*F***-EXPANSIVITY FOR BOREL MEASURES**

HELMUTH VILLAVICENCIO FERNÁNDEZ

ABSTRACT. We introduce the notion of \mathcal{F} -expansive measure by making the dynamical ball in [4] to depend on a given subset \mathcal{F} of the set of all the reparametrizations \mathcal{H} . We prove that these measures satisfy some interesting properties resembling the expansive ones. These include the equivalence with expansivity when $\mathcal{F} = \mathcal{H}$, the vanishing along the orbits, the absence of singularities in the support, the \mathcal{F} -expansivity with respect to time t-maps, the invariance under equivalence and the characterization for suspensions. We also analyze the support of the \mathcal{F} -expansive measures and prove that there exists a dense subset of measures (in the set of \mathcal{F} -expansive measures) all of them with a common support. Finally, we extend to flows the recent result for homeomorphisms in [12].

1. INTRODUCTION

The notion of expansive homeomorphism has been important in the development of the theory of dynamical systems. Since the introduction of this concept by Utz [16] an extensive literature about it has been developed. This concept was subsequently extended to flows by Bowen and Walters [2]. Basically, the idea behind Bowen-Walters definition is that points which are far away in the topology induced by the flow can be separated at the same time with the help of a continuous time lag. Afterwards, Keynes and Sears [8] restricted the reparametrizations in the Bowen-Walters definition to subsets \mathcal{F} giving rise to the concept of \mathcal{F} -expansive transformation group. The recent appearance of the expansive measure [13] extended the expansivity of homeomorphisms to Borel probability measures considering the behavior of the dynamical ball respect to the measure. Further steps were given in [4] with the concept of expansive measures for flows or in [6] and [11] with the notions of asymptotic and weak expansive measures [6], [11].

In light of these results, it is natural to consider a notion of expansivity for measures by restricting the reparametrizations as in [8]. We obtain the notion of \mathcal{F} -expansive measure for flows in which \mathcal{F} is a given subset of the set of reparametrizations \mathcal{H} .

We prove that these measures satisfy some interesting properties resembling the expansive ones. These include the equivalence with expansivity when $\mathcal{F}=\mathcal{H}$, the vanishing along the orbits, the absence of singularities in the support, the \mathcal{F} expansivity with respect to time *t*-maps, the invariance under equivalence and the characterization for suspensions. We also analyze the support of the \mathcal{F} -expansive

²⁰¹⁰ Mathematics Subject Classification. Primary 54H20; Secondary 37C10.

 $Key\ words\ and\ phrases.$ Expansive measure; Expansive flow; Support of a measure; Metric space.

Partially supported by Fondecyt (C.G. 217-2014).

measures and prove that there exists a dense subset of measures (in the set of \mathcal{F} -expansive measures) all of them with a common support. Finally, we extend to flows the recent result for homeomorphisms in [12].

2. Statement of the results

Hereafter (X, d) will denote a compact metric space. The closed and open ball operations will be denoted by $B[x, \delta]$ and $B(x, \delta)$ respectively. The closure and boundary operations will be denoted by $\overline{(\cdot)}$ and $\partial(\cdot)$ respectively. A flow of X is a map $\phi : \mathbb{R} \times X \to X$ satisfying $\phi(0, x) = x$ and $\phi(t, \phi(s, x)) = \phi(t + s, x)$ for all $t, s \in \mathbb{R}$ and $x \in X$. A flow is continuous if it is continuous with respect to the product metric of $\mathbb{R} \times X$. Given $A \subset X$ and $I \subset \mathbb{R}$ we define $\phi_I(A) = \{\phi_t(x) :$ $(t, x) \in I \times A\}$. If A consists of a single point x, then we write $\phi_I(x)$ instead of $\phi_I(\{x\})$. If $x \in X$ satisfies $\phi_{\mathbb{R}}(x) = \{x\}$, then we say that x is a singularity of ϕ . Denote by $Sinq(\phi)$ the set of singularities of ϕ .

The Borel σ -algebra of X is the σ -algebra $\mathcal{B}(X)$ generated by the open subsets of X. A Borel probability measure is a σ -additive measure μ defined in $\mathcal{B}(X)$ such that $\mu(X) = 1$. For any subset $B \subset X$ we write $\mu(B) = 0$, if $\mu(A) = 0$ for every Borel set $A \subset B$. Denote by \mathcal{H} the set of continuous maps $h : \mathbb{R} \to \mathbb{R}$ such that h(0) = 0. Given a flow ϕ of $X, x \in X$ and $\delta > 0$ we define the dynamical ball as

$$\Gamma^{\phi}_{\delta}(x) = \bigcup_{h \in \mathcal{H}} \bigcap_{t \in \mathbb{R}} \phi_{-h(t)}(B[\phi_t(x), \delta]).$$

Note that this ball is not always a closed set of X. The following is a straightforward reformulation of the notion of expansive flow due to Bowen and Walters [2].

Definition 2.1. A flow ϕ is expansive if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$\Gamma^{\phi}_{\delta}(x) \subset \phi_{[-\epsilon,\epsilon]}(x), \quad for \ all \ x \in X.$$

Next, we recall the definition of expansive measure for flows [4].

Definition 2.2. A Borel probability measure μ is expansive for a flow ϕ if there exists $\delta > 0$ such that

$$\mu(\Gamma^{\phi}_{\delta}(x)) = 0, \quad for \ all \ x \in X.$$

To motivate our main definition we recall the following generalization of expansive flow introduced by H.B. Keynes and Sears in [8]. They introduced the idea of restriction of the time lag, and gave one definition of expansiveness weaker than Bowen-Walters. More precisely: Given a flow ϕ of $X, x \in X, \delta > 0$ and a subset \mathcal{F} of \mathcal{H} , we define the \mathcal{F} -dependent dynamical ball as

$$\Gamma^{\phi}_{\delta}(x,\mathcal{F}) = \bigcup_{h \in \mathcal{F}} \bigcap_{t \in \mathbb{R}} \phi_{-h(t)}(B[\phi_t(x), \delta]),$$

and the following definition holds.

Definition 2.3. Given a subset $\mathcal{F} \subset \mathcal{H}$ we say that a flow ϕ is \mathcal{F} -expansive if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$\Gamma^{\phi}_{\delta}(x,\mathcal{F}) \subset \phi_{[-\epsilon,\epsilon]}(x), \quad for \ all \ x \in X.$$

Clearly the \mathcal{H} -expansive flows are precisely the expansive flows in the sense of Definition 2.1. To illustrate further the above definition we present the following example.

Example 2.4. An Anosov flow ϕ on a compact Riemannian manifold is $\{id\}$ -expansive.

Proof. Given $\epsilon > 0$ we have by Theorem 3.4 in [14] that there exists $\delta > 0$ such that for any x, y in X with $y \notin \phi_{\mathbb{R}}(x)$ there exists $t \in \mathbb{R}$ for which $d(\phi_t(x), \phi_t(y)) > \delta$. It follows that if $\delta > 0$ is small enough, then $\Gamma^{\phi}_{\delta}(x, \{id\}) \subset \phi_{(-\epsilon,\epsilon)}(x)$ holds for every x in X.

Motivated by the definition of expansive measure for flows we define the main object of study of this work.

Definition 2.5. Given a subset $\mathcal{F} \subset \mathcal{H}$ we say that a Borel probability measure μ of X is \mathcal{F} -expansive for a flow ϕ if there exists $\delta > 0$ such that

$$\mu(\Gamma^{\varphi}_{\delta}(x,\mathcal{F})) = 0, \quad for \ all \ x \in X.$$

It is apparent that the \mathcal{H} -expansive measures of a given flow are precisely the expansive measures of that flow. In what follows we will obtain some properties of the \mathcal{F} -expansive measures. For this, we endow \mathcal{H} with the supremum metric

$$d(f,g) = \sup\{|f(x) - g(x)| : x \in \mathbb{R}\}.$$

Under this distance, we obtain that \mathcal{H} is what is called an ∞ -metric space in the sense that it allows an infinite distance between certain points (see [3], [5]).

If ϕ is a continuous flow of a compact metric space X, there exists a natural map $\phi^* : \mathcal{H} \to C(\mathbb{R}, H(X))$, where H(X) is the self-homeomorphisms of X with the topology of pointwise convergence, given by $\phi^*(f)(t) = \phi_{f(t)}$. Additionally, ϕ^* is continuous whenever $C(\mathbb{R}, H(X))$ have the topology generated by the base of neighborhoods

$$N(h, x_1, \cdots, x_m, \delta) = \bigcap_{i=1}^m \{g : d(g(t)(x_i), h(t)(x_i)) < \delta \text{ for every } t \in \mathbb{R}\},\$$

where $h \in C(\mathbb{R}, H(X)), \{x_1, \cdots, x_m\} \subset X$ and $\delta > 0$.

With these definitions, we can state the following result.

Theorem 2.6. Let ϕ be a continuous flow on a compact metric space X, let μ be a Borel probability measure on X and let \mathcal{F} be a subset of \mathcal{H} . Then, μ is \mathcal{F} -expansive if and only if μ is $(\phi^*)^{-1}(\overline{\phi^*(\mathcal{F})})$ -expansive.

As a consequence of the above theorem we obtain the following equivalence.

Corollary 2.7. Let ϕ be a continuous flow on a compact metric space X, let μ be a Borel probability measure on X and let \mathcal{F} be a subset of \mathcal{H} . Then, μ is \mathcal{F} -expansive if and only if μ is $\overline{\mathcal{F}}$ -expansive.

The following is a simple consequence of Corollary 2.7.

Corollary 2.8. If μ is \mathcal{F} -expansive and $g \in \mathcal{H}$ is such that for every $x \in X$ and for every $\delta > 0$ there exists $f \in \mathcal{F}$ with $d(\phi_{g(t)}(x), \phi_{f(t)}(x)) \leq \delta$ for all $t \in \mathbb{R}$, then μ is $(\mathcal{F} \cup \{g\})$ -expansive.

For the next result, we shall use the following standard topological concept. A subset of a topological space Y is a G_{δ} subset of Y if it is the intersection of countably many open subsets of Y.

Given $f \in \mathcal{H}$, we define $\mathcal{B}_f = \{h \in \mathcal{H} : \hat{d}(f,h) < \infty\}$ and $d_f = \hat{d}_{|\mathcal{B}_f}$. It follows that \mathcal{H} can be written as a union of metric spaces (\mathcal{B}_f, d_f) . Note that in the ∞ metric a subset of \mathcal{H} is compact if and only if it is a union of a finite number of compact subsets each one belonging to some (\mathcal{B}_f, d_f) (p. 15 in [3]).

