Medindo o Risco Através da Perda Máxima: *Maximum Drawdown at Risk*

Autor: Rafael Lavrado

Orientador: Prof. Dra. Beatriz Vaz de Melo Mendes

Rio de Janeiro Maio de 2015

Para os meus pais.

Agradecimentos

Agradeço a todos aqueles que me ajudaram e contribuíram para o desenvolvimento deste trabalho. Faço menção especial a minha orientadora Beatriz Vaz por todo tempo e dedicação na orientação deste projeto. Agradeço ao Professor Jorge Zubelli pela coordenação do excelente mestrado profissional e também aos professores, monitores, funcionários e colegas de turma do IMPA por toda contribuição durante esta longa jornada. Agradeço também aos meus pais e minha namorada por toda ajuda e compreensão durante o mestrado. E por fim, agradeço aos sócios fundadores da STK Capital pelo apoio e incentivo para cursar o mestrado no IMPA.

Resumo

O principal objetivo da maioria dos investidores é obter lucro. Entretanto, frequentemente há muita incerteza em relação ao retorno que será alcançado. Surge, então, o segundo aspecto que desperta a preocupação do investidor: o risco. Para avaliar quantitativamente o real nível de risco que está em jogo são necessárias medidas de risco. O tema deste trabalho é apresentar e discutir o Maximum Drawdown at Risk (MDaR), uma medida de risco que indica, dada uma probabilidade, a perda máxima possível que o investimento pode sofrer em determinado período de tempo. Apesar de suas inúmeras vantagens, o Maximum Drawdown at Risk ainda não é amplamente conhecido e aplicado e, portanto, não há na literatura informações claras de como se deve estimar e avaliar essa medida. Neste trabalho propomos uma metodologia completa para realizar a estimativa dessa medida de risco. Após implementar e analisar diversos modelos para simulações de trajetórias dos retornos, foi escolhido o GJR-GARCH(1,1). O cálculo da medida de risco é então feito através do método de simulação de Monte Carlo. Por fim, para validar o modelo proposto, foram escolhidos os principais índices de ações globais e aplicado o procedimento de backtest, onde são realizadas estimativas para diversas datas e, em seguida, é avaliado se o percentual de violações condiz com a probabilidade indicada pelo modelo.

Palavras chave: Maximum Drawdown at Risk, Medida de Risco, Modelos de Risco, Simulações.

Sumário

Ín	dice	${f v}$	ii
In	trod	ção	1
1	Def	nições Básicas	3
	1.1	Risco	3
	1.2	Medidas de Risco	4
		1.2.1 Value at Risk	4
		1.2.2 Expected Shortfall	4
	1.3	Maximum Drawdown at Risk	5
		1.3.1 Definição de <i>Drawdown</i>	5
		1.3.2 Definição de Maximum Drawdown at Risk	8
2	Met	odologia 1	1
	2.1	Modelos de Risco	1
		2.1.1 Modelos Paramétricos	1
		2.1.2 Simulação Histórica	2
		2.1.3 Simulação de Monte Carlo	3
	2.2	Modelos para o Maximum Drawdown at Risk	3
		2.2.1 MDaR por um modelo paramétrico	3
		2.2.2 MDaR por simulação histórica	4
		2.2.3 MDaR por Simulação de Monte Carlo	4
3	Mo	elagem para a simulação 1	7
	3.1	Retornos Financeiros	7
		3.1.1 Fatos Estilizados	8
	3.2	Movimento Browniano Geométrico	1
	3.3	Modelagem Condicional de Retornos Financeiros	3
		3.3.1 Modelos para Média Condicional	3
		3.3.2 Modelos para a variância condicional	6
		3.3.3 Estimação dos Parâmetros	0

viii	$SUM ilde{A}RIO$

4	Imp	ementação e Resultados 33	
	4.1	Implementação 34	
	4.2	Backtest	
		4.2.1 Teste de Kupiec	
		4.2.2 Resultados	
	4.3	Estratégia de Investimento	
	4.4	Observações Sobre os Resultados	
5	Cor	dusão 43	
	5.1	<u>Trabalhos Futuros</u>	
		5.1.1 Modelos de Mudança de Regime	
A	Cóc	gos 51	
Re	eferê	cias Bibliográficas 60	

Introdução

Grandes perdas é uma das maiores preocupações de fundos de investimento e de gestores de recursos pois, além de destruir a rentabilidade acumulada, podem gerar resgates em massa e prejudicar a continuidade do negócio. A célebre frase de Warren Buffett, um renomado investidor, retrata bem essa preocupação.

Regra número 1: Nunca perca dinheiro. Regra número 2: Não esqueça a regra número 1

Crises financeiras, como a de 2008, mostraram a severidade que essas perdas podem alcançar. Muitos fundos de investimentos de ações sofreram quedas maiores do que 50%, e os que sobrevieram passaram os anos seguintes tentando recuperar esse prejuízo. O exemplo clássico nesse aspecto é que se um ativo cai 50%, precisa subir 100% para recuperar o seu valor inicial.

Portanto, os investidores estão cada vez mais atentos e preocupados em suavizar grandes variações negativas em seus portfolios.

É nesse contexto que entra o controle de risco na gestão de investimentos. Sua principal função é mensurar o real risco que o portfólio está correndo e evitar perdas não esperadas. Para isso, existem diversas medidas de risco, sendo a mais conhecida e utilizada pelo mercado o $Value~at~Risk~(VaR_{\alpha})$.

O tema deste projeto é discutir o $Maximum\ Drawdown\ at\ Risk\ (MDaR_{\alpha})$, outra medida de risco que vem ganhando espaço na gestão de risco de investimentos, mas ainda não é muito difundida.

O máximo drawdown (MDD) é definido como a maior perda percentual do último máximo local para o próximo mínimo local em um determinado período de tempo. Em outras palavras, é a perda máxima que um investimento pode sofrer em um certo período de tempo. Portanto, para o investidor é uma medida menos abstrata que a volatilidade e o próprio VaR_{α} .

Por exemplo, fica mais tangível e concreta a indicação de que determinado investimento tem certa probabilidade de sofrer um máximo drawdown de 20% em um determinado período de tempo, do que informar que a volatilidade é de 12% ou, até mesmo, que o VaR_{α} diário é igual a 2%. Um gestor pode suportar uma perda diária de 2%, mas ao saber que seu portfolio atual, dada uma probabilidade, pode sofrer uma perda máxima acumulada de 20% em até um mês, isso pode querer rever suas posições.

2 Introduction

Uma das motivações deste trabalho é o fato de que apesar das vantagens apresentadas, essa medida não é ainda muito aplicada e conhecida. Uma simples busca mostrará a pouca quantidade de trabalhos e artigos sobre o tema. Desta forma, o objetivo é propor uma metodologia simples e de fácil aplicação para estimar o $MDaR_{\alpha}$, e em seguida, validar a eficiência das estimativas.

Estrutura

O trabalho está estruturado da seguinte forma:

- O Capítulo 1 apresenta o conceito de risco e medidas de risco. E também definimos formalmente o Maximum Drawdown e a medida de risco estudada nesse projeto o Maximum Drawdown at Risk.
- O Capítulo 2 descreve as diferentes metodologias para estimar as medidas de risco, e definimos a metodologia que será utilizada neste trabalho, o método de Monte Carlo.
- No Capítulo 3 fazemos uma revisão teórica de todo os conceitos que serão aplicados na estimação do MDaR_α. Estudamos as principais características dos retornos financeiros, e os principias modelos econométricos para simulação de trajetória.
- No Capítulo 4 implementamos a estimativa do $MDaR_{\alpha}$ e avaliamos os resultados obtidos.
- O Capítulo 5 conclui o trabalho.

Capítulo 1

Definições Básicas

1.1 Risco

O principal objetivo da maioria dos investidores é obter lucro. Entretanto, na maioria dos casos, há muita incerteza em relação ao retorno esperado. Logo, entra o segundo aspecto que com o qual o investidor está preocupado, o risco.

Podemos considerar risco uma probabilidade de ocorrer uma determinada perda. No mercado financeiro há 4 categorias principais de risco.

- 1. Risco de Crédito.
- 2. Risco de Liquidez
- 3. Risco Operacional
- 4. Risco de Mercado.

O Risco de crédito está relacionado à possibilidade do não recebimento do pagamento da contraparte em uma relação de crédito. Por exemplo, se um investidor compra um CDB de um banco de investimento, o risco nessa situação está em o banco não ser capaz de lhe pagar ao final do contrato. Se o banco declarar a falência, o investidor perderá todo seu capital investido.

Já o risco de Liquidez está relacionado à incapacidade de desembolso financeiro por falta de recursos disponíveis. Podemos ilustrar esse risco no caso de um fundo de investimento não ter recursos disponíveis para realizar algum tipo de pagamento, o que levará à necessidade de vender alguns ativos para levantar caixa. No entanto, se o portfolio for composto por ativos ilíquidos, o gestor acabará sendo forçado a vender por um preço abaixo do valor de mercado, resultando em grandes perdas para o portfólio como um todo.

O risco operacional está associado a perdas resultantes de erros operacionais, que podem ser erros humanos, de processo, fraudes ou até mesmo de sistemas.

Por fim, o risco de mercado é o risco associado a perdas derivadas das variações dos preços dos ativos. Este tipo de risco será o foco desse trabalho.

1.2 Medidas de Risco

A gestão de risco pode ser entendida como o processo de avaliar e controlar todos os tipos de riscos citados anteriormente. Neste contexto, são necessárias medidas de risco, que podem ser definidas como uma função que expressa o nível de risco de um ativo ou portfolio através de apenas um número real.

1.2.1 Value at Risk

O $Value\ at\ Risk\ (VaR_{\alpha})$ é a medida de risco amplamente utilizada no mercado financeiro. O VaR_{α} indica uma perda máxima dada uma probabilidade e um período de tempo. Por exemplo, se o VaR_{α} 5 dias e 1% de confiança do IBOVESPA for igual a 5%, podemos afirmar com uma probabilidade de 99% que o IBOVESPA não cairá mais que de 5% após 5 dias.

Dada uma variável aleatória X que representa a distribuição dos retornos no horizonte de tempo desejado, o VaR_{α} é definido α -quantil (q_{α}) de X:

$$VaR_{\alpha}(X) = q_{\alpha}(X) = \inf\{x : Pr(X \le x) > \alpha\}$$
(1.2.1)

1.2.2 Expected Shortfall

Uma das principais críticas ao VaR_{α} é que ele indica somente o limite da perda, dada uma probabilidade $1 - \alpha$. Entretanto não é informado o valor esperado das perdas nos casos com probabilidade α . Isso significa que se o ativo apresentar retornos muito extremos na cauda da distribuição, o VaR_{α} não indicará corretamente esse risco de cauda.

Para contornar esta limitação, foi desenvolvido o Expected Shortfall (S) também conhecido como Conditional Value at Risk(CVaR). O S de risco α é dado por:

$$S_{\alpha}(X) = E\left(X \mid X \le q_{\alpha}(X)\right) \tag{1.2.2}$$

Logo, o S_{α} indica a média dos retornos que estão abaixo do valor indicado pelo VaR_{α} . A Figura 1 ilustra bem a diferença das medidas.

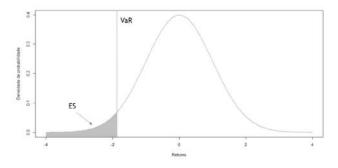


Figura 1.1: VaR vs ES.

1.3 Maximum Drawdown at Risk

O tema desse trabalho é o estudo da medida de risco de $Maximum\ Drawdown\ at\ Risk\ (MDaR_{\alpha})$. Apesar dessa medida ainda não ser amplamente utilizada, julgamos que sua correta utilização pode propiciar melhores controles no risco de mercado. Antes de apresentar a definição dessa medida, vamos a seguir explorar o conceito de máximo drawdown.

1.3.1 Definição de *Drawdown*

O conceito de máximo drawdown é utilizado no mercado financeiro para indicar uma perda relevante no investimento. Na literatura existem duas definições formais.

A primeira definição [10] considera o máximo drawdown como a soma de uma sequência ininterrupta de retornos negativos. No entanto, no mercado financeiro frequentemente observamos, durante movimentos de queda, retornos positivos que foram meramente frutos de uma especulação diária. Desta forma, estes retornos positivos quebrariam a sequência negativa e consequentemente descaracterizariam erradamente um movimento de perda.

Portanto, neste trabalho, adotaremos a definição do máximo drawdown como uma perda % de um máximo local ao próximo mínimo local em um determinado período de tempo H [22].

Definição 1.3.1. Seja P_t o preço do ativo no tempo t e considere considere $0 < t \le H$. O máximo drawdown (MDD) durante o período H é definido como:

$$MDD = \max_{0 \le k \le j \le H} \left(\frac{P_k - P_j}{P_k} \right) \tag{1.3.1}$$

Apesar de o MDD indicar uma perda, adotamos nesse trabalho a definição do máximo drawdown como um valor positivo. Para o valor negativo, devemos tomar o mínimo de $\frac{P_j - P_k}{P_k}$. De qualquer forma, os valores em módulo serão iguais.

O pseudo código a seguir demonstra a simplicidade algorítmica do cálculo do máximo draw-down dada uma série de preços.

Exemplos

Para ilustrar o cálculo do máximo drawdown, a Figura 1.2 mostra um exemplo hipotético de variação do preço (cota) de um fundo de investimento.

Neste caso, o MDD seria a queda no dia 3 até o dia 8, ou seja, MDD=9.5%. É interessante observar que o fundo subiu no período. Entretanto, devemos levar em consideração que novos cotistas entram diariamente em fundos de investimento. Portanto, não é impossível que um investidor mais "azarado" tenha entrado justamente no dia 3 e saído no dia 8.

Essa é uma das razões pela qual o MDD é utilizado para comparar dois investimentos. Um aviso clássico é que a "performance passada não é garantia de resultados futuros". Portanto, nada garante que o novo investidor alcançará o resultado histórico e o MDD torna-se mais uma indicação do risco que o fundo correu durante o período avaliado.

Algorithm 1 Algoritmo para calcular o Máximo Drawdown

```
function CalcMDD(precos)
2:
      maxPreco = 0, DDAtual = 0, MDD = 0
      for i do length(precos)
         if preco[i] > maxPreco then
4:
            maxPreco = preco[i]
         else
6:
            DDAtual = (maxPreco - preco[i])/maxPreco
         end if
8:
         if DDAtual > MDD then
            MDD = DDAtual
10:
         end if
      end for
12:
      return MDD
14: end function
```

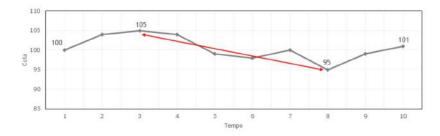


Figura 1.2: Exemplo do máximo drawdown de um fundo de investimento.

Por exemplo, se em um ano o Fundo A teve um retorno de 5% e um MDD de 20% e o Fundo B subiu os mesmos 5% mas com um MDD de 2%, é bem provável que um alocador de recursos escolha o Fundo B para investir.

