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Abstract

This work addresses the problem of finding the real roots of univariate polynomials,

covering two related subareas. One of them is related to the problem of computing an

upper (lower) bound for the value of the maximum (minimum) positive root of a univari-

ate polynomial. In this part, we present a detailed state-of-the art survey and we propose

a method that improves the quality of the bounds produced by other existing methods,

without introducing significative extra amount of computational effort. The other part

is related to the problem of isolating the positive roots of a univariate polynomial P (i.e.:

computing a set S of disjoint intervals, each one of them containing exactly one positive

root of P , all positive roots of P being contained by some interval in S). In this part,

the main results related to the problem are presented, explained and compared; and two

results are introduced: one adaptation of one of the underlying theorems (Fourier’s the-

orem), which requires less amount of computational effort in the cases in which P is a

fewnomial (i.e.: a sparse polynomial, a polynomial in which the degree is much higher

than the number of terms), and is also introduced one method for root isolation which,

while relying only on elementary and intuitive results, proves to have good performance

in most of the testcases. In addition to our theoretical approach, implementations and

extensive tests of our methods are presented. Along with these two mentioned results,

we also expose two ideas that, although we have not been able to obtain concrete results

from them, we find them promising. One of them is related to the Sturm idea, and the

other is related to Fourier’s theorem.
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Chapter 1

Introduction

The solution of numerical equations has been a focus of interest for algebraists and

geometers since the origins of algebra up to the present. It is one of the oldest and most

studied problems in Mathematics. Starting with ancient civilizations like the Babylo-

nians, and for centuries, mathematicians have looked for ways to compute the roots of

polynomials from the numerical values of its coefficients. Much more modern results (i.e.:

Abel, 1802–1829) [4, 5] proved that there is no general algebraic solution for the roots

of a quintic equation, or any general polynomial equation of degree greater than four, in

terms of explicit algebraic operations. Lagrange (1736–1813) did suspect this, but he was

not capable of proving his suspicion.

Lagrange published, in 1798, an extensive book on the problem of finding roots of

numerical equations [72]. As it can be seen in the next quotation, a numerical equation

is an equation of the form p(x) = 0, where p is a polynomial in which the coefficients

are numbers, not symbols. An equation in which the coefficients are symbols is called

an algebraic equation. Lagrange saw the subject of computing solutions of equations as

divided in two parts, concerning either numerical or algebraic equations:

La solution de tout problème déterminé se réduit, en dernière analyse, à la

résolution d’une ou de plusieurs équations, dont les coefficiens sont donnés en

nombres, et qu’on peut appeler équations numériques. Il est donc important

d’avoir des méthodes pour résoudre complètement ces équations, de quelque

degré qu’elles soient. . . .

Il faut bien distinguer la résolution des équations numériques de ce qu’on

appelle en Algèbre la résolution générale des équations. La première est,
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à proprement parler, une opération arithmétique, fondée à la vérité sur les

principes généraux de la théorie des équations, mais dont les résultats ne sont

que des nombres, où l’on ne reconnâıt plus les premiers nombres qui ont servi

d’éléments, et qui ne conservent aucune trace des différentes opérations par-

ticulières qui les ont produits. L’extraction des racines carrées et cubiques

est l’opération la plus simple de ce genre; c’est la résolution des équations

numériques du second es du troisième degré, dans lesquelles tous les termes

intermédiaires manquent. [72]

This book of Lagrange was published in 1798 and revised in 1808. It is, essentially,

a reproduction in six chapters of two extensive previous papers of him, from 1769/1770;

with voluminous additional notes. The book contains methods for finding all the real

roots of numerical equations.

With respect to algebraic equations, and also by 1770, Lagrange published his work

Reflexions sur la Resolution Algébrique des Equations [71], in which he tried to extend

existing work on the old problem of solving algebraic equations by formulas involving

radicals, and expressed and supported his view that the situation beyond degree four

looked unpromising. This latter manuscript represents an important milestone in setting

the stage for the later work of Abel and Galois, whose new methods and discoveries

confirmed the truth of Lagrange’s pessimistic assessment about algebraic solutions.

The work of Lagrange set the initial from which the problem started to evolve much

faster than previously. In chapter 2 we show a historical line starting at him.

1.1 The problem

This thesis is about the solution of numerical equations, in the modern sense of the

phrase. The current approaches (and, in fact, ancient approaches too) to compute the

solutions for a numerical equation involves two steps: isolate the solutions and refine the

isolation. The problem of isolating the roots of a given polynomial p is the problem of

computing a set of disjoint intervals, each containing exactly one real root of p, which

together contain all roots. The problem of refining an isolating interval is the problem in

which we have an interval I that contains exactly one root of p and we want to compute

a narrower interval, contained in I, which also contains the root.
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In modern bibliographies [13, 32, 85, 87], the problem of isolating the real roots of

p(x) is sometimes referred to as solving the polynomial p(x).

In this thesis we analyze the problem of isolating the real roots of polynomials. When

analyzing this problem, there are some sub-problems that appear in a natural way; among

them, is the problem of giving lower and upper bounds for the positive roots of a poly-

nomial. Nowadays, the most efficient methods for root isolation can be significatively

improved through improving the root bounding algorithms that they use as auxiliary

tools.

1.2 Contributions

The main contributions on this thesis are:

Root bounding problem:

– We propose a unified way to understand almost all of the current approaches.

– Based on this insight we propose, implement and extensively test a new method,

on many significant scenarios, obtaining a technique that yields significant im-

provements in the results while not introducing a significant time penalty.

Root isolation problem:

– An adaptation of a theorem stated by Fourier, which is better for sparse poly-

nomials (often referred to as fewnomials).

– A method which relies on elementary and intuitive concepts, and shows quite

acceptable performance in most cases; resulting faster than Sturm and only

improved by the fastest approach, the VAS, which is more complicated from

a conceptual point of view.

Application:

– An application of the approaches for the root isolation problem, which allows,

in the area of simulation of physical systems, to numerically solve a new family

of situations, improving significatively the quality of the numerical results

obtained in some simulations.
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Expository:

– An ordered text which collects the main results and algorithms of the area,

all of them explained with elementary arguments. Although almost all of

the results can be explained with quite elementary concepts, there exist some

places in current literature where we can find quite complicated explanations.

1.3 Outline of the chapters

Chapter 2: Historical overview. We give an historical but not exhaustive overview of

the problem. This chapter focuses on more ancient results and ideas; modern ideas will

be visited later.

Chapter 3: Root bounding. We survey existing approaches for the problem, and pro-

pose a unified framework to see all of them in the same way. We propose a new technique

that improves the current methods without introducing significative computational effort.

Chapter 4: Root isolation. We show an adaptation of the theorem of Fourier; we survey

existing methods for the root isolation problem, proposing elementary explanations for

all of them, and we propose a method which, while relying on elementary and intuitive

concepts, shows to be quite efficient for some particular input cases.

Chapter 5: One application in simulation of physical systems. In this chapter, whose

main ideas were developed in collaboration with Dr. Federico Bergero (CIFASIS, Rosario,

Argentina), the algorithms mentioned in chapter 4 are adapted to be efficient for isolat-

ing the minimum positive root of a given polynomial, not necessarily sparse; and these

adaptations are inserted as auxiliary tools inside the current simulation methods. Due to

the lack of analytic solutions for systems of high degree, these simulation methods focus

on systems of order 4 or less. However, it is not the analytic solution that is needed, but

the numerical one. With our adaptations, we show how a family of higher–order systems

become integrable.
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Chapter 2

Historical overview

This chapter shows a historical survey of the problem of computing numerical solutions

of univariate polynomials, stating and explaining the most important results, chronolog-

ically. From Descartes up to nowadays, giving more importance to ancient results, since

we will revisit modern ones in the next chapter of this thesis. As it will be shown, the

problem has evolved a lot. Currently there exists research effort in many sub-problems

of that initial problem, all of them with significative impact in different areas. Among

them we can point, for example, the problem of bounding the real roots of a univariate

polynomial, the problem of counting the number of real roots of a univariate polynomial

in a given interval, the problem of bounding the size of the separation between any two

roots of a univariate polynomial (known as repulsion), the problem of isolating the real

roots of a univariate polynomial, the problem of refining an interval containing exactly

one real root of a univariate polynomial. All of these problems are, of course, related.

All of them appear in a natural way when trying to solve the first mentioned problem:

computing the real roots of univariate polynomials. The subsequent chapters analyze

some of these sub-problems.

Contributions in this chapter The main goal of this chapter is to give a chronological

survey of the main contributions to the problem of computing the real roots of a univariate

polynomial and its related sub-problems. It begins with a brief timeline, putting the main

results in historical perspective and, after that, it shows them in more detail. In some

cases, additional interpretations are given, with the intention of simplifying the reading

and understanding.
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2.1 Historical review

In 1637, in the appendix La géometrie of his Discours de la méthode, Descartes for-

mulated without any proof, the oldest and by far the most famous theorem related to

counting real roots of univariate polynomials: Descartes’ rule of signs (see the original

statement on page 11). It gives an upper bound for the number of real positive roots

that a polynomial p can have, considering only the signs of its coefficients.

In 1798, Lagrange proposed, in his De la résolution des equations numériques de

tous les degrés [72] (with most of its content republished in 1826, in his Traité de la

résolution des equations numériques de tous les degrés [73]), the first systematic method

to address the problem of computing the real roots of a univariate polynomial. It consists

in evaluating the input polynomial p at an increasing sequence of numbers, starting at a

lower bound of the roots of p, and ending at an upper bound of them. The values at that

sequence must be chosen in a way that ensures that p cannot have more than one root

between any two consecutive elements of it. Looking the changes of sign at the results

of these evaluations, this procedure can tell which intervals have exactly one root. The

condition that p cannot have more than one root between any two consecutive elements of

the sequence is fulfilled by taking as sequence an arithmetic progression whose ratio ∆ is

a lower bound on the distances between any two roots of p. Lagrange proposed four ways

to compute a valid ∆, with and without explicit computation of the auxiliary equation

of differences, whose roots are the differences between all ordered pairs of distinct roots

of p.

Although this method was the first algorithm and has strong theoretical importance,

it was not very successful in practice due to large amount of computational effort that it

required. This aspect of the method was strongly criticized by Fourier, who stated that

it was highly impractical [19, 17].

In 1800, in his Nouvelle méthode pour la résolution des équations numériques d’un

degré quelconque [25], Budan stated a theorem (see page 15) for computing an upper

bound on the number of real roots a polynomial has in an open interval by counting the

number of sign changes in the sequences of its coefficients. This book was republished

(under the same name) in 1807.

In 1820, Fourier [47, 46] stated a theorem from which it was possible to conclude as

corollary the Descartes’ rule of signs (stated without any proof, as we already said, by
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Descartes in 1637, in his Geometry). This theorem has been shown to be equivalent to

the one stated by Budan 20 years before. After Fourier’s reformulation of the theorem,

the version of Budan was almost completely replaced in the literature by Fourier’s version

and the latter has been referred to under various names, including Budan’s. This can

be seen, for example, in Prasolov’s book [82, page 27], where the theorem is stated in

Fourier’s formulation and named Budan–Fourier.

In 1829, based on the proof that Fourier gave to his version of Budan’s theorem,

following a reasoning that mimics Fourier’s one, Sturm [90, 91] proposed a method that

allows to count exactly the number of roots in some interval (a, b). It does not produce a

bound on the number of root of the polynomial: it actually computes the exact number

of roots that the polynomial p has in the given interval. This method is one of the most

reliable methods and is still widely used to count and isolate roots.

In 1834, Vincent [94, 95] proposed a theorem based on Budan’s original formulation

of the Budan–Fourier’s theorem. This method, due to the fact that the problem had

already been considered solved after Sturm’s work, was almost completely forgotten until

the middle of the 20th century. However, a new family of algorithms based on his work

appeared during that century. Nowadays, Vincent’s work is the basis of the fastest

known method for isolating the real roots of a univariate polynomial, and for a family of

algorithms based on it [32, 13, 19].

So, Fourier’s formulation of Budan’s theorem has been the basis for Sturm’s method.

Budan’s original formulation has been the basis for Vincent’s theorem, which has been

forgotten, brought back to life about one century later, and now serves as basis for the

fastest method among the current approaches.

There exist different proofs of Fourier’s theorem in the literature. Fourier’s original

work was split into two parts [47, 46]; one part proved the theorem assuming a given

condition and the other proved that the theorem remains true without that assumption.

In this work we will give a proof of the theorem that is based on the ideas presented by

Fourier in the first of his two parts. Fourier’s theorem allows to compute an upper bound

on the number of roots of a polynomial in a given interval (a, b) and establishes that the

actual number of roots differs from that bound by an even non-negative quantity. If the

bound is 0 or 1, it is actually the exact number of roots.

At the present, the most widely mentioned algorithms in the bibliography, based on
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Vincent’s work, are the VAS (Vincent, Akritas, Strzeboński) [13], the VCA (Vincent,

Collins, Akritas) [32] and the VAG (Vincent, Alesina, Galuzzi) [17, 18, 19]. The last one

is, among these three, the clearest and simplest conceptually; but it is not efficient. The

best implementation of VCA is the one given by Rouillier and Zimmermann [85], and it

was the preferred method (in practice) to compute zeros of univariate polynomials, until

the discovery of the VAS, which has shown to be faster [13].

So, nowadays, there exist two main approaches for the problem: Sturm’s theorem and

Vincent’s theorem. While Vincent’s theorem is based on Budan’s work, Sturm’s theorem

mimics Fourier’s proof of an equivalent formulation of it.

Let us get back to the historical line, to 1834, after Vincent stated his theorem.

Nobody cared about it for about one century, until the book of Uspensky [92]. Uspensky

himself, writing about Vincent’s theorem says:

This remarkable theorem was published by Vincent in 1836, in the first volume

of Liouville’s Journal, but later so completely forgotten that no mention of

it is found even in such a capital work as Enzyclopädie der mathematischen

Wissenschaften.

Uspensky exposed, in his book, the method that was proposed by Vincent. It had the

disadvantage that could have exponential complexity in some cases. Collin and Akritas,

in the work in which they introduced the VCA [32], named this method as Uspensky

method and the method they were presenting (now known as VCA) as Modified Uspensky

method. Some years later, Akritas realized that the method he had taken from the book of

Uspensky was not Uspensky’s ; he realized that it was in fact Vincent’s method with slight

modifications. When Akritas realized about this, he published the article There is no

Uspensky’s method [9], in which he explains this name confusion. Anyway, even not being

the author of the implementation used in the VCA article for comparisons, Uspensky’s

contribution was remarkable: he was the first author, after around one century, who

brought back to life the forgotten Vincent’s theorem. The fastest algorithms for root

finding of nowadays are based on this theorem and, by middle of the 20th century, it was

forgotten.

In fact Akritas explains that this name confusion began when he read Vincent’s the-

orem and method from the book of Uspensky, the only place in which it could have been

found at that time.
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There are, nowadays, a lot of important articles, with significative contributions to the

problem. Table 2.1 is not intended to give a complete map of all the related bibliography,

it is supposed just to depict a high–level map of the works, in a chronological way. In

the next sections we will go into further details on some of these contributions.

2.1.1 On the Descartes’ rule of signs (1637)

There are in the literature many statements similar, but not equal, to the origi-

nal Descartes’ formulation of his rule. For example, Prasolov, in [82, page 28], states

Descartes’ rule is defined as follows:

The number of positive roots of the polynomial f(x) = a0x
n+a1x

n−1+· · ·+an
does not exceed the number of sign changes in the sequence a0, a1, . . . , an.

Collins and Akritas in [32, page 273], states:

Descartes’ rule of signs is a theorem which asserts that the number of positive

real roots (multiplicities counted) of a real polynomial A is equal to var(A)−

2k, for some non-negative integer k1.

Rouillier and Zimmermann in [85, page 35], states (in their theorem 2 ), a definition

equivalent to Collins and Akritas’ one:

Let P (x) =
∑d

i=0 aix
i be a polynomial in R[x]. If we denote by V (P ) the

number of sign changes in the list (a0, . . . , ad) and pos(P ) the number of

positive real roots of P counted with multiplicities, then pos(P ) ≤ V (P ), and

V (P )− pos(P ) is even.

Sagraloff, in [87, page 298, 2nd column, 2nd paragraph] states:

For an arbitrary polynomial p(x) =
∑n

i=0 aix
i ∈ R[x], the number m∗ of

positive real roots of p is bounded by the number v∗ of sign variations in its

coefficients sequence (p0, . . . , pn) and, in addition, v∗ ≡ m∗ mod 2.

1where var(A) is the number of sign variations in the list of coefficients of A
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Table 2.1 Main contributions to the problem of computing the real roots of a univariate
polynomial, and its associated subproblems.

1637 • Descartes states without any proof, in his La géometrie, his rule of signs (see
page 11).

1798 • Lagrange proposed his method, which required a large amount of computational
effort. He also introduced methods to compute the root repulsion of the input
polynomial [72, 73] (see page 13).

1800 • Budan introduced his theorem, which allowed the computation of an upper
bound on the number of real roots that a given univariate polynomial has on a
given interval, based on analyzing changes of signs in the sequence of coefficients
and performing changes of variable of the form x← x+ 1 [25] (see page 15).

1820 • Fourier presented his theorem, which turned to be a reformulation of Budan’s
theorem [47, 46, 82] (see page 50).

1829 • Sturm presented a method strongly based on Fourier’s formulation, and whose
proof mimics Fourier’s proof. This method was the first one that computed the
exact number of roots instead of an upper bound. Sturm method is still used
nowadays [90, 91] (see page 55).

1834 • Vincent presented his theorem and method, based on Budan’s original
formulation of his theorem. Vincent’s theorem was forgotten, mainly due to the
existence of Sturm’s method. Vincent’s method had exponential cost on the
worst case [94, 95] (see page 58).

1948 • Uspensky brings Vincent’s theorem back to life [92, 9].

1976 • Collins and Akritas, based on Uspensky’s book, proposed a method to isolate
the roots of a polynomial using Vincent’s theorem; this method was much better
than Vincent’s, because it (unlike Vincent’s) had no exponential complexity in
the worst case, it was polynomial. They compared their method to Uspensky’s
method. Later, they realized that the comparison was indeed against a method
that was already proposed by Vincent in his work [32, 9] (see page 4.4.1).

2004 • Rouillier and Zimmermann proposed the fastest implementation of the VCA
algorithm. They made clever considerations about the implementation, which
shown to impact its performance significatively [85].

2005 • Akritas and Strzeboński compared the bisection approach used in the
implementation of Rouillier and Zimmermann with a method based on
continued fractions. The new approach shown to be faster than the fastest
implementation of VCA [13] (see page 68).
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Although all of them can be proven to be true, none of these statements is the original

statement. The original rule was published by Descartes in 1637, in his work La géometrie,

without any proof. A complete proof of the rule was given only in 1828 by Gauss [19].

At the first part of his work, Descartes claims that a polynomial p(x) has a root α if and

only if it is divisible by x− α. After that, he states without a proof:

As a result, it is possible to know how many true2 roots and false3 roots an

equation4 can have. Namely, it can have as many true roots as the signs +

and − alternate, and as many false roots as two signs + or two signs − follow

one another.

So, translating into more modern words, Descartes’ rule of signs, as stated by Descartes,

is composed by the two following parts:

1. A real polynomial has no more positive roots than alternations of signs between

two consecutive coefficients.

2. A real polynomial has no more negative roots than permanences of signs between

two consecutive coefficients.

Descartes’ statement was attacked by several contemporaries, pointing that a real

polynomial can have fewer positive roots than the number of sign alternations in the list

of its coefficients. The counterargument is just the fact that Descartes was meaning at

most as many positive roots as alternations of signs and at most as many negative roots

as permanences of signs. This is actually what Descartes explained in his 77th refutation

letter, directed against Roberval [40]. Wallis, another contemporary of Descartes, tried

to attribute the rule to Harriot, an English geometer postdating Viète and predating

Descartes. However, De Gua [36] pointed that Wallis’ thesis cannot be seriously argued.

The arguments of De Gua were solid and well documented.

Now that we have stated original Descartes’ rule of signs, let us stop briefly and

analyze the following example:

p(x) = x2 − 1 = (x− 1)(x+ 1)

2by true he was meaning positive
3by false he was meaning negative
4a polynomial
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has, apparently, 1 alternation of signs and 0 permanences of signs! So at a first glance,

part 2 of Descartes’ rule of signs seems to be incorrect. What is the problem? What did

we miss?

The point is that in the most intuitive way in which we count alternations and per-

manences of signs in the list of coefficients, we just remove all zeros and proceed to count.

But what was Descartes’ meaning? What is the meaning of consecutive terms? Let us

show Descartes’ presumed interpretation [21]. First, let us note that Descartes’ statement

is in fact correct if one assigns, in any manner, signs to the lacunary coefficients. For

example, in the previous polynomial, we could write

p(x) = +x2 + 0x− 1

and p would have 1 alternation and 1 permanence. And with these quantities, Descartes’

rule of signs is correct for this case. Or we could write

p(x) = +x2 − 0x− 1

and, again, p would have 1 alternation and 1 permanence and again the Descartes’ rule

is correct. It is clear, given that Descartes’ rule produces upper bounds for the number

of positive (and negative) roots, that it is preferable to assign the signs of lacunary

coefficients in a way that minimizes these quantities. Descartes’ presumed convention

can be synthetized into two rules [21]:

1. In the context of counting sign alternations of p, the sign of a non-zero coefficient

limiting a sequence of null coefficients on the left propagates to the entire sequence.

2. In the context of counting sign permanences of p, the sign of a sequence of null coef-

ficients alternates, starting from the first non-zero coefficient limiting the sequence

on the left. This means that a sequence of coefficients of the form ai, 0, 0, . . . , 0, aj

with aiaj 6= 0 contributes 1 permanence if ai and aj are of opposite signs and the

number of 0’s is odd; or if ai and aj are of the same signs and the number of 0’s is

even. Otherwise, it contributes no permanence.

For example, let us count with this convention the number of sign alternations and sign

permanences on the polynomials p(x) = +3x4 − x and p(x) = +3x5 − x

12



alternations: p(x) = +3x4 + 0x3 + 0x2 − x1 − 0x0 =⇒ 1 alternation

permanences: p(x) = +3x4 + 0x3 − 0x2 − x1 − 0x0 =⇒ 3 permanences

alternations: p(x) = +3x5 + 0x4 + 0x3 + 0x2 − x1 − 0x0 =⇒ 1 alternation

permanences: p(x) = +3x5 + 0x4 − 0x3 + 0x2 − x1 − 0x0 =⇒ 2 permanences

An intuitive way of seeing the second part of the convention is: when counting sign

permanences, assign to each lacunary term of the form 0xi the same sign of the expression

(−x)i.

It might seem strange to use two different assignations of signs to the null coefficients

in order to count permanences and alternations, but this method has two advantages:

the number of alternations and permanences is minimized and the two methods are dual

in the sense that the number of permanences of p(x) is the number of alternations of

p(−x) and vice versa.

2.1.2 Lagrange (1798)

In 1798, in his book De la résolution des équations numériques de tous les degrés

[72, 73] , Lagrange exposed a complete method for isolating and approximating all real

(and complex) roots of a polynomial with real coefficients.

As it was already mentioned at the begin of this historical survey, the key idea of

Lagrange’s method is to evaluate the input polynomial p at an increasing sequence of

numbers, starting at a lower bound of the roots of p, and ending at an upper bound

of them, chosen in a way that ensures that p cannot have more than one root between

any two consecutive sequence elements. From the changes of signs at the results of these

evaluations we can tell which intervals have exactly one root.

In order to fulfill the condition that p cannot have more than one root between any

two consecutive elements of the sequence, the sequence is chosen to be an arithmetic

progression with a ratio ∆ being a lower bound on the distances between any two roots

of p.

Lagrange proposed four ways to compute a valid ∆, with and without explicit com-
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putation of the auxiliary equation of differences, whose roots are the differences between

all ordered pairs of distinct roots of p.

The problem with this approach proposed by Lagrange was that it is very expensive

in terms of computation. Lagrange himself realized that and tried to improve this point.

He proposed techniques to make the algorithm more efficient and, although the algorithm

itself has been replaced by other much more efficient methods, some of the powerful ideas

he used when trying to improve his algorithm foreshadowed methods developed much

later in geometry and abstract algebra.

Lagrange’s algorithm

Lagrange’s method aims to compute the positive roots of a polynomial equation

p(x) = xn − an−1x
n−1 + an−2x

n−2 − an−3x
n−3 + · · · = 0 (2.1)

where p has only simple roots. This condition can be achieved by dividing p by gcd(p, p′).

Lagrange’s algorithm is essentially divided in three steps:

1. Compute a lower bound ∆ for the distance between roots of p.

2. Using ∆, together with rescaling techniques, isolate roots of p. This step is the

most computational-effort-demanding.

3. Refine the intervals produced in step 2.

For step 1, Lagrange introduced the equation of differences, whose roots are the differences

of all ordered pairs of distinct roots of the input polynomial.

2.1.3 Budan (1800)

Budan’s work [25] is a complete book including not only the theorem now known by

his name, but also a method for isolating the roots of a univariate polynomial and to

compute the coefficients of a polynomial after a variable shifting. That is: the coefficients

of p(x+ 1) given the coefficients of p(x).