Theorem 2.9. Let ϕ be a continuous flow on a compact metric space X. If \mathcal{F} is a compact subset of \mathcal{H} , then

- (1) For every $x \in X$ and each $\delta > 0$ the \mathcal{F} -dependent dynamical ball, $\Gamma^{\phi}_{\delta}(x, \mathcal{F})$, is a G_{δ} set of X.
- (2) Given μ a Borel probability measure on X, then μ is \mathcal{F} -expansive if and only if μ is $\{f\}$ -expansive for every $f \in \mathcal{F}$.

To state our next result we will need more notations. Let ϕ be a flow of X. The time t-map $\phi_t : X \to X$ defined by $\phi_t(x) = \phi(t, x)$ is a homeomorphism of X for all $t \in \mathbb{R}$. So, the flow ϕ can be interpreted as a family of homeomorphisms $\Phi = \{\phi_t\}_{t\in\mathbb{R}}$ such that $\phi_0 = id$ and $\phi_t \circ \phi_s = \phi_{t+s}$ for all $t, s \in \mathbb{R}$. We call $\phi_{\mathbb{R}}(x)$ the orbit of $x \in X$ under ϕ . By a *periodic point* of ϕ we mean a point $x \in X$ for which there is a minimal t > 0 satisfying $\phi_t(x) = x$. This minimal t is the so-called *period*. Denote by $Per(\phi)$ the set of periodic points of ϕ .

We denote by $\mathcal{M}(X)$ the set of all Borel probability measures of X. We say that a Borel probability measure μ vanishes along the orbits of ϕ whenever $\mu(\phi_{\mathbb{R}}(x)) = 0$ for all $x \in X$. We say that μ is nonatomic if $\mu(\{x\}) = 0$ for all $x \in X$. Every measure vanishing along the orbits is clearly nonatomic, but not conversely (take for instance the Borel measure supported on a periodic orbit). The support of $\mu \in \mathcal{M}(X)$ is the set $\operatorname{supp}(\mu)$ of points $x \in X$ such that for any neighborhood U of $x, \mu(U) > 0$. It follows that $\operatorname{supp}(\mu)$ is a nonempty compact subset of X.

Given another metric space Y and a Borel measure map $f: X \to Y$ we define the pullback measure $f_*\mu = \mu \circ f^{-1}$ on Y whenever $\mu \in \mathcal{M}(X)$.

An equivalence between continuous flows ϕ on X and ψ on another metric space Y is a homeomorphism $f: X \to Y$ carrying the orbits of ϕ onto orbits of ψ . In this case we say that the flows are equivalent. We denote by \mathcal{K} and \mathcal{B}_0 the subsets of \mathcal{H} consisting of increasing homeomorphisms and bounded functions respectively. Given a subset $\mathcal{F} \subset \mathcal{H}$ we write $\mathcal{KFK} \subset \mathcal{F}$ if $g_1 \circ f \circ g_2 \in \mathcal{F}$ whenever $g_1, g_2 \in \mathcal{K}$ and $f \in \mathcal{F}$.

Definition 2.10. A subset \mathcal{F} of \mathcal{H} is called regular for the flow ϕ if for every $\delta > 0$, we have that

(1)
$$x \in \Gamma^{\phi}_{\delta}(x, \mathcal{F}), \text{ for all } x \in X.$$

Clearly, the regularity condition implies that the dynamical ball contains the basis point. Also, if $id \in \mathcal{F}$ then \mathcal{F} is regular for every flow ϕ . The example below proves a sort of converse for this result.

Example 2.11. Let ϕ be a flow continuous without singularities on a compact metric space X. If the subset \mathcal{F} is regular for the flow ϕ , then $id \in \overline{\mathcal{F}}$.

Proof. If $id \notin \overline{\mathcal{F}}$ then $\widehat{d}(id, \mathcal{F}) > 0$. We can choose $0 < \lambda < \widehat{d}(id, \mathcal{F})$ small enough, then by Lemma 3.2, exists $\gamma > 0$ such that $d(\phi_{\lambda}(w), z) > \gamma$ whenever $d(w, z) < \gamma$. Since \mathcal{F} is regular, given $x \in X$ there exists $g \in \mathcal{F}$ such that $d(\phi_t(x), \phi_{g(t)}(x)) < \gamma$. Moreover, there is $t_0 \in \mathbb{R}$ such that $g(t_0) - t_0 = \lambda$, thus by Lemma 3.2 we have $d(\phi_{t_0}(x), \phi_{g(t_0)}(x)) = d(\phi_{t_0}(x), \phi_{g(t_0)-t_0}(\phi_{t_0}(x))) > \gamma$, which contradicts the regularity condition (1).

Let $f: X \to X$ be a homeomorphism and $\tau: X \to (0, +\infty)$ be a continuous function. Consider the quotient space $Y^{\tau,f} = \{(x,t): 0 \le t \le \tau(x), x \in X\}/\sim$, where $(x,\tau(x)) \sim (f(x),0)$ for all $x \in X$. The suspension flow over f with height function τ is the flow $\Phi = \{\phi_t\}_{t\in\mathbb{R}}$ on $Y^{\tau,f}$ defined by $\phi_t^{\tau,f}(x,s) = (x,s+t)$ whenever $s+t \in [0,\tau(x)]$ (see [2], [7]).

Replacing d by the the equivalent metric $\frac{d}{diam(X)}$ if necessary, we can assume that diam(X) = 1. Then, there is a natural metric $d^{\tau,f}$ on $Y^{\tau,f}$ making it a compact metric space (this is the so-called *Bowen-Walters metric* [2]). Moreover, there exists an injective map $T^{\tau,f} : \mathcal{M}(X) \to \mathcal{M}(Y^{\tau,f})$ such that $T^{\tau,f}(\mu) = \frac{1}{\mu(\tau)}(\mu \times m)|_{Y^{\tau,f}}$ where $\mu(\tau) = \int_X \tau(x)d\mu(x)$ and m is the Lebesgue measure. So, for every continuous function $h: Y^{\tau,f} \to \mathbb{R}$ one has

$$\int_{Y^{\tau,f}} h(y) dT^{\tau,f}(\mu) = \frac{1}{\mu(\tau)} \int_X \int_0^{\tau(x)} h(\phi_t^{\tau,f}(x,0)) dt \ d\mu(x).$$

Every suspension of f is conjugate to the suspension of f under the constant function 1. A homeomorphism from $Y^{1,f}$ to $Y^{\tau,f}$ that conjugates the flows is given by the map $(x,t) \mapsto (x,t\tau(x))$. For this reason we will concentrate on suspensions under the function 1.

Next, we recall the definition of expansive measure for homeomorphisms [13].

Definition 2.12. We say that a Borel probability measure μ of X is expansive for a homeomorphism $f: X \to X$ if there exists $\delta > 0$ such that $\mu(\Gamma^f_{\delta}(x)) = 0$ for every $x \in X$, where

$$\Gamma^f_{\delta}(x) = \{ y \in X : d(f^n(x), f^n(y)) \le \delta, \text{ for all } n \in \mathbb{Z} \}.$$

With these definitions, we can state our following result motivated by Theorems 2.1, 2.2 and 2.4 in [4].

Theorem 2.13. The following properties hold for every continuous flow ϕ on a compact metric space, every Borel probability measure μ and every subset $\mathcal{F} \subset \mathcal{H}$:

- (1) If \mathcal{F} is regular for ϕ and μ is \mathcal{F} -expansive, then μ vanishes along orbits.
- If φ is F-expansive, then every Borel measure vanishing along the orbits of φ is F-expansive for φ.
- (3) If μ is \mathcal{F} -expansive and $\mathcal{F} \cap \mathcal{B}_0 \neq \emptyset$, then $supp(\mu) \cap Sing(\phi) = \emptyset$.
- (4) If $\mathcal{KFK} \subset \mathcal{F}$ and f is an equivalence between ϕ and ψ , then μ is \mathcal{F} -expansive if and only if $f_*\mu$ is \mathcal{F} -expansive.
- (5) If \mathcal{F} is regular for ϕ and μ is \mathcal{F} -expansive, then μ is an expansive measure of the homeomorphism ϕ_T for all $T \in \mathbb{R}$.
- (6) If \mathcal{F} is regular and $T^{1,f}(\mu)$ is \mathcal{F} -expansive for $\phi^{1,f}$, then μ is expansive for f.
- (7) If μ is expansive for f, then $T^{1,f}(\mu)$ is \mathcal{F} -expansive for $\phi^{1,f}$.

We have the related example below.

Example 2.14. In the noncompact case, the converse of Item (3) of Theorem 2.13 is false. Consider the flow defined by the ODE $(\dot{x}, \dot{y}) = (x, y)$. We have $(0,0) \in supp(Leb) \cap Sing(\phi)$ where Leb is the Lebesgue measure. In addition, Leb is \mathcal{K} -expansive and $\mathcal{K} \cap \mathcal{B}_0 = \emptyset$.

Henceforth we will study the topological behavior of the \mathcal{F} -expansive measures of ϕ . The set $\mathcal{M}(X)$ of all Borel probability measures of X is a compact metrizable convex space and its topology is the weak^{*} topology defined by the convergence $\mu_n \to \mu$ if and only if $\int \phi d\mu_n \to \int \phi d\mu$ for every continuous map $\phi : X \to \mathbb{R}$. Every approximation of a Borel probability measure will be considered under this topology. We say that a measure μ is fully supported if $\operatorname{supp}(\mu)=X$. We denote by $\mathcal{M}_{ex}(X,\phi,\mathcal{F})$ the set of \mathcal{F} -expansive measures of ϕ . This set is a convex cone in $\mathcal{M}(X)$, that is, $\alpha\mu + \nu \in \mathcal{M}_{ex}(X,\phi,\mathcal{F})$ whenever $\alpha \in \mathbb{R}_+$ and $\mu, \nu \in \mathcal{M}_{ex}(X,\phi,\mathcal{F})$.

We shall use the following standard topological concepts. A subset Z of a topological space Y is said to be *nowhere dense* in Y if the closure of Z in Y has empty interior in Y, and *meagre* if it is the union of countably many nowhere dense subsets of Y.

A topological space Y is a *Baire space* if the intersection of each countable family of open and dense subsets in Y is dense in Y. A set $A \subset Y$ is a *Baire subset* of Y if A is a Baire space with respect to the topology induced by Y.