De fato, existe uma medida análoga ao índice Sharpe (relação volatilidade com retorno) que relaciona o MDD com o retorno do investimento. O Calmar Ratio [23]:

$$CalmarRatio = \frac{Retorno}{MDD} \tag{1.3.2}$$

Exemplos reais

Uma das dificuldades ao realizar análises de máximos drawdownsé a definição do período H. Podemos ilustrar esse aspecto utilizando dados reais. A tabela a seguir mostra os 10 maiores máximos drawdowns do IBOVESPA nos últimos 20 anos, para vários em périodos de tempo H longos, de até 1500 dias.

Como pode ser observado na Tabela 1.1, existem máximos drawdowns com durações muito longas e que não necessariamente estão conectados ao mesmo tema de risco. Por exemplo, no sexto maior drawdown, que ocorreu de novembro de 2010 a março de 2014 com uma duração de mais de 1000 dias, estão contidos vários outros drawdowns relevantes que ajudariam a modelar

	Drawdown	Início	Fim	$\# { m dias}$
1	65.0%	08-Jul-97	10-Sep-98	429
2	61.0%	30-Sep-94	09-Mar-95	160
3	60.0%	20-May-08	27-Oct-08	160
4	55.8%	27-Mar-00	16-Oct-02	933
5	44.4%	27-Nov-98	14-Jan-99	48
6	38.4%	04-Nov-10	14-Mar-14	1226
7	27.7%	26-Jan-04	10-May-04	105
8	22.4%	04-Nov-08	21-Nov-08	17
9	22.2%	13-May-99	18-Aug-99	97
10	22.1%	19-Sep-95	13-Nov-95	55

Tabela 1.1: 10 maiores drawdowns do IBOVESPA.

melhor o risco do ativo conforme pode ser observado na Figura 1.3

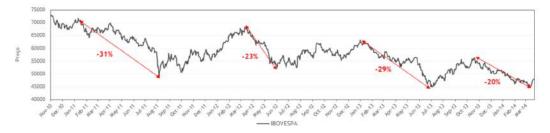


Figura 1.3: Drawdowns relevantes dentro de período longo de drawdowns.

Portanto, para análises de risco envolvendo máximos drawdowns é interessante impor limites de tempo para computar as quedas. Por exemplo, a Tabela 1.2 mostra os 10 maiores drawdowns do S&P 500 ocorridos em no máximo 1 mês (22 dias úteis) nos últimos 20 anos.

	drawdown	Início	Fim	$\# { m dias}$
1	28.2%	18-Sep-08	09-Oct-08	21
2	25.0%	03-Nov-08	19-Nov-08	16
3	22.0%	$06 ext{-} ext{Feb-}09$	06-Mar- 09	28
4	20.6%	19-Jun-02	22-Jul- 02	30
5	17.2%	06-Jul-11	05-Aug-11	30
6	15.4%	10-Oct-08	24-Oct-08	14
7	14.8%	21-Aug-02	23-Sep- 02	30
8	13.8%	05-Jan- 09	16-Jan-09	11
9	12.8%	18-Aug-98	28-Aug-98	10
10	12.1%	07-Mar- 01	03-Apr-01	27

Tabela 1.2: 10 maiores drawdowns do S&P500 como duração máxima de 1 mês.

Motivação

Para concluir a importância do controle de drawdowns, consideremos uma estratégia hipotética de se ter investido no S&P 500 em setembro de 1994, tendo o investidor movido todo o dinheiro

para renda fixa justamente nos períodos de *drawdowns* da Tabela 1.2. A Tabela 1.3 mostra os resultados até setembro de 2014.

	Retorno Acumulado	%S&P 500
S&P 500 Buy & Hold	533%	100%
Evitando 1 drawdowns	703%	132%
Evitando 3 drawdowns	1087%	204%
Evitando 3 drawdowns	1570%	294%
Evitando 10 drawdowns	2443%	458%

Tabela 1.3: Resultados da estratégia hipotética de controle de drawdowns.

Com certeza, é praticamente impossível um investidor replicar essa estratégia e acertar esse timing perfeitamente. Entretanto, os resultados são impressionantes. De 7300 dias, ter ficado de fora em apenas 220, geraria um retorno acumulado 460% maior. Esse exemplo reforça a motivação do trabalho em estudar medidas para controle de drawdowns. Minimizar e suavizar grandes variações negativas, de fato, fazem grande diferença no retorno acumulado de longo prazo.

No Capítulo 4 iremos sugerir uma estratégia mais plausível de como utilizar a medida de risco proposta neste trabalho em uma estratégia de investimento, com o objetivo de maximizar o retorno e ao mesmo tempo minimizar o máximo drawdown.

1.3.2 Definição de Maximum Drawdown at Risk

Agora iremos apresentar o tema do trabalho, o Maximum Drawdown at Risk (MDaR $_{\alpha}$). A ideia é similar ao VAR $_{\alpha}$, pois o MDaR $_{\alpha}$ representa o máximo drawdown dada uma probabilidade $1 - \alpha$ e um horizonte de tempo.

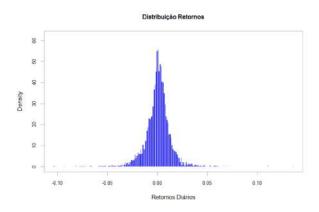
Seja D a variável aleatória que representa os máximos drawdowns do ativo no período desejado H. O $MDaR_{\alpha}$ é o α -quantil da distribuição de D, isto é:

$$MDaR_{\alpha}(D) = q_{\alpha}(D) = \inf\{d : Pr(D \le d) > \alpha\}$$
(1.3.3)

Se o MDaR $_{\alpha}$ do IBOVESPA para um período de 10 dias com $\alpha = 1\%$ de confiança for igual a 10%, podemos afirmar que com uma probabilidade de 99% o IBOVESPA não sofrerá uma queda superior a 10% em um período de até 10 dias.

Maximum Drawdown at Risk versus Value at Risk

É importante ressaltar que o VaR_{α} indica o limite da perda do início ao fim do período desejado. Nessa medida não importa o que aconteceu no meio do caminho. Já o $MDaR_{\alpha}$ é a perda máxima considerando o caminho todo. No exemplo dos 10 dias, a perda pode ocorrer tanto entre o primeiro e último dia, quanto entre o primeiro e segundo. Portanto, o $MDaR_{\alpha}$ é uma medida mais conservadora de risco.



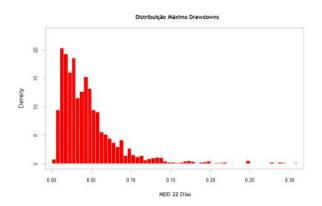


Figura 1.4: Distribuição empírica dos retornos diários do S&P 500.

Figura 1.5: Distribuição empírica dos drawdowns mensais do S&P 500

O VaR $_{\alpha}$ é normalmente aplicado em períodos curtos, sendo o padrão do mercado de 1 a 5 dias. Porém nada impede de ser usado em períodos longos. Já o MDaR $_{\alpha}$, idealmente, é para ser usado em períodos mais longos, de pelo menos 10 dias. Até porque quanto mais curto o período mais seu valor se aproximará ao *Value at Risk*.

A metodologia de cálculo será descrita no próximo capítulo, mas a Figura 1.6 exemplifica a diferença do $VaR_{1\%}$ contra o $MDaR_{1\%}$ dado um período de tempo calculado para o índice IBOVESPA. O eixo x indica o período de tempo (H) do cálculo do $MDaR_{1\%}$ e $VaR_{1\%}$ e o eixo y o valor cálculado pela medida de risco. Podemos observar que o $MDaR_{\alpha}$ sempre indica valores menores que o VaR_{α} e quanto maior o período (H) mais conservadora o $MDaR_{\alpha}$ se torna.

A demanda por controles de drawdowns em fundos de investimento vem aumentando. Além de destruir o patrimônio acumulado, alguns gestores têm consciência que grandes drawdowns, independente dos retornos anteriores, podem acionar uma onda de resgates de seus clientes, comprometendo, assim, todo o funcionamento da empresa no futuro. Logo, o $MDaR_{\alpha}$ deve ser usado como uma medida complementar e mais conservadora de risco que o VaR_{α} . No próximo capítulo detalharemos as metodologias de cálculo dessa medida.

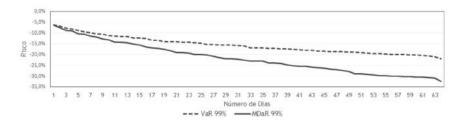


Figura 1.6: Comparação do VaR_{1%} versus MDaR_{1%} no mesmo período de tempo.

Capítulo 2

Metodologia

2.1 Modelos de Risco

O conceito de medidas de risco é relativamente simples visto que elas se baseiam em quantis da distribuição de retornos ou, no caso desse trabalho, da distribuição dos drawdowns dos ativos. No entanto, o maior desafio está em estimar essa distribuição no futuro, visto que não há qualquer garantia de repetição do mesmo comportamento do passado. Logo, devemos estimar a seguinte distribuição de probabilidade

$$F\left(Y_{t+T} \mid \Omega_t\right), \tag{2.1.1}$$

onde Ω_t é o conjunto de informação disponíveis até o tempo t, e Y_{t+T} representa uma variável aleatória para um período de T dias. Logo, são necessários modelos de risco para a estimação dessa distribuição de probabilidade futura, utilizando-se somente dados passados. Vamos rever os três principais tipos de modelos de risco: o paramétrico, a simulação histórica e a simulação de Monte Carlo.

2.1.1 Modelos Paramétricos

Também conhecidos como analíticos, são caracterizados por ajustar uma distribuição conhecida aos retornos passados. Por motivos de simplicidade nos cálculos, a mais empregada é a distribuição Normal.

Exemplo 1. Calcular o VaR_{α} de 1 dia do IBOVESPA com α =5% aplicando um modelo análitico.

No caso da distribuição Normal, precisamos estimar apenas dois parâmetros, a média (μ) e o desvio padrão (σ) . Os métodos de estimação da média e da volatilidade estão fora do escopo desse exemplo, mas com esses parâmetros devidamente estimados o VAR de 1 dia é simplesmente:

$$VaR_{\alpha} = \hat{\mu} + Z_{\alpha}\hat{\sigma} \tag{2.1.2}$$

Onde Z representa uma variável aleatória $\mathcal{N}(0,1)$, e Z_{α} é tal que $Pr(Z \leq Z_{\alpha}) = \alpha$.

Notemos que os parâmetros (μ, α) podem ser estimados através de modelos não condicionais ou condicionais, dando origem assim ao VaR $_{\alpha}$ não condicional ou condicional, respectivamente.

Entretanto, existem várias evidencias de que os retornos dos ativos não seguem uma distribuição Normal [2]. A Figura 2.1 mostra o histograma da distribuição empírica dos retornos diários do IBOVESPA junto com a distribuição Normal que melhor modela os dados. Quando focamos na cauda da distribuição com um zoom(Figura 2.2), podemos notar claramente que a distribuição Normal não consegue modelar adequadamente os extremos. Como as medidas de risco dependem justamente da cauda da distribuição, se assumirmos a distribuição Normal, poderemos subestimar o verdadeiro risco.

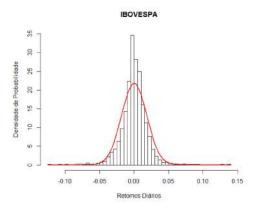


Figura 2.1: Distribuição empírica dos retornos diários do IBOVESPA.

Figura 2.2: Foco na cauda da distribuição

Existem algumas soluções para minimizar esse problema. Uma delas pode ser substituir a distribuição Normal por uma t-student que, que com um número pequeno degraus de liberdade, aplica um peso maior na cauda da distribuição. Outra solução pode ser a aplicação da Teoria de Valores Extremos [9], onde o foco está na estimação de distribuições especificas para os valores extremos, como por exemplo, a Generalized Pareto Distribution (GPD).

2.1.2 Simulação Histórica

O conceito é bem simples, o método histórico não requer qualquer hipótese sobre a distribuição dos ativos, pois assume que a distribuição futura será a mesma do passado. Logo, o quantil desejado é estimado como o percentil da distribuição empírica.

Exemplo 2. Calcular o VaR $_{\alpha}$ de 1 dia do IBOVESPA com $\alpha = 5\%$ por simulação de histórica.

Se utilizarmos, por exemplo, 5 anos de dados, teremos uma série de aproximadamente 1260

retornos diários. Devemos apenas ordenar esta série do menor para o maior retorno, e para o α =5%, o VaR_{5%} será a posição 1260*5%=63.

A simulação histórica é o método mais simples de ser compreendido e o mais fácil de ser implementado. No entanto, ele assume que a distribuição do passado é uma boa estimativa para a distribuição futura. Com isso, a escolha equivocada do período amostral pode levar a resultados não confiáveis.

2.1.3 Simulação de Monte Carlo

O método consiste em gerar simulações sobre possíveis retornos dos ativos no horizonte de tempo desejado. O exemplo a seguir torna clara esta metodologia:

Exemplo 3. Calcular o Va R_{α} de 1 dia do IBOVESPA com $\alpha=5\%$ por simulação de Monte Carlo

Na simulação de Monte Carlo são necessários três passos:

- 1. Definir um modelo analítico para descrever o comportamento futuro do ativo.
- Utilizando-se do modelo escolhido, simular M retornos diários futuros possíveis para o ativo.
- Ordenar esta série de retornos simulados do menor para o maior retorno, e como desejamos o α=5%, o VaR_{5%} será a posição N * 5%.

Além de maior custo computacional por realizar grande número de simulações, o grande desafio do método de Monte Carlo está em encontrar uma forma eficiente de gerar retornos que melhor possam se aproximar aos retornos futuros dos ativos. No próximo cápitulo, iremos detalhar os principais métodos analíticos para gerar simulações.

2.2 Modelos para o Maximum Drawdown at Risk

Assim como no caso do *Value at Risk*, podemos aplicar esses 3 modelos para calcular o *Maximum Drawdown at Risk*. No entanto, ao invés da distribuição dos retornos, desejamos estimar a distribuição de máximos *drawdowns*.

2.2.1 MDaR por um modelo paramétrico

No caso paramétrico, precisamos encontrar uma distribuição que melhor modele ou represente a distribuição empírica dos máximos *drawdowns* do ativo. Como já pode ser observada nos exemplos desse trabalho, a distribuição de máximos *drawdowns* não é uma distribuição simétrica. Logo, as distribuições mais conhecidas como a Normal ou a t-student não se aplicariam.

Não há na literatura muitos trabalhos sobre o tema. Entretanto, [18] e [10] demonstraram empiricamente que a *Modified Generalized Pareto Distribution* (MGPD) consegue representar bem a distribuição dos *drawdowns*.

A Generalized Pareto Distribution (GPD) é uma das distribuições aplicadas na Teoria de Valores Extremos com o intuito de modelar os extremos da distribuição. A MGPD, uma extensão mais flexível da GPD, também é utilizada para modelar eventos de cauda. A MGPD foi proposta por Anderson e Dancy (1992) e tem a sua função de distribuição acumulada dada por:

$$G_{\xi}(m) = \begin{cases} 1 - (1 + \xi \frac{m^{\gamma}}{\psi})^{-\frac{1}{\xi}}, & \xi \neq 0\\ 1 - e^{\frac{m^{\gamma}}{\psi}}, & \xi = 0 \end{cases}$$

Onde γ é justamente o parâmetro modificador. Ou seja, $\gamma=1$ temos exatamente uma GPD, e γ < 0 torna a função estritamente decrescente e com caudas mais pesadas.

