)

which is to say that, for all J ⊆ I,

μξ
ρ,J ≤st μ

ζ
ρ,J whenever ξ ≤ ζ. (2.100)

Now, a basic result concerning stochastic ordering:

Theorem 2.11. [17, Theorem 3] Let N ≥ 1 and let f1 and f2 be density
functions on Ω = [0, 1]N . If

f1(x ∨ y)f2(x ∧ y) ≥ f1(x)f2(y) for all x, y ∈ [0, 1]N ,

then μ2 = μf2 ≤st μf1 = μ1.

We will change the statement of the Theorem and consider the following
proposition.

Proposition 2.1. As above, suppose f1, f2 satisfy

f1(x ∨ y)f2(x ∧ y) ≥ f1(x)f2(y) for all x, y ∈ [0, 1]N ,

Then there exists a probability measure ν on (Ω× Ω,F × F) such that

ν(A× Ω) = μ1(A) (for all A ∈ F), (2.101)

ν(Ω×B) = μ2(B) (for all B ∈ F), (2.102)

ν{(x, y) ∈ Ω× Ω : x ≥ y} = 1. (2.103)

Theorem 2.11 is an immediate consequence of Proposition 2.1, since if
X : Ω→ R is an increasing function and E = {(x, y) ∈ Ω×Ω : x ≥ y}, then∫

Ω

Xμ1(dx)−
∫
Ω

Xμ2(dx) =

∫
Ω×Ω

(X(x)−X(y))ν(d(x, y))

=

∫
E

(X(x)−X(y))ν(d(x, y)) ≥ 0,

because X(x) ≥ X(y) if (x, y) ∈ E.
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Proof. The Proposition 1 is proved by induction on |E| = N . Suppose for the
moment that N ≥ 2, let k ∈ E and put E ′ = E\{k}. Let π1, π2 denote the
projection of μ1, μ2, respectively, onto ΩI′. Then we have πi = giλ (i = 1, 2),
where gi : ΩE′ → R are given by,

gi(x) =

∫
[0,1]

fi(x, w)dw,

Lemma 2.2. Suppose that for all x, y ∈ Ω

f1(x ∨ y)f2(x ∧ y) ≥ f1(x)f2(y).

Then for all x′, y′ ∈ Ω′ we have

g1(x
′ ∨ y′)g2(x′ ∧ y′) ≥ g1(x

′)g2(y′).

Proof. Let K = {(w, z) ∈ [0, 1]× [0, 1] : w > z}, L = {(w, z) ∈ [0, 1]× [0, 1] :
w = z}, M = {(w, z) ∈ [0, 1]× [0, 1] : w < z}. Then

g1(x
′ ∨ y′)g2(x′ ∧ y′) =

∫∫
K∪L∪M

f1(x
′ ∨ y′, w)f2(x′ ∧ y′, z)dwdz. (2.104)

=

∫∫
L

f1(x
′ ∨ y′, w)f2(x′ ∧ y′, z)dwdz

+

∫∫
K

{f1(x′ ∨ y′, w)f2(x′ ∧ y′, z) + f1(x
′ ∨ y′, z)f2(x′ ∧ y′, w)}dwdz.

(2.105)

Similarly,

g1(x
′)g2(y′) =

∫∫
L

f1(x
′, w)f2(y′, z)dwdz

+

∫∫
K

{f1(x′, w)f2(y′, z) + f1(x
′, z)f2(y′, w)}dwdz.

But by hypothesis we have

f1(x
′ ∨ y′, w)f2(x′ ∧ y′, w) ≥ f1(x

′, w)f2(y′, w)

and thus we can ignore the terms involving integrations over L. It remains
to show that

f1(x
′ ∨ y′, w)f2(x′ ∧ y′, z) + f1(x

′ ∨ y′, z)f2(x′ ∧ y′, w)
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≥ f1(x
′, w)f2(y′, z) + f1(x

′, z)f2(y′, w) whenever w > z.

Let us write
a = f1(x

′ ∨ y′, w)f2(x′ ∧ y′, z),
b = f1(x

′ ∨ y′, z)f2(x′ ∧ y′, w),
c = f1(x

′, w)f2(y′, z),

d = f1(x
′, z)f2(y′, w).

Using the hypothesis, one may see that if w > z, then a ≥ c, a ≥ d and
ab ≥ cd. We want to show that a + b ≥ c + d; this follows from the next
claim.

Claim 2.1. Let a, b, c, d be non-negative real number with a ≥ c, a ≥ d and
ab ≥ cd. Then a+ b ≥ c + d.

If a = 0 then c = d = 0 and the result is true; thus we can assume that
a > 0. Now (a− c)(a− d) ≥ 0 gives aa+ cd ≥ ac+ ad and since cd ≥ ab we
get aa + ab ≥ ac + ad. By dividing by a, we have the result.

Let α be a non-negative measure on ([0, 1],F), the Lebesgue σ-algebra on
[0, 1]. Let h1, h2 be the densities with respect to α of probability measures
γ1, γ2 on ([0, 1],F), and let ᾱ be the measure on ([0, 1] × [0, 1],F × F) got
by projecting α onto the diagonal of [0, 1]× [0, 1]; thus if B ∈ F × F then

ᾱ(B) = α{y ∈ Y : (y, y) ∈ B}.

Define a probability measure δ on ([0, 1]× [0, 1],F ×F) by

δ(x, y) = min{h1(x), h2(y)}ᾱ+ [

∫∫
h′2(z)dα(z)]

−1h′1(x)h
′
2(y)α× α,

where h′1(x) = [h1(x) − h2(x)]+, h′2 = [h2(y) − h1(y)]+. (h+ = max {0, h}.)
Note that since h

′
1 + h2 = h

′
2 + h1, we have∫

h′2(z)dα(z) =
∫
h′1(z)dα(z),

thus if
∫
h′2(z)dα(z) = 0 then h1 = h2 = 0 and we will leave out the second

term in the definition of δ.
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Claim 2.2. Let α as above. Then

δ(A× Y ) = γ1(A) (for all A ∈ B) (2.106)

δ(Y × B) = γ2(B) (for all B ∈ B) (2.107)

It follows from a simple calculation.

Claim 2.3. Suppose for all x, y ∈ Y with x ≥ y we have

h1(x)h2(y) ≥ h1(y)h2(x).

Then δ{(x, y) ∈ Y × Y : x ≥ y} = 1.

It is sufficient to show that h′1(x)h
′
2(x) = 0, unless x ≥ y. Thus suppose

there exist x, y with x > y and h′1(y)h
′
2(x) > 0. Then h1(y) > h2(y), h2(x) >

h1(x), and hence

h1(x)h2(y) < h1(y)h2(x)

which contradicts the hypothesis of the lemma.
Together Claims 2.2 and 2.3 give us Proposition 2.1 for the case N = 1;

the explicit expression for δ will enable us to complete the proof in general.
Let q : [0, 1]→ R with q ≥ 0 and

∫
q(w)dw = 1. Define, for i = 1, 2,

Fi(x
′, w) =

{
fi(x′,w)∫
fi(x′,w)

dw if
∫
fi(x

′, y)dy > 0

q(w) otherwise.
(2.108)

Thus F1 (respectively, F2) is a version of the Radon-Nikodym derivative of
μ1 (respectively, μ2) with respect to π1×λ1 (respectively, π2×λ1), where λ1
denotes the Lebesgue measure on [0, 1].

Define Q,R : [0, 1]E
′ × [0, 1]E

′ × [0, 1]× [0, 1]→ R by

Q(x′, y′, w, z) = min {F1(x
′, w), F2(y

′, z)} (2.109)

R(x′, y′, w, z) = [S(x′, y′)]−1[F1(x
′, w)− F2(y

′, w)]+[F2(y
′, z)− F1(x

′, z)]+,
(2.110)

where S(x′, y′) =
∫
[F2(y

′, z) − F1(x
′, z)]+dz. As in the definition of δ,

S(x, x′) = 0 if, and only if, F1(x
′, w) = F2(y

′, w) (for λ1-a.e. w) and in
this case we define R(x′, y′, w, z) = 0. Let λ1 be the measure on ([0, 1] ×
[0, 1],F × F1) got by projecting λ1 onto the diagonal of [0, 1] × [0, 1] and
define the probability measure ν on (Ω× Ω,F ×F) by

ν = Qν ′ × λ1 +Rν ′ × λ1 × λ1 (2.111)
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Claim 2.4. ν satisfies (2.100) and (2.101), in Proposition 1.

This is a straightforward calculation.

Claim 2.5. ν satisfies (2.102), in Proposition 1.

For i = 1, 2, let Bi = {x′ ∈ [0, 1]E
′
:
∫
fi(x

′, w)dw = 0}. If x′ ∈ B1,
y′ ∈ B2 and x′ ≥ y′ then

F1(x
′, w)F2(y

′, z) ≥ F1(x
′, z)F2(y

′, w) (2.112)

, whenever w ≥ z. As in the Claim 2.3, R(x′, y′, w, z) = 0, unless w ≥ z.
Therefore, it just remains to show that ν(B1 × [0, 1]× [0, 1]E

′
) = ν([0, 1]E

′ ×
B2 × [0, 1]) = 0. But

ν(B1 × [0, 1]× [0, 1]E
′
) = μ1(B1 × [0, 1]) =

∫
B1

∫
[0,1]

f1(x
′, w)dwdλN−1 = 0,

(2.113)

and similarly ν([0, 1]N ×B2 × [0, 1]) = 0.

If ρ satisfies the FKG lattice condition and A is an increasing event, then

�A(x ∨ y)ρ(x ∨ y)ρ(x ∧ y) ≥ �A(x)ρ(x)ρ(y),

whence, by Theorem 2.11,

μρ(A)μρ(B) ≤ μρ(A ∩ B)

for all increasing A, B. Therefore, μρ is positively associated. (Here consider
�A ρ
μρ(A)

as g with μρ(A) > 0, μρ as f in Theorem 1 and notice that μg(B) =

μρ(A ∩ B), for measurable subsets B ⊆ [0, 1]N .)
Henceforth, we restrict ourselves to positive density functions. Arguments

similar to the above are valid with ρ (assumed positive) replaced by the
conditional density function ρξJ , and thus one arrives at the following:

Theorem 2.12. Let N ≥ 1, and let ρ be a positive density function on
Ω = [0, 1]N satisfying the FKG lattice condition (2.96). Then ρ is strongly
positively associated and monotonic.
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We turn now to a continuous version of the Influence Theorem. Let
N ≥ 1 and let ρ be a monotonic positive density on Ω = [0, 1]N . Let
U = (U1, . . . , UN) be the identity function on [0, 1]N . For an increasing
subset A of Ω, let the conditional influences be

IA(i) = μρ(A|Ui = 1)− μρ(A|Ui = 0) (i ∈ I). (2.114)

Theorem 2.13 (Influence). Let A be an increasing subset of Ω = [0, 1]N , N ≥
1. Let ρ be a positive density function on Ω that is monotonic. There exist
i ∈ I and a constant c ∈ (0,∞) such that

IA(i) ≥ cmin{μ(A), 1− μ(A)} logN
N

. (2.115)

Proof. First we construct an increasing event B such that λ(B) = μ(A), by
way of a function f : Ω → Ω. Let x = (xi : 1 ≤ i ≤ N) ∈ Ω and write
f(x) = (f1(x), . . . , fN(x)). The first coordinate f1(x) depends on x1 only
and is defined by

μρ(U1 > f1(x)) = 1− x1.
Since the density function ρ is strictly positive, f1(x) is a continuous and
strictly increasing function of x1 (hence it is a homeomorphism between [0, 1]
and the image of f1). Notice that the law of f1(U) under λ is the same as
that of U1 under μρ. Indeed, by considering the pushforward measures, the
strict monotonicity of f1 implies that, for all x ∈ Ω,

f1(U)∗(λ)(f1(x), 1] = λ(U−1 ◦ f−1(f1(x), 1]) = λ(x1, 1] = 1− x1,

U1∗(μρ)(f1(x), 1] = μρ(U
−1
1 (f1(x), 1]) = μρ(U1 ≥ f1(x)) = 1− x1.

Having defined f1, we define f2 in terms of x1, x2 only by

μρ(U2 > f2(x)|U1 = f1(x)) = 1− x2.

The left-hand side is defined according to (2.98). It is a standard fact
that μρ(·|U1 = f1) is a version of the conditional expectation Eμρ(·|σ(U1)),
where σ(U1) denotes the σ-algebra generated by U1. As above, the pair
(f1(U), f2(U)) has the same law under λ as does the pair (U1, U2) under
μρ. Since ρ is positive and monotonic, for each given x1 ∈ (0, 1), f(x) is a
continuous and strictly increasing function of x2.
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We continue inductively. Suppose we know fi(x) for 1 ≤ i < k. Then
fk(x) depends on x1, . . . , xk and is given by

μρ(Uk > fk|Ui = fi(x) for i ≤ i < k)) = 1− xk.

Analogously, by monotonicity, f is strictly increasing and the law of f(U)
under λ is the same as the law of U under μρ. We set B = f−1(A).

Let
JB(i) = λ(B|Ui = 1)− λ(B|Ui = 0) (i ∈ I).

By Theorem 1.7 (BKKKL), there exists a constant c ∈ (0,∞), indepen-
dent of the choice of N and A, such that there exists i ∈ I with

JB(i) ≥ cmin{λ(B), 1− λ(b)} logN
N

.

Since f is continuous and strictly increasing,

μρ(A|U1 = b) = λ(B|f1(U1) = b) = λ(B|U1 = b) (b = 0, 1), (2.116)

implying that IA(1) = JB(1). It remains to show that IA(j) ≥ JB(j) for j ∈
I. Let j ∈ I, j �= 1. We reorder the coordinate set as K = {k1, k2, . . . , kN} =
{j, 1, . . . , j − 1, j + 1, . . . , N} and construct a continuous increasing function
g as above, but subject to the new ordering. Let C = g−1(A). We claim that

JC(k1) ≥ JB(j). (2.117)

Thus, by (2.115) , JC(k1) = IA(j) and IA(j) ≥ JB(j), j ∈ I follows. It
remains to prove the claim. It suffices to prove that

μρ(A|Uj = 1) = λ(C|Uk1 = 1) ≥ λ(B|Uj = 1), (2.118)

a similar argument being valid with 1 replaced by 0 and the inequality re-
versed.

Conditioned on [Uj = 1], g1(U) ≥ f1(U), for f1 and g1 depend only on U1

and Uj , respectively, and f (hence, also g) are strictly increasing functions.
Under the same conditioning, let 1 ≤ r < j, and assume it has already been
proved that fi(x) ≤ gi(x) for x ∈ Ω and 1 ≤ i < r. We claim that, for x ∈ Ω,

μρ(Ur > ξ|Ui = fi(x) for 1 ≤ i < r) (2.119)

≤ μρ(Ur > ξ|Uj = 1, Ui = gi(x) for 1 ≤ i < r)) ξ ∈ [0, 1].
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By monotonicity,

μρ,J(·|Uj = u, Ui = fi(x) for 1 ≤ i < r) (2.120)

≤st μρ,J(·|Uj = 1, Ui = gi(x) for 1 ≤ i < r), u ∈ [0, 1].

The left-hand side of (2.120) is a version of conditional expectation of the
conditional measure μρ,J(·|Ui = fi(x) for 1 ≤ i < r), given σ(Uj). By
averaging over the value of u in (2.120), we obtain (2.119). Therefore, fr(x) ≤
gr(x), x ∈ Ω, and we have f ≤ g. Hence,

λ(C|Uj = 1) = λ(g(U) ∈ A|Uj = 1) ≥ λ(f(U) ∈ A|Uj = 1) = λ(B|Uj = 1).

Inequality (2.118) has been proved and (2.117) follows, which completes the
proof.

Unlike the discrete setting, Theorem 2.13 does not imply a sharp-threshold.
Any density function ρ on [0, 1]N may be used to generate a parametric family
(ρp : 0 < p < 1) of densities given by

ρp(x) =
1

Zρ,p
ρ(x)

N∏
i=1

pxi(1− p)1−xi (x = (x1, . . . , xN ) ∈ [0, 1]N),

and we write μp = μρ,p. Let A be an increasing subset of [0, 1]N . The proof of
Theorem 2.9 may be adapted to this setting (by using X = 1A and replacing
|η| by

∑N
i=1 Ui) to obtain that

d

dp
μp(A) =

1

p(1− p)

N∑
i=1

covp(Ui, 1A),

where U = (U1, . . . , UN) is the identity function on [0, 1]N , and covp denotes
covariance with respect to μp.

Let ρ be a nonzero constant function, so that μp is Lebesgue measure.
As above, let p ∈ (0, 1) and let Y1, . . . , YN be independent random variables
taking values in [0,1] with common density function

ρp(x) =

{ log p/(1−p)
2p−1

px(1− p)1−x, if p �= 1
2
, x ∈ (0, 1),

1, if p = 1
2
, x ∈ (0, 1).
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Notice that the joint density function, ρp(x) =
∏N

i=1 ρp(xi), x = (x1, . . . , xN) ∈
[0, 1]N , satisfies the FKG lattice condition and therefore is monotonic: for
x, y ∈ [0, 1]N ,

ρp(x ∨ y)ρp(x ∧ y) ≥ [
log p/(1− p)

2p− 1
]2N

N∏
i=1

pxi+yi(1− p)2−xi−yi

= ρp(x)ρp(y).

Let A = (N−1, 1]
N . Then,

μp(A) =

∫
A

ρp(x)λ(dx) =

⎧⎪⎨
⎪⎩

[ log[p/(1−p)]
2p−1

∫ 1
1
N
px(1− p)1−xdx]N , if p �= 1

2
,

(1− 1
N
)N , if p = 1

2
.

By writing π = p
1−p

, for p �= 1
2
and setting u = πx, we have that x(log(π)) =

log(u), and dx = (log(π))−1u−1du. Thus∫ 1

1
N

πxdx =

∫ π

π1/N

du = π − π1/N ,

and by noting that π − 1 = (2p− 1)/(1− p), one may see that

μp(A) =

⎧⎨
⎩

(1− π1/N−1
π−1

)N , if p �= 1
2

(1− 1
N
)N , if p = 1

2
,

Therefore, as N →∞,

μp(A)→
{
π−1/(π−1), if p �= 1

2
,

exp−1, if p = 1
2
.

In addition,

cov1/2(Ui, 1A) =
1

N
(1− 1

N
)N−1 ∼ exp−1

N
.

Theorem 2.13 may be applied to the event A, but there is no sharp
threshold for μp(A). This situation diverges from that of the discrete setting
at the point where a lower bound for the conditional influence IA(i) is used
to calculate a lower bound for the covariance covp(Ui, 1A).
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Chapter 3

The Random Cluster model

3.1 Introduction

Let G = (V,E) be a finite graph, usually assumed to have neither loops
nor multiple edges (otherwise, the property is stressed). An edge e having
endvertices x and y is written as e = 〈x, y〉. As in the previous Chapter,
we consider as state space the set Ω = {0, 1}E of which are 0/1-vectors
ω = (ω(e) : e ∈ E). We call the edge e open (in ω) if ω(e) = 1, and closed
if ω(e) = 0. For ω ∈ Ω, let η(ω) = {e ∈ E : ω(e) = 1} denote the set of
open edges. There is a one-one correspondence between vectors ω ∈ Ω and
subsets F ⊆ E, given by F = η(ω). Let k(ω) be the number of connected
components (or open clusters) of the graph (V, η(ω)), and note that k(ω)
includes a count of isolated vertices, that is, of vertices incident to no open
edge.

A random cluster measure on G has two parameters, an edge-weight p
and a cluster-weight q, satisfying p ∈ [0, 1] and q ∈ (0,∞), and is defined as
the measure φp,q on the measurable pair (Ω,F) given by

φp,q(ω) =
1

Z(p, q)

{∏
e∈E

pω(e)(1− p)1−ω(e)
}
qk(ω) (ω ∈ Ω) (3.1)

where the partition function or normalizing constant, Z(p, q) is given by

Z(p, q) =
∑
ω∈Ω

{∏
e∈E

pω(e)(1− p)1−ω(e)
}
qk(ω). (3.2)

Sometimes φp,q is written as φG,p,q, when the choice of graph G is to be
stressed.
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This measure differs from product measure due to the term qk(ω). Note
the difference between the cases q ≤ 1 and q ≥ 1: the former favours fewer
clusters, whereas the latter favours a larger number of clusters. When q = 1
(we write φG,p or φp), edges are open/closed independently of one another.
This special case corresponds to bond percolation and random graphs. Per-
haps the most important values of q are the integers, since the random-cluster
model with q ∈ {2, 3, · · · } corresponds to the Potts model with q local states.

3.2 Conditional probabilities

For e = 〈x, y〉 ∈ E, the expression G\e (respectively, G.e) denotes the graph
obtained from G by deleting (respectively, contracting) the edge e. We write
Ω〈e〉 = {0, 1}E\{e} and, for ω ∈ Ω, we define ω〈e〉 ∈ Ω〈e〉 by

ω〈e〉(f) = ω(f) (f ∈ E, f �= e). (3.3)

Let Ke (e = 〈x, y〉) denote the event that x and y are joined by an open
path not using e.

Theorem 3.1 (Conditional probabilities). Let p ∈ (0, 1), q ∈ (0,∞).

(a) We have for e ∈ E that

φG,p,q(ω | ω(e) = j) =

⎧⎨
⎩

φG\e,p,q(ω〈e〉) if j = 0,

φG.e,p,q(ω〈e〉) if j = 1,
(3.4)

and

φG,p,q(ω(e) = 1 | ω〈e〉) =
{
p if ω〈e〉 ∈ Ke,

p
p+q(1−p)

if ω〈e〉 /∈ Ke.
(3.5)

(b) Conversely, if φ is a probability measure on (Ω,F) satisfying (3.5) for
all ω ∈ Ω and e ∈ E, then φ = φG,p,q.

Proof. (a) By expanding the conditional probability,

φG,p,q(ω | ω(e) = j) =

⎧⎨
⎩

φG,p,q(ωe)/φG,p,q(Je) if j = 0,

φG,p,q(ω
e)/φG,p,q(Je) if j = 1,

(ω ∈ Ω)

(3.6)
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where Je = {ω ∈ Ω : ω(e) = 1}, and ωe, ω
e are given by

ωe(f) =

{
ω(f) if f �= e,
1 if f = e,

(f ∈ E) (3.7)

ωe(f) =

{
ω(f) if f �= e,
0 if f = e,

(f ∈ E). (3.8)

Similarly,

φG,p,q(ω(e) = 1 | ω〈e〉) =
φG,p,q(ω

e)

φG,p,q(ωe) + ωG,p,q(ωe)
(3.9)

=
[p/(1− p)]|η(ωe)|qk(ω

e)

[p/(1− p)]|η(ωe)|qk(ωe) + [p/(1− p)]|η(ωe)|qk(ωe)

(3.10)

=

⎧⎪⎨
⎪⎩

p/(1−p)
[p/(1−p)]+1

if ωe ∈ Ke,

p/(1−p)
[p/(1−p)]+q

if ωe /∈ Ke,

(3.11)

for |η(ωe)|− |η(ωe)| = 1. Regarding the difference k(ωe)−k(ωe), notice
that by closing the edge e, if ωe ∈ Ke, then the number of open clusters
remains the same; otherwise, this quantity increases by one.

(b) The claim follows from the fact that a strictly positive probability mea-
sure φ is specified uniquely by the conditional probabilities φ(ω(e) =
1 | ω〈e〉), ω ∈ Ω, e ∈ E. Indeed, let φ and ψ be two such probability mea-
sures which agree on conditionings as above (if E = {e}, then φ = ψ).
This condition implies that φ(ωf

〈e〉|ω〈e,f〉) = ψ(ωf
〈e〉|ω〈e,f〉), and immedi-

ately that φ(ω〈e〉f |ω〈e,f〉) = ψ(ω〈e〉f |ω〈e,f〉). Or more generally, for any
ordering of edges in E, e1, · · · eN , φ(ω〈e1,...,ek−1〉(ek) = jk|ω〈e1,...,ek〉) =
ψ(ω〈e1,...,ek−1〉(ek) = jk|ω〈e1,...,ek〉), for jk = 0, 1 and 2 ≤ k ≤ N − 1.
Thus, since for any ω ∈ Ω,

φ(ω) =φ(ω(e1) = j1|ω〈e1〉)φ(ω〈e1〉(e2) = j2|ω〈e1,e2〉) . . .

φ(ω〈e1,...,eN−2〉(eN−1) = jN−1|ω〈e1,...,eN−1〉)φ(ω〈e1,...,eN−1〉), (3.12)

for j1, · · · , jN−1 ∈ {0, 1}, we conclude that φ = ψ.
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The effect of conditioning on the state open or closed of an edge e is to
replace the measure φG,p,q by the random-cluster measure on the respective
graph G\e or G.e. In addition, the conditional probability that e is open,
given the configuration elsewhere, depends only on whether or not Ke occurs,
and is then given by the stated formula. By (3.5),

0 < φG,p,q(ω(e) = 1 | ω〈e〉) < 1 (e ∈ E, p ∈ (0, 1), q ∈ (0,∞)) (3.13)

Thus, given ω〈e〉, each of the two possible states of e occurs with a strictly
positive probability. This fact is known as the finite-energy property, and is
related to the property of so-called insertion tolerance.

Let ξ ∈ Ω, F ⊆ E, and let Ωξ
F be the subset of Ω containing all configu-

rations ψ satisfying ψ(e) = ξ(e) for all e /∈ F . We define the random-cluster
measure φξ

F,p,q (on the finite graph (VF , F ) with boundary condition ξ ) on
(Ω,F) by

φξ
F,p,q =

⎧⎪⎨
⎪⎩

1

Zξ
F (p,q)

{∏
e∈F p

ω(e)(1− p)1−ω(e)
}
qk(ω,F ) if ω ∈ Ωξ

F ,

0 otherwise,

(3.14)

where k(ω, F ) is the number of components of the graph (G, η(ω)) that in-
tersect the set of endvertices of F, and

Zξ
F (p, q) =

∑
ω∈Ωξ

F

{∏
e∈F

pω(e)(1− p)1−ω(e)
}
qk(ω,F ). (3.15)

Note that φξ
F,p,q(Ω

ξ
F ) = 1.

Now, we introduce some notation. For W ⊆ V , let EW denote the set
of edges of G having both endvertices in W . We write FW (respectively,
TW ) for the smallest σ-field of F with respect to which each of the random
variables ω(e), e ∈ EW (respectively, e /∈ EW ), is measurable. The notation
FF , TF is to be interpreted similarly for F ⊆ E. The intersection of the TF
over all finite sets F is called the tail σ-field and is denoted by T . Sets in T
are called tail events.

Theorem 3.2. Let p ∈ [0, 1], q ∈ (0,∞), and F ⊆ E. Let X be a random
variable that is FF -measurable. Then

EφG,p,q
[X|TF ](ξ) = Eφξ

F,p,q
[X] (3.16)
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Proof. This holds by repeated application of (3.4), with one application for
each edge not belonging in F .

In other words, given the states of edges not belonging to F , the condi-
tional measure on F is a random-cluster measure subject to the retention of
open connections of ξ using edges not belonging to F .

3.3 Positive association and comparison in-

equalities

Let φp,q denote the random-cluster measure on G with parameters p and q.
We will see that φp,q satisfies the FKG lattice condition whenever q ≥ 1, and
we arrive thus at the following conclusion.

Theorem 3.3. Let p ∈ (0, 1) and q ∈ [1,∞).

a The random-cluster measure φp,q is strictly positive and satisfies the
FKG lattice condition.

b The random-cluster measure φp,q is strongly positively-associated, and
in particular

Eφp,q(XY ) ≥ Eφp,q(X)Eφp,q(Y ) for increasing X, Y : Ω→ R,
(3.17)

φp,q(A ∩ B) ≥ φp,q(A)φp,q(B) for increasing A,B ∈ F . (3.18)

Proof. Let p ∈ (0, 1) and q ∈ [1,∞). Part (b) follows from (a) and Theorem
2.7. It is elementary that φp,q is strictly positive. We now check as required
that φp,q satisfies the FKG lattice condition. Since the set η(ω) of open edges
in a configuration ω satisfies

|η(ω1 ∧ ω2)|+ |η(ω1 ∨ ω2)| = |η(ω1)|+ |η(ω2)| (ω1, ω1 ∈ Ω), (3.19)

it suffices, on taking logarithms, to prove that

k(ω1 ∧ ω2) + k(ω1 ∨ ω2) ≥ k(ω1) + k(ω2) (ω1, ω1 ∈ Ω). (3.20)
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By Theorem 2.6, we may restrict our attention to incomparable pairs ω1, ω2

that differ on exactly two edges. There must then exist distinct edges e, f ∈ E
and a configuration ω ∈ Ω such that ω1 = ωe

f , ω2 = ωf
e . As in the proof of

Theorem 2.7, we omit reference to the states of edges other than e and f ,
and we write ω1 = 10 and ω2 = 01. Let Df be the indicator function of the
event that the endvertices of f are connected by no open path of E\{f}.
Since Df is a decreasing random variable, we have that Df (10) ≤ Df(00).
Therefore,

k(10)− k(11) = Df(10) ≤ Df(00) = k(00)− k(01), (3.21)

which implies (20).

In general, φp,q is not positively associated when q ∈ (0, 1), as illustrated
in the following example. Let G be the graph containing just two vertices
and having exactly two parallel edges e and f joining these vertices. It is a
straightforward computation that

φp,q(Je ∩ Jf )− φp,q(Je)φp,q(Jf) =
p2q2(q − 1)(1− p)2

Z(p, q)2
, (3.22)

where Jg is the event that g is open. This is strictly negative if 0 < p, q < 1.
Now, restricting to the case G = (V,E) is a finite graph, we present the

comparison inequalities.

Theorem 3.4.

φp1,q1 ≤st φp2,q2 if q1 ≥ q2, q1 ≥ 1 and p1 ≤ p2. (3.23)

Proof. We may assume that p1, p2 ∈ (0, 1), since the other cases are straight-
forward. Let X : Ω→ R be increasing. Then

Eφp2,q2
[X] (3.24)

=
1

Z(p2, q2)

∑
ω∈Ω

X(ω)p
|η(ω)|
2 (1− p)|E\η(ω)|qk(ω)2 (3.25)

=
(1− p2
1− p1

)|E| 1

Z(p2, q2)

∑
ω∈Ω

X(ω)Y (ω)p
|η(ω)|
1 (1− p1)|E\η(ω)|qk(ω)1

(3.26)

=
(1− p2
1− p1

)|E|Z(p1, q1)
Z(p2, q2)

Eφp1,q1
[XY ] (3.27)

(3.28)
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where

Y (ω) =
(q2
q1

)k(ω)(p2/(1− p2)
p1/(1− p1)

)|η(ω)|
. (3.29)

Setting X = 1, we obtain

Eφp2,q2
[1] = 1 =

(1− p2
1− p1

)|E|Z(p1, q1)
Z(p2, q2)

Eφp1,q1
[Y ], (3.30)

whence, on dividing,

Eφp2,q2
[X ] =

φp1,q1[XY ]

φp1,q1[Y ]
. (3.31)

Assume now that the conditions of (3.23) hold. Since k(ω) is a decreasing
function and |η(ω)| is increasing, we have that Y is increasing. Since q1 ≥ 1,
φp1,q1 is positively associated, so

Eφp1,q1
[XY ] ≥ Eφp1,q1

[X]Eφp1,q1
[Y ], (3.32)

and (3.31) yields Eφp2,q2
[X] ≥ Eφp1,q1

[X]. Claim (3.23) follows.

3.4 Differential formulae and sharp thresh-

olds

One way of estimating the probability of an event A is via an estimate of
its derivative dφp,q(A)/dp. For ω ∈ Ω, let |η| = |η(ω)| =

∑
e∈E ω(e) be

the number of open edges of ω as usual, and k = k(ω) the number of open
clusters.

Theorem 3.5. Let p ∈ (0, 1), q ∈ (0,∞), and let φp,q be the corresponding
random-cluster measure on a finite graph G = (V,E). We have that

d

dp
Eφp,q(X) =

1

p(1− p)covp,q(|η|, X), (3.33)

d

dq
Eφp,q(X) =

1

q
covp,q(k,X), (3.34)

for any random variable X : Ω → R, where covp,q denotes covariance with
respect to φp,q.
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Proof. The first formula was proved for Theorem 2.9 and the second is ob-
tained in a similar fashion.

In most applications, we set X = 1A, the indicator function of some given
event A, and we obtain that

d

dp
φp,q(A) =

Eφp,q(1A|η|)− φp,q(A)Eφp,q(|η|)
p(1− p) (3.35)

with a similar formula for the derivative with respect to q.
Now we present two examples of Theorem 4 which result in monotonicities

valid for all q ∈ (0,∞). Let h : R → R be non-decreasing. On setting
X = h(|η|), we have from (3.33) that

d

dp
Eφp,q(X) =

1

p(1− p)covp,q(|η|, h(|η|)) ≥ 0. (3.36)

In the special case h(x) = x, we deduce that the mean number of open edges
is a non-decreasing function of p, for all q ∈ (0,∞). Similarly, by (3.34), for
non-decreasing h,

d

dq
Eφp,q(h(k)) =

1

q
covp,q(k, h(k)) ≥ 0. (3.37)

This time we take h = −1(−∞,1], so that −h is the indicator function of
the event that the open graph (V, η(ω)) is connected. We deduce that the
probability of connectedness is a decreasing function of q on the interval
(0,∞).

Let q ∈ [1,∞). Since φp,q satisfies the FKG lattice condition, it is mono-
tonic. Let A be a subgroup of the automorphism group Aut(G) of the graph
G = (V,E). We call E A-transitive if A acts transitively on E.

Theorem 3.6 (Sharp threshold). Let A ∈ F be an increasing event, and
suppose there exists a subgroup A of Aut(G) such that E is A-transitive and
A is A-invariant. Then, for p ∈ (0, 1) and q ∈ [1,∞), there exists an absolute
constant c ∈ (0,∞) such that

d

dp
φp,q(A) ≥ Cmin{φp,q(A), 1− φp,q(A)} log |E|, (3.38)

where
C = cmin

{
1,

q

{p+ q(1− p)}2
}

(3.39)
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Proof. With A as in the theorem, φp,q is A-invariant since A ⊆ Aut(G). The
claim is a consequence of Theorem (2.10) on noting from (3.5) that

φp,q(Je)φp,q(Je)

p(1− p) ≥ min
{
1,

q

{p+ q(1− p)}2
}

(e ∈ E). (3.40)

Since q ≥ 1, (3.38) implies that

d

dp
φp,q(A) ≥

c

q
min{φp,q(A), 1− φp,q(A)} log |E|, (3.41)

an inequality that may be integrated directly. Let p1 = p1(A, q) ∈ (0, 1) be
chosen such that φp1,q(A) ≥ 1

2
. Note that φp,q(A) ≥ 1

2
for p ∈ (p1, p2) (by

comparison inequalities). Then

− d

dp
log (1− φp,q(A)) ≥

c

q
log |E| (p ∈ (p1, 1)) (3.42)

and hence, by integration,

φp,q(A) ≥ 1− 1

2
|E|−c(p−p1)/q (p ∈ (p1, 1), q ∈ [1,∞)) (3.43)

whenever the conditions of Theorem 3.6 are satisfied. If in addition p1 ≥√
q/(1 +

√
q), then C = c, and hence

φp,q(A) ≥ 1− 1

2
|E|−c(p−p1) (p ∈ (p1, 1)), (3.44)

under the condition φp1,q(A) ≥ 1
2
. As an application of this inequality, we

derive, in the next section, a lower bound for the probability of an open
crossing of a rectangle of Z2.

Now, we present an extension of the sharp-threshold theorem for mono-
tonic probability measures applied to increasing events (Theorem 2.10) with
no assumption of symmetry. In what follows, μ is a positive measure on
Ω = {0, 1}E, |E| = N , (μ(ω) > 0, ω ∈ Ω) satisfying the FKG lattice condi-
tion, μp, for p ∈ (0, 1), is the probability measure given by

μp(ω) =
1

Zp

{∏
e∈E

pω(e)(1− p)1−ω(e)
}
μ(ω) (ω ∈ Ω),

and JA,p(e) = μp(A|Je = 1)−μp(A|Je = 0) is the conditional influence of the
element e ∈ E on the event A.
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Theorem 3.7. There exists a constant c > 0 such that for any increasing
event A �= ∅, Ω,

d

dp
μp(A) ≥

cξp
p(1− p)μp(A)(1− μp(A)) log [1/(2mA,p)], (3.45)

where mA,p = maxe∈EJA,p(s) and ξp = mine∈E [μp(Je)(1− μp(Je))].

Proof. It is proved (in Theorem 2.9) that

d

dp
μp(A) =

1

p(1− p)
∑
e∈E

μp(e)(1− μp(e))JA,p(e). (3.46)

Let K = [0, 1]E be the ”continuous” cube, endowed with Lebesgue mea-
sure λ, and let B be an increasing subset of K. The influence IB(e) of an
element e is given as

IB(e) = λ(1B(ψ
e) �= 1B(ψe)), (3.47)

where ψe (respectively, ψe) is the member of K obtained from ψ ∈ K by set-
ting ψ(e) = 1 (respectively, ψ(e) = 0). We know that there exists a constant
c > 0, independent of all other quantities, such that for any increasing event
B ⊆ K, ∑

e∈E
IB(e) ≥ cλ(B)(1− λ(B)) log [1/(2mB)], (3.48)

where mB = maxe∈EIB(e).
It is shown in the proof of the Theorem 2.8 that there exists an increasing

subset B of K such that μp(A) = λ(B), and JA,p(e) ≥ IB(e) for all e ∈ E
(see (2.72)). Inequality (3.45) follows by (3.46) and (3.48).

Corollary 3.1. In the notation of Theorem 3.7,

μp1(A)[1− μp2(A)] ≥ κB(p2−p1) (0 < p1 ≤ p2 < 1), (3.49)

where

B = inf
p∈(p1,p2)

{ cξp
p(1− p)

}
, κ = 2 sup

p∈(p1,p2),e∈E
JA,p(e). (3.50)
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Figure 3.1: The planar dual of the square lattice [10].

Proof. By (3.45),

( 1

μp(A)
+

1

1− μp(A)

)
μ′
p(A) ≥ B log (κ−1) (p1 < p < p2), (3.51)

whence, on integrating over (p1, p2),

μp2(A)

1− μp2(A)

/ μp1(A)

1− μp1(A)
≥ κ−B(p2−p1). (3.52)

The claim follows.

3.5 Planar duality

Let Z = {· · · ,−1, 0, 1, · · · } be the integers and Z
2 the set of all 2-vectors

x = (x1, x2) of integers. We turn Z
2 into a graph by placing an edge between

any two vertices x, y with |x− y| = 1, where

|z| = |z1|+ |z2|, (z ∈ Z). (3.53)

We write E2 for the set of such edges and L
2 = (Z2,E2) for the ensuing graph.