The following example can be seen as a motivation for the next theorem.

Example 2.15. Let ϕ be a flow of a compact metric space without isolated points X and let $\mathcal{F} \subset \mathcal{H}$ be regular for ϕ . If ϕ is \mathcal{F} -expansive, then the set of \mathcal{F} -expansive measures of ϕ is a Baire subset of the set of nonatomic Borel probability measures of X.

Proof. If ϕ and \mathcal{F} are as in the statement, then items (1) and (2) of Theorem 2.13 imply that the set of \mathcal{F} -expansive measures of ϕ coincides with the Borel probability measures vanishing along the orbits of ϕ . Let us prove that the latter set is a Baire subset of the set of nonatomic Borel probability measures. By Theorem 1 in [9], we have that the set $\mathcal{M}_{non}(X)$ of nonatomic Borel probability measures of X is a Baire subset of $\mathcal{M}(X)$. If $\mathcal{M}_{non}^{\phi}(X)$ denote the set of nonatomic Borel probability measures vanishing along the orbits, then it suffices to show that this set is a G_{δ} subset of $\mathcal{M}_{non}(X)$ (see [17]). For each $\lambda, \epsilon > 0$ we define

$$\Lambda(\lambda,\epsilon) = \{ \mu \in \mathcal{M}_{non}(X) : \mu(\phi_{[-\lambda,\lambda]}(x)) \ge \epsilon \text{ for some } x \in X \}.$$

It follows that

$$\mathcal{M}_{non}^{\phi}(X) = \bigcap_{(k,m) \in \mathbb{N} \times \mathbb{N}} \left(\mathcal{M}_{non}(X) \setminus \Lambda\left(k, \frac{1}{m}\right) \right).$$

It remains to show that $\Lambda(\lambda, \epsilon)$ is closed. Let $\mu_n \in \Lambda(\lambda, \epsilon)$ be a sequence with property that $\mu_n \to \mu$ for some $\mu \in \mathcal{M}_{non}(X)$. Choose a sequence $x_n \in X$ such that

$$\epsilon \leq \mu_n(\phi_{[-\lambda,\lambda]}(x_n)), \text{ for every } n \in \mathbb{N}.$$

By compactness we can assume that $x_n \to x$ for some $x \in X$. Fix an open neighborhood U of $\phi_{[-\lambda,\lambda]}(x)$ such that $\mu(\partial U) = 0$. Suppose that there exists a subsequence $n_j \to \infty$ such that $\phi_{[-\lambda,\lambda]}(x_{n_j}) \not\subset U$ for each $j \in \mathbb{N}$. Then, we can select a sequence $w_j \in \phi_{[-\lambda,\lambda]}(x_{n_j}) \setminus U$ and so we obtain a sequence $t_j \in [-\lambda,\lambda]$ such that $w_j = \phi_{t_j}(x_{n_j})$. We can suppose that $t_j \to t$ and $w_j \to w$ where $w = \phi_t(x)$. Thus, $w \in U$ which is a contradiction. Then, $\phi_{[-\lambda,\lambda]}(x_n) \subset U$ for all n large. Since $\mu_n \to \mu$, we obtain

$$\epsilon \leq \limsup_{x \to \infty} \mu_n(\phi_{[-\lambda,\lambda]}(x_n)) \leq \lim_{x \to \infty} \mu_n(U) = \mu(U).$$

Then, $\epsilon \leq \mu(\phi_{[-\lambda,\lambda]}(x))$ and so it follows that $\mu \in \Lambda(\lambda,\epsilon)$.

Motivated by the above example, we give two sufficient conditions to guarantee that the set of \mathcal{F} -expansive measures of the flow is a Baire subset of $\mathcal{M}(X)$.

Theorem 2.16. The set of \mathcal{F} -expansive measures of a continuous flow on a compact metric space X is a Baire subset of $\mathcal{M}(X)$ in any of these cases:

- (1) If \mathcal{F} is a compact subset of \mathcal{H} or
- (2) If $\mathcal{F} = \mathcal{H}$ and the flow ϕ has no singularities.

The following corollary is immediate.

Corollary 2.17. If ϕ is a continuous flow without singularities on a compact metric space X, then the set of expansive measures of ϕ is a Baire subset of $\mathcal{M}(X)$.

The following is a generalization of the definition of the measure-expansive center defined recently in [12].

Definition 2.18. The \mathcal{F} -measure-expansive center of a flow ϕ , denoted by $E(\phi, \mathcal{F})$, is the union of the support of all the \mathcal{F} -expansive measures of ϕ .

With this definition, we will obtain the followings results generalizing [12].

Theorem 2.19. Let ϕ be a flow on a compact metric space X and let $\mathcal{F} \subset \mathcal{H}$. Suppose that the \mathcal{F} -expansive measures form a Baire subset of $\mathcal{M}(X)$, then the set of \mathcal{F} -expansive measures is not empty if and only if every \mathcal{F} -expansive measure can be approximated by an \mathcal{F} -expansive measure whose support is equal to the \mathcal{F} measure-expansive center of ϕ .

Corollary 2.20. Let ϕ be a flow on a compact metric space X and let $\mathcal{F} \subset \mathcal{H}$. Suppose that the \mathcal{F} -expansive measures form a Baire subset of $\mathcal{M}(X)$, then the \mathcal{F} -expansive measures are dense in $\mathcal{M}(X)$ if and only if the fully supported \mathcal{F} -expansive measures are dense in $\mathcal{M}(X)$.

Corollary 2.21. Let ϕ be a flow on a compact metric space X and let $\mathcal{F} \subset \mathcal{H}$ be regular for ϕ . If the \mathcal{F} -expansive measures form a Baire dense subset of $\mathcal{M}(X)$, then X has no isolated points.

Finally, we obtain the following result (originally proved in [12]).

Theorem 2.22. A homeomorphism of a compact metric space has an expansive measure if and only if every expansive measure of it can be approximated by an expansive measure with invariant support.

3. Preliminaries

In this section we prove some preparatory results.

Lemma 3.1. The following properties hold for any continuous flow ϕ on a compact metric space X and any Borel probability measure μ on X:

- (1) If \mathcal{F} is a subset of \mathcal{H} and μ is \mathcal{F} -expansive, then μ is \mathcal{F}_0 -expansive for all subset $\mathcal{F}_0 \subset \mathcal{F}$.
- (2) If μ is \mathcal{F}_i -expansive, where $\mathcal{F}_i \subset \mathcal{H}$ for every $i = 1, \cdots, k$, then μ is $(\bigcup_{i=1}^{k} \mathcal{F}_i)$ expansive.

Proof. Item (1) follows from the definition. Given an \mathcal{F} -expansive measure μ for the flow ϕ , for every subset $\mathcal{F}_0 \subset \mathcal{F}$ we have $\Gamma^{\phi}_{\delta}(x, \mathcal{F}_0) \subset \Gamma^{\phi}_{\delta}(x, \mathcal{F})$ for all $x \in X$. Thus, the proof follows directly from monotony of the measure.

To prove (2), let $\delta_i > 0$ be an \mathcal{F}_i -expansitivy constant of μ . Take $\alpha = \min_{1 \le i \le k} \delta_i > 0$. Clearly

$$\Gamma^{\phi}_{\alpha}(x,\bigcup_{i=1}^{k}\mathcal{F}_{i}) \subset \bigcup_{i=1}^{k}\Gamma^{\phi}_{\delta_{i}}(x,\mathcal{F}_{i}), \text{ for all } x \in X.$$

Since $\mu(\Gamma_{\delta_i}^{\phi}(x, \mathcal{F}_i)) = 0$ for all $i \in \{1, \dots, k\}$, we get by subadditivity that

$$\mu\left(\Gamma^{\phi}_{\alpha}(x,\bigcup_{i=1}^{k}\mathcal{F}_{i})\right) = 0 \text{ for every } x \in X.$$

The following lemma is contained in [2] and we include its proof for the sake of completeness.

Lemma 3.2. Let ϕ be a continuous flow on a compact metric space X. If the flow ϕ has no singularities, then there exists $T_0 > 0$ such that for all λ satisfying $0 < \lambda < T_0$ there exists $\gamma > 0$ with the property that $d(\phi_{\pm\lambda}(x), y) > \gamma$ provided that $x, y \in X$ and $d(x, y) < \gamma$.

Proof. If the flow ϕ has no periodic orbits, let $T_0 = 1$ and if the flow ϕ does have some periodic orbits let T_0 be the smallest period of ϕ . Then $T_0 > 0$. If the Lemma is false there are $0 < \lambda < T_0$ and sequences $x_n, y_n \in X$, with $d(x_n, y_n) < \frac{1}{n}$, such that $d(\phi_{\lambda}(x_n), y_n) \leq \frac{1}{n}$ or $d(\phi_{-\lambda}(x_n), y_n) \leq \frac{1}{n}$. By compactness we can suppose $x_n \to z$, and therefore, $y_n \to z$ where $z \in X$ and $d(\phi_{\lambda}(x_n), y_n) \leq \frac{1}{n}$ for each $n \in \mathbb{N}$. Thus, we obtain

$$d(\phi_{\lambda}(x_n), y_n) \to d(\phi_{\lambda}(z), z) = 0.$$

It follows that $\phi_{\lambda} z = z$ with $0 < \lambda < T_0$, which is a contradiction.

In [15], Thomas makes a variant of the dynamical ball to define the notion of strongly *h*-expansiveness. So by combining the ideas of Keynes, Sears and Thomas we introduce a new dynamical ball with some interesting properties. More precisely, given a flow ϕ of $X, x \in X, \delta > 0$ and a subset $\mathcal{F} \subset \mathcal{H}$, we define the strongly

(2)
$$\widetilde{\Gamma}^{\phi}_{\delta}(x,\mathcal{F}) = \bigcap_{r>0} \bigcap_{\gamma>\delta} \bigcup_{h\in\mathcal{F}} \bigcap_{|t|< r} \phi_{-h(t)}(B[\phi_t(x),\gamma]).$$

 \mathcal{F} -dependent dynamical ball as

We will show later that, in the case without singularities, $\widetilde{\Gamma}^{\phi}_{\delta}(x, \mathcal{F})$ is closed in X. Clearly $\Gamma^{\phi}_{\delta}(x, \mathcal{F}) \subset \widetilde{\Gamma}^{\phi}_{\delta}(x, \mathcal{F})$ for every $x \in X$. The lemma below proves a sort of converse for this result.