Como o máximo drawdown pode ser considerado um evento de cauda, torna-se possível a aplicação da MGPD para modelar a distribuição dos drawdowns e dos máximos drawdown dos ativos.

2.2.2 MDaR por simulação histórica

Para o cálculo do $MDaR_{\alpha}$, através do método histórico, para um período de H dias, precisamos coletar o histórico de drawdowns ocorridos em, no máximo, H dias.

A Figura 2.3 ilustra a distribuição de máximos *drawdowns* do IBOVESPA em uma janela (H) de 22 dias. O MDaR_{5%} é o percentil 5% dessa distribuição.

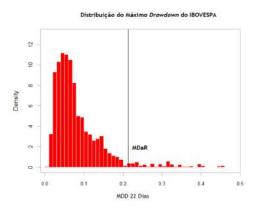


Figura 2.3: Cálculo do máximo drawdown at Risk por simulação histórica.

2.2.3 MDaR por Simulação de Monte Carlo

A metodologia para o cálculo do $MDaR_{\alpha}$ utilizada neste trabalho será por simulação de Monte Carlo. São dois os principais motivos por essa escolha:

- Não foi encontrado na literatura qualquer trabalho que aplica esse método diretamente para o cálculo do $MDaR_{\alpha}$.
- Estamos interessados, também, em calcular MDaR_α para portfolios contendo instrumentos não lineares, visto que as simulações de Monte Carlo trazem resultados mais precisos nessa situação.

É importante ressaltar que o cálculo do $MDaR_{\alpha}$ por simulação de Monte Carlo é totalmente dependente da trajetória completa do ativo. Logo, se desejarmos, um período de 22 dias, precisamos simular dia a dia essa trajetória.

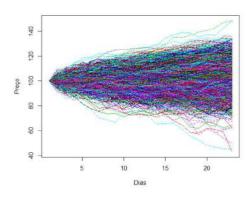
Portanto, a metodologia que iremos adotar será implementada em quatro etapas:

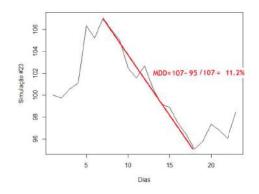
- 1. Define um modelo analítico para descrever o comportamento futuro do ativo.
- 2. Utilizando-se do modelo analítico, simula o comportamento da trajetória do ativo ou do portfólio no período de tempo desejado M vezes.
- 3. Para cada uma das trajetórias simuladas calcula o máximo drawdown.
- Com a distribuição empírica de M máximos drawdowns, consultamos o percentil desejado para o MDaR_α.

A Figura 2.4 ilustra bem essa metodologia. No passo (a) são simuladas 1000 possíveis trajetórias para o ativo em um período de 22 dias. Em (b) para cada uma das 1000 simulações, utilizando o Algoritmo 1, calculamos o MDD da trajetória simulada. E por último (c) com a distribuição empírica de 1000 MDDs, obtemos o quantil desejado para o MDaR $_{\alpha}$. No próximo capitulo, iremos entrar em detalhes nos principais métodos para realizar o passo (a).

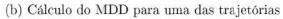
Algorithm 2 Algoritmo para calcular o Maximum Drawdown at Risk

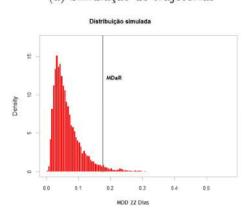
```
function MDAR(PrecoInicial,Nsim,NDias,\alpha)
      for i in 1:Nsim do
 2:
          PrecoSim[1, i] = PrecoInicial
          for j in 2:NDias do
 4:
             PrecoSim[j, i] = SimulaPreco_i
 6:
          end for
          DDArray[i] = CalcMDD(PrecoSim[, i])
      end for
8:
      MDaR = quantile(DDArray, \alpha)
      return MDaR
10:
   end function
```





(a) Simulação de trajetórias





(c) Cálculo do MDaR na distribuição simulada

Figura 2.4: MDaR por simulação de Monte Carlo.

Capítulo 3

Modelagem para a simulação

No Capítulo anterior apresentamos a metodologia que será aplicada neste trabalho para o cálculo do $MDaR_{\alpha}$, o método de Monte Carlo que se baseia em simulações aleatórias de trajetórias de ativos. Portanto, agora precisamos definir o processo gerador dos dados (DGP - data generating process) a partir do qual iremos realizar essas de simulações. O grande desafio nas simulações de Monte Carlo é justamente encontrar esse DGP para tornar as simulações de trajetórias as mais próximas da realidade possível.

Primeiramente vamos fazer uma breve revisão sobre os retornos financeiros que são a base de qualquer modelo de finanças. E em seguida apresentaremos opções de modelagem da dinâmica de retornos e consequentemente do preço dos ativos.

3.1 Retornos Financeiros

Grande parte dos modelos econométricos financeiros envolve as séries de retornos ao invés da série de preços. São dois os principais motivos para usar os retornos [6]. Primeiro, para o investidor o retorno do ativo é uma medida sem unidade que facilita a comparação das oportunidades de investimento. E segundo, as séries de retornos possuem propriedades estatísticas que as tornam mais fáceis de serem trabalhadas.

Seja P_t o preço do ativo no tempo t, definimos o retorno composto continuamente ou logretorno diário como:

$$r_t = \ln\left(\frac{P_t}{P_{t-1}}\right) \tag{3.1.1}$$

E considerando esses retornos como uma coleção de variáveis aleatórias ao longo do tempo, temos a série temporal $\{r_t\}_t^T = 1$.

3.1.1 Fatos Estilizados

Antes de iniciarmos a explanação sobre modelos econométricos específicos para a série temporal $\{r_t\}$, faz-se necessária breve revisão das principais características dos retornos financeiros a fim de entendermos a motivação que se encontra por trás de cada modelo.

A partir da década de 90, com o aumento de informações disponíveis, surgiram muitos estudos empíricos sobre o comportamento dos ativos, dentre eles podemos destacar [7], [11] e [8]. O objetivo principal em todos eles era encontrar evidências estatísticas não triviais observadas em todo o mercado, que foram classificadas como fatos estilizados. Podemos apontar os principais fatos estilizados dos retornos financeiros

- 1. Estacionaridade.
- 2. Ausência de autocorrelação linear
- 3. Distribuição possuindo caudas pesadas
- 4. Existência de clusters de volatilidade
- 5. Efeitos de alavancagem
- 6. Simetria

Estacionaridade

Um série temporal $\{r_t\}$ é dita estritamente estacionária se o comportamento probabilístico de cada coleção de observações $(r_{t_1}, ... r_{t_k})$ não variar quando avançamos o tempo $(r_{t_1+t}, ... r_{t_k+t})$. Em outras palavras, as propriedades estatísticas da série são invariantes ao longo do tempo.

Esta condição é bem difícil de ser verificada empiricamente. Logo, para dados reais, utilizase uma versão mais fraca da estacionariedade, denominada estacionariedade de segunda ordem.

 $\{r_t\}$ é estacionária de segunda ordem se a média de $\{r_t\}$ e a covariância entre r_t e r_{t-l} forem invariantes no tempo. Mais especificamente r_t é estacionária de segunda ordem se:

$$E(r_t) = \mu \qquad \forall t$$

$$Cov(r_t, r_{t-l}) = \gamma_l \qquad \forall t \qquad , l \text{ fixo} \qquad , l \geq 0 ,$$

onde γ_l somente depende da defasagem l, uma constante arbitrária.

A estacionariedade de segunda ordem é o que nos permite fazer inferências sobre as futuras observações.

É possível verificar empiricamente essa estacionariedade de segunda ordem. Por exemplo, podemos dividir os dados aleatoriamente em amostras menores, e verificar a consistência nos resultados entre as amostras.

Ausência de autocorrelação linear

Os retornos no tempo t possuem pouca ou nenhuma correlação com os retornos em t-1, ..., t-l. Logo, se r_{t-1} foi um retorno negativo, nada podemos afirmar sobre a direção de r_t . Em outras palavras, podemos dizer que os retornos financeiros não são previsíveis.

Os coeficientes de autocorrelação linear ρ_l medem como uma variável em um dia está correlacionada com ela mesma nos dias anteriores. Se as correlações forem significativas verificamos forte evidência dessa previsibilidade. A Figura 3.1 mostra a Função de Autocorrelação (FAC) para o IBOVESPA, a FAC plota os valores ρ_l versus as defasagens l. Conforme pode ser observado são pequenas e não significativas as correlações entre os retornos e os retornos defasados, comprovando a hipótese anterior.

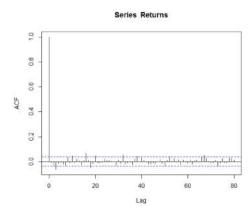


Figura 3.1: FAC para retornos do IBOVESPA.

Distribuição com caudas pesadas

A frequência de valores extremos observada em uma série de retornos é maior do que uma distribuição normal sugeriria. Ou seja, a distribuição não condicional dos retornos apresenta caudas pesadas ("fat tails").

Existem alguns testes estatísticos utilizados para testar a normalidade de uma série temporal, como por exemplo o teste de Jarque-Bera. Entretanto, em certos casos, podemos simplesmente utilizar visualmente o Q-Q plot para uma verificação inicial de normalidade. O procedimento empregado consiste na comparação gráfica dos quantis teóricos da distribuição normal com os quantis dos dados amostrais.

A Figura 3.2 mostra o Q-Q plot para os retornos diários do IBOVESPA. Podemos observar, principalmente nos extremos, uma relação não linear entre os quantis teóricos e empíricos, sugerindo não normalidade.

Consideremos o seguinte cenário: 10 anos de retornos diários do IBOVESPA, 2004 a 2014 com média amostral de μ = 0.03% e o desvio padrão amostral σ = 1.8%. Uma análise intuitiva sugeriria que, se os retornos seguissem uma distribuição normal com esses parâmetros, um

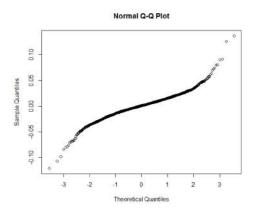


Figura 3.2: Q-Q Plot IBOVESPA.

evento de -4 σ (μ - 4 σ = -7.2%) ocorreria uma vez a cada 43 anos. No entanto, nesta série de 10 anos, ocorreram 7 retornos abaixo deste limiar. Mais uma constatação empírica das caudas pesadas.

Existência de Clusters de Volatilidade

Clusters ou conglomerados de volatilidade ocorrem quando grandes variações em módulo nos preços são seguidas por outras grandes variações. Podemos visualizar claramente o conceito desses clusters na Figura 3.3 que mostra graficamente os retornos diários do IBOVEPA ao longo do tempo. Podemos observar momentos mais turbulentos do mercado marcados em vermelho (alta volatilidade) e momentos mais calmos do mercado (baixa volatilidade).

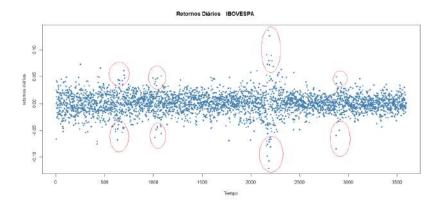
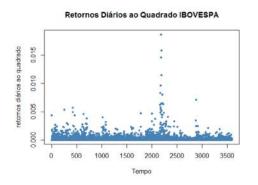
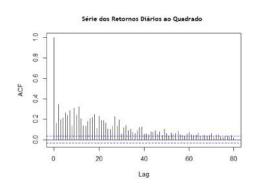


Figura 3.3: Grandes variações seguidas por grandes variações.

A volatilidade dos retornos é, então, serialmente correlacionada. Portanto, ao contrário dos retornos, conseguimos afirmar que há uma certa previsibilidade na volatilidade.

A volatilidade não é uma medida observável. Portanto, para testar a hipótese de clusters de volatilidade, podemos considerar os retornos ao quadrado como uma boa aproximação para a volatilidade. De fato, como veremos a diante, a maioria dos modelos para a volatilidade tem o





- (a) Retornos Diários ao quadrado IBOVESPA.
- (b) FAC para os retornos ao quadrado.

Figura 3.4: Observação dos clusters de volatilidade nos retornos.

retorno ao quadrado como principal parâmetro de entrada. Assim, plotando a FAC dos retornos ao quadrado (Figura 3.4), podemos notar claramente uma alta autocorrelação nas primeiras defasagens, confirmando a hipótese de autocorrelação serial nas observações recentes.

Efeitos de Alavancagem

O efeito de alavancagem se refere ao fato da volatilidade ser negativamente correlacionada com os retornos [20] [4]. Portanto, a volatilidade tende a aumentar após retornos negativos, efeito de "Bad News", e diminuir após retornos positivos.

No entanto, é observada uma assimetria nesse efeito. Retornos negativos tendem a aumentar mais a volatilidade do que retornos positivos tendem a diminui-la.

Simetria

Muitos trabalhos [21] consideram como simétrica a distribuição não condicional dos retornos de ativos. No entanto, muitas vezes pode ser observado uma assimetria levemente negativa, ou seja, uma cauda mais longa para a esquerda. Uma justificativa pode ser a aversão ao risco do investidor, que reage mais fortemente a notícias negativas do que positivas.

3.2 Movimento Browniano Geométrico

A primeira alternativa que apresentamos para a simulação univariada considera a dinâmica do preço do ativo seguindo um Movimento Browniano Geométrico (MBG).

MBG é um processo estocástico contínuo, amplamente aplicado em finanças. Por exemplo, a conhecida fórmula de Black & Scholes para precificar opções utiliza esse modelo.

Iniciamos com uma definição:

Definição 3.2.1. Chamamos de movimento Browniano unidimensional ao processo estocástico $\{W_t\}_{t\geq 0}$ que satisfaz as seguintes propriedades:

- 1. Os incrementos de $\{W_t\}_{t\geq 0}$ são variáveis aleatórias independentes.
- 2. Se $0 \le s < t$ então $W_t W_s \sim N(0, t s)$
- 3. $W_0 = 0$ quase certamente.