A graph is callled planar if it may be embedded in R
2 in such a way

that two edges intersect only at a common endvertex. Let G = (V,E) be a
planar (finite or infinite) graph embedded in R

2. We obtain its dual graph
Gd = (Vd, Ed) as follows. We place a dual vertex within each face of G,
including any infinite face of G if such exist. For each e ∈ E we place a dual
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Figure 3.2: A primal configuration ω, with solid lines and vertices, and its
dual configuration ωd, with dashed lines and hollow vertices [10].

edge ed = 〈xd, yd〉 joining the two dual vertices lying in the two faces of G
abutting e; if these two faces are the same, then xd = yd and ed is a loop.
Thus, Vd is in one-one correspondence with the set of faces of G, and Ed is
in one-one correspondece with E. It is clear that the dual L2

d of the square
lattice L

2 is isomorphic to L
2. See Figure 3.1.

Suppose that G is finite. A configuration ω ∈ Ω = {0, 1}E gives rise to a
dual configuration ωd ∈ Ωd = {0, 1}Ed given by ωd(ed) = 1−ω(e). That is, ed
is declared open if and only if e is closed. As before, to each configuration ωd

there corresponds the set η(ωd) = {ed ∈ Ed : ωd(ed) = 1} of its ’open edges’,
so that η(ωd) is in one-one correspondence with E\η(ω). Let f(ωd) be the
number of faces of the graph (Vd, η(ωd)), including the unique infinite face.
Note that each face of the dual graph corresponds to a unique component of
the primal graph lying ’just within’ (see Figure 3.2). The faces of (Vd, η(ωd))
are in one-one correspondence with the components of (V, η(ω)); therefore

f(ωd) = k(ω). (3.54)

We shall make use of Euler’s formula, namely

k(ω) = |V | − |η(ω)|+ f(ω)− 1 (ω ∈ Ω) (3.55)

and we note also for later use that

|η(ω)|+ |η(ωd)| = |E|. (3.56)

Let q ∈ (0,∞) and p ∈ (0, 1). The random-cluster measure on G is given
by

φG,p,q(ω) ∝ (
p

1− p)
|η(ω)|qk(ω) (ω ∈ Ω), (3.57)
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where the constant of proportionality depends on G, p and q. Therefore,

φG,p,q(ω) ∝
( p

1− p
)−|η(ωd)|

qf(ωd) (by (3.54) and (3.56)) (3.58)

∝
(q(1− p)

p

)|η(ωd)|
qk(ωd) (by (3.55) applied to ωd) (3.59)

∝ φG,pd,q(ωd), (3.60)

where the dual parameter pd is given by

pd
1− pd

=
q(1− p)

p
. (3.61)

Note that the value of pd satisfies (pd)d = p. Since (3.58) involves probability
measures, we deduce that

φG,p,q(ω) = φGd,pd,q(ωd) (ω ∈ Ω). (3.62)

It will later be convenient to work with the edge-parameter

x =
q−

1
2p

1− p, (3.63)

for which the primal/dual transformation (3.61) becomes

xxd = 1. (3.64)

The unique fixed point of the mapping p �→ pd is easily seen from (3.61)
to be the self-dual point psd(q) given by

psd =

√
q

1 +
√
q
. (3.65)

We note that

φG,psd(q),q(ω) ∝ q
1
2
|η(ω)|+k(ω) ∝ q

1
2
(k(ωd)+k(ω)), (3.66)

by (3.54)-(3.55). This representation at the self-dual point psd(q) highlights
the duality of measures.

When we keep track of the constants of proportionality in (3.58), we find
that the partition function

ZG(p, q) =
∑
ω∈Ω

p|η(ω)|(1− p)|E\η(ω)|qk(ω) (3.67)
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Figure 3.3: The dual of the box Λ(n) = [−n, n]2 [10].

satisfies the duality relation

ZG(p, q) = q|V |−1
(1− p

pd

)|E|
ZGd

(pd, q). (3.68)

Therefore,
ZG(psd(q), q) = q|V |−1− 1

2
|E|ZGd

(psd(q), q). (3.69)

Now, we return to L
2 = (Z2,E2). Given a finite graph G, we will focus on

two boundary conditions: the wired boundary condition, denoted by φG,p,q, is
specified by the fact that all the vertices on the boundary are pairwise wired;
and the free boundary condition, denoted by φG,p,q, is specified by no wiring
between sites. Let Λ(n) = [−n, n]2, viewed as a subgraph of L2, and note
that its dual graph Λ(n)d may be obtained from the box [−n− 1, n]2+(1

2
, 1
2
)

by identifying all boundary vertices (see Figure 3.3). By (3.62), and with a
small adjustment on the boundary of Λ(n)d,

φ0
Λ(n),p,q(ω) = φ1

Λ(n)d,pd,q
(ωd) (3.70)

for configurations ω on Λ(n). Let A be a cylinder event of Ω = {0, 1}E2
, and

write Ad for the dual event of Λd = {0, 1}E2
d, that is, Ad = {ωd ∈ Ωd : ω ∈

A}. On letting n → ∞ in (3.70), we obtain by the Thermodynamic Limit
Theorem [10, Theorem 4.19(a)] that

φ0
p,q(A) = φ

1

pd,q
(Ad), (3.71)

60



Figure 3.4: The box R(5) and its dual R(5)d [10].

where the notation φ is used to indicate the random-cluster measure on the
dual configuration space Ωd. By a similar argument,

φ1
p,q(A) = φ

0

pd,q
(Ad) (3.72)

We summarize the above in a theorem.

Theorem 3.8. Consider the square lattice L
2, and let q ∈ [1,∞). For any

cylinder event A,

φb
p,q(A) = φ

1−b

pd,q
(Ad) (b = 0, 1), (3.73)

where Ad = {ωd ∈ Ωd : ω ∈ A}.

3.6 Box-crossings in the Random Cluster model

There is a key application of duality to the existence of open crossings of a
box. Let R(n) = [0, n + 1] × [0, n] (n ≥ 1, [0, n] = {0, 1, 2, · · · , n}) and let
R(n)d be its dual box [0, n]× [−1, n] + (1

2
, 1
2
). Let An be the event that there

exists an open path of R(n) joining some vertex on its left side to some vertex
on its right side. It is standard that (An)d is the event that there exists no
open dual crossing from the top to the bottom of R(n)d. See Figure 3.4.
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Indeed, denote by Bn the event that there exists an open path of R(n)d
joining a vertex on the top side of R(n)d to a vertex on its bottom side.
Notice that An∩Bn = ∅, since if both An and Bn occur, then there exists an
open path in R(n) which crosses an open path in R(n)d. Where these two
paths cross, there is an open edge of L2 which is crossed by an open edge of
L
2
d, and this is impossible. On the other hand, either An or Bn must occur.

Suppose that An does not occur, and let D be the set of all vertices of R(n)
which are attainable from the left side of R(n) along open paths; we turn
D into a graph by adding all open edges of R(n) joining pairs of vertices in
D. It is straightforward that there exists an open path of L2

d crossing R(n)d
from top to bottom, and which crosses only edges of R(n) contained in the
edge boundary of D. Thus, Bn occurs whenever An does not occur.

Theorem 3.9. Let q ∈ [1,∞). We have that

φ0
psd(q),q

(An) + φ1
psd(q),q

(An) = 1 (n ≥ 1). (3.74)

Proof. Apply Theorem 3.8 with b = 0 to the event A = An, and use the fact

that φ
1

p,q((An)d) = φ1
p,q(An) = 1− φ1

p,q(An).

Now consider the square S(n) = [0, n]2 viewed as a subgraph of L2. We
identify certain pairs of vertices on the boundary of S(n) in order to make it
symmetric. More specifically, we identify any pair of the form (0, m), (n,m)
and of the form (m, 0), (m,n), for 0 ≤ m ≤ n, and we merge any parallel
edges that ensue. Let Tn = (Vn, En) denote the resulting toroidal graph.
Let An be the automorphism group of the graph Tn and note that An acts
transitively on En. The configuration space of the random-cluster model on
Tn is denoted by Ω(n) = {0, 1}En.

Let p ∈ (0, 1) and q ∈ [1,∞). Write φn,p for the random-cluster measure
on Tn with parameters p and q and note that φn,p is An-invariant. We note
that the dual of Tn is isomorphic to Tn, and the random-cluster measure on
Tn is self-dual when p = psd (by (3.62)).

Let ω ∈ Ω(n). Any translate in Tn of a rectangle of the form [0, r] ×
[0, s] is said to be of size r × s. When r �= s, such a translate is said to
be transversed long-ways (respectively, transversed short-ways) if the two
shorter sides (respectively, longer sides) of the rectangle are joined within
the rectangle by an open path of ω.

Let α ∈ (1,∞) and let SWn,α denote the event that the rectangle Hn,α =
[0, �nα�]× [0, �n/α�] is crossed short-ways. One would normally take α − 1
to be small and n to be large in the next theorem.
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Theorem 3.10. [11] Let α ∈ (1,∞), k, n ≥ 2, q ∈ [1,∞) and psd < p < 1.
Suppose that n/(n− 1) ≤ α < min{k, n}. We have that

φkn,p(SWn,α) ≥ 1− exp−g(p−psd), (3.75)

where

g = g(k, n, α) =
2c

M
log (kn) (3.76)

and

M = 2
(
1 +

k

α− 1

)(
1 +

kα

α− 1

)
. (3.77)

Note that M is of order 2k2α/(α − 1)2 for large k, n. For p > psd, one
may make φkn,p(SWn,α) large by holding k fixed and sending n→∞.

Proof. Assume the given conditions. Let R(n) = [0, n + 1] × [0, n], viewed
as a subgraph of Tkn, and let LWn be the event that R(n) is transversed
long-ways. By a standard duality argument,

φkn,psd(LWn) =
1

2
(k ≥ 2, n ≥ 1). (3.78)

Let An be the event that there exists in Tkn some translate of the square
S(n) = [0, n]× [0, n] that possesses either an open top-bottom crossing or an
open left-right crossing. The event An is An-invariant, and

φkn,psd(An) ≥ φkn,psd(LWn) =
1

2
. (3.79)

We apply (3.34) to the event An, with p1 = psd and with N = 2(kn)2

being the number of edges in Tkn. This yields that

φkn,p(An) ≥ 1− 1

2
[2(kn)2]−c(p−psd)

≥ 1− (kn)−2c(p−psd) (psd < p < 1). (3.80)

The event An is defined on the whole of the torus. Let α = �nα�, b =
�n/α�, and let Hn,α = [0, a]× [0, b] and Vn,α = [0, b]× [0, a]. Let hn,α, vn,α be
the sets of vertices in Tkn given by

hn,α =
{(
l1(a− n), l2(n− b)

)
∈ Vkn : 0 ≤ l1 <

kn

a− n, 0 ≤ l2 <
kn

n− b
}
,

(3.81)
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νn,α =
{(
l1(n−b), l2(a−n)

)
∈ Vkn : 0 ≤ l1 <

kn

n− b , 0 ≤ l2 <
kn

a− n
}
, (3.82)

where the li are integers. That n−b ≥ 1 follows by assumption α ≥ n/(n−1).
Consider the set H = Hn,α + hn,α of translates of Hn,α by vectors in hn,α,
and also the set V = Vn,α + νn,α. If An occurs, then some rectangle in H∪V
is traversed short-ways. By positive association and symmetry,

φkn,p(An) ≥ φkn,p (no member of H ∪ V is traversed short− ways)
≥ {1− φkn,p(SWn,α)}R (3.83)

where SWn,α is the event that Hn is traversed short-ways, and

R = |hn,α|+ |νn,α| ≤ 2
⌈ kn

a− n
⌉
.
⌈ kn

n− b
⌉
. (3.84)

After taking into account rounding effects, we find that R ≤ M . Inequality
(3.75) follows from (3.80), (3.83) e (3.84).

Consider the square lattice Z
2 with edge-set E, and let Ω = {0, 1}E. Let

Λ = Λn = [−n, n]2 be a finite box of Z2, with edge-set EΛ. For b ∈ {0, 1}
define

Ωb
Λ = {ω ∈ Ω : ω(e) = b for e /∈ EΛ}. (3.85)

On Ωb
Λ we define a random-cluster φb

Λ,p,q as follows. For p ∈ [0, 1] and q ∈
[1,∞), let

φb
Λ,p,q(ω) =

1

Zb
Λ,p,q

{ ∏
e∈EΛ

pω(e)(1− p)1−ω(e)
}
qk(ω,Λ), (ω ∈ Ωb

Λ), (3.86)

where k(ω,Λ) is the number of clusters of (Z2, η(ω)) that intersect Λ.
For A,B ⊆ Z

2, we write A↔ B if there exists an open path joining some
a ∈ A to some b ∈ B. We write x ↔ ∞ if the vertex x is the endpoint of
some infinite open path. The percolation probabilities are given as

θb(p, q) = φb
p,q(0↔∞) (b = 0, 1). (3.87)

Since each θb is nondecreasing in p, one may define the critical point by

pc(q) = sup {p : θ1(p, q) = 0}. (3.88)
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It is known that φ0
p,q = φ1

p,q if p �= psd(q), and we write φp,q for the common
value. In particular, φ0(p, q) = φ1(p, q) for p �= pc(q). It is conjectured that
φ0
p,q = φ1

p,q when p = pc(q) and q ≤ 4.
Let Bk = [0, k]× [0, k − 1], and let Hk be the event that Bk possesses an

open left-right crossing. That is, Hk is the event that Bk contains an open
path having one endvertex on its left side and one on its right-hand side.

Theorem 3.11. [12] Let q ≥ 1. We have that

φp,q(Hk) ≤ 2ρpsd−p
k (0 < p < psd(q)), (3.89)

φp,q(Hk) ≥ 1− 2νp−psd
k (psd(q) < p < 1), (3.90)

for k ≥ 1, where

ρk = [2qηk/p]
c/q, νk = [2qηk/pd]

c/q (3.91)

and
ηk = φ0

psd(q),q
(0↔ ∂Λk/2)→ 0 as k →∞ (3.92)

Here, c is an absolute positive constant.

Let Bk,m = [0, k] × [0, m] and let Hk,m be the event that there exists an
open left-right crossing of Bk,m

Theorem 3.12. [12] Let q ≥ 1. We have that

φp1,q(Hk,m)[1− φp2,q(Hk,m)] ≤ ρp2−p1
k (0 < p1 < p2 ≤ psd(q)), (3.93)

φp1,q(Hk,m)[1− φp2,q(Hk,m)] ≤ νp2−p1
m+1 (psd(q) ≤ p1 < p2 < 1), (3.94)

for k,m ≥ 1, where ρk (resp., νk) is with p = p1 (resp., p = p2), and φpsd(q),q

is to be interpreted as φ0
psd(q),q

.

We shall apply Theorem 3.6 to a random-cluster measure φp,q with q ≥ 1.
By using Theorem 3.1, we obtain

p

q
≤ p

p+ q(1− p) ≤ φp,q(e) ≤ p (3.95)

whence

φp,q(e)[1− φp,q(e)] ≥
p(1− p)

q
. (3.96)
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We may thus take B = c
q
in Corollary 3.1.

Let q ≥ 1, 1 ≤ k,m < n, and consider the random-cluster measure φb
n,p =

φb
Λn,p,q on the box Λn. For e ∈ E

2, write J b
k,m,n(e) for the (conditional)

influence of e on the event Hk,m under the measure φb
n,p. We set J b

k,m,n(e) = 0
for e /∈ EΛn .

At this point, we introduce and explain the boundary coupling property,
which will be used in the proof of Theorem 3.11. Recall that a coupling of
two measures φ1 and φ2 on Ω is a measure μ on Ω × Ω with marginals φ1

and μ2 (in order). If φ1 and φ2 are conditional distributions of some φ given
boundary conditions ξ1 and ξ2, we also say μ is a coupling of ξ1 and ξ2 under
φ.

We say that a measure φ on Ω has the boundary coupling property if for
every finite Γ and every boundary condition ξ on Γ, there exists a coupling
μ of ξ and 1 (the configuration that assigns 1 to each site) under φ with the
property that

μ{(ω, ω′) ∈ Ω× Ω : ω(e) = ω′(e) for all (3.97)

e ∈ C∂E(Γ)(ω) ∩ C∂E(Γ)(ω′) = 1}, (3.98)

where C∂E(Γ)(ω) denotes the boundary cluster in ω, that is, the union of the
connected components of the edges of ∂E(Γ) in the configuration ω.

Lemma 3.1. [1, Lemma 2.3] For a measure φ on Ω, suppose that for every
finite Γ,

(a) for every pair of boundary conditions ξ1, ξ2 on Γ with ξ1 ≤ ξ2, and every
e ∈ Γ,

φξ1
Γ (ω(e) = 1) ≤ φξ2

Γ (ω
′(e) = 1); (3.99)

(b) for every boundary condition ξ on Γ with ξ(e) = 0 for all e ∈ ∂E(Γ),

φξ
Γ = φ(·|ξ(x) = 0 for all e ∈ ∂E(Γ)) (3.100)

Then φ has the boundary coupling property with respect to b = 1.

Proof. Order the sites of Γ = {e1, · · · , em} in such a way that e precedes f
in the ordering if d(e,Γ) < d(f,Γ) (for example, spiraling inwards if Γ is a
cube). We select the pairs (ωe1, ωe2) one at a time, as follows. Let S0 = ∅ and
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suppose some set of edges Sn has been selected, and the corresponding values
(ω(e), ω′(e)) chosen, by time n. Suppose also that ω(e) ≥ ω′(e) for all e ∈ Sn.
At time n+1, we let i be the least index, if any, such that edge ei has not been
selected and some site adjacent to ei is connected to ∂EΓ in ω′ by an open
path of previously selected edges. We then have (ξ1)Γ × ωSn ≤ (ξ2)Γ × ω′

Sn
,

and from (a),

φξ1
Γ (ω(ei) = 1|ω(e), e ∈ Sn) = φ

((ξ1)Γ×ωSn)

Γ\Sn
(ω(ei) = 1)

≤ φ
(ξ2)Γ×ω′

Sn

Γ\Sn
(ω(ei) = 1) = φξ2

Γ (ω(ei) = 1|ω′(e), e ∈ Γ). (3.101)

Let p and p′ denote the probabilities on the left and right sides of (3.101),
respectively. Then let (ω(ei), ω

′(ei)) be (0, 0) with probability 1 − p′, (0, 1)
with probability p′ − p and (1, 1) with probability p. Let τ be the first time
at which there are no longer any edges satisfying the property stressed in
italic. Then Sτ is necessarily the cluster C∂E(Γ)(ω

′), so ω(e) = ω′(e) = 0
for all e ∈ ∂E(C∂E(Γ)(ω

′)). Then by (b), the inequality (3.101) becomes an
equality from time τ onward. This means the coupling constructed satisfies

ωe = ω′
e for all e ∈ C(∂E , ω′), (3.102)

which establishes the boundary coupling property.

Lemma 3.2. Let q ≥ 1. We have that

sup
e∈E2

J0
k,m,n(e) ≤

q

p
ηk (0 < p ≤ psd(q), 1 ≤ k,m < n) (3.103)

sup
e∈E2

J1
k,m,n ≤

q

pd
ηm+1 (psd(q) ≤ p < 1, 1 ≤ k,m < n) (3.104)

where pd satisfies
pd

1− pd
=
q(1− p)

p
(3.105)

and
ηk = φ0

psd(q),q
(0↔ ∂Λk/2)→ 0 k →∞. (3.106)

Proof. For any configuration ω ∈ Ω and vertex z, let Cz(ω) be the open
cluster at z, that is, the set of all vertices joined to z by open paths.

Suppose first that 0 < p ≤ psd(q), and let e = 〈x, y〉 be an edge of
Λn. We couple the two conditional measures φ0

n,p(·|ω(e) = b), b = 0, 1, in
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the following manner. Let Ωn be the configuration space of the edges in
Λn, and let T = {(π, ω) ∈ Ω2

n : π ≤ ω} be the set of all ordered pairs
of configurations. Since φ0

n,p is strongly positively associated (see (2.56)-
(2.57)), and by Theorems 3.1 and 3.2, φ0

n,p satisfies the hypothesis of Lemma
3.1. Then there exists a measure μe on T such that:

(a) the first marginal of μe is φ0
n,p(·|1e = 0);

(b) the second marginal of μe is φ0
n,p(·|1e = 1);

(c) for any subset γ of Λn, conditional on the event {(π, ω) : Cx(ω) = γ},
the configuration π and ω are μe-almost-surely equal on all edges having
no endvertex in γ.

We claim that
J0
k,m,n(e) ≥ φ0

n,p(Dx|1e = 1), (3.107)

where Dx is the event that Cx intersects both the left and right sides of Bk,m.
This is proved as follows. By the conditional influence formula,

J0
k,m,n(e) = μe(ω ∈ Hk,m, π /∈ Hk,m) (3.108)

≤ μe(ω ∈ Hk,m ∩Dx) (3.109)

≤ μe(ω ∈ Dx) = φ0
n,p(Dx|1e = 1), (3.110)

since, when ω /∈ Dx, either both or neither of ω, π belong to Hk,m. By (26),

J0
k,m,n(e) ≥

φ0
n,p(Dx)

φ0
n,p(1e)

. (3.111)

OnDx, the radius of the open cluster at x is at least 1
2
k. Since φ0

n,p ≤st φp,q

and φp,q is translation-invariant,

φ0
n,p ≤ φp,q(x↔ x+ ∂Λk/2) = φp,q(0↔ ∂Λk/2). (3.112)

By θ0(psd(q), q) = 0 (q ≥ 1) (see [10, Theorem 6.17(a)]),

φp,q(0↔ ∂Λk/2) ≤ φ0
psd(q),q

(0↔ ∂Λk/2)→ 0 as k →∞, (3.113)

and, by (3.95) and (3.111), the conclusion of the lemma is proved when
p ≤ psd(q). , we work with the dual open paths. Each edge ed = 〈x, y〉 of
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the dual lattice traverses some edge e = 〈x, y〉 Suppose next that psd(q) ≤
p < 1. Instead of working with the open paths, we work with the dual
open paths. Each edge ed = 〈u, v〉 of the dual lattice traverses some edge
e = 〈x, y〉 of the primal, and, for each configuration ω, we define the dual
configuration ωd by ωd(ed) = 1 − ω(e). Thus, the dual edge ed is open if
and only if e is closed. With ω distributed according to φ1

n,p, ωd has as law
the random-cluster measure, denoted φn,pd,d, on the dual of Λn with free
boundary condition [10, Equation (6.12)]. The event Hk,m occurs if and only
if there is no dual open path traversing the dual of Bk,m from top to bottom.
We may therefore apply the above argument to the dual process, obtaining
thus that

J1
k,m,n(e) ≤

φn,pd,d(Vu)

φn,pd,d(1e)
, (3.114)

where Vu is the event that Cu intersects both the top and bottom sides of
the dual of Bk,m.

On the event Vu, the radius of the open cluster at u is at least 1
2
(m+ 1).

Since φn,pd,d ≤st φpd,q,

φn,pd,d(Vu) ≤ φpd,q(u↔ u+ ∂Λ(m+1)/2) = φpd,q(0↔ ∂Λ(m+1)/2). (3.115)

As above, by p < psd(q) if and only if pd > psd(q),

φpd,q(0↔ ∂Λ(m+1)/2) ≤ φ0
psd(q),q

(0↔ ∂Λ(m+1)/2) = ηm+1, (3.116)

and this completes the proof when p ≥ psd(q).

Proof of Theorem 3.12. This follows immediately from Corollary 3.1 by tak-
ing B = c

q
and Lemma 3.2.

Proof of Theorem 3.11. By planar duality,

φ0
p,q(Hk) = 1− φ1

pd,q
(Hk), (3.117)

where p, pd are related by

pd
1− pd

=
q(1− p)

p
. (3.118)

Since φ0
psd(q),q

≤st φ
1
psd(q),q

,

φ0
psd(q),q

(Hk) ≤
1

2
≤ φ1

psd(q),q
(Hk), (3.119)

and Theorem 3.11 follows from Theorem 3.12.
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