Lemma 3.3. If the flow ϕ has no singularities, then for every subset $\mathcal{F} \subset \mathcal{H}$ and every $\delta > 0$ there exists $\delta' \in (0, \delta)$ such that

$$\widetilde{\Gamma}^{\phi}_{\delta'}(x,\mathcal{F}) \subset \Gamma^{\phi}_{\delta}(x) \text{ for all } x \in X.$$

Proof. By Lemma 3.1 item (1), is suffices to prove the result for $\mathcal{F} = \mathcal{H}$. Fix $\delta > 0$ and T_0 as in Lemma 3.2. There exists $0 < \lambda < T_0$ with the property that

(3)
$$d(\phi_t(x), x) < \frac{\delta}{2}$$
 for every $x \in X$ whenever $|t| < \lambda$.

By Lemma 3.2 for this $\lambda > 0$ there exists $\gamma > 0$ such that

(4)
$$d(\phi_{\lambda}(x), y) > \gamma$$
 whenever $d(x, y) < \gamma$.

Fix $m \in \mathbb{N}$ with $\delta < \gamma m$ and take $\delta' = \frac{\delta}{3m} > 0$. Given $z \in \widetilde{\Gamma}^{\phi}_{\delta'}(x, \mathcal{H})$ then for all $k \in \mathbb{N}$ there is $h_k \in \mathcal{H}$ such that

(5)
$$d(\phi_t(x), \phi_{h_k(t)}(z)) < \frac{3\delta'}{2} \text{ for each } |t| \le k.$$

It follows that for all $-k \le t \le k$ we have

$$d(\phi_{h_{k+1}(t)}(z),\phi_{h_k(t)}(z)) \le d(\phi_t(x),\phi_{h_{k+1}(t)}(z)) + d(\phi_t(x),\phi_{h_k(t)}(z)) < 3\delta' < \gamma.$$

Therefore

$$d(\phi_{h_{k+1}(t)-h_k(t)}(\phi_{h_k(t)}(z)),\phi_{h_k(t)}(z)) = d(\phi_{h_{k+1}(t)}(z),\phi_{h_k(t)}(z)) < \gamma.$$

By (4) and since $(h_{k+1} - h_k)(0) = 0$ we obtain $|h_{k+1}(t) - h_k(t)| < \lambda$ for every $-k \leq t \leq k$. Now we define a function $h : \mathbb{R} \to \mathbb{R}$ inductively. Define $h = h_1$ on [-1,1]. As we know $|h_2(1) - h_1(1)| < \lambda$, so there exists a continuous function h on [1,2] such that $h(1) = h_1(1)$ and $h(2) = h_2(2)$ with $|h(t) - h_2(t)| < \lambda$ for each $t \in [1,2]$. Also we have $|h_2(-1) - h_1(-1)| < \lambda$. There exists also a continuous function (call it h as well) on [-2,-1] such that $h(-1) = h_1(-1)$ and $h(-2) = h_2(-2)$ with $|h(t) - h_2(t)| < \lambda$ for all $t \in [-2,-1]$. If we carry on in the same way, then we have such a continuous function $h : \mathbb{R} \to \mathbb{R}$ with h(0) = 0. That is, $h \in \mathcal{H}$. Now pick $t \in \mathbb{R}$, say, first t > 0. We have two cases:

Case 1: $t \in [0, 1]$.

In this case, by the inequality (5) we obtain

$$d(\phi_t(x), \phi_{h(t)}(z)) = d(\phi_t(x), \phi_{h_1(t)}(z)) < \frac{3\delta'}{2} = \frac{\delta}{2m} < \delta.$$

Case 2: $t \in [k, k+1]$, for some $k \ge 1$. In this case, since $|h(t) - h_{k+1}(t)| < \lambda$, by condition (3) it follows that

$$d(\phi_{h(t)}(z), \phi_{h_{k+1}(t)}(z)) < \frac{\delta}{2}$$

and finally, by (5), we have

$$d(\phi_t(x),\phi_{h(t)}(z)) \le d(\phi_t(x),\phi_{h_{k+1}(t)}(z)) + d(\phi_{h(t)}(z),\phi_{h_{k+1}(t)}(z)) < \frac{3\delta'}{2} + \frac{\delta}{2},$$

therefore

$$d(\phi_t(x), \phi_{h(t)}(z)) < \frac{\delta}{2m} + \frac{\delta}{2} \le \delta$$

Thus, $z \in \Gamma^{\phi}_{\delta}(x)$.

The following corollary shows that, in the non-singular case, the study of the expansive measures can be made with the dynamical ball defined in (2).

Corollary 3.4. If the flow ϕ has no singularities, then for every $\delta > 0$ there exists $\delta' \in (0, \delta)$ such that

$$\widetilde{\Gamma}^{\phi}_{\delta'}(x,\mathcal{H}) \subset \Gamma^{\phi}_{\delta}(x) \subset \widetilde{\Gamma}^{\phi}_{\delta}(x,\mathcal{H}) \text{ for all } x \in X.$$

In the compact case we have the following equivalence.

Lemma 3.5. Let ϕ be a continuous flow on a compact metric space X and let $\delta > 0$. If \mathcal{F} is a compact subset of \mathcal{H} , then

$$\widetilde{\Gamma}^{\phi}_{\delta}(x,\mathcal{F}) = \Gamma^{\phi}_{\delta}(x,\mathcal{F}) \text{ for all } x \in X$$

Proof. Fix $x \in X$. Since $\Gamma^{\phi}_{\delta}(x, \mathcal{F}) \subset \widetilde{\Gamma}^{\phi}_{\delta}(x, \mathcal{F})$, we show the converse inclusion. Let $z \in \widetilde{\Gamma}^{\phi}_{\delta}(x, \mathcal{F})$. Then, for each r > 0 and $\gamma > \delta$ there exists $h \in \mathcal{F}$ with the property that

 $d(\phi_t(x), \phi_{h(t)}(z)) \le \gamma$, for every $-r \le t \le r$.

Thus, given $m \in \mathbb{N}$, there exists $h_m \in \mathcal{F}$ such that

(6)
$$d(\phi_t(x), \phi_{h_m(t)}(z)) \le \delta + \frac{1}{m}, \text{ for every } -m \le t \le m.$$

By compactness of \mathcal{F} we can assume that there exists $f \in \mathcal{F}$ such that $h_m \in \mathcal{B}_f$ for all $m \in \mathbb{N}$ and $h_m \to h$ for some $h \in \mathcal{B}_f \cap \mathcal{F}$. Let $t \in \mathbb{R}$, there is $m_0 \in \mathbb{N}$ such that $-m_0 \leq t \leq m_0$ and by (6) we have $d(\phi_t(x), \phi_{h_{m_0}(t)}(z)) \leq \delta + \frac{1}{m_0}$. Then

$$d(\phi_t(x), \phi_{h_m(t)}(z)) \le \delta + \frac{1}{m}$$
, for every $m \ge m_0$.

Letting $m \to \infty$, we obtain $d(\phi_t(x), \phi_{h(t)}(z)) \leq \delta$. It follows that $z \in \Gamma^{\phi}_{\delta}(x, \mathcal{F})$. \Box

The next thing we have to do is investigate the topological nature of the dynamical ball (2) in the compact case. Given $(r, \delta) \in \mathbb{R}^2_+$ and given a subset \mathcal{F} of \mathcal{H} , we consider the $(r, \delta, \phi, \mathcal{F})$ -open ball

$$B^{\phi}_{r}(x,\delta,\mathcal{F}) = \bigcup_{h \in \mathcal{F}} \bigcap_{|t| \leq r} \phi_{-h(t)}(B(\phi_{t}(x),\delta)),$$

and the $(r, \delta, \phi, \mathcal{F})$ -closed ball

$$B_r^{\phi}[x,\delta,\mathcal{F}] = \bigcup_{h \in \mathcal{F}} \bigcap_{|t| \le r} \phi_{-h(t)}(B[\phi_t(x),\delta]).$$

Using these definitions, we can state the following lemma.

Lemma 3.6. Let ϕ be a continuous flow on a compact metric space X. If \mathcal{F} is a compact subset of \mathcal{H} , then the following properties are true for all $(r, \delta) \in \mathbb{R}^2_+$:

- (1) The $(r, \delta, \phi, \mathcal{F})$ -open ball is an open set in X.
- (2) The $(r, \delta, \phi, \mathcal{F})$ -closed ball is a G_{δ} set in X.

Proof. To prove (1), choose $z \in B^{\phi}_r(x, \delta, \mathcal{F})$, there exists $h \in \mathcal{F}$ and $\epsilon > 0$ such that

$$\max_{|t| \le r} \{ d(\phi_t(x), \phi_{h(t)}(z)) \} \le \epsilon < \delta$$

For $\delta - \epsilon > 0$, take $\gamma > 0$, with the property that $d(\phi_{h(t)}(z), \phi_{h(t)}(y)) < \delta - \epsilon$ for all $|t| \leq r$ whenever $d(z, y) < \gamma$. Thus, if $d(z, y) < \gamma$ then for every $-r \leq t \leq r$ we have

$$d(\phi_t(x), \phi_{h(t)}(y)) \le d(\phi_t(x), \phi_{h(t)}(z)) + d(\phi_{h(t)}(z), \phi_{h(t)}(y)) < \delta.$$

It follows that $B(z, \gamma) \subset B_r^{\phi}(x, \delta, \mathcal{F})$.

To prove (2) it suffices to prove that for all $x \in X$

$$B_r^{\phi}[x,\delta,\mathcal{F}] = \bigcap_{n=1}^{\infty} B_r^{\phi}\left(x,\delta+\frac{1}{n},\mathcal{F}\right).$$

(7)
$$d(\phi_t(x), \phi_{h_n(t)}(z)) < \delta + \frac{1}{n}, \text{ for every } -r \le t \le r.$$

Since \mathcal{F} is compact, we can suppose that there exists $f \in \mathcal{F}$ with $h_n \in \mathcal{B}_f$ for each $n \in \mathbb{N}$. Again by compactness we can assume that $h_n \to h$ for some $h \in \mathcal{B}_f \cap \mathcal{F}$. Fix $t \in [0, r]$, and letting $n \to \infty$ in (7) we obtain

$$d(\phi_t(x), \phi_{h(t)}(z)) \le \delta.$$

That is, $z \in B_r^{\phi}[x, \delta, \mathcal{F}]$. The reciprocal inclusion is trivial.