Seja P_t o preço do ativo no tempo t e ΔP sua variação. Agora vamos considerar que a dinâmica do retorno do ativo $\frac{\Delta P}{P}$ segue uma equação diferencial estocástica (EDE):

$$\frac{\Delta P}{P}$$
 = parte determinística + parte estocástica

Onde ΔP é a variação do preço do ativo e P é o preço do ativo. A parte determinística é função de uma constante e do tempo $(\mu \Delta t)$ e a parte estocástica segue $\sigma \Delta W$, onde W é um movimento browniano. Logo, o retorno do ativo possui uma tendência μ (média ou drift) e a σ (volatilidade) controla o efeito dos choques aleatórios de W.

$$\frac{\Delta P}{P} = \mu \Delta t + \sigma \Delta W \tag{3.2.1}$$

Podemos reescrever 3.2.1 para a variação no tempo t como:

$$\frac{dP_t}{P_t} = \mu dt + \sigma dW_t \tag{3.2.2}$$

Multiplicando-se os dois lados de 3.2.2 por P_t , chegamos na EDE do movimento Browniano Geométrico.

$$dP_t = \mu P_t dt + \sigma P_t dW_t \tag{3.2.3}$$

Agora, precisamos achar a solução dessa equação. Em 3.2.2, $\frac{dP_t}{P_t}$ se refere ao derivativo de $ln(P_t)$. Logo, podemos fazer uso da integral de Itô em $dln(P_t)$

$$dlnP_t = \frac{1}{P_t}dP_t - \frac{1}{2}\frac{1}{P_t^2}dP_t^2$$
(3.2.4)

$$= \frac{1}{P_t} P_t [\mu dt + \sigma dW_t] - \frac{1}{2} \frac{1}{P_t^2} S_t^2 [\sigma^2 dW_t^2]$$
 (3.2.5)

$$dlnP_t = \mu dt + \sigma dW_t - \frac{1}{2}\sigma^2 dt \tag{3.2.6}$$

Integrando e aplicando o teorema fundamental do cálculo chegamos em:

$$lnP_t - lnP(0) = (\mu - \frac{1}{2}\sigma^2)t + \sigma W_t$$
 (3.2.7)

Aplicando a exponencial nos dois lados chegamos a:

$$P_t = P_0 e^{(\mu - \frac{1}{2}\sigma^2)t + \sigma W_t} \tag{3.2.8}$$

Então, com a equação 3.2.8 podemos modelar a evolução do preço do ativo ao longo do tempo, onde P_0 é o preço inicial do ativo e P_t é o preço no tempo t. É importante notar que nesse modelo a distribuição dos retornos segue uma distribuição Normal, enquanto a distribuição dos preços segue uma Log-Normal.

Como W_t segue uma distribuição N(0,t), é fácil observar que $ln(\frac{P_t}{P_0})$ é uma variável aleatória com média $(\mu - \frac{1}{2}\sigma^2)$ e variância σ^2 . Portanto, para simular a trajetória do ativo, precisamos seguir os seguintes passos:

- 1. Estimar os parâmetros μ e σ
- 2. Gerar aleatoriamente $Z \sim N(0,1)$
- 3. Aplicar $S_t = S_0 e^{(\mu \frac{1}{2}\sigma^2)t + \sigma z}$

Como podemos ver, os parâmetros μ e σ não dependem do tempo t, ou seja, eles permanecem constantes ao longo da trajetória. Desta forma, alguns dos fatos estilizados apresentados anteriormente não são capturados pelo modelo, como por exemplo, os *clusters* de volatilidade.

Agora, como alternativa ao MBG iremos apresentar modelos condicionais.

3.3 Modelagem Condicional de Retornos Financeiros

Vamos agora decompor um retorno financeiro $\{r_t\}$ em duas partes, $\{\mu_t\}$ e $\{\epsilon_t\}$:

$$r_t = \mu_t + \epsilon_t \tag{3.3.1}$$

- 1. $\{\mu_t\}$ é a parte previsível e determinística, ou seja, é o retorno esperado ou a tendência do ativo para o retorno no horizonte de tempo.
- 2. $\{\epsilon_t\}$ é a parte estocástica do retorno, que reflete mudanças aleatórias no preço do ativo. a_t representa os choques aleatórios que não podemos prever.

Percebemos agora que tanto μ_t como a_t dependem do tempo t. Vamos, então, modelar esses dois fatores do retorno financeiro r_t separadamente.

3.3.1 Modelos para Média Condicional

Podemos descrever a equação da média de uma série temporal como o processo:

$$r_t = E\left(r_t \mid \Omega_{t-1}\right) + \epsilon_t \tag{3.3.2}$$

Onde E indica a esperança condicional, Ω_{t-1} o conjunto de informações disponíveis até o tempo t-1, e ϵ_t são as inovações não correlacionadas com média zero, Ruído Branco (RB), e representa justamente a parte imprevisível da série de retornos.

Processos Autorregressivos AR(p)

Um processo autoregressivo de primeira ordem AR(1) é dado por:

$$r_t = \phi_0 + \phi_1 r_{t-1} + \epsilon_t \tag{3.3.3}$$

onde ϵ_t é um RB(0, σ_{ϵ}^2). É fácil verificar que:

$$E(r_t | r_{t-1}) = \phi_0 + \phi_1 r_{t-1}$$
$$var(r_t | r_{t-1}) = var(\epsilon_t) = \sigma_{\epsilon}^2$$

Portanto, dado o retorno anterior r_{t-1} , a distribuição do retorno no tempo t é centrada em $\phi_0 + \phi_1 r_{t-1}$ e possui um desvio padrão igual a σ_{ϵ} .

Em alguns casos, somente o retorno r_{t-1} não consegue determinar a esperança condicional de r_t . Podemos, então, estender o modelo para torná-lo mais flexível. Definimos o AR(p) como:

$$r_t = \phi_0 + \phi_1 r_{t-1} + \phi_2 r_{t-2} + \dots + \phi_p r_{t-p} + \epsilon_t \tag{3.3.4}$$

onde ϵ_t é um RB(0, σ_{ϵ}^2).

Percebe-se que o modelo AR(p) está na mesma forma que uma regressão linear múltipla, onde os retornos defasados funcionam como variáveis explicativas.

Processos Médias Móveis MA(q)

Uma outra classe de modelos lineares são os modelos de média-móvel, MA(). Considere um modelo AR() de ordem infinita

$$r_t = \phi_0 + \phi_1 r_{t-1} + \phi_2 r_{t-2} + \dots + \epsilon_t \tag{3.3.5}$$

Tal modelo não é realista devido ao número infinito de parâmetros. Uma solução seria assumir que os coeficientes ϕ_i 's satisfazem certas restrições, de forma que possam ser determinados por um número finito de parâmetros. Seja

$$\phi_i = -\theta_1^i, i > 0.$$

onde há apenas um único parâmetro para ser estimado, o θ_1 .

$$r_t = \phi_0 - \theta_1 r_{t-1} - \theta_1^2 r_{t-2} - \theta_1^3 r_{t-3} - \dots + \epsilon_t$$
(3.3.6)

Podemos escrever o modelo (3.3.6) no tempo t como

$$r_t + \theta_1 r_{t-1} + \theta_1^2 r_{t-2} + \theta_1^3 r_{t-3} + \dots = \phi_0 + \epsilon_t \tag{3.3.7}$$

E no tempo t-1 como

$$r_{t-1} + \theta_1 r_{t-2} + \theta_1^2 r_{t-3} + \theta_1^3 r_{t-4} + \dots = \phi_0 + \epsilon_{t-1}$$
(3.3.8)

Multiplicando (3.3.8) por θ_1 e subtraindo o resultado de (3.3.7) obtemos

$$r_t = \phi_0(1 - \theta_1) + \epsilon_t - \theta_1 \epsilon_{t-1}$$

Podemos observar que a menos da constante $\phi_0(1-\theta_1)$, a série r_t é uma soma ponderada dos choques nos tempos t e t-1. Logo, o processo é chamado de MA(1), média móvel de ordem 1.

O MA(1) é geralmente escrito como:

$$r_t = c_0 + \epsilon_t - \theta_1 \epsilon_{t-1} \tag{3.3.9}$$

onde c_0 é uma constante e ϵ_t é um RB $(0, \sigma_{\epsilon}^2)$.

Generalizando, o modelo MA(q) é dado por

$$r_t = c_0 + \epsilon_t - \theta_1 \epsilon_{t-1} - \theta_2 \epsilon_{t-2} - \dots - \theta_q \epsilon_{t-q}. \tag{3.3.10}$$

Obter estimativas para os parâmetros de um modelo MA() é mais complicado do que para um modelo AR(), visto que os erros ϵ_t são não observáveis. Isto significa que um procedimento interativo não linear é necessário ao invés de um método dos mínimos quadrados.

Processos ARMA(p,q)

O modelo ARMA(p,q) combina as ideias dos modelos AR(p) e MA(q) em uma forma compacta para manter baixo o número de parâmetros utilizados. Logo, o modelo ARMA(p,q) é representado por

$$r_{t} = \phi_{0} + \sum_{i=1}^{p} \phi_{i} r_{t-i} - \sum_{i=1}^{q} \theta_{i} \epsilon_{t-i}$$
(3.3.11)

Por exemplo, o ARMA(1,1) é dado por

$$r_t = \phi_0 + \phi_1 r_{t-1} - \theta_1 \epsilon_{t-1}. \tag{3.3.12}$$

Logo, o valor atual da série temporal r_t somente depende do seu valor passado r_{t-1} e se corrigirá com o resíduo ϵ_{t-1} ocorrido no último período.

3.3.2 Modelos para a variância condicional

Como visto anteriormente, séries de retornos normalmente apresentam clusters de volatilidade, onde observamos períodos mais turbulentos de alta volatilidade e períodos mais calmos de baixa volatilidade.

Notemos que o modelo ARMA modela apenas a média condicional dos retornos e considera que a volatilidade será constante ao longo do tempo. Entretanto, é fato estilizado que se acabamos de observar retornos mais voláteis que o comum, é de se esperar, então, que os retornos de amanhã também serão mais voláteis do que o comum.

Desta forma, com o objetivo de tornar mais realistas as nossas simulações, precisamos de um modelo que consiga levar em consideração a hipótese de volatilidade não constante.

Um modelo econométrico que incorpore a possibilidade da variância das inovações não ser constante designa-se modelo heteroscedástico. Considere de novo o retorno como:

$$r_t = E(r_t | \Omega_{t-1}) + a_t \tag{3.3.13}$$

No entanto, agora o termo das inovações a_t será um processo da forma

$$a_t = \epsilon_t \sigma_t$$
$$\epsilon_t \sim F(0, 1)$$

onde ϵ_t é um processo de média zero e variância unitária e F(0,1) é sua cdf.

Desta forma, o objetivo dos modelos heterocedástico é justamente modelar a dinâmica da variância σ_t^2 da série temporal.

Para compreender melhor esses modelos, precisamos entender o conceito de variância não condicional e variância condicional de uma série temporal. A variância não condicional é simplesmente a variância de toda a distribuição de retornos, que se assume ser constante durante o tempo. Podemos considerá-la como a variância média de longo prazo ao longo do período. Por outro lado, a variância condicional se modifica a cada ponto no tempo, pois depende de toda a história dos retornos até o ponto.

ARCH

O primeiro modelo especifico para modelar a volatilidade foi o modelo $Autoregressive\ Conditio$ nal $Heteroskedasticity\ (ARCH)$ proposto por Engle (1982)[12]. No modelo ARCH, o choque a_t de um retorno financeiro é serialmente não correlacionado, mas dependente. E a dependência de a_t pode ser descrita como uma função quadrática de seus valores defasados.

Um modelo ARCH(m) assume que:

$$\begin{array}{rcl} r_t &=& a_t \\ \\ a_t &=& \epsilon_t \sigma_t \\ \\ \sigma_t^2 &=& \alpha_0 + \alpha_1 a_{t-1}^2 + \ldots + \alpha_m a_{t-m}^2 \end{array}$$

onde $\{\epsilon_t\}$ i.i.d F(0,1). Para a_t podemos assumir qualquer distribuição F, entretanto a distribuição Normal padrão e a t-Student são as mais utilizadas.

Para garantir que a volatilidade seja positiva precisamos impor que $\alpha_0 > 0$ e $\alpha_i \geq 0$ para i = 1, ..., m. E a soma dos parâmetros $\alpha_{i=1,...,m}$ deve ser menor do que um para assegurar que a variância não condicional de r_t seja finita.

Podemos observar no modelo que um choque passado a_{t-1}^2 grande resultará em um aumento da variância atual. Consequentemente, aumentará as chances do retorno em t assumir valores maiores (em módulo). Logo, o ARCH foi o primeiro modelo a capturar o conceito de clusters de volatilidade.

Para entender as propriedades do modelo consideramos o ARCH(1) definido como

$$\sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 \tag{3.3.14}$$

Onde $\alpha_0 > 0$ $\alpha_1 \ge 0$. A média não condicional desse processo continua zero pois

$$E(a_t) = E[E[a_t | \Omega_{t-1}]] = E[\epsilon_t \sigma_t | E(\Omega_{t-1})] = 0$$
(3.3.15)

E a variância não condicional de a_t pode ser obtida por:

$$var(a_t) = E(a_t^2) = E[E[a_t^2 | \Omega_{t-1}]]$$

= $E(\alpha_0 + \alpha_1 a_{t-1}^2) = \alpha_0 + \alpha_1 E(a_{t-1}^2)$

Como $\{a_t\}$ é um processo estacionário, um RB, temos que

$$var(a_t) = \alpha_0 + \alpha_1 var(a_t)$$

 $var(a_t) = \frac{\alpha_0}{1 - \alpha_1}$

Como a variância deve ser positiva, temos que $0 \le \alpha_1 < 1$

GARCH

Apesar do modelo ARCH ser relativamente simples de se determinar, foi comprovado empiricamente que um ARCH(m) não ajusta bem as séries de retornos financeiros a menos que m seja grande. Uma alternativa é o modelo GARCH (Generalized Autoregressive Conditional Heteroskedasticity), proposto por Bollerslev, T. (1986) [5] que expressa de maneira mais parcimoniosa a estrutura de dependência da variância condicional. Nesse modelo, a variância condicional, além de depender dos quadrados dos retornos passados como no modelo ARCH, depende também das próprias variâncias condicionais passadas.

Para uma série de log-retornos r_t , seja $a_t = r_t - \mu_t$ a inovação no tempo t, a_t segue um modelo GARCH(m, s) se

$$a_t = \epsilon_t \sigma_t$$

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^m \alpha_i a_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2$$

Em particular, o modelo mais simples GARCH(1,1) tem a forma

$$\sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \beta_1 \sigma_{t-1}^2 \tag{3.3.16}$$

Analogamente ao ARCH(1), podemos achar que a variância não condicional é dada por

$$\sigma^2 = \frac{\alpha_0}{1 - \alpha_1 - \beta_1} \tag{3.3.17}$$

Claramente para garantir que a volatilidade seja positiva e finita temos que: $\alpha_0 > 0$, $\alpha_1, \beta_1 \ge 0$ e $\alpha_1 + \beta_1 < 1$.

Podemos interpretar os parâmetros como:

O parâmetro α₁ mede a reação da volatilidade condicional aos choques de mercado.
 Quando o parâmetro é relativamente alto ([1] considera maior que 0.1), a volatilidade é bem sensível aos movimentos de mercado.

- O parâmetro β₁ mede a persistência da volatilidade condicional em relação ao mercado.
 Se o β₁ for alto (maior que 0.9), após uma crise, a volatilidade permenecerá alta por um bom tempo.
- Já a soma α₁ + β₁ determina a taxa de convergência da volatilidade condicional para o nível de sua volatilidade média de longo prazo. Quando α₁ + β₁ for alto (maior que 0.99), a estrutura a termo da previsão de volatilidade do modelo será relativamente constante.
- E o parâmetro α₀ junto com a soma α₁ + β₁ , determinam o nível da volatilidade não condicional σ do processo.

EGARCH

Um dos pontos fracos do modelo GARCH é que ele responde da mesma forma a choques positivos e negativos. Uma alternativa foi o modelo proposto por Nelson (1991) [19], o exponencial GARCH (EGARCH). O objetivo do modelo é justamente permitir o efeito de assimetria na volatilidade devido aos retornos positivos e negativos.

O modelo considerou a inovação ponderada

$$g(\epsilon_t) = \theta \epsilon_t + \gamma(|\epsilon_t|| - E(|\epsilon_t|)) \tag{3.3.18}$$

Onde θ e γ são constantes reais. ϵ_t e $(|\epsilon_t|| - E(|\epsilon_t|))$ são sequencias iid com média zero e distribuição contínua. Portanto, $E[g(\epsilon_t)] = 0$.

Podemos claramente observar o efeito de assimetria de $g(\epsilon_t)$ reescrevendo-o como

$$g(\epsilon_t) = \begin{cases} (\theta + \gamma)\epsilon_t - \gamma E(|\epsilon_t|)], & \text{se } \epsilon_t \ge 0\\ (\theta - \gamma)\epsilon_t - \gamma E(|\epsilon_t|)], & \text{se } \epsilon_t < 0 \end{cases}$$

E o modelo EGARCH(m,s) pode ser escrito como

$$ln(\sigma_t^2) = \alpha_0 + \frac{1 + \beta_1 B + \dots + \beta_{s-1} B^{s-1}}{1 - \alpha_1 B - \dots - \alpha_m B^m} g(\epsilon_{t-1})$$
(3.3.19)

B é o operador de defasagens tal que $Bg(\epsilon_t) = g(\epsilon_{t-1})$, e $1 + \beta_1 B + ... + \beta_{s-1} B^{s-1}$ e e $1 - \alpha_1 B - ... - \alpha_m B^m g(\epsilon_{t-1})$ são polinômios que não possuem fatores comuns e cujas raízes se encontram fora do círculo unitário, ou seja, o módulo de suas raízes é maior do que 1.

[21] aponta que principais diferenças para o modelo GARCH são:

- O EGARCH usa o ln da variância condicional, assim o modelo não se preocupa com a condição de que os coeficientes do modelo devam ser positivos.
- 2. Mas a principal motivação do modelo foi incorporar o efeito de assimetria, então a utlização da função $g(\epsilon_t)$ permitiu que o modelo respondesse de forma diferente a variações positivas e negativas.

GJR-GARCH

Outro modelo para incorporar o efeito de alavancagem é o GJR-GARCH, desenvolvido por Glosten et al. (1993) [13]. Ele assume que

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^m (\gamma_i I_{t-i} + \alpha_i) a_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2$$
(3.3.20)

onde I_{t-i} é uma função indicadora para um a_{t-i} ,

$$I_{t-i} = \begin{cases} 1, & \text{se } a_{t-i} < 0 \\ 0, & \text{se } a_{t-i} \ge 0 \end{cases}$$

O parâmetro γ_i é o que justamente adiciona ao modelo o efeito de alavancagem, ou seja, retornos negativos aumentam a volatilidade. Um a_{t-i} positivo contribui com $\alpha_i a_{t-i}^2$ para σ_t^2 , enquanto um a_{t-i} negativo contribui com um impacto maior de $(\alpha_i + \gamma_i)a_{t-i}^2$ com $\gamma_i > 0$.

Neste caso, estamos utilizando a função indicadora I com o limiar 0. Entretanto, se por exemplo, julgarmos que o efeito de alavancagem só ocorre para retornos abaixo de -0.5%, podemos modificar esse limiar. De fato, esse modelo também é conhecido como threshold GARCH (TGARCH), limiar GARCH em tradução livre.

No modelo GARCH o impacto do retorno passado na volatilidade futura é simétrico, ou seja, o impacto de um retorno de -1% é exatamente igual ao de um retorno de +1%. Já no GJR-GARCH é assimétrico no qual retornos negativos tem maior impacto na volatilidade futura do que retornos positivos. Portanto, o GJR-GARCH consegue se aproximar mais a realidade observada empiricamente no mercado.

3.3.3 Estimação dos Parâmetros

A estimação dos parâmetros é, em geral, feita pelo método da máxima verossimilhança. Desta forma, é necessário especificar a distribuição condicional dos termos de erro ϵ_t . A literatura emprega, usualmente, a distribuição Normal, entretanto se desejarmos capturar caudas mais pesadas dos retornos financeiros, podemos utilizar também inovações t-student.

Para estimação, idealmente são utilizados dados diários ou semanais. O principal motivo refere-se ao efeito dos clusters de volatilidade desaparecerem quando os retornos são medidos em horizontes mais longos. Logo, não faria sentido utilizar dados mensais para a estimação.

Escolha do Melhor Modelo

Existem alguns métodos para escolha do melhor modelo, para escolher entre um GARCH(1,1) ou um GARCH(2,1), por exemplo. Essa decisão pode ser feita através do critério de Akaike(AIC).

Para o modelo GARCH, o AIC é dado por:

$$AIC = \frac{-2}{T}L - \frac{2}{T}(m+s)$$
 (3.3.21)

Onde m + s é o número de parâmetros do modelo; L é o valor da função da máxima verossimilhança avaliada nas estimativas ótimas; e T o tamanho da amostra.

O primeiro termo mede a qualidade do ajustamento e o segundo é a função de penalidade do critério, pois penaliza o modelo com maior número de parâmetros, valorizando, assim, sua simplicidade.

Idealmente, para cada ativo devemos testar qual é o melhor modelo e se todos os parâmetros são significativos. Entretanto, o objetivo do trabalho é encontrar uma metodologia prática e abrangente para todos os ativos. Há vários estudos empíricos que afirmam que os modelos GARCH e ARMA de ordens baixas fazem um bom trabalho na modelagem [15]. Portanto, nesse projeto, utilizaremos o ARMA(1,1) para modelar a média condicional e o GARCH(1,1) e suas variações para a volatilidade condicional.

Capítulo 4

Implementação e Resultados

No Capítulo 2, definimos a metodologia que será aplicada, o método de Monte Carlo o qual depende do modelo econométrico estimado. No Capítulo 3 apresentamos os modelos econométricos que podem ser utilizados para simulações de trajetórias de ativos. Agora vamos implementar as simulações com os seguintes modelos.

- 1. Movimento Browniano Geométrico
- ARMA(1,1) para a média condicional + GARCH(1,1) para a variância condicional com inovações Normais.
- ARMA(1,1) para a a média condicional + GARCH(1,1) para a variância condicional com inovações t-student.
- ARMA(1,1) para a média condicional + EGARCH(1,1) para a variância condicional com inovações t-student.
- ARMA(1,1) para a média condicional + GJR-GARCH(1,1) para a variância condicional com inovações t-student.

O último passo, então, é utilizar as simulações de trajetórias de cada modelo para o cálculo do $MDaR_{\alpha}$. Em seguida com o procedimento conhecido como backtest iremos avaliar qual modelo de simulação produz estimativas mais satisfatórias e confiáveis para o $MDaR_{\alpha}$.

Neste capítulo iremos implementar e testar o caso univariado. Na prática, dificilmente um investidor aplicará todos os seus recursos em somente uma ação (empresa). Portanto, para tornar o caso univariado mais próximo da realidade, todos os testes serão aplicados a ETFs (exchange traded funds). Os ETFs são fundos de investimentos negociados em bolsa que, na maioria dos casos, busca replicar exatamente um índice ou uma estratégia.

Um índice de ações como o IBOVESPA, por exemplo, representa uma cesta de ativos escolhidos por um critério definido previamente. Entretanto, o investidor não consegue comprar o "IBOVESPA" diretamente. Há, portanto duas opções: comprar individualmente todas as ações do índice nas suas devidas proporções ou investir em um ETF, no caso do IBOVESPA o BOVA11. Então, o investidor estaria comprando um ativo, o BOVA11 no exemplo, mas indiretamente seria como se estivesse aplicando nos papéis do IBOVESPA.

4.1 Implementação

Como já dissemos, para a simulação das trajetórias, temos duas famílias de modelos, o Movimento Browniano Geométrico e modelos condicionais derivados dos modelos ARMA-GARCH.

No caso do MBG, primeiramente devemos, com os dados históricos, estimar a volatilidade e a média (drift) do ativo utilizamos o método de máxima verossimilhança assumindo uma distribuição Normal. Neste caso, $\hat{\mu}$ e $\hat{\sigma}^2$ são a média e a variância amostrais. De acordo com o modelo, a média e a volatilidade serão constantes, logo para a simulação de trajetórias só precisamos seguir os passos da seção (3.2).

Já nos modelos ARMA-GARCH, cuja média e volatilidade variam ao longo da trajetória, observaremos os seguintes passos:

Primeiramente, com os retornos históricos diários, ajustamos um ARMA(1,1) para modelar a média condicional. Em seguida, com os resíduos padronizados do ARMA(1,1), ajustaremos as especificações escolhidas para o modelo GARCH(1,1) Devemos notar que o modelo final estimado deverá ter todas as estimativas dos parâmetros significativas a 5%. Com os parâmetros ajustados, o seguinte procedimento deverá ser implementados.

Seja P_0 um valor inicial fixado e $\hat{\sigma_1}$ e $\hat{\mu_1}$ a previsão 1-passo-a-frente da variância condicional e da média condicional a partir dos modelos estimados. Para t = 1, ..., M faça:

- 1. Gere um número aleatório $\hat{\epsilon}_t$ de acordo com a distribuição do modelo Normal ou t-student.
- 2. Multiplique $\hat{\epsilon}_t$ pela volatilidade $\hat{\sigma}_t$ e ache a parte estocástica do retorno $\hat{a}_t = \hat{\sigma}_t \hat{\epsilon}_t$.
- 3. O retorno do ativo em t será, então, $r_t = \hat{\mu}_t + \hat{a}_t$
- 4. Consequentemente, o preço será $P_t = P_{t-1}e^{r_t}$
- 5. Atualize $\hat{\sigma_{t+1}} = \hat{\alpha_0} + \hat{\alpha_1}a_t^2 + \hat{\beta_1}\sigma_t^2$ (no caso GARCH(1,1))
- 6. Atualize $\hat{\mu_{t+1}}$ de acordo com o modelo ARMA(1,1)

Por questões de simplicidade de implementação e visto que a média condicional diária de retornos financeiro é na maioria dos casos muito próxima de zero, optamos por fixar μ_1 ao longo do tempo. Desta forma, a média condicional é a primeira previsão do modelo ARMA para toda a trajetória.

4.2. BACKTEST 35

4.2 Backtest

A avaliação de um modelo de risco é, geralmente, feita através de um procedimento chamado de *backtest*, que consiste em comparar previsões de perdas feitas pelo modelo com as perdas que de fato ocorreram.

Antes de entrarmos em teste estatísticos específicos para essa avaliação, podemos seguir o seguinte raciocínio: Se por exemplo, o modelo estipular, com uma probabilidade de 99%, um valor do máximo drawdown para os próximos H dias, é de se esperar que se fizermos 1.000 medidas em tempos diferentes, o modelo erre aproximadamente 10 vezes. Portanto, a primeira avaliação do modelo comparará se o percentual de violações do modelo condiz com a probabilidade que ele indica.

Os testes serão sempre feitos fora da amostra, ou seja, estaremos assumindo que não temos qualquer informação disponível do "futuro" para realizar a medição. A Figura 4.1 ilustra como será aplicado o backtest.

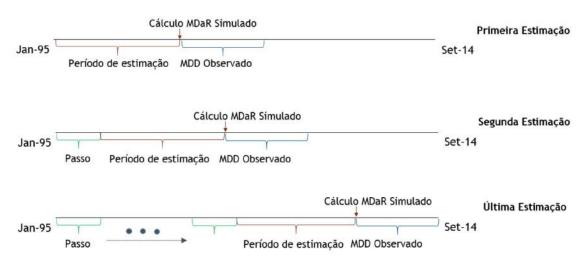


Figura 4.1: Backtest do modelo.

O período de estimação compreende o período no qual utilizaremos os dados históricos para estimar os parâmetros de cada modelo. Neste projeto, adotamos o período de 5 anos para a estimação, aproximadamente 1.260 dias úteis. Assim, os primeiros 5 anos dos dados não serão avaliados.

Precisamos definir também o período H para o qual queremos estimar o $MDaR_{\alpha}$. Vamos primeiramente testar para 22 e 66 dias.

Por fim, é necessário definir a diferença de tempo entre duas medidas consecutivas, que chamaremos de passo. Avaliando o $MDaR_{\alpha}$ para 22 dias, se escolhermos passos de um em um dia, estaremos coletando muita informação redundante. Em contrapartida, se escolhermos passos de 22 dias exatos, poderemos também estar cortando drawdowns relevantes no período. Para este trabalho, escolheremos passos de 5 dias.

Vamos começar os testes com o ETF do S&P 500, o SPY US. Foram coletados dados diários no Yahoo Finance de janeiro de 1995 a setembro de 2014. Considerando a janela de estimação de 1.260 dias, o período de 22 dias e o passo de 5 dias, podemos resumir a metodologia do backtest como:

Seja T o tamanho da série:

- 1. Para j em $\{1261, 1261 + 5, 1261 + 10, 1261 + 10, ..., T\}$
- 2. Com os dados de retorno diários entre [j-1260, j], estimamos os parâmetros do modelo.
- 3. Simulamos as possíveis trajetórias e estimamos o MDa R_{α} para 22 dias e α de probabilidade
- 4. Calculamos o máximo drawdown observado entre [j, j+22].

Ao final do backtest, teremos disponível uma série de MDaR $_{\alpha}$ estimada e uma série de máximos drawdowns observado. Em seguida, avaliaremos o número de violações de cada método, ou seja, o número de vezes que o máximo drawdown observado foi maior do que o MDaR $_{\alpha}$ simulado.

Foram 678 estimativas do $MDaR_{\alpha}$, no período de janeiro de 2000 a setembro de 2014. Nas tabelas a seguir, podemos observar os resultados para períodos de 1 mês (22 dias) e 3 meses (66 dias). Além do percentual de violações, a tabela apresenta o erro médio que é a média das diferenças entre $MDaR_{\alpha}$ observado e simulado quando ocorreram as violações. Essa métrica pode servir como desempate entre modelos com resultados próximos.

	lpha = 1%		$lpha{=}2.5\%$		$\alpha=5\%$	
	%violações	Erro Médio	%violações	Erro Médio	%violações	Erro Médio
MBG	4.8%	5.2%	5.8%	5.7%	7.4%	6.4%
GARCH-Normal	2.4%	4.3%	4.4%	3.9%	7.1%	4.1%
GARCH-t	2.3%	3.6%	4.2%	3.8%	6.9%	3.8%
EGARCH-t	1.5%	2.9%	2.8%	3.5%	5.9%	3.4%
GJR-GARCH-t	1.3%	2.1%	2.5%	3.0%	5.1%	3.1%

Tabela 4.1: Resultados perídos de 22 dias

	$_{ m alpha=1\%}$		$ m alpha{=}2.5\%$		alpha=5%	
	%violações	Erro Médio	%violações	Erro Médio	%violações	Erro Médio
MBG	5.1%	5.5%	5.3%	6.7%	9.1%	7.2%
GARCH-Normal	2.8%	4.3%	4.5%	4.5%	7.9%	4.3%
GARCH-t	2.7%	4.0%	4.3%	4.3%	7.5%	4.2%
EGARCH-t	2.0%	3.1%	3.5%	3.9%	7.0%	3.9%
GJR-GARCH-t	1.7%	2.5%	3.1%	3.1%	6.5%	3.9%

Tabela 4.2: Resultados períodos de 66 dias

Em uma primeira análise, já conseguimos observar que o Movimento Browniano Geométrico apresentou o pior resultado. As violações foram bem maiores do que as probabilidades

4.2. BACKTEST 37

sugeririam. Por exemplo, com o $\alpha = 1\%$ é de se esperar violações perto de 1%. No entanto, observamos 4.8% de violações, valor muito acima do aceitável.

A figura 4.2 mostra de forma gráfica os resultados. A linha em preto indica a estimativa do MDaR_{α} com 1% de confiança e os pontos o valor do MDD observado. Logo, os pontos em verde contidos na área em cinza foram previsões acertadas, e os pontos fora da área (indicados em vermelho) foram as violações do modelo. Por não se tratar de um modelo condicional, podemos observar que a previsão do modelo foi praticamente constante em quase todo o período. Desta forma, em períodos de maior stress de mercado, o modelo não conseguiu se adaptar e fornecer estimativas mais precisas.

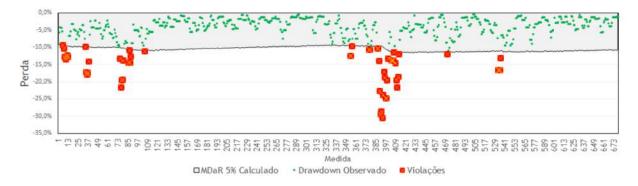


Figura 4.2: Resultados do Backtest do modelo MBG.

Por outro lado, utilizando os modelos GARCH, podemos observar que a utilização de inovações t-student ao invés da Normal melhorou ligeiramente os resultados do modelo. Já era de se esperar, pois como já foi discutido anteriormente, a distribuição Normal subestima as caudas da distribuição. No entanto, os modelos GARCH ainda não apresentaram resultados satisfatórios.

Começamos a encontrar resultados mais precisos nos modelos EGARCH e GJR-GARCH, que consideram o efeito da assimetria dos retornos e de alavancagem. Para a janela de 22 dias, podemos dizer que o modelo GJR-GARCH com inovações t-student apresentou resultados aceitáveis. Já, para uma janela de 66 dias, o GJR-GARCH apresentou os melhores resultados, entretanto um pouco mais distante do percentual de violações ideal.

De fato, fazer previsões para 66 dias se torna mais complicado, pois há maior chance de uma mudança de regime nesse período. Assim, daqui para a frente iremos focar no $MDaR_{\alpha}$ de H=22.

A Figura 4.5 mostra o resultado para o GJR-GARCH. Podemos observar que o modelo reage melhor às condições de mercado. Desta forma, observamos que a magnitude e frequência dos erros são menores em relação aos outros modelos.

Fica definido, então, o GJR-GARCH como o modelo para simular a trajetória dos ativos. Na próxima sessão, vamos estender as simulações para outros índices e avaliar mais profundamente os resultados através de testes formais.

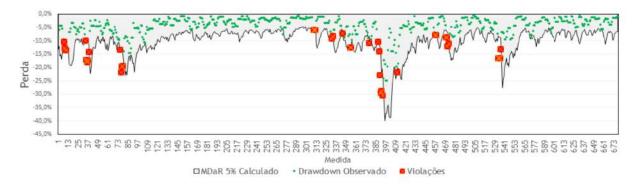


Figura 4.3: Resultados do Backtest do modelo MBG.

4.2.1 Teste de Kupiec

O percentual de violações consegue passar uma ideia geral sobre a eficácia do modelo. Entretanto, são raros os casos que conseguiremos o % de violações idêntico ao nível de confiança do modelo. Desta forma, precisamos de um teste estatístico para nos indicar se com o número de violações observados podemos aceitar ou rejeitar o modelo de risco.

O teste baseado em taxas de exceções mais amplamente conhecido foi desenvolvido por Kupiec (1995), e mede mede se o número de violações é consistente com o grau de confiança.

Seja $\{D_t\}$ a série de máximos drawdowns observados e $\{MDaR_t\}$ a série de estimativas do $MDaR_{\alpha}$ simulado, ambas de tamanho T . Considere a função indicadora:

$$I_t = \begin{cases} 1, & \text{se } D_t > MDaR_t \\ 0, & \text{caso contrário} \end{cases}$$

Podemos observar que I_t é igual a 1 quando o valor observado do máximo drawdown supera a estimativa do MDaR $_{\alpha}$ no tempo t. Logo, teremos a série $\{I_t\}$, como a série de violações do modelo.

Seja p o nível de confiança do modelo, o teste de hipótese é dado por:

$$H_0$$
: $p = \alpha$
 H_1 : $p \neq \alpha$

Sejam T o número de amostras e V é o número total de violações $V = \sum_{t=1}^{T} I_t$. Sob a hipótese nula $\{I_t\}$ tem distribuição de Bernoulli (α) . Desta forma V tem uma distribuição binomial, com média igual a $T\alpha$ e variância igual a $T\alpha(1-\alpha)$.

A estatística de teste é (-2) vezes a razão de log-verossimilhança, que possui distribuição assintótica qui-quadrado com um grau de liberdade.

4.2. BACKTEST 39

$$LR = -2ln[(1-p)^{T-V}p^{V}] + 2ln[1 - (V/T)^{T-V}(V/T)^{V}]$$

Se o valor da estatística LR sob H_o exceder o valor crítico da distribuição qui-quadrado, a hipótese nula é rejeitada e o modelo considerado inadequado.

4.2.2 Resultados

Nesta seção utilizaremos o modelo ARMA(1,1) + GJR-GARCH(1,1) que funcionou satisfatoriamente ETF do S&P 500, em 8 dos principais índices de ações do mundo. Só que desta vez, vamos utilizar o teste de Kupiec apresentado anteriormente.

Os dados também foram coletados pelo Yahoo Finance de janeiro de 1995 a setembro de 2014. As tabelas a seguir indicam o resultado do backtest. A coluna "#V esperada"mostra o número de violações esperada de acordo com o nível de risco α do modelo e o número de observações. Por exemplo, se fizermos 100 estimativas com o modelo a um nível de risco de 5%, é de se esperar que o modelo tenha 5 violações.

A coluna "#V observadas "mostra o número de violações que te fato foram observadas no backtest.

			$\alpha=5\%$			
País	Índice	#Observações	# V esperada	# V observadas	p-valor	
EUA	S&P 500	678	33	35	0.8470	
Brazil	IBOVESPA	678	33	29	0.4147	
Japão	NIKKEI 225	680	34	41	0.1796	
Europa	STOXX 600	681	34	40	0.2953	
Alemanha	DAX 30	679	33	39	0.4151	
França	CAC 40	690	34	42	0.1681	
Inglaterra	FTSE 100	696	34	56	0.0009	
Suiça	SMI 20	675	33	47	0.0287	

Tabela 4.3: Resultados do backtest para o nível de risco $\alpha = 5\%$.

Pelo teste de Kupiec com nível de significância de 5% não rejeitamos a hipótese nula para maioria dos índices, 6 de 8 testados, em 3 níveis de risco α (5%, 2.5% e 1%). Portanto, podemos afirmar que o modelo para o cálculo de MDaR funcionou satisfatoriamente.

Em negrito observamos as exceções, FTSE 100 da Inglaterra e o SMI da Suíça. Para esses dois índices um p-valor inferior a 5% nos obriga a rejeitar a hipótese nula e consequentemente afirmar que o modelo não é adequado.

Ao contrário da Figura 4.4 onde o modelo errou grosseiramente algumas estimativas, no caso do FTSE, por mais que o número de violações foi elevado, o modelo se adaptou as mudanças de regime e errou em uma magnitude aceitável, como pode ser observado na Figura 4.4.

				$lpha{=}2.5\%$	
País	Índice	#Observações	# V esperada	# V observadas	p-valor
EUA	S&P 500	678	16	17	0.9901
Brazil	IBOVESPA	678	16	14	0.4545
Japão	NIKKEI 225	680	17	25	0.0561
Europa	STOXX 600	681	17	24	0.1023
Alemanha	DAX 30	679	16	21	0.3365
França	CAC 40	690	17	20	0.4012
Inglaterra	FTSE 100	696	17	30	0.0037
Suiça	SMI 20	675	16	26	0.0640

Tabela 4.4: Resultados do backtest para o nível de risco $\alpha = 2.5\%$

				$\alpha=1\%$	
País	Índice	#Observações	# V esperada	# V observadas	p-valor
EUA	S&P 500	678	6	8	0.6470
Brazil	IBOVESPA	678	6	4	0.2452
Japão	NIKKEI 225	680	6	10	0.2456
Europa	STOXX 600	681	6	13	0.0691
Alemanha	DAX 30	679	6	10	0.2456
França	CAC 40	690	6	9	0.4145
Inglaterra	FTSE 100	696	6	15	0.0062
Suiça	SMI 20	675	6	13	0.0330

Tabela 4.5: Resultados do backtest para o nível de risco $\alpha=1\%$

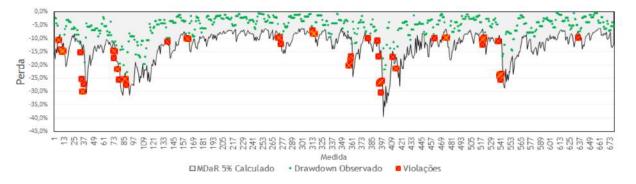


Figura 4.4: Resultados do Backtest para o FTSE.

Portanto, pelos testes podemos afirmar que a metodologia de cálculo do MDaR foi bem sucedida e pode ser aplicada.

A seguir vamos desenvolver um outro aspecto a ser testado de um modelo de risco.

4.3 Estratégia de Investimento

A simulação de uma estratégia de investimento através do modelo de risco é uma forma de teste não muito explorada pelos artigos acadêmicos. Essa simulação complementa a avaliação

realizada através do backtest por violações.

O principal objetivo de um modelo de risco não é somente acertar o número de violações, mas sim indicar corretamente o nível de risco que o investidor está correndo.

Em um exemplo hipotético, poderíamos criar um modelo que sempre indica que o $MDaR_0\%$ é igual -99.9% com uma probabilidade de 100%. Acertaríamos o número de violações. No entanto, não se poderia dizer que desenvolvemos um bom modelo pois superestimamos o verdadeiro risco.

Para inserir o modelo de risco dentro de uma estratégia de investimento, podemos considerar o seguinte exemplo:

O investidor pode somente investir no ETF do S&P 500, o SPY. No entanto, a cada 5 dias ele rebalanceia sua exposição de forma a manter o MDaR_{5%} de 22 dias em -8%.

Logo, se o MDa $R_{5\%}$ indica um valor de -8%, o investidor ficará 100% investido, já se o MDa $R_{5\%}$ indicar -16%, ele deverá reduzir a sua exposição para 50%, para conseguir voltar ao alvo de MDa $R_{5\%}$ de -8%. E no caso em que o MDa $R_{5\%}$ indicasse -4%, ele poderia correr mais risco e se alavancar ficando 200% comprado. Portanto a sua exposição será igual a $\frac{-8\%}{MDaR}$.

A figura 4.5 e a tabela 4.6 mostram o resultado dessa estratégia.

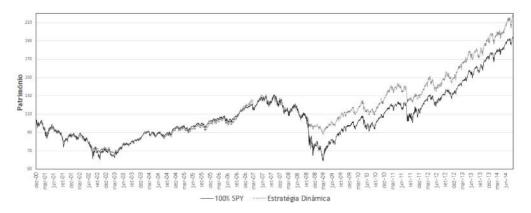


Figura 4.5: Resultado da estratégia.

	Estratégia Dinâmica	100% Investido SPY
Retorno	220%	190%
Exposição Média	100%	100%
Exposição Máxima	185%	100%
Exposição Mínima	20%	100%
Volatilidade Anualizada	14%	21%
Máximo Drawdown	-35%	-55%
Segundo Maior Drawdown	-33%	-42%
Terceiro Maior Drawdown	-15%	-19%
Quarto Maior Drawdown	-13%	-16%
Quinto Maior Drawdown	-11%	-14%

Tabela 4.6: Resultados da estratégia

A estratégia conseguiu um desempenho superior com menos risco (volatilidade) e sofrendo

drawdowns menores. Notamos também, que por mais que a exposição média das duas estratégias tenha sido igual a 100%, a estratégia dinâmica variou bastante a exposição ao longo do tempo. A Figura 4.5 mostra como variou a exposição em ações durante o período.

Figura 4.6: Backtest do modelo.

Logo, o modelo de risco se portou como o esperado. Com isso, o fundo esteve mais exposto em momentos mais calmos do mercado e menos exposto em momentos de crise. Desta forma, a estratégia conseguiu ter melhor desempenho, correndo menos risco.

4.4 Observações Sobre os Resultados

Idealmente, deveríamos testar qual o melhor modelo de simulação se adapta melhor em cada caso de ativo. No entanto, o objetivo desse projeto é apresentar uma metodologia simples e única para o cálculo do $MDaR_{\alpha}$.

Neste capitulo conseguimos fechar uma metodologia geral para o cálculo do MDaR no caso univaridado. O metodo de Monte Carlo utilizando com modelo ARMA(1,1) para média condicional e o GJR-GARCH(1,1) para variância condicional para realizar as simulações de trajetórias apresentou resultados satisfatórios para a maioria dos índices.

Capítulo 5

Conclusão

São poucos os trabalhos sobre o tema desse projeto e por isso não há um padrão claro na literatura de como esta medida de risco deve ser estimada e avaliada. Desta forma, neste trabalho primeiramente propomos uma definição para o $MDaR_{\alpha}$ e, em seguida, uma metodologia completa para sua estimativa.

Escolhemos o método de Monte Carlo para realizar a estimativa da medida. Desta forma, devemos também escolher um modelo econométrico para realizar as simulações de trajetórias. Estudamos diversos modelos para simular as trajetórias dos ativos e implementamos no software R, com auxílio dos pacotes rugarch, fGarch e forecast, os seguintes (códigos em anexo):

- 1. Movimento Browniano Geométrico
- ARMA(1,1) para a média condicional + GARCH(1,1) para a variância condicional com inovações Normais.
- ARMA(1,1) para a média condicional + GARCH(1,1) para a variância condicional com inovações t-student.
- ARMA(1,1) para a média condicional + EGARCH(1,1) para a variância condicional com inovações t-student.
- ARMA(1,1) para a média condicional + GJR-GARCH(1,1) para a variância condicional com inovações t-student.

Implementamos, também, o cálculo da estimativa do $MDaR_{\alpha}$, utilizando cada um dos modelos e, em seguida, avaliamos os resultados com o procedimento de *backtest*, onde realizamos as estimativas para diversas datas e, em seguida, avaliamos se o percentual de violações condiz com a probabilidade $(1 - \alpha)$ que ele indica.

Primeiramente, realizamos o backtest para ETF do S&P 500 em um período consideravelmente grande, de janeiro de 2000 a setembro de 2014, totalizando 678 medições. Testamos para dois períodos de tempo (H) para o MDaR $_{\alpha}$ 1 e 3 meses. O GJR-GARCH(1,1) com inovações t-student foi o modelo que produziu melhores estimativas para os dois períodos de tempo, fornecendo um percentual de violações que mais se aproximou do nível de risco $(1 - \alpha)$ estipulado.