Budan’s theorem can be stated as follows:
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Theorem 1. Given a polynomial p(x), of degree n, and given the real numbers l and r,

such that l < r and p(r) 6= 0, then the number Vl of alternations of signs in the list of

coefficients of the polynomial p(x+l) cannot be smaller than the number Vr of alternations

of signs in the list of coefficients of the polynomial p(x+r); and Vl−Vr is an upper bound

for the number or roots of p in the interval (l, r), and it can differ from the actual number

of roots by an even amount only.5

2.1.4 Fourier (1820)

Fourier’s theorem can be formulated as follows [47, 46]:

Theorem 2. Let N(x) be the number of sign changes in the sequence f(x), f ′(x), . . . ,

f (n)(x), where f is a polynomial of degree n. If a < b, f(a) 6= 0, f(b) 6= 0, then

N(a) ≥ N(b), and the number of roots of f (multiplicities counted) between a and b does

not exceed N(a)−N(b). Moreover, the number of roots can differ from N(a)−N(b) by

an even number only.

This theorem will be revisited in more detail in chapter 4.

2.1.5 Equivalence between Fourier’s and Budan’s formulations

The equivalence follows trivially from the observation that, given a polynomial p of

degree n, the n + 1 terms of the Fourier sequence p(l), p′(l), . . . , p(n)(l) have the same

signs than the coefficients of p(x+ l) =
∑n

i=0

p(i)(a)

i!
xi.

Alesina and Galuzzi [17, 18, 19], the authors of the clearest modern method, pointed

out that the controversy over priority rights of Budan or Fourier is pointless from a

modern point of view. Alesina and Galuzzi states that Budan had “an amazingly modern

understanding of the relevance of reducing the algorithm to translate a polynomial by

x← x+ p by simple additions”.

2.1.6 Sturm (1829)

Sturm [90] presented, in 1829, a method which was strongly based on Fourier’s proof

of his theorem; but it had a substantial difference. Sturm’s method allowed counting

5The reason why the literature often uses the letter V to denote these quantities is that such number
of alternations of signs in the list of coefficients of a polynomial is often referred as variations instead of
alternations.
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exactly the number of different roots that a polynomial had in a given interval. Sturm’s

defined an alternative sequence for the input polynomial (instead of the sequence of its

derivatives of the Fourier’s theorem) and, with this new list of functions, the difference

in the number of sign variations, when the list is evaluated at two points a and b is the

exact number of different roots (multiple roots count just as 1) of p, instead of the upper

bound produced by Fourier’s theorem. We will return to this theorem in chapter 4.

2.1.7 Vincent (1834)

In 1834, Vincent, in his work Note Sur la résolution des Équations numériques [94, 95],

stated the following theorem:

Theorem (Vincent). Si dans une équation numérique rationelle en x dépourvue

de racines égales, on fait successivement, et conformément au procédé de La-

grange,

x = a+
1

x′
, x′ = b+

1

x′′
, x′′ = c+

1

x′′′
, . . .

on parvient toujours par la suite des transformations , et quels que soient

d’ailleurs les nombres a, b, c, . . . [supossés toutefois positifs et ¿ 1], à une

équation transformée qui se trouve dans l’un de ces deux cas : ou de neu plus

avoir que des permanences, ou de ne plus offrir qu’UNE variation ; dans ce

seconde cas, l’équation en x a une racine réelle positive représentée par la

fraction continue

a+
1

b+
1

c+
1

d+ . . .

et n’en a qu’une seule de cette valeur; le premier cas , au contraire , arrive

toutes les fois que l’équation n’a aucune racine susceptible de l’expression

indiquée.

The phrase “et conformément au procédé de Lagrange” in the previous theorem is impor-

tant; and the lack of it makes many of the restatements of Vincent theorem be incorrect.

For example, Alesina and Galuzzi’s article [17, page 219] states that the resulting polyno-

mial after the variable change has at most one sign variation. The same mistake is present

16



in Uspensky’s statement of the theorem. This is incorrect, since the resulting expression

after the sequence of substitutions is not a polynomial. This mistake is, unfortunately,

widely spread in the bibliography. This is unfortunate, especially for people interested

in understanding the details of the subject. A carefully inspection of both Vincent’s and

Lagrange’s works leads us to understand that the elimination of the denominator in the

resulting expression is, precisely, the meaning of the phrase “et conformément au procédé

de Lagrange”.

Having said this, the theorem can be restated as follows.

Theorem (Vincent). Let f(x) be a polynomial of degree n with rational coefficients and

without multiple roots. The sequence of h successive variable changes

x← a1 +
1

x
, x← a2 +

1

x
, x← a3 +

1

x
, . . . , x← ah +

1

x

can be seen as one only change of the form

x← a1 +
1

a2 +
1

a3 +
. . . +

1

ah +
1

x

which is,

x← Ax+B

Cx+D

for some nonnegative integers A,B,C,D. For h sufficiently large, the polynomial

(Cx+D)nf

(
Ax+B

Cx+D

)

has either 0 or 1 sign variations in its list of coefficients. Moreover, in the first case f

has no roots in the interval whose endpoints are B
D

and A
C

, while in the second case it has

exactly 1 root in it.

This result, known nowadays as theorem of Vincent, is used to prove that Vincent’s

method (proposed in the same work) terminates. These ideas served as basis for a family

of modern algorithms, in which is included the fastest known algorithm for root isolation.

Vincent’s algorithm and method will be revisited in chapter 4.
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2.1.8 Modern results: from Uspensky up to nowadays

The theorem of Vincent was completely forgotten, probably due to the existence

of Sturm’s method. But in 1948, Uspensky, in his book Theory of Equations, restated

Vincent’s theorem and method for root isolation. After him, Collins and Akritas, based on

Uspensky book, proposed the first algorithm based on Vincent’s work which handled the

exponential worst-case. They showed that the proposed method was faster than Sturm’s

and Uspensky’s methods. Some years later, Akritas realized that the method that they

called Uspensky’s should have been called in fact Vincent’s method. The algorithm they

proposed is now known as VCA. In 2004, Rouillier and Zimmermann gave the fastest

implementation of this method. Their considerations for it impacted very significatively

the performance of the VCA. The last contribution to the problem of isolating the roots

of a polynomial was made in 2005, by Akritas and Strzeboński [13]. The algorithm that

they proposed is strongly based on Vincent’s method; it is known as VAS and is the

default root isolation method in most of the widely used algebra systems (Mathematica,

Sage, SymPy, Xcas).

18



Chapter 3

Bounding the real roots of

univariate polynomials

The first, and in many cases the most expensive, step in most methods for computing

the real roots of a polynomial is to isolate them. That is, to compute a set of disjoint

intervals containing them (exactly one root on each interval and all roots contained in

disjoint intervals).

Root bounding is a central problem to real root isolation algorithms (i.e.: to this first

step). Among the most widely-used root isolation algorithms, there are the Vincent–

Akritas–Strzeboński (VAS) and Vincent–Collins–Akritas (VCA) algorithms1. In particu-

lar, VAS computes a lower bound on the positive roots of a polynomial on each execution

of the main loop.

It has been shown that even slight improvements on the quality of this lower bound,

and even investing much computational effort when computing it, impact the performance

of the VAS algorithm [15, 93].

There are two main variables of root bounding which impact in the performance of

VAS: the accuracy of the bounds and the efficiency of the root bounding method. This

chapter introduces an idea intended to address both variables. A new method will be

presented, which improves both the accuracy and the performance of the current methods.

So, throughout the chapter we consider the problem of obtaining upper bounds for

the positive real roots of polynomials. In section 1, we present a survey of the most

1Nowadays, VAS is the default root isolation method in many widely used computer algebra systems,
such as Mathematica, SageMath, SymPy and XCAS. VCA was, for many years, the default method
many computer algebra systems, but it is currently only used by Maple.
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important existing algorithms. Section 2 exposes a simple unified framework that allows

seeing almost all these algorithms from a common point of view. For that, the concept

of killing graph is introduced. In section 3, a new root bounding method is introduced,

which is actually a way to improve the result obtained by any other method. Any method

can be chosen and then, after it is executed, the present method can be run on the

obtained results and improve them.

The new method works as follows: at the beginning, it computes an upper bound

for the positive roots of the input polynomial by using some other existent method (for

example first-λ). During this computation, it also creates the killing graph associated to

the solution produced by that other method. This structure allows improving the answer

generated by the auxiliary already existent bounding method.

The complexity of the method being introduced in next sections is O(t + log2(d)),

where t is the number of nonzero monomials the input polynomial has and d is its degree.

Since the other methods are either linear or quadratic in t, the new method does not

introduce a significant complexity overhead. To better improve the solution, it can be

executed many times. It will be shown in this chapter that, with only two runs, the new

method improves all the current algorithms (even those whose complexity is quadratic

in t).

Sections 4 and 5 are related to the implementation, experiments, and analysis of the

obtained results. Section 6 is the conclusion.

A subset of the ideas presented in this chapter were exposed at SIBGRAPI’2015, in

the WIP track [23].

Contributions in this chapter The main contributions in this chapter are:

• Putting together, in the same text, in the same context, all the most used ap-

proaches and methods to compute an upper bound for the real roots of a given

univariate polynomial.

• Proposing a framework to derive almost all of them in a unified way, from a general

idea. It is clear, from the texts of related bibliography, that some authors already

have this idea [14, 12, 15, 89]. In some places it is even proposed in an implicit

way; in this work we propose the concept in a more explicit way.
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• Proposing, implementing and extensively testing a new method, on many signifi-

cant scenarios, obtaining a technique that yields a significative improvement in the

results while not introducing a significant time penalty.

A note on notation Throughout this chapter, we will refer to terms with positive

coefficients as positive terms, to terms with negative coefficients as negative terms, and

to terms with null coefficients as null terms.

3.1 Related Work

Consider a polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 (an > 0) (3.1)

The problem of computing an upper bound for the largest real positive root of p

has been studied by many authors. In this section we will give an overview of the most

relevant methods. The next section will intend to give a way to see most of these methods

in the same unified way. The present section does not intend to give deep details on each

particular method, but to give an overview of all of them. The work of Vigklas includes

an excellent and detailed overview of all these methods [93].

The most important approaches present in the literature for the problem of computing

an upper bound for the real positive roots of a polynomial p defined as in 3.1 can be

classified by their complexity. Some of them require a computational effort proportional

to the number of terms of the input polynomial (and we call them linear), and some of

them require a computational effort proportional to the square of this quantity (and we

call them quadratic).

Among the most famous linear methods, we can mention the bounds given by Cauchy’s

leading coefficient method [14, 16, 93], Lagrange [16, 93, 72], Kioustelidis [59], Stefanescu

[89], first-λ method, [14] local-max method [14]. Among the quadratic ones, we can men-

tion the quadratic variants of Cauchy [93], Kioustelidis [93], first-λ [12, 93] and local-max

[15, 93].

As is shown in [93], the best linear–time bounds are first-λ and local-max; and its

quadratic versions. The best current approach with linear complexity is taking the min-

21



imum of the bounds produced by these two approaches, and the same happens with

quadratic complexity. The method that we will present in this chapter improves in all

cases the linear results and even in almost all cases the quadratic approaches, and is still

linear.

In this section, for the sake of completeness, we will show most of these methods.

3.1.1 Assignments, costs and induced bounds

In some of the following subsections we will use the concepts of assignment and induced

bound.

Imagine that we assign to each negative term of p(x) a fraction of a positive term

of higher degree (also of p(x)), taking care that no positive term is assigned more than

entirely. For example, in the figure, the fraction assigned of x4 is 1
3

+ 1
10

+ 1
15

= 1
2
< 1. If

it was larger than 1, then it would have been assigned more than entirely. The following

figure shows an example of assignment of negative terms to fractions of positive terms of

higher degree. The edges show the relation assigned to and the values at them indicate

the fraction of the term being assigned.

p(x) = x4 −3x3 −2x2 −10x

1
3

1
10

1
15

If we have such an assignment (i.e.: an assignment in which all the negative terms are

assigned to a fraction of a positive term of higher degree and no positive term is assigned

more than entirely), then we also have an upper bound for the roots of p(x) induced by

the assignment. In fact, we can compute for each negative term a value from which the

fraction of positive term to which it is associated starts to be greater than it, and the

maximum of these values would be the mentioned upper bound. For example, in the

previous example, we have:

1
3
x4 > 3x3 for x > 9

1
10
x4 > 2x2 for x >

√
6

1
15
x4 > 10x for x > 3

√
30

 =⇒ p(x) > 0, for x > max{9,
√

6,
3
√

30}
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We call by cost of the assignment of B to A and sometimes, depending on the context,

just by cost, to the value of x at which the positive term A(x) starts to be greater than

the positive term −B(x) (being B a negative term). In the previous example, the costs

were 9,
√

6, 3
√

30.

We will be back to these concepts later in this chapter.

3.1.2 Cauchy’s leading coefficient [93, 15, 89, 16]

Let p(x) be a polynomial as in 3.1. Let λ be the number of negative coefficients in p.

Then, an upper bound on the values of the positive roots of p(x) is given by

ub = max
an−k<0

k

√
−λan−k

an

Proof. When λ = 0, p has no real roots and the theorem is trivial. Suppose that λ > 0.

We shall prove that p(x) > 0 for every x > ub and, thus, that ub is an upper bound for

the positive roots of p. Consider the sum of the negative terms of p(x). By the statement,

the number of such terms is λ. The sum is:

S(x) = aj1x
j1 + aj2x

j2 + · · ·+ ajλx
jλ

Let x > ub. By the definition of ub we have the following:

x > ub ≥ n−j1

√
−λaj1
an

⇒ anx
n−j1 > −λaj1 ⇒ anx

n > −λaj1xj1

x > ub ≥ n−j2

√
−λaj2
an

⇒ anx
n−j2 > −λaj2 ⇒ anx

n > −λaj2xj2

...
...

...
...

...

x > ub ≥ n−jλ

√
−λajλ

an
⇒ anx

n−jλ > −λajλ ⇒ anx
n > −λajλxjλ

by summing the inequalities obtained (i.e.: the λ inequalities at the right side of each

one of the previous lines), we have:

anx
n︸︷︷︸

first term of p

> −aj1xj1 − aj2xj2 · · · − ajλxjλ︸ ︷︷ ︸
absolute value of the sum of negative terms of p

Then, we have that p(x) > 0 for every x > ub
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3.1.3 Lagrange [93, 15, 89, 16, 72, 73, 71]

Let p(x) be a polynomial as in 3.1. Let ak, k < n, be the first2 negative term, and

let B be the largest of the absolute values of negative coefficients in p. Then, an upper

bound on the values of the positive roots of p(x) is given by

ub = 1 + n−k

√
B

an

Proof. If in p(x) we replace each of the nonnegative coefficients an−1, an−2, . . . , ak+1 by

zero, and each of the remaining coefficients ak, ak−1, . . . , a0 by −B, we obtain a new

polynomial p2(x). When x > 1, we have the following:

p(x) ≥ p2(x) = anx
n −B(xk + xk−1 + · · ·+ 1) = anx

n −Bx
k+1 − 1

x− 1

Thus, when x > 1, we have:

p(x) ≥ anx
n −Bx

k+1 − 1

x− 1

=
1

x− 1

(
(x− 1)anx

n −B(xk+1 − 1)
)

=
1

x− 1

(
(x− 1)anx

n −Bxk+1 +B
)

>
1

x− 1

(
(x− 1)anx

n −Bxk+1
)

=
xk+1

x− 1

(
(x− 1)anx

n−k−1 −B
)

>
xk+1

x− 1

(
(x− 1)an(x− 1)n−k−1 −B

)
=

xk+1

x− 1

(
an(x− 1)n−k −B

)
Now

xk+1

x− 1
> 0 when x > 1, and an(x− 1)n−k −B > 0 when x > ub. In fact:

an(x− 1)n−k −B > 0

x− 1 > n−k
√

B
an

x > 1 + n−k
√

B
an

= ub

Thus, p(x) > 0 when x > ub.

2The first term in a set of terms is the one with the highest degree, the one which appears first when
reading the expression 3.1 from left to right.
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3.1.4 Kioustelidis [93, 15, 89, 16]

Let p(x) be a polynomial as in 3.1. Let aj1 , . . . , ajλ , be the λ negative coefficients in

p(x). Then, an upper bound on the values of the positive roots of p(x) is given by

ub = 2 max
1≤w≤λ

n−jw

√
−ajw
an

Proof. We will proceed as in the proof of Cauchy’s bound. When λ = 0, p has no real

roots and the theorem is trivial. Suppose that λ > 0. We shall prove that for every

x > ub, p(x) > 0 and, thus, that ub is an upper bound for the real roots of p.

Consider the sum of negative terms of p(x). By the statement, the number of such

terms is λ. The sum is:

S(x) = aj1x
j1 + aj2x

j2 + · · ·+ ajλx
jλ

By definition of ub we have that, for every 1 ≤ w ≤ λ,

ub ≥ 2 n−jw

√
−ajw
an

= n−jw

√
2n−jw

−ajw
an

= n−jw

√√√√ −ajwan
2n−jw

Let x > ub. By the definition of ub we have the following:

x > ub ≥ n−j1

√√√√ −aj1an
2n−j1

⇒ xn−j1 >
aj1
an

2n−j1

⇒ an
2n−j1

xn > aj1x
j1

x > ub ≥ n−j2

√√√√ −aj2an
2n−j2

⇒ xn−j2 >
aj2
an

2n−j2

⇒ an
2n−j2

xn > aj2x
j2

...
...

...
...

...

x > ub ≥ n−jλ

√√√√ −ajλan
2n−jλ

⇒ xn−jλ >
ajλ
an

2n−jλ

⇒ an
2n−jλ

xn > ajλx
jλ

by summing the inequalities obtained (i.e.: the λ inequalities at the right side of each

one of the previous lines), we have:

an (
1

2n−j1
+ · · ·+ 1

2n−jλ
)︸ ︷︷ ︸

this is <1

xn > −aj1xj1 − aj2xj2 · · · − ajλxjλ︸ ︷︷ ︸
absolute value of the sum of negative terms of p

Then, we have that p(x) > 0 for every x > ub
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3.1.5 Stefanescu [89]

Let p(x) be a polynomial as in 3.1, such that the number of variations of signs in the

list of its coefficients (i.e.: in the list (an, an−1, . . . , a0)) is even. If

p(x) = c1x
d1 − b1x

m1 + c2x
d2 − b2x

m2 + · · ·+ ckx
dk − bkxmk + g(x)

with g(x) ∈ R+[x], ci > 0, bi > 0, di > mi > di+1 for all i, the number

ub = max


(
b1

c1

)( 1
d1−m1

)
, . . . ,

(
bk
ck

)( 1
dk−mk

)
is an upper bound.

In other words. This formulation was given by Stefanescu in his paper [89]. The

hypotheses of this theorem might seem a bit intricated, but it might be helpful to point

out that the hypotheses can be seen as forbiding consecutive terms with negative coefficient

in the list of terms of p, ignoring terms with coefficient 0. It is also worthwhile to point

out that the requirement on the even number of sign changes in the list of coefficients

is not necessary and that the reasoning in the proof can be easily adapted for that case.

In fact, having an odd number of sign changes would just imply that the last term of p

has different sign than the first one, fact that does not matter at all in the proof that

Stefanescu himself proposed.

Proof. Suppose x > 0. Then

p(x) ≥ c1x
d1 − b1x

m1 + c2x
d2 − b2x

m2 + · · ·+ ckx
dk − bkxmk

= xm1(c1x
d1−m1 − b1) + · · ·+ xmk(ckx

dk−mk − bk)

which is positive for x > max


(
b1

c1

)( 1
d1−m1

)
, . . . ,

(
bk
ck

)( 1
dk−mk

).

3.1.6 First-λ [93, 15, 16]

In the polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 (an > 0)
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consider the blocks (of maximum size) of consecutive terms with coefficients of the same

sign. Firstly, call g(x) to the rightmost block of positive terms (noting that g(x) might

be equal to p(x), in the case that p(x) has no negative coefficients). Now, start traversing

the remaining blocks from left to right. Call A1(X) to the first block of positive terms,

−B1(x) to the first block of negative terms, and so on. Refer as a1 to the number of

terms in A1(x), as b1 to the number of terms in B1(x), and so on; as follows:

p(x) =

A1(x)

anx
n + · · ·+ an−a1+1x

n−a1+1

−B1(x)

−an−a1xn−a1 − · · · − an−a1−b1+1x
n−a1−b1+1

A2(x)

+an−a1−b1x
n−a1−b1 + · · ·+ an−a1−b1−a2+1x

n−a1−b1−a2+1

−B2(x)

−an−a1−b1−a2xn−a1−b1−a2

− · · · − an−a1−b1−a2−b2+1x
n−a1−b1−a2−b2+1 + · · ·+ g(x)

Thus, we have

p(x) = A1(x)−B1(x) + A2(x)−B2(x) + · · ·+ Ak(x)−Bk(x) + g(x)

where all Ai and Bi have positive coefficients, g(x) might be zero or might have positive

coefficients, A1 has a1 terms, B1 has b1 terms, and so on. g(x) is the rightmost block of

positive terms. When p has only positive terms, g is equal to p and we have that k = 0.

To simplify the notation, let us denote by Ai,j to the j-th term of Ai and Bi,j to the j-th

term of Bi. For example:

B2,1(x) = an−a1−b1−a2x
n−a1−b1−a2

B2,b2(x) = an−a1−b1−a2−b2+1x
n−a1−b1−a2−b2+1

Definition 3.1.1 (first-λ-breaking). Define the operation first-λ-breaking as follows:

whenever an Ai has less terms than Bi (i.e.: whenever ai < bi), express Ai as a sum

of bi terms, by splitting its last term (i.e.: the term Ai,ai) into (bi− ai + 1) equal parts.

For example: if b4 = 7 and a4 = 5, express A4,5(x) =
A4,5

3
+
A4,5

3
+
A4,5

3
. In this way, we

have:

A4(x) = A4,1(x) + A4,2(x) + A4,3(x) + A4,4(x) + A4,5(x)
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with 5 terms, and we will now have:

A4(x) = A4,1(x) + A4,2(x) + A4,3(x) + A4,4(x) +
A4,5

3
+
A4,5

3
+
A4,5

3

with 7 terms, which is the number of terms in B4.

Another example: if we applied the first-λ-breaking to the polynomial

p(x) = a7x
7 + a6x

6 − a5x
5 − a4x

4 − a3x
3 + a2x

2 − a1x− a0

we would obtain

p(x) = a7x
7 +

a6x
6

2
+
a6x

6

2
− a5x

5 − a4x
4 − a3x

3 +
a2x

2

2
+
a2x

2

2
− a1x− a0

The first-λ bound works as follows: call λ to the number of negative terms present

in the definition of p(x). Apply the operation first-λ-breaking to that expression. The

number of positive terms in the resulting expression will be greater than or equal to λ.

Call N1(x), N2(x), . . . , Nλ(x) to the λ negative terms and call P1(x), P2(x), . . . , Pλ(x) to

the first λ positive terms in that resulting expression, going from left to right. Consider

xi ∈ R, with 1 ≤ i ≤ λ to be such that Pi(x) > Ni(x) for all x > xi. Note that xi always

exists because Pi has higher degree than Ni. The maximum of these xi is the bound

proposed by the first-λ method.

3.1.7 Local-max [93, 15, 16]

Let p(x) be a polynomial as in 3.1. Imagine traversing through the negative terms

of p(x) from left to right. The negative term N(x) = −ajxj is assigned to
amx

m

2t
, where

amx
m is the positive term with biggest coefficient among the positive terms of degree

greater than j; and t is the number of times that amx
m has been already used in an

assignment. In other words: traverse through the terms of p, from left to right. Assign

to the negative term N(x), half of the remaining fraction of the positive term with the

biggest coefficient so far. Observe that that positive term, because of the direction in

which we are travelling, is always going to have degree greater than N(x). Local-max

bound is the induced bound in this assignment.
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3.1.8 Cauchy quadratic [93]

Let p(x) be a polynomial as in 3.1, Let λi be the number of negative coefficients in

p to the right of, and including, ai. Then, an upper bound on the values of the positive

roots of p(x) is given by

ub = max
ai<0

min
aj>0
j>i

j−1

√√√√− aiaj
λi

Proof. Rewrite p(x) by expressing each positive term aix
i as a sum of λi equal terms. For

each negative term Nj(x) = −ajxj in the resulting expression consider set of the values

at which the positive terms to the left of Nj(x) start to be greater than Nj(x). It is clear

that all these values exist. Call xj to the minimum of them.

When x is bigger than the maximum M of these xj’s, all the negative terms of p

are lower (in absolute value) than their associated bigger order positive terms. Then,

p(x) > 0 when x is bigger than M .

This M is, precisely, the bound suggested at the statement of the theorem.

3.1.9 Kioustelidis quadratic [93]

Let p(x) be a polynomial as in 3.1. Then, an upper bound on the values of the positive

roots of p(x) is given by

ub = 2 max
ai<0

min
aj>0, j>i

j−i

√
−ai
aj

Proof. Imagine traversing through the negative terms of p(x) from left to right. When

visiting the negative term Nj(x) = −ajxj, consider the set of costs that would result from

associating Nj to a fraction 1
2w−j

of each positive term awx
w of higher degree. Call xj to

the minimum of these values. Call M to the maximum of these xj’s. It is clear that M

is an upper bound for the roots of p(x); and M is precisely the bound proposed in the

statement.

3.1.10 First-λ quadratic [93, 15, 12]

Let p(x) be a polynomial as in 3.1. Call λ to the number of negative terms present in

the definition of p(x). Apply the operation first-λ-breaking, defined in page 27, to that
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expression. Now, in the same way we had in the first-λ bound, we have that the number

of positive terms in this resulting expression will be greater than or equal to λ.

Now imagine travelling through the negative terms of this expression, from left to

right. When visiting Nj(x) = −ajxj, consider all the remaining (the word remaining

will make sense in brief) positive terms located to the left of Nj(x) (i.e.: with higher

degree than Nj(x)). For each one of these positive terms, compute the value at which it

starts to be greater than |Nj(x)|. This value exists for all the cases, since the positive

terms have higher degree than Nj(x). Call xj to the minimum of them and remove its

associated positive term. Note that this last sentence is what gives sense to the previous

word remaining. At the beginning, it has no sense. All terms are remaining terms.

Of course, at any point in the process a remaining term is a term which has not been

removed before.

First-λ quadratic bound is the maximum of these xi’s.

3.1.11 Local-max quadratic [93, 15]

Let p(x) be a polynomial as in 3.1. In the local-max method, we traveled through

the negative terms Nj(x) of p(x) from left to right. We assigned Nj(x) to the half of

the remaining fraction of the higher-degree positive term with biggest coefficient. In the

local-max quadratic the method is pretty similar, but instead of assigning Nj(x) to that

term, we compute what would be the costs of assigning it to the half of each one of

the remaining fractions of positive terms of higher degree, and we pick the minimum.

Local-max quadratic bound is the induced bound of this assignment.

3.2 A general framework

In this section we will come back to the concepts of assignments, costs and induced

bounds stated briefly in previous section; we will explore it in more detail, and will

define some vocabulary around it. In the same way that we were doing so far, we will

be considering the problem of giving an upper bound for the biggest positive root of a

polynomial p(x), whose dominant term is positive. If p had negative dominant term, we

would just need to compute the bound of −p(x).

If we have the terms anx
n, and aix

i, with n > i, an > 0, ai < 0, we know that at some
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point x0, the term anx
n starts to be greater than the term −aixi. That is: we know that

exists x0 such that x > x0 ⇒ anx
n + aix

i > 0. In fact, x0 = n−i
√
−ai/an. We say that

the term anx
n kills the term aix

i with cost n−i
√
−ai/an.

Note that if we have a polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

in which (1) every negative term is killed by a higher-degree positive term and (2) there is

no positive term killing more than one negative term, then the maximum of the associated

costs to these killings is an upper bound for the maximum positive root of p. Let us clarify

this observation through some examples. Consider the polynomial:

p1(x) = x5 − 25x4 + 200x3 − 600x2 + 600x− 120

We know that

• x5 > 25x4 when x > 25 (x5 kills −25x4 with cost 25);

• 200x3 > 600x2 when x > 3 (200x3 kills −600x2 with cost 3);

• 600x > 120 when x > 0.2 (600x kills −120x4 with cost 0.2).

Thus, we have: (1) all negative terms are killed by higher degree positive terms and (2)

there are no positive terms killing more than one negative term. Thus, max(25, 3, 0.2) is

an upper bound for the maximum root of p1(x), since all the negative terms are killed by

some positive term from that point on.

Observe also that we could break positive terms in parts, and use the resulting parts

separately to kill lower degree terms. For instance, if we had the polynomial

p2(x) = 30x5 − 25x4 − 10x3 − 200x2 − 30

we could break up the term 30x5 into four or more parts and use four of them to kill the

four terms. For example, we could break the expression 30x5 in many pieces, and rewrite

the expression of p2(x) as follows:
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p2(x) = 1x5 +2x5 +3x5 +4x5 +18.5x5 +1.5x5

−25x4 −10x3 −200x2 −30

and we would know that

• 1x5 > 25x4 when x > 25;

• 2x5 > 10x3 when x > 2.23;

• 3x5 > 200x2 when x > 4.05;

• 4x5 > 30 when x > 1.49.

Thus, we would have that x > max(25, 2.23, 4.05, 1.49) = 25 =⇒ p2(x) > 0. Note that

the way in which we break the 30x5 does impact in the result we obtain. In fact, in the

previous example we broke 30x5 into 1x5 + 2x5 + 3x5 + 4x5 + 18.5x5 + 1.5x5, but we could

have broken it into 10.9244x5 + 1.90949x5 + 16.6881x5 + 0.477986x5 and we would have

obtained:

p3(x) = 10.9244x5 +1.90949x5 +16.6881x5 +0.477986x5

−25x4 −10x3 −200x2 −30

And the killing costs, with this strategy for breaking the 30x5, would have been:

• 10.9244x5 > 25x4 when x > 2.28846

• 1.90949x5 > 10x3 when x > 2.28845

• 16.6881x5 > 200x2 when x > 2.28845

• 0.477986x5 > 30 when x > 2.28845.

Thus, we would have x > max(2.28846, 2.28845, 2.28845, 2.28845) = 2.28846 =⇒ p2(x) >

0. This bound is much better than the previous one, and the only change was the strategy

we choose to break down the term 30x5

Having shown these concepts, we can point out that any strategy of breaking positive

terms and assigning positive terms to each one of the negative terms of a polynomial

induces in fact a method for computing an upper bound for the maximum positive root

of the polynomial. We cannot assign more than one positive term to different negatives

terms, but we can split positive terms in pieces and use the pieces.
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Definition 3.2.1 (Killing graph). Given a polynomial p as in 3.1, consider a undirected

graph whose nodes are the terms of p after being split with any splitting strategy, and

whose edges show the relation is killed by (or kills); with the associated cost being exactly

the cost of the killing, defined as above. We call this a killing graph.

It is clear that if all negative terms are killed by one positive term of higher degree

and there are not positive terms killing more than one negative term, then the maximum

of the costs in the edges is an upper bound for the positive roots of p.

Thus, any strategy of breaking positive terms and assigning to each negative term a

higher-degree positive term (taking care that no positive term is assigned to two or more

negative terms) induces a killing graph and vice-versa. A killing graph, in this way, is a

synonym of a bounding method based on splitting positive terms and pairing negatives

with positives.

The killing graphs associated to the previous examples we have shown are as follows:

Note. The colors in the following examples are meant just to help the easy recognition

of positive and negative terms. Blue(red) terms are positive(negative), respectively.

p1(x) = x5 −25x4 +200x3 −600x2 +600x −120

25 3 0.2

p2(x) = x5 +2x5 +3x5 +4x5 +28.5x5 +1.5x5

−25x4 −10x3 −200x2 −30

25 2.23 4.05 1.49

p3(x) = 10.9244x5 +1.90949x5 +16.6881x5 +0.477986x5

−25x4 −10x3 −200x2 −30

2.28846 2.28845 2.28845 2.28845

This concept, which we have called killing graph, allows for easily representing a class

of methods, including most of the methods mentioned in the previous section, and it also

allows easily creating and representing new strategies, in a graphic way that helps to

understand the underlying method by looking a graph.
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Definition 3.2.2 (Splitting-and-Pairing methods). We call this class of methods as the

Splitting-and-Pairing methods, and we can represent them by using this graph.

As we said, most of the current methods are, essentially, strategies to create

the killing graph of the input polynomial. Strategies for deciding which positive

term we should break and in which parts, and how to assign the edges. In next subsections

we show examples and hints intending to describe in an informal way how could those

strategies be formulated for most of the current methods.

Before showing the informal descriptions of the methods, we want to recall that, as it

was mentioned at the beginning of section 1, some of the methods (for example LMQ and

FLQ) need to make a number of calculations proportional to the square of the number

t of terms in the polynomials and some others (FL, LM, etc.) are linear in t. Linear

methods LM and FL have been used in algebra systems like Mathematica and Sage; and

have been the default method for root bounding in such systems.

First observation. Observe that we could have, for a polynomial p(x), a variant of

killing graph, in which the nodes are polynomials e1(x), e2(x), . . . , ei(x) instead of being

terms of p(x). We could only require that p(x) −
∑

1≤j≤i ej(x) ≥ 0 and we could say,

in a similar way, that an expression e1(x) kills an expression e2(x) when asymptotically

e1(x) − e2(x) > 0, and that the associated cost is the largest real zero of e1(x) − e2(x).

Again, in that case, an upper bound for the roots of p(x) would be the maximum cost

associated to edges of the graph.

Second observation. Another simple, but crucial, fact is: if we have a killing graph

in which all the positive terms have been used, or if we have an expressions-based killing

graph (like in the previous observation) in which the sum of all the expressions is exactly

p(x), then if the costs associated to the killings are all equal to some value r, then r is

the maximum positive root of the polynomial p(x).

It is straightforward to prove this. Consider p(x) = e1(x) + e2(x) + · · · + ei(x),

∀j, ej(x0) = 0, and ej(x) > 0, ∀x > x0, then x0 is the maximum positive root of
∑
ej

3.2.1 Cauchy

Killing graph: Split the leading term into λ parts, and associate each negative term

to one of these parts. In the example, n = 7 and λ = 3.
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p(x) = +
a7x

7

3
+
a7x

7

3
+
a7x

7

3
+a6x

6 −a4x
4 −a3x

3 +a2x
2 +a1x −a0

7−4

√√√√a4
a7
3

7−3

√√√√a3
a7
3

7−0

√√√√a0
a7
3

3.2.2 Lagrange

Putting the Lagrange bound in this way would be kind of artificial. We could in fact

force it to fit in our framework, but this way is probably not the intuitive way in which

the result has been created.

3.2.3 Kioustelidis

Killing graph: Kill the negative term akx
k using the

1

2n−k
part of the leading term.

p(x) = +a7x
7 +a6x

6 +a5x
5 −a4x

4 −a3x
3 +a2x

2 +a1x −a0

1/8

1/16

1/128

Note. In this figure, for sake of clarity, we haven’t followed strictly the definition of

the killing graph representation. The values in the edges in here corresponds to which

fraction of the positive term is to be used in the killing instead of the expected cost of

the killing.

3.2.4 Stefanescu

Killing graph: Kill the negative term bix
mi with the term cix

di .
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p(x) = +c1x
d1 −b1x

m1 +c2x
d2 −b2x

m2 . . . +ckx
dk −bkxmk +g(x)

d1−m1

√√√√b1

c1

d1−m1

√√√√b2

c2

d1−m1

√√√√bk
ck

3.2.5 First-λ (FL)

Killing graph: Apply the first-lambda-breaking operation. Assign the i-th negative

term with the i-th positive term (in both cases, i-th when reading from left to right)

p(x) = +a7x
7 +a6x

6 +a5x
5 −a4x

4 −a3x
3 +a2x

2 +a1x −a0

7−4

√√√√a4

a7

6−3

√√√√a3

a6 5−0

√√√√a0

a5

p(x) = +a7x
7 +a6x

6 −a5x
5 −a4x

4 −a3x
3 +a2x

2 −a1x −a0

= +a7x
7 +a6

2
x6 + a6

2
x6 −a5x

5 −a4x
4 −a3x

3 +a2
2
x2 + a2

2
x2 −a1x −a0

�� ��

7−5

√√√√a5

a7

6−4

√√√√√√
a4

a6

2

6−3

√√√√√√
a3

a6

2

2−1

√√√√√√
a1

a2

2

2−0

√√√√√√
a0

a2

2

3.2.6 local-max (LM)

Killing graph: assign to N(x) the half of the remaining fraction of the higher-degree

positive term with biggest coefficient so far.

p(x) = +x7−49x6 +882x5−7350x4 +29400x3−52920x2 +35280x−5040

1/2 1/2 1/2 1/2
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p(x) = +x7−49x6 +882x5−7350x4 +294x3−52920x2 +352x−5040

1/2

1/2

1/4

1/8

3.2.7 Three additional considerations

One consideration on using more involved sub-expressions

In this section we have presented a general framework which allows representing in

a graphic way a class of methods that includes most of the methods mentioned at the

beginning of section 1. We named the methods at this class as Splitting-and-Pairing

methods (section 3.2.2).

On page 34, we made a short observation regarding the use of any sub-expression

of p(x) instead of terms. We could consider a variant of the killing graph in which the

nodes are sub-polynomials of the input polynomial p. Of course, the problem with this

approach would be the lack of a simple expression to find the cost of each edge in such a

killing graph. This consideration explains a bit more this concept, which is not analyzed

in this thesis. For example, if we had the polynomial

p(x) = +x7−49x6−882x5 +7350x4 +294x3−52920x2−352x−5040

then we could try to kill sets of terms by using set of terms. We will propose in this

example, just for the sake of simplicity, the sets of negative and positive terms to be the

ones shown in the next figures. In order to assign which positive set of terms kills which

negative set of terms, we could use at least two approaches:

• every negative set must be killed by exactly one positive set, and there is no positive

set killing more than one negative set.

Figure 1 is a graph showing the relation can be killed by. The assignment of the

killings, in this case, is trivial because there is only one possibility, since +x7 cannot

be used to kill more than one set of negative terms

• it is allowed to use parts of different positive sets in order to kill negatives sets.
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For example: we could use a portion α, with 0 ≤ α ≤ 1, of x7 to kill −49x6− 882x5

and the remaining (i.e.: 1− α) to kill −52920x2 − 352x− 5040.

+x7 −49x6 − 882x5

+7350x4 + 294x3 −52920x2 − 352x− 5040

c1
rr

c2
mm

c3
uu

+x7 −49x6 − 882x5

+7350x4 + 294x3 −52920x2 − 352x− 5040

c1
αrr

c21−α
mm

c3
1uu

This approach (killing sets of terms with set of terms) is not going to be analyzed in

the current work; and probably it would be as hard as the problem itself of finding the

zeros of a given polynomial.

One consideration on computing the best assignment for a given fixed set of

positive terms

If we are in the case in which one negative expression is killed by exactly one positive

expression (and expression, right now, might refer to sets of terms or to terms, we just

need to be able to compute the killing costs of the edges), we can consider the problem

of computing the best possible assignment. Imagine, for the case in which expressions

are terms, after having splitted the terms by any splitting strategy, a graph showing the

relation can be killed by, with the cost of each killing associated to each edge, like in

figure 3.

p(x)= +x7 −49x6−882x5+7350x4 +294x3 −52920x2−352x−5040
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In this situation, we could be interested in computing the best possible assignment

of edges. What would be that best assignment? It would be, of course, the one which

minimizes the maximum cost present in the chosen edges. The cost of one assignment is

the maximum cost of its edges. Then, the best assignment, is the one which minimized the

maximum. There exists a famous problem named LBAP (Linear Bottleneck Assignment

Problem). It can be stated as follows [1]:

There are a number of agents and a number of tasks. Any agent can be

assigned to perform any task, incurring some cost that may vary depending

on the agent-task assignment. It is required to perform all tasks by assigning

exactly one agent to each task in such a way that the maximum cost among

the individual assignments is minimized.

So, we could assign infinite cost to the non-existent edges, we can consider that our

tasks are the negative terms, and our agents are the pieces of positive terms. Thus, we

could solve the problem of finding the best assignment by translating the problem into an

LBAP problem. However, following an observation made at the beginning of this section,

the strategy of splitting the terms is much more relevant in the resulting bounds (in the

sense that it impacts much more) than using the best possible set of assignments.

In the works [39, 28] one can find approaches to solve the LBAP problem.

One consideration on computing a lower bound on positive roots, instead of

an upper one

All the methods that we have exposed in this chapter and even the class of methods

that we have introduced intend to compute an upper bound for the positive roots of a

polynomial p(x), defined as in 3.1. If the problem were to find a lower bound for the

positive roots, we can proceed in at least two apparently different ways.
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One way. If we replace x by 1
x

in the expression 3.1, we will obtain an expression for

p
(

1
x

)
. Each root α of this new expression corresponds to a root

1

α
of p(x). By multiplying

the new expression p( 1
x
) by xn (where n is the degree of p), its positives zeros not change,

since xn > 0 when x > 0, and we recover the property of the obtained expression being

a polynomial.

Thus,
1

α
is a root of p(x)⇐⇒ α is a root of xnp

(
1

x

)
The key observation that makes this computation very cheap is the following: xnp( 1

x
)

is the polynomial p with the list of coefficients reversed. This observation is at the same

time straightforward and key in efficiency terms. It makes it be possible to compute the

expression of xnp

(
1

x

)
in constant time3 having p(x) as input.

Another way. All the methods we have exposed kill a negative term with a positive

one of higher degree. The good terms were the positive ones, and the bad terms were the

negative ones. But we could have used the same idea in a different way. We said that

a cost of an edge A(x) → B(x) is a x0 such that B(x) > A(x), for x > x0. This is: a

point from which B(x) starts to be greater than A(x). We could define it in a different

way. We could say that the cost of a term A(x) being killed by another term B(x) is a

point x0 such that until reaching it, B(x) is greater than A(x). Thus, the calculation is

the same as the one we were doing for the other case, but now the direction of the edges

is opposite and now the resulting bound will be the minimum of the costs. For example,

if we wanted to compute a lower bound for the roots of the following polynomial

p(x) = −x5 +25x4 −200x3 +600x2 −600x +120

25 3 120
600

we would have the costs:

• 600x < 120 when 120
600

> x

• 200x3 < 600x2 when 3 > x

• 5x5 < 25x4 when 25 > x
3A constant amount of time, which does not depend of the size of the polynomial. We can associate

to each list of coefficients one variable, whose possible values are 1 and −1. When the variable is set to
1, the structure represents the sequence obtained by reading its elements from left to right. When the
variable is set to −1, the structure represents the sequence obtained by reading its elements from right
to left. Thus, reversing this sequence can be achieved with just one operation: multiplying by −1 the
associated variable.
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=⇒ a lower bound for the minimum positive root is
120

600

Note that, in this case, we modified the requirement that the coefficient an of p(x) need

to be positive. In this case, the coefficient that we need to be positive is a0.

3.3 A GAP reduction technique

In this section we present a new technique that improves the result produced by any

one of the methods introduced in the previous section; in fact by any method induced by

a killing graph (i.e.: any Splitting-and-Pairing method).

Let us perform a quick analysis of one of the already seen examples. Consider, for ex-

ample, the following input polynomial and a killing graph resulting from some particular

strategy of computing an upper bound for the roots of it.

p1(x) = x5 −25x4 +200x3 −600x2 +600x −120

25 3 0.2

In this particular case, with this particular method of splitting and pairing, the resulting

upper bound has been 25. Observe that we are not going to be able to improve this

bound by any method that breaks positive terms and assign edges between positives

and negatives terms (i.e.: by any Splitting-and-Pairing method). This polynomial only

accepts a unique assignment of edges. The only thing that we could do is to break positive

terms, and we would be killing the term −25x4 with a part of x5 instead of using the whole

term, so the current associated cost 25 to the killing of −25x4 would become even greater,

and our bound would be worst. Thus, we cannot improve the bound 25 by using any of

the methods presented in the previous sections, and even more: we cannot improve this

bound by using any method induced by a killing graph, any Splitting-and-Pairing method.

It does not matter how clever the method is, 25 is the best we can do. However, the

maximum positive root of this polynomial is 12.64, about half of that value.

Let us go into a deeper analysis of the example. x5 > 25x4 when x > 25, but

200x3 > 600x2 much earlier; when x = 3. Then, we can just break the term 200x3 in two

parts, and use one of these to help the x5 in the killing of −25x4. The new graph would

be:
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p1(x) = x5 −25x4 +Ax3 +(200− A)x3 −600x2 +600x −120

c1

︸ ︷︷ ︸
c2 0.2

Since our bound is the maximum of all the associated costs to the killings, in this situation

our bound would be max(c1, c2, 0.2). Thus, the most desirable value for A would be the

value that makes c1 = c2 (if it exists), and the value that makes the distance |c1 − c2| as

smaller as possible, otherwise.

In this particular case, in which all the exponents are consecutive, we could state a

quadratic expression for c1, and a linear one for c2, both as functions of A, and obtain a

cubic expression by equating c1(A) = c2(A). In this way, we would be able to compute

the best possible A, and all the associated killing costs by solving a cubic expression.

But this is a very particular case, since the exponents are consecutive numbers. Let

us analyze the following: what does it mean that we want c1 = c2? The fact of c1 = c2

means that c1 and c2 equal the maximum positive root of the fournomial4 x5 − 25x4 +

Ax3 + (200− A)x3 − 600x2 = x5 − 25x4 + 200x3 − 600x2.

The maximum positive root of this last expression is approximately 13.4418. This

value, for any fewnomial5 and in particular for this fournomial, can be computed used

the method of Sagraloff [88, 87]. The complexity of doing this is (O(t3 log(dτ) log(d)),

where t is the number of terms of the polynomial (4, in this example) , τ is the bitsize

of its maximum coefficient and d is its degree.6 Then, we have that a bound for the

maximum positive root of p1(x) would be max(13.4418, 13.4418, 0.2), instead of our orig-

inal max(25, 3, 0.2). The bound has been reduced from the initial 25 to 13.4418. It is

important at this point to stress again that this improvement was not going to be feasible

through any of the current methods or through any other Splitting-and-Pairing method.

The best assignment of the edges, for the best strategy for splitting the positive terms,

would have produced a bound equal to 25.

So, let us revisit what we have just done: we started with a killing graph, in which

each negative term was associated to a bigger order positive term. In this way, we started

4A polynomial with exactly 4 nonzero terms.
5A fewnomial is a sparse polynomial, a polynomial whose number of nonzero terms if much smaller

than its degree.
6We will neglect the value of τ in the present work because we will not use the bit-complexity

paradigm; this assumption yields a complexity of O(t3 log2(d)) for this method.
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with a set of polynomials with two terms (i.e.: binomials), in which the term with higher

degree is positive and the other term is negative. We will say from now on, and following

the same meaning that we have used previously, that the cost of a polynomial expression

is the value of its maximum positive root. Instead of computing the costs of all these

binomials and considering the maximum among them as the desired upper bound, we

joined two binomials together, obtaining a fournomial. We had that x5 was killing −25x4,

with cost 25, and we had that 200x3 was killing −600x2, with cost 3. What we did was

join together both positive terms and use them to kill together both negative terms. This

is: we replaced the two expressions x5−25x4 (cost 25) and 200x3−600x2 (cost 3) with one

new expression, x5− 25x4 + 200x3− 600x2, which happens to have cost 13.4418. Our set

of costs associated to expression suffered a change. The costs 25 and 3 disappeared and

the new value 13.4418 appeared. The set of expressions suffered a change too. Initially

it was formed only by binomials. After we joined two elements, the set is now formed by

binomials and one fournomial.

At this point, we observe that we could repeat the same procedure. Join together two

expressions and replace its associated costs by the cost of the resulting expression. The

main difference with the first step would be that right now we could need to compute the

cost of a sixnomial instead of a fournomial. We could perform, then, a second step in a

similar way to the first one. We choose the expression with the highest associated cost,

and some other expression; and we join them together. We replace the two costs of the

two expressions by the cost of the new resulting one. The main point of this explanation

is to highlight that the method that we are proposing can be applied more than once,

in an iterative way. At each iteration we improve the previous result; although, as it

will be shown, the method produces better bounds than even the best current approaches,

in almost all cases with just one iteration, and with two iterations the strategy shown to

produce the best bounds, in all the cases; so, in general, there is no need of a big number of

iterations. Going back to the explanation: we start with expressions. At the beginning,

those expressions are binomials. Each expression has an associated cost and a degree

(because the expressions are polynomials). We pick the expression with the biggest cost

and the expression closest to it in terms of difference of degree. If there is more than

one closest expression, we pick the one with higher degree. After having picked both

expressions, we join together them and compute a tight upper bound for the maximum
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positive root of the resulting expression7. The two previous costs of the expression that

we picked are replaced by the new cost that we have just computed. If we started with

binomial expressions, the second iteration could need to compute the maximum positive

root of a 4-nomial or of a 6-nomial, 6-nomial. The third iteration could need to compute

the maximum positive root of a 4-nomial, a 6-nomial or a 8-nomial and so on.

The strategy we are proposing to pick the second expression is arbitrary. In fact,

choosing expressions that are close in terms of degree may not be the best possible

choice. It has been done this way because in general, when coefficients do not differ by

many orders of magnitude, a part of an expression with much lower degree is not going

to help significatively. For example: if we had contributed (in previous example) to the

killing of −25x4 with a part of the term +600x (which is killing the term −120 with a

cost much lower than the cost of killing −600x2 so it could seems to be the right choice

at a first glance), the obtained new associated costs to the killings of −25x4 and −120

by the terms x5 and 600x would have been 24.97. Our improvement would have been

almost insignificant. We would have improved from 25 to 24.97. Choosing this way we

improved from 25 to 13.45.

3.4 Implementation, complexity and experiments

As mentioned, our method improves the results produced by other methods. We

implemented and used it to improve the bounds of the best linear methods (LM and FL,

which we also implemented).

