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Abstract. We introduce the notion of F-expansive measure by making the

dynamical ball in [4] to depend on a given subset F of the set of all the

reparametrizations H. We prove that these measures satisfy some interest-
ing properties resembling the expansive ones. These include the equivalence

with expansivity when F = H, the vanishing along the orbits, the absence of

singularities in the support, the F-expansivity with respect to time t-maps,
the invariance under equivalence and the characterization for suspensions. We

also analyze the support of the F-expansive measures and prove that there

exists a dense subset of measures (in the set of F-expansive measures) all of
them with a common support. Finally, we extend to flows the recent result for

homeomorphisms in [12].

1. Introduction

The notion of expansive homeomorphism has been important in the development of
the theory of dynamical systems. Since the introduction of this concept by Utz [16]
an extensive literature about it has been developed. This concept was subsequently
extended to flows by Bowen and Walters [2]. Basically, the idea behind Bowen-
Walters definition is that points which are far away in the topology induced by the
flow can be separated at the same time with the help of a continuous time lag.
Afterwards, Keynes and Sears [8] restricted the reparametrizations in the Bowen-
Walters definition to subsets F giving rise to the concept of F-expansive transfor-
mation group. The recent appearance of the expansive measure [13] extended the
expansivity of homeomorphisms to Borel probability measures considering the be-
havior of the dynamical ball respect to the measure. Further steps were given in [4]
with the concept of expansive measures for flows or in [6] and [11] with the notions
of asymptotic and weak expansive measures [6], [11].

In light of these results, it is natural to consider a notion of expansivity for mea-
sures by restricting the reparametrizations as in [8]. We obtain the notion of F-
expansive measure for flows in which F is a given subset of the set of reparametriza-
tions H.

We prove that these measures satisfy some interesting properties resembling
the expansive ones. These include the equivalence with expansivity when F=H,
the vanishing along the orbits, the absence of singularities in the support, the F-
expansivity with respect to time t-maps, the invariance under equivalence and the
characterization for suspensions. We also analyze the support of the F-expansive
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measures and prove that there exists a dense subset of measures (in the set of F-
expansive measures) all of them with a common support. Finally, we extend to
flows the recent result for homeomorphisms in [12].

2. Statement of the results

Hereafter (X, d) will denote a compact metric space. The closed and open ball
operations will be denoted by B[x, δ] and B(x, δ) respectively. The closure and

boundary operations will be denoted by (·) and ∂(·) respectively. A flow of X is
a map φ : R ×X → X satisfying φ(0, x) = x and φ(t, φ(s, x)) = φ(t + s, x) for all
t, s ∈ R and x ∈ X. A flow is continuous if it is continuous with respect to the
product metric of R × X. Given A ⊂ X and I ⊂ R we define φI(A) = {φt(x) :
(t, x) ∈ I × A}. If A consists of a single point x, then we write φI(x) instead of
φI({x}). If x ∈ X satisfies φR(x) = {x}, then we say that x is a singularity of φ.
Denote by Sing(φ) the set of singularities of φ.

The Borel σ-algebra of X is the σ-algebra B(X) generated by the open subsets
of X. A Borel probability measure is a σ-additive measure µ defined in B(X) such
that µ(X) = 1. For any subset B ⊂ X we write µ(B) = 0, if µ(A) = 0 for every
Borel set A ⊂ B. Denote by H the set of continuous maps h : R → R such that
h(0) = 0. Given a flow φ of X, x ∈ X and δ > 0 we define the dynamical ball as

Γφδ (x) =
⋃
h∈H

⋂
t∈R

φ−h(t)(B[φt(x), δ]).

Note that this ball is not always a closed set of X. The following is a straightforward
reformulation of the notion of expansive flow due to Bowen and Walters [2].

Definition 2.1. A flow φ is expansive if for every ε > 0 there exists δ > 0 such
that

Γφδ (x) ⊂ φ[−ε,ε](x), for all x ∈ X.

Next, we recall the definition of expansive measure for flows [4].

Definition 2.2. A Borel probability measure µ is expansive for a flow φ if there
exists δ > 0 such that

µ(Γφδ (x)) = 0, for all x ∈ X.

To motivate our main definition we recall the following generalization of expansive
flow introduced by H.B. Keynes and Sears in [8]. They introduced the idea of
restriction of the time lag, and gave one definition of expansiveness weaker than
Bowen-Walters. More precisely: Given a flow φ of X, x ∈ X, δ > 0 and a subset F
of H, we define the F-dependent dynamical ball as

Γφδ (x,F) =
⋃
h∈F

⋂
t∈R

φ−h(t)(B[φt(x), δ]),

and the following definition holds.

Definition 2.3. Given a subset F ⊂ H we say that a flow φ is F-expansive if for
every ε > 0 there exists δ > 0 such that

Γφδ (x,F) ⊂ φ[−ε,ε](x), for all x ∈ X.

Clearly the H-expansive flows are precisely the expansive flows in the sense of
Definition 2.1. To illustrate further the above definition we present the following
example.
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Example 2.4. An Anosov flow φ on a compact Riemannian manifold is {id}-
expansive.

Proof. Given ε > 0 we have by Theorem 3.4 in [14] that there exists δ > 0 such that
for any x, y in X with y /∈ φR(x) there exists t ∈ R for which d(φt(x), φt(y)) > δ. It

follows that if δ > 0 is small enough, then Γφδ (x, {id}) ⊂ φ(−ε,ε)(x) holds for every
x in X. �

Motivated by the definition of expansive measure for flows we define the main
object of study of this work.

Definition 2.5. Given a subset F ⊂ H we say that a Borel probability measure µ
of X is F-expansive for a flow φ if there exists δ > 0 such that

µ(Γφδ (x,F)) = 0, for all x ∈ X.

It is apparent that the H-expansive measures of a given flow are precisely the
expansive measures of that flow. In what follows we will obtain some properties of
the F-expansive measures. For this, we endow H with the supremum metric

d̂(f, g) = sup{|f(x)− g(x)| : x ∈ R}.

Under this distance, we obtain that H is what is called an ∞-metric space in the
sense that it allows an infinite distance between certain points (see [3], [5]).

If φ is a continuous flow of a compact metric space X, there exists a natural
map φ∗ : H → C(R, H(X)), where H(X) is the self-homeomorphisms of X with
the topology of pointwise convergence, given by φ∗(f)(t) = φf(t). Additionally, φ∗

is continuous whenever C(R, H(X)) have the topology generated by the base of
neighborhoods

N(h, x1, · · · , xm, δ) =

m⋂
i=1

{g : d(g(t)(xi), h(t)(xi)) < δ for every t ∈ R},

where h ∈ C(R, H(X)), {x1, · · · , xm} ⊂ X and δ > 0.
With these definitions, we can state the following result.

Theorem 2.6. Let φ be a continuous flow on a compact metric space X, let µ be a
Borel probability measure on X and let F be a subset of H. Then, µ is F-expansive
if and only if µ is (φ∗)−1(φ∗(F))-expansive.

As a consequence of the above theorem we obtain the following equivalence.