No entanto, para estimativas de 3 meses à frente, consideramos que os resultados não foram satisfatórios. Aplicamos o teste estatístico de *Kupiec* e, para o período de 3 meses, não podemos aceitar o modelo. Já esperávamos este resultado, pois julgamos que é muito difícil fazer previsões para um período tão longo visto que podem ocorrer muitas mudanças de mercado que dificultam, assim, as estimativas.

Em contrapartida, para o período de um mês a frente, os resultados utilizando o GJR-GARCH(1,1) foram expressivos e o teste de *Kupiec* validou o modelo. Embora que o período de 1 mês não seja tão longo, ficamos satisfeitos com os resultados, pois uma medida de risco para esse período já apresenta vantagens em relação às medidas tradicionais, que normalmente são aplicadas para períodos de um a cinco dias a frente.

O objetivo do trabalho era achar uma metodologia simples que pudesse ser aplicada para qualquer ativo. Como o modelo funcionou bem para o ETF S&P 500, aplicamos os procedimentos para ETFs de outros 8 países. O modelo apresentou bons resultados para 6 dos 8 índices. E, quando analisamos graficamente os resultados para os dois índices no qual não pudemos aceitar o modelo pelo teste de Kupiec, notamos que o modelo não produziu violações muito distante dos valores de máximo drawdown observado.

Portanto, concluímos que o modelo proposto para a estimativa do $MDaR_{\alpha}$ foi validado e pode ser aplicado no caso univariado. Conseguimos, então, propor um modelo simples e eficiente para estimar o $MDaR_{\alpha}$. De fato, esta foi outra contribuição deste projeto. Não foi encontrado na literatura qualquer outro trabalho que tenha testado e validado as estimativas de um modelo para o $MDaR_{\alpha}$.

Os resultados positivos desse trabalho abrem o horizonte para que esta medida de risco seja mais explorada e torne-se mais popular. Julgamos que ela apresenta diversas vantagens em relações às medidas de risco mais tradicionais. Dentre essas vantagens, podemos destacar o fato de ela ser ideal para horizontes mais longos, o que a torna menos abstrata para o investidor final de longo prazo, além de ser uma medida de risco mais conservadora, o que ajuda o investidor a ter perdas menores.

No entanto, ainda há muito a se explorar sobre o $MDaR_{\alpha}$. Apresentamos a seguir apresentar algumas extensões possíveis sobre o tema.

5.1 Trabalhos Futuros

A medida de risco *Maximum Drawdown at Risk* ainda não foi bastante explorada tanto no meio acadêmico quanto em instituições financeiras. Desta forma, ainda há muitos trabalhos a serem desenvolvidos sobre o tema. Por exemplo, podemos investigar separadamente diferentes classes de ativos no caso univariado ou, também, estender o procedimento para o caso multivariado.

No caso de uma carteira com M ativos, uma forma simples de se aplicar a metodologia desse projeto ao caso multivariado seria trabalhar com a série histórica da carteira e, em seguida, tratá-la como o caso univariado. No entanto, esta aproximação não consegue capturar todos os aspectos do comportamento conjunto dos ativos. É uma modelagem mais complicada, pois além do comportamento de cada ativo isoladamente, devemos modelar suas interdependências. Todas as formas de dependências entre os ativos devem ser consideradas ao realizar simulações de trajetórias. Caso contrário, estaríamos as considerando totalmente independentes e, consequentemente, iríamos subestimar o verdadeiro risco.

Portanto, um possível trabalho seria estudar qual o melhor método de simulação multivariada poderia ser usado para estimar o $MDaR_{\alpha}$. Neste contexto, o GARCH multivariado [3] e a aplicação da teoria de cópulas [16] são opções bastante aplicadas em finanças.

Uma outra possibilidade de trabalho futuro que julgamos poder contribuir com este projeto é um aprimoramento do modelo, introduzindo a possibilidade de mudanças de regimes de volatilidade. Este aprimoramento pode ajudar a melhorar as previsões para períodos maiores do que um mês, no qual o nosso modelo não apresentou resultados satisfatórios.

Logo, antes de finalizar esse trabalho vamos desenvolver o conceito geral dos modelos de mudança de regime.

5.1.1 Modelos de Mudança de Regime

No Capítulo 4 conseguimos bons resultados para a estimativa do $MDaR_{\alpha}$ no período de um mês, utilizando o modelo GJR-GARCH para realizar simulações. O modelo incorpora o conceito de clusters de volatilidade e alavancagem em suas simulações, conforme já discutido anteriormente.

No entanto, o objetivo de $MDaR_{\alpha}$ é fornecer uma medida de risco para horizontes mais longos. Um aspecto que o modelo não incorpora é a possibilidade de uma mudança total de regime durante o período (H) da previsão.

No mercado há sempre chances de ocorrer uma notícia totalmente inesperada, como por exemplo falências de grandes instituições, guerras, protestos, epidemias e etc. E após um evento dessa magnitude, em um apenas um dia, o mercado pode mudar de um regime de baixa volatilidade para um regime de crise.

Exemplo Real

No Capitulo 4 realizamos o backtest do modelo para o ETF do S&P 500. Uma das violações do backtest, quando o máximo drawdown observado foi maior do que o MDaR $_{\alpha}$ estimado, exemplifica bem essas possíveis mudanças de regime.

No dia 21 de julho de 2011, o modelo estimou um $MDaR_{1\%}=13\%$ para o horizonte de um mês a frente. A Figura 5.2 mostra a variação do preço do S&P 500 em conjunto com os retornos diários ao quadrado (indicação da volatilidade) e o momento da medida está indicado

no gráfico de preços. Conforme pode ser observado, antes do momento da medida, o mercado estava em um regime sem tendência e de baixa volatilidade.

No entanto, no dia 5 de agosto, a agência de avaliação de risco financeiro Standard and Poor's reduziu a nota da dívida pública dos Estados Unidos pela primeira vez na história, gerando pânico no mercado sobre os possíveis impactos para a economia mundial. Consequentemente, o mercado rapidamente mudou para um regime de crise (alta volatilidade). O máximo drawdown observado no período avaliado foi de 16%, violando a estimativa.

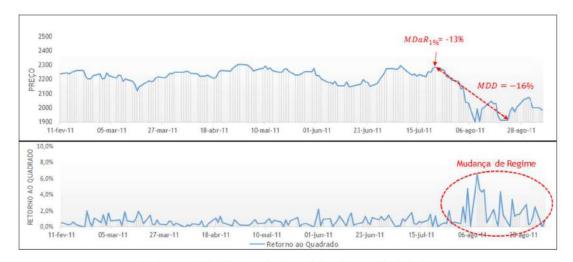


Figura 5.1: Exemplo de violação no backtest.

Modelos com Mudança de Regime Markoviana.

Um dos primeiros modelos a propor a possibilidade de mudança de regime foi o modelo GARCH de mudança de regime markoviana (MRS-GARCH). A transição entre regimes é feita através de uma variável aleatória não observada, seguindo um processo de Markov.

A variável de estado (regime) segue uma cadeia de markov de primeira ordem, com a probabilidade de transição dada:

$$\Pr(s_{t} = y | s_{t-1} = x) = \pi_{xy}$$
(5.1.1)

que indica a probabilidade de mudar do regime x no tempo t-1 para o regime y no tempo t.

O número de regimes pode ser definido. No entanto, quanto maior o número de regimes maior será a complexidade de estimação no modelo, pois também se deve estimar um modelo GARCH associado a cada regime i.

$$\sigma_{it}^2 = \alpha_{i0} + \alpha_{i1}a_{t-1}^2 + \beta_{i1}\sigma_{t-1}^2$$

Para o caso de somente dois estados, essas probabilidades podem ser indicadas pela seguinte matriz de transição.

$$P = egin{bmatrix} \pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22} \end{bmatrix} = egin{bmatrix} \pi_{11} & (1 - \pi_{11}) \\ (1 - \pi_{22}) & \pi_{22} \end{bmatrix}$$

E dois modelos GARCHS

$$\begin{split} \sigma_{1t}^2 &= \alpha_{10} + \alpha_{11} a_{t-1}^2 + \beta_{11} \sigma_{t-1}^2 \\ \sigma_{2t}^2 &= \alpha_{20} + \alpha_{21} a_{t-1}^2 + \beta_{21} \sigma_{t-1}^2 \end{split}$$

Usualmente, é adotado um regime de baixa volatilidade (i=1) e outro regime de alta volatilidade (i=2).

No MRS-GARCH, a probabilidade de estar em cada regime não é fixada, no entanto o que é fixada é a probabilidade de mudança de regimes a qualquer momento (probabilidade de transição). Essas probabilidades são mais um dos parâmetros a serem estimados pelo modelos, $\hat{\pi}_{11}$ indica a probabilidade, dado que o ativo esteja no regime 1, que ele continue no regime 1 e $\hat{\pi}_{12}$ seria a probabilidade do ativo passar do regime 1 para o regime 2. Analogamente, $\hat{\pi}_{22}$ e $\hat{\pi}_{21}$ funcionam com a mesma lógica, partindo do regime 2.

Desta forma, a probabilidade de ficar no regime 1 é $\hat{\pi}_{11} = 1 - \hat{\pi}_{12}$ e a probabilidade de ficar no regime 2 é $\hat{\pi}_{22} = 1 - \hat{\pi}_{21}$. E a probabilidade não condicional de estar no regime 1 é dada por:

$$\hat{\pi} = \frac{\hat{\pi}_{21}}{\hat{\pi}_{12} + \hat{\pi}_{21}} \tag{5.1.2}$$

No caso do MRS-GARCH, as probabilidades de transição não são necessariamente simétricas. A probabilidade do mercado mudar de um regime de alta volatilidade para baixa pode ser diferente da mudança de um regime de baixa para alta. Desta forma, conseguimos aproximar o modelo à realidade, simulando o fato de períodos de crise serem mais curtos e intensos do que períodos de baixa volatilidade.

Para simulações de trajetórias utilizando o modelo MRS-GARCH, precisamos seguir os seguintes passos:

Seja P_0 um valor inicial fixado e $\hat{\sigma}_{i1}$ a previsão 1-passo-a-frente da variância condicional e da média condicional do estado atual a partir dos modelos estimados, e i o estado atual do modelo. Para t = 1, ..., N faça:

- 1. Gera um número aleatório $\hat{\epsilon}_t$ de acordo com a distribuição do modelo normal ou t-student.
- 2. Multiplica $\hat{\epsilon}_t$ pela volatilidade $\hat{\sigma}_{it}$ e acha parte estocástica do retorno $\hat{a}_t = \hat{\sigma}_{it}\hat{\epsilon}_t$.

- 3. O retorno do ativo em t será, então, $r_t = \hat{a}_t$
- 4. Consequentemente, o preço será $P_t = P_{t-1}e^{r_t}$
- 5. Gera um número aleatório u entre [0,1].
- 6. Se $u \leq \hat{\pi}_{ii}$, i = regime atual. Senão, i = outro regime.
- 7. Acha $\sigma_{i,t+1}$ com os valores de $\hat{\sigma_{it}}$ e $\hat{a_t}$ usando os parâmetros do modelo GARCH.

Exemplo da Implementação do Modelo

Uma das desvantagens do MRS-GARCH é a dificuldade de estimação dos parâmetros. Não é trivial a definição de cada regime de volatilidade e também é necessária a estimação da matriz de transição. Para maiores detalhes, há bons trabalhados sobre a implementação desses modelos [14] [17]

Como o intuito desse capítulo é somente apresentar o conceito do MRS-GARCH, vamos ilustrar o cálculo do MDaR $_{\alpha}$ com MRS-GARCH, estimando os parâmetros empiricamente.

Agora voltemos para o exemplo da violação do modelo: Estimar o MDaR $_{\alpha}$ no dia 21 de julho de 2011 para um mês para frente.

Como "estamos" em julho de 2011, só podemos utilizar dados anteriores a esta data. Logo, vamos usar o período de janeiro de 2010 a junho 2011 para estimação do regime de baixa volatilidade e o ano de crise de 2008 para estimar o regime alta volatilidade. Estimando um GARCH(1,1) para cada regime temos:

Parâmetros	Regime Baixa Vol	Regime Alta Vol
α_0	7.6E-6	2.92E-5
$lpha_1$	0.070	0.150
eta_1	0.802	0.820
Volatidade Condicional t+1	13%	34%

Tabela 5.1: Parâmetros do modelo

As probabilidades de transição também serão definidas intuitivamente $\hat{\pi}_{11}$ =0.95 e $\hat{\pi}_{22}$ =0.85, ou seja, a probabilidade de mudar de um regime de baixa volatilidade para alta é de 5% e a probabilidade de mudança de um regime de alta volatilidade para baixa é de 15% Usando esse modelo e aplicando os passos de simulação descritos anteriormente e estimamos o MDaR_{1%}=16.8% não ocorrendo assim uma violação.

A Figura 5.2 mostra o exemplo de uma das 1000 simulações de trajetória. Ela ilustra o preço simulado em conjunto com o estado da simulação. Nota-se que no dia 8 da simulação, o modelo muda para um regime de alta volatilidade, produzindo um MDD simulado de 20%. Portanto, quando a simulação parte de um regime de baixa volatilidade, o modelo produzirá

estimativas mais conservadoras, pois considerará a probabilidade de uma mudança para um regime de alta volatilidade.

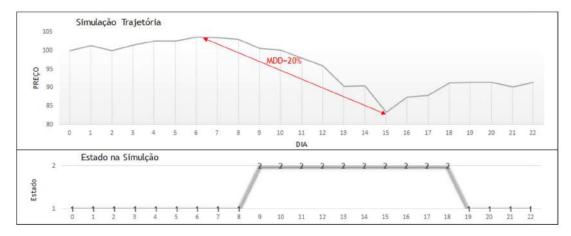


Figura 5.2: Resultados do Backtest para o FTSE.

Notamos também nos resultados do backtest, que após um período de crise, o modelo continua por um tempo estimando altos valores para o $MDaR_{\alpha}$. Logo, quando a estimativa parte de um regime de alta volatilidade, o modelo com o MRS-GARCH também pode contribuir a não superestimar o risco, pois ele levará em consideração a possibilidade de uma volta ao regime de baixa volatilidade.