Our implementation receives as input a set of expressions, each one having associated

a degree and a cost. It picks the expression with the maximum cost and the expression

with minimum distance to it (in terms of difference of degree), choosing the one with

higher degree in case of draw.

After having picked the two expressions e1(x) and e2(x), our implementation needs to

compute a bound α for the maximum positive root of E(x) = e1(x) + e2(x). This can be

done using Sagraloff’s method [88]. Note that, since E(x) has exactly four monomials,

t3 is constant. This implies an astonishing complexity bound for the root isolation.

7For this purpose, we can the Sagraloff’s method, or the method proposed by Alonso Garćıa and
Galligo [20], or the elementary method which will be presented in chapter 4, which is particularly efficient
for fewnomials.
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After that, we remove from the input set the expressions e1(x) and e2(x), and we add

the expression E(x), with cost α. Our method returns the new set of expressions and

associated costs. In this way, performing N iterations just consists in calling N times our

method. The bound, of course, is the bigger associated cost in the set of expressions.

At this point, we can perform a complexity analysis. The first step is to run one of

the LM or FL methods, which have cost O(t), where t is the number of terms of the

input polynomial. Then, we process the killing graph of the original assignment. Since

this graph has O(t) nodes and edges, the complexity of this step is O(t). Finally, we

run N times the cost-reduction step, which reduces to one root isolation using Sagraloff’s

method. The complexity of these N runs of the cost-reduction step is O(N log2(d)).

Fixing N = 2, it turns out that the complexity of our method is O(t+ log2(d)).

We have compared the results obtained with our method and with all the methods

listed in section II, we executed one and two iterations of our improvement technique,

above the linear methods FL and LM. The results are shown in table 3.1.

The polynomial classes we used for the tests are commonly used in the bibliography

[15, 14, 16, 93]. They are: Laguerre polynomials, Chebyshev polynomials (first and

second kind), Wilkinson polynomials, Mignotte polynomials, polynomials with random

coefficients of bitsize 20 and 1000, monic polynomials with random coefficients of bitsize

20 and 1000, polynomials which are product of random roots of bitsizes 20 and 1000.

3.5 Chapter results and discussion

The results presented in Table 3.1 show that the proposed method produces bounds

of better quality, even when compared against more computationally-expensive methods.

With only one iteration, our method improves the LMQ and FLQ bounds in almost all

cases and, with two iterations, it gets even better. In the few cases on which our method

does not produce the best bound, it produces a bound very close to the best one. Akritas

suggested [14] that taking min(LM,FL) is going to produce the best bound in almost all

cases. Here, based on our results, we can extend that statement by saying that taking

the best of LM and FL, and iterating once or twice our method is going to produce a

bound with even better quality than the one expected when using FQL or LMQ (which

are, of course, better than LM and FL; but, unlike our method, much more expensive).
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Table 3.1: Bounds with different methods, for degree up to 100

Poly min(FL, LM) min(FLQ, LMQ) min(FL-1, LM-1) min(FL-2, LM-2) MPR
L(5) 25 25 13.4418 12.6408 12.6408
L(10) 100 100 54.8938 36.0961 29.9207
L(100) 10000 10000 6178.13 4458.29 374.984
CI (5) 1.11803 1.11803 0.951057 0.951057 0.951057
CI (10) 1.58114 1.58114 1.11803 0.987688 0.987688
CI (100) 5 5 3.91569 3.31346 0.999877
CII (5) 1 1 0.866025 0.866025 0.866025
CII (10) 1.5 1.5 1.06254 0.959493 0.959493
CII (100) 4.97494 4.97494 3.89592 3.29663 0.999516
W(5) 15 15 7.80143 5 5
W(10) 55 55 31.3643 20.7397 10
W(100) 5050 5050 3134.52 2272.55 100
M(5) 3.68403 3.68403 3.5441 3.5441 3.5441
M(10) 1.63069 1.63069 1.5763 1.5763 1.5763
M(100) 1.04073 1.04073 1.03618 1.03618 1.03618
RC20(5) 1.42793 1.42793 1.42782 1.12075 0.974423
RC20(5) 2.13681 2.13681 1.50889 1.47612 1.38725
RC20(5) 3.85868 3.85868 2.08626 2.08626 −1.21363
RC20(10) 3.19293 3.19293 2.82809 2.63757 2.16249
RC20(10) 1.79403 1.79403 1.44004 1.35923 0.405669
RC20(10) 2.32846 2.32846 2.1985 1.88458 1.77481
RC20(100) 3.36871 3.36871 2.89419 2.29942 2.1978
RC20(100) 1.53352 1.35048 1.35048 1.33506 −1.23838
RC20(100) 1.55281 1.4714 1.54201 1.51195 1.15025
RC1000(5) 2.01914 2.01914 1.59626 1.51283 1.35064
RC1000(5) 1.60047 1.57203 1.46953 1.03775 1.02639
RC1000(5) 1.48088 1.48088 1.3023 1.15154 0.929611
RC1000(10) 2.21878 2.21878 2.15324 1.87742 1.69825
RC1000(10) 1.98925 1.54865 1.89367 1.52363 −0.423095
RC1000(10) 0.939259 0.939259 0.851629 0.765633 0
RC1000(100) 100.124 100.124 99.228 99.2274 99.225
RC1000(100) 1.45431 1.18093 1.44102 1.40765 1.02758
RC1000(100) 2.11528 1.81122 1.91284 1.81122 1.19917
MRC20(5) 655713 655713 655712 655712 655712
MRC20(5) 1.46981 1.46981 1.26429 1.26429 1.19915
MRC20(5) 86820 86820 43421.5 43421.5 43421.5
MRC20(10) 2.27119 2.27119 2.1993 1.8053 1.40511
MRC20(10) 741396 741396 741395 741395 741395
MRC20(10) 0.91633 0.91633 0.853212 0.739572 0.489456
MRC20(100) 1.62974 1.10295 1.19929 1.12893 0.997674

MRC20(100) 1.18471× 1006 1.18471× 1006 789805 592355 592354
MRC20(100) 643513 643513 643512 643512 643512
MRC1000(5) 2.03063 2.03063 1.89945 1.3016 1.3016
MRC1000(5) 1.1755 1.1755 0.881019 0.881019 0.579686

MRC1000(5) 6.63368× 10300 6.63368× 10300 6.63368× 10300 6.63368× 10300 6.63368× 10300

MRC1000(10) 2.38266 2.38266 2.38266 2.13262 1.86223

MRC1000(10) 1.4982× 10301 1.4982× 10301 9.988× 10300 7.49101× 10300 7.491× 10300

MRC1000(10) 1.72255 1.72255 1.20123 0.739473 −0.422388

MRC1000(100) 8.09301× 10299 8.09301× 10299 8.09301× 10299 8.09301× 10299 8.09301× 10299

MRC1000(100) 1.35824× 10301 1.35824× 10301 6.79119× 10300 6.79119× 10300 6.79119× 10300

MRC1000(100) 5.73536× 10300 5.73536× 10300 5.73536× 10300 5.73536× 10300 5.73536× 10300

PoR20(5) 1.12217× 1006 1.12217× 1006 1.11904× 1006 1.11904× 1006 880746
PoR20(5) 484348 484348 390055 390055 293174

PoR20(5) 1.59015× 1006 1.59015× 1006 1.30163× 1006 1.13382× 1006 961467

PoR20(10) 2.00168× 1006 2.00168× 1006 1.84352× 1006 1.55635× 1006 933051

PoR20(10) 1.66125× 1006 1.66125× 1006 1.38495× 1006 1.29458× 1006 948190

PoR20(10) 1.08616× 1006 1.11661× 1006 962274 898963 857708

PoR20(100) 8.94407× 1006 6.02572× 1006 6.02572× 1006 4.61586× 1006 1.02909× 1006

PoR20(100) 5.04341× 1006 4.1885× 1006 4.3734× 1006 3.51671× 1006 1.03893× 1006

PoR20(100) 6.67879× 1006 6.67879× 1006 5.94894× 1006 4.2101× 1006 1.03908× 1006

PoR1000(5) 1.04501× 10301 1.04501× 10301 9.48173× 10300 7.8146× 10300 7.8146× 10300

PoR1000(5) 1.77692× 10301 1.77692× 10301 1.40765× 10301 1.40765× 10301 1.05223× 10301

PoR1000(10) 2.26062× 10301 2.26062× 10301 1.88024× 10301 1.54407× 10301 1.03782× 10301

PoR1000(10) 2.10389× 10301 2.10389× 10301 1.49105× 10301 1.36694× 10301 7.69627× 10300

PoR1000(10) 1.92673× 10301 1.92673× 10301 1.4175× 10301 1.36263× 10301 9.0238× 10300

PoR1000(100) 4.44302× 10301 2.87869× 10301 3.71558× 10301 3.09712× 10301 1.05928× 10301

PoR1000(100) 9.36467× 10301 9.36467× 10301 5.8998× 10301 4.88169× 10301 1.05282× 10301

PoR1000(100) 6.41865× 10301 6.41865× 10301 5.78693× 10301 4.75131× 10301 1.06241× 10301

Columns • min(FL, LM): best of the two bounds obtained with First-λ and Local-max methods • min(FLQ, LMQ):
best of the two bounds obtained with First-λ quadratic and Local-max quadratic methods • min(FL-1, LM-1): best of
the two bounds obtained with one iteration of our method, starting with First-λ and Local-max methods • min(FL-2,

LM-2): best of the two bounds obtained with two iterations of our method, starting with First-λ and Local-max methods
• MPR: maximum positive root (some polynomials have no positive roots and the maximum real root is considered
Polynomials • L: Laguerre • CI and CII : Chebyshev (first and second kind) • W: Wilkinson • M: Mignotte • RC:

Random coefficients • MRC: Monic with random coefficients • PoR: Product of Roots
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3.6 Chapter conclusion

In this chapter we gave a general framework which allows seeing most of the current

methods to compute an upper bound for the positive roots of a given polynomial as

instances of one general idea. We also introduced a method to improve the quality of the

bound for the maximum positive root of a polynomial computed by existing methods.

Our technique showed to produce high quality bounds, and the complexity is linear (up

to logarithmic factors). We obtained this result as a first step in trying to find possible

optimizations for current real root isolation algorithms (VCA, VAS).
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Chapter 4

Counting and isolating the real roots

of univariate polynomials

In this chapter we survey the existing methods and related results to the problem of

isolating the positive roots of a univariate polynomial, and we propose an elementary and

intuitive method. Although the main property of the introduced method is its simplicity

and the fact that it is based only on elementary concepts, it has shown also to be quite

efficient in most of the input cases. It has shown to be faster than Sturm in almost all the

testcases, with a running time only improved by VAS, which is the best known algorithm,

and much more complicated from a conceptual point of view.

We also introduce in this chapter an adaptation of the theorem of Fourier and two

ideas, one on the mentioned adaptation and the other on the method of Sturm.

This chapter is organized as follows: sections 1 to 4 survey underlying results, are

mainly expository. They present the ideas on which the following sections are strongly

based. Section 1 exposes Fourier’s theorem (and proof). Section 2 formulates Sturm’s

idea. Section 3 exposes Vincent’s theorem and method, leaving the proof of Vincent’s

theorem for Appendix A. Section 4 exposes the three main methods derived from Vin-

cent’s theorem. Section 5 introduces an adaptation of Fourier’s theorem along with two

ideas that appeared during the development of this work: one concerning the adaptation

of Sturm’s method for the case of fewnomials and the other concerning the adaptation of

our fewnomial version of Fourier’s theorem to produce an exact count of roots instead of

a bound of this quantity. Section 6 introduces a method for isolating roots of polynomials

which, while relying on elementary ideas, shows to have a quite good performance when
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compared with other approaches. Section 7 shows the implementation of the mentioned

method and a comparison of performance among the suggested method, Sturm’s method

and VAS method.

The main contributions on this chapter are:

• A version of the Fourier theorem which is better in the case of fewnomials, in the

sense that it requires less computational effort.

• A complete survey with explanations of the main approaches for the root isolation

problem.

• An algorithm based on elementary ideas, which turns out to be quite efficient in

most of the testcases, when compared against Sturm and VAS.

Preliminary definition.

Definition 4.0.1 (Root isolation). To isolate the real roots of a given polynomial p is

to compute a set of disjoint intervals, each containing exactly one root of p, together

containing all the real roots of p.

4.1 The theorem of Fourier

Fourier’s original work has two parts [47, 46]. In the first one he assumes that the

input equation and all its derivatives do not share any root. In the second part he analyzes

the case in which there are shared roots. We will formulate a version of the theorem that

includes both parts, and show a slight adaptation of Fourier’s proof.

Theorem 3. Let N(x) be the number of sign changes in the sequence f(x), f ′(x), . . . ,

f (n)(x), where f is a polynomial of degree n. If a < b and f(a) 6= 0, f(b) 6= 0, then

N(a) ≥ N(b), and the number of roots of f (multiplicities counted) between a and b, does

not exceed N(a)−N(b). Moreover, the number of roots can differ from N(a)−N(b) by

an even number only.

Proof. Imagine the list of numbers f(x), f ′(x), . . . , f (n)(x), with x moving from a to b.

The number N(x) varies only if x passes through a root of the polynomial f (m) for some

m ≤ n (in fact, given that f (n)(x) is a constant, we have that is for some m < n).
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p(x)

p′(x)

− +

+ +

+ −

− −

− +

+ +

Figure 4.1: Three illustrative examples of the fact that a polynomial p(x), in a neighbor-
hood of a root α, have different sign than p′(x) for x < α and same sign than p′(x) for
x > α

In what follows, we will use the following simple remark: the signs of any polynomial

p and its derivative p′, in a neighborhood of a root α of p, are different for x < α and

equal for x > α (see figure 4.1).

Now, coming back to the proof of the theorem, consider first the case in which x

passes through a root α of multiplicity r of f(x). In a neighborhood of α, for x < α,

f (r−1)(x) must has different sign than f (r)(x) due to the previous remark. In the same

way, f (r−2)(x) must has different sign than f (r−1)(x), f (r−3)(x) must has different sign

than f (r−2)(x) and so on. Thus, the signs of the values in the list f (r)(x), f (r−1), . . . , f(x),

with x in a neighborhood of α, x < α, alternates (see Fig. 4.2).

sgn(f (r−1)(x)) = −sgn(f (r)(x))
sgn(f (r−2)(x)) = −sgn(f (r−1)(x)) = sgn(f (r)(x))

...
...

sgn(f(x)) = −sgn(f ′(x)) = (−1)rsgn(f (r)(x))

Figure 4.2: Signs of f(x), f ′(x), . . . , f (r−1)(x) in a neighborhood of α, with x < α

We also know that in a neighborhood of α, with x > α, the signs of the values
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f (r)(x), f (r−1)(x), . . . , f(x) are equal. Thus, we have that when x pass through a root α of

multiplicity r of f , the number of sign variations in f(x), f ′(x), f ′′(x), . . . , f (r−1)(x), f (r)(x)

decreases by r. This is: N(x) decreases by r (see Fig. 4.3).

< α α > α
f(x) . . . 0 +

...
...

...
...

f (r−2)(x) + 0 +

f (r−1)(x) − 0 +

f (r)(x) + + +︸ ︷︷ ︸ ︸ ︷︷ ︸
r sign 0 sign

changes changes︸ ︷︷ ︸
N(x) decreases by r

in a neighborhood of α

Figure 4.3: N(x) decreases by r in the neighborhood of the root α of multiplicity r

Consider now the case in which x passes through a root α of multiplicity r of f (i)(x),

such that f (i−1)(α) 6= 0, f (i)(α) = f (i+1)(α) = · · · = f (i+r−1)(α) = 0, and f (i+r)(α) 6= 0.

As in the previous case we have that, in a neighborhood of α, for x < α, f (i+r−1)(x) must

have different sign than f (i+r)(x); f (i+r−2)(x) must has different sign than f (i+r−1)(x);

. . . ; f (i)(x) must has different sign than f (i+1)(x). Thus, the signs of the values in the list

f (i+r)(x), f (i+r−1)(x), . . . , f (i)(x), with x in a neighborhood of α, x < α, alternates (see

Fig. 4.4)

sgn(f (i+r−1)(x)) = −sgn(f (i+r)(x))
sgn(f (i+r−2)(x)) = −sgn(f (i+r−1)(x)) = sgn(f (i+r)(x))

...
...

sgn(f (i)(x)) = −sgn(f (i+1)(x)) = (−1)rsgn(f (i+r)(x))

Figure 4.4: Signs of f (i+r−1)(x), f (i+r−2)(x), . . . , f (i)(x) in a neighborhood of α, with x < α

As before, we also know that in a neighborhood of α, with x > α, the signs of the values

f (i+r)(x), f (i+r−1)(x), . . . , f (i)(x) are equals. There are four possible situations, depending

on if r is even or odd, and on if sgn(f (i−1)(x)) = sgn(f (i+r)(x)) or sgn(f (i−1)(x)) 6=

sgn(f (i+r)(x)). In figure 4.5 it is easy to see that, when r is even, the number of sign

variations N(x) decrease by r and, when r is odd, it decreases either by r+ 1 or by r− 1,

depending on whether sgn(f (i−1)(x)) = sgn(f (i+r)(x)) or sgn(f (i−1)(x)) 6= sgn(f (i+r)(x)).

52



< α α > α

f (i−1)(x) + + +

f (i)(x) + 0 +

f (i+1)(x) − 0 +
...

...
...

...

f (i+r−4)(x) + 0 +

f (i+r−3)(x) − 0 +

f (i+r−2)(x) + 0 +

f (i+r−1)(x) − 0 +

f (i+r)(x) + + +︸ ︷︷ ︸ ︸ ︷︷ ︸
r sc 0 sc︸ ︷︷ ︸
N(x) decreases

by r

(a) sgn(f (i−1)) = sgn(f (i+r)), r even

< α α > α

f (i−1)(x) − − −
f (i)(x) + 0 +

f (i+1)(x) − 0 +
...

...
...

...

f (i+r−4)(x) + 0 +

f (i+r−3)(x) − 0 +

f (i+r−2)(x) + 0 +

f (i+r−1)(x) − 0 +

f (i+r)(x) + + +︸ ︷︷ ︸ ︸ ︷︷ ︸
r + 1 sc 1 sc︸ ︷︷ ︸
N(x) decreases

by r

(b) sgn(f (i−1)) 6= sgn(f (i+r)), r even

< α α > α

f (i−1)(x) + + +

f (i)(x) − 0 +

f (i+1)(x) + 0 +
...

...
...

...

f (i+r−4)(x) + 0 +

f (i+r−3)(x) − 0 +

f (i+r−2)(x) + 0 +

f (i+r−1)(x) − 0 +

f (i+r)(x) + + +︸ ︷︷ ︸ ︸ ︷︷ ︸
r + 1 sc 0 sc︸ ︷︷ ︸
N(x) decreases

by r + 1

(c) sgn(f (i−1)) = sgn(f (i+r)), r odd

< α α > α

f (i−1)(x) − − −
f (i)(x) − 0 +

f (i+1)(x) + 0 +
...

...
...

...

f (i+r−4)(x) + 0 +

f (i+r−3)(x) − 0 +

f (i+r−2)(x) + 0 +

f (i+r−1)(x) − 0 +

f (i+r)(x) + + +︸ ︷︷ ︸ ︸ ︷︷ ︸
r sc 1 sc︸ ︷︷ ︸
N(x) decreases

by r − 1

(d) sgn(f (i−1)) 6= sgn(f (i+r)), r odd

Figure 4.5: Decreasing on the amount of sign changes (sc) in the neighborhood of a root
α, depending on the parity of r and on if sgn(f (i−1)(x)) = sgn(f (i+r)(x)), assuming that
f (i+r)(x) is positive. If it were negative, the tables would be exactly the opposite of these.
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So, in any case, N(x) decreases by an even amount. Thus, we have proved the following

two facts:

• when x passes through a root of multiplicity r of f , N(x) decreases by r.

• when x passes through a root of multiplicity r of f (i), with i > 0, N(x) decreases by

an even amount.

The theorem follows from these two facts.

4.1.1 Descartes’ rule of signs is trivially implied by Fourier’s

theorem

As we said in chapter 2, the original Descartes’ rule of signs says:

1. A real polynomial has no more positive roots than alternations of signs between

two consecutive coefficients.

2. A real polynomial has no more negative roots than permanences of signs between

two consecutive coefficients.

Proof. Part (1) follows trivially from Fourier’s theorem, by considering that x is moving

in [0,∞).

For part (2) we need to recall the interpretation of alternations and permanences of

sign explained in 2.1.1. With that interpretation, we have that the number of perma-

nences of signs in p(x) is the number of alternations in p(−x). By part (1), we know

that the number of positive roots of p(−x) (which is the number of negative roots of p)

is lower than or equal to the number of sign alternations on that expression. Now we

know that the number of sign alternations in that expression is precisely the number of

sign permanences on p(x). Thus, we have the part (2).

Remark. Jacobi made a useful observation. The expression
x− a
b− x

varies from 0 to

∞ when x varies from a to b. The expression
a+ by

1 + y
varies from a to b when y varies from

0 to∞. Then, given a polynomial p(x) = anx
n+an−1x

n−1 + · · ·+a1x+a0 and an interval
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(a, b), we can construct an equation q(x), whose positive roots are in correspondence with

the roots of p(x) in the interval (a, b), by defining

q(x) = p

(
a+ bx

1 + x

)

We will have that

q(x) = an
(a+ bx)n

(1 + x)n
+ an−1

(a+ bx)n−1

(1 + x)n−1
+ · · ·+ a1

(a+ bx)1

(1 + x)1
+ a0

(a+ bx)0

(1 + x)0

The positive roots of this expression remain the same if we multiply it by (1 + x)n,

since it is a positive quantity for x > 0. Moreover, (1 + x)nq(x) is a polynomial. Then,

Descartes’ rule of sign applies to it. Thus, in this way, Descartes’ rule of sign can be

applied to an interval (a, b) instead of to the complete x axis.

4.2 Sturm

Sturm proposed, in [90, 91], a theorem strongly based on Fourier’s theorem, with

a proof that mimics Fourier’s proof, but with a very ingenious slight modification that

makes a big difference between the two theorems. The list of functions on which is

computed the number of sign changes used by Fourier for an input polynomial p is

p, p′, p′′, p′′′, . . . , pn. As we see in the proof of Fourier’s theorem, when x moves in the

x−axis from left to right, when it passes through a root of some pi (i > 0), it is possible

for the number of sign changes to decrease by 2 or to remain the same. Sturm’s idea

removes the case in which the number of sign changes decreases by 2. It is not possible,

with Sturm’s list, to have such decreases. The only moment at which the number of sign

changes decreases is when x pass through a root of f . Let we see Sturm’s idea in more

detail.

4.2.1 Sturm theorem

Definition 4.2.1 (Sturm sequence). Given a polynomial f(x), consider the polynomials

f0(x) = f(x) and f1(x) = f ′(x) and consider the polynomial fi(x) (i > 1) to be −1× [the

remainder of the division of fi−2(x) by fi−1(x) ]. This is, the fi’s are such that
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f0 = q1f1 − f2 =⇒ f2 = q1f1 − f0

f1 = q2f2 − f3 =⇒ f3 = q2f2 − f1

...
...

fn−2 = qn−1fn−1 − fn =⇒ fn = qn−1fn−1 − fn−2

fn−1 = qnfn

The sequence f0(x), f1(x), . . . , fn−1(x), fn(x) is called the Sturm sequence of f .

Theorem 4 (Sturm). Let f be a polynomial, and let w(x) be the number of sign changes

in its Sturm sequence, when evaluated at x. The number of roots that f has in the interval

(a, b), provided that f(a) 6= 0, f(b) 6= 0 and a < b, is equal to w(a)− w(b).

Proof. Let us assume, for now, that there are not shared roots between consecutive

functions of the Sturm sequence of f . Imagine x moving from a to b.

Let us see what happens when x passes through a root α of some function fi, of the

Sturm sequence of f , with i > 0. By definition of the Sturm sequence, we have that

fi−1(α) = qi(α)fi(α)− fi+1(α)

We are under the supposition that there are not shared roots between any two consecutive

functions ft and ft+1 of the Sturm sequence of f . Thus, fi−1(α) = −fi+1(α) 6= 0 when

fi(α) = 0 and, in a neighborhood of α, the signs of fi−1(x) and fi+1(x) are opposite. So,

it does not matter if f(x) changes from positive to negative or from negative to positive,

w(x) will not change when x pass through a root of some fi with i > 0 (see figure 4.6).

< α α > α
fi−1 + + +
fi + 0 −

fi+1 − − −︸ ︷︷ ︸ ︸ ︷︷ ︸
1 variation 1 variation

< α α > α
fi−1 + + +
fi − 0 +

fi+1 − − −︸ ︷︷ ︸ ︸ ︷︷ ︸
1 variation 1 variation

Figure 4.6: The number of sign variations in the list is not affected when x pass through
a root of fi, with i > 0

Let us see now what happens when x pass through a root α of f0. Given that f1 is

the derivative of f0, in a neighborhood of α the signs of f0 and f1 must pass from being
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different to equal, making the number of sign changes in the sequence decrease by 1. This

is: making w(x) to decrease by 1.