Corollary 2.7. Let φ be a continuous flow on a compact metric space X, let µ be a
Borel probability measure on X and let F be a subset of H. Then, µ is F-expansive
if and only if µ is F-expansive.

The following is a simple consequence of Corollary 2.7.

Corollary 2.8. If µ is F-expansive and g ∈ H is such that for every x ∈ X and
for every δ > 0 there exists f ∈ F with d(φg(t)(x), φf(t)(x)) ≤ δ for all t ∈ R, then
µ is (F ∪ {g})-expansive.

For the next result, we shall use the following standard topological concept. A
subset of a topological space Y is a Gδ subset of Y if it is the intersection of
countably many open subsets of Y .



4 HELMUTH VILLAVICENCIO FERNÁNDEZ

Given f ∈ H, we define Bf = {h ∈ H : d̂(f, h) < ∞} and df = d̂|Bf . It follows
that H can be written as a union of metric spaces (Bf , df ). Note that in the ∞-
metric a subset of H is compact if and only if it is a union of a finite number of
compact subsets each one belonging to some (Bf , df ) (p. 15 in [3]).

Theorem 2.9. Let φ be a continuous flow on a compact metric space X. If F is a
compact subset of H, then

(1) For every x ∈ X and each δ > 0 the F-dependent dynamical ball, Γφδ (x,F),
is a Gδ set of X.

(2) Given µ a Borel probability measure on X, then µ is F-expansive if and
only if µ is {f}-expansive for every f ∈ F .

To state our next result we will need more notations. Let φ be a flow of X.
The time t-map φt : X → X defined by φt(x) = φ(t, x) is a homeomorphism of X
for all t ∈ R. So, the flow φ can be interpreted as a family of homeomorphisms
Φ = {φt}t∈R such that φ0 = id and φt ◦ φs = φt+s for all t, s ∈ R. We call φR(x)
the orbit of x ∈ X under φ. By a periodic point of φ we mean a point x ∈ X for
which there is a minimal t > 0 satisfying φt(x) = x. This minimal t is the so-called
period. Denote by Per(φ) the set of periodic points of φ.

We denote byM(X) the set of all Borel probability measures of X. We say that
a Borel probability measure µ vanishes along the orbits of φ whenever µ(φR(x)) = 0
for all x ∈ X. We say that µ is nonatomic if µ({x}) = 0 for all x ∈ X. Every
measure vanishing along the orbits is clearly nonatomic, but not conversely (take
for instance the Borel measure supported on a periodic orbit). The support of
µ ∈M(X) is the set supp(µ) of points x ∈ X such that for any neighborhood U of
x, µ(U) > 0. It follows that supp(µ) is a nonempty compact subset of X.

Given another metric space Y and a Borel measure map f : X → Y we define
the pullback measure f∗µ = µ ◦ f−1 on Y whenever µ ∈M(X).

An equivalence between continuous flows φ on X and ψ on another metric space
Y is a homeomorphism f : X → Y carrying the orbits of φ onto orbits of ψ. In
this case we say that the flows are equivalent. We denote by K and B0 the subsets
of H consisting of increasing homeomorphisms and bounded functions respectively.
Given a subset F ⊂ H we write KFK ⊂ F if g1 ◦ f ◦ g2 ∈ F whenever g1, g2 ∈ K
and f ∈ F .

Definition 2.10. A subset F of H is called regular for the flow φ if for every δ > 0,
we have that

(1) x ∈ Γφδ (x,F), for all x ∈ X.
Clearly, the regularity condition implies that the dynamical ball contains the

basis point. Also, if id ∈ F then F is regular for every flow φ. The example below
proves a sort of converse for this result.

Example 2.11. Let φ be a flow continuous without singularities on a compact
metric space X. If the subset F is regular for the flow φ, then id ∈ F .

Proof. If id /∈ F then d̂(id,F) > 0. We can choose 0 < λ < d̂(id,F) small enough,
then by Lemma 3.2, exists γ > 0 such that d(φλ(w), z) > γ whenever d(w, z) < γ.
Since F is regular, given x ∈ X there exists g ∈ F such that d(φt(x), φg(t)(x)) <
γ. Moreover, there is t0 ∈ R such that g(t0) − t0 = λ, thus by Lemma 3.2 we
have d(φt0(x), φg(t0)(x)) = d(φt0(x), φg(t0)−t0(φt0(x))) > γ, which contradicts the
regularity condition (1). �
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Let f : X → X be a homeomorphism and τ : X → (0,+∞) be a continuous
function. Consider the quotient space Y τ,f = {(x, t) : 0 ≤ t ≤ τ(x), x ∈ X}/ ∼,
where (x, τ(x)) ∼ (f(x), 0) for all x ∈ X. The suspension flow over f with height

function τ is the flow Φ = {φt}t∈R on Y τ,f defined by φτ,ft (x, s) = (x, s+t) whenever
s+ t ∈ [0, τ(x)] (see [2], [7]).

Replacing d by the the equivalent metric d
diam(X) if necessary, we can assume

that diam(X) = 1. Then, there is a natural metric dτ,f on Y τ,f making it a
compact metric space (this is the so-called Bowen-Walters metric [2]). Moreover,
there exists an injective map T τ,f :M(X)→M(Y τ,f ) such that T τ,f (µ) = 1

µ(τ) (µ×
m)|Y τ,f where µ(τ) =

∫
X
τ(x)dµ(x) and m is the Lebesgue measure. So, for every

continuous function h : Y τ,f → R one has∫
Y τ,f

h(y)dT τ,f (µ) =
1

µ(τ)

∫
X

∫ τ(x)

0

h(φτ,ft (x, 0))dt dµ(x).

Every suspension of f is conjugate to the suspension of f under the constant function
1. A homeomorphism from Y 1,f to Y τ,f that conjugates the flows is given by the
map (x, t) 7→ (x, tτ(x)). For this reason we will concentrate on suspensions under
the function 1.

Next, we recall the definition of expansive measure for homeomorphisms [13].

Definition 2.12. We say that a Borel probability measure µ of X is expansive for

a homeomorphism f : X → X if there exists δ > 0 such that µ(Γfδ (x)) = 0 for every
x ∈ X, where

Γfδ (x) = {y ∈ X : d(fn(x), fn(y)) ≤ δ, for all n ∈ Z}.

With these definitions, we can state our following result motivated by Theorems
2.1, 2.2 and 2.4 in [4].

Theorem 2.13. The following properties hold for every continuous flow φ on a
compact metric space, every Borel probability measure µ and every subset F ⊂ H:

(1) If F is regular for φ and µ is F-expansive, then µ vanishes along orbits.
(2) If φ is F-expansive, then every Borel measure vanishing along the orbits of

φ is F-expansive for φ.
(3) If µ is F-expansive and F ∩ B0 6= ∅, then supp(µ) ∩ Sing(φ) = ∅.
(4) If KFK ⊂ F and f is an equivalence between φ and ψ, then µ is F-expansive

if and only if f∗µ is F-expansive.
(5) If F is regular for φ and µ is F-expansive, then µ is an expansive measure

of the homeomorphism φT for all T ∈ R.
(6) If F is regular and T 1,f (µ) is F-expansive for φ1,f , then µ is expansive for

f .
(7) If µ is expansive for f , then T 1,f (µ) is F-expansive for φ1,f .

