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Abstract

The present thesis is an exploratory data analysis of the high frequency dataset of NBBO
quotes (national best bid and offer) for the NYSE market. The focus of the analysis
is on the assumptions and results of the Markovian micro structure model introduced
in Cont and de Larrard (2013). The model provides distributions for the durations
between mid price changes, probabilities of mid price changes conditioned to the state
of the order book and a formula describing price intraday volatility in terms of pure
microstructure statistics. We verify model assumptions and compare the theoretical
results with empirical data for the stocks from the Dow Jones Industrial Average Index,
one of the most liquid markets in the world. In this thesis, we conclude that the model
gives a good description of the market dynamics at the high frequency level, and produces
consistent results with the data, including the aforementioned volatility relationship.
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Resumo

Esta dissertação tem como objetivo estudar empiricamente o modelo Markoviano de
microestrutura de mercado investigado por Cont and de Larrard (2013), o qual é di-
recionado a mercados ĺıquidos. Entre outros resultados, o modelo é capaz de prover
distribuições para as durações entre mudanças no mid price, probabilidades com re-
speito a mudanças no mid price condicionados ao estado do livro de ofertas e relacionar
estat́ısticas de pura micro estrutura com a volatilidade. Utilizando uma base de dados
de alta-frequência gratuitamente dispońıvel pela NYSE, investigamos extensivamente os
pressupostos do modelo e alguns dos seus resultados para as ações do Índice Dow Jones,
um dos mercados mais ĺıquidos do mundo. Nessa dissertação, conclúımos que o modelo
é capaz de absorver o cerne do funcionamento do mercado em alta frequência e produzir
resultados consistentes, incluindo a supracitada relação com a volatilidade.
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1 Literature Review

1.1 Introduction

A large stake of the financial markets are operated through double auction systems,
informally known as order books. For instance, the average daily traded volume operated
on order books at NYSE (New York Stock Exchange) is of tens of billions of dollars1. Due
to its relevance in the trading process, the limit order book has been extensively studied
in the literature and numerous models have been proposed to address the mechanics of
the so-called market microstructure.

Market microstructure models are of key importance to understand price formation.
Numerous microstructure characteristics are known to affect price dynamics on a broader
scale Madhavan et al. (1997). Furthermore, their study has several applications, such
as optimal execution Alfonsi and Schied (2010); Obizhaeva and Wang (2012); Tsoukalas
et al. (2013), market making strategies Glosten and Milgrom (1985), liquidity risk Biais
and Weill (2009) and transaction costs modelling Glosten and Milgrom (1985); Parlour
(1998); Roll (1984).

In this thesis, we consider a Markovian model for market microstructure. This model
was first introduced by Stoikov et al. (2010) and was intended to study hidden liquidity.
Afterwards, it was further extended by Cont and de Larrard (2013), where various
interesting theoretical results were found. In the present thesis, we study to which
extent the model assumptions and theoretical results are supported by real data.

The model takes into account only the best bid and ask quantities and prices dynamics.
In Cont and de Larrard (2013), the authors present two justifications for not considering
the deeper levels of the order book. First, it is shown in Biais et al. (1995) that most
of the order flow is directed at best bid and ask prices. Moreover, the best bid and
ask dynamics are found in Cont (2001) to be the main driver for price oscillations.
This simplification is very welcome both mathematically and technically, since best bid
and ask data is cheaper, easier to find and usually easier to process computationally.
Throughout this document, we shall refer to the best bid and ask prices and quantities
simply as bid and ask prices and quantities.

The model is intended to describe highly liquid markets, where the bid-ask spread is
a single tick most of the time. As in Cont and de Larrard (2013), we analyse the stocks
that compound the Dow Jones Industrial Average Index, one of the most liquid markets
of the world . In Subsection 2.4, it is verified whether these stocks attain this condition.
As a matter of illustration, the codes and assets of the Dow Jones Index are enumerated
in Table 1.1.

1Data from http://www.nyxdata.com/.

1

http://www.nyxdata.com/


1 Literature Review

Name

Code
AA Alcoa Inc.
AXP American Express Co.
BA Boeing Co.
BAC Bank of America Corp.
CAT Caterpillar Inc.
CSCO Cisco Systems Inc.
CVX Chevron
DD E.I. DuPont de Nemours & Co.
DIS Walt Disney Co.
GE General Electric Co.
HD Home Depot Inc.
HPQ Hewlett-Packard Co.
IBM International Business Machines Corp.
INTC Intel Corp.
JNJ Johnson & Johnson
JPM JPMorgan Chase
KO Coca-Cola Co.
MCD McDonald’s Corp.
MMM 3M Co.
MRK Merck & Co. Inc.
MSFT Microsoft Corp.
PFE Pfizer Inc.
PG Procter & Gamble Co.
T AT&T
TRV Travelers Cos.
UNH UnitedHealth Group Inc.
UTX United Technologies Corp.
VZ Verizon Communications
WMT Wal-Mart Stores Inc.
XOM Exxon Mobil

Table 1.1: Dow Jones Industrial Average Index components from September 24, 2012
until September 22, 2013.
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1.2 Model Specification

The thesis is organized as follows:

Chapter 1. Literature Review Contextualizes the Markovian model and recall its the-
oretical formulation and features.

Chapter 2. Bid and Ask Dynamics Study Studies the bid and ask dynamics in a model-
free fashion. It investigates the dependence between bid and ask quantities, the
behavior of the bid and ask quantities when the mid price is constant and, finally,
whether the bid-ask spread is equal to one, as the model demands.

Chapter 3. Parameter Study Studies the parameters of the model focusing on check-
ing its parameter assumptions.

Chapter 4. Analysis of Model Results Finally, after confronting the model assump-
tions with the empirical data, we investigate the theoretical results and their ad-
herence to their empirical counterpart.

1.2 Model Specification

1.2.1 Model Formulation

Model Assumptions

The model makes the following assumptions:

1. The bid-ask spread is exactly one tick,

2. All order sizes are equal,

3. The bid-ask quantities follow a 2D independent birth and death process while the
mid price is constant,

4. When the bid or ask quantity gets fully depleted, random quantities for bid and ask
queues are observed and the prices move one tick in the direction of the depletion.

The first assumption is consistent with the idea of liquid markets. The second as-
sumption can be interpreted as a choice of modelling the incoming orders as events2.
Either for the bid or the ask quantities, the birth and death process in assumption num-
ber three is a difference of Poisson processes, which are all assumed to be independent
of each other. Finally, the fourth assumption describes the events that generate a mid
price change. Section 2.4 is devoted to study the first assumption, Section 2.1 studies
the independence feature in the third assumption and Session 2.2 investigates the choice
of the birth-death process.

2An event is a change in state. This change can be in the price or quantity of the bid or ask queue.
Thus, the model do not worry about the order size, only its time and signal. In Section 3.2, we
study a potential bias arising from this assumption.
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1 Literature Review

Model Parameters

Given the assumptions, we shall make the model parameters precise. They are

• δ — tick size,

• λ — limit orders rate (birth rate),

• µ+ θ — market orders and cancellations rate (death rate),

• f and f̃ — conditional probability density functions for bid and ask quantities
after a queue gets depleted (f is conditioned to a increase in mid price and f̃ to a
decrease in mid price).

Note that the birth and death rates parameters are the same for each dimension.
However, sometimes it is interesting to distinguish those rates for each side, so we may
introduce λbid, λask, µbid + θbid and µask + θask.

Still regarding the parameters λ and µ+ θ, it is shown in Cont and de Larrard (2013)
that if µ+ θ = λ, the expected time for the next price movement is infinity. Thus, it is
desired to have µ + θ > λ, as in this case the expected time is finite. In Session 3.2 we
study this property.

Session 3.3 is devoted to study the parameters f and f̃ and a measure of market
depth3 derived from these parameters. From the model assumptions, we can note that
the model does not rely on an explicit form of the distribution for f and f̃ .

Understanding the dynamics of the model

In Figure 1.1, we can visualize the stylized dynamics of the model. The trajectory
starts with dot number 1. The parameter µ+ θ ‘pushes’ the quantities downwards and
leftwards, while the parameter λ ‘pushes’ the quantities upwards and rightwards.

At dot number 9, the bid queue gets depleted. This makes the mid-price decrease δ
and new random quantities are observed at dot number 10. These new random quan-
tities are generated by the distribution f̃ . Note that dot number 9 is shown only for
illustrative purposes. Since it would imply a spread of two ticks, its existence would
violate assumption 1.

1.2.2 Model Features

Negative Autocorrelation in Returns

The existence of negative first autocorrelation is empirically observed in high-frequency
data for the log returns (cf., for instance, Tsay (2005)). As pointed out in Cont and
de Larrard (2013), this is also true for the mid price process (cf. Cont (2001)). The
present model accounts for this feature, which is going to be detailed in Subsection 4.1.2.

3Market depth is an abstract concept regarding how much the deeper layers of order book can absorb
a market order with a size larger than the best bid and ask quantities.
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1.3 Theoretical Results of the Model

Figure 1.1: Example of a bid-ask trajectory.

Martingale Property of “Efficient Prices”

In Cont and de Larrard (2013), it is also pointed out that various authors, such as
Robert and Rosenbaum (2011), consider the so-called “efficient price” and advocates for
its martingale property. The “efficient price” is a non-observable process which coincides
with the observable price when a trade occurs. Alternatively, it can also be seen as a
noiseless version of price process (this noise can be, for instance, caused by the a rounding
error to the nearest tick).

The model in Cont and de Larrard (2013) is able to construct such a process. It is
defined by the expectation of the price for the next trade. It is shown in Cont and de Lar-
rard (2013) that this process is a martingale if and only if there is no autocorrelation in
the returns.

1.3 Theoretical Results of the Model

The main results of the model developed in Cont and de Larrard (2013) are:

1. Distribution of duration until next price movement conditioned to the state of
order book, and their tail indices when µ+ θ > λ and when µ+ θ = λ;

2. Probability of a mid price increase conditioned to the state of the order book

a) for the next mid price change, when µ+ θ = λ,

b) for the next mid price change, when µ+ θ > λ,

c) for the next mid price change, when µask + θask 6= µbid + θbid and λask 6= λbid,

d) for the n-th mid price change ahead;

5
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3. Probability of consecutive mid price changes in the same direction;

4. Standard deviation of the mid price returns

a) when µ+ θ = λ,

b) when µ+ θ > λ.

In 4, we study 1, 2.a, 3 and 4.a. In order to prepare for the empirical results, this
section is intended to give the theoretical formulation of these four selected results.
However, before that, it is worth to mention that all the theoretical results in Cont and
de Larrard (2013) are given in explicit formulas, so that one does not need to resort to
simulations nor numerically solve any equation.

1.3.1 Conditional Distribution for Durations Between Mid Price
Changes

Another useful result for the model described in Cont and de Larrard (2013) is related
to the conditional distribution of the duration between mid price movements. This
distribution is explicitly obtained by

P[τ > t|qbid = x, qask = y] =

(
µ+ θ

λ

)x+y
2

ψx(t)ψy(t) (1.1)

where q• is the quantity of the respective queue,

ψn(t) =

∫ +∞

t

n

u
In

(
2
√
λ(µ+ θ)

)
e−u(λ+µ+θ)du

and I• is the modified Bessel function of the first kind.
Moreover, Cont and de Larrard (2013) shows that the tail index for this distribution

is 1 when λ = µ + θ — which implies the infinite expectation for the duration between
mid price changes — and 2 when λ < µ+ θ.

Notice that (1.1) does not involve the parameter f nor f̃ . This is expected, since this
distribution shall not consider bid and ask quantities either before or after the mid price
change.

The formula in (1.1) can be retrieved by considering the bid and ask quantities sep-
arately. Let τ• be the time spent for a queue (either ask or bid) process to get fully
depleted. Since τ = τbid ∧ τask and since the processes are independent, we have that

P[τ < t|qbid = x, qask = y] = P[τbid ∧ τask < t|qbid = x, qask = y]

= P ([τbid < t|qbid = x] ∩ [τask < t|qask = y])

= P[τbid < t|qbid = x]P[τask < t|qask = y].

Thus, the task of finding the conditional distribution for τ is reduced to find the con-
ditional distribution for τ•. Now, let us consider a random walk that takes increments

6



1.3 Theoretical Results of the Model

equal to 1 with probability p and −1 with probability 1− p and that the time intervals
between those increments are exponentially distributed with mean 1/c. Then, define
the probability Pk(t) to be the probability of a position k at the time t for this random
walk. We can notice that

Px(t) = P[τbid < t|qbid = x],

when

p =
λ

λ+ µ+ θ
, c = λ+ µ+ θ,

and an analogous setting for the ask side.

Since the random walk started at the origin, the position k 6= 0 at time t can only be
attained if there was a jump before t. When that jump occurred, say t− s, the position
was either k− 1 or k+ 1 and then it increased or decreased, respectively. Thus, we have
that

Pk(t) =

∫ t

0

ce−c(t−s) (pPk−1(s) + (1− p)Pk+1(s)) ds.

Differentiating, we find the following ODE

P ′k(t) = −cPk(t) + cpPk−1(t) + c(1− p)Pk+1(t) (1.2)

with initial conditions P0(0) = 1 and Pk(0) = 0 for all k 6= 0.

Using Laplace transforms, we can solve (1.2) with its initial conditions, and get the
Laplace transform of the density of the distribution for τbid and τask, which is

Lk(u) =
k

t

√(
µ+ θ)

λ

)k
Ik(2

√
λ(µ+ θ)t)e−t(λ+µ+θ.

With Lk(u), we can do two things: do the inverse Laplace transform to get the explicit
densities of τ• — which leads to the explicit distribution of τ , and thus providing (1.1)
— and also use the Karamata’s Tauberian theorem (cf. Feller (1971)) to get the tail
distribution of τ• and then compose the tail distribution of τ by multiplying τbid with
τask, where we easily extract the tail index.

For further reference, when λ = µ+ θ, the tail conditional distribution for τ is

P[τ > t|qbid = x, qask = y]
t→∞∼ xy

πλ

1

t
,

and its inconditional form is

P[τ > t]
t→∞∼

∞∑
i,j=1

ij

πλ

1

t
=
D(f)

πλ

1

t
. (1.3)
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1.3.2 Probability of an Increase in Mid Price Conditioned to an
Order Book State

Another useful result in Cont and de Larrard (2013) is the probability of an increase for
the next mid price change. When λ = µ+ θ, this probability is explicitly

pup =
1

π

∫ π

0

(
2− cos(t)−

√
(2− cos(t))2 − 1

)p sin(nt) cos(t/2)

sin(t/2)
dt (1.4)

Note that there are no parameters involved in (1.4), which is a very convenient feature
of this formula.

To see why this is true, let us first call {qt}t≥0 the bid and ask quantities process
while the mid price is still. Assuming λ = µ + θ, it is easy to see that there exists a
symmetrical two-dimensional random walk {Mt}t≥0 and a Poisson process {Nt}t≥0 with
mean 2λ such that

qt = MNt ,∀t ≥ 0.

This is true because, when we assumed that λ = µ+ θ, the probability of an increase or
decrease in either bid or ask quantity is equal to each other and since the processes for the
bid and ask quantities are independent, it implies that it is a two-dimensional random
walk with respect to some time rescale. Since the time interval between two changes in
bid or ask quantities are exponentially distributed with mean 1/λ = 1/(µ+ θ), then the
time interval between changes between events considering both of them indifferently is
exponentially distributed with mean 1/(2λ). Thus, the proper rescale of time for the
random walk is a Poisson process with mean 2λ.