Now let us consider the case in which there exist shared roots between some pair of

functions fi and fi+1. Let us make two small observations. First: the last function fn

in the Sturm sequence of f is the greatest common divisor of f and f ′. The creation

of the Sturm sequence follows the same steps than Euclid’s algorithm for computing the

greatest common divisor. It just multiply by −1 the remainder, but given that we are

dealing with polynomials and not with numbers, this does not affect the fact that fn is

a common divisor of f and f ′. Second: if α is root of two consecutive functions of the

Sturm sequence of f , then α is root of all the functions of that sequence. In fact, if

fi(α) = fi+1(α) = 0, by the definition of Sturm sequence, we have:

fi+2(α) = qi+1(α)fi+1(α)− fi(α) =⇒ fi+2(α) = 0

fi+3(α) = qi+2(α)fi+2(α)− fi+1(α) =⇒ fi+3(α) = 0
...

...

fn = qn−1(α)fn−1(α)− fn−2(α) =⇒ fn = 0

and, in a similar way

fi−1(α) = qi(α)fi(α)− fi+1(α) =⇒ fi−1(α) = 0

fi−2(α) = qi−1(α)fi−1(α)− fi(α) =⇒ fi−2(α) = 0
...

...

f(α) = q1(α)f1(α)− f2(α) =⇒ f(α) = 0

Thus, it cannot happen that α is root of just two consecutive functions. If it happens,

then α is root of all the functions of the Sturm sequence.

Having pointed these two facts, let us imagine that the root α is a common root of

all the fi’s. Consider the Sturm sequence g0, g1, . . . , gn′ of the function f
gcd(f,f ′)

. As we

pointed, it is easy to see that that its length is equal to the length of the Sturm sequence of

f and that fi(x) = gi(x) gcd(f, f ′)(x) for all i. So, whenever x is not a root of gcd(f, f ′)

(i.e.: a root of fn), we can obtain the Sturm sequence of f evaluated at x by multiplying

each element of the Sturm sequence of g evaluated at x by the number gcd(f, f ′)(x).

Thus, the number of sign changes in both cases is the same. Thus, the number of sign

changes in the Sturm sequence of f evaluated at x is the same than the number of sign
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changes in the Sturm sequence of g = f
gcd(f,f ′)

, which has the same roots than f , but

all with multiplicity one. Thus, the decreasing in w(x) behaves exactly in the same way

than in the case that we have already analyzed. Then, the theorem is proved.

4.2.2 A consequent root isolation method

Based on Sturm’s theorem, one can derive in a very intuitive way an algorithm to

isolate the roots of the polynomial f contained in the interval (a, b). We compute the

number of sign changes of the Sturm sequence of f , when evaluated both at a and at b.

If these two numbers differs by 0 or by 1, the algorithm stops. If they differs by 2 or

more, we compute the two smaller isolations of the same polynomial, but in the intervals

(a, a+b
2

) and (a+b
2
, b).

4.3 Vincent’s theorem

We stated in Chapter 2, page 16, the original formulation of Vincent’s theorem, quot-

ing literally it from the original work, in French. We also pointed out an important

sentence of that formulation that has been omitted in many reformulations of the theo-

rem, and reformulated the theorem in a way that does not require the reader to be highly

familiarized with Lagrange’s previous work.

Alesina and Galuzzi, in [19], show four different approaches to prove Vincent’s the-

orem. There exist one other approach presented by Ostrowski [80], that they missed to

include in their list of approaches, and they added a reference later in their addendum [18].

The approaches shown by Alesina and Galuzzi are: Vincent’s proof, Uspensky’s proof,

Chen’s proof, and one new approach authored by them. To avoid losing the main thread

of this chapter, we left the exposition of the proof of Vincent’s theorem for Appendix A,

where we sketch Alesina and Galuzzi’s proof.

4.3.1 Vincent’s method

As we explained in the preliminaries of this chapter, a polynomial real root isolation

algorithm takes as input a polynomial p(x) and computes a sequence of disjoint intervals,

each containing exactly one root of p(x), together containing all the real roots of p(x).
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For now, we will focus on the problem of counting the number of positive roots.

The adaptation of this idea to the problem of isolating them will be the focus of next

subsections.

If we are given a polynomial without multiple roots

p(x) = anx
n + an−1x

n−1 + · · ·+ a0,

and we want to know the number of positive roots it has, the first thing that we can think

to do is: apply Descartes’ rule of signs. It might help. If the number of sign variations

in the list of coefficients were 0 or 1, we would know that p has 0 or 1 positive roots,

respectively. Let us think in the case in which the number of sign variations is larger

than 1. Notice at first that the roots of p can be greater than 1, equal to 1 or less than 1.

The roots bigger than 1 can be written as 1+x, with x > 0. The roots less than 1 can be

written as 1
1+x

, with x > 0. Accordingly, we make two transformations to the expression

of p(x): x← x+ 1 and x← 1
x+1

; both of them allow pretty efficient implementations, as

it will be shown in next subsections.

p
(

1
1+x

)
= an

(
1

1+x

)n
+ an−1

(
1

1+x

)n−1
+ · · ·+ a0

p (1 + x) = an (1 + x)n + an−1 (1 + x)n−1 + · · ·+ a0

1
1+x

varies over (0, 1) when x varies over (0,∞). 1 + x varies over (1,+∞) when x varies

over (0,∞). p (1 + x) is already a polynomial. p
(

1
1+x

)
is an equation whose positive roots

are in correspondence with the roots of p at the interval (0, 1), but is not a polynomial. By

multiplying it by (1+x)n we preserve its positive roots and make it become a polynomial

again. Through these two operations we obtain, from the expression of p, two new

polynomials, namely p1 and p2, whose positive roots corresponds to the roots of p in

(0, 1) and (1,+∞), respectively.

p1(x) = (1 + x)np
(

1
1+x

)
= (1 + x)n

(
an
(

1
1+x

)n
+ · · ·+ a0

)
p2(x) = p (1 + x) = an (1 + x)n + an−1 (1 + x)n−1 + · · ·+ a0

After having performed this kind of split operation, we can apply again Descartes’ rule

of signs to each one of the two resulting polynomials and, if the number of sign changes

in their lists of coefficients were 0 or 1, we would have that the number of roots of p in
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Algorithm 1 Vincent’s method for counting roots

1: procedure VincentCount(p) . p is squarefree, of degree n
2: sc ← number of sign changes in p
3: if sc = 0 or sc = 1 then
4: return sc
5: p01(x)← (x+ 1)np( 1

x+1
)

6: p1∞(x)← p(x+ 1)
7: if p(1) = 0 then
8: return VincentCount(p01) + VincentCount(p1∞) + 1
9: else

10: return VincentCount(p01) + VincentCount(p1∞)

the intervals (0, 1) and (1,+∞) is 0 or 1 respectively. If the number of sign variations in

their lists of coefficients were bigger than one, we could apply the process again and again

until we reach expressions with 0 or 1 sign variation. As we can see, the computation

in this method is structured like a binary tree. Every time a polynomial has more than

1 sign variation in its list of coefficients, we expand it into other two polynomials. One

natural question is: is this process going to end eventually? are we always going to reach

an equation in which the number of sign changes is 0 or 1?. The answer is: yes! we

are!. And Vincent’s theorem can be used to prove this assertion. Algorithm 1 shows an

implementation of this concept.

Proof that this method always terminates. Along this proof, we will consider

transformations. A transformation of the form x ← 1 + x transforms the polynomial

p(x) into the polynomial p(1 + x). A transformation of the form x← 1
1+x

transforms the

polynomial p(x) into the polynomial (1+x)np( 1
1+x

), where n is the degree of p. Similarly,

a transformation of the form x← 1
x

transforms the polynomial p(x) into the polynomial

xnp( 1
n
).

Consider a sequence S of transformations of the form x ← 1 + x or x ← 1
1+x

. We

can add, after the last transformation in S, one new transformation with the form x ←
1
x
, obtaining a new sequence of transformations S ′. The number of sign variations in

the list of coefficients after the transformations given by S ′ is the same than after the

transformations given by S.

A number a of transformations of the form x ← 1 + x followed by one of the form

x ← 1
1+x

are equivalent to x ← a + x followed by x ← 1
1+x

, which is equivalent to

x← a+ 1
x
, followed by x← 1+x. In the following picture, the operator ? means followed
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by. For example, if we write (x ← a1 + x) ? (x ← a2 + x) we mean the transformation

that results by first substitute x ← a1 + x in the input polynomial and then substitute

x← a2 + x in the resulting expression.

a transformations︷ ︸︸ ︷
(x← 1 + x) ? (x← 1 + x) ? · · · ? (x← 1 + x) ?(x← 1

1+x
)

= (x← a+ x) ? (x← 1
1+x

)

= (x← a+ 1
x
) ? (x← 1 + x)

We can rewrite S ′ using this rule. If S ′ starts with a transformations of the form

(x ← 1 + x), followed by one transformation of the form x ← 1
1+x

, we replace them

with the two transformations (x ← a + 1
x
) (x ← 1 + x). We continue doing the same

process, but starting at the (x ← 1 + x) that we have just written. In this way we will

keep writing transformations of the form x ← a + 1
x

until we reach the last group of

consecutive transformations of the form x ← 1 + x, which is followed by x ← 1
x

(the

transformation we added). That last term rewrites to just one transformation with the

form x← w + 1
x
, without the need of being followed by another transformation.

Thus, in this way we have that any sequence S ′ of transformations can be rewritten

into a sequence with the form

(x← a1 +
1

x
), (x← a2 +

1

x
), . . . , (x← ak +

1

x
)

with a2, . . . , ak ≥ 1 and a1 either ≥ 1 or = 0. If a1 = 0, then (x ← a1 + 1
x
) does not

affect the number of sign variations in the list of coefficients of the resulting transformed

expression.

By the theorem of Vincent, we have that these transformations, in sufficient number,

lead to an equation with 0 or 1 sign variation.

4.3.2 Isolating the roots instead of counting them

If we wanted not only to count the roots but also to produce a list of the isolating

intervals associated to them, we could note that a sequence of transformations of the

form x ← x + 1 and x ← 1
1+x

can always be expressed as a single Möbius transfor-

mation ax+b
cx+d

. We can add the current Möbius transformation as parameter, and keep
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modifying it in the recursive calls of the function. If we have a Möbius transforma-

tion with the form M(x) = ax+b
cx+d

, then we have that M(x + 1) = ax+(a+b)
cx+(c+d)

and that

M( 1
x+1

) = bx+(a+b)
dx+(c+d)

. The transformation at the beginning, is M(x) = x = 1x+0
0x+1

. The

interval associated to a pi, which has associated the transformation Mi, would be the

interval (min(Mi(0),Mi(∞)),max(Mi(0),Mi(∞))).

Let us see the previous example. Our input was p(x). Its associated transformation

would be 1x+0
0x+1

. We had that var(p(x)) > 1, so it was splitten into two polynomials:

p1(x) = (1 + x)np
(

1
1+x

)
p2(x) = p (1 + x)

The associated transformations to these two new polynomials are:

M1(x) = M( 1
1+x

) = 0x+(1+0)
1x+(0+1)

= 1
x+1

M2(x) = M(1 + x) = 1x+(1+0)
0x+(0+1)

= x+1
1

For the step in which we splitted p1 into

p3(x) = (1 + x)np1

(
1

1+x

)
p4(x) = p1 (1 + x)

the correspondent transformations would be

M3(x) = M1( 1
1+x

) = 1x+(0+1)
1x+(1+1)

= x+1
x+2

M4(x) = M1(1 + x) = 0x+(0+1)
1x+(1+1)

= 1
x+2

And we can continue in this way as shown in figure 4.7. The correspondent intervals

produced by a process as the one exemplified in the figure would be

• (min(1
2
, ∞+1
∞+2

),max(1
2
, ∞+1
∞+2

)) = (1
2
, 1)

• (min(1
3
, ∞+1

2∞+3
),max(1

3
, ∞+1

2∞+3
) = (1

3
, 1

2
)

• (min(1
3
, 1
∞+3

),max(1
3
, 1
∞+3

) = (0, 1
3
)

• (min(1,∞+ 1),max(1,∞+ 1) = (1,∞)

An implementation of Vincent’s method for isolating roots is shown at Algorithm 2.
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p(x)
M(x) = x

sign changes:
> 1

p1(x) =
(1 + x)np

(
1

1+x

)
M1(x) = 1

x+1

sign changes: > 1

p3(x) =
(1 + x)np1

(
1

1+x

)
M3(x) = x+1

x+2

sign changes: ≤ 1

p4(x) = p1(1 + x)
M4(x) = 1

x+2

sign changes: > 1

p5(x) =
(1 + x)np4

(
1

1+x

)
M5(x) = x+1

2x+3

sign changes: ≤ 1

p6(x) = p4(1 + x)
M6(x) = 1

x+3

sign changes: ≤ 1

p2(x) = p(1 + x)
M2(x) = x+ 1

sign changes: ≤ 1

Figure 4.7: Example of Vincent’s method. We start with a polynomial p, which presents
more than 1 variation of signs in its list of coefficients. Every time it happens, we split
into two new polynomials, by considering the current polynomial in the variables 1

1+x

and 1 + x.
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Algorithm 2 Vincent’s method for isolating roots

1: procedure VincentIsolate(p,M(x) = ax+b
cx+d

)
2: . p is squarefree, of degree n, M is the transformation; at the beginning is
M = x

3: if sc = 0 then
4: return ∅
5: if sc = 1 then
6: return {(min(M(0),M(∞)),max(M(0),M(∞)))}
7: p01(x)← (x+ 1)np( 1

x+1
)

8: M01(x)←M( 1
x+1

)
9: p1∞(x)← p(x+ 1)

10: M1∞(x)←M(x+ 1)
11: V01 ← VincentIsolate(p01,M01)
12: V1∞ ← VincentIsolate(p1∞,M1∞)
13: if p(1) = 0 then
14: return V01 ∪ V1∞ ∪ {[M(1),M(1)]}
15: else
16: return V01 ∪ V1∞

4.3.3 On the implementation of x← 1
x+1 and x← x+ 1

Algorithm 3 shows the method exposed by Knuth [60, section 4.6.4, steps H1 and H2]

to compute the coefficients of u(x+ x0) given the coefficients of u(x), of degree n.

For example, if we have p(x) = x3 − 7x + 7 and we want to compute p(x + 1), the

algorithm would update the values p2, p1, p0 as it is shown in the following table. First,

it is traversed from left to right the line with k = 0. Then, it is traversed from left to

right the line with k = 1, and so on.

p3 p2 p1 p0

1 0 −7 7

k = 0 1 −6 1

k = 1 2 −4

k = 2 3

1 3 −4 1

Algorithm 3 Compute the coefficients of u(x+ x0) given the coefficients of u(x).

1: procedure PolynomialShift(x0, u) . u(x) = unx
n + un−1x

n−1 + · · ·+ u0

2: for k = 0, . . . , n− 1 (in this order) do
3: for j = n− 1, . . . , k + 1, k (in this order) do
4: Set uj ← uj + x0uj+1
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Thus, p(x+ 1) = x3 + 3x2 − 4x+ 1. If we want to compute (1 + x)np( 1
1+x

), we can first

compute xnp( 1
x
) and then shift the obtained expression by 1, using this same method. The

expression of xnp( 1
x
) can be computed very easily by observing that its list of coefficients

is the reversed list of coefficients of p. Polynomial shifting is the most time-demanding

operation in the methods derived from Vincent theorem that will be shown in the next

section, so it is worth to have efficient implementations of it [96, ?].

4.4 Root isolation methods derived from Vincent’s

theorem

There are three main isolation methods derived from Vincent’s theorem: VCA (Vin-

cent, Collins, Akritas), VAS (Vincent, Akritas, Strzeboński) and VAG (Vincent, Alesina,

Galuzzi). All these methods stand on the same basic idea. In the problem of isolating

the positive roots of a given polynomial p(x), it can happen that the number of sign

variations at the coefficients of p is 0 or 1. In such a case, the problem is trivial: p either

has 0 roots or have 1 root, contained in (0,+∞).

When the number of sign variations is larger than 1, the different methods based on

Vincent’s theorem propose different strategies to inspect other polynomials whose roots

corresponds to the roots of p in some specific interval instead of in (0,+∞). For this

purpose, these methods use mappings. For example, the function φ(x) = a+bx
1+x

maps the

positive x-semi axis (i.e.: the interval (0,+∞)) onto the interval (a, b). The function

φ(x) = x + 1 maps the interval (0,+∞) into (1,+∞), the function φ(x) = 1
x+1

maps

(0,+∞) onto (0, 1).

Through the use of these mappings, these methods convert a problem of isolating

roots in a given interval to many subproblems of isolating roots in subintervals of the

given interval. The stop condition, when it is not necessary anymore to keep subdividing

the problem, is in all the three cases the same: to reach a polynomial in which the

Descartes’ rule is conclusive. This is: reach a polynomial with 0 or 1 sign variation in its

list of coefficients. The theorem of Vincent is the theoretical result on which the proofs of

termination of all these three methods stand. Could we keep transforming the problem

into smaller problems forever, without reaching the stop condition? No, in all these three

methods, the process terminates. And it can be proved with the help of Vincent’s ideas;
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when not by the direct application of Vincent’s theorem [32, 92, 13, 19, 17].

4.4.1 VCA

In 1976 Collins and Akritas revisited Vincent’s method for root isolation [32], analyz-

ing aspects of Uspensky’s rewriting of Vincent’s work, showing an example in which the

computational effort required by Vincent’s method is exponential on the size of the input

polynomial, and then proposing the first polynomial-time version of the algorithm. In

their work, Collins and Akritas show that their method has a complexity O(n6L(d)2), for

a polynomial p of degree n and L(d) being the bitsize of the sum of the absolute values

of the coefficients of p.

Uspensky had pointed out that the number of substitutions x ← 1
x+1

in Vincent’s

method is a polynomial function of n and ∆, the minimum root separation of p [92]. In

fact, he pointed out that this number of substitutions is dominated by L(n)+L( 1
∆

). But,

as is pointed out by Collins and Akritas, it is known that L(∆−1) ≤ nL(d) [33]; so we have

that the number of substitutions x ← 1
x+1

in Vincent’s method is O(nL(d)). However,

as Collins and Akritas pointed out, there is another fact: the number of substitutions

x← x+ 1 is not dominated by any power of L(d) (the size of the input polynomial).

VCA can be compared with Vincent’s original method as follows: in Vincent’s original

work, the intervals being mapped are (0, 1) and (1,+∞). In VCA, the intervals being

mapped are (0, 1
2
) and (1

2
, 1). VCA makes, at the beginning, before starting the compu-

tation, a transformation on the variable x of the input polynomial p(x), to ensure that

the calculations are going to be performed on a polynomial whose roots are all contained

in the interval (0, 1). Thus, due to the way in which the variable is being mapped, when

we are mapping the intervals (0, 1
2
) and (1

2
,+∞) to (0,+∞), we are able to ensure that

all the roots of the new polynomial are in (0, 1).

Before starting with the algorithm, we need to compute an upper boundB for the max-

imum positive root of the input polynomial p(x), and make the transformation x← Bx,

to ensure that all the positive roots are in (0, 1). As we did with Vincent’s algorithm, we

present counting (Algorithm 4) and isolating (Algorithm 5) versions of the method.
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Algorithm 4 Vincent-Collins-Akritas for counting the positive roots of p

1: procedure VCACount(p) . p is a squarefree polynomial, with all its positive
roots in (0, 1).

2: sc ← number of sign changes in (x+ 1)deg pp( 1
x+1

)
3: if sc = 0 or sc = 1 then
4: return sc
5: p0 1

2
(x)← 2deg pp(x

2
)

6: p 1
2

1(x)← 2deg pp(x+1
2

)

7: if p(1
2
) = 0 then

8: return VCACount(p0 1
2
) + VCACount(p 1

2
1) + 1

9: else
10: return VCACount(p0 1

2
) + VCACount(p 1

2
1)

Algorithm 5 Vincent-Collins-Akritas for isolating the positive roots p

1: procedure VCAIsolate(p, I = (a, b)) . p is a squarefree polynomial, with all its
roots in (0, 1). (a, b) is the interval of the domain of the original polynomial to which
maps the interval (0, 1) of the current polynomial. Remember that we have shrinked
the variable in order to have all the roots on the interval (0, 1)

2: sc ← number of sign changes in (x+ 1)deg pp( 1
x+1

)
3: if sc = 0 then
4: return ∅
5: if sc = 1 then
6: return {I}
7: p0 1

2
(x)← 2deg pp(x

2
)

8: p 1
2

1(x)← 2deg pp(x+1
2

)

9: if p(a+b
2

) = 0 then
10: return VCAIsolate(p0 1

2
, (a, a+b

2
))∪VCAIsolate(p 1

2
1, (

a+b
2
, b))∪{[a+b

2
, a+b

2
]}

11: else
12: return VCAIsolate(p0 1

2
, (a, a+b

2
)) ∪VCAIsolate(p 1

2
1, (

a+b
2
, b))
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4.4.2 VAS

This is the second method (after VCA) developed to handle the exponential behavior

of Vincent’s method. It is authored by Akritas and Strzeboński [13]. For a clear interpre-

tation of the method, we can proceed in exactly the same way that we did for Vincent’s

method. We considered that the roots were of the form 1 + x or 1
1+x

. If we know a lower

bound α on the roots of the polynomial, we can shift the variable x by α before making

the split. This is what VAS does. In fact, depending on how large α is, VAS sometimes

shrinks the variable by performing the substitution x ← αx. Akritas and Strzeboński

explained that they decide when to shrink just by putting a threshold α0. When α > α0,

they shrink. They obtained experimentally the value of α0 for which the method shows

the best performance. That value is 16.

As we did with previous approaches, we will present two versions of this method: root

counting (Algorithm 6) and root isolation (Algorithm 7).

Note that if we remove the lines 5 − 10 of Algorithm 6, the algorithm is precisely

Vincent’s method.

For the root isolation version of this algorithm, we will proceed in a similar way than

the used in Vincent’s approach. We will keep the transformation that we should apply to

the interval (0,+∞) to obtain the interval at the original domain. This transformation

can be represented by 4 values: a, b, c, d, denoting M(x) = ax+b
cx+d

. Due to the nature of the

transformations that we are making, the composition of them always can be represented

as a Möbius transformation; which is precisely what we are doing.

The facts that we are going to use are: (considering that M(x) = ax+b
cx+d

)

• M(x+ 1) = ax+(a+b)
cx+(c+d)

• M( 1
x+1

) = bx+(a+b)
dx+(c+d)

• M(1) = a+b
c+d

• M(x+ α) = ax+(aα+b)
cx+(cα+d)

• M(αx) = aαx+b
cαx+d

The transformation, at the beginning, is M(x) = x = 1x+0
0x+1

. Thus, the VAS for root

isolation could be stated as shown in Algorithm 7.
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Algorithm 6 Vincent-Akritas-Strzeboński for counting the positive roots of p

1: procedure VASCount(p) . p is a squarefree polynomial.
2: sc ← number of sign changes in p(x)
3: if sc = 0 or sc = 1 then
4: return sc
5: α← lower bound for the positive roots of p
6: if α > 16 then
7: p(x)← p(αx)
8: α← 1
9: if α ≥ 1 then

10: p(x)← p(x+ α)

11: p01(x)← (x+ 1)deg pp( 1
x+1

)
12: p1∞(x)← p(x+ 1)
13: V01 ← VASCount(p01)
14: V1∞ ← VASCount(p1∞)
15: if p(1) = 0 then
16: return V01 + V1∞ + 1
17: else
18: return V01 + V1∞

Algorithm 7 Vincent-Akritas-Strzeboński for isolating the positive roots of p

1: procedure VASIsolate(p,M) . p is a squarefree polynomial.
2: sc ← number of sign changes in p(x)
3: if sc = 0 then
4: return ∅
5: if sc = 1 then
6: return {(min(M(0),M(∞)),max(M(0),M(∞)))}
7: α← lower bound for the positive roots of p
8: if α > 16 then
9: p(x)← p(αx)

10: M(x)←M(αx)
11: α← 1
12: if α ≥ 1 then
13: p(x)← p(x+ α)
14: M(x)←M(x+ α)

15: p01(x)← (x+ 1)deg pp( 1
x+1

), M01(x)←M( 1
x+1

)
16: p1∞(x)← p(x+ 1), M1∞(x)←M(x+ 1)
17: V01 ← VASIsolate(p01,M01)
18: V1∞ ← VASIsolate(p1∞,M1∞)
19: if p(1) = 0 then
20: return V01 ∪ V1∞ ∪ {[M(1),M(1)]}
21: else
22: return V01 ∪ V1∞
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4.4.3 VAG

Alesina and Galuzzi proved [19, Theorem 3 (page 7)] that

∀p(x),∃δ > 0 such that if |a− b| < δ, (1 + x)np

(
b+ ax

1 + x

)

has 0 or 1 sign variations (where n is the degree of p). It follows trivially from this

theorem the simplest bisection approaches.

For the problem of isolating the real roots of a polynomial p(x), we start considering

an interval (0,M), where M is any upper bound for the positive roots of p. We check

how many sign changes has the polynomial (1 + x)np

(
0x+M

1 + x

)
. If it has 0 or 1 sign

changes, then p has 0 or 1 roots, respectively. In the case it has 1, its isolating interval is

(0,M). In the case that there are two or more sign changes, we split the interval (0,M)

in two open intervals and a point: its first half
(
0, 0+M

2

)
, its second half

(
0+M

2
,M
)
, and

its midpoint [0+M
2
, 0+M

2
]. We check if the midpoint is root of p by evaluating p at it, and

we repeat in the new sub-intervals the process that we have just done for (0,M). The

theorem of Alesina and Galuzzi ensures that this process terminates, since the width of

the intervals is halved in each step.

As we did for the previous methods, we present in here two versions of the Alesina

Galuzzi method. Algorithm 8 shows the implementation of root counting and Algorithm

9 shows the implementation of root isolation.

4.5 On an adaptation of Fourier’s theorem

In this section we will formulate and prove a new theorem, which is similar to Fourier’s

theorem, but with one difference that makes it much more useful in the case of fewnomials:

the list of functions, in Fourier’s theorem, is composed by n functions, where n is the

degree of the input polynomial. The list of functions of the theorem presented in this

section is composed by T functions, where T is the number of terms present in the input

polynomial.

Let f(x) be a polynomial. We define the reduction of f(x), denoted by [f(x)], to

be f(x)
xj

, where j is the maximum natural such that xj divides f(x). Thus, for example,
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Algorithm 8 Vincent-Alesina-Galuzzi for counting the roots of p in (a, b)

1: procedure VAGCount(p, (a, b)) . p is a squarefree polynomial. (a, b) is the
interval in which we are counting the number of roots

2: sc ← number of sign changes in (x+ 1)deg(p)p(a+bx
1+x

)
3: if sc = 0 ∨ sc = 1 then
4: return sc
5: V1 ← VAGCount(p, (a, a+b

2
))

6: V2 ← VAGCount(p, (a+b
2
, b))

7: if p(a+b
2

) = 0 then
8: return V1 + V2 + 1
9: else

10: return V1 + V2

Algorithm 9 Vincent-Alesina-Galuzzi for isolating the roots of p in (a, b)

1: procedure VAGIsolate(p, (a, b)) . p is a squarefree polynomial. (a, b) is the
interval in which we are counting the number of roots

2: sc ← number of sign changes in (x+ 1)deg(p)p(a+bx
1+x

)
3: if sc = 0 then
4: return ∅
5: if sc = 1 then
6: return {(a, b)}
7: V1 ← VAGIsolate(p, (a, a+b

2
))

8: V2 ← VAGIsolate(p, (a+b
2
, b))

9: if p(a+b
2

) = 0 then
10: return V1 ∪ V2 ∪ {[a+b

2
, a+b

2
]}

11: else
12: return V1 ∪ V2
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[10x24 + 4x12 − 10x11] = 10x24+4x12−10x11

x11
= 10x13 + 4x − 10, and [10x24 + 4x12 − 10] =

10x24+4x12−10
1

= 10x24 + 4x12 − 10. Observe that [f(x)] has a nonzero independent term,

therefore [f(x)]′ has one term less than f(x).

Given the polynomial f(x), let T be the number of nonzero terms present in f . Let

us define the polynomials l1, l2, . . . , lT as follows:

l1 := [f ] l1 has T terms

l2 := [l′1] l2 has T − 1 terms
...

li+1 := [l′i] li+1 has T − i terms
...

lT := [l′T−1] lT has 1 term

We define the number of sign variations or sign changes in a sequence of numbers

S = [a0, a1, a2, . . . , aj] as the number pairs (a′i, a
′
i+1) in the sequence S ′ = [a′0, a

′
1, . . . , a

′
w],

obtained by removing all the 0’s from S. For example: the number of sign variations in

[−3, 0, 0,−3] is 0, and the number of sign variations in [−2, 0, 4,−5] is 2.

Theorem 5 (Adaptation of Fourier’s theorem). Given a polynomial f , with T terms and

arbitrary degree, define the list of T polynomials [l1, . . . , lT ] as above. For any x ∈ R, let

V (x) be the number of sign changes of the sequence [l1(x), . . . , lT (x)]. Then the number

of roots of f (counting multiplicities) between a and b, where f(a) 6= 0, f(b) 6= 0 and

0 < a < b, does not exceed V (a) − V (b). Moreover, the number of roots can differ from

V (a)− V (b) by an even number only.

Proof. Let x be a point which moves along the segment [a, b], from a to b. The quantity

V (x) varies only if x passes through a root of one or more of the polynomials l1, l2, . . . , lT−1

(we know that lT (x) 6= 0 for all x > 0).

Consider first the case when x passes through a root α of the first k functions of the

list of li’s, with lk+1(α) 6= 0. By Lemma 1, α is a root of f with multiplicity k. It is

straightforward to see that the value of V (x) decreases by k (see Table 1).

Now suppose that x passes through a root α of the k functions li+1, . . . , li+k, with

i ≥ 1, i + k < T, li(α) 6= 0, li+k+1(α) 6= 0. In a neighborhood of α, we have that the

signs of li+k+1 and li are constant. If li+k+1 is positive, then li+k must be increasing, and
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<αα>α<αα>α
l1 − 0 + + 0 −
l2 + 0 + − 0 −
. . . . . . . . .

lk−1 + 0 + − 0 −
lk − 0 + + 0 −

lk+1 + + + − − −

k even. V (x) k odd. V (x)
decreases k decreases k ± 1

<αα>α<αα>α<αα>α<αα>α
li ± ± ± ± ± ± ± ± ± ± ± ±

li+1 + 0 + − 0 − − 0 + + 0 −
. . . . . . . . . . . . . . . . . .

li+k−1 + 0 + − 0 − + 0 + − 0 −
li+k − 0 + + 0 − − 0 + + 0 −

li+k+1 + + + − − − + + + − − −

Table 1 (left). Signs of l1(x), . . . lk+1(x), in a neighborhood of α, where l1(α) = · · · =
lk(α) = 0 ∧ lk+1 6= 0. V (x) decreases by k. Table 2 (right). Signs of li(x), . . . li+k+1(x), in
a neighborhood of α, where li+1(α) = · · · = li+k(α) = 0 and li+k+1(α) 6= 0. V (x) decreases
by an even amount.

consequently li+k must be negative in < α and positive in > α. Now, given that li+k is

negative in < α and positive in > α, we have that li+k−1 must be positive in < α and

positive in > α, and so on. At all the steps of this reasoning we use the fact that the

signs of l′t(x) and lt+1(x) are the same for all x > 0. So, continuing with this reasoning,

we have that the sign of li+k+1 determines the signs of all the functions li+k, . . . , li+1. At

this point, we can reach two different scenarios, depending on the parity of k. If k is

even, the value of V (x) decreases by k. If k is odd, V (x) decreases by k − 1 or by k + 1

depending on the sign of li. The same (just with opposite signs) occurs when li+k+1 is

negative. Table 2 shows all the possibilities in a more graphical way.

Thus, V (x) decreases by an even amount when x pass through a root of li+1, li+2,

. . . , li+k, and by k when x passes a root of f with multiplicity k. From these two facts,

follows the theorem.

Lemma 1. If α > 0 and f, l1, l2, . . . , lk+1 are defined as above, then

l1(α) = 0
...

lk(α) = 0

lk+1(α) 6= 0


⇐⇒



f(α) = 0
...

f (k−1)(α) = 0

f (k)(α) 6= 0
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Proof. We have

xt1l1(x) = f(x)

xt2l2(x) = l′1(x)
...

xtk lk(x) = l′k−1(x)

xtk+1lk+1(x) = l′k(x)

Let us see that f (i) can be expressed as a sum in which the terms are a product of three

quantities: a power of x, a positive constant and one of the first (i + 1) elements of the

list [l1, l2, . . . ]. In other words, let us see that

f (i)(x) =
∑
w

awltw(x)xjw for some 1 ≤ tw ≤ i+1, and some aw > 0 (4.1)

We proceed by induction on i.

If i = 0, then (4.1) holds; because f(x) = xt1l1(x).

If (4.1) holds for i, we have that

f (i+1)(x) =
∑

w

(
awl
′
tw(x)xjw + awjwx

jw−1lti(x)
)

with 1 ≤ tw ≤ i+ 1

=
∑

w (aw(ltw+1(x)xtw+1)xjw + awjwx
jw−1ltw(x)) with 1 ≤ tw ≤ i+ 1

=
∑

w (awltw+1(x)xtw+1+jw + awjwx
jw−1ltw(x)) with 1 ≤ tw ≤ i+ 1

which is a sum in which the terms are a product of a power of x, a positive constant and

one of the first (i+ 2) elements of the list [l1, l2, . . . ], so (4.1) holds for i+ 1.

From (4.1) it follows that if l1(α) = · · · = lk(α) = 0, then f(α) = · · · = f (k−1)(α) = 0,

and f (k)(α) has the form
∑

w(aw)αjw lk+1(α), for some aw positives. So, given that α > 0,

we have that

l1(α) = · · · = lk(α) = 0, lk+1(α) 6= 0

=⇒ f(α) = · · · = f (k−1)(α) = 0, f (k)(α) 6= 0 (4.2)

Let us prove now the reciprocal of (4.2). Let us assume that f(α) = · · · = f (k−1)(α) = 0,

f (k)(α) 6= 0.

By (4.1), we have that f (m)(α) =
∑

w awα
jw ltw(α), for some aw > 0, with 1 ≤ tw ≤

m+ 1. Since αjw and aw are positive, we have that if all the li (with 1 ≤ i ≤ m) vanishes
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at α then the fact of f (m) being 0 at α would imply lm+1 being 0 at α. In other words:

f (m)(α) = 0, l1(α) = · · · = lm(α) = 0 =⇒ lm+1(α) = 0 (4.3)

So, if we have f(α) = · · · = f (k−1)(α) = 0, we can apply (4.3) k times and iteratively

conclude that l1(α) = 0, l2(α) = 0, . . . , lk(α) = 0 as follows:

(Step 1) f(α) = 0 =⇒ l1(α) = 0,

(Step 2) f ′(α) = 0, l1(α)=0 =⇒ l2(α) = 0,

...

(Step k) f (k−1)(α)=0, l1(α)= . . .= lk−1(α) = 0 =⇒ lk(α)=0.

Let us continue one more line and see what happen with lk+1. We know, by (4.1), that

f (k)(α) =
∑

w awα
jw ltw(α), for some aw > 0, with 1 ≤ tw ≤ k + 1. But we have just

seen that all the li, with 1 ≤ i ≤ k, vanishes at α, so if we join together these two facts

we have that f (k)(α) =
∑

w awα
jw lk+1(α). Since aw and αjw are positive, we have that

f (k)(α) 6= 0⇒ lk+1(α) 6= 0. Thus, we have that

f(α) = · · · = f (k−1)(α) = 0, fk(α) 6= 0

=⇒ l1(α) = · · · = lk(α) = 0, lk+1(α) 6= 0 (4.4)

From (4.2) and (4.4) follows the theorem.

4.5.1 Consideration on an adaptation of Fourier’s theorem to

count the exact number of roots

The proposed adaptation of Fourier’s theorem gives a bound for the number R of

roots that a polynomial p(x) has in the interval (0, w). Let

Lp = (p1, p2, . . . , pT )

= ([p], [p′1], . . . , [p′T−1])

be the list of polynomials that the theorem proposes to use, where T is the number of

nonzero terms in p(x). Let Lp(x) = [p1(x), p2(x), . . . , pT (x)] be the list of numbers that
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results from the evaluation of them at x. Let sc(L) be the number of sign changes in the

list of numbers L. For example, sc(Lp(x)) is the number of sign changes in the list of

numbers Lp(x). The quantity sc(Lp(0))− sc(Lp(w)) is the precise value of R when it is

0 or 1, but in the other cases it provides a value R+ 2Q, for some nonnegative integer Q.

Recalling the proof of Fourier’s theorem, Q is the number of roots α of some pi (with

T ≥ i > 0) such that sgn(pi−1(α)) = sgn(pi+1(α)).

Let us consider the sequence of functions Lp+K , obtained from the initial polynomial

p(x)+K, which is the same initial polynomial p(x) that we already had, plus one constant

K; being K chosen so that it is big enough to ensure that p(x) +K is positive in (0, w).

Thus, the number of roots of p(x) + K in (0, w) is 0. Notice that the i-th function at

Lp+K is equal to the i-th function at Lp, for i > 1, since the derivative of p(x) + K is

equal to the derivative of p(x).

We say that the context of a root of one polynomial pi is given the signs of pi−1 and

pi+1 at that root. Given that the i-th polynomial at Lp+K is equal to the i-th polynomial

at Lp, for i > 1, all the roots of polynomials pi at Lp+K and at Lp occurs in the same

context for i > 2. Thus, if we were able to quantizate how are affected the contexts of

the roots of p2 when summing K to p1, then we would be able to compute the number

of roots R exactly.

4.5.2 Consideration on a possible adaptation of Sturm’s method

Sturm’s theorem and Sturm’s method rely on Sturm’s sequence, whose length is not

proportional to the number of nonzero terms in a polynomial, but to its degree. The

steps of the Euclidean algorithm to compute the greatest common divisor between f and

f ′ does not preserve the fewnomial structure of f , in the cases in which f is a fewnomial.

For example, if f is a fewnomial with 5 terms and degree 1000, the polynomials present

at the Sturm’s of f quickly become polynomials with a much-larger-than-5 number of

terms.

One frustrated try that we made during the development of this thesis was related to

obtain some alternative to Sturm sequence, which still presents the property that, when

moving in the x axis from left to right, every time we pass through a root x = α of the

function fj, the functions fj−1 and fj+1 have opposite signs in a neighborhood of α (this

property implied that the decreasements in the number of sign changes in the Sturm
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sequence can only occur at the roots of f), but with the difference that its number of

elements is linear in the number of terms of the input polynomial, and not its degree.

For example, we would like to find a sequence that starts with the polynomial f0 = f ,

and every some fixed number of elements of the list, the number of terms decreases. For

example, perhaps f5 has one term less than f0, f10 has 1 term less than f5 and so on.

With this purpose, we realized that it is not mandatory, when creating the Sturm

sequence, using the expression fi(x) = qi+1(x)fi+1(x) − fi+1(x), to take the quantities

qi+1 and fi+1 as the quotient and the (−remainder), respectively, of the division of fi(x)

by fi+1(x). In fact, any two polynomials satisfying this expression would still fit into

Sturm’s proof. The only thing that we would lose is the guarantee that at every step the

degree decreases.

4.6 On an elementary approach for the root isolation

problem

In this section we will show a simple method to isolate the positive roots of a poly-

nomial p(x) of degree n, provided that there are not common positive roots between any

derivative p(i)(x) and its derivative p(i+1)(x). Observe that this assumption is, in fact, the

generic case. With the purpose of showing the method, let us first recall some elementary

results that we will use in our method.

Theorem 6 (Rolle). Between two consecutive real roots a and b of a polynomial f(x)

there is at least one and at any rate an odd number of roots of its derivative f ′(x).

Corollary 1. Between two consecutive roots c and d of the derivative f ′(x) there is at

most one root of f(x).

If we want to isolate the positive roots of a polynomial p(x), and we know that it does

not share any positive root with its derivative p′(x), we can use the stated concepts as

basis to a method that would work when it is provided that the roots of the derivative are

known. Let all the distinct roots of p′(x) be

α1 < α2 < · · · < αr.
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Write the list of signs of

p(−∞), p(α1), p(α2), . . . , p(αr), p(+∞)

And inspect that list for variations of signs. The intervals (αi, αi+1) for which sgn(f(αi)) 6=

sgn(f(αi+1)) isolates exactly one root of p(x), and all of its roots are isolated in this way.

This method presents an asymmetry between what it produces as output and what

it requires as input. This asymmetry makes it difficult to transform it into a recursive

algorithm, in which the problem for a polynomial of degree n reduces to a problem for a

polynomial of degree n− 1. The asymmetry is that it produces an isolation of the roots

of the input polynomial p(x), and requires to know exactly the roots of p′(x). We will

adapt the algorithm to be able to give an isolation of the roots of p(x) starting with an

isolation of the roots of p′(x). That would allow us to propose a simple recursive way of

isolating roots.

Suppose that p′(x) has k different roots, α1, α2, . . . , αk, and that we have an isolation

of them given by the intervals

(a1, b1), (a2, b2), . . . , (ak, bk)

such that αj ∈ (aj, bj). We know that p(x) cannot have more than one root between αj

and αj+1 . If we were able to ensure that p(x) has no roots in the intervals (aj, bj) and

(aj+1, bj+1), then we would have that the number of roots of p(x) in the interval (ai, bi+1)

is the same than in (αi, αi+1).

Given that we are assuming that p(x) and p′(x) have not roots in common, we know

that there exists δ > 0 such that p(x) have no roots in (αj − δ, αj + δ) and neither in

(αj+1 − δ, αj+1 + δ). In fact, we could take as 2δ (i.e.: the width of the neighborhoods)

the minimum separation between two roots of the polynomial which is the product of

p(x)p′(x). That would ensure that p(x) does not change its sign in the mentioned inter-

vals. Sagraloff [88] proved the following result.

Theorem 7. Let f and g be polynomials of degree n or less with integer coefficients of

absolute values less than 2µ, and let

L := 128 · n · (log n+ µ).
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Isolate the positive roots of p(x), deg. n
↓

Isolate the positive roots of p′(x), deg. n− 1
↓

Isolate the positive roots of p′′(x), deg. n− 2
↓
· · ·
↓

Isolate the positive roots of p(n)(x), deg. 0

︸ ︷︷ ︸
recursion depth = n

Isolate the positive roots of p(x).
Isolate, instead, the positive roots of [p(x)].

↓
Isolate the positive roots of [p(x)]′.

(one fewer term than the previous step)
Isolate, instead, the positive roots of [[p(x)]′].

↓
· · ·
↓

Isolate the positive roots of some monomial︸ ︷︷ ︸
recursion depth = T

Figure 4.8: Recursive calls from the elementary method, with (right) (T calls) and without
(left) (n calls) the consideration about the reduction operator

Then, for any two distinct roots ξi and ξj of F := f · g, it holds that |ξi − ξj|mi > 1
2L

,

where mi := mult(ξi, F ) denotes the multiplicity of ξi as a root of F . If ξ is a root of g

and f(ξ) 6= 0, then it holds that |f(x)| > 2−L/4 for all x ∈ C with |x − ξ| < 2−L. Vice

versa, if f(ξ) = 0, then |f(x)| < 2−L for all x ∈ C with |x− ξ| < 2−L.

By setting the f and g of the theorem to be our p and p′, and by considering µ to

be largest of the bitsizes of the coefficients of p(x) and p′(x), we have a bound B for the

root separation of p(x)p′(x).

B =
1

2128·n·(logn+µ)

Thus, if all the intervals (ai, bi) satisfy that bi − ai < B, we can isolate the roots of p(x)

by simple inspection of the signs of it when evaluated at the points ai’s. If some of the

intervals (ai, bi) were too big, we can refine them until the required precision. This can

be done through the highly efficient method of Abbott [3].

A note on the resulting method. With the previous observation, we are able to

produce an isolation of the positive roots of a polynomial of degree n, given the isolation

of the roots of its derivative. Now, let us observe something. The positive roots of a

polynomial p divided by xj, with j ∈ N, are the same than the positive roots of p, since

xj > 0, for x > 0. Let us divide the input polynomial p(x) by xj, where j is the largest

integer such that xj divides p(x). On page 70 we called this operation reduction, and

denoted the resulting polynomial by p(x)
xj

by [p(x)]. It is clear that [p(x)]′ has 1 term fewer

than [p(x)]. With this consideration, applying the reduction at each step of the process,

we have that the length of our recursion is not anymore as long as the degree of the input
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Algorithm 10 Elementary method for isolating the real roots of a polynomial p

1: procedure SimpleIsolation(p) . it must be guaranteed that no one of the
polynomials p, p′, p′′, . . . , p(n−1) shares a positive root with its derivative.

2: if p is a monomial then
3: return an interval containing the positive root of p, or ∅ if not exist.

4: while p(0) = 0 do p(x)← p(x)
x

5: µ← largest bitsize of coefficients in p and p′.
6: L← 128 · deg(p) · (log(deg(p)) + µ)
7: Intervals ← SimpleIsolation(p′)
8: Intervals ← RefineIntervals(Intervals, L) . RefineIntervals is an auxiliary

function, the recommended method for this is Abbott’s
9: lastX ← −∞

10: lastSign ← f(lastX)
11: ints ← ∅
12: for (ai, bi) ∈ Intervals, from left to right do
13: s← sgn(f(ai))
14: if s 6= lastSign then
15: ints ← ints ∪{(lastX, bi)}
16: lastX ← bi
17: lastSign ← s

18: s← sgn(f(∞))
19: if s 6= lastSign then
20: ints ← ints ∪{(lastX,∞)}
21: return ints

polynomial, but as the number of terms of it. So this consideration has impact in the

case of fewnomials.

In fact, if p(x) is a polynomial of degree n and T terms, provided that we are able

to isolate the positive roots of p(x) from an isolation of the positive roots of p′(x), the

recursion could be as it is shown in figure 4.8. Algorithm 10 sketches this method.

4.7 Implementation and experiments

We have implemented the methods VAS, Sturm and the presented elementary ap-

proach, based on Rolle’s theorem. The methods have been all tested for the set of test-

cases commonly used in the literature [32, 13, 14, 15, 12, 89, 93] plus an additional set

of testcases composed by fewnomials of many degrees and number of terms. The classes

of polynomials we used are: Laguerre polynomials, Chebyshev polynomials (first and

second kind), Wilkinson polynomials, Mignotte polynomials, polynomials with random

coefficients of bitsize 20 and 1000, monic polynomials with random coefficients of bitsize
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20 and 1000, polynomials which are product of random roots of bitsizes 20 and 1000,

fewnomials with random coefficients, of 4, 7, 10 terms and degree 50, 100, 150, . . . , 400.

A note on the implementations used for the comparisons. The implementations

that we have used to compare the methods are not optimized; they are pretty similar

to the pseudocodes exhibited in this chapter. They have been implemented using the

rational numbers of the GMP library. Evaluations of the polynomials, with the current

implementation, are extremely expensive. But the same evaluation algorithm has been

used for all the cases, and all the same auxiliary tools have been the same for all the

methods, in order to keep the comparison as fair as possible.

Comparison. In table 4.9 we show a comparison of the performance of different ap-

proaches for the problem of isolating all the positive roots of a polynomial. For this

problem, as we it can be seen, the performance of the simple approach is only improved

(and not in every case) by the VAS, which is the fastest existent algorithm. In table 4.10

we show the same comparison for the problem of isolating the minimum positive root,

with the same conclusion.