We have the related example below.

Example 2.14. In the noncompact case, the converse of Item (3) of Theorem
2.13 is false. Consider the flow defined by the ODE (ẋ, ẏ) = (x, y). We have
(0, 0) ∈ supp(Leb) ∩ Sing(φ) where Leb is the Lebesgue measure. In addition, Leb
is K-expansive and K ∩ B0 = ∅.

Henceforth we will study the topological behavior of the F-expansive measures
of φ. The setM(X) of all Borel probability measures of X is a compact metrizable
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convex space and its topology is the weak∗ topology defined by the convergence
µn → µ if and only if

∫
φdµn →

∫
φdµ for every continuous map φ : X → R.

Every approximation of a Borel probability measure will be considered under this
topology. We say that a measure µ is fully supported if supp(µ)=X. We denote by
Mex(X,φ,F) the set of F-expansive measures of φ. This set is a convex cone in
M(X), that is, αµ+ν ∈Mex(X,φ,F) whenever α ∈ R+ and µ, ν ∈Mex(X,φ,F).

We shall use the following standard topological concepts. A subset Z of a topo-
logical space Y is said to be nowhere dense in Y if the closure of Z in Y has empty
interior in Y , and meagre if it is the union of countably many nowhere dense subsets
of Y .

A topological space Y is a Baire space if the intersection of each countable family
of open and dense subsets in Y is dense in Y. A set A ⊂ Y is a Baire subset of Y if
A is a Baire space with respect to the topology induced by Y .

The following example can be seen as a motivation for the next theorem.

Example 2.15. Let φ be a flow of a compact metric space without isolated points
X and let F ⊂ H be regular for φ. If φ is F-expansive, then the set of F-expansive
measures of φ is a Baire subset of the set of nonatomic Borel probability measures
of X.

Proof. If φ and F are as in the statement, then items (1) and (2) of Theorem 2.13
imply that the set of F-expansive measures of φ coincides with the Borel probability
measures vanishing along the orbits of φ. Let us prove that the latter set is a Baire
subset of the set of nonatomic Borel probability measures. By Theorem 1 in [9],
we have that the set Mnon(X) of nonatomic Borel probability measures of X is a
Baire subset of M(X). If Mφ

non(X) denote the set of nonatomic Borel probability
measures vanishing along the orbits, then it suffices to show that this set is a Gδ
subset of Mnon(X) (see [17]). For each λ, ε > 0 we define

Λ(λ, ε) = {µ ∈Mnon(X) : µ(φ[−λ,λ](x)) ≥ ε for some x ∈ X}.

It follows that

Mφ
non(X) =

⋂
(k,m)∈N×N

(
Mnon(X) \ Λ

(
k,

1

m

))
.

It remains to show that Λ(λ, ε) is closed. Let µn ∈ Λ(λ, ε) be a sequence with
property that µn → µ for some µ ∈ Mnon(X). Choose a sequence xn ∈ X such
that

ε ≤ µn(φ[−λ,λ](xn)), for every n ∈ N.
By compactness we can assume that xn → x for some x ∈ X. Fix an open neighbor-
hood U of φ[−λ,λ](x) such that µ(∂U) = 0. Suppose that there exists a subsequence
nj → ∞ such that φ[−λ,λ](xnj ) 6⊂ U for each j ∈ N. Then, we can select a se-
quence wj ∈ φ[−λ,λ](xnj ) \ U and so we obtain a sequence tj ∈ [−λ, λ] such that
wj = φtj (xnj ). We can suppose that tj → t and wj → w where w = φt(x). Thus,
w ∈ U which is a contradiction. Then, φ[−λ,λ](xn) ⊂ U for all n large. Since
µn → µ, we obtain

ε ≤ lim sup
x→∞

µn(φ[−λ,λ](xn)) ≤ lim
x→∞

µn(U) = µ(U).

Then, ε ≤ µ(φ[−λ,λ](x)) and so it follows that µ ∈ Λ(λ, ε). �
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Motivated by the above example, we give two sufficient conditions to guarantee
that the set of F-expansive measures of the flow is a Baire subset of M(X).

Theorem 2.16. The set of F-expansive measures of a continuous flow on a compact
metric space X is a Baire subset of M(X) in any of these cases:

(1) If F is a compact subset of H or
(2) If F = H and the flow φ has no singularities.

The following corollary is immediate.

Corollary 2.17. If φ is a continuous flow without singularities on a compact metric
space X, then the set of expansive measures of φ is a Baire subset of M(X).

The following is a generalization of the definition of the measure-expansive center
defined recently in [12].

Definition 2.18. The F-measure-expansive center of a flow φ, denoted by E(φ,F),
is the union of the support of all the F-expansive measures of φ.

With this definition, we will obtain the followings results generalizing [12].

Theorem 2.19. Let φ be a flow on a compact metric space X and let F ⊂ H.
Suppose that the F-expansive measures form a Baire subset of M(X), then the set
of F-expansive measures is not empty if and only if every F-expansive measure
can be approximated by an F-expansive measure whose support is equal to the F-
measure-expansive center of φ.

Corollary 2.20. Let φ be a flow on a compact metric space X and let F ⊂ H.
Suppose that the F-expansive measures form a Baire subset of M(X), then the F-
expansive measures are dense inM(X) if and only if the fully supported F-expansive
measures are dense in M(X).

Corollary 2.21. Let φ be a flow on a compact metric space X and let F ⊂ H be
regular for φ. If the F-expansive measures form a Baire dense subset of M(X),
then X has no isolated points.

Finally, we obtain the following result (originally proved in [12]).

Theorem 2.22. A homeomorphism of a compact metric space has an expansive
measure if and only if every expansive measure of it can be approximated by an
expansive measure with invariant support.

3. Preliminaries

In this section we prove some preparatory results.

Lemma 3.1. The following properties hold for any continuous flow φ on a compact
metric space X and any Borel probability measure µ on X:

(1) If F is a subset of H and µ is F-expansive, then µ is F0-expansive for all
subset F0 ⊂ F .

(2) If µ is Fi-expansive, where Fi ⊂ H for every i = 1, · · · , k, then µ is (

k⋃
i=1

Fi)-

expansive.



8 HELMUTH VILLAVICENCIO FERNÁNDEZ

Proof. Item (1) follows from the definition. Given an F-expansive measure µ for

the flow φ, for every subset F0 ⊂ F we have Γφδ (x,F0) ⊂ Γφδ (x,F) for all x ∈ X.
Thus, the proof follows directly from monotony of the measure.

To prove (2), let δi > 0 be an Fi-expansitivy constant of µ. Take α = min
1≤i≤k

δi > 0.

Clearly

Γφα(x,

k⋃
i=1

Fi) ⊂
k⋃
i=1

Γφδi(x,Fi), for all x ∈ X.

Since µ(Γφδi(x,Fi)) = 0 for all i ∈ {1, · · · , k}, we get by subadditivity that

µ

(
Γφα(x,

k⋃
i=1

Fi)

)
= 0 for every x ∈ X.

�

The following lemma is contained in [2] and we include its proof for the sake of
completeness.

Lemma 3.2. Let φ be a continuous flow on a compact metric space X. If the
flow φ has no singularities, then there exists T0 > 0 such that for all λ satisfying
0 < λ < T0 there exists γ > 0 with the property that d(φ±λ(x), y) > γ provided that
x, y ∈ X and d(x, y) < γ.

Proof. If the flow φ has no periodic orbits, let T0 = 1 and if the flow φ does have
some periodic orbits let T0 be the smallest period of φ. Then T0 > 0. If the Lemma
is false there are 0 < λ < T0 and sequences xn, yn ∈ X, with d(xn, yn) < 1

n , such

that d(φλ(xn), yn) ≤ 1
n or d(φ−λ(xn), yn) ≤ 1

n . By compactness we can suppose

xn → z, and therefore, yn → z where z ∈ X and d(φλ(xn), yn) ≤ 1
n for each n ∈ N.

Thus, we obtain

d(φλ(xn), yn)→ d(φλ(z), z) = 0.

It follows that φλz = z with 0 < λ < T0, which is a contradiction. �

In [15], Thomas makes a variant of the dynamical ball to define the notion of
strongly h-expansiveness. So by combining the ideas of Keynes, Sears and Thomas
we introduce a new dynamical ball with some interesting properties. More precisely,
given a flow φ of X, x ∈ X, δ > 0 and a subset F ⊂ H, we define the strongly
F-dependent dynamical ball as

(2) Γ̃φδ (x,F) =
⋂
r>0

⋂
γ>δ

⋃
h∈F

⋂
|t|≤r

φ−h(t)(B[φt(x), γ]).

We will show later that, in the case without singularities, Γ̃φδ (x,F) is closed in X.

Clearly Γφδ (x,F) ⊂ Γ̃φδ (x,F) for every x ∈ X. The lemma below proves a sort of
converse for this result.

Lemma 3.3. If the flow φ has no singularities, then for every subset F ⊂ H and
every δ > 0 there exists δ′ ∈ (0, δ) such that

Γ̃φδ′(x,F) ⊂ Γφδ (x) for all x ∈ X.
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Proof. By Lemma 3.1 item (1), is suffices to prove the result for F = H. Fix δ > 0
and T0 as in Lemma 3.2. There exists 0 < λ < T0 with the property that

(3) d(φt(x), x) <
δ

2
for every x ∈ X whenever |t| < λ.

By Lemma 3.2 for this λ > 0 there exists γ > 0 such that

(4) d(φλ(x), y) > γ whenever d(x, y) < γ.

Fix m ∈ N with δ < γm and take δ′ = δ
3m > 0. Given z ∈ Γ̃φδ′(x,H) then for all

k ∈ N there is hk ∈ H such that

(5) d(φt(x), φhk(t)(z)) <
3δ′

2
for each |t| ≤ k.

It follows that for all −k ≤ t ≤ k we have

d(φhk+1(t)(z), φhk(t)(z)) ≤ d(φt(x), φhk+1(t)(z)) + d(φt(x), φhk(t)(z)) < 3δ′ < γ.

Therefore

d(φhk+1(t)−hk(t)(φhk(t)(z)), φhk(t)(z)) = d(φhk+1(t)(z), φhk(t)(z)) < γ.

By (4) and since (hk+1 − hk)(0) = 0 we obtain |hk+1(t) − hk(t)| < λ for every
−k ≤ t ≤ k. Now we define a function h : R → R inductively. Define h = h1 on
[−1, 1]. As we know |h2(1)− h1(1)| < λ, so there exists a continuous function h on
[1, 2] such that h(1) = h1(1) and h(2) = h2(2) with |h(t) − h2(t)| < λ for each t ∈
[1, 2]. Also we have |h2(−1)− h1(−1)| < λ. There exists also a continuous function
(call it h as well) on [−2,−1] such that h(−1) = h1(−1) and h(−2) = h2(−2) with
|h(t)− h2(t)| < λ for all t ∈ [−2,−1]. If we carry on in the same way, then we have
such a continuous function h : R → R with h(0) = 0. That is, h ∈ H. Now pick
t ∈ R, say, first t > 0. We have two cases:

Case 1: t ∈ [0, 1].
In this case, by the inequality (5) we obtain

d(φt(x), φh(t)(z)) = d(φt(x), φh1(t)(z)) <
3δ′

2
=

δ

2m
< δ.

Case 2: t ∈ [k, k + 1], for some k ≥ 1 .
In this case, since |h(t)− hk+1(t)| < λ, by condition (3) it follows that

d(φh(t)(z), φhk+1(t)(z)) <
δ

2
,

and finally, by (5), we have

d(φt(x), φh(t)(z)) ≤ d(φt(x), φhk+1(t)(z)) + d(φh(t)(z), φhk+1(t)(z)) <
3δ′

2
+
δ

2
,

therefore

d(φt(x), φh(t)(z)) <
δ

2m
+
δ

2
≤ δ.

Thus, z ∈ Γφδ (x). �

The following corollary shows that, in the non-singular case, the study of the
expansive measures can be made with the dynamical ball defined in (2).

Corollary 3.4. If the flow φ has no singularities, then for every δ > 0 there exists
δ′ ∈ (0, δ) such that

Γ̃φδ′(x,H) ⊂ Γφδ (x) ⊂ Γ̃φδ (x,H) for all x ∈ X.
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In the compact case we have the following equivalence.

Lemma 3.5. Let φ be a continuous flow on a compact metric space X and let
δ > 0. If F is a compact subset of H, then

Γ̃φδ (x,F) = Γφδ (x,F) for all x ∈ X.

Proof. Fix x ∈ X. Since Γφδ (x,F) ⊂ Γ̃φδ (x,F), we show the converse inclusion. Let

z ∈ Γ̃φδ (x,F). Then, for each r > 0 and γ > δ there exists h ∈ F with the property
that

d(φt(x), φh(t)(z)) ≤ γ, for every − r ≤ t ≤ r.
Thus, given m ∈ N, there exists hm ∈ F such that

(6) d(φt(x), φhm(t)(z)) ≤ δ +
1

m
, for every −m ≤ t ≤ m.

By compactness of F we can assume that there exists f ∈ F such that hm ∈ Bf for
all m ∈ N and hm → h for some h ∈ Bf ∩ F . Let t ∈ R, there is m0 ∈ N such that
−m0 ≤ t ≤ m0 and by (6) we have d(φt(x), φhm0

(t)(z)) ≤ δ + 1
m0

. Then

d(φt(x), φhm(t)(z)) ≤ δ +
1

m
, for every m ≥ m0.

Letting m→∞, we obtain d(φt(x), φh(t)(z)) ≤ δ. It follows that z ∈ Γφδ (x,F). �

The next thing we have to do is investigate the topological nature of the dynam-
ical ball (2) in the compact case. Given (r, δ) ∈ R2

+ and given a subset F of H, we
consider the (r, δ, φ,F)-open ball

Bφr (x, δ,F) =
⋃
h∈F

⋂
|t|≤r

φ−h(t)(B(φt(x), δ)),

and the (r, δ, φ,F)-closed ball

Bφr [x, δ,F ] =
⋃
h∈F

⋂
|t|≤r

φ−h(t)(B[φt(x), δ]).

Using these definitions, we can state the following lemma.

Lemma 3.6. Let φ be a continuous flow on a compact metric space X. If F is a
compact subset of H, then the following properties are true for all (r, δ) ∈ R2

+:

(1) The (r, δ, φ,F)-open ball is an open set in X.
(2) The (r, δ, φ,F)-closed ball is a Gδ set in X.

Proof. To prove (1), choose z ∈ Bφr (x, δ,F), there exists h ∈ F and ε > 0 such that

max
|t|≤r
{d(φt(x), φh(t)(z))} ≤ ε < δ.

For δ − ε > 0, take γ > 0, with the property that d(φh(t)(z), φh(t)(y)) < δ − ε for
all |t| ≤ r whenever d(z, y) < γ. Thus, if d(z, y) < γ then for every −r ≤ t ≤ r we
have

d(φt(x), φh(t)(y)) ≤ d(φt(x), φh(t)(z)) + d(φh(t)(z), φh(t)(y)) < δ.

It follows that B(z, γ) ⊂ Bφr (x, δ,F).
To prove (2) it suffices to prove that for all x ∈ X

Bφr [x, δ,F ] =

∞⋂
n=1

Bφr

(
x, δ +

1

n
,F
)
.
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Let z ∈
⋂∞
n=1B

φ
r (x, δ+ 1

n ,F). Then, for every n ∈ N there exists hn ∈ F such that

(7) d(φt(x), φhn(t)(z)) < δ +
1

n
, for every − r ≤ t ≤ r.

Since F is compact, we can suppose that there exists f ∈ F with hn ∈ Bf for each
n ∈ N. Again by compactness we can assume that hn → h for some h ∈ Bf ∩ F .
Fix t ∈ [0, r], and letting n→∞ in (7) we obtain

d(φt(x), φh(t)(z)) ≤ δ.

That is, z ∈ Bφr [x, δ,F ]. The reciprocal inclusion is trivial. �

Corollary 3.7. Let φ be a continuous flow on a compact metric space X. If F is a
compact subset of H, then given x ∈ X and δ > 0 the F-dependent dynamical ball,

Γφδ (x,F), is a Gδ set in X.

Proof. By definition of strongly F-dependent dynamical ball and Lemma 3.5 we
obtain

Γφδ (x,F) =

∞⋂
k=1

∞⋂
n=1

Bφk

[
x, δ +

1

n
,F
]
.

Also, by Lemma 3.6 item (2), the sets Bφk
[
x, δ + 1

n ,F
]

are Gδ sets in X for every

(k, n) ∈ N2. Then, the F-dependent dynamical ball Γφδ (x,F) is a Gδ set in X. �

We have the next lemma.

Lemma 3.8. Let φ be a continuous flow of a compact metric space X. If F ⊂ H
is regular for φ and for any x ∈ X and every δ > 0 there are γ > 0 and y ∈ X such

that d(φt(x), φt(y)) ≤ δ for all t ∈ R whenever d(x, y) ≤ γ, then y ∈ Γφδ (x,F).

Proof. Fix x ∈ X and δ > 0. Let y ∈ B[x, γ] where γ > 0 is such that

(8) d(φt(x), φt(y)) ≤ δ

2
for all t ∈ R.

By regularity condition of F there exists h ∈ F with the property that

(9) d(φt(y), φh(t)(y)) ≤ δ

2
for all t ∈ R.

Then, from (8) and (9) we obtain

d(φt(x), φh(t)(y)) ≤ d(φt(x), φt(y)) + d(φt(y), φh(t)(y)) ≤ δ for each t ∈ R.

So, y ∈ Γφδ (x,F). �

The following result is an adaptation of Lemma 3.8 in [4] for the F-dependent
dynamical ball. If f : X → Y is an equivalence between the flows φ on X and ψ on
Y respectively, then for every x ∈ X there exists hx ∈ K satisfying

f−1(ψ(t, f(x))) = φ(hx(t), x) for each t ∈ R.

Lemma 3.9. Let F ⊂ H such that KFK ⊂ F and f be an equivalence between
continuous flows φ on X and ψ on Y , where X and Y are compact metric spaces.

Then for all δ > 0 there exists α > 0 with f−1(Γψα(z,F)) ⊂ Γφδ (f−1(z),F), for all
z ∈ Y .
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Proof. Let δ > 0. By compactness we have that f−1 is uniformly continuous,
so, there exists β > 0 with the property that d(f−1(z), f−1(w)) ≤ δ whenever
d(z, w) ≤ β with z, w ∈ Y . Choose 0 < α < β. Given z, w ∈ Y such that
w ∈ Γψα(z,F), there exists h ∈ F such that

d(ψt(z), ψh(t)(w)) ≤ α for every t ∈ R.
By uniform continuity

d(f−1(ψt(z)), f
−1(ψh(t)(w))) ≤ δ for every t ∈ R.

Then d(φt(f
−1(z)), φĥ(t)(f

−1(w))) ≤ δ for all t ∈ R, where ĥ = hf−1(w) ◦ h ◦
h−1
f−1(z) and h ∈ F . Since F ⊂ H satisfies KFK ⊂ F , then ĥ ∈ F . So f−1(w) ∈

Γφδ (f−1(z),F). �

The following result is a variant of Lemma 12 in [15].

Lemma 3.10. Let φ be a continuous flow without singularities on a compact metric
space X. For each λ > 0 small enough, there exists ε > 0 such that for every
x, y ∈ X and for every interval [T1, T2] containing the origin and for every α ∈ H,
the following holds: if d(φt(x), φα(t)(y)) ≤ ε for all t ∈ [T1, T2], then |α(t) − t| < λ
for |t| ≤ 2 in [T1, T2] and |α(t)− t| < |t|λ for |t| > 2 in [T1, T2].

Proof. Without loss of generality we assume that T1 = 0. Fix 0 < λ < T0. We
choose γ > 0 satisfying the hypothesis of Lemma 3.2. Given 0 < ε < γ with the
property that

(10) d(φt(x), φt(y)) < γ for all 0 ≤ t ≤ 2 whenever d(x, y) ≤ ε.
Let α ∈ H be such that d(φt(x), φα(t)(y)) ≤ ε for all t ∈ [0, 2]. We claim that
|α(t)− t| < λ for all t ∈ [0, 2]. Indeed, otherwise there exists t0 ∈ [0, 2] such that the
continuous function g(t) = |α(t)− t| satisfies g(t0) = λ. Without loss of generality
we consider the case α(t0) > t0. Since d(x, y) ≤ ε by condition (10) we have that
d(φt0(x), φt0(y)) < γ, and so, by Lemma 3.2 we have

γ < d(φt0(x), φλ(φt0(y))) = d(φt0(x), φα(t0)−t0(φt0(y))) = d(φt0(x), φα(t0)(y)),

which contradicts the hypothesis. Since g(0) = 0, it follows that g(t) < λ for every
t ∈ [0, 2]. This proves our claim. For the case t ∈ [2, 4], suppose d(φt(x), φα(t)(y)) ≤
ε. Then letting u = t− 2, we get

d(φu(φ2(x)), φα(u+2)−α(2)(φα(2)(y))) = d(φu+2(x), φα(u+2)(y)) = d(φt(x), φα(t)(y)) ≤ ε
By defining G : u ∈ [0, 2] 7→ α(u+ 2)− α(2) we have G(0) = 0 and also

d(φu(φ2(x)), φG(u)(φα(2)(y))) ≤ ε for all 0 ≤ u ≤ 2.

By repeating the above argument we obtain that |G(u)−u| < λ for every u ∈ [0, 2],
that is, for each t ∈ [2, 4]

λ ≥ |G(t− 2)− (t− 2)| = |α(t)− α(2)− t+ 2| ≥ |α(t)− t| − |α(2)− 2|,
and it follows that |α(t)−t| ≤ 2λ. Using a similar argument one can show inductively
that for every n ≥ 1:

|α(t)− t| ≤ nλ, whenever 2n− 2 ≤ t ≤ 2n.

Finally, for each t > 2 in [0, T2] we have

|α(t)− t| ≤ nλ =
n

t
tλ ≤ tλ.
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�

Lemma 3.11. Let φ be a continuous flow without singularities on a compact metric
space X. There exists ε > 0 such that for every x ∈ X, r > 0 and each pair of
sequences hn in H and yn in X with yn → y, where y ∈ X, the following holds: if
d(φt(x), φhn(t)(yn)) ≤ ε for all (n, t) ∈ N× [−r, r], then for each δ > 0 there exists
an M ∈ N satisfying

d(φhn(t)(yn), φhn(t)(y)) ≤ δ for every − r ≤ t ≤ r and n ≥M.

Proof. Given 0 < λ < T0 we can choose ε > 0 satisfying Lemma 3.10 with respect
to λ. If the result is not true, then there are subsequences ynk , hnk and tk such
that −r ≤ tk ≤ r with the property that

(11) d(φhnk (tk)(ynk), φhnk (tk)(y)) > δ for every k ∈ N.

By Lemma 3.10 for each k ∈ N we have

|hnk(tk)− tk| < λmax{|tk|, 1}.
Since −r ≤ tk ≤ r, then there are ar, br ∈ R such that ar ≤ hnk(tk) ≤ br for every
k ∈ N. Thus, we can assume that hnk(tk)→ t0 where t0 ∈ [ar, br]. Letting k →∞
in (11) we obtain a contradiction. �

Next we explore the topological properties of the dynamical ball defined in (2).
Denote by 2Xc the space of all compact subsets of X endowed with the Hausdorff
distance dH [10]. The space (2Xc , dH) is itself a compact metric space. A set-valued
map Ψ : X → 2Xc is said upper-semicontinuous if for every x ∈ X and any open
V ⊂ X containing Ψ(x), there exists a neighborhood U of x in X such that V
contains Ψ(w) for all w ∈ U. With these definitions we obtain the following result.

Lemma 3.12. If the flow φ has no singularities, then there exists δ0 > 0 such that
the following properties hold for every F ⊂ H, every δ ∈ (0, δ0):

(1) For every x ∈ X the strongly F-dependent dynamical ball, Γ̃φδ (x,F), is
compact.

(2) The set-valued map

Φ : X −→ 2Xc
x 7→ Γ̃φδ (x,F),

is upper-semicontinuous.

Proof. Given 0 < λ < T0 we can choose δ0 > 0 satisfying Lemma 3.11 with respect
to λ. Let 0 < δ < δ0. In order to prove item (1) it is sufficient to prove that for
every x ∈ X and r > 0, the set

⋂
γ>δ B

φ
r [x, γ,F ] is closed in X. Fix (r, x) ∈ R+×X.

Let yn be any sequence in
⋂
γ>δ B

φ
r [x, γ,F ] and assume that yn converges to y in

X. Given γ > 0 such that δ < γ < δ0 take δ < β < γ. Then there exists a sequence
hn in F such that

(12) d(φt(x), φhn(t)(yn)) ≤ β for each |t| ≤ r.
Since γ − β > 0, using Lemma 3.11, there is an M ∈ N satisfying

(13) d(φhn(t)(yn), φhn(t)(y)) ≤ γ − β for every |t| ≤ r and n ≥M.

By (12) and (13) for all −r ≤ t ≤ r and n ≥M we have

d(φt(x), φhn(t)(y)) ≤ d(φt(x), φhn(t)(yn)) + d(φhn(t)(yn), φhn(t)(y)) ≤ γ.
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Then y ∈ Bφr [x, γ,F ] and since γ > δ was chosen arbitrarily, the result follows.
To prove (2), by item (1), the set-valued map

Φ : X −→ 2Xc
x 7→ Γ̃φδ (x,F),

is well defined. Fix x ∈ X. If Φ is not upper-semicontinuous in x, then there
exists an open neighborhood V of Φ(x) and a sequence xn converging to x such
that Φ(xn) 6⊂ V for all n ∈ N. Then, we can select a sequence zn ∈ Φ(xn) \ V =

Γ̃φδ (xn,F) \ V . Given m ∈ N and r > 0, there exists a sequence gn ∈ F such that

(14) d(φt(xn), φgn(t)(zn)) ≤ δ +
1

3m
, for all |t| ≤ r.

By compactness we can assume that zn → z for some z ∈ X. Since V is open,
z /∈ V . Also, there exists K ∈ N such that

(15) d(φt(xn), φt(x)) ≤ 1

3m
for every |t| ≤ r and n ≥ K.

Then by (14) and (15) for every −r ≤ t ≤ r and n ≥ K we obtain

(16) d(φt(x), φgn(t)(zn)) ≤ d(φt(x), φt(xn)) + d(φt(xn), φgn(t)(zn)) ≤ δ +
2

3m
.

If m is chosen such that δ + 2
3m < δ0, then by Lemma 3.11 there is an M ∈ N

satisfying

(17) d(φgn(t)(zn), φgn(t)(z)) ≤
1

3m
for every |t| ≤ r and n ≥M.

Then by (16) and (17) we obtain for each −r ≤ t ≤ r and j ∈ N large enough

d(φt(x), φgj(t)(z)) ≤ d(φt(x), φgj(t)(zj)) + d(φgj(t)(zj), φgj(t)(z)) ≤ δ +
1

m
.

It follows that z ∈ Φ(x) = Γ̃φδ (x,F) ⊂ V . Then, z ∈ V which is a contradiction. �

The following corollary is then a direct consequence of Lemmas 3.5 and 3.12.

Corollary 3.13. If the flow φ has no singularities and F ⊂ H is compact, then

there exists δ0 > 0 such that for every δ ∈ (0, δ0) the dynamical ball Γφδ (x,F) is
compact for all x ∈ X.

4. Proofs

Proof of Theorem 2.6. Since F ⊂ (φ∗)−1(φ∗(F)), by Lemma 3.1, each Borel prob-

ability measure
(

(φ∗)−1(φ∗(F))
)

-expansive is F-expansive.