Corollary 3.7. Let ϕ be a continuous flow on a compact metric space X. If \mathcal{F} is a compact subset of \mathcal{H} , then given $x \in X$ and $\delta > 0$ the \mathcal{F} -dependent dynamical ball, $\Gamma^{\phi}_{\delta}(x,\mathcal{F}), \text{ is a } G_{\delta} \text{ set in } X.$

Proof. By definition of strongly \mathcal{F} -dependent dynamical ball and Lemma 3.5 we obtain

$$\Gamma^{\phi}_{\delta}(x,\mathcal{F}) = \bigcap_{k=1}^{\infty} \bigcap_{n=1}^{\infty} B_{k}^{\phi} \left[x, \delta + \frac{1}{n}, \mathcal{F} \right].$$

Also, by Lemma 3.6 item (2), the sets $B_k^{\phi}\left[x, \delta + \frac{1}{n}, \mathcal{F}\right]$ are G_{δ} sets in X for every $(k,n) \in \mathbb{N}^2$. Then, the \mathcal{F} -dependent dynamical ball $\Gamma^{\phi}_{\delta}(x,\mathcal{F})$ is a G_{δ} set in X. \Box

We have the next lemma.

Lemma 3.8. Let ϕ be a continuous flow of a compact metric space X. If $\mathcal{F} \subset \mathcal{H}$ is regular for ϕ and for any $x \in X$ and every $\delta > 0$ there are $\gamma > 0$ and $y \in X$ such that $d(\phi_t(x), \phi_t(y)) \leq \delta$ for all $t \in \mathbb{R}$ whenever $d(x, y) \leq \gamma$, then $y \in \Gamma^{\phi}_{\delta}(x, \mathcal{F})$.

Proof. Fix $x \in X$ and $\delta > 0$. Let $y \in B[x, \gamma]$ where $\gamma > 0$ is such that

(8)
$$d(\phi_t(x), \phi_t(y)) \le \frac{\delta}{2} \text{ for all } t \in \mathbb{R}.$$

By regularity condition of \mathcal{F} there exists $h \in \mathcal{F}$ with the property that

(9)
$$d(\phi_t(y), \phi_{h(t)}(y)) \le \frac{\delta}{2} \text{ for all } t \in \mathbb{R}.$$

Then, from (8) and (9) we obtain

$$d(\phi_t(x), \phi_{h(t)}(y)) \le d(\phi_t(x), \phi_t(y)) + d(\phi_t(y), \phi_{h(t)}(y)) \le \delta \text{ for each } t \in \mathbb{R}.$$

So, $y \in \Gamma^{\phi}_{\delta}(x, \mathcal{F})$.

The following result is an adaptation of Lemma 3.8 in [4] for the \mathcal{F} -dependent dynamical ball. If $f: X \to Y$ is an equivalence between the flows ϕ on X and ψ on Y respectively, then for every $x \in X$ there exists $h_x \in \mathcal{K}$ satisfying

$$f^{-1}(\psi(t, f(x))) = \phi(h_x(t), x)$$
 for each $t \in \mathbb{R}$.

Lemma 3.9. Let $\mathcal{F} \subset \mathcal{H}$ such that $\mathcal{KFK} \subset \mathcal{F}$ and f be an equivalence between continuous flows ϕ on X and ψ on Y, where X and Y are compact metric spaces. Then for all $\delta > 0$ there exists $\alpha > 0$ with $f^{-1}(\Gamma^{\psi}_{\alpha}(z,\mathcal{F})) \subset \Gamma^{\phi}_{\delta}(f^{-1}(z),\mathcal{F})$, for all $z \in Y$.

Proof. Let $\delta > 0$. By compactness we have that f^{-1} is uniformly continuous, so, there exists $\beta > 0$ with the property that $d(f^{-1}(z), f^{-1}(w)) \leq \delta$ whenever $d(z, w) \leq \beta$ with $z, w \in Y$. Choose $0 < \alpha < \beta$. Given $z, w \in Y$ such that $w \in \Gamma^{\psi}_{\alpha}(z, \mathcal{F})$, there exists $h \in \mathcal{F}$ such that

$$d(\psi_t(z), \psi_{h(t)}(w)) \leq \alpha$$
 for every $t \in \mathbb{R}$.

By uniform continuity

$$d(f^{-1}(\psi_t(z)), f^{-1}(\psi_{h(t)}(w))) \le \delta \text{ for every } t \in \mathbb{R}.$$

Then $d(\phi_t(f^{-1}(z)), \phi_{\widehat{h}(t)}(f^{-1}(w))) \leq \delta$ for all $t \in \mathbb{R}$, where $\widehat{h} = h_{f^{-1}(w)} \circ h \circ h_{f^{-1}(z)}^{-1}$ and $h \in \mathcal{F}$. Since $\mathcal{F} \subset \mathcal{H}$ satisfies $\mathcal{KFK} \subset \mathcal{F}$, then $\widehat{h} \in \mathcal{F}$. So $f^{-1}(w) \in \Gamma_{\delta}^{\delta}(f^{-1}(z), \mathcal{F})$.

The following result is a variant of Lemma 12 in [15].

Lemma 3.10. Let ϕ be a continuous flow without singularities on a compact metric space X. For each $\lambda > 0$ small enough, there exists $\epsilon > 0$ such that for every $x, y \in X$ and for every interval $[T_1, T_2]$ containing the origin and for every $\alpha \in \mathcal{H}$, the following holds: if $d(\phi_t(x), \phi_{\alpha(t)}(y)) \leq \epsilon$ for all $t \in [T_1, T_2]$, then $|\alpha(t) - t| < \lambda$ for $|t| \leq 2$ in $[T_1, T_2]$ and $|\alpha(t) - t| < |t|\lambda$ for |t| > 2 in $[T_1, T_2]$.

Proof. Without loss of generality we assume that $T_1 = 0$. Fix $0 < \lambda < T_0$. We choose $\gamma > 0$ satisfying the hypothesis of Lemma 3.2. Given $0 < \epsilon < \gamma$ with the property that

(10)
$$d(\phi_t(x), \phi_t(y)) < \gamma \text{ for all } 0 \le t \le 2 \text{ whenever } d(x, y) \le \epsilon.$$

Let $\alpha \in \mathcal{H}$ be such that $d(\phi_t(x), \phi_{\alpha(t)}(y)) \leq \epsilon$ for all $t \in [0, 2]$. We claim that $|\alpha(t) - t| < \lambda$ for all $t \in [0, 2]$. Indeed, otherwise there exists $t_0 \in [0, 2]$ such that the continuous function $g(t) = |\alpha(t) - t|$ satisfies $g(t_0) = \lambda$. Without loss of generality we consider the case $\alpha(t_0) > t_0$. Since $d(x, y) \leq \epsilon$ by condition (10) we have that $d(\phi_{t_0}(x), \phi_{t_0}(y)) < \gamma$, and so, by Lemma 3.2 we have

$$\gamma < d(\phi_{t_0}(x), \phi_{\lambda}(\phi_{t_0}(y))) = d(\phi_{t_0}(x), \phi_{\alpha(t_0)-t_0}(\phi_{t_0}(y))) = d(\phi_{t_0}(x), \phi_{\alpha(t_0)}(y)),$$

which contradicts the hypothesis. Since g(0) = 0, it follows that $g(t) < \lambda$ for every $t \in [0, 2]$. This proves our claim. For the case $t \in [2, 4]$, suppose $d(\phi_t(x), \phi_{\alpha(t)}(y)) \leq \epsilon$. Then letting u = t - 2, we get

$$d(\phi_u(\phi_2(x)), \phi_{\alpha(u+2)-\alpha(2)}(\phi_{\alpha(2)}(y))) = d(\phi_{u+2}(x), \phi_{\alpha(u+2)}(y)) = d(\phi_t(x), \phi_{\alpha(t)}(y)) \le \epsilon$$

By defining $G : u \in [0, 2] \mapsto \alpha(u+2) - \alpha(2)$ we have $G(0) = 0$ and also

 $d(\phi_u(\phi_2(x)), \phi_{G(u)}(\phi_{\alpha(2)}(y))) \le \epsilon \text{ for all } 0 \le u \le 2.$

By repeating the above argument we obtain that $|G(u) - u| < \lambda$ for every $u \in [0, 2]$, that is, for each $t \in [2, 4]$

$$\lambda \ge |G(t-2) - (t-2)| = |\alpha(t) - \alpha(2) - t + 2| \ge |\alpha(t) - t| - |\alpha(2) - 2|,$$

and it follows that $|\alpha(t)-t| \leq 2\lambda$. Using a similar argument one can show inductively that for every $n \geq 1$:

$$|\alpha(t) - t| \leq n\lambda$$
, whenever $2n - 2 \leq t \leq 2n$.

Finally, for each t > 2 in $[0, T_2]$ we have

$$|\alpha(t) - t| \le n\lambda = \frac{n}{t}t\lambda \le t\lambda.$$

Lemma 3.11. Let ϕ be a continuous flow without singularities on a compact metric space X. There exists $\epsilon > 0$ such that for every $x \in X$, r > 0 and each pair of sequences h_n in \mathcal{H} and y_n in X with $y_n \to y$, where $y \in X$, the following holds: if $d(\phi_t(x), \phi_{h_n(t)}(y_n)) \leq \epsilon$ for all $(n, t) \in \mathbb{N} \times [-r, r]$, then for each $\delta > 0$ there exists an $M \in \mathbb{N}$ satisfying

$$d(\phi_{h_n(t)}(y_n), \phi_{h_n(t)}(y)) \leq \delta$$
 for every $-r \leq t \leq r$ and $n \geq M$.

Proof. Given $0 < \lambda < T_0$ we can choose $\epsilon > 0$ satisfying Lemma 3.10 with respect to λ . If the result is not true, then there are subsequences y_{n_k} , h_{n_k} and t_k such that $-r \leq t_k \leq r$ with the property that

(11)
$$d(\phi_{h_{n_k}(t_k)}(y_{n_k}), \phi_{h_{n_k}(t_k)}(y)) > \delta \text{ for every } k \in \mathbb{N}.$$

By Lemma 3.10 for each $k \in \mathbb{N}$ we have

$$|h_{n_k}(t_k) - t_k| < \lambda \max\{|t_k|, 1\}.$$

Since $-r \leq t_k \leq r$, then there are $a_r, b_r \in \mathbb{R}$ such that $a_r \leq h_{n_k}(t_k) \leq b_r$ for every $k \in \mathbb{N}$. Thus, we can assume that $h_{n_k}(t_k) \to t_0$ where $t_0 \in [a_r, b_r]$. Letting $k \to \infty$ in (11) we obtain a contradiction.

Next we explore the topological properties of the dynamical ball defined in (2). Denote by 2_c^X the space of all compact subsets of X endowed with the Hausdorff distance d_H [10]. The space $(2_c^X, d_H)$ is itself a compact metric space. A set-valued map $\Psi : X \to 2_c^X$ is said upper-semicontinuous if for every $x \in X$ and any open $V \subset X$ containing $\Psi(x)$, there exists a neighborhood U of x in X such that V contains $\Psi(w)$ for all $w \in U$. With these definitions we obtain the following result.

Lemma 3.12. If the flow ϕ has no singularities, then there exists $\delta_0 > 0$ such that the following properties hold for every $\mathcal{F} \subset \mathcal{H}$, every $\delta \in (0, \delta_0)$:

- (1) For every $x \in X$ the strongly \mathcal{F} -dependent dynamical ball, $\widetilde{\Gamma}^{\phi}_{\delta}(x, \mathcal{F})$, is compact.
- (2) The set-valued map

$$\begin{array}{rccc} \Phi : & X & \longrightarrow & 2^X_c \\ & x & \mapsto & \widetilde{\Gamma}^{\phi}_{\delta}(x, \mathcal{F}) \end{array}$$

is upper-semicontinuous.

Proof. Given $0 < \lambda < T_0$ we can choose $\delta_0 > 0$ satisfying Lemma 3.11 with respect to λ . Let $0 < \delta < \delta_0$. In order to prove item (1) it is sufficient to prove that for every $x \in X$ and r > 0, the set $\bigcap_{\gamma > \delta} B_r^{\phi}[x, \gamma, \mathcal{F}]$ is closed in X. Fix $(r, x) \in \mathbb{R}_+ \times X$. Let y_n be any sequence in $\bigcap_{\gamma > \delta} B_r^{\phi}[x, \gamma, \mathcal{F}]$ and assume that y_n converges to y in X. Given $\gamma > 0$ such that $\delta < \gamma < \delta_0$ take $\delta < \beta < \gamma$. Then there exists a sequence h_n in \mathcal{F} such that

(12)
$$d(\phi_t(x), \phi_{h_n(t)}(y_n)) \le \beta \text{ for each } |t| \le r.$$

Since $\gamma - \beta > 0$, using Lemma 3.11, there is an $M \in \mathbb{N}$ satisfying

(13)
$$d(\phi_{h_n(t)}(y_n), \phi_{h_n(t)}(y)) \le \gamma - \beta \text{ for every } |t| \le r \text{ and } n \ge M.$$

By (12) and (13) for all $-r \leq t \leq r$ and $n \geq M$ we have

 $d(\phi_t(x), \phi_{h_n(t)}(y)) \le d(\phi_t(x), \phi_{h_n(t)}(y_n)) + d(\phi_{h_n(t)}(y_n), \phi_{h_n(t)}(y)) \le \gamma.$

 \square

Then $y \in B_r^{\phi}[x, \gamma, \mathcal{F}]$ and since $\gamma > \delta$ was chosen arbitrarily, the result follows. To prove (2), by item (1), the set-valued map

$$\begin{array}{rcccc} \Phi : & X & \longrightarrow & 2_c^X \\ & x & \mapsto & \widetilde{\Gamma}^{\phi}_{\delta}(x, \mathcal{F}) \end{array}$$

is well defined. Fix $x \in X$. If Φ is not upper-semicontinuous in x, then there exists an open neighborhood V of $\Phi(x)$ and a sequence x_n converging to x such that $\Phi(x_n) \not\subset V$ for all $n \in \mathbb{N}$. Then, we can select a sequence $z_n \in \Phi(x_n) \setminus V = \widetilde{\Gamma}^{\phi}_{\delta}(x_n, \mathcal{F}) \setminus V$. Given $m \in \mathbb{N}$ and r > 0, there exists a sequence $g_n \in \mathcal{F}$ such that

(14)
$$d(\phi_t(x_n), \phi_{g_n(t)}(z_n)) \le \delta + \frac{1}{3m}, \text{ for all } |t| \le r.$$

By compactness we can assume that $z_n \to z$ for some $z \in X$. Since V is open, $z \notin V$. Also, there exists $K \in \mathbb{N}$ such that

(15)
$$d(\phi_t(x_n), \phi_t(x)) \le \frac{1}{3m} \text{ for every } |t| \le r \text{ and } n \ge K.$$

Then by (14) and (15) for every $-r \le t \le r$ and $n \ge K$ we obtain

(16)
$$d(\phi_t(x), \phi_{g_n(t)}(z_n)) \le d(\phi_t(x), \phi_t(x_n)) + d(\phi_t(x_n), \phi_{g_n(t)}(z_n)) \le \delta + \frac{2}{3m}.$$

If m is chosen such that $\delta + \frac{2}{3m} < \delta_0$, then by Lemma 3.11 there is an $M \in \mathbb{N}$ satisfying

(17)
$$d(\phi_{g_n(t)}(z_n), \phi_{g_n(t)}(z)) \le \frac{1}{3m} \text{ for every } |t| \le r \text{ and } n \ge M.$$

Then by (16) and (17) we obtain for each $-r \leq t \leq r$ and $j \in \mathbb{N}$ large enough

$$d(\phi_t(x), \phi_{g_j(t)}(z)) \le d(\phi_t(x), \phi_{g_j(t)}(z_j)) + d(\phi_{g_j(t)}(z_j), \phi_{g_j(t)}(z)) \le \delta + \frac{1}{m}.$$

It follows that $z \in \Phi(x) = \widetilde{\Gamma}^{\phi}_{\delta}(x, \mathcal{F}) \subset V$. Then, $z \in V$ which is a contradiction. \Box

The following corollary is then a direct consequence of Lemmas 3.5 and 3.12.

Corollary 3.13. If the flow ϕ has no singularities and $\mathcal{F} \subset \mathcal{H}$ is compact, then there exists $\delta_0 > 0$ such that for every $\delta \in (0, \delta_0)$ the dynamical ball $\Gamma^{\phi}_{\delta}(x, \mathcal{F})$ is compact for all $x \in X$.

4. Proofs

Proof of Theorem 2.6. Since $\mathcal{F} \subset (\phi^*)^{-1}(\overline{\phi^*(\mathcal{F})})$, by Lemma 3.1, each Borel probability measure $\left((\phi^*)^{-1}(\overline{\phi^*(\mathcal{F})})\right)$ -expansive is \mathcal{F} -expansive.

Conversely, let $\delta > 0$ be the expansivity constant of μ . It is enough to show that

$$\Gamma^{\phi}_{\frac{\delta}{2}}(x,(\phi^*)^{-1}(\overline{\phi^*(\mathcal{F})})) \subset \Gamma^{\phi}_{\delta}(x,\mathcal{F}) \text{ for all } x \in X.$$

Let $z, x \in X$ be such that $z \in \Gamma^{\phi}_{\frac{\delta}{2}}(x, (\phi^*)^{-1}(\overline{\phi^*(\mathcal{F})}))$. Then, there is $h \in (\phi^*)^{-1}(\overline{\phi^*(\mathcal{F})})$ with the property that

(18)
$$d(\phi_t(x), \phi_{h(t)}(z)) \le \frac{\delta}{2} \text{ for all } t \in \mathbb{R}.$$

Since $\phi^*(h) \in \overline{\phi^*(\mathcal{F})}$, there exists $f \in \mathcal{F}$ such that $\phi^*(f) \in N(\phi^*(h), z, \frac{\delta}{2})$. It follows that

(19)
$$d(\phi_{h(t)}(z), \phi_{f(t)}(z)) \leq \frac{\delta}{2} \text{ for all } t \in \mathbb{R}.$$

Therefore, from (18) and (19) we have

$$d(\phi_t(x), \phi_{f(t)}(z)) \le d(\phi_t(x), \phi_{h(t)}(z)) + d(\phi_{h(t)}(z), \phi_{f(t)}(z)) \le \delta \text{ for every } t \in \mathbb{R}.$$

Thus, we can conclude that $z \in \Gamma^{\phi}_{\delta}(x, \mathcal{F})$.

Proof of Corollary 2.7. By continuity of ϕ^* , we obtain $\phi^*(\overline{\mathcal{F}}) \subset \overline{\phi^*(\mathcal{F})}$. Then, we have the following inclusion $\overline{\mathcal{F}} \subset (\phi^*)^{-1}(\overline{\phi^*(\mathcal{F})})$. Thus, by Lemma 3.1 and Theorem 2.6, if μ is $\overline{\mathcal{F}}$ -expansive, then μ is $\overline{\mathcal{F}}$ -expansive.

Proof of Theorem 2.9. To prove Item (1), it is sufficient to apply Corollary 3.7.

To prove Item (2) if μ is \mathcal{F} -expansive, by Lemma 3.1, then μ is $\{f\}$ -expansive for every $f \in \mathcal{F}$. Conversely, let $\delta > 0$ be the expansivity constant of μ . Given $f \in \mathcal{F}$, by compactness argument we can show that there exists $\epsilon > 0$ such that $\phi_{(-\epsilon,\epsilon)}(x) \subset B(x, \frac{\delta}{2})$ for every $x \in X$. We define $\mathcal{U}_f = \{g \in \mathcal{H} : \hat{d}(f,g) < \epsilon\}$ the which is an open subset in (\mathcal{B}_f, d_f) . We claim that

(20)
$$\Gamma^{\phi}_{\frac{\delta}{2}}(x,\mathcal{U}_f) \subset \Gamma^{\phi}_{\delta}(x,\{f\}) \text{ for all } x \in X.$$

Let $z, x \in X$ be such that $z \in \Gamma^{\phi}_{\frac{\delta}{2}}(x, \mathcal{U}_f)$. Then, there is $g \in \mathcal{U}_f$ such that

(21)
$$d(\phi_t(x), \phi_{g(t)}(z)) \le \frac{\delta}{2} \text{ for each } t \in \mathbb{R}.$$

Fix $t \in \mathbb{R}$. Since $g \in \mathcal{U}_f$ and $\phi_{(-\epsilon,\epsilon)}(\phi_{f(t)}(z)) \subset B(\phi_{f(t)}(z), \frac{\delta}{2})$, we have

(22)
$$d(\phi_{f(t)}(z), \phi_{g(t)}(z)) = d(\phi_{f(t)}(z), \phi_{g(t)-f(t)}(\phi_{f(t)}(z))) < \frac{\delta}{2}.$$

From (21) and (22), we obtain

$$d(\phi_t(x),\phi_{f(t)}(z)) \le d(\phi_t(x),\phi_{g(t)}(z)) + d(\phi_{f(t)}(z),\phi_{g(t)}(z)) < \delta \text{ for every } t \in \mathbb{R}.$$

That is, $z \in \Gamma^{\phi}_{\delta}(x, \{f\})$. Thus, for each $f \in \mathcal{F}$ there is an open neighborhood \mathcal{U}_f of f such that (20) holds. By compactness, choose $f_1, \dots, f_m \in \mathcal{F}$ such that $\mathcal{F} \subset \bigcup_{i=1}^m \mathcal{U}_{f_i}$ and by Lemma 3.1, μ is \mathcal{F} -expansive. \Box

Proof of Theorem 2.13. To prove Item (1), by the definition of \mathcal{F} -expansiveness of μ , there exists $\delta > 0$. By c.f. p. 506 in [1], there exists $\alpha > 0$ such that if

(23)
$$y \in \phi_{(-\alpha,\alpha)}(x)$$
, then $d(\phi_t(x), \phi_t(y)) < \frac{\delta}{2}$ for all $(x,t) \in X \times \mathbb{R}$.