4.8 Chapter results and discussion

We have surveyed the main theoretical results related to the problem of isolating the

positive roots of a univariate polynomial; we have introduced an adaptation of Fourier’s

theorem that requires less amount of computational effort when the input polynomial is

a fewnomial. We have also analyzed the performance of an elementary algorithm based

on Rolle’s theorem, concluding that the performance of the simple method is quite good

for most of the cases, only improved by the fastest known method, VAS.
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Pol Time(Sturm) Time(VAS) Time(Rolle)
L(5) 0.0004 0.0011 0.0012

L(10) 0.0009 0.0053 0.0149
L(15) 0.0024 0.0131 0.0838
L(20) 0.0049 0.0247 0.3205

L(100) 0.5753 1.0268 2.9087
L(200) 6.6050 6.2375 65.2902
CI (5) 0.0007 0.0004 0.0002

CI (10) 0.0009 0.0036 0.0025
CI (15) 0.0014 0.0063 0.0088
CI (20) 0.0043 0.0174 0.0374

CI (100) 0.2104 0.6839 6.5213
CI (200) 4.8121 4.3168 25.8010
CII (5) 0.0001 0.0002 0.0001

CII (10) 0.0006 0.0031 0.0021
CII (15) 0.0014 0.0056 0.0091
CII (20) 0.0037 0.0134 0.0393

CII (100) 0.4901 0.6244 1.8060
CII (200) 5.0063 4.3132 42.1905

W(5) 0.0003 0.0006 0.0012
W(10) 0.0011 0.0027 0.0159
W(15) 0.0027 0.0064 0.0895
W(20) 0.0057 0.0120 0.3332

W(100) 0.8479 0.4029 3.8649
W(200) 11.5530 2.2332 15.7397

M(5) 0.0008 0.0005 0.0004
M(10) 0.0006 0.0007 0.0007
M(15) 0.0009 0.0009 0.0011
M(20) 0.0013 0.0012 0.0016

M(100) 0.0425 0.0089 0.0086
M(200) 0.4315 0.0313 0.0288

RC20(5) 0.0004 0.0009 0.0005
RC20(5) 0.0004 0.0004 0.0009
RC20(5) 0.0002 0.0003 0.0003

RC20(10) 0.0015 0.0011 0.0049
RC20(10) 0.0013 0.0008 0.0015
RC20(10) 0.0013 0.0006 0.0044
RC20(15) 0.0050 0.0011 0.0091
RC20(15) 0.0049 0.0009 0.0026
RC20(15) 0.0050 0.0008 0.0126
RC20(20) 0.0158 0.0016 0.0088
RC20(20) 0.0158 0.0011 0.0081
RC20(20) 0.0163 0.0017 0.0642

RC20(100) interrupted 0.0107 0.0506
RC20(100) interrupted 0.0105 6.3683
RC20(100) interrupted 0.0104 26.6740
RC20(200) interrupted 0.0258 0.1318
RC20(200) interrupted 0.0364 0.4023
RC20(200) interrupted 0.0483 0.3945
RC1000(5) 0.0039 0.0013 0.0018
RC1000(5) 0.0029 0.0009 0.0018
RC1000(5) 0.0031 0.0005 0.0015

RC1000(10) 0.1058 0.0042 0.0969
RC1000(10) 0.1059 0.0021 0.0035
RC1000(10) 0.1375 0.0058 0.0095
RC1000(15) 0.8422 0.0043 0.0337
RC1000(15) 0.9804 0.0044 0.0233
RC1000(15) 0.8421 0.0041 0.0051
RC1000(20) 3.4771 0.0066 0.0730
RC1000(20) 3.4792 0.0066 0.0766
RC1000(20) 4.1078 0.0069 0.0612

RC1000(100) interrupted 0.1215 1.0416
RC1000(100) interrupted 0.2427 0.6822
RC1000(100) interrupted 0.1207 27.1066
RC1000(200) interrupted 0.9398 2.7383
RC1000(200) interrupted 4.2276 21.8314
RC1000(200) interrupted 0.9281 4.6379

MRC20(5) 0.0012 0.0004 0.0015
MRC20(5) 0.0004 0.0004 0.0012
MRC20(5) 0.0003 0.0004 0.0004

MRC20(10) 0.0012 0.0008 0.0008
MRC20(10) 0.0012 0.0009 0.0009
MRC20(10) 0.0014 0.0008 0.0046
MRC20(15) 0.0248 0.0049 0.0750
MRC20(15) 0.0059 0.0012 0.0635
MRC20(15) 0.0051 0.0011 0.0159
MRC20(20) 0.0187 0.0016 0.0978
MRC20(20) 0.0160 0.0016 0.0090
MRC20(20) 0.0178 0.0029 0.1967

MRC20(100) interrupted 0.0238 0.0728
MRC20(100) interrupted 0.0087 21.3785
MRC20(100) interrupted 0.0089 0.0657

Pol Time(Sturm) Time(VAS) Time(Rolle)
MRC20(200) interrupted 0.0787 0.7058
MRC20(200) interrupted 0.0453 0.1760
MRC20(200) interrupted 0.0200 0.1586
MRC1000(5) 0.0034 0.0006 0.0229
MRC1000(5) 0.0033 0.0007 0.0134
MRC1000(5) 0.0024 0.0002 0.0135

MRC1000(10) 15.6917 0.0024 0.7841
MRC1000(10) 0.1333 0.0010 0.0097
MRC1000(10) 0.1034 0.0010 0.2587
MRC1000(15) 1.1069 0.0012 0.0131
MRC1000(15) 0.8325 0.0013 3.8767
MRC1000(15) 0.8325 0.0013 0.0261
MRC1000(20) 4.1043 0.0034 16.1248
MRC1000(20) 3.5544 0.0009 0.0160
MRC1000(20) 3.8617 0.0022 0.0069

MRC1000(100) interrupted 0.0101 0.0258
MRC1000(100) interrupted 0.0191 0.1702
MRC1000(100) interrupted 0.0181 0.0523
MRC1000(200) interrupted 0.0524 0.3803
MRC1000(200) interrupted 0.0218 0.1793
MRC1000(200) interrupted 0.0382 0.1284

PoR20(5) 0.0012 0.0004 0.0009
PoR20(5) 0.0005 0.0017 0.0020
PoR20(5) 0.0003 0.0002 0.0003

PoR20(10) 0.0065 0.0077 0.0206
PoR20(10) 0.0040 0.0026 0.0134
PoR20(10) 0.0040 0.0014 0.0121
PoR20(15) 0.0402 0.0055 0.0661
PoR20(15) 0.0610 0.0056 0.0843
PoR20(15) 0.0673 0.0112 0.1669
PoR20(20) 0.4045 0.0113 0.4704
PoR20(20) 0.2621 0.0112 0.4429
PoR20(20) 0.3269 0.0149 0.3112

PoR20(100) interrupted 0.5563 3.0863
PoR20(100) interrupted 0.3458 1.0399
PoR20(100) interrupted 0.6532 5.9421
PoR20(200) interrupted 3.3927 23.3433
PoR20(200) interrupted 4.8405 9.5568
PoR20(200) interrupted 3.3570 23.9424
PoR1000(5) 0.0062 0.0014 0.0121
PoR1000(5) 0.0055 0.0011 0.0079
PoR1000(5) 0.0046 0.0006 0.0068

PoR1000(10) 0.9598 0.0052 0.9810
PoR1000(10) 1.0177 0.0051 0.9032
PoR1000(10) 0.7815 0.0041 0.7395
PoR1000(15) 11.6267 0.0077 7.1961
PoR1000(15) 15.1496 0.0266 10.5409
PoR1000(15) 20.5173 0.0134 9.8606
PoR1000(20) interrupted 0.0184 21.4624
PoR1000(20) interrupted 0.0468 0.5310
PoR1000(20) interrupted 0.0432 0.1456

PoR1000(100) interrupted 9.5364 51.6291
PoR1000(100) interrupted 4.3834 41.4216
PoR1000(100) interrupted 3.8163 34.0226
PoR1000(200) interrupted 35.3291 59.2604
PoR1000(200) interrupted 31.4577 76.3000
PoR1000(200) interrupted 32.0114 73.3298

Fewnomial4(50) 0.0206 0.0003 0.0009
Fewnomial7(50) 0.5791 0.0016 0.0014

Fewnomial10(50) 1.1025 0.0016 0.0137
Fewnomial4(100) 0.0036 0.0002 0.0003
Fewnomial7(100) 28.8476 0.0031 0.0057

Fewnomial10(100) interrupted 0.0002 0.0004
Fewnomial4(150) 0.0224 0.0004 0.0026
Fewnomial7(150) interrupted 0.0057 0.0404

Fewnomial10(150) interrupted 0.0058 0.0114
Fewnomial4(200) 3.8274 0.0164 0.0242
Fewnomial7(200) interrupted 0.0101 0.0488

Fewnomial10(200) interrupted 0.0109 0.1798
Fewnomial4(250) 28.4305 0.0006 0.0189
Fewnomial7(250) interrupted 0.0157 0.0061

Fewnomial10(250) interrupted 0.0328 0.2477
Fewnomial4(300) 1.1728 0.4392 0.0262
Fewnomial7(300) interrupted 0.0222 0.1030

Fewnomial10(300) interrupted 0.0242 0.3339
Fewnomial4(350) interrupted 0.0005 0.0014
Fewnomial7(350) interrupted 0.0323 0.0511

Fewnomial10(350) interrupted 0.0360 0.0548
Fewnomial4(400) 22.2213 0.0833 0.0657
Fewnomial7(400) interrupted 0.0802 0.0042

Fewnomial10(400) interrupted 0.0450 0.1971

Figure 4.9: Running times of the methods of Sturm, VAS and our elementary Rolle-based
approach, for the problem of isolating all the positive roots of the input polynomial.
Polynomials • L: Laguerre • CI and CII : Chebyshev (first and second kind) • W:
Wilkinson • M: Mignotte • RC: Random coefficients • MRC: Monic with random coeffi-
cients • PoR: Product of Roots • Fewnomiali(d): fewnomial with i terms and degree d,
coefficients chosen at random.
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Pol Time(Sturm) Time(VAS) Time(Rolle)
L(5) 0.0003 0.0002 0.0012

L(10) 0.0008 0.0009 0.0149
L(15) 0.0017 0.0021 0.0853
L(20) 0.0028 0.0028 0.3235

L(100) 0.1027 0.0466 0.2480
L(200) 0.6530 0.1934 1.9600
CI (5) 0.0007 0.0004 0.0002

CI (10) 0.0005 0.0012 0.0025
CI (15) 0.0010 0.0017 0.0089
CI (20) 0.0020 0.0040 0.0383

CI (100) 0.0353 0.0725 0.7084
CI (200) 0.4567 0.2854 1.9235
CII (5) 0.0001 0.0002 0.0001

CII (10) 0.0005 0.0013 0.0021
CII (15) 0.0010 0.0017 0.0092
CII (20) 0.0021 0.0038 0.0402

CII (100) 0.0800 0.0708 0.2688
CII (200) 0.4797 0.2819 0.9230

W(5) 0.0002 0.0002 0.0012
W(10) 0.0007 0.0004 0.0162
W(15) 0.0014 0.0007 0.0905
W(20) 0.0026 0.0009 0.3343

W(100) 0.1045 0.0048 0.0400
W(200) 0.8086 0.0113 0.1090

M(5) 0.0007 0.0005 0.0004
M(10) 0.0006 0.0007 0.0007
M(15) 0.0009 0.0008 0.0011
M(20) 0.0013 0.0011 0.0016

M(100) 0.0427 0.0073 0.0086
M(200) 0.4306 0.0246 0.0287

RC20(5) 0.0004 0.0009 0.0005
RC20(5) 0.0004 0.0004 0.0009
RC20(5) 0.0002 0.0003 0.0003

RC20(10) 0.0015 0.0011 0.0049
RC20(10) 0.0013 0.0008 0.0015
RC20(10) 0.0013 0.0006 0.0045
RC20(15) 0.0050 0.0010 0.0091
RC20(15) 0.0049 0.0008 0.0026
RC20(15) 0.0050 0.0008 0.0125
RC20(20) 0.0158 0.0015 0.0088
RC20(20) 0.0158 0.0009 0.0081
RC20(20) 0.0165 0.0017 0.0641

RC20(100) interrupted 0.0087 0.0932
RC20(100) interrupted 0.0084 6.3644
RC20(100) interrupted 0.0081 26.7029
RC20(200) interrupted 0.0193 0.2055
RC20(200) interrupted 0.0239 0.1447
RC20(200) interrupted 0.0298 0.0535
RC1000(5) 0.0038 0.0006 0.0018
RC1000(5) 0.0029 0.0005 0.0018
RC1000(5) 0.0030 0.0004 0.0015

RC1000(10) 0.1063 0.0015 0.0978
RC1000(10) 0.1068 0.0008 0.0035
RC1000(10) 0.1393 0.0007 0.0096
RC1000(15) 0.8485 0.0014 0.0342
RC1000(15) 0.9864 0.0014 0.0234
RC1000(15) 0.8483 0.0012 0.0051
RC1000(20) 3.4929 0.0015 0.0737
RC1000(20) 3.4937 0.0015 0.0775
RC1000(20) 4.1251 0.0018 0.0617

RC1000(100) interrupted 0.0082 0.0664
RC1000(100) interrupted 0.0173 0.1289
RC1000(100) interrupted 0.0083 27.1548
RC1000(200) interrupted 0.0182 0.1375
RC1000(200) interrupted 0.1280 0.6162
RC1000(200) interrupted 0.0332 0.3091

MRC20(5) 0.0012 0.0004 0.0015
MRC20(5) 0.0004 0.0004 0.0012
MRC20(5) 0.0003 0.0004 0.0004

MRC20(10) 0.0012 0.0008 0.0008
MRC20(10) 0.0012 0.0009 0.0009
MRC20(10) 0.0014 0.0009 0.0046
MRC20(15) 0.0252 0.0034 0.0760
MRC20(15) 0.0061 0.0011 0.0638
MRC20(15) 0.0052 0.0011 0.0160
MRC20(20) 0.0189 0.0016 0.0982
MRC20(20) 0.0161 0.0016 0.0091
MRC20(20) 0.0179 0.0029 0.1983

MRC20(100) interrupted 0.0228 0.0364
MRC20(100) interrupted 0.0081 21.3858
MRC20(100) interrupted 0.0089 0.0564

Pol Time(Sturm) Time(VAS) Time(Rolle)
MRC20(200) interrupted 0.0303 0.2094
MRC20(200) interrupted 0.0169 0.1178
MRC20(200) interrupted 0.0180 0.1223
MRC1000(5) 0.0033 0.0006 0.0229
MRC1000(5) 0.0033 0.0007 0.0134
MRC1000(5) 0.0024 0.0002 0.0135

MRC1000(10) 15.7168 0.0014 0.7882
MRC1000(10) 0.1334 0.0010 0.0100
MRC1000(10) 0.1047 0.0010 0.2603
MRC1000(15) 1.1132 0.0011 0.0131
MRC1000(15) 0.8359 0.0014 3.8840
MRC1000(15) 0.8321 0.0013 0.0260
MRC1000(20) 4.1064 0.0033 17.7283
MRC1000(20) 3.4553 0.0009 0.0159
MRC1000(20) 3.4575 0.0017 0.0065

MRC1000(100) interrupted 0.0093 0.0237
MRC1000(100) interrupted 0.0174 0.1190
MRC1000(100) interrupted 0.0173 0.1498
MRC1000(200) interrupted 0.0345 0.2228
MRC1000(200) interrupted 0.0188 0.0901
MRC1000(200) interrupted 0.0176 0.1072

PoR20(5) 0.0012 0.0004 0.0009
PoR20(5) 0.0004 0.0008 0.0020
PoR20(5) 0.0003 0.0002 0.0003

PoR20(10) 0.0037 0.0007 0.0209
PoR20(10) 0.0036 0.0013 0.0135
PoR20(10) 0.0029 0.0010 0.0121
PoR20(15) 0.0275 0.0010 0.0662
PoR20(15) 0.0390 0.0013 0.0845
PoR20(15) 0.0361 0.0038 0.1674
PoR20(20) 0.1585 0.0018 0.4729
PoR20(20) 0.1446 0.0027 0.4445
PoR20(20) 0.2433 0.0021 0.3137

PoR20(100) interrupted 0.0115 0.0415
PoR20(100) interrupted 0.0114 0.0724
PoR20(100) interrupted 0.0115 0.0350
PoR20(200) interrupted 0.0791 0.5890
PoR20(200) interrupted 0.0484 0.2411
PoR20(200) interrupted 0.0338 0.3822
PoR1000(5) 0.0082 0.0014 0.0121
PoR1000(5) 0.0046 0.0006 0.0079
PoR1000(5) 0.0046 0.0007 0.0068

PoR1000(10) 0.6636 0.0016 0.9810
PoR1000(10) 0.7225 0.0017 0.9039
PoR1000(10) 0.5446 0.0016 0.7374
PoR1000(15) 8.0876 0.0038 7.2101
PoR1000(15) 9.3840 0.0053 10.8276
PoR1000(15) 10.7521 0.0036 9.8444
PoR1000(20) interrupted 0.0052 21.4443
PoR1000(20) interrupted 0.0034 0.0090
PoR1000(20) interrupted 0.0034 0.0248

PoR1000(100) interrupted 0.0907 0.2807
PoR1000(100) interrupted 0.0922 0.8729
PoR1000(100) interrupted 0.0917 0.4970
PoR1000(200) interrupted 1.0650 2.4857
PoR1000(200) interrupted 0.8327 7.2031
PoR1000(200) interrupted 0.6698 6.6873

Fewnomial4(50) 0.0206 0.0003 0.0010
Fewnomial7(50) 0.5875 0.0012 0.0014

Fewnomial10(50) 1.1076 0.0012 0.0138
Fewnomial4(100) 0.0001 0.0001 0.0003
Fewnomial7(100) 28.8697 0.0018 0.0057

Fewnomial10(100) 0.0001 0.0001 0.0004
Fewnomial4(150) 0.0223 0.0004 0.0026
Fewnomial7(150) interrupted 0.0033 0.0402

Fewnomial10(150) interrupted 0.0032 0.0114
Fewnomial4(200) 3.8269 0.0107 0.0243
Fewnomial7(200) interrupted 0.0051 0.0484

Fewnomial10(200) interrupted 0.0057 0.2217
Fewnomial4(250) 28.9472 0.0005 0.0190
Fewnomial7(250) interrupted 0.0073 0.0061

Fewnomial10(250) interrupted 0.0150 0.4377
Fewnomial4(300) 1.2803 0.0154 0.0284
Fewnomial7(300) interrupted 0.0059 0.1027

Fewnomial10(300) interrupted 0.0108 0.3335
Fewnomial4(350) 0.0003 0.0004 0.0014
Fewnomial7(350) interrupted 0.0078 0.0504

Fewnomial10(350) interrupted 0.0140 0.0547
Fewnomial4(400) 22.0639 0.0361 0.0649
Fewnomial7(400) interrupted 0.0500 0.0042

Fewnomial10(400) interrupted 0.0100 0.1950

Figure 4.10: Running times of the methods of Sturm, VAS and our elementary Rolle-
based approach, for the problem of isolating the minimum positive root of the input
polynomial. Polynomials • L: Laguerre • CI and CII : Chebyshev (first and second
kind) • W: Wilkinson • M: Mignotte • RC: Random coefficients • MRC: Monic with
random coefficients • PoR: Product of Roots • Fewnomiali(d): fewnomial with i terms
and degree d, coefficients chosen at random.
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Chapter 5

One application: higher-order

Quantized State Systems

In the present chapter we present an application of the methods shown in Chapter 4, in

the context of numerical integration methods. The present case study has been developed

in collaboration with Dr. Federico Bergero from CIFASIS-CONICET, Rosario, Argentina.

Contributions in this chapter This chapter introduces the application of root isola-

tion techniques to the Quatized State Systems method of integrating systems of Ordinary

Differential Equations [22, 68]. Currently there are only QSS methods of order1 less than

or equal to 4 [64, 65, 67]. We make an observation which, combined with the introduction

of the techniques presented in Chapter 4 (with small adaptations), allows the generaliza-

tion to QSS of any order, and we have obtained experimental results showing that higher

order methods do require a considerably fewer number of iterations than current existing

approaches.

5.1 The problems

The simulation of a system allows to answer questions about it. In this chapter,

we will consider simulation of processes modeled by an Ordinary Differential Equations

(ODE) of the form

ẋ(t) = f(x(t), t) (5.1)

1See the note on page 90 on the two different meanings of the word order in the current context.
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where x(t) is the state vector with initial states values x(t = t0) = x0.

One example of such model is as follows. Imagine that we want to study a stone in

free fall, in the vacuum. Of course, we could propose a lot of different models for this,

depending mainly on the kind of questions that we want to be able to answer. Let us

consider the model in which the state of the process is described by two quantities: the

position of the stone, and its velocity. Let us call x1(t) to the first (i.e.: x1(t) is the

distance travelled by the stone at the moment t) and x2(t) to the second (i.e.: x2(t) is

the velocity of the stone at the moment t). We will use in our model the same laws that

the classical mechanics model proposes; so we have:

 d
dt
x1(t) = f1(x1(t), x2(t), t) = x2(t)

d
dt
x2(t) = f2(x1(t), x2(t), t) = 9.8

In this particular example, we have an unusual situation that makes computations

easier: one of the state variables is precisely the derivative of the other.

To integrate a system is to compute the state variables, which are the functions xi(t).

Most of the times it is too complicated to obtain analytical solutions for the state

variables, and it is necessary to obtain numerical approximations. To simulate a system

is to run a program which updates the system state following some given strategy (for

example: every some fixed period of time).

In our problem, suppose that we want to know the distance that the stone travelled

at t = 10, and assume that our initial condition was x1(0) = 0 and x2(0) = 0 (i.e.: the

stone did not travel any distance before starting, and its velocity was 0 at that moment).

Of course, this particularly simple system can be easily integrated and we will obtain

that x1(t) = x1(0) +x2(0)t+ 1
2
9.8t2, so we have that x1(10) = 490. But if we do not have

such an analytical solution, we could simulate the system up to time t = 10 and check

the value of x1 at that moment. There are different techniques to simulate a system. In

this chapter we will focus on a method named Quantized State System [29].

5.2 Quantized State Systems

The Quantized State System numerical integration methods [29] are a family of algo-

rithms to approximately solve a system of Ordinary Differential Equations (ODE) with
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the form of (5.1).

Given the ODE of Eq. (5.1), the first order Quantized State System method (QSS1)

[68] approximates it by

˙̃x(t) = f(q(t), t) (5.2)

and it considers x̃(t0) = x(t0). Just to clarify the abbreviations, let us expand them. The

ODE of Eq. (5.1) is: 

d
dt
x1(t) = f1(x1(t), x2(t), . . . , xm(t), t)

d
dt
x2(t) = f2(x1(t), x2(t), . . . , xm(t), t)

...

d
dt
xm(t) = fm(x1(t), x2(t), . . . , xm(t), t)

x1(t0), x2(t0), . . . , xm(t0) are given

The QSS1, instead of computing x1(t), x2(t), . . . , xm(t), computes another set of func-

tions, named x̃1(t), x̃2(t), . . . , x̃m(t), where x̃i(t) is an approximation of xi(t). Thus, the

abbreviation of Eq. (5.2) means:



d
dt
x̃1(t) = f1(q1(t), q2(t), . . . , qm(t), t)

d
dt
x̃2(t) = f2(q1(t), q2(t), . . . , qm(t), t)

...

d
dt
x̃m(t) = fm(q1(t), q2(t), . . . , qm(t), t)

x̃1(t0) = x1(t0)

x̃2(t0) = x2(t0)
...

x̃m(t0) = xm(t0)

Here, q is the quantized state vector. Its entries are component-wise related with those

of the state vector x̃ by the following hysteretic quantization function:

qj(t) =

 x̃j(t), if |x̃j(t)− qj(t−)| ≥ ∆Qj

qj(t
−), otherwise

(5.3)

where ∆Qj is called quantum and qj(t
−) denotes the left-sided limit of qj at time t.

Equation (5.3) says that the quantized state variable qj(t) only changes when its
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difference with the state variable x̃j(t) becomes greater than or equal to the quantum

∆Qj. When this condition is reached, the quantized state variable is reset to the value

of its associated state variable, i.e., qj(t) = x̃j(t).

Since the quantized state trajectories qj(t) are piecewise constant, the state derivatives

˙̃xj(t) also follow piecewise constant trajectories and, consequently, the states x̃j(t) follow

piecewise linear trajectories.

Let us explain in a more concise way. The QSS1 method, for the problem of com-

puting the functions x1(t), x2(t), . . . , xm(t) of the problem (5.1), computes the functions

x̃1(t), x̃2(t), . . . , x̃m(t) of problem (5.2). The initial conditions of both problems are equal.

QSS1 proceeds as follows: we define a threshold for each component of x̃, and we call

it ∆Q = (∆Q1,∆Q2, . . . ,∆Qm). The values for x̃1(t0), x̃2(t0), . . . , x̃m(t0) are the initial

condition. Initially, QSS starts are t = t0. QSS advances in time through discrete steps;

not necessary equal in width. Let us see how QSS proceeds to advance the time when it

is at t = tw. Assume for now the existence of a black box which computes the next time

t, with t > tw, for which we know that it must happen that |x̃j(t) − qj(t−)| ≥ ∆Qj, for

some j. QSS will set the new current time tw+1 to be t. At this point t, QSS updates the

state of the system. It updates the value of x̃j, by considering that its derivative have

remained constant (and equal to qj) since the last time it was updated. After having

updated x̃j, it needs to update the values of all the ˙̃x1(x), ˙̃x1(x), . . . , ˙̃xm(x), since they

depend also on the variable x̃j, which has been just updated.

Notice that the way in which QSS proceeds does not quantizate the time, but the state

variables. This is the main difference between QSS and other approaches, which makes

QSS more suitable for a variety of situations.

The black box mentioned in the previous paragraph computes the first time t > tw for

which some of the conditions |x̃j(t) − qj(t−)| ≥ ∆Qj holds. Given that x̃j(t) is a linear

function and qj(t
−) is a constant, it is very simple to compute, for each j, the time tj at

which we know that the condition |x̃j(t)− qj(t−)| ≥ ∆Qj starts to hold. We can take the

minimum of these times and that could be a way of implementing such a black box for

QSS1.
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(a) Example of one trajectory of one state variable x̃j , of the system used by QSS1 to approx-
imate the input problem. Note that the trajectory is piecewise-linear. In solid black line: the
trajectory of the state variable x̃j . In dotted lines: the trajectory of the quantized state variable
qj .

(b) Example of one trajectory of one state variable x̃j , of the system used by QSS2 to approx-
imate the input problem. Note that the trajectory is piecewise-quadratic. In solid black line:
the trajectory of the state variable x̃j . In dotted lines: the trajectory of the quantized state
variable qj .
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5.2.1 QSS2, QSS3, QSS4

The differences between QSS1 and higher-degrees methods QSS2, QSS3 and QSS4 is

that the quantized variables are not piecewise-constant, but piecewise-{linear, quadratic,

cubic} polynomials. We can imagine in the following way: in QSS1, the derivatives

of the state variables, in the approximated system, are piecewise-constants. Thus, the

state variables in that system are approximated through piecewise-linear trajectories. In

QSS2, the derivatives of the state variables are piecewise-linear and consequently the

system that we want to integrate is approximated through a piecewise-quadratic system.

Similarly, in QSS3 and QSS4 the derivatives of state variables are piecewise-quadratic and

piecewise-cubic, respectively; and the systems are approximated with piecewise-cubic and

piecewise-quartic systems, respectively.

The idea behind all the four methods is the same: it changes the degree of the pieces

used in the approximation of the system being integrated. The advantage of increasing the

degree of such functions is that the number of pieces needed decreases, since the precision

of the approximation increases and consequently, the time steps taken are larger.

One observation concerning all the four methods We might want to compute

the value of some state variable x̃j at some specific time t. For example: in our previous

example of the stone in free fall, we might want to know the distance travelled by the

stone after π units of time. In this cases, as soon as our QSS method arrives into a time

greater than or equal to t, we will need to adjust the required value to the time t, by

considering the last value of it and the value of its derivative since its last update.

On two meanings of the word order In the present context, when speaking about

a method, we could say a system of order n, or a method of order n. The two concepts

are different things. The order of a QSS method is the degree of the polynomials which

are the pieces of the approximated system. For example, in QSS1, the state variables

of the approximated system are piecewise-linear. Thus, the degrees of these polynomials

are 1 and the degree of the method is 1. Similarly, the degrees of QSS2, QSS3 and QSS4

methods are 2, 3 and 4, respectively. The order of a system like (5.1) is the number of

state variables. In our example of the stone in free fall, we had two state variables; so it

was of order two. The system (5.1) has order m, since it has m state variables (as can be
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seen in the expansion of it, in page 87). In this chapter we present a way to generalize the

QSS method and allow it to have order greater than 4. Any one of the QSS versions, even

QSS1, can be applied to solve, for example, systems of order 1000. The main advantage

of higher degrees approaches is, as we will mention in next sections, the gain in precision

and consequently a reduction in the number of required simulation steps.

Higher orders

The limitation that prevented the generalization of QSS to any order comes from

the mentioned black box of the previous explanation. For systems whose computed ap-

proximations are piecewise-linear, we need to find the smallest roots of polynomials of

degree 1, and that is an easy task. Similarly, for systems whose computed approximations

are piecewise-{degree d}, we need to find the smallest roots of polynomials of degree d.

The current implementations of these QSS methods relies on the fact that polynomials

of degrees less than 5 have analytic expressions for its roots.

Federico Bergero pointed out that in fact the black box is not using the algebraic

form of the roots of these polynomials, they just need a numerical (as tight as possible,

lower bound) for the value of the minimum positive root of them. After this observation,

we can introduce adaptations of the methods exposed in Chapter 4, for computing such

values. These adaptations allow the introduction of QSS methods of fifth and higher

order, for which we were not able to find in any reference in the literature.

5.3 Implementation of higher order QSS methods

As we mentioned, the observation that leads to the work presented in this chapter

is the following fact: current QSS implementations of orders 1, 2, 3 and 4 rely on the

existence of a way to compute the minimum positive root of a polynomial whose degree

is equal to the order of the method. But they do not use at any moment the algebraic

expressions of these roots. In fact, they only make use of its approximated numerical

value. This observation made by Federico Bergero allows us to introduce methods of

root isolation and, in this way, be able to run simulations of systems approximated with

polynomial of order greater than 4.
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Algorithm 11 VAS adapted for isolating the minimum positive root of p

1: procedure VASIsolateMinimum(p,M) . p is a squarefree polynomial.
2: sc ← number of sign changes in p(x)
3: if sc = 0 then
4: return ∅
5: if sc = 1 then
6: return {(min(M(0),M(∞)),max(M(0),M(∞)))}
7: α← lower bound on the positive roots of p
8: if α > 16 then
9: p(x)← p(αx)

10: M(x)←M(αx)
11: α← 1
12: if α ≥ 1 then
13: p(x)← p(x+ α)
14: M(x)←M(x+ α)

15: p01(x)← (x+ 1)deg pp( 1
x+1

), M01(x)←M( 1
x+1

)
16: p1∞(x)← p(x+ 1), M1∞(x)←M(x+ 1)
17: if M01((0,+∞)) is to the left of M1∞((0,+∞)) then
18: if VASIsolateMinimum(p01,M01) 6= ∅ then
19: return VASIsolateMinimum(p01,M01)

20: else
21: if VASIsolateMinimum(p1∞,M1∞) 6= ∅ then
22: return VASIsolateMinimum(p1∞,M1∞)

23: if p(1) = 0 then
24: return [M(1),M(1)]

25: if M01((0,+∞)) is to the left of M1∞((0,+∞)) then
26: if VASIsolateMinimum(p1∞,M1∞) 6= ∅ then
27: return VASIsolateMinimum(p1∞,M1∞)

28: else
29: if VASIsolateMinimum(p01,M01) 6= ∅ then
30: return VASIsolateMinimum(p01,M01)

31: return ∅
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The algorithms showed in Chapter 4 for root isolation can be adapted to isolate just

the minimum positive root of the input polynomial, instead of all of them. Algorithm 11

shows the adaptation of the VAS method.

5.3.1 Implementation in PowerDEVS

PowerDEVS [22] is general purpose Discrete Event System simulation tool that imple-

ments all the QSS methods. Models are described graphically by dragging and dropping

and connecting blocks. The behavior of each block is described as a C++ class. The

QSS methods are implemented as an Integrator block as show in Figure 5.2. This block

runs the QSS algorithm previously described and uses an external function

double minposroot(double coeff[], int order);

to find the minimum positive root of a polynomial. This function returns the analytical

value for the first positive root (if any) thus it only works with polynomials up to fourth

order.

We have included in this block the possibility to use the numerical root finding algo-

rithms developed in this Thesis by including three extra functions:

double minposroot_vas(double coeff[], int order);

double minposroot_sturm(double coeff[], int order);

double minposroot_rolle(double coeff[], int order);

which implement the three different root bounding methods.

Also the static PowerDEVS blocks (like the Adder in Figure 5.2) were adapted to

support higher order approximation.

The changes can be viewed online on the PowerDEVS website [2].

5.4 Examples

In this section we will test the prototype implementation analyzing the quality and

performance of the proposed methods.
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Figure 5.2: PowerDEVS model of Example I

Example I: A first order system

The first system we will study is a first order differential equation given by:

ẋ(t) = 100− x(t)

1000
(5.4)

This simple problem has an analytical solution, i.e. an exponential like the one shown

in Figure 5.3.

Example II: An oscillatory system

On the second example we will focus on a second-order oscillatory system given by

the following ODE equations:

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)

with initial conditions x1(0) = 0 and x2(0) = 1.

The analytical solution of these equations (shown in Fig 5.4) are a pair of sine and

cosine functions. This kind of oscillatory system requires very high numerical precision

since all numerical integration methods tend to provide a damped solution instead of a
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Figure 5.3: State Trajectories for Example I

purely harmonic one. Thus we will study the quality of the solution obtained with each

method and the computational cost associated with it for a given tolerance of 1× 10−10.

Figure 5.4: State Trajectories for Example II
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Table 5.1 shows the number of steps and maximum error (compared to the analytical

solution) for QSS4 both analytical and numerical and for QSS5 up to QSS8 using the

numerical root finding algorithm presented in this Thesis. There we see that number of

steps for a given tolerance decreases for higher order method. Also the solution given by

the higher order QSS methods is more accurate.

Table 5.1: Simulation steps and error for Example II.

Steps Max. Error
QSS4 Analytical 7104 2.4× 10−6

QSS4 Numerical 7104 2.4× 10−6

QSS5 1996 3.0× 10−7

QSS6 848 5.6× 10−8

QSS7 462 1.0× 10−8

QSS8 279 2.90× 10−9

5.4.1 Performance Analysis

We will now compare the performance of both root finding approaches, the analytical

one and the numerical one. This can only be done for fourth order (or lower) QSS method.

As shown before, using higher-order methods will require less simulation steps, thus

fewer calls to the root-finding functions.

Therefore we expect that, at some point, the extra cost in the numerical root finding

function will be compensated by incurring in fewer calls to it, leading a faster simulation.

Table 5.2 shows the timing consumed by the different root finding algorithms for QSS

of different orders, namely, the analytical one, and the three numerical ones, VAS, Sturm

and Rolle for a given tolerance of 1× 10−10.

We see that from the three numerical algorithms VAS is the fastest one. Also we

see that using VAS with higher-order methods (sixth and higher) we get a comparable

performance to that of QSS3 and QSS4 since the later needs 1200 times more calls to

the root finding functions. These facts again show the feasibility of using numerical root

finding algorithms to implement higher-order QSS methods, enabling further research in

this topic, which is significative in the QSS area.
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Table 5.2: CPU time and number of calls for Example I.

CPU Time (ms) Calls
QSS3 Analytical 802 307246
QSS4 Analytical 58.2 17566

QSS4 Sturm 6450 17566
QSS4 Rolle 11300 17566
QSS4 VAS 5970 17566
QSS5 VAS 1430 3046
QSS6 VAS 583 896
QSS7 VAS 316 378
QSS8 VAS 225 248
QSS9 VAS 157 256

5.5 Chapter conclusions and discussion

We have presented a way to generalize a technique of numerical integration QSS to

orders equal to or greater than 5. We have experimentally proved that:

• the number of simulation steps required by such methods is lower than the number

required by lower degrees approximations.

• the precision of numerical root finding algorithms is comparable with the analytic

one.

• while the computational cost of Sturm, Rolle and VAS is higher than the analytic

one, their cost on higher-order QSS methods is compensated by requiring fewer

simulation steps than low-order methods.
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Conclusions and Future Work

In this work we have surveyed most of the main results of a central problem in sym-

bolic computation, which is the ancient problem of computing the roots of a univariate

polynomial. Although classic, this problem is still subject of much research, due to its

wide spectrum of applications.

Ancient approaches are still used, and many of them are far from being deprecated.

Budan-Fourier’s, Sturm’s and Vincent’s theorem were formulated almost two centuries

ago, and all of them are the main ideas behind state-of-the-art approaches in the area.

The problem has been evolving for centuries and, nowadays, it has many subprob-

lems; all of them with active research in course. In this thesis we have focused on the

subproblems known as root bounding and root isolation.

In Chapter 3 we presented a framework which allows understanding the current meth-

ods to compute an upper bound for the positive roots of a given polynomial as instances

of it. Then we introduced an iterative technique to improve the bounds obtained through

the application of any of those methods. This technique showed to produce tighter bounds

than existing methods, without introducing significant extra computational effort. This

result impacts on the performance of the VAS algorithm, whose performance depends

strongly on the quality of the bounds it computes on every execution of its main loop.

In Chapter 4 we surveyed the existent root isolation algorithms, and underlying the-

orems. We proposed an adaptation of Fourier’s theorem, which requires much less com-

putational effort in the case of fewnomials, and an elementary method which shows quite

good performance, only enhaced by the VAS method.

Along with these two results, we also exposed two ideas that we find promising,

although he have not been able to obtain concrete results from them. One is related to

the idea of Sturm, and the other is related to Fourier’s theorem.

Chapter 5 shows an application of the presented methods into the area of simulation
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of physical systems. The results presented in this chapter showed that the approaches of

Chapter 4 permitted to push forward the order of the integration solvers of the family

QSS. This fact lead to the inclusion of the methods of Chapter 4 into the software

PowerDEVS [22, 2].

Future work

The implementations of the algorithms presented throughout this work were not op-

timized. Most of them have been implemented in order to work with rationals of arbi-

trary precision; this is good from the point of view of the precision, but uses to be very

slow. Thus the adaptation of the presented algorithms to work with usual floating point

numbers, producing certified results (for instance: we must be able to ensure that the

approximated result is always lower than or equal to the exact result) is one of the paths

to be explored in future.

Moreover, it would be of great interest to study the bit-complexity [99] of the intro-

duced algorithms. This problem was not considered in this thesis, for the complexity

analysis is a complementary point of view of the algorithms. The bit-complexity model

considers, along with the usual complexity parameters as the input and output, the size

in bits of the operands at each step of the computation. The cost of each operation

becomes thus a function of the sizes in bits of their operands. This model of computa-

tion contrasts with the usual Real-RAM model, on which the cost of all operations is

unitary. The bit-complexity model approximates better the practical running-time of the

algorithms, despite usually incurring in overestimations.

For the application shown in Chapter 5, there are many paths to explore. The appli-

cation opened the door for a new family of algorithms, and there are many situations in

the field of simulations that present particular conditions which could be exploited in the

algorithms we are considering. For example, it happens quite often that simulations need

to compute the minimum positive roots of two polynomials p and q, which only differ

by a constant. We did not explore this particular situation; when considered, it could

lead to significant improvements in the performance of the simulators. Another of the

paths to explore in future is to understand more deeply the behavior of simulators and to

detect particular conditions that could be exploited in order to accelerate the underlying

method which we are using as an auxiliary tool.
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Appendix A

We sketch in this Appendix the proof of Vincent’s theorem given by Alesina and

Galuzzi [17, 18]. Let us recall the statement of the theorem of Vincent given in Chapter 2.

Theorem A.1 (Vincent). Let f(x) be a polynomial of degree n with rational coefficients

and without multiple roots. The sequence of successive variable changes

x← a1 +
1

x
, x← a2 +

1

x
, x← a3 +

1

x
, . . . x← ah +

1

x

can be seen as one only change of the form

x← a1 +
1

a2 +
1

a3 +
. . . +

1

ah +
1

x

which is,

x← Ax+B

Cx+D

for some nonnegative integers A,B,C,D. For h sufficiently large, the polynomial

(Cx+D)nf

(
Ax+B

Cx+D

)

has either 0 or 1 sign variations in its list of coefficients. Moreover, in the first case f

has no roots in the interval whose endpoints are B
D

and A
C

, while in the second case it has

exactly 1 root in it.

Alesina and Galuzzi, following an observation of Vincent, who on his part was follow-

ing an observation of Lagrange, pointed that we can set a← B
D

, b← A
C

and making the
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30◦

30◦

x0

Figure 5.5: The shaded region (i.e.: S√3) correspond to the points (α, β) such that
β2 ≤ 3α2. Lemma A.1 states that if all the roots of a polynomial p(x) lie in the shaded
region, except x0 (which is real and positive), then p(x) has exactly one sign variation in
its list of coefficients.

substitution x← D
C
x, we are reduced to studying the variations of the polynomial

φ(x) = (1 + x)nf

(
a+ bx

1 + x

)

which are the same than in the previous, more complicated, statement of the theorem.

The proof of the Vincent’s theorem that we will present will make use of the following

Lemma [17, page 247].

Lemma A.1. If a real polynomial has one positive simple root x0, and all other (possibly

multiple) roots lie in the sector:

S√3 =
{
x = −α + iβ | α > 0 and |β| ≤

√
3|α|

}
(as shown in figure 5.5) then the sequence of its coefficients has exactly one sign variation.

Proof. Along this proof, we will sometimes call number of variations or number of sign

changes of some polynomial to the number of sign changes (or sign variations) in the list

of its coefficients. Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 (A.1)

be a polynomial with one positive root x0 and all the other roots in S√3. We will assume

an > 0, and similar reasoning to the ones exposed in here apply for an < 0.

In the region S√3 there are two kind of roots: the real roots, with the form x = −α,

being α a real positive number; and the complex roots, which come in pairs of the form
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x = −α± iβ, being α > 0 and 0 < β ≤
√

3α. Claim 1: If α > 0 and the polynomial f(x)

has exactly one sign variation, then the polynomial (x− (−α))× f(x) = (x + α)× f(x)

has exactly one sign variation. Claim 2: If α > 0 and 0 < β ≤
√

3α and the polynomial

f(x) has exactly one sign variation, then the polynomial (x − (−α + iβ)) × (x − (−α −

iβ))× f(x) = [x2 + 2αx+ (α2 + β2)]f(x) has exactly one sign variation.

Before proceeding with the proofs of the claims, let us see how the Lemma follows

almost trivially from them. We can express f(x) as the product of its roots, in the form:

f(x) = an × (x− x0)×
−α0,−α1,...,−αk real roots︷ ︸︸ ︷

(x− (−α0))× (x− (−α1))× · · · × (x− (−αk))

×(x− (−αk+1 − iβk+1))× (x− (−αk+1 + iβk+1))× . . .︸ ︷︷ ︸
(−αj−iβj ,−αj+iβj) pairs of complex roots︷ ︸︸ ︷

×(x− (−αw − iβw))× (x− (−αw + iβw))

.

We can start with the polynomial an(x − x0) = anx − anx0, which has exactly one sign

variation, and apply iteratively the exposed claims until obtain the stated Lemma, as

follows:

an(x− x0) has 1 sign change

Thus, an(x− x0)× (x− (−α0)) has 1 sign change

Thus, an(x− x0)× (x− (−α0))× (x− (−α1)) has 1 sign change
...

Thus, f(x) = an × (x− x0)× (x− (−α0))× (x− (−α1))× · · · × (x− (−αk))

×(x− (−αk+1 − iβk+1))× (x− (−αk+1 + iβk+1))

× · · · × (x− (−αw − iβw))× (x− (−αw + iβw)) has 1 sign change

Thus, in this way the Lemma follows from the stated claims. Let us prove them, in order

to complete the proof of the Lemma.

Proof of Claim 1. The degree of (x + α) × f(x) is n + 1. The fact that f(x) has

exactly one sign variation, together with the assumption an > 0, implies that exist i, j

such that i > j and • an, an−1, . . . ai+1 ≥ 0 • ai > 0 • ai−1, ai−2, . . . , aj+1 = 0 • aj < 0

• aj−1, aj−2, . . . , a0 ≤ 0 , as shown in the following figure (braces annotations refers to
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the signs of the coefficients involved):

f(x) =

≥0︷ ︸︸ ︷
anx

n + an−1x
n−1 + · · ·+ ai+1x

i+1

+aix
i︸ ︷︷ ︸

>0

+ai−1x
i−1 + · · ·+ aj+1x

j+1︸ ︷︷ ︸
=0

+ajx
j︸ ︷︷ ︸

<0

+aj−1x
j−1 + · · ·+ a0︸ ︷︷ ︸
≤0

Let

(x+ α)× f(x) =
n+1∑
k=0

dkx
k.

It is easy to see that dk = ak−1 + αak, defining a−1 = an+1 = 0. Let us analyze the sign

of the dk’s. If i = j + 1, the only unpredictable sign is the sign of dj+1, and whatever it

is, the polynomial f(x)(x+ α) has one sign variation. If i ≥ j + 2, the signs of all dk’s is

determined and f(x)(x+ α) has exactly one sign variation.

Proof of Claim 2. The degree of [x2 + 2αx + (α2 + β2)] × f(x) is n + 2. Consider i

and j as in the previous claim. Let

[x2 + 2αx+ (α2 + β2)]× f(x) =
n+2∑
k=0

dkx
k.

It is easy to see that dk = ak−2 + 2αak−1 + (α2 + β2)ak, defining an+2 = an+1 = a−1 =

a−2 = 0. Let us analyze the sign of the dk’s. The dk’s with k ≤ j are ≤ 0. The sign of

dk’s, with n + 2 ≥ k ≥ i + 1 are ≥ 0. Thus, the only remaining dk’s for which we don’t

know the sign are di+1, di, di−1, . . . , dj+1. In the case in which i ≥ j + 3 (i.e.: at least

two zero terms between ai and aj at the expression of f(x)), it is very easy to see that

the sequence of dk’s presents exactly one sign variation. The same occurs in the case in

which i = j + 2 (i.e.: one zero term between ai and aj), where the only element of the

dk’s for which we cannot infer the sign is di; and both if it is positive or if it is negative,

the sequence of dk’s presents exactly one sign variation.

So the only non-trivial case is when i = j + 1. In this case, the two dk’s for which we

cannot easily know the sign are di+1 and di We will show that if di+1 < 0, then di ≤ 0
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and, consequently, we will have that the sequence of dk’s have exactly one variation.

di+1 =

≥0︷ ︸︸ ︷
(α2 + β2)ai+1 +

>0︷︸︸︷
2αai +

=aj<0︷︸︸︷
ai−1

di = (α2 + β2)ai︸ ︷︷ ︸
>0

+ 2αai−1︸ ︷︷ ︸
<0

+ ai−2︸︷︷︸
≤0

If di+1 < 0, then 2αai + ai−1 < 0. Due to the fact that β2 ≤ 3α2 and to the fact that

ai−2 ≤ 0, we have:

di ≤ (α2 + 3α2)ai + 2αai−1 = 2α(2αai + ai−1) ≤ 0

The transformation T (z) = z−a
b−z

We have already used the transformation T (x) = x−a
b−x to map the interval (a, b) into

the interval (0,+∞). Let us briefly analyze what happens when we consider the trans-

formation T in all the complex plane. Let T : C→ C be defined as T (z) =
z − a
b− z

where

a, b ∈ R+. Let us highlight two facts that follows trivially.

Fact 1. T takes the circle C that have the segment ab as diameter into the imaginary

axis, its exterior points into the left half-plane Re(z) < 0, and its interior points into the

right half-plane Re(z) > 0 (see figure 5.6).

Fact 2. Let c+ be the point in the perpendicular bisector of ab, such that b̂ac+ = 30◦,

and let c− be the point in the same perpendicular bisector, such that ĉ−ab = 30◦. Let

C+ be the circle centered at c+, which passes through the points a and b, and let C−

the the circle centered at c−, which passes through a and b, as shown in figure 5.7. The

transformation T takes the exterior points of C+ into the half-plane to the left of the
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a b

a b

a b

a b

a b

a b

Figure 5.6: The transformation T takes the circle C, which has the segment ab as diam-
eter, into the imaginary axis (middle column); its exterior points into the left half-plane
(left column); and its interior points into the right half-plane (right column)

30◦

30◦

30◦30◦

a b

c+

c−

C

C+

C−

Figure 5.7: The transformation T takes the red circle into the red line, its exterior points
into to left side of the red line and its interior points to the right of it. The same occurs
with the black and blue circles.
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Figure 5.8: T takes the exterior points of C+∪C− into S√3 (left column), (C+∪C−)−C
into {z|Re(z) < 0} − S√3 (middle column), and C into {z|Re(z) > 0} (right column).

line L that passes through the origin and forms an angle of 30◦ with the imaginary axis,

the points on C+ into L, and the points on the interior of C+ into the half-plane to the

right of L. The same happens for C− and the line which forms an angle of −30◦ with the

imaginary axis, as shown in the Figure 5.7. It easily follows that the sector S√3 defined

in A.1 is the image of the exterior points of C+ ∪ C− (see Figure 5.8).

Now that we have pointed out these two simple facts about the transformation T (z) =
z − a
b− z

, let us see one more fact that follows easily from them. If it is given a polynomial

f(z), without multiple roots, let us pick the points a and b of the previous explanation

such that the distance between them is lower than
√

3 × ∆
2

, where ∆ is the minimum

distance between pairs of different roots of f . By doing this, we are sure that the circle

C (id est: the circle whose diameter is ab) (see Figure 5.7) cannot have two roots; so

consequently it can have either one real root or no roots at all (since in the case that it

has one complex root, it must has its conjugated; ant the distance between the two of

them would be lower than the minimum distance between roots, so that is impossible).

Moreover: if the circle C contains a real roots, there are no roots at C+ and at C−,
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since we picked the distance between a and b to be smaller than
√

3 × ∆
2

. In fact: the

maximum possible distance between a point in the circle C+ and a point in the segment

ab is 2× |b−a|
2×cos 30◦

= 2√
3
× |b− a| < 2√

3
×
√

3× ∆
2

= ∆. Thus, we have that the following

two cases are possible:

• the segment ab contains a root of f and consequently there are no roots of f inside

C+ ∪ C−.

• there are no roots of f inside the circle C

In the first case, we have that the transformation T applied takes all the roots of f

(except the one contained in ab into the region S√3. In the second case, we have that T

takes all the roots the left half-plane; in the first case, due to Lemma A.1, the resulting

transformed polynomial have exactly 1 sign variation. In the second case it follows

trivially that it has 0 sign variations. The inverse of T (z) =
z − a
b− z

is S(z) =
a+ bz

1 + z
.

Thus, the polynomial (1 + z)nf(
a+ bz

1 + z
) have 0 sign variations in the case in which ab

contains no root, and 1 sign variations in the case in which it contains 1 root.

From this observations, we can conclude Vincent’s theorem. Following La-

grange’s observation, Vincent’s theorem can be stated in the following equivalent way:

Theorem A.2 (Vincent). Let f(x) be a real polynomial of degree n without multiple

roots. It exist δ ∈ R+ so that ∀a, b ∈ R with |b− a| < δ, the polynomial

φ(z) = (1 + z)nf

(
a+ bz

1 + z

)

has exactly 0 or 1 sign variations. In the first case, f has 0 roots in the interval whose

endpoints are a and b. In the second case, it has 1 root in it.

And this is, in fact, the result that we have just proved.
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[23] Biagioli, E., Peñaranda, L., and Oliveira, R. I. New method

for bounding the roots of a univariate polynomial. In 28 Conference on

Graphics, Patterns and Images (SIBGRAPI) (2015), pp. 35–42. Available at

http://urlib.net/8JMKD3MGPBW34M/3JS24KL.
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divers présentés par des savants étrangers VI (1835), 273–318.
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