Conversely, let δ > 0 be the expansivity constant of µ. It is enough to show that

Γφδ
2

(x, (φ∗)−1(φ∗(F))) ⊂ Γφδ (x,F) for all x ∈ X.

Let z, x ∈ X be such that z ∈ Γφδ
2

(x, (φ∗)−1(φ∗(F))). Then, there is h ∈ (φ∗)−1(φ∗(F))

with the property that

(18) d(φt(x), φh(t)(z)) ≤
δ

2
for all t ∈ R.
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Since φ∗(h) ∈ φ∗(F), there exists f ∈ F such that φ∗(f) ∈ N(φ∗(h), z, δ2 ). It follows
that

(19) d(φh(t)(z), φf(t)(z)) ≤
δ

2
for all t ∈ R.

Therefore, from (18) and (19) we have

d(φt(x), φf(t)(z)) ≤ d(φt(x), φh(t)(z)) + d(φh(t)(z), φf(t)(z)) ≤ δ for every t ∈ R.

Thus, we can conclude that z ∈ Γφδ (x,F). �

Proof of Corollary 2.7. By continuity of φ∗, we obtain φ∗(F) ⊂ φ∗(F). Then, we

have the following inclusion F ⊂ (φ∗)−1(φ∗(F)). Thus, by Lemma 3.1 and Theorem
2.6, if µ is F-expansive, then µ is F-expansive. �

Proof of Theorem 2.9. To prove Item (1), it is sufficient to apply Corollary 3.7.
To prove Item (2) if µ is F-expansive, by Lemma 3.1, then µ is {f}-expansive

for every f ∈ F . Conversely, let δ > 0 be the expansivity constant of µ. Given
f ∈ F , by compactness argument we can show that there exists ε > 0 such that

φ(−ε,ε)(x) ⊂ B(x, δ2 ) for every x ∈ X. We define Uf = {g ∈ H : d̂(f, g) < ε} the
which is an open subset in (Bf , df ). We claim that

(20) Γφδ
2

(x,Uf ) ⊂ Γφδ (x, {f}) for all x ∈ X.

Let z, x ∈ X be such that z ∈ Γφδ
2

(x,Uf ). Then, there is g ∈ Uf such that

(21) d(φt(x), φg(t)(z)) ≤
δ

2
for each t ∈ R.

Fix t ∈ R. Since g ∈ Uf and φ(−ε,ε)(φf(t)(z)) ⊂ B(φf(t)(z),
δ
2 ), we have

(22) d(φf(t)(z), φg(t)(z)) = d(φf(t)(z), φg(t)−f(t)(φf(t)(z))) <
δ

2
.

From (21) and (22), we obtain

d(φt(x), φf(t)(z)) ≤ d(φt(x), φg(t)(z)) + d(φf(t)(z), φg(t)(z)) < δ for every t ∈ R.

That is, z ∈ Γφδ (x, {f}). Thus, for each f ∈ F there is an open neighborhood
Uf of f such that (20) holds. By compactness, choose f1, · · · , fm ∈ F such that
F ⊂

⋃m
i=1 Ufi and by Lemma 3.1, µ is F-expansive. �

Proof of Theorem 2.13. To prove Item (1), by the definition of F-expansiveness of
µ, there exists δ > 0 . By c.f. p. 506 in [1], there exists α > 0 such that if

(23) y ∈ φ(−α,α)(x), then d(φt(x), φt(y)) <
δ

2
for all (x, t) ∈ X × R.

Let y ∈ φ(−α,α)(x). Since F is regular, then by (23) and Lemma 3.8 it follows that

y ∈ Γφδ (x,F). That is, φ(−α,α)(x) ⊂ Γφδ (x,F) for all x ∈ X. Let x ∈ X. Then
φR(x) is separable since X is compact. Then there exists a sequence {xn} ⊂ φR(x)
dense in φR(x) and {φ(−α,α)(xn) : n ∈ N} covers φR(x) so that

µ(φR(x)) ≤
∑
n∈N

µ(φR(xn)) = 0.

Item (2) follows from the definition of F-expansiveness and the monotony of the
measure.
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We now prove (3). Since µ is expansive, there is a δ > 0 such that for every

σ ∈ Sing(φ) we have µ(Γφδ (σ,F)) = 0. Given h ∈ F ∩ B0, let λ > 0 be such that
|h(t)| ≤ λ for every t ∈ R. Fix σ0 ∈ Sing(φ). There exists γ > 0 such that

d(φs(y), σ0) ≤ δ for every |s| ≤ λ,whenever d(σ0, y) ≤ γ.

So, if y ∈ B[σ0, γ], then d(φh(t)(y), σ0) ≤ δ for every t ∈ R. That is, B[σ0, γ] ⊂
Γφδ (σ0,F). Therefore, µ(B[σ0, γ]) = 0. It follows that σ /∈ supp(µ).

To prove Item (4) let f : X → Y be an equivalence between continuous flows
φ on X and ψ on Y . By Lemma 3.9, for all δ > 0 there is α > 0 such that

f−1(Γψα(z,F)) ⊂ Γφδ (f−1(z),F). Let δ > 0 be the expansivity constant of µ. Let

z ∈ Y and let B be a Borel set such that B ⊂ Γψα(z,F). By Lemma 3.9, f−1(B) ⊂
Γφδ (f−1(z),F) so that f∗µ(B) = µ(f−1(B)) = 0 since µ(Γφδ (f−1(z),F)) = 0. That

is, f∗µ(Γψα(z,F)) = 0. The converse is analogous (just replace f by f−1).
To prove Item (5) suppose T > 0. For every δ > 0 there exists α > 0 such that

d(φt(z), φt(w)) ≤ δ for all t ∈ [0, T ] whenever z, w ∈ X and d(z, w) ≤ α.

Let x, y ∈ X with y ∈ ΓφTα (x). Given t ∈ R there exists a unique m ∈ Z such that
t ∈ [mT, (m+ 1)T ]. Then

d(φt(x), φt(y)) = d(φt−mT (φmT (x)), φt−mT (φmT (y))) ≤ δ.

From d(φmT (x), φmT (y)) ≤ α and t−mT ∈ [0, T ], it follows that d(φt(x), φt(y)) ≤ δ.
By the regularity condition of F and Lemma 3.8 we obtain that y ∈ Γφδ (x,F). Thus

ΓφTα (x) ⊂ Γφδ (x,F) and the proof follows.

To prove Item (6) if T 1,f (µ) is F-expansive for φ1,f , by Theorem 2.13 item (5),

T 1,f (µ) is also expansive for the homeomorphism φ1,f
1 . Since φ1,f

1 = f × id for
all (x, t) ∈ Y 1,f we have that T 1,f (µ) is expansive for f × id : Y 1,f → Y 1,f . Let
δ > 0 be the expansivity constant of T 1,f (µ) with the property that 0 < δ < 1

2 .
By definition of Bowen-Walters metric, we conclude that for all x ∈ X, there are
t1, · · · , tk(x) ∈ [0, 1) satisfying [0, 1) =

⋃
1≤j≤k(x)[tj , tj+1) and

Γfδ
2

(x)× [0, 1) ⊂
r=k(x)⋃
j=1

Γf×idδ (x, t∗j ),

where t∗j is the midpoint of [tj , tj+1). Then, by the expansiveness of T 1,f (µ), for
each x ∈ X we have

µ(Γfδ
2

(x)) ≤
j=k(x)∑
j=1

∫
Γf×idδ (x,t∗j )

dT 1,f (µ) =

j=k(x)∑
j=1

T 1,f (µ)(Γf×idδ (x, t∗j )) = 0.

It follows that µ is expansive for f .
Finally, To prove Item (7), we see that by Theorem 2.4 in [4], T 1,f (µ) is expansive

for φ1,f . By Lemma 3.1 and since F ⊂ H it follows that T 1,f (µ) is F-expansive for
φ1,f . �

Proof of Theorem 2.16. For each δ, ε > 0 we define

C(δ, ε,F) = {µ ∈M(X) : µ(Γφδ (x,F)) ≥ ε for some x ∈ X}.
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It follows that

Mex(X,φ,F) =

∞⋃
n=1

∞⋂
m=1

(
M(X) \ C

(
1

n
,

1

m
,F
))

.

If we prove that C(δ, ε,F) is closed in M(X) for all δ, ε > 0, then Mex(X,φ,F) is
a Gδσ subset of M(X), that is, the union of countably many Gδ subsets of M(X).
Thus, by Corollary 6 in [12], Mex(X,φ,F) is a Baire subset of M(X).

To prove that C(δ, ε,F) is closed, take a sequence µn ∈ C(δ, ε,F) such that
µn → µ for some µ ∈M(X). Choose a sequence xn ∈ X such that

ε ≤ µn(Γφδ (xn,F)), for all n ∈ N.

Suppose that xn → x for some x ∈ X. Fix an open neighborhood U of Γφδ (x,F).
Now we analyze the following two cases:

Case 1: F is a compact subset of H.

In this case suppose there exists a subsequence nk →∞ such that Γφδ (xnk ,F) 6⊂
U for all k ∈ N. Then, we can select a sequence zk ∈ Γφδ (xnk ,F) \ U and so, by
definition of dynamical ball, we obtain a sequence gk ∈ F such that

(24) d(φt(xnk), φgk(t)(zk)) ≤ δ, for each t ∈ R.

Since F is compact, we can assume zk → z and gk → g for some z ∈ X and g ∈ F .
As U is open, z /∈ U . Fixing t ∈ R on (24) and letting k →∞ we obtain

d(φt(x), φg(t)(z)) ≤ δ.

Hence we obtain that z ∈ Γφδ (x,F). Then z ∈ U , which is a contradiction.
Case 2: The flow φ has no singularities.
In this case, by Corollary 3.4 we can work with the H-dependent dynamical ball,

Γ̃φδ (x,H). Then, by Lemma 3.12 item (2), the function Φ is upper semicontinuous
and so Φ(xn) ⊂ U holds for n large.

Therefore, in both cases, we have that Γφδ (xn,F) ⊂ U holds for n large. Since
µn → µ we obtain

ε ≤ lim sup
x→∞

µn(Γφδ (xn,F)) ≤ lim sup
x→∞

µn(U) ≤ µ(U).

We can choose U such that µ(∂U) = 0. Then ε ≤ µ(Γφδ (x,F)). It follows that
C(δ, ε,F) is closed in M(X) for all δ, ε > 0. �

Proof of Theorem 2.19. Let φ be a continuous flow with F-expansive measures of a
compact metric space X. By Corollary 1 p.71 in [10], the set of discontinuities D of
the set-valued map Ψ : Mex(X,φ,F) → 2Xc defined by Ψ(µ) = supp(µ) is meagre
in Mex(X,φ,F). Then, the set R = Mex(X,φ,F) \ D is dense in Mex(X,φ,F).
Given µ ∈ R and ν ∈Mex(X,φ,F), define the measure µn with the property that
µn = (1− 1

n )µ+ 1
nν for each n ∈ N. Then µn ∈Mex(X,φ,F) and µn → µ as n→∞.

Since µ /∈ D, Ψ is continuous at µ and so Ψ(µn) = supp(µ) ∪ supp(ν) converges to
Ψ(µ) = supp(µ). Therefore, supp(ν) ⊂ supp(µ). It follows that E(φ,F) = supp(µ).
Thus, there exists a dense subset R of Mex(X,φ,F) whose supports are all equal
to E(φ,F). �

Proof of Corollary 2.20. Suppose that the set of F-expansive measuresMex(X,φ,F)
is dense inM(X). By Lemma 10 in [12], E(φ,F) = X. The Theorem 2.19 provides
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a dense subset R ofMex(X,φ,F) such that supp(µ) = E(φ,F) = X for all µ ∈ R.
Since Mex(X,φ,F) is dense in M(X), we obtain that R is dense in M(X). �

Proof of Corollary 2.21. By Corollary 2.20 there exists an F-expansive measure w
for the flow such that supp(w) = X. If z is an isolated point of X, then {z} is a
neighborhood of z and so w({z}) > 0. By the regularity condition of F , we have

z ∈ Γφδ (z,F), and therefore w({z}) = 0, which leads to a contradiction. �

Proof of Theorem 2.22. Let Mex(X, f) be the set of expansive measures of the
homeomorphism f . Then, if µ ∈ Mex(X, f) it follows of Theorem 2.13 item (7)
that T 1,f (µ) is F-expansive for φ1,f . Since the flow φ1,f has no singularities, by
Theorems 2.16 and 2.19, the set Mex(Y 1,f , φ1,f ,F) has a dense subset {wk} of
F-expansive measures with support equal to the F-measure-expansive center.

Given k ∈ N, we define µk ∈ M(X) such that µk = (π ◦ i−1)∗wk where i :
X× [0, 1)→ Y 1,f is the inclusion map and π : X× [0, 1)→ X is the first projection.
Taking F regular, we can repeat the argument of Theorem 2.13 item (6) to have
that uk is expansive for f .

We claim that the set of measures {µk} is dense inMex(X, f). Fix ν ∈Mex(X, f).
Then, by Theorem 2.13 item (7), T 1,f (ν) is F-expansive for φ1,f . Thus, there is
a sequence {wk}k∈N such that wk → T 1,f (ν). Let ψ : X → R be a continuous
function. Define h : Y 1,f → R such that h(x, t) = ψ(x) whenever 0 ≤ t < 1. By
weak convergence we obtain∫

X

ψ(x)dµk(x) =

∫
Y 1,f

h(x, t)dwk(x, t)→
∫
Y 1,f

hdT 1,f (ν) =

∫
X

ψ(x)dν(x).

Thus, µk → ν, that is, the sequence {µk} is dense in Mex(X, f). To complete the
proof, given η ∈Mex(X, f) and k ∈ N, then supp(wk) = E(φ1,f ,F). Therefore

supp(η)× [0, 1) ⊂ supp(T 1,f (η)) ⊂ E(φ1,f ,F) = supp(wk) ⊂ supp(µk)× [0, 1).

Hence, supp(η) ⊂ supp(µk) and thus, supp(µk) = E(f). �
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