Let $y \in \phi_{(-\alpha,\alpha)}(x)$. Since \mathcal{F} is regular, then by (23) and Lemma 3.8 it follows that $y \in \Gamma^{\phi}_{\delta}(x,\mathcal{F})$. That is, $\phi_{(-\alpha,\alpha)}(x) \subset \Gamma^{\phi}_{\delta}(x,\mathcal{F})$ for all $x \in X$. Let $x \in X$. Then $\phi_{\mathbb{R}}(x)$ is separable since X is compact. Then there exists a sequence $\{x_n\} \subset \phi_{\mathbb{R}}(x)$ dense in $\phi_{\mathbb{R}}(x)$ and $\{\phi_{(-\alpha,\alpha)}(x_n) : n \in \mathbb{N}\}$ covers $\phi_{\mathbb{R}}(x)$ so that

$$\mu(\phi_{\mathbb{R}}(x)) \le \sum_{n \in \mathbb{N}} \mu(\phi_{\mathbb{R}}(x_n)) = 0$$

Item (2) follows from the definition of \mathcal{F} -expansiveness and the monotony of the measure.

We now prove (3). Since μ is expansive, there is a $\delta > 0$ such that for every $\sigma \in Sing(\phi)$ we have $\mu(\Gamma^{\phi}_{\delta}(\sigma, \mathcal{F})) = 0$. Given $h \in \mathcal{F} \cap \mathcal{B}_0$, let $\lambda > 0$ be such that $|h(t)| \leq \lambda$ for every $t \in \mathbb{R}$. Fix $\sigma_0 \in Sing(\phi)$. There exists $\gamma > 0$ such that

$$d(\phi_s(y), \sigma_0) \leq \delta$$
 for every $|s| \leq \lambda$, whenever $d(\sigma_0, y) \leq \gamma$.

So, if $y \in B[\sigma_0, \gamma]$, then $d(\phi_{h(t)}(y), \sigma_0) \leq \delta$ for every $t \in \mathbb{R}$. That is, $B[\sigma_0, \gamma] \subset \Gamma^{\phi}_{\delta}(\sigma_0, \mathcal{F})$. Therefore, $\mu(B[\sigma_0, \gamma]) = 0$. It follows that $\sigma \notin supp(\mu)$.

To prove Item (4) let $f: X \to Y$ be an equivalence between continuous flows ϕ on X and ψ on Y. By Lemma 3.9, for all $\delta > 0$ there is $\alpha > 0$ such that $f^{-1}(\Gamma^{\psi}_{\alpha}(z,\mathcal{F})) \subset \Gamma^{\phi}_{\delta}(f^{-1}(z),\mathcal{F})$. Let $\delta > 0$ be the expansivity constant of μ . Let $z \in Y$ and let B be a Borel set such that $B \subset \Gamma^{\psi}_{\alpha}(z,\mathcal{F})$. By Lemma 3.9, $f^{-1}(B) \subset \Gamma^{\phi}_{\delta}(f^{-1}(z),\mathcal{F})$ so that $f_*\mu(B) = \mu(f^{-1}(B)) = 0$ since $\mu(\Gamma^{\phi}_{\delta}(f^{-1}(z),\mathcal{F})) = 0$. That is, $f_*\mu(\Gamma^{\psi}_{\alpha}(z,\mathcal{F})) = 0$. The converse is analogous (just replace f by f^{-1}).

To prove Item (5) suppose T > 0. For every $\delta > 0$ there exists $\alpha > 0$ such that

$$d(\phi_t(z), \phi_t(w)) \leq \delta$$
 for all $t \in [0, T]$ whenever $z, w \in X$ and $d(z, w) \leq \alpha$.

Let $x, y \in X$ with $y \in \Gamma_{\alpha}^{\phi_T}(x)$. Given $t \in \mathbb{R}$ there exists a unique $m \in \mathbb{Z}$ such that $t \in [mT, (m+1)T]$. Then

$$d(\phi_t(x), \phi_t(y)) = d(\phi_{t-mT}(\phi_{mT}(x)), \phi_{t-mT}(\phi_{mT}(y))) \le \delta.$$

From $d(\phi_{mT}(x), \phi_{mT}(y)) \leq \alpha$ and $t - mT \in [0, T]$, it follows that $d(\phi_t(x), \phi_t(y)) \leq \delta$. By the regularity condition of \mathcal{F} and Lemma 3.8 we obtain that $y \in \Gamma^{\phi}_{\delta}(x, \mathcal{F})$. Thus $\Gamma^{\phi_T}_{\alpha}(x) \subset \Gamma^{\phi}_{\delta}(x, \mathcal{F})$ and the proof follows.

To prove Item (6) if $T^{1,f}(\mu)$ is \mathcal{F} -expansive for $\phi^{1,f}$, by Theorem 2.13 item (5), $T^{1,f}(\mu)$ is also expansive for the homeomorphism $\phi_1^{1,f}$. Since $\phi_1^{1,f} = f \times id$ for all $(x,t) \in Y^{1,f}$ we have that $T^{1,f}(\mu)$ is expansive for $f \times id : Y^{1,f} \to Y^{1,f}$. Let $\delta > 0$ be the expansivity constant of $T^{1,f}(\mu)$ with the property that $0 < \delta < \frac{1}{2}$. By definition of Bowen-Walters metric, we conclude that for all $x \in X$, there are $t_1, \cdots, t_{k(x)} \in [0,1)$ satisfying $[0,1) = \bigcup_{1 < j < k(x)} [t_j, t_{j+1})$ and

$$\Gamma^f_{\frac{\delta}{2}}(x)\times [0,1)\subset \bigcup_{j=1}^{r=k(x)}\Gamma^{f\times id}_{\delta}(x,t_j^*)$$

where t_j^* is the midpoint of $[t_j, t_{j+1})$. Then, by the expansiveness of $T^{1,f}(\mu)$, for each $x \in X$ we have

$$\mu(\Gamma^{f}_{\frac{\delta}{2}}(x)) \leq \sum_{j=1}^{j=k(x)} \int_{\Gamma^{f\times id}_{\delta}(x,t^{*}_{j})} dT^{1,f}(\mu) = \sum_{j=1}^{j=k(x)} T^{1,f}(\mu)(\Gamma^{f\times id}_{\delta}(x,t^{*}_{j})) = 0.$$

It follows that μ is expansive for f.

Finally, To prove Item (7), we see that by Theorem 2.4 in [4], $T^{1,f}(\mu)$ is expansive for $\phi^{1,f}$. By Lemma 3.1 and since $\mathcal{F} \subset \mathcal{H}$ it follows that $T^{1,f}(\mu)$ is \mathcal{F} -expansive for $\phi^{1,f}$.

Proof of Theorem 2.16. For each $\delta, \epsilon > 0$ we define

$$C(\delta, \epsilon, \mathcal{F}) = \{ \mu \in \mathcal{M}(X) : \mu(\Gamma^{\phi}_{\delta}(x, \mathcal{F})) \ge \epsilon \text{ for some } x \in X \}.$$

It follows that

$$\mathcal{M}_{ex}(X,\phi,\mathcal{F}) = \bigcup_{n=1}^{\infty} \bigcap_{m=1}^{\infty} \left(\mathcal{M}(X) \setminus C\left(\frac{1}{n}, \frac{1}{m}, \mathcal{F}\right) \right).$$

If we prove that $C(\delta, \epsilon, \mathcal{F})$ is closed in $\mathcal{M}(X)$ for all $\delta, \epsilon > 0$, then $\mathcal{M}_{ex}(X, \phi, \mathcal{F})$ is a $G_{\delta\sigma}$ subset of $\mathcal{M}(X)$, that is, the union of countably many G_{δ} subsets of $\mathcal{M}(X)$. Thus, by Corollary 6 in [12], $\mathcal{M}_{ex}(X, \phi, \mathcal{F})$ is a Baire subset of $\mathcal{M}(X)$.

To prove that $C(\delta, \epsilon, \mathcal{F})$ is closed, take a sequence $\mu_n \in C(\delta, \epsilon, \mathcal{F})$ such that $\mu_n \to \mu$ for some $\mu \in \mathcal{M}(X)$. Choose a sequence $x_n \in X$ such that

$$\epsilon \leq \mu_n(\Gamma^{\phi}_{\delta}(x_n, \mathcal{F})), \text{ for all } n \in \mathbb{N}.$$

Suppose that $x_n \to x$ for some $x \in X$. Fix an open neighborhood U of $\Gamma^{\phi}_{\delta}(x, \mathcal{F})$. Now we analyze the following two cases:

Case 1: \mathcal{F} is a compact subset of \mathcal{H} .

In this case suppose there exists a subsequence $n_k \to \infty$ such that $\Gamma^{\phi}_{\delta}(x_{n_k}, \mathcal{F}) \not\subset U$ for all $k \in \mathbb{N}$. Then, we can select a sequence $z_k \in \Gamma^{\phi}_{\delta}(x_{n_k}, \mathcal{F}) \setminus U$ and so, by definition of dynamical ball, we obtain a sequence $g_k \in \mathcal{F}$ such that

(24)
$$d(\phi_t(x_{n_k}), \phi_{g_k(t)}(z_k)) \le \delta, \text{ for each } t \in \mathbb{R}.$$

Since \mathcal{F} is compact, we can assume $z_k \to z$ and $g_k \to g$ for some $z \in X$ and $g \in \mathcal{F}$. As U is open, $z \notin U$. Fixing $t \in \mathbb{R}$ on (24) and letting $k \to \infty$ we obtain

$$d(\phi_t(x), \phi_{g(t)}(z)) \le \delta.$$

Hence we obtain that $z \in \Gamma^{\phi}_{\delta}(x, \mathcal{F})$. Then $z \in U$, which is a contradiction.

Case 2: The flow ϕ has no singularities.

In this case, by Corollary 3.4 we can work with the \mathcal{H} -dependent dynamical ball, $\widetilde{\Gamma}^{\phi}_{\delta}(x,\mathcal{H})$. Then, by Lemma 3.12 item (2), the function Φ is upper semicontinuous and so $\Phi(x_n) \subset U$ holds for n large.

Therefore, in both cases, we have that $\Gamma^{\phi}_{\delta}(x_n, \mathcal{F}) \subset U$ holds for n large. Since $\mu_n \to \mu$ we obtain

$$\epsilon \leq \limsup_{x \to \infty} \mu_n(\Gamma^{\phi}_{\delta}(x_n, \mathcal{F})) \leq \limsup_{x \to \infty} \mu_n(\overline{U}) \leq \mu(\overline{U}).$$

We can choose U such that $\mu(\partial U) = 0$. Then $\epsilon \leq \mu(\Gamma^{\phi}_{\delta}(x, \mathcal{F}))$. It follows that $C(\delta, \epsilon, \mathcal{F})$ is closed in $\mathcal{M}(X)$ for all $\delta, \epsilon > 0$.

Proof of Theorem 2.19. Let ϕ be a continuous flow with \mathcal{F} -expansive measures of a compact metric space X. By Corollary 1 p.71 in [10], the set of discontinuities \mathcal{D} of the set-valued map $\Psi : \mathcal{M}_{ex}(X, \phi, \mathcal{F}) \to 2_c^X$ defined by $\Psi(\mu) = \operatorname{supp}(\mu)$ is meagre in $\mathcal{M}_{ex}(X, \phi, \mathcal{F})$. Then, the set $\mathcal{R} = \mathcal{M}_{ex}(X, \phi, \mathcal{F}) \setminus \mathcal{D}$ is dense in $\mathcal{M}_{ex}(X, \phi, \mathcal{F})$. Given $\mu \in \mathcal{R}$ and $\nu \in \mathcal{M}_{ex}(X, \phi, \mathcal{F})$, define the measure μ_n with the property that $\mu_n = (1 - \frac{1}{n})\mu + \frac{1}{n}\nu$ for each $n \in \mathbb{N}$. Then $\mu_n \in \mathcal{M}_{ex}(X, \phi, \mathcal{F})$ and $\mu_n \to \mu$ as $n \to \infty$. Since $\mu \notin \mathcal{D}$, Ψ is continuous at μ and so $\Psi(\mu_n) = \operatorname{supp}(\mu) \cup \operatorname{supp}(\nu)$ converges to $\Psi(\mu) = \operatorname{supp}(\mu)$. Therefore, $\operatorname{supp}(\nu) \subset \operatorname{supp}(\mu)$. It follows that $E(\phi, \mathcal{F}) = \operatorname{supp}(\mu)$. Thus, there exists a dense subset \mathcal{R} of $\mathcal{M}_{ex}(X, \phi, \mathcal{F})$ whose supports are all equal to $E(\phi, \mathcal{F})$.

Proof of Corollary 2.20. Suppose that the set of \mathcal{F} -expansive measures $\mathcal{M}_{ex}(X, \phi, \mathcal{F})$ is dense in $\mathcal{M}(X)$. By Lemma 10 in [12], $E(\phi, \mathcal{F}) = X$. The Theorem 2.19 provides

a dense subset \mathcal{R} of $\mathcal{M}_{ex}(X, \phi, \mathcal{F})$ such that $\operatorname{supp}(\mu) = E(\phi, \mathcal{F}) = X$ for all $\mu \in \mathcal{R}$. Since $\mathcal{M}_{ex}(X, \phi, \mathcal{F})$ is dense in $\mathcal{M}(X)$, we obtain that \mathcal{R} is dense in $\mathcal{M}(X)$. \Box

Proof of Corollary 2.21. By Corollary 2.20 there exists an \mathcal{F} -expansive measure w for the flow such that $\operatorname{supp}(w) = X$. If z is an isolated point of X, then $\{z\}$ is a neighborhood of z and so $w(\{z\}) > 0$. By the regularity condition of \mathcal{F} , we have $z \in \Gamma^{\phi}_{\delta}(z, \mathcal{F})$, and therefore $w(\{z\}) = 0$, which leads to a contradiction. \Box

Proof of Theorem 2.22. Let $\mathcal{M}_{ex}(X, f)$ be the set of expansive measures of the homeomorphism f. Then, if $\mu \in \mathcal{M}_{ex}(X, f)$ it follows of Theorem 2.13 item (7) that $T^{1,f}(\mu)$ is \mathcal{F} -expansive for $\phi^{1,f}$. Since the flow $\phi^{1,f}$ has no singularities, by Theorems 2.16 and 2.19, the set $\mathcal{M}_{ex}(Y^{1,f}, \phi^{1,f}, \mathcal{F})$ has a dense subset $\{w_k\}$ of \mathcal{F} -expansive measures with support equal to the \mathcal{F} -measure-expansive center.

Given $k \in \mathbb{N}$, we define $\mu_k \in \mathcal{M}(X)$ such that $\mu_k = (\pi \circ i^{-1})_* w_k$ where $i : X \times [0, 1) \to Y^{1, f}$ is the inclusion map and $\pi : X \times [0, 1) \to X$ is the first projection. Taking \mathcal{F} regular, we can repeat the argument of Theorem 2.13 item (6) to have that u_k is expansive for f.

We claim that the set of measures $\{\mu_k\}$ is dense in $\mathcal{M}_{ex}(X, f)$. Fix $\nu \in \mathcal{M}_{ex}(X, f)$. Then, by Theorem 2.13 item (7), $T^{1,f}(\nu)$ is \mathcal{F} -expansive for $\phi^{1,f}$. Thus, there is a sequence $\{w_k\}_{k\in\mathbb{N}}$ such that $w_k \to T^{1,f}(\nu)$. Let $\psi : X \to \mathbb{R}$ be a continuous function. Define $h: Y^{1,f} \to \mathbb{R}$ such that $h(x,t) = \psi(x)$ whenever $0 \leq t < 1$. By weak convergence we obtain

$$\int_{X} \psi(x) d\mu_k(x) = \int_{Y^{1,f}} h(x,t) dw_k(x,t) \to \int_{Y^{1,f}} h dT^{1,f}(\nu) = \int_{X} \psi(x) d\nu(x).$$

Thus, $\mu_k \to \nu$, that is, the sequence $\{\mu_k\}$ is dense in $\mathcal{M}_{ex}(X, f)$. To complete the proof, given $\eta \in \mathcal{M}_{ex}(X, f)$ and $k \in \mathbb{N}$, then $\operatorname{supp}(w_k) = E(\phi^{1, f}, \mathcal{F})$. Therefore

$$\operatorname{supp}(\eta) \times [0,1) \subset \operatorname{supp}(T^{1,f}(\eta)) \subset E(\phi^{1,f},\mathcal{F}) = \operatorname{supp}(w_k) \subset \operatorname{supp}(\mu_k) \times [0,1).$$

Hence, $\operatorname{supp}(\eta) \subset \operatorname{supp}(\mu_k)$ and thus, $\operatorname{supp}(\mu_k) = E(f)$.

References

- 1. Artigue, A., Expansive flows on surfaces, Discrete Contin. Dyn. Syst. 33 (2013), no.2, 505–525.
- Bowen, R., Walters, P., Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180–193.
- 3. Bugaro, D., Bugaro, Y., Ivanov, S., A course in metric geometry, Providence, RI: American Mathematical Society, 2001. 415 p. (Graduate studies in Mathematics; v. 33).
- Carrasco-Olivera, D., Morales, C.A., Expansive measures for flows, J. Differential Equations, Volume 256, Issue 7, 1 April 2014, Pages 2246–2260.
- Dydak, J., Hoffland, C.S., An alternative definition of coarse structures, *Topology and its Applications*, Volume 155, Issue 9, 15 April 2008, Pages 1013–1021.
- Fakhari, Abbas, Morales, C.A., Tajbakhsh, Khosro, Asymptotic measure expansive diffeomorphisms, J. Math. Anal. Appl. 435 (2016), no. 2, 1682–1687.
- Iommi, G., Jordan, T., Todd, M., Recurrence and transience for suspension flows, Israel J. Math. 209 (2015), no. 2, 547–592.
- Keynes, H.B., Sears, M., F-expansive transformation groups, General Topology and its Applications, Volume 10, Issue 1, February 1979, Pages 67–85.
- 9. Knowles, J.D., On the existence of non-atomic measures, Mathematika, 14 (1967), 62–67.
- Kuratowski, K., *Topology. Vol. II*, New edition, revised and augmented. Translated from the French by A. Kirkor Academic Press, New York-London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw 1968.
- Lee, K., Oh, J., Weak measure expansive flows, J. Differential Equations 260 (2016), no. 2, 1078–1090.

- Morales, C.A., On supports of expansive measures, Preprint arXiv:1601.03618v1 [math.DS] 14 Jan 2016.
- 13. Morales, C.A., Measure-expansive systems, Preprint IMPA Série D (2011).
- Norton, V., O'Brien, T., Anosov flows and expansiveness, Proc. Amer. Math. Soc. 40 (1973), 625–628.
- Thomas, R.F., Entropy of expansive flows, Ergodic Theory Dynam. Systems 7 (1987), no. 4, 611–625.
- 16. Utz, W.R., Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), no. 6, 769–774.
- 17. Willard, S., *General topology*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1970.

Instituto de Matemática y Ciencias Afines. Calle los Biológos 245–Urb. San César–Primera Etapa, la Molina, Lima 12, Perú.

 $E\text{-}mail\ address:\ \texttt{hvillavicencio@imca.edu.pe}.$