However, since we do not consider the time, the time scale is not important, we just
want to know the probability that {qt}t≥0 hits one axis instead of the other. In that case,
there is a result in Lawler and Limic (2010) that the probability that {Mt}t≥0 starting
at (n, p) hits (x, 0) is

2

π

∫ π

0

e−r(t)p sin(nt)sin(tx)dt,

where
r(t) = cosh−1 (2− cos(t)) .

. Thus, we may integrate in x ≥ 1 to get the probability that the bid and ask quantities
hit the ask axis, leading to an increase in mid price, i.e.

pup =
∞∑
k=1

2

π

∫ π

0

e−r(t)p sin(nt)sin(tx)dt.

With some proper arithmetical manipulation we get rid of the sum and get the desired
result.

1.3.3 Probability of Consecutive Movements in Mid Price

As pointed out in Subsection 1.2.2, the model accounts for the property of negative first
autocorrelation for bid and ask returns time series. Moreover, since the model assumes

8
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that the bid-ask spread is always one tick, this means that it would be equivalent to
consider either the bid, ask or mid price returns.

For this particular model, an useful result in Cont and de Larrard (2013) is that the
first autocorrelation of the mid price returns time series can be determined by comput-
ing the probability of consecutive directions for the movement of the mid price. More
precisely, the autocorrelation is negative if and only if that probability, defined as pcont,
is strictly less than one half. This is intuitively simple, because if pcont is less than one
half, it means that it is more likely that, for each movement, the next will be in the
opposite direction – which is exactly what negative autocorrelation means.

A very simple expression for pcont can be found if we assume that λ = µ + θ and
f(x, y) = f̃(y, x). In Cont and de Larrard (2013) this expression is formulated as

pcont =
∞∑
i=1

∞∑
j=1

f(i, j)pup(i, j), (1.5)

where pup is given by (1.4).
To see this, let X1 and X2 be consecutive mid price increments. Since we have that

f is the distribution of bid and ask quantities conditioned to an increase in mid price,
then we have that

P[X2 = δ|X1 = δ] =
∞∑
i=1

∞∑
j=1

f(i, j)pup(i, j).

On the other hand, we have analogously

P[X2 = −δ|X1 = −δ] =
∞∑
i=1

∞∑
j=1

f̃(i, j)(1− pup(i, j)).

Since the birth and death rates are the same for bid and ask quantities, we have that

pup(i, j) = 1− pup(j, i), ∀(i, j) ∈ N2.

Moreover, since we assumed that f(x, y) = f̃(y, x), we have that

P[X2 = δ|X1 = δ] =
∞∑
i=1

∞∑
j=1

f(i, j)pup(i, j)

=
∞∑
i=1

∞∑
j=1

f̃(j, i)(1− pup(j, i)

= P[X2 = −δ|X1 = −δ]

Since P[X2 = δ|X1 = δ] = P[X2 = −δ|X1 = −δ], we conclude that

pcont = P[X2 = δ|X1 = δ]P[X1 = δ] + P[X2 = −δ|X1 = −δ]P[X1 = −δ]
= P[X2 = δ|X1 = δ]

=
∞∑
i=1

∞∑
j=1

f(i, j)pup(i, j)

9
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1.3.4 Volatility Formula

Under the hypotheses that λ = µ + θ and that f(i, j) = f̃(j, i), Cont and de Larrard
(2013) shows that the volatility of the stock, measured in variance of the mid-price, can
be easily computed as

σ2 = δ2
πλ

D(f)
, (1.6)

where D(f) was already defined and discussed in Subsection 3.3.3. This equation is
particularly interesting because it links the volatility to pure microstructure parame-
ters, without any (even indirect) dependence on the values of the prices. This result
comes from a functional central limit and, for that reason, it should be regarded as an
asymptotic result.

The equation (1.6) is obtained by a lengthy demonstration. Because of that, we outline
the demonstration and direct the reader to Cont and de Larrard (2013) for the complete
proof. The idea is to use a proper rescale of the time such that we can use a functional
central limit theorem to obtain a Brownian motion for the mid price dynamics. The
λ/D(f) ratio in (1.6), in particular, comes from the tail of the durations distribution
(1.3). We are interested only in the tail of the durations distribution (1.3) because the
result uses the limit for t→∞.

1.4 Methodology

1.4.1 Overview

The purpose of this section is to describe the methodology which collectively addresses
various empirical results in this thesis. Specific methodological issues are described inside
the appropriate section where they arise.

1.4.2 Data set

The New York Stock Exchange offers a free sample4 of the National Best Bid and Offer
data. The National Best Bid and Offer consists of the data for the consolidated best
bid and ask prices and quantities of all the regulated stock exchanges registered by
the Consolidated Tape Association that trade the same assets in the United States at
the best bid and ask prices, including the quantities in each side. The sample data
is composed of thousands of tickers for the April, 3rd and 4th, 2013 trading sessions
totalling 125,949,035 lines for the first day and 117,258,854 for the other.

This data is structured in single table form, where each line represents a change in
any of its columns fields. There are 33 fields, but the ones of interest for the purpose of
this work are the timestamp, asset code, best bid order price, best bid order quantity,
best ask order price and best ask order quantity. The timestamps describe the moment
the orders arrive up to its milliseconds.

4Which can be downloaded from http://www.nyxdata.com/data-products/daily-taq.
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1.4 Methodology

Figure 1.2: Citigroup Inc bid and ask prices and quantities from 12:30 PM to 13:00 PM
in April 3rd, 2013.

The model investigated in Cont and de Larrard (2013) does not need any information
about orders deeper in the order book nor the information about the trades (although
the latter could also be downloaded from the same source). Thus, all of the numerical
results contained in this thesis are obtained from this dataset.

In Figure 1.2, we illustrate our dataset with one close-up of the bid and ask prices and
quantities. We shall be aware that the prices in the original dataset were multiplied by
a ten thousand factor in order to accommodate 4 decimal digits onto an integer format.
However, since the tick size for equities in NYSE is 1 cent, the tick size is 100 for our
dataset format. Also, we note that the unit of the order sizes are units of trade — i.e.,
the minimum ‘size’ is 1 —, which means bulks of 100 shares in our case.

1.4.3 Parameter estimation

The article Cont and de Larrard (2013), where the model is presented, provides no
information about parameter estimation. However, a previous article Cont et al. (2010),
that presents a similar model, provides some clues for the parameter estimation, which
will be used here. All the parameters for the model can be estimated directly from the
market.

11
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Queue Price movement Order type Order size

Bid
Up Limit order Bid size at price movement

Down Cancellation or market
order

Bid size just before price
movement

Ask
Up Cancellation of market

order
Ask size just before price
movement

Down Limit order Ask size at price movement
Both Still The consecutive positive differences between bid or

ask sizes are limit orders and the consecutive negative
differences between bid or ask sizes are cancellations
or market orders

Table 1.2: Summary of the distinction between order types and sizes.

Distinguishing Causes for Bid and Ask Queues Changes

A simple, yet important task when analysing the time series of bid and as quantities
of high-frequency databases is to distinguish the cases of the changes of bid or ask
quantities. For instance, let us suppose that the bid size at some timestamp is 1000 and
then increases to 1200. This increase may be due to a limit order, but it also may be
due to a market order that consumed the whole queue and exposed a deeper bid queue
with total quantity 1200. In order to do this distinction, the price time series must be
taken into account.

Let us say that we are looking at the bid price and quantity and we start at a fixed
point. While the bid price is still the same, the rise of the quantities is due to the placing
of new limit orders – for the model, it would be driven by λbid — while its depletion
is due to the cancellation or market orders — for the model, it would be driven by
µbid + θbid. However, on the exact moment when the price goes down in the bid offer,
we have the bid queue depletion. This means that the quantity immediately before this
event is the quantity of the last cancellation or market order for that queue and the
quantity observed right on the time of the event is the new quantity randomly generated
by f̃ . On the other case, when the price goes up, we have that a limit order with size
equal to the whole new queue observed precisely at the change in the bid price. And
this quantity was generated by f .

Note that the reasoning is the same for the ask queue when the prices are still and
opposite when the price changes. Table 1.2 summarizes this reasoning.

Empirical distributions

The need to estimate distributions empirically occurs in Sections 2.1, 3.3, 4.1 and 4.2.
We shall make a distinction between two groups of distributions that arise in this study:
distributions with respect to events and distributions with respect to bid and/or ask
quantities states. Since events are discrete, the estimation of those empirical distribu-
tions are simply frequency tables of occurrences. This is the case for the estimation of

12
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the conditional transitional distributions f and f̃ .
However, when the probability of a state is determined by its persistence in time, we

have to treat them differently. Thus, if we want to estimate a distribution with respect
to an arbitrary point in time, this continuum feature must also be addressed. In this
case, the frequency must be thought as the sum of time intervals in which the state is
present relative to the studied time scope. This is the case for the estimation of the bid
and ask quantities joint distribution in Section 2.1, probabilities of mid price increase
conditioned to the order book state in Section 4.1 and the conditional distribution for
the time duration between mid price changes in Section 4.2.
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2 Bid and Ask Dynamics Study

2.1 Bid-Ask Quantities Interdependence

In this section we analyse the empirical joint density1 of the bid and ask queues. In
Figure 2.1, we can observe an empirical distribution for the bid and ask sizes. It can be
seen that, while the main density seems quite uncorrelated, the extreme values, which
are mainly located near the axes, are producing negative correlation. In addition to
this particular case, Figure 2.2 suggests that the negative correlation between bid and
ask sizes are persistent throughout our the dataset. Although we conclude that the
assumption is not accurate, it should be a reasonable approximation since this negative
correlation is small.

A possible interpretation of this fact can be made by the assumption of a ’fair price’ of
the asset that lies between the bid and ask prices. If, for instance, that price is closer to
the bid price, there is more pressure to lower the mid-price, thus forcing the bid quantity
to withdraw and the ask quantity to get bigger.

Note that the persistence of this negative correlation do not affect directly the as-
sumption of the model that the bid quantities process is independent of the ask process.
The assumption takes into account the relationship between increments, but not the
total volume of the queues.

2.2 Bid-Ask Trajectories for Fixed Mid-prices

2.2.1 Methodology

The purpose of this section is to analyse the mean behavior of the bid and ask quantities
between mid-price changes. For each mid-price state, we have a trajectory for bid and
ask quantities. The analysis follows from gathering all these trajectories and translating
them to a common starting point at the origin. Thus, each unit of time in the horizontal
axis mean a unit of time past the mid-price change. Since those trajectories have different
lengths, it is difficult to address what should we characterize by mean behaviour. In
event time2, the trajectories length are integers, thus we could formulate the following
methods:

1. Consider the mean for each event time step (after the mid-price change) only for
the values available for that event time step;

1For the methodology regarding this estimation, see Section 1.4
2Event time is the time counted in microstructure events. In our case, these events are the change in

bid or ask quantities or prices.
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Figure 2.1: Full and zoomed empirical joint density for the bid and ask quantities —
horizontal and vertical axes, respectively — for Citigroup Inc. in April 3rd,
2013. The larger the circle, the more frequent the bid and ask quantities.
The computed correlation for this distribution is -0.17.

Figure 2.2: Correlations between bid and ask sizes computed from the empirical
distributions.
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Figure 2.3: Accumulated frequency of time durations for each queue states.

2. Extend the trajectories with zeroes in order to have them all with the same length
and then take the mean for each event time step (after the mid-price change);

3. Extend the trajectories by repeating their last value in order to have them all with
the same length and then take the mean for each event time step;

4. Take the mean for each event time step for each group of trajectories with the
same length.

Methods 1, 2, 3 all present biases. The farther from the origin, each method presents,
respectively,

1. More chaotic values, since less sample is given for the mean as the trajectories are
ending;

2. Lower values, since the filling zeroes pushes the mean downwards, as the trajecto-
ries are ending;

3. Flat values, since the mean gets computed more from filling constant values than
from fluctuating trajectories, as the trajectories are ending.

Thus, among these methodologies, we choose the 4th method. However, it comes at
the cost that we then have to look at several mean trajectories instead of only one. For
our analysis, we consider the trajectories for the Citigroup Inc. stock in April 3rd, 2013
in three distinct time frames of the day — 10:00 to 11:00, 13:00 to 14:00 and 15:00 to
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16:00. This is done because intraday patterns in market dynamics generate different
market microstructure regimes (cf. Gourieroux et al. (1999)). Moreover, we restrict the
analysis to the trajectories with a maximum of 10 event time length, since they represent
roughly 90% of the data, as it can be seen in Figure 2.3.

An alternative methodology to the one we apply would be to perform the analysis in
physical time. We plan to address this in future work.

In our analysis, the mean behavior of the bid and ask quantities are also presented in
terms of the mean of the z-scores of the trajectories. In other words, for each trajectory,
we filter its mean and scale, then we group those with the same length and take the mean
for each event time step for each group. With this technique, we avoid that trajectories
with high values dominate the mean, so that we can concentrate on the shape of the
trajectory rather than its level and scale.

2.2.2 Trajectories Conditioned to Mid-Price Changes

In this section, we study the mean behavior of the bid and ask trajectories conditioned to
an increase or decrease in mid price prior or posterior to the trajectory. According to the
model, since we have Markovian birth and death processes, then the average trajectory
should be monotonic regardless of the prior condition. Moreover, if we have the desired
condition that µ + θ > λ3 then we should have only decreasing average trajectories in
any combination of prior and posterior conditions. We see clearly in Figures 2.4 and 2.5
that this is not the case.

Let us first condition to an increase or decrease in mid price prior to the bid and
ask trajectories. As depicted in Figure 2.4, the starting bid quantities are mostly lower
when we had a prior increase in mid price. To understand why this should hold, let
us first consider the case when the mid price increases, and analyse the bid quantities.
If the cause for the mid price increase was an ask price increase, then the bid queue
is expected to remain the same. If the cause was a bid price increase, then it means
that a completely new queue appeared by a sole limit order, which should grow with
other limit orders placed at that queue. On the other case, if the mid price decreases,
then, conversely, either the bid queue remains the same or the bid queue turns to be an
existing queue deeper in the book. An analogous reasoning explains the opposite effect
for the ask quantities.

Now, let us focus on the condition of increase or decrease in mid price posterior to the
bid and ask trajectories. Figure 2.5 tells us that the ending bid quantities get lower when
the mid price is going to decrease. This is an interesting fact, since it shows that the
queue gets depleted gradually, and not abruptly. An analogous effect is also observable
to the ask queue.

Furthermore, we can also observe for the mentioned cases — starting bid lower when
there is prior price increase, ending bid lower when there is posterior price decrease
and the analogous cases for ask prices — that concave trajectories are predominant in
Figures 2.4 and 2.5. Since we have the fact that there is a negative autocorrelation in

3In 3.2, we show that this condition is satisfied
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Figure 2.4: Mean normalized bid and ask sizes trajectories conditioned to prior mid price
movements
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Figure 2.5: Mean normalized bid and ask sizes trajectories conditioned to posterior mid
price movements
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mid prices (cf. Cont and de Larrard (2013) and Subsection 4.1.2), it is expected that we
have a mid price decrease when there is a prior mid price increase and vice-versa. Thus,
this concave trajectories are simply a blend of the cited effects.

2.3 Mean-Reverting Behavior in Bid-Ask Quantities

This section is devoted to check whether there exists a long-run level of liquidity. Its exis-
tence would introduce a mean reversion behavior to the bid and ask quantities processes.
In order to find this long-term level of liquidity for bid and ask quantities, we simply
compute the means for the marginals of the distributions estimated in 2.1. Then, we can
separate the bid and ask trajectories which start either above or below this level. If the
mean-reversion effect is present, then the trajectories that start above the mean should
converge downwards to the mean and the trajectories below should converge upwards
to it. Figure 2.6 was produced with this methodology, and it suggests the existence of
this long-run level of liquidity.

Moreover, it should be interesting to see whether the change in mid-price are dis-
turbances that push the trajectories away from their long-run level of liquidity. This
verification can be attained by computing the mean square deviations of the bid and ask
quantities to their long-run level of liquidity for each event time step. Thus, Figure 2.7
tells us that there is no significant relation of the starting and ending points — close
to the mid-price changes — that affects the long-run level of liquidity. It seems, how-
ever, that the length of the trajectories are related to the deviation to the mean level of
liquidity, and this relation is not monotonic.

2.4 Bid-Ask Spread in Ticks

The first assumption of the model states that the bid-ask spread is always one tick. In
this section we verify the fraction of time in which the bid-ask spread is exactly one tick
for stocks in the Dow Jones Index. In Figure 2.8, eighteen among the thirty stocks are
at least 80% of the time in both days with a bid-ask spread of only one-tick.
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Figure 2.6: Mean bid and ask sizes trajectories conditioned to the starting value being
above or below the mean level of bid or ask sizes.
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Figure 2.7: Trajectories for the mean squared bid and ask sizes deviations from the bid
or ask mean level.
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Figure 2.8: Fraction of the day in which the bid-ask spread is exactly one tick for April
3rd and 4th, 2013 from 10:00 AM until 4:00 PM.
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3.1 Overview

As outlined in Subsection 1.2.1, the parameters of the model presented in Cont and
de Larrard (2013) are tick size δ, birth rate λ, death rate µ + θ and the conditional
transitional distributions f and f̃ . The tick size δ is given by our dataset and is the
same for all studied assets. The other parameters are studied in this chapter as follows:

Section 3.2 Studies the parameters λ and µ + θ. This section investigates whether
we have the desired property that µ + θ > λ, the potential bias caused by the
assumption that all order sizes are equal, and whether it is safe to assume that
λ = λbid = λask and µ+ θ = µbid + θbid = µask + θask.

Section 3.3 Studies the parameters f and f̃ . This section investigates the issues in
estimating the distributions f and f̃ , describes those distributions qualitatively
and discuss whether the assumption f(x, y) = f̃(y, x) is reasonable. Finally, it
also introduces the derived parameter D(f), discusses some estimation methods
and the estimates for our dataset.

3.2 Order Flow Parameters

3.2.1 Methodology

Estimation of the Order Flow Parameters

The order flow parameters — λ and µ+θ — are parameters for the mean of exponential
distributions; thus, they can be estimated simply by taking a sample mean. Let us take
λ for instance. One approach would be to take a simple arithmetic mean of limit orders
either on the ask side or the bid side (since λ drives both the bid and ask sides) for a
fixed time length interval. Or, in order to use more data, we could take the simple mean
of all limit orders for a fixed time length interval and divide by two. More specifically,
let N be the total number of limit orders for all intervals, T be the total time length
of our sample time series and τ be the length of our fixed length interval. Therefore,
the number of intervals would be T/τ , and we would have an estimation λ̂ numerically
defined as

λ̂ =
1

2

N

T/τ
= N

τ

2T
. (3.1)

However, this approach may introduce some bias if we consider our model assumptions.
The model states that all orders sizes are equal. Thus, if we see that the mean order
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size for the limit orders are smaller than for market orders and cancellations, the model
would speed the time it takes for the queue to be depleted compared to reality. In reality,
we would have small orders but in a high flow that go in the direction of depletion, but
the model does not consider those sizes, and this would introduce bias. In order to
prevent this bias, we introduce correction weights wλ and wµ+θ, such that our estimates
are now

λ̂ = wλN̂λ
τ

2T
, µ̂+ θ̂ = wµ+θN̂µ+θ

τ

2T
,

where T is the timespan of our data, τ is the time unit of λ and µ+ θ, N• is the number
of orders observed for a certain order type and

wλ = Q̄λ/Q̄, wµ+θ = Q̄µ+θ/Q̄,

where Q̄ is the mean order size of all orders and Q̄x is the mean order size for the orders
related to x. This methodology to counter the mentioned potential bias is hinted in
Cont et al. (2010).

For a more detailed analysis, however, we may distinguish λ and µ + θ for bid and
ask, as mentioned in Subsection 1.2.1. Thus, analogously we will have

λ̂bid = wλ,bidN̂λ,bid
τ

T
, µ̂bid + θ̂bid = wµ+θ,bidN̂µ+θ,bid

τ

T
,

λ̂ask = wλ,askN̂λ,ask
τ

T
, µ̂ask + θ̂ask = wµ+θ,askN̂µ+θ,ask

τ

T
,

wλ,bid = Q̄λ,bid/Q̄bid, wµ+θ,bid = Q̄µ+θ,bid/Q̄bid,

wλ,ask = Q̄λ,ask/Q̄ask, wµ+θ,ask = Q̄µ+θ,ask/Q̄ask.

This time, without the 1/2 term, since we have split the parameters that affect the
ask queue and the parameters that affect the bid queues. Clearly, when λbid = λask,
then

λ = λbid = λask,

and the same goes with the µ+ θ parameter.
In order to compute the correct estimates in a dataset with only the best bid and

ask quantities and prices, we should take into consideration the distinction between
the causes of bid and ask quantities changes, which are detailed in Subsection 1.4.3.
Furthermore, we shall be aware that the limit orders that cause the change in bid or ask
prices should be discarded when computing N• and Q̄•. To explain that, let us consider
the event where there is a mid price change. There is a market order or cancellation
that caused this mid-price change. This market order or cancellation is considered for
the estimation, since it was the last ‘push’ caused by the parameter µ+ θ. Then, there
are new quantities which are generated by the conditional distributions f and f̃ . On
one side of the book, we see a queue that was already there one tick deeper in the
book. On the other side, there is a new queue. Although the creation of this new queue
consists in the placement of a limit order, it is a starting quantity for the bid and ask
trajectories until the next queue depletion. Thus, we should not consider this limit order
to estimate N• and Q̄•. Note that this automatically indicates that there is a natural
bias for λ̂ to be smaller than ˆµ+ θ, since there are limit orders that are not considered
for the estimation.
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Figure 3.1: Number of orders in April 3rd, 2013.

3.2.2 Analysis of the Parameters

3.2.3 Number of Orders in a Trading Session

The number of orders in a day is one possible interpretation of the liquidity of an asset.
In Figure 3.1, we may have an idea of which ones are more liquid than the others.

In this figure, it is also possible to observe that the cancellations and market orders
— N•,µ+θ — are usually1 more numerous than their respective limit orders — N•,λ —,
but the number of bid and ask orders varies at the same level of magnitude. Both facts
are favorable indications for the desired property that µ + θ dominates λ, and for the
assumption that λ = λbid = λask and µ+ θ = µbid + θbid = µask + θask, respectively.

3.2.4 Mean Sizes of Orders

In Figure 3.2, we notice that the mean size for the cancellations, market and limit orders
on the bid side — Q̄bid,• — is virtually equal for each stock, thus the correction in this
side is not necessary.

Looking at the ask side perspective, the mean sizes for cancellation and market orders
— Q̄ask,µ+θ — clearly dominated their respective mean sizes for the limit orders — Q̄ask,λ.
Note that most cases where N•,λ̂ was larger than N•,µ̂+θ̂ were on the bid side. Thus,
this bias correction did not interfere too much to reverse the dominance between the

1The exceptions in April 3rd, 2013 on the bid side were Alcoa’s, Intel’s, Travelers’ and Hewlett
Packard’s stocks.
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Figure 3.2: Mean order sizes in April 3rd, 2013.

order flow parameters. Nevertheless, the results were in favor of the model assumption
of µ+ θ dominance over λ.

Moreover, we should note that the vertical axis is in logarithmic scale, which means
that the mean order size varies heavily for each stock.

3.2.5 Birth and Death Parameters

As expected from the previous statistics, we see in Figure 3.3 that most of our estimates
µ̂+ θ̂ and µ̂• + θ̂• surpass λ̂ and λ̂•, as desired.

Also, we note that λ̂bid and µ̂bid + θ̂bid are usually respectively approximately λ̂ask and
µ̂ask + θ̂ask. Since this is true, we should consider the remark in 1.4.3 that if λbid = λask,
we shall have λ = λbid = λask, and this occurs analogously for the parameter µ+ θ.

We should also note in those figures that λ̂ and µ̂+θ̂ have high correlation. This means
that the stocks differ from others on the rate of the overall incoming limit and market
orders (and cancellations) but not on the resilience of the quantities in the queues —
i.e. the more positive the difference between the death and birth rates, the less resilient
the queues are to the depletion.
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Figure 3.3: λ̂ and µ̂+ θ̂ in April 3rd, 2013.

3.3 Transitional Quantities Distribution

3.3.1 Methodology

The model assumption that the bid-ask spread is always one poses a special difficulty
to estimate the empirical distributions for f and f̃ . By intuition, when there is a queue
depletion, we would expect that the bid-ask spread is increased by at least one tick,
which is not possible by the model. However, when a queue gets depleted in real data,
it is seldom the case that the opposite queue immediately builds as the model imposes.
These cases occur in real data only when there is a aggressive limit order that is larger
than size of the best bid or ask queue so that it executes all the bid or ask queue and
the remaining quantity of the order turns to be the new queue exactly at the same price.
Thus, when estimating f , the problem is to decide when and how one should measure
the resting depth of the bid and ask queues. If it was the bid (resp. ask) that has just
risen, then it is clear to see what is the new quantity for the bid (resp. ask) side, but
not for the ask (resp. bid) if it did not rise at the same time. In order to account for
this issue, we propose two different methodologies.

The first approach is to make another assumption to the model, which is the inde-
pendence between the random bid and ask quantities after a queue depletion. This is a
special case of the model proposed by Cont and de Larrard (2013). In this method, when
estimating f , we will only account for the bid quantities when the bid price has risen,
and only account for the ask quantities when the ask price has risen. This composes
the marginals for f and, analogously, for f̃ in an event time framework as described in
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Section 1.4. Then, we use that assumption to compute the joint distribution, where each
joint probability can be computed by the product of the respective marginal probabili-
ties.

The second approach consists in collecting events that are similar to the depletion
event described by the model and taking the distribution of the bid and ask quantities
for these events. More precisely, we look for the cases where there was an increase in bid
price (to estimate f) or decrease in ask price (to estimate f̃) such that the bid-ask spread
is exactly one tick. Contrary to the previous case where we only keep the bid (resp. ask)
quantities when the bid (resp. ask) price has moved, here we keep both quantities for
each event, and also put the additional requirement that the bid ask spread is one tick.

Note that this approach also lets the ideal situation of simultaneous increase in bid
and ask prices — for f — or the opposite movement — for f̃ — with one-tick bid-
ask spread, to be taken into consideration. While this methodology does not need to
assume the independence of bid and ask quantities for f and f̃ as the other method, it
comes with two disadvantages. First, we do not consider all the mid price movements.
Secondly, let us take the case to estimate f : when the bid price increases, if the ask
price has not increased together, the dynamics of the ask queue is not considered from
the beginning, i.e. we have already let λ or µ + θ affect the queue before we take the
quantity into consideration.

As a final remark, in order to estimate the distributions f and f̃ , we should use
the normalized quantities in order to fulfil the assumption that all orders have size 1.
However, in this chapter, since our analysis concentrates on the shape of the distribution,
the quantities are not normalized so that we can preserve our intuition of small and big
order sizes.

3.3.2 Distribution

With the independence assumption made in Subsection 3.3.1, the marginals — which
we denote by fbid, fask, f̃bid and f̃ask — are enough to explain all the distribution for f
and f̃ . By looking at Figure 3.4, fbid and fask tell us that, after a mid-price increase,
it is more likely to observe a bigger queue at the ask price than at the bid price. This
is due to the fact that, after the ask queue has been depleted, the new ask quantity
was already there (it was one tick deeper in the book), while the new bid quantity is
being constructed by the incoming limit orders. For f̃ , the effect is exactly opposite,
so we would expect that f(x, y) is roughly f̃(y, x) for all x and y, which can also be
verified in Figure 3.4 as fbid and f̃bid are respectively approximately f̃ask and fask. These
observations are not only true for the displayed, but also for all the other empirical
distributions taken from the Dow Jones Index stocks.

We can also notice in Figure 3.4 that the shape of the marginals for the Microsoft
Corp. stock is different from those of the JPMorgan Chase stock, although both stocks
are among the most liquid of the Dow Jones Index. There are patterns that repeat from
a stock to another and, for each individual stock, the patterns usually repeat from a day
to the other.

Now, regarding the second method, we can see in Figure 3.5 the differences in the
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3.3 Transitional Quantities Distribution

Figure 3.4: f and f̃ distribution marginals for Microsoft Corp and JPMorgan Chase, re-
spectively, in April 4th, 2013, estimated with the independence assumption.
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3 Parameter Study

Figure 3.5: f and f̃ joint distributions for Citigroup Inc in April 4th, 2013, using both
methods.

joint distribution for both methods. It is easy to see that all the observations made
for the first method also holds for the distributions estimated by the second method.
However, there is a feature that in the joint distribution of the second method that does
not appear on the first one. For the distribution f estimated with the second method,
we can see a dependence between the marginal correlations, which infers that for large
bid queue quantities, it is more likely to see smaller ask queue quantities. This clearly
shows the slight negative correlation for bid and ask dynamics when the mid price has
just changed, as it was expected from our study in 2.1.

3.3.3 A Market Depth Parameter

The parameter f appears in two results that are subject to study in Chapter 4. One
is with respect to computing volatility and the other is with respect to computing the
probability of consecutive movements in mid price — i.e., an increase in mid price given
that it had previously increased or a decrease given a prior decrease. For the former
case, it appears inside the derived parameter

D(f) :=
∑
i,j

ijf(i, j).

Actually, the parameter D(f) does not really depend on the condition that the mid
price has risen, only that it has changed. This is due to the assumption that f(i, j) =
f̃(j, i), which we have shown in Subsection 3.3.2 to be a very reasonable assumption.
Then, we have that

D(f) =
∑
i,j

ijf(i, j) =
∑
i,j

ijf̃(j, i) =
∑
i,j

jif̃(j, i) = D(f̃).

This observation is given in Cont and de Larrard (2013) when this parameter first
appears into the computation of the equation for the volatility. Thus, it is convenient to
introduce the distribution g, which is simply the new bid and ask quantities immediately
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3.3 Transitional Quantities Distribution

after a mid price change. Thus, if we let U be the event of an increase in mid price, D
be the decrease in mid price and C be the change of mid price, we have the relation

g(x, y) = f(x, y)P(U |C) + f̃(x, y)P(D|C).

Therefore, since P(U |C) + P(D|C) = 1,

D(f) =
∑
i,j

ijf(i, j) = (3.2)

= P(U |C)
∑
i,j

ijf(i, j) + P(D|C)
∑
i,j

ijf(i, j) = (3.3)

=
∑
i,j

ijP(U |C)f(i, j) +
∑
k,l

lkP(D|C)f̃(k, l) = (3.4)

=
∑
i,j

ij
(
P(U |C)f(i, j) + P(D|C)f̃(i, j)

)
= (3.5)

= D(g). (3.6)

Now, the intuition behind D(f) is clearer. As mentioned in Cont and de Larrard
(2013), it is a measure of market depth and can be precisely described as the square of
the geometric mean between bid and ask quantities after a mid price change. The idea
of depth of the order book comes from the interpretation that higher D(f) indicates
that the new queues are filled with a greater stack of orders, which better absorbs large
rates of market order and cancellations.

In this study, we propose three methodologies to compute D(f). Two methodologies
are simply computing D(g) using the two methods we proposed in Subsection 3.3.2
adapted to find g instead of f .

The third method is taking the unconditional mean of the bid and ask quantities.
This is motivated by the study in Chapter 2. We have shown in Section 2.2 that the
bid-ask trajectories start increasing under some conditions of prior mid price movement,
which is not what should be expected for the birth-death process with a dominant death
rate — i.e., with µ + θ > λ. Thus, the starting quantities for the bid-ask trajectories
should be bigger in order to counter this assumption. Moreover, we have also seen, in
Section 2.3, evidence of a long-run level of liquidity, that is not disturbed specifically
for the mid price change event. Thus, it suggests that we can use the unconditional
joint distribution for bid and ask queues in order to estimate D(f), which would then
be simply the expectation of the product of the bid and ask queue sizes.

In Figure 3.6 we can see the distributions involved in each of the three methods to
estimate D(f). The comparison between the first two distributions is directly related to
the equivalent comparison in Subsection 3.3.2. The third one was already presented in
Section 2.1, and we can verify that it concentrates less probability for the small order
sizes than in the other two distribution, just as we observed in the last paragraph.

Finally, Figure 3.7 shows the estimated D(f) for all stocks of the Dow Jones Index.
As it is expected, the third method resulted in larger estimations than the other two
methods. And, due to the similar approach of the first two methods, we had close
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3 Parameter Study

Figure 3.6: Joint distributions g in two methods and the unconditional joint distribution
for bid and ask queues sizes for Citigroup Inc’s stock in April 3rd, 2013.

Figure 3.7: D(f)
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3.3 Transitional Quantities Distribution

estimates between the two for each stock. It is interesting to notice that the third
method produced estimates that are quite similar across different stocks.
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4 Analysis of Model Results

4.1 Probabilities for Mid Price Movements

4.1.1 Conditional Probability of a Mid-Price Increase

In Figure 4.1 we confront the empirical and theoretical probabilities of an increase in
mid price conditioned to the bid and ask quantities. The theoretical distributions are
computed according to (1.4). Similarly to what we have done in Section 3.3, when
we studied f and f̃ , we condition the probability distributions to the real bid and ask
quantities instead of the modeled normalized bid and ask quantities.

Before we analyze Figure 4.1, we recall that, as one can see in Figure 2.1, most of the
bid and ask quantities are concentrated within the area below the descending diagonal of
each picture. As we can see in the graph of the differences of probabilities in Figure 4.1,
the mixed blue and red disks in the upper right corner show the poor estimation of the
probabilities due to the lack of samples.

As it should be expected, Figure 4.1 shows that the larger the ask quantities compared
to the bid quantities, the more likely is an increase in mid price for both empirical and
theoretical distributions. In particular, in the empirical distribution, we see mainly
three regions: bid quantities very close to zero, ask quantities very close to zero, and the
rest of the intermediate cases. The probabilities for each region is, respectively, high,
low and quite uniform. For the theoretical distribution, however, these regions are less
distinguishable and the probabilities vary very smoothly throughout the plane. These
differences are clearly noted in the third graph of Figure 4.1 where, for the area very close
to the axes and for an intersecting ascending diagonal, we have very small discrepancies
and, outside this area, two main regions of discrepancy. Moreover, in this ascending
diagonal we have the cases where the bid and ask prices are very close, which means
that we should expect a 0.5 probability of a mid price increase. Therefore, except for
the cases when the bid or ask quantities are very low or when they are very close to each
other, the empirical data suggests that the bid and ask quantities are less informative
to the prediction of an increase in mid-price than what the model describes.

Still in Figure 4.1, a particular region of interest, which is when the bid and ask
quantities are less than 20 and 30, respectively. We can see a better adherence of the
model to the border of this region compared to the general picture. In the interior of this
region, however, we have a uniform domination of the empirical probability with respect
to the theoretical one. The border of this region is actually very close to where the most
frequent bid and ask quantities lie. This shows that for small orders, the dynamics of
these probabilities are different. Further research is required to better understand this
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4 Analysis of Model Results

Figure 4.1: Empirical and theoretical conditional probabilities for the bid and ask quan-
tities for Citigroup Inc stock in April 3rd, 2013 and their difference. For
the first two graphs, the larger the circle, the more frequent the bid and ask
quantities. For the third graph, red and blue disks represent the cases where
empirical distribution were higher and lower to the theoretical, respectively,
and the size of the disk represents the magnitude of the difference.

dynamics.

4.1.2 Probability of Consecutive Mid-Price Movements

Furthermore, we have computed the probability of consecutive mid price movements
using the formula mentioned in Subsection 1.3.3. These computations are represented
in Figure 4.2. As discussed in Subsections 1.2.2 and 1.3.3, we would expect to see that
pcont is below 0.5 because, since this would characterize the negative correlation in mid
price returns, which is a stylized fact in market microstructure. And indeed that is the
case for all stocks except Alcoa in April 4th, 2013. Thus, the negative autocorrelation
of the first difference in the mid price is effectively captured by the model, although
varying in magnitude among stocks.

4.2 Durations Distribution

4.2.1 Conditional distribution

Since it is difficult to produce a reasonable graphical representation of a conditional
distribution that takes values in N2 × [0,+∞) and maps them to the (0, 1) interval —
i.e. that attributes a probability to inputs of bid and ask quantities and time values
—, we shall use only one pair of bid and ask quantities to illustrate the distribution.
Because of this limitation, little sample is available to estimate the conditional empirical
distribution effectively and thus purpose of this section is to give an intuition of the
general case.

Figure 4.3 illustrates the differences between the empirical and theoretical conditional
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4.2 Durations Distribution

Figure 4.2: Probabilities pcont for the stocks in the Dow Jones Index.

Figure 4.3: Comparison between the theoretical and empirical distributions for the du-
rations between mid price changes conditioned to the most frequent bid and
ask quantities, which are 13 and 16, respectively for the Citigroup Inc stock
in April 3rd, 2013.
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4 Analysis of Model Results

Figure 4.4: Estimated tail indices (represented by α) and the standard deviation of the
errors for the Dow Jones Index stocks.

distributions using the most frequent bid and ask quantities pair. The theoretical dis-
tribution is computed using (1.1) and is clearly different from the empirical one.

4.2.2 Tail indices

Although it is difficult to verify the theoretical distributions of the durations by con-
fronting to actual empirical probabilities, we can compute the tail index for the distri-
butions. Let us recall, from Section 1.3 that the tail index of the distribution for the
durations is either 2 if λ > µ + θ or 1 if λ = µ + θ. It is worth to remark that the
latter explains why the expected duration between mid price changes is infinity when
λ = µ + θ. In order to estimate the tail indices of real data, the maximum likelihood
estimation technique was employed.

In Figure 4.4, we should note that when σ is very low, the tail indices are indeed close
to 1 or close to 2. Since the tail index estimation requires a large sample size, it may
not be precise for some stocks, and thus, we can see that tail indices of 1 and 2 are
reasonable candidates. This implies that the theoretical distributions for the durations
may reflect the reality if a reasonable choice of parameters is made.
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4.3 Volatility

Figure 4.5: Annualized standard deviation for 1-minute log returns throughout a trading
session.

Figure 4.6: Annualized standard deviation for 1-minute log returns versus . Each obser-
vation in this Figure is a 30-minute high-frequency data strip for the specified
stock and date. Cross markers are data from the first and last halves of the
respective trading session.

4.3 Volatility

4.3.1 Theoretical results

4.3.2 Intra-day analysis

In this subsection, we analyze the three assets that were highlighted in Cont and de Lar-
rard (2013). In the period of our dataset, however, only General Electric Co. is in the
Dow Jones Index. The volatility of those three assets are depicted in Figure 4.5. It is
interesting to notice the tendency of the volatility to be convex throughout the day, a
stylized fact of intraday market dynamics. Another observation to be made is that the
standard deviations from General Electric Co. are the most unstable among the three
stocks in Figure 4.5.
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4 Analysis of Model Results

Figure 4.7: Annualized standard deviation for 1-minute log returns. Each observation
in this Figure is a 30-minute high-frequency data strip for the specified stock
and date. Cross markers are data from the first and last halves of the re-
spective trading session.

Before we start to analyze the figures, notice that, by (1.6), we immediately conclude
that

σ ∝

√
λ

D(f)
, (4.1)

since δ2π is constant.

In Figures 4.6 and 4.7, we study both the relation (4.1) and the influence of its compo-
nents to volatility. The first observation to be made is that both the parameters and the
factor

√
λ/D(f) can vary a lot for a particular asset considering different time spans, al-

though the model considers them to be constant in time. Nevertheless, Figure 4.6 shows
that indeed the relation (4.1) holds quite well for Citigroup’s and General Motors’ stocks
for all three possible methods of estimating D(f) described in Section 3.3.

On the other hand, Figure 4.7 shows that the 1/
√
D(f) part in the relation (4.1) does

not contribute too much for the accuracy of this relation, so that
√
λ alone accounts for

most of this correlation.

For all seven cases, the General Electric Co. stock presented the worst fit. This
is probably due its estimated variance, which was the most unstable among the other
stocks, as we have already noted in Figure 4.5.

In addition, we shall note that there are clusters of observations for each stock, mainly
for the λ parameter. This implies that, although the parameters vary in time, we can still
use this parameters to describe some characteristics of the stocks in terms of liquidity
and market depth.

Still in Figures 4.6 and 4.7, we can observe some outliers. These were all located in
the first and last half hours of the trading session. Since the bid-ask spread in those
times are often wider than on the rest of the trading session, we take them out from our
data.
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4.3 Volatility

Figure 4.8: Scatter plot of
√

λ̂
D(f)

versus the computed standard deviation of the mid

price log returns for samples taken in 10-minutes time intervals. Each graph
shows the plot for different methods for the D(f) estimation, and each point
in each graph is a stock from the Dow Jones Index in April 3rd, 2013 or
April 4th, 2013.

4.3.3 Cross-Section analysis

In the previous subsection the relation (4.1) indeed holds for some stocks if we fix a
particular stock and analyze it throughout different time periods. Another possibility
is to fix the time period and analyze the relation for different stocks. Figure 4.8 shows
relation (4.1) from the latter point of view. It clearly indicates that the linear relationship
between the volatility of the stock and the ratio

√
λ/D(f) holds.

Moreover, Figure 4.9 confirms the positive correlation induced by the relation (4.1).
However, the regression analysis could not statistically confirm this relation, since the
residuals are not normally distributed — the Jarque-Bera test rejected hypothesis for
all the three cases at a 1% significance level. It is worth to mention that the same
regression analysis was realized with equivalent relations such as σ2 versus λ/D(f) and
log σ2 versus log (λ/D(f)), but none of them presented normally distributed residuals.

Furthermore, by analyzing the components of the factor
√
λ/D(f) as in Figure 4.10,

we can see clearly that both components are positively correlated with σ. This result is
different from the result in previous section, where 1/

√
D(f) had no correlation with σ.

Moreover, as in the previous case, the Jarque-Bera test also rejected the hypotheses of
normality of the residuals. In Figures 4.9 and 4.11, the correlation coefficients show that
both the ratio

√
λ/D(f) and the factor 1/

√
D(f) estimated with the second method

presented the poorest estimation of σ, while the other methods yielded good results.
This result is quite surprising if we consider that the second method did not need to
assume the independence between the marginal distributions for f and f̃ and that the
third method is clearly detached from the parameter definition — since it was not
computed from a distribution conditioned to mid price changes —. It may suggest that
the dynamics of the movements when the bid-ask spread is equal to one-tick value is
different from the general dynamics.
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4 Analysis of Model Results

Figure 4.9: Regression analysis p-values, R2 statistic, and Pearson correlation coefficient
related to Figure 4.8.

Figure 4.10: Scatter plot of the parameters of the volatility equation versus the 10-minute
standard deviation of the mid price log returns.

Figure 4.11: Regression analysis p-values, R2 statistic, and Pearson correlation coeffi-
cient related to Figure 4.10.
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Dep. Variable: Var R-squared: 0.151
Model: OLS Adj. R-squared: 0.120
Method: Least Squares F-statistic: 4.900
Date: Mon, 02 Jun 2014 Prob (F-statistic): 0.0110
Time: 14:13:18 Log-Likelihood: -73.225
No. Observations: 58 AIC: 152.4
Df Residuals: 55 BIC: 158.6

coef std err t P>|t| [95.0% Conf. Int.]

Df -1.6702 0.538 -3.102 0.003 -2.749 -0.591
Lambda hat -0.2818 0.243 -1.161 0.251 -0.768 0.205
const -2.2913 1.644 -1.394 0.169 -5.586 1.004

Omnibus: 18.286 Durbin-Watson: 2.209
Prob(Omnibus): 0.000 Jarque-Bera (JB): 22.876
Skew: 1.273 Prob(JB): 1.08e-05
Kurtosis: 4.727 Cond. No. 102.

Table 4.1: Regression for the model log σ2 = β0 + β1 log λ+ β2 logD(f) + ε.

Additionally, an ANOVA table was produced to analyse the log relationship log σ2 ∝
log λ − logD(f). The results are shown in Table 4.1. Unfortunately, it rejected of
normality for the residuals by the Jarque-Bera test at a 1% significance level.

As a final remark, we should consider that in this analysis we regressed a non observ-
able variable (volatility) against statistics that explains this variable. Traditionally, a
regression analysis confronts an observable variable against statistics that hypothetically
hold some linear relationship with the variable. Since the latter is not the case, addi-
tional noise is produced. Thus, the statistical evidence of dependence between volatility
and λ/D(f) is probably underestimated in this analysis.
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5 Conclusions

This thesis presents an empirical analysis of the assumptions and results of the Marko-
vian model for market microstructure introduced by Cont and de Larrard (2013). The
model assumptions were studied in Chapters 2 and 3. Our main findings are the follow-
ings:

1. While the mid price is constant, the bid and ask trajectories are not descending in
mean, they are mainly convex (Section 2.2);

2. Moreover, the bid and ask quantities present mean-reverting characteristics (Sec-
tion 2.3);

3. Even for some of the most liquid stocks of the Dow Jones Index, the assumption
that the bid-ask spread is exactly one tick is still violated (Section 2.4);

4. When there is a queue depletion, the bid-ask spread rarely preserves the one-tick
size — the spread opens or closes when there is a mid price change — (Section 3.3).

5. λbid = λask and µbid + θbid = µask + θask (Section 3.2);

6. µ+ θ > λ (Section 3.2);

7. µ+ θ ≈ λ (Section 3.2).

8. f(i, j) = f̃(j, i) for all (i, j) ∈ N2 (Section 3.3);

Although our empirical findings partially differs from the model assumptions, overall
the model successfully describes many empirical features of the dataset. Theoretical
predictions of the model were analyzed in Chapter 4. The conclusions of our analysis is
that:

1. The probability of a mid price increase is less informative than its theoretical
counterpart (Section 4.1),

2. The negative first autocorrelation is well described by pcont (Section 4.1);

3. Tail indices for the durations distribution clusters around 1 and 2, as predicted by
the model (Section 4.2);

4. The independence assumption for the random variables governing f yields best
estimates for f (Section 4.3),
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5. Finally, we have seen that the simple and elegant formula for the volatility provided
in (1.6) has a good fit for different stocks and even for different time periods inside
a trading session (Section 4.3).

Therefore, we arrive at the same conclusion as stated in Cont and de Larrard (2013),
that “[...] this stylized model as a first step in the analytical study of realistic stochastic
models of order book dynamics.” Moreover, Cont and de Larrard (2013) stated that
“A relevant question is to examine which of the above results are robust to departures
from the model assumptions [...]”, in which this thesis contributed to answer. However,
further research is necessary to better understand the probabilities for mid price increase
when the bid and ask quantities are small (Section 4.1) and to study the results of the
model which are not covered in this thesis.
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