Apêndice A

Códigos

```
calc MDD <- function(precos array)</pre>
  DD Atual=0
  DD_Maximo=0
10
   Maximo_Cota=0
   for (i in 1:length (precos_array))
13
15
    cota=precos_array[i]
    if (cota > Maximo Cota) {
17
      Maximo_Cota = cota
    } else {
     DD_Atual = (cota / Maximo_Cota - 1)
20
21
    if (DD_Atual < DD_Maximo) {
23
     DD_{\text{Maximo}} = DD_{\text{Atual}}
24
    }
25
27
   result <- list (MDD=DD_Maximo)
28
   return (result)
30
31
 \#\#\# \# \mathbb{P} \mathbb{N}
```

```
##Funcao para transformar t-stundet##########
36
 pp.rt <- function(n, df)
37
  {
38
39
   \operatorname{sqrt}((\operatorname{df}-2)/\operatorname{df}) * \operatorname{rt}(n, \operatorname{df})
40
  }
41
42
  43
44
45
  46
  47
48
49
  path simulation <- function (Returns, Preco inical acao, N dias, N sim, dist inov) {
50
51
 #dist_inov t for t-student N for Normal
52
53
    fit.arma <- Arima (coredata (Returns), order=c(1,0,1)) #modelo para media
54
    fit.res <- resid (fit.arma) #residuos do modelo
56
   if (dist_inov=="t") {
57
     fit .garch <- garchFit(~garch(1,1), fit .res, cond.dist="std", trace=FALSE)
58
   } else {
59
     fit .garch <- garchFit(~garch(1,1), fit .res, trace=FALSE)
60
61
62
63
   media hat inicio <- forecast. Arima (fit.arma) mean [1]
64
    desvio hat inicio <- predict(fit.garch, n.ahead=1)[["standardDeviation"]]
65
   n ativos=1
67
   GARCH_Parameters=matrix(0,n_ativos,6)
69
70
   GARCH Parameters [1,2] = coef (fit.garch) [["omega"]]
71
   GARCH_Parameters[1,3] = coef(fit.garch)[["alpha1"]]
72
   GARCH Parameters [1,4] = coef (fit.garch) [["beta1"]]
73
   GARCH_Parameters[1,6] = desvio hat inicio
74
   mu=GARCH Parameters [1,1]
76
   alpha 0=GARCH Parameters [1,2]
77
   alpha 1=GARCH Parameters [1,3]
78
   beta_1=GARCH_Parameters[1,4]
79
```

```
if (dist_inov=="t") {
81
       df <- coef(fit.garch)[["shape"]]
83
84
    #Parametros
85
86
     Precos=matrix (Preco_inical_acao, N_dias+1, N_sim)
87
     Volatilidade=matrix(100,N_dias+1,N_sim)
88
     Retornos_sim=matrix(0, N_dias, N_sim)
89
     Drawdown_sim = matrix(0, N_sim, 2)
90
91
     Volatilidade [1,] = desvio_hat_inicio*sqrt (252)*100
92
93
     for (i in 1:N_sim)
94
     {
95
96
       desvio hat desvio hat inicio
97
       ht_ant=desvio_hat_inicio^2
98
       media_hat=media_hat_inicio
100
       price=Preco_inical_acao
102
       for (j in 1:N_dias)
103
         if (dist inov="t") {
           inov=pp.rt(1,df)
107
         } else {
108
           inov=rnorm(1,0,1)
109
         simulate_return=inov*desvio_hat +media_hat
112
         ht=alpha_0+((simulate_return-media_hat)^2)*alpha_1 + ht_ant*beta_1
114
         desvio_hat=sqrt(ht)
116
         ht_ant=ht
117
118
         price=price * exp(simulate_return)
119
120
         Precos[j+1,i]=price
122
         Volatilidade [j+1,i] = round(desvio_hat*sqrt(252)*100,2)
123
         Retornos_sim[j,i]=round(simulate_return*100,2)
124
       }
126
```

```
Drawdown_sim[i,1] = calc_MDD(Precos[,i]) $MDD
128
    }
130
131
    result <- list (drawdowns_array=Drawdown_sim[,1], drawdowns_array_lenght=
      Drawdown sim [,2], precos sim=Precos, volatilidades sim=Volatilidade)
    return (result)
134
135
136
  138
139
140
  142
  path_simulation GBM <- function (Returns, Preco_inical_acao, N_dias, N_sim) {
144
   #estimação dos parametros
146
147
   mu<-mean (Returns)
148
    sigma <- stdev (Returns)
149
   #Parametros
    Precos=matrix(0,N_dias+1,N_sim)
    Retornos_sim=matrix(0,N_dias,N_sim)
   Drawdown_sim = matrix(0, N_sim, 2)
    for (i in 1:N_sim)
    {
158
     Precos[1,i]=Preco_inical_acao
     for (j in 1:N dias+1)
       Precos[j,i] = Precos[j-1,i] * exp((mu-(sigma^2)/2) + sigma*rnorm(1))
     Drawdown_sim[i,1] = calc_MDD(Precos[,i]) $MDD
167
168
    }
169
    result <- list (drawdowns_array=Drawdown_sim[,1], drawdowns_array_lenght=
      Drawdown_sim[,2], precos_sim=Precos)
    return (result)
```

```
173
174
176
  178
  179
  ##Funcao para simular os caminhos de um ativo com o GJR GARCH#########
181
  path simulation GJR <- function (Returns, Preco inical acao, N dias, N sim) {
182
183
184
    #Parametros
185
186
    Precos=matrix (Preco inical acao, N dias+1, N sim)
187
    Volatilidade=matrix(100,N_dias+1,N_sim)
188
    Retornos sim=matrix (0, N dias, N sim)
189
    Drawdown sim=matrix (0, N sim, 2)
190
    #dist_inov t for t-student N for Normal
192
    spec.gjrGARCH = ugarchspec(variance.model=list(model="gjrGARCH", garchOrder=c
194
       (1,1)), mean.model=list(armaOrder=c(1,1), include.mean=TRUE), distribution.
       model="std")
195
    fit . garch=c(0,0)
196
    options (show.error.messages = FALSE)
198
    try (
199
      fit.garch <- ugarchfit (Returns2, spec=spec.gjrGARCH)
201
202
203
    if (length (fit .garch)>1){
204
      result <- list (drawdowns array=Drawdown sim[,1], drawdowns array lenght=
205
         Drawdown_sim[,2], precos_sim=Precos, volatilidades_sim=Volatilidade)
      return (result)
206
    }
207
208
    options (show.error.messages = TRUE)
209
210
211
    alpha 0=coef(fit.garch)[["omega"]]
212
213
214
    if (is.null(alpha_0)){
215
```

```
result <- list (drawdowns array=Drawdown sim [,1], drawdowns array_lenght=
216
          Drawdown sim[,2], precos sim=Precos, volatilidades sim=Volatilidade)
       return (result)
218
219
     }
220
     forecast garch=ugarchforecast(fit.garch,n.ahead=1)
222
223
     media hat inicio <- fitted (forecast garch)
     desvio_hat_inicio <- sigma(forecast_garch)
    n ativos=1
227
    GARCH Parameters=matrix (0, n ativos, 6)
229
230
     alpha_0=coef(fit.garch)[["omega"]]
232
     alpha_1=coef(fit.garch)[["alpha1"]]
     beta_1=coef(fit.garch)[["beta1"]]
    gamma1=coef (fit.garch) [["gamma1"]]
     df <- coef(fit.garch)[["shape"]]
237
    240
241
     Volatilidade [1,] = desvio_hat_inicio*sqrt (252)*100
     for (i in 1:N sim)
     {
       desvio_hat=desvio_hat_inicio
       ht_ant=desvio_hat_inicio^2
248
       media hat=media hat inicio
       price=Preco_inical_acao
251
       for (j in 1:N_dias)
253
254
         inov=pp.rt(1,df)
255
256
257
         simulate return=inov*desvio hat +media hat
258
259
         if (simulate_return < 0){
260
           lev_efect=gammal*(simulate_return-media_hat)^2
```

```
lev efect=0
263
264
265
       ht=alpha_0+((simulate\_return-media\_hat)^2)*alpha_1 + ht\_ant*beta_1+lev\_
          efect
267
       desvio hat=sqrt(ht)
       ht_ant=ht
269
        price=price * exp(simulate_return)
275
       Precos[j+1,i] = price
274
        Volatilidade [j+1,i]=round (desvio hat*sqrt (252)*100,2)
275
       Retornos_sim[j,i]=round(simulate_return*100,2)
276
      }
9.78
      Drawdown_sim[i,1] = calc_MDD(Precos[,i]) $MDD
280
281
283
284
285
    result <- list (drawdowns array=Drawdown sim[,1], drawdowns array lenght=
       Drawdown_sim[,2], precos_sim=Precos, volatilidades_sim=Volatilidade)
287
    return (result)
288
290
291
  293
295
  298
  backteste_models <- function(ticker,data_inicio,data_fim,alpha_list,n_dias,N_sim
     , step , inicio , print_evolution) {
300
301
    stockData <- new.env() #Make a new environment for quantmod to store data in
302
    startDate = as.Date(data inicio) #Specify period of time we are interested in
303
    endDate = as.Date(data fim)
304
    tickers <- c(ticker) #Define the tickers we are interested in
```

} else {

262

```
306
     #Download the stock history (for all tickers)
     suppressWarnings(getSymbols(tickers, env = stockData, src = "yahoo", from =
308
        startDate, to = endDate))
     #Coloca retornos em uma matrix
     Returns <- eapply(stockData, function(s) ROC(Ad(s), type="continuous")) #
310
        retornos nos log returns ajustados
311
     ticker=gsub("\\^","",ticker)
312
313
314
     ReturnsDF <- as.data.frame(do.call(merge, Returns)) #concatena em uma matrix
315
     colnames (ReturnsDF) <- gsub (".Adjusted", "", colnames (ReturnsDF)) #tira ajusted
316
        das linhas
     ReturnsDF[is.na(ReturnsDF)] <- 0
317
318
319
     preco_real=data.matrix(Ad(eval(parse(text=paste("stockData$","",sep = ticker))
320
        )))
     preco real zoo=(Ad(eval(parse(text=paste("stockData$","",sep = ticker))))))
321
     Returns= eval(parse(text=paste("ReturnsDF$","",sep = ticker)))
322
     DD Array=matrix (0,1000,14)
324
     j=1
325
     i=inicio
326
327
328
     while (i < (length (Returns)-n dias))
329
330
331
       S_Returns=Returns[1:i]
332
333
       S Returns=ReturnsDF$SPY[(i-inicio+1):i]
335
       DD Array [j,1] = i
336
       DD_Array[j,2]=calc MDD(preco_real[i:(i+n_dias+1)]) $MDD #Drawdown Observado
338
       x=path simulation (Returns=S Returns, Preco inical acao=100,N dias=n dias,N
339
          sim=N_sim, dist_inov="t")
340
       DD_Array[j,3]=quantile(x$drawdowns_array,probs=alpha_list[1])
341
       DD_Array[j,4]=quantile(x$drawdowns_array,probs=alpha_list[2])
342
       DD Array[j,5] = quantile (x$drawdowns array, probs=alpha list[3])
343
344
       x=path_simulation (Returns=S_Returns, Preco_inical_acao=100,N_dias=n_dias,N_
345
          sim=N sim, dist inov="n")
346
```

```
DD_Array[j,6]=quantile(x$drawdowns_array,probs=alpha_list[1])
347
      DD Array[j,7] = quantile(x$drawdowns array, probs=alpha list[2])
      DD_Array[j,8]=quantile(x$drawdowns_array,probs=alpha_list[3])
349
      x=path simulation GBM(Returns=S Returns, Preco inical acao=100,N dias=n dias,
352
         N_sim=N_sim)
355
      DD Array[j,9] = quantile(x$drawdowns_array,probs=alpha_list[1])
      DD Array[j,10] = quantile(x$drawdowns array, probs=alpha list[2])
      DD_Array[j,11] = quantile(x$drawdowns_array, probs=alpha_list[3])
358
360
      x=path simulation GJR (Returns=S Returns, Preco inical acao=100, N dias=n dias,
361
         N sim=N sim)
369
      DD Array[j,12]=quantile(x$drawdowns array, probs=alpha list[1])
      DD Array[j,13] = quantile(x$drawdowns array, probs=alpha list[2])
364
      DD Array[j,14] = quantile(x$drawdowns array, probs=alpha list[3])
365
      i=i+step
367
      j=j+1
368
369
      if (print evolution = TRUE) {
        print(i)
371
      }
373
    }
375
    DD Array=DD Array [1:j-1,]
376
    result <- list (drawdowns backtest=DD Array, precos=preco real zoo)
378
379
380
  382
383
384
  386
387
  resultado=backteste models(ticker="SPY",data inicio="1995-01-01",data fim="
     2014-09-01", alpha list=c(0.01,0.025,0.05), n dias=22,N sim=10000, step=5, inicio
     =1500, print evolution=TRUE)
write.csv(x$drawdowns_backtest, file = "BOV.csv")
```

 $Funcoes_PFC.R$

Referências Bibliográficas

- [1] Carol Alexander, Risk management and analysis: Measuring and modelling financial risk, vol. 1, John Wiley & Sons Inc, 1998.
- [2] Torben G Andersen, Tim Bollerslev, Francis X Diebold, and Heiko Ebens, The distribution of realized stock return volatility, Journal of Financial Economics 61 (2001), no. 1, 43–76.
- [3] Luc Bauwens, Sébastien Laurent, and Jeroen VK Rombouts, *Multivariate garch models:* a survey, Journal of applied econometrics **21** (2006), no. 1, 79–109.
- [4] Fischer Black, {Stuedies of stock price volatility changes}, (1976).
- [5] Tim Bollerslev, Generalized autoregressive conditional heteroskedasticity, Journal of econometrics 31 (1986), no. 3, 307–327.
- [6] John Y Campbell, The econometrics of financial markets, princeton University press, 1997.
- [7] Rama Cont, Empirical properties of asset returns: stylized facts and statistical issues, (2001).
- [8] Jón Daníelsson, Financial risk forecasting: The theory and practice of forecasting market risk with implementation in r and matlab, vol. 587, John Wiley & Sons, 2011.
- [9] Beatriz Vaz de Melo Mendes, Introdução à análise de eventos extremos, Editora E-papers.
- [10] Beatriz Vaz de Melo Mendes and Vinicius Ratton Brandi, Modeling drawdowns and drawups in financial markets, Journal of Risk 6 (2004), 53-70.
- [11] Asli Demirgüç-Kunt and Ross Levine, Stock market development and financial intermediaries: stylized facts, The World Bank Economic Review 10 (1996), no. 2, 291–321.
- [12] Robert F Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation, Econometrica: Journal of the Econometric Society (1982), 987–1007.
- [13] Lawrence R Glosten, Ravi Jagannathan, and David E Runkle, On the relation between the expected value and the volatility of the nominal excess return on stocks, The journal of finance 48 (1993), no. 5, 1779–1801.

- [14] Markus Haas, Stefan Mittnik, and Marc S Paolella, A new approach to markov-switching garch models, Journal of Financial Econometrics 2 (2004), no. 4, 493–530.
- [15] Peter R Hansen and Asger Lunde, A forecast comparison of volatility models: does anything beat a garch (1, 1)?, Journal of applied econometrics 20 (2005), no. 7, 873–889.
- [16] Eric Jondeau and Michael Rockinger, The copula-garch model of conditional dependencies: An international stock market application, Journal of international money and finance 25 (2006), no. 5, 827–853.
- [17] Franc Klaassen, Improving garch volatility forecasts with regime-switching garch, Advances in Markov-Switching Models, Springer, 2002, pp. 223–254.
- [18] Ricardo Pereira Câmara Leal and Beatriz Vaz de Melo Mendes, Maximum drawdown: Models and applications, The Journal of Alternative Investments 7 (2005), no. 4, 83–91.
- [19] Daniel B Nelson, Conditional heteroskedasticity in asset returns: A new approach, Econometrica: Journal of the Econometric Society (1991), 347–370.
- [20] Wim Schoutens, Book tools, (2003).
- [21] Ruey S Tsay, Analysis of financial time series, vol. 543, John Wiley & Sons, 2005.
- [22] Jan Vecer, Preventing portfolio losses by hedging maximum drawdown, Wilmott 5 (2007), no. 4, 1–8.
- [23] T Young, Calmar ratio: A smoother tool, Future Magazine (1 October) (1991).