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Abstract

The present thesis is devoted to empirically study the Markovian micro structure model
investigated in Cont and de Larrard (2013), which is intended for liquid markets. Besides
other results, the model is able to provide distributions for the durations between mid
price changes, probabilities of mid price changes conditioned to the state of the order
book and, more surprisingly, link pure micro structure statistics with volatility. With
the aid of a freely available high-frequency dataset provided by NYSE, we extensively
investigate the assumptions of the model and some of its results for the stocks from the
Dow Jones Industrial Average Index, one of the most liquid markets in the world. In this
thesis, we conclude that, although there are various unrealistic assumptions, the model
is still able to retain the core of the high frequency mechanics and produce consistent
results, including the aforementioned volatility relationship.
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Resumo

Esta dissertação tem como objetivo estudar empiricamente o modelo Markoviano de
microestrutura de mercado investigado por Cont and de Larrard (2013), o qual é dire-
cionado a mercados ĺıquidos. Entre outros resultados, o modelo é capaz de prover dis-
tribuições para as durações entre mudanças no mid price, probabilidades com respeito a
mudanças no mid price condicionados ao estado do livro de ofertas e, mais surpreenden-
temente, relacionar estat́ısticas de pura micro estrutura com a volatilidade. Utilizando
uma base de dados de alta-frequência gratuitamente dispońıvel pela NYSE, investigamos
extensivamente os pressupostos do modelo e alguns dos seus resultados para as ações do
Índice Dow Jones, um dos mercados mais ĺıquidos do mundo. Nessa dissertação, con-
clúımos que, apesar de que há vários pressupostos considerados irreais, o modelo ainda
é capaz de absorver o cerne do funcionamento do mercado em alta frequência e produzir
resultados consistentes, incluindo a supracitada relação com a volatilidade.
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1 Introduction

1.1 Overview

A large stake of the financial markets are operated through what is called order books.
For instance, in NYSE, the total amount of money traded is of tens of billions of dollars
in a single trading day1. In this context, numerous models have been formulated to
address the mechanics of the so-called microstructure.

Market microstructure models are of vital importance to understand the price forma-
tion. Numerous effects of the microstructure are known to affect the price oscillations
in a broader scale, such as the volatility Madhavan et al. (1997). Furthermore, their
study has several applications, such as optimal execution Alfonsi and Schied (2010);
Obizhaeva and Wang (2012); Tsoukalas et al. (2013), market making strategies Glosten
and Milgrom (1985), liquidity risk Biais and Weill (2009) and transaction costs modelling
Glosten and Milgrom (1985); Parlour (1998); Roll (1984).

In this thesis, we consider a Markovian model for the market microstructure. This
model was first introduced by Stoikov et al. (2010) and was intended to study hidden
liquidity. Afterwards, it was further extended by Cont and de Larrard (2013), where
various interesting theoretical results were found. In the present thesis, we study to
which extent the model assumptions hold in real data and we also confront the theoretical
results with empirical data.

The model takes into account only the best bid and ask quantities and prices dynamics.
In Cont and de Larrard (2013), the authors present two justifications for not considering
the deeper levels of the order book. First, it is shown in Biais et al. (1995) that most
of the order flow is directed at best bid and ask prices. Moreover, the best bid and ask
dynamics are found in Cont (2001) to be the main driver for the price oscillations. This
simplification is very welcome both mathematically and technically, since best bid and
ask data is cheaper, easier to find and usually easier to manipulate computationally.
Starting at this point, we shall call the best bid and ask prices and quantities simply as
bid and ask prices and quantities.

The model is intended for use in very liquid markets, where the bid-ask spread is a
single tick most of the time. As in Cont and de Larrard (2013), the stocks that compound
the Dow Jones Industrial Average Index — one of the most liquid markets of the world
— are subject to the empirical study. In Subsection 2.4, it is verified whether these
stocks attain this condition. As a matter of illustration, the codes and assets of the Dow
Jones Index are enumerated in Table 1.1

This thesis is structured as follows:

1Data from http://www.nyxdata.com/.
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1 Introduction

Name

Code
AA Alcoa Inc.
AXP American Express Co.
BA Boeing Co.
BAC Bank of America Corp.
CAT Caterpillar Inc.
CSCO Cisco Systems Inc.
CVX Chevron
DD E.I. DuPont de Nemours & Co.
DIS Walt Disney Co.
GE General Electric Co.
HD Home Depot Inc.
HPQ Hewlett-Packard Co.
IBM International Business Machines Corp.
INTC Intel Corp.
JNJ Johnson & Johnson
JPM JPMorgan Chase
KO Coca-Cola Co.
MCD McDonald’s Corp.
MMM 3M Co.
MRK Merck & Co. Inc.
MSFT Microsoft Corp.
PFE Pfizer Inc.
PG Procter & Gamble Co.
T AT&T
TRV Travelers Cos.
UNH UnitedHealth Group Inc.
UTX United Technologies Corp.
VZ Verizon Communications
WMT Wal-Mart Stores Inc.
XOM Exxon Mobil

Table 1.1: Dow Jones Industrial Average Index components from September 24, 2012
until September 22, 2013.
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1.2 Model Specification

Chapter 1. Introduction Contextualizes the Markovian model and explains its theo-
retical formulation and features.

Chapter 2. Bid and Ask Dynamics Study Studies the bid and ask dynamics in a model-
free fashion. It investigates the dependence between bid and ask quantities, the
behavior of the bid and ask quantities when the mid price is constant and, finally,
whether the bid-ask spread is equal to one, as the model demands.

Chapter 3. Parameter Study Studies the parameters of the model focusing on check-
ing its parameter assumptions. Thus, the study here is model dependent.

Chapter 4. Analysis of Model Results Finally, after confronting the model assump-
tions with the empirical data, we investigate the theoretical results and their ad-
herence to their empirical counterpart.

1.2 Model Specification

1.2.1 Model Formulation

Model Assumptions

The model makes the following assumptions:

1. The bid-ask spread is exactly one tick,

2. All order sizes are equal,

3. The bid-ask quantities follow a 2D independent birth and death process while the
mid price is constant,

4. When the bid or ask quantity gets depleted, random quantities for bid and ask
queues are observed and the prices move one tick in the direction of the depletion.

The first assumption is consistent with the idea of liquid markets. The second as-
sumption can be interpreted as a choice of modelling the incoming orders as events2.
Either for the bid or the ask quantities, the birth and death process in assumption num-
ber three is a difference of Poisson processes, which are all assumed to be independent
of each other. Finally, the fourth assumption establishes the transition of mid price
states, which occur to a mid price movement. The distribution that governs the new
quantities is not assumed to be known, but some theoretical results do make use of such
distribution. Section 2.4 is devoted to study the first assumption, Section 2.1 studies
the independence feature in the third assumption and Session 2.2 investigates the choice
of the birth-death process.

2An event is a change in state. This change can be in the price or quantity of the bid or ask queue.
Thus, the model do not worry about the order size, only its time and signal. In Section 3.2, we
study a potential bias arising from this assumption.

3



1 Introduction

Figure 1.1: Example of a bid-ask trajectory.

Model Parameters

Given the assumptions, we shall make the model parameters precise. They are

• δ — tick size,

• λ — limit orders rate (birth rate),

• µ+ θ — market orders and cancellations rate (death rate),

• f and f̃ — conditional probability density functions for bid and ask quantities
after a queue gets depleted (f is conditioned to a increase in mid price and f̃ to a
decrease in mid price).

Note that the birth and death rates parameters are the same for each dimension.
However, sometimes it is interesting to distinguish those rates for each side, so we may
introduce λbid, λask, µbid + θbid and µask + θask.

Still regarding the parameters λ and µ+ θ, it is shown in Cont and de Larrard (2013)
that if µ + θ = λ, the expected time for the next price movement is infinity. Thus, it
is desired to have µ + θ > λ, as in this case the expected time is finite. In Session 3.2
we study this property. Session 3.3 is devoted to study the parameters f and f̃ and a
measure of market depth3 derived from these parameters.

Understanding the dynamics of the model

In Figure 1.1, we can visualize the stylized dynamics of the model. The trajectory
starts with dot number 1. The parameter µ+ θ ‘pushes’ the quantities downwards and

3Market depth is an abstract concept regarding how much the deeper layers of order book can absorb
a market order with a size larger than the best bid and ask quantities.
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1.3 Methodology

leftwards, while the parameter λ ‘pushes’ the quantities upwards and rightwards.
At dot number 9, the bid queue gets depleted. This makes the mid-price decrease δ

and new random quantities are observed at dot number 10. These new random quan-
tities are generated by the distribution f̃ . Note that dot number 9 is shown only for
illustrative purposes. Since it would imply a spread of two ticks, its existence would
violate assumption 1.

1.2.2 Model Features

Negative Autocorrelation in Returns

The existence of negative first autocorrelation is empirically observed in high-frequency
data for the log returns (cf., for instance, Tsay (2005)). As pointed out in Cont and
de Larrard (2013), this is also true for the mid price process (cf. Cont (2001)). The
present model can handle this feature, which is going to be detailed in Subsection 4.2.2.

Martingale Property of “Efficient Prices”

In Cont and de Larrard (2013), it is also pointed out that various authors, such as
Robert and Rosenbaum (2011), consider the so-called “efficient price” and advocates for
its martingale property. The “efficient price” is a non-observable process which coincides
with the observable price when a trade occurs. Alternatively, it can also be seen as a
noiseless version of price process (this noise can be, for instance, caused by the a rounding
error to the nearest tick).

The model in Cont and de Larrard (2013) is able to construct such a process. It is
defined by the expectation of the price for the next trade. It is shown in Cont and de Lar-
rard (2013) that this process is a martingale if and only if there is no autocorrelation in
the returns.

1.3 Methodology

1.3.1 Overview

The purpose of this section is to describe the methodology which collectively addresses
various empirical results in this thesis. Specific methodological issues are described inside
the appropriate section where they arise.

1.3.2 Data set

The New York Stock Exchange offers a free sample4 of the National Best Bid and Offer
data. The National Best Bid and Offer consists of the data for the consolidated order
book of the various stock exchanges that trade the same assets in the United States
at the best bid and ask prices, including the quantities in each side. The sample data

4Which can be downloaded from http://www.nyxdata.com/data-products/daily-taq.
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1 Introduction

Figure 1.2: Citigroup Inc bid and ask prices and quantities from 12:30 PM to 13:00 PM
in April 3rd, 2013.

is composed of thousands of tickers for the April, 3rd and 4th, 2013 trading sessions
totalling 125,949,035 lines for the first day and 117,258,854 for the other.

This data is structured in single table form, where each line represents a change in
any of its columns fields. There are 33 fields, but the ones of interest for the purpose of
this work are the timestamp, asset code, best bid order price, best bid order quantity,
best ask order price and best ask order quantity. The timestamps describe the moment
the orders arrive up to its milliseconds.

The model investigated in Cont and de Larrard (2013) does not need any information
about orders deeper in the order book nor the information about the trades (although
the latter could also be downloaded from the same source). Thus, all of the numerical
results contained in this thesis are obtained from this dataset.

In Figure 1.2, we illustrate our dataset with one close-up of the bid and ask prices and
quantities. We shall be aware that the prices in the original dataset were multiplied by
a ten thousand factor in order to accommodate 4 decimal digits onto an integer format.
However, since the tick size for equities in NYSE is 1 cent, the tick size is 100 for our
dataset format. Also, we note that the unit of the order sizes are units of trade — i.e.,
the minimum ‘size’ is 1 —, which means bulks of 100 shares in our case.

1.3.3 Parameter estimation

The article Cont and de Larrard (2013), where the model is presented, provides no
information about parameter estimation. However, a previous article Cont et al. (2010),

6



1.3 Methodology

Queue Price movement Order type Order size

Bid
Up Limit order Bid size at price movement

Down Cancellation or market
order

Bid size just before price
movement

Ask
Up Cancellation of market

order
Ask size just before price
movement

Down Limit order Ask size at price movement
Both Still The consecutive positive differences between bid or

ask sizes are limit orders and the consecutive negative
differences between bid or ask sizes are cancellations
or market orders

Table 1.2: Summary of the distinction between order types and sizes.

that presents a similar model, provides some clues for the parameter estimation, which
will be used here. All the parameters for the model can be estimated from the market
directly, which means we do not need to resort to Kalman filter, simulations or similar
methods of parameter calibration.

Distinguishing Causes for Bid and Ask Queues Changes

A simple, yet important, subtleness of high-frequency databases in which the (best) bid
and ask quantities and prices are seen as time series is to distinguish whether the change
of the bid or ask quantity is due to a limit, market or cancellation order, or due to
queue depletion. In order to do this distinction, we can look at the bid and ask time
series separately, but we should consider the bid or ask quantity and prices time series
simultaneously.

Let us say that we are looking at the bid price and quantity and let us start at a
fixed point. While the bid price is still the same, the rise of the quantities is due to
the placing of new limit orders – for the model, it would be driven by λbid — while its
consumption is due to the cancellation or market orders — for the model, it would be
driven by µbid + θbid. However, on the exact moment when the price goes down in the
bid offer, we have the bid queue depletion. This means that the quantity immediately
before this event is the quantity of the last cancellation or market order for that queue
and the quantity observed right on the time of the event is the new quantity randomly
generated by f̃ . On the other case, when the price goes up, we have that a limit order
with size equal to the whole new queue observed precisely at the change in the bid price.
And this quantity was generated by f .

Note that the reasoning is the same for the ask queue when the prices are still and
opposite when the price changes. Table 1.2 summarizes this reasoning.

7



1 Introduction

Empirical distributions

The need to estimate distributions empirically occurs in Sections 2.1, 3.3, 4.2 and 4.3.
We shall make a distinction between two groups of distributions that arise in this study:
distributions with respect to events and distributions with respect to bid and/or ask
quantities states. Since events are discrete, the estimation of those empirical distribu-
tions are simply frequency tables of occurrences. This is the case for the estimation of
the conditional transitional distributions f and f̃ .

However, when a distribution is defined with respect to bid and/or ask states, we
have to treat them differently. The states are not discrete in the sense that they occur
at single points, they actually persist for some continuous time. Thus, if we want to
estimate a distribution with respect to an arbitrary point in time, this continuum feature
must also be addressed. In this case, the frequency must be thought as the sum of time
intervals in which the state is present relative to the studied time scope. This is the case
for all the other estimated distributions.

8



2 Bid and Ask Dynamics Study

2.1 Bid-Ask Quantities Interdependence

One assumption of the model is that the bid quantities process is independent of the
ask process. In order to verify this assumption, we need to take a look at the empirical
joint density1 of these processes. In Figure 2.1, we can observe an empirical distribution
for the bid and ask sizes. It can be seen that, while the main density seems quite
uncorrelated, the extreme values, which are mainly located near the axes, are producing
negative correlation. In addition to this particular case, Figure 2.2 suggests that the
negative correlation between bid and ask sizes are persistent throughout our the dataset.
Although we conclude that the assumption is not accurate, it should be a reasonable
approximation since this negative correlation is not very expressive.

A possible interpretation of this fact can be made by the assumption of a ’fair price’
of the asset that lies between the bid and ask prices. If, for instance, that price is closer
to the bid price, there is more inclination to lower the mid-price, thus forcing the bid
quantities to withdraw and the ask quantities to get larger.

2.2 Bid-Ask Trajectories for Fixed Mid-prices

2.2.1 Methodology

The purpose of this section is to analyse the mean behavior of the bid and ask quantities
between mid-price changes. For each mid-price state, we have a trajectory for bid and
ask quantities. The analysis follows from gathering all these trajectories and translating
them to a common starting point at the origin. Thus, each unit of time in the horizontal
axis mean a unit of time past the mid-price change. Since those trajectories have different
lengths, it is difficult to address what should we characterize by mean behaviour. In
event time2, the trajectories length are integers, thus we could formulate the following
methods:

1. Consider the mean for each event time step (after the mid-price change) only for
the values available for that event time step;

2. Extend the trajectories with zeroes in order to have them all with the same length
and then take the mean for each event time step (after the mid-price change);

1For the methodology regarding this estimation, see Section 1.3
2Event time is the time counted in microstructure events. In our case, these events are the change in

bid or ask quantities or prices.
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2 Bid and Ask Dynamics Study

Figure 2.1: Full and zoomed empirical joint density for the bid and ask quantities —
horizontal and vertical axes, respectively — for Citigroup Inc. in April 3rd,
2013. The larger the circle, the more frequent the bid and ask quantities.
The computed correlation for this distribution is -0.17.

Figure 2.2: Correlations between bid and ask sizes computed from the empirical
distributions.
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2.2 Bid-Ask Trajectories for Fixed Mid-prices

Figure 2.3: Accumulated frequency of time durations for each queue states.

3. Extend the trajectories by repeating their last value in order to have them all with
the same length and then take the mean for each event time step;

4. Take the mean for each event time step for each group of trajectories with the
same length.

Methods 1, 2, 3 all present biases. The farther from the origin, each method presents,
respectively,

1. More chaotic values, since less sample is given for the mean as the trajectories are
ending;

2. Lower values, since the filling zeroes pushes the mean downwards, as the trajecto-
ries are ending;

3. Flat values, since the mean gets computed more from filling constant values than
from fluctuating trajectories, as the trajectories are ending.

Thus, among these methodologies, the only unbiased method is 4. It, however, comes
at the cost that we then have to look at several mean trajectories instead of only one.
For our analysis, we consider the trajectories for the Citigroup Inc. stock in April 3rd,
2013 in three slices of the day — 10:00 to 11:00, 13:00 to 14:00 and 15:00 to 16:00 —,
since it is known that the microstructure behaves differently through different periods
of the day (cf. Gourieroux et al. (1999)). Moreover, we restrict the analysis to the
trajectories with a maximum of 10 event time length, since they represent roughly 90%
of the data, as it can be seen in Figure 2.3.
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2 Bid and Ask Dynamics Study

The analysis in physical time was not considered due to the probable similarity to the
event time results and its methodological and computational complexity.

In our analysis, the mean behavior of the bid and ask quantities are also presented in
terms of the mean of the z-scores of the trajectories. In other words, for each trajectory,
we filter its mean and scale, then we group those with the same length and take the mean
for each event time step for each group. With this technique, we avoid that trajectories
with high values dominate the mean, so that we can concentrate on the shape of the
trajectory rather than its level and scale.

2.2.2 Trajectories Conditioned to Mid-Price Changes

In this section, we study the mean behavior of the bid and ask trajectories conditioned to
an increase or decrease in mid price prior or posterior to the trajectory. According to the
model, since we have Markovian birth and death processes, then the average trajectory
should be monotonic regardless of the prior condition. Moreover, if we have the desired
condition that µ + θ > λ3 then we should have only decreasing average trajectories in
any combination of prior and posterior conditions. We see clearly in Figures 2.4 and 2.5
that this is not the case.

Let us first condition to an increase or decrease in mid price prior to the bid and
ask trajectories. As depicted in Figure 2.4, the starting bid quantities are mostly lower
when we had a prior increase in mid price. To understand why this should hold, let
us first consider the case when the mid price increases, and analyse the bid quantities.
If the cause for the mid price increase was an ask price increase, then the bid queue
is expected to remain the same. If the cause was a bid price increase, then it means
that a completely new queue appeared by a sole limit order, which should grow with
other limit orders placed at that queue. On the other case, if the mid price decreases,
then, conversely, either the bid queue remains the same or the bid queue turns to be an
existing queue deeper in the book. An analogous reasoning explains the opposite effect
for the ask quantities.

Now, let us focus on the condition of increase or decrease in mid price posterior to the
bid and ask trajectories. Figure 2.5 tells us that the ending bid quantities get lower when
the mid price is going to decrease. This is an interesting fact, since it shows that the
queue gets depleted gradually, and not abruptly. An analogous effect is also observable
to the ask queue.

Furthermore, we can also observe for the mentioned cases — starting bid lower when
there is prior price increase, ending bid lower when there is posterior price decrease
and the analogous cases for ask prices — that concave trajectories are predominant in
Figures 2.4 and 2.5. Since we have the fact that there is a negative autocorrelation in
mid prices (cf. Cont and de Larrard (2013) and Subsection 4.2.2), it is expected that we
have a mid price decrease when there is a prior mid price increase and vice-versa. Thus,
this concave trajectories are simply a blend of the cited effects.

3In 3.2, we show that this condition is satisfied
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2.2 Bid-Ask Trajectories for Fixed Mid-prices

Figure 2.4: Mean normalized bid and ask sizes trajectories conditioned to prior mid price
movements
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2 Bid and Ask Dynamics Study

Figure 2.5: Mean normalized bid and ask sizes trajectories conditioned to posterior mid
price movements
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2.3 Mean-Reverting Behavior in Bid-Ask Quantities

2.3 Mean-Reverting Behavior in Bid-Ask Quantities

There are studies that show the existence of a long-run level of liquidity. This introduces citecite
a mean reversion behavior to the bid and ask quantities processes. In order to find this
long-term level of liquidity for bid and ask quantities, we simply compute the means for
the marginals of the distributions estimated in 2.1. Then, we can separate the bid and
ask trajectories which start either above or below this level. If the mean-reversion effect
is present, then the trajectories that start above the mean should converge downwards to
the mean and the trajects below should converge upwards to it. Figure 2.6 was produced
with this methodology, and it confirms the existence of a long-run level of liquidity.

Moreover, it should be interesting to see whether the change in mid-price are dis-
turbances that push the trajectories away from their long-run level of liquidity. This
verification can be attained by computing the mean square deviations of the bid and ask
quantities to their long-run level of liquidity for each event time step. Thus, Figure 2.7
tells us that there is no significant relation of the starting and ending points — close
to the mid-price changes — that affects the long-run level of liquidity. It seems, how-
ever, that the length of the trajectories are related to the deviation to the mean level of
liquidity, and this relation is not monotonic.

2.4 Bid-Ask Spread in Ticks

The first assumption of the model states that the bid-ask spread is always one tick. In
this section we verify the fraction of time in which the bid-ask spread is exactly one tick
for stocks in the Dow Jones Index. In Figure 2.8, eighteen among the thirty stocks are at
least 80% of the time in both days with a bid-ask spread of only one-tick. Even though
we do not know the threshold of this fraction required to consider that the assumption
approximately holds, some stocks clearly fail to follow such assumption.
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2 Bid and Ask Dynamics Study

Figure 2.6: Mean bid and ask sizes trajectories conditioned to the starting value being
above or below the mean level of bid or ask sizes.

16



2.4 Bid-Ask Spread in Ticks

Figure 2.7: Trajectories for the mean squared bid and ask sizes deviations from the bid
or ask mean level.
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2 Bid and Ask Dynamics Study

Figure 2.8: Fraction of the day in which the bid-ask spread is exactly one tick for April
3rd and 4th, 2013 from 10:00 AM until 4:00 PM.
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3 Parameter Study

3.1 Overview

As outlined in Subsection 1.2.1, the parameters of the model presented in Cont and
de Larrard (2013) are tick size δ, birth rate λ, death rate µ + θ and the conditional
transitional distributions f and f̃ . Since the tick size δ is given by our dataset and is the
same for all studied assets, there is nothing to study about it. The other parameters,
on the other hand, are studied in this chapter as follows:

Section 3.2 Studies the parameters λ and µ + θ. This section investigates whether
we have the desired property that µ + θ > λ, the potential bias caused by the
assumption that all order sizes are equal, and whether it is safe to assume that
λ = λbid = λask and µ+ θ = µbid + θbid = µask + θask.

Section 3.3 Studies the parameters f and f̃ . This section investigates the issues in
estimating the distributions f and f̃ , describes those distributions qualitatively
and discuss whether the assumption f(x, y) = f̃(y, x) is reasonable. Finally, it
also introduces the derived parameter D(f), discusses some estimation methods
and the estimates for our dataset.

3.2 Order Flow Parameters

3.2.1 Methodology

Estimation of the Order Flow Parameters

The order flow parameters — λ and µ+θ — are parameters for the mean of exponential
distributions; thus, they can be estimated simply by taking a sample mean. Let us take
λ for instance. One approach would be to take a simple arithmetic mean of limit orders
either on the ask side or the bid side (since λ drives both the bid and ask sides) for a
fixed time length interval. Or, in order to use more data, we could take the simple mean
of all limit orders for a fixed time length interval and divide by two. More specifically,
let N be the total number of limit orders for all intervals, T be the total time length
of our sample time series and τ be the length of our fixed length interval. Therefore,
the number of intervals would be T/τ , and we would have an estimation λ̂ numerically
defined as

λ̂ =
1

2

N

T/τ
= N

τ

2T
. (3.1)
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However, this approach may introduce some bias if we consider our model assumptions.
The model states that all orders sizes are equal. Thus, if we see that the mean order
size for the limit orders are smaller than for market orders and cancellations, the model
would speed the time it takes for the queue to be depleted compared to reality. In reality,
we would have small orders but in a high flow that go in the direction of depletion, but
the model does not consider those sizes, and this would introduce bias. In order to
prevent this bias, we introduce correction weights wλ and wµ+θ, such that our estimates
are now

λ̂ = wλN̂λ
τ

2T
, µ̂+ θ̂ = wµ+θN̂µ+θ

τ

2T
,

where T is the timespan of our data, τ is the time unit of λ and µ+ θ, N• is the number
of orders observed for a certain order type and

wλ = Q̄λ/Q̄, wµ+θ = Q̄µ+θ/Q̄,

where Q̄ is the mean order size of all orders and Q̄x is the mean order size for the orders
related to x.

This methodology to counter the mentioned potential bias is subtly different from the
method used in Cont et al. (2010). The bias correction in Cont et al. (2010) is applied
in an asymmetrical manner, in which the correction is concentrated on estimates for µ
and θ, while leaving λ̂ as is.

For a more detailed analysis, however, we may distinguish λ and µ + θ for bid and
ask, as mentioned in Subsection 1.2.1. Thus, analogously we will have

λ̂bid = wλ,bidN̂λ,bid
τ

T
, µ̂bid + θ̂bid = wµ+θ,bidN̂µ+θ,bid

τ

T
,

λ̂ask = wλ,askN̂λ,ask
τ

T
, µ̂ask + θ̂ask = wµ+θ,askN̂µ+θ,ask

τ

T
,

wλ,bid = Q̄λ,bid/Q̄bid, wµ+θ,bid = Q̄µ+θ,bid/Q̄bid,

wλ,ask = Q̄λ,ask/Q̄ask, wµ+θ,ask = Q̄µ+θ,ask/Q̄ask.

This time, without the 1/2 term, since we have split the parameters that affect the
ask queue and the parameters that affect the bid queues. Because of that, it is easy to
verify that when λbid = λask, then

λ = λbid = λask,

and the same goes with the µ+ θ parameter.
In order to compute the correct estimates in a dataset with only the best bid and

ask quantities and prices, we should take into consideration the distinction between
the causes of bid and ask quantities changes, which are detailed in Subsection 1.3.3.
Furthermore, we shall be aware that the limit orders that cause the change in bid or ask
prices should be discarded when computing N• and Q̄•. To explain that, let us consider
the event where there is a mid price change. There is a market order or cancellation that
caused this mid-price change. This market order or cancellation is considered for the
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3.2 Order Flow Parameters

Figure 3.1: Number of orders in April 3rd, 2013.

estimation, since it was the last ‘push’ caused by the parameter µ+ θ. Then, there are
new quantities which are generated by the conditional distributions f and f̃ . On the one
hand, we see a queue that was already there one tick deeper in the book. On the other
hand, there is a new queue. Although the creation of this new queue consists in the
placement of a limit order, it is a starting quantity for the bid and ask trajectories until
the next queue depletion. Thus, we should not consider this limit order to estimate
N• and Q̄•. Note that this automatically indicates that there is a natural bias for λ̂
to be smaller than ˆµ+ θ, since there are limit orders that are not considered for the
estimation.

3.2.2 Analysis of the Parameters

3.2.3 Number of Orders in a Trading Session

The number of orders in a day is one possible interpretation of liquidity of an asset. In
Figure 3.1, we may have an idea of which ones are more liquid than the others.

In this figure, it is also possible to observe that the cancellations and market orders
— N•,µ+θ — are usually1 more numerous than their respective limit orders — N•,λ —,
but the number of bid and ask orders varies at the same level. Both facts are favorable
indications for the desired property that µ+θ dominates λ, and for the assumption that
λ = λbid = λask and µ+ θ = µbid + θbid = µask + θask, respectively.

1The exceptions in April 3rd, 2013 on the bid side were Alcoa’s, Intel’s, Travelers’ and Hewlett
Packard’s stocks.
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Figure 3.2: Mean order sizes in April 3rd, 2013.

3.2.4 Mean Sizes of Orders

In Figure 3.2, we can notice that the mean size for the cancellations, market and limit
orders on the bid side — Q̄bid,• — is virtually equal for each stock, thus the correction
in this side is not necessary. Also the bid side has usually smaller order mean sizes
than the ask side, and this goes against the assumption that λ = λbid = λask and
µ+ θ = µbid + θbid = µask + θask.

Looking at the ask side perspective, the mean sizes for cancellation and market orders
— Q̄ask,µ+θ — clearly dominated their respective mean sizes for the limit orders — Q̄ask,λ.
Note that most cases where N•,λ̂ was larger than N•,µ̂+θ̂ were on the bid side. Thus,
this bias correction did not interfere too much to reverse the dominance between the
order flow parameters. Nevertheless, the results were in favor of the model assumption
of µ+ θ dominance over λ.

Moreover, we should note that the vertical axis is in logarithmic scale, which means
that the mean order size varies heavily for each stock.

3.2.5 Birth and Death Parameters

As expected from the previous statistics, we see in Figure 3.3 that most of our estimates
µ̂+ θ̂ and µ̂• + θ̂• surpass λ̂ and λ̂•, as desired.

Also, we note that λ̂bid and µ̂bid + θ̂bid are usually respectively approximately λ̂ask and
µ̂ask + θ̂ask. Since this is true, we should consider the remark in 1.3.3 that if λbid = λask,
we shall have λ = λbid = λask, and this occurs analogously for the parameter µ+ θ.
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Figure 3.3: λ̂ and µ̂+ θ̂ in April 3rd, 2013.

We should also note in those figures that λ̂ and µ̂+θ̂ have high correlation. This means
that the stocks differ from others on the rate of the overall incoming limit and market
orders (and cancellations) but not on the resilience of the quantities in the queues —
i.e. the more positive the difference between the death and birth rates, the less resilient
the queues are to the depletion.

3.3 Transitional Quantities Distribution

3.3.1 Methodology

The model assumption that the bid-ask spread is always one poses a special difficulty
to estimate the empirical distributions for f and f̃ . By intuition, when there is a queue
depletion, we would expect that the bid-ask spread is increased by at least one tick,
which is not possible by the model. However, when a queue gets depleted in real data,
it is seldom the case that the opposite queue immediately builds as the model imposes.
These cases occur in real data only when there is a market order that is larger than
size of the best bid or ask queue so that it executes all the bid or ask queue and the
remaining quantity of the order turns to be the new queue exactly at the same price.
Thus, when estimating f , for instance, we are interested in the moments where the bid
or ask prices has just risen. If it was the bid (resp. ask) that has just risen, then it is
clear to see what is the new quantity for the bid (resp. ask) side, but not for the ask
(resp. bid) if it did not rise at the same time. In order to account for this issue, we
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propose two different methodologies.
The first approach is to make another assumption to the model, which is the inde-

pendence between the random bid and ask quantities after a queue depletion. This can
be regarded as a natural extension of the assumption that the birth-death process for
the bid queue is independent from the respective process for the ask queue. Moreover,
the interdependence of the bid and ask quantities as studied in Section 2.1 also includes
this case, and we shall remember that while the negative correlation is persistent, it is
not intense.

Furthermore, in this method, when estimating f , we will only account for the bid
quantities when the bid price has risen, and only account for the ask quantities when
the ask price has risen. This composes the marginals for f and, analogously, for f̃ in an
event time fashion as described in Section 1.3. Then, we use that assumption to compute
the joint distribution, where each joint probability can be computed by the product of
the respective marginal probabilities. We shall remember that, in the general case of
two independent random variables X and Y , the joint probability P (X = x, Y = y) is,
by definition of independence, equal to P (X = x) · P (Y = y).

The second approach consists in collecting events that are similar to the depletion
event described by the model and taking the distribution of the bid and ask quantities
for these events. More precisely, we look for the cases where there was an increase in bid
price (to estimate f) or decrease in ask price (to estimate f̃) such that the bid-ask spread
is exactly one tick. Contrary to the previous case where we only keep the bid (resp. ask)
quantities quen the bid (resp. ask) price has moved, here we keep both quantities for
each event, and also put the additional requirement that the bid ask spread is one tick.

Note that this approach also lets the ideal situation of simultaneous increase in bid
and ask prices — for f — or the opposite movement — for f̃ — with one-tick bid-
ask spread, to be taken into consideration. While this methodology does not need to
assume the independence of bid and ask quantities for f and f̃ as the other method, it
comes with two disadvantages. First, we do not consider all the mid price movements.
Secondly, let us take the case to estimate f : when the bid price increases, if the ask
price has not increased together, the dynamics of the ask queue is not considered from
the beginning, i.e. we have already let λ or µ + θ affect the queue before we take the
quantity into consideration.

As a final remark, in order to estimate the distributions f and f̃ , we should use
the normalized quantities in order to fulfil the assumption that all orders have size 1.
However, in this chapter, since our analysis concentrates on the shape of the distribution,
the quantities are not normalized so that we can preserve our intuition of small and big
order sizes.

3.3.2 Distribution

With the independence assumption made in Subsection 3.3.1, the marginals — which
we denote by fbid, fask, f̃bid and f̃ask — are enough to explain all the distribution for f
and f̃ . By looking at Figure 3.4, fbid and fask tell us that, after a mid-price increase,
it is more likely to observe a bigger queue at the ask price than at the bid price. This
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Figure 3.4: f and f̃ distribution marginals for Microsoft Corp and JPMorgan Chase, re-
spectively, in April 4th, 2013, estimated with the independence assumption.
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Figure 3.5: f and f̃ joint distributions for Citigroup Inc in April 4th, 2013, using both
methods.

is due to the fact that, after the ask queue has been depleted, the new ask quantity
was already there (it was one tick deeper in the book), while the new bid quantity is
being constructed by the incoming limit orders. For f̃ , the effect is exactly opposite,
so we would expect that f(x, y) is roughly f̃(y, x) for all x and y, which can also be
verified in Figure 3.4 as fbid and f̃bid are respectively approximately f̃ask and fask. These
observations are not only true for the displayed, but also for all the other empirical
distributions taken from the Dow Jones Index stocks.

We can also notice in Figure 3.4 that the shape of the marginals for the Microsoft
Corp’s stock is different from those of the JPMorgan Chase’s stock, although both stocks
are among the most liquid of the Dow Jones Index. There are patterns that repeat from
a stock to another and, for each individual stock, the patterns usually repeat from a day
to the other.

Now, regarding the second method, we can see in Figure 3.5 the differences in the
joint distribution for both methods. It is easy to see that all the observations made
for the first method also holds for the distributions estimated by the second method.
However, there is a feature that in the joint distribution of the second method that does
not appear on the first one. For the distribution f estimated with the second method,
we can see a ‘4-o’clock-pointed wedge’, which infers that for large bid queue quantities, it
is more likely to see smaller ask queue quantities. This clearly shows the slight negative
correlation for bid and ask dynamics when the mid price has just changed, as it was
expected from our study in 2.1.

3.3.3 A Market Depth Parameter

The parameter f appears in two results that are subject to study in Chapter 4. One
is with respect to computing volatility and the other is with respect to computing the
probability of consecutive movements in mid price — i.e., an increase in mid price given
that it had previously increased or a decrease given a prior decrease. For the former
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case, it appears inside the derived parameter

D(f) :=
∑
i,j

ijf(i, j).

Actually, the parameter D(f) does not really depend on the condition that the mid
price has risen, only that it has changed. This is due to the assumption that f(i, j) =
f̃(j, i), which we have shown in Subsection 3.3.2 to be a very reasonable assumption.
Then, we have that

D(f) =
∑
i,j

ijf(i, j) =
∑
i,j

ijf̃(j, i) =
∑
i,j

jif̃(j, i) = D(f̃).

This observation is actually implicit in Cont and de Larrard (2013) when this param-
eter first appears into the computation of the equation for the volatility. Thus, it is
convenient to introduce the distribution g, which is simply the new bid and ask quanti-
ties immediately after a mid price change. Thus, if we let U be the event of an increase
in mid price, D be the decrease in mid price and C be the change of mid price, we have
the relation

g(x, y) = f(x, y)P(U |C) + f̃(x, y)P(D|C).

Therefore, since P(U |C) + P(D|C) = 1,

D(f) =
∑
i,j

ijf(i, j) = (3.2)

= P(U |C)
∑
i,j

ijf(i, j) + P(D|C)
∑
i,j

ijf(i, j) = (3.3)

=
∑
i,j

ijP(U |C)f(i, j) +
∑
k,l

lkP(D|C)f̃(k, l) = (3.4)

=
∑
i,j

ij
(
P(U |C)f(i, j) + P(D|C)f̃(i, j)

)
= (3.5)

= D(g). (3.6)

Now, the intuition behind D(f) is clearer. As mentioned in Cont and de Larrard
(2013), it is a measure of market depth and can be precisely described as the square of
the geometric mean between bid and ask quantities after a mid price change. The idea
of depth of the order book comes from the interpretation that higher D(f) indicates
that the new queues are filled with a greater stack of orders, which better absorbs large
rates of market order and cancellations.

In this study, we propose three methodologies to compute D(f). Two methodologies
are simply computing D(g) using the two methods we proposed in Subsection 3.3.2
adapted to find g instead of f . The third method comes from the study in Chapter 2.
We have shown in Section 2.2 that the bid-ask trajectories start increasing under some
conditions of prior mid price movement, which is not what should be expected for the
birth-death process with a dominant death rate — i.e., with µ + θ > λ. Thus, the
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Figure 3.6: Joint distributions g in two methods and the unconditional joint distribution
for bid and ask queues sizes for Citigroup Inc’s stock in April 3rd, 2013.

starting quantities for the bid-ask trajectories should be bigger in order to counter this
assumption. Moreover, we have also shown, in Section 2.3, the existence of a long-run
level of liquidity, that is not disturbed specifically for the mid price change event. Thus,
it suggests that we can use the unconditional joint distribution for bid and ask queues
in order to estimate D(f), which would then be simply the expectation of the product
of the bid and ask queue sizes.

In Figure 3.6 we can see the distributions involved in each of the three methods to
estimate D(f). The comparison between the first two distributions is directly related to
the equivalent comparison in Subsection 3.3.2. The third one was already presented in
Section 2.1, and we can verify that it concentrates less probability for the small order
sizes than in the other two distribution, just as we observed in the last paragraph.

Finally, Figure 3.7 shows the estimated D(f) for all stocks of the Dow Jones Index.
As it is expected, the third method resulted in larger estimations than the other two
methods. And, due to the similar approach of the first two methods, we had close
estimates between the two for each stock. It is interesting to notice that the third
method produced estimates that are quite similar across different stocks.

28



3.3 Transitional Quantities Distribution

Figure 3.7: D(f)
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4 Analysis of Model Results

4.1 Overview

Several applications of the presented model are developed in Cont and de Larrard (2013).
Some of the most important are:

1. Distribution of duration until next price movement

a) conditioned to the state of order book

b) and their tail indices when µ+ θ > λ and when µ+ θ = λ;

2. Probability of a mid price increase conditioned to the state of the order book

a) for the next mid price change, when µ+ θ = λ,

b) for the next mid price change, when µ+ θ > λ,

c) for the next mid price change, when µask + θask 6= µbid + θbid and λask 6= λbid,

d) for the n-th mid price change ahead;

3. Probability of consecutive mid price changes in the same direction;

4. Standard deviation of the mid price returns

a) when µ+ θ = λ,

b) when µ+ θ > λ.

A very impressive feature of the model is that all of these results are explicit formulas,
so that one does not need to resort to simulations nor numerically solve any equation.
Since there are too many results to study, we shall select in this thesis a subset of them
to analyze. In this sense, the chapter is organized as follows:

Section 1. Overview. Introduces some results of the model and explains the structure
of the chapter.

Section 2. Probabilities for Mid Price Movements. This section is devoted to study-
ing the theoretical probabilities related to mid price movements. We compute and
study the theoretical probability of the next mid price movement conditioned to
the order book state when µ+ θ = λ and the unconditional probability of consec-
utive mid price changes in the same direction.
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Figure 4.1: Empirical and theoretical conditional probabilities for the bid and ask quan-
tities for Citigroup Inc stock in April 3rd, 2013 and their difference. For
the first two graphs, the larger the circle, the more frequent the bid and ask
quantities. For the third graph, red and blue disks represent the cases where
empirical distribution were higher and lower to the theoretical, respectively,
and the size of the disk represents the magnitude of the difference.

Section 3. Durations distribution. This section is devoted to studying the distribu-
tion related to the duration between mid price movements. It studies both the
distribution itself when µ+ θ + λ and the empirically observed tail indices.

Section 4. Volatility. In this section, we shall confront the theoretical standard devi-
ation of the mid price returns when µ + θ = λ with the empirically observed
standard deviations. This analysis is studied under two points of view: looking at
individual stocks and analyzing how the theoretical and observed volatility behave
for different periods of the day; and looking at all the stocks at the same time and
analyzing how the theoretical and observed volatility behave for different stocks in
the same time period.

4.2 Probabilities for Mid Price Movements

4.2.1 Conditional Probability of a Mid-Price Increase

Another useful result in Cont and de Larrard (2013) is the probability of an increase for
the next mid price change. When λ = µ+ θ, this probability is explicitly

pup =
1

π

∫ π

0

(
2− cos(t)−

√
(2− cos(t)2)− 1

)p sin(nt) cos(t/2)

sin(t/2)
dt (4.1)

Note that there are no parameters involved in (4.1), which is a very convenient feature
of this formula.

In Figure 4.1 we confront the empirical and theoretical conditional probabilities of an
increase in mid price. Similarly to what we have done in Section 3.3, when we studied
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f and f̃ , we condition the probability distributions to the real bid and ask quantities
instead of the modeled normalized bid and ask quantities.

Before we analyze Figure 4.1, we shall firstly recall from Figure 2.1 that most of the
bid and ask quantities are concentrated within the area below the descending diagonal of
each picture. As we can see in the graph of the differences of probabilities in Figure 4.1,
the mixed blue and red disks in the upper right corner show the poor estimation of the
probabilities due to the lack of samples. Thus, we ignore the upper right corner of all
three graphs in the figure.

As it should be expected, Figure 4.1 shows that the larger the ask quantities compared
to the bid quantities, the more likely is an increase in mid price for both empirical and
theoretical distributions. In particular, in the empirical distribution, we see mainly three
regions: bid quantities close to zero, ask quantities close to zero, and the intermediate
cases. The probabilities for each region is, respectively, high, low and quite uniform.
For the theoretical distribution, however, these regions are less distinguishable and the
probabilities vary very smoothly throughout the plane. These differences are clearly
noted in the third graph of Figure 4.1 where, for the area very close to the axes and for
an intersecting ascending diagonal, we have very small discrepancies and, outside this
area, two main regions of discrepancy. Moreover, in this ascending diagonal we have the
cases where the bid and ask prices are very close, which means that we should expect
a 0.5 probability of a mid price increase. Therefore, except for the cases where the
probabilities are quite obvious — when the bid or ask quantities are very low or when
they are very close —, the model does not seem to be that accurate and also suggests
that the bid and ask quantities are less informative to the prediction of an increase in
mid-price than what the model describes.

Still in Figure 4.1, there is also a very particular region of interest, which is when
the bid and ask quantities are less than 20 and 30, respectively. We can see a better
adherence of the model to the border of this region compared to the general picture.
In the interior of this region, however, we have a uniform domination of the empirical
probability with respect to the theoretical one. The border of this region is actually very
close to where the most frequent bid and ask quantities lie. This shows that for small
orders, the dynamics of these probabilities are different. Further research is required to
better understand this dynamics.

4.2.2 Probability of Consecutive Mid-Price Movements

As pointed out in 1.2.2, the model can handle the property of negative first autocorre-
lation for bid and ask returns time series. Moreover, since the model assumes that the
bid-ask spread is always one tick, this means that it would be equivalent to consider
either the bid, ask or mid price returns.

For this particular model, an useful result in Cont and de Larrard (2013) is that the
first autocorrelation of the mid price returns time series can be determined by comput-
ing the probability of consecutive directions for the movement of the mid price. More
precisely, the autocorrelation is negative if and only if that probability, defined as pcont,
is strictly less than one half. This is intuitively simple, because if pcont is less than one
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4 Analysis of Model Results

Figure 4.2: Probabilities pcont for the stocks in the Dow Jones Index.

half, it means that it is more likely that, for each movement, the next will be in the
opposite direction – which is exactly what negative autocorrelation means.

A very simple expression for pcont can be found if we assume that λ = µ + θ and
f(x, y) = f̃(y, x). In Cont and de Larrard (2013) this expression is formulated as

pcont =
∞∑
i=1

∞∑
j=1

pup(i, j),

where pup is given by (4.1).
In Figure 4.2 we see that pcont is below 0.5 for every stock except Alcoa in April 4th,

2013. Therefore, the negative autocorrelation of the first difference in the mid price is
effectively captured by the model, although varying in magnitude among stocks.

4.3 Durations distribution

4.3.1 Conditional distribution

Another useful result for the model described in Cont and de Larrard (2013) is related
to the conditional distribution of the duration between mid price movements. This
distribution is explicitly obtained by

P(τ > t|qbid = x, qask = y) =

(
µ+ θ

λ

)x+y
2

ψx(t)ψy(t) (4.2)
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4.3 Durations distribution

Figure 4.3: Comparison between the theoretical and empirical distributions for the du-
rations between mid price changes conditioned to the most frequent bid and
ask quantities, which are 13 and 16, respectively for the Citigroup Inc stock
in April 3rd, 2013.

where q• is the quantity of the respective queue,

ψn(t) =

∫ +∞

t

n

u
In

(
2
√
λ(µ+ θ)

)
e−u(λ+µ+θ)du

and I• is the modified Bessel function of the first kind.

Notice that (4.2) does not involve the parameter f nor f̃ . This is expected, since this
distribution shall not consider bid and ask quantities either before or after the mid price
change.

Since it is difficult to produce a reasonable graphical representation of a conditional
distribution that takes values in N2 × [0,+∞) and maps them to the (0, 1) interval —
i.e. that attributes a probability to inputs of bid and ask quantities and time values
—, we shall use only one pair of bid and ask quantities to illustrate the distribution.
Because of this limitation, little sample is available to estimate the conditional empirical
distribution effectively and thus the conclusions in this section should barely reflect the
general case.

Figure 4.3 illustrates the differences between the empirical and theoretical conditional
distributions using the most frequent bid and ask quantities pair. For both comparisons
present in Figure 4.3, we can notice that the theoretical distribution seem to be roughly
well ‘located’, in the sense that it could intercept the empirical distribution in the middle
in a logarithmic sense and also in a quantile sense. However, the theoretical distribution
failed to be properly scaled when compared to the empirical one.
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4 Analysis of Model Results

Figure 4.4: Estimated tail indices (represented by α) and the standard deviation of the
errors for the Dow Jones Index stocks.

4.3.2 Tail indices

Although it is difficult to verify the theoretical distributions of the durations by con-
fronting to actual empirical probabilities, we can still use a result in Cont and de Larrard
(2013) to glimpse whether the theoretical distribution can be validated. This result enun-
ciates that the tail index of the distribution for the durations is 2 if λ > µ + θ or 1 if
λ = µ + θ. It is worth to remark that the latter explains why the expected duration
between mid price changes is infinity when λ = µ + θ. In order to estimate the tail
indices of real data, the maximum likelihood estimation technique was employed.

In Figure 4.4, we should note that when σ is very low, the tail indices are indeed close
to 1 or close to 2. Since the tail index estimation requires a large sample size, it may
not be precise for some stocks, and thus, we can see that tail indices of 1 and 2 are
reasonable candidates. This implies that the theoretical distributions for the durations
may reflect the reality if a reasonable choice of parameters is made. This introduces
another way of estimating the parameters λ and µ+ θ, that is, by means of a maximum
likelihood estimation using the durations distribution.
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4.4 Volatility

Figure 4.5: Annualized standard deviation for 1-minute log returns throughout a trading
session.

4.4 Volatility

4.4.1 Theoretical results

Under the hypotheses that λ = µ + θ and that f(i, j) = f̃(j, i), Cont and de Larrard
(2013) shows that the volatility of the stock, measured in variance of the mid-price, can
be easily computed as

σ2 = δ2
πλ

D(f)
, (4.3)

where D(f) was already defined and discussed in Subsection 3.3.3. This equation is
particularly interesting because it links the volatility to pure microstructure parameters,
without any (even indirect) dependence on the values of the prices. This result comes
from a functional central limit and, for that reason, it should be regarded as a result
obtained with a sufficiently large sample. In particular, the parameter D(f) arises from
the tail distribution of the durations between mid price changes.

Notice that, by (4.3), we immediately conclude that

σ ∝

√
λ

D(f)
, (4.4)

since δ2π is constant. In this section, instead of studying the equation (4.3) directly, we
concentrate in studying whether the relation (4.4) and its parameters hold.

4.4.2 Intra-day analysis

In this subsection, we analyze the three assets that were highlighted in Cont and de Lar-
rard (2013). In the period of our dataset, however, only General Electric Co. is in the
Dow Jones Index. The volatility of those three assets are depicted in Figure 4.5. It
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4 Analysis of Model Results

Figure 4.6: Annualized standard deviation for 1-minute log returns versus . Each obser-
vation in this Figure is a 30-minute high-frequency data strip for the specified
stock and date. Cross markers are data from the first and last halves of the
respective trading session.

Figure 4.7: Annualized standard deviation for 1-minute log returns. Each observation
in this Figure is a 30-minute high-frequency data strip for the specified stock
and date. Cross markers are data from the first and last halves of the re-
spective trading session.

is interesting to notice the tendency of the volatility to be convex throughout the day,
which is intuitively explainable, since it is known that the beginning and the ending of
the trading session are the busiest. This feature, however, is not present in the model,
since it is Markovian and the parameters are not functions of time. Another observation
to be made is that the standard deviations from General Electric Co. are the most
unstable among the three stocks in Figure 4.5.

In Figures 4.6 and 4.7, we study both the relation (4.4) and the influence of its compo-
nents to volatility. The first observation to be made is that both the parameters and the
factor

√
λ/D(f) can vary a lot for a particular asset considering different time spans, al-

though the model considers them to be constant in time. Nevertheless, Figure 4.6 shows
that indeed the relation (4.4) holds quite well for Citigroup’s and General Motors’ stocks
for all three possible methods of estimating D(f) described in Section 3.3.
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4.4 Volatility

Figure 4.8: Scatter plot of
√

λ̂
D(f)

versus the computed standard deviation of the mid

price log returns for samples taken in 10-minutes time intervals. Each graph
shows the plot for different methods for the D(f) estimation, and each point
in each graph is a stock from the Dow Jones Index in April 3rd, 2013 or
April 4th, 2013.

On the other hand, Figure 4.7 shows that the 1/
√
D(f) part in the relation (4.4) does

not contribute too much for the accuracy of this relation, so that
√
λ alone accounts

for most of this correlation. This should be expected since, as we noted earlier, D(f)
comes from the tail of a distribution and, thus, it should converge much slower to the
population parameter than λ.

For all seven cases, the General Electric Co. stock presented the worst fit. This
is probably due its estimated variance, which was the most unstable among the other
stocks, as we have already noted in Figure 4.5.

In addition, we shall note that there are clusters of observations for each stock, mainly
for the λ parameter. This implies that, although the parameters vary in time, we can still
use this parameters to describe some characteristics of the stocks in terms of liquidity
and market depth.

Still in Figures 4.6 and 4.7, we can observe some outliers. Fortunately, they were all
located in the first and last half hours of the trading session. Thus, they can easily be
taken out from our data.

4.4.3 Inter-stock analysis

We have shown in the previous subsection that the relation (4.4) indeed holds for some
stocks if we fix a particular stock and analyze it throughout different time periods.
Another possibility is to fix the time period and analyze the relation for different stocks.
Figure 4.8 shows relation (4.4) from the latter point of view. It clearly indicates that
the linear relationship between the volatility of the stock and the ratio

√
λ/D(f) holds.

Moreover, Figure 4.9 confirms the positive correlation induced by the relation (4.4).
However, the regression analysis could not statistically confirm this relation, since the
residuals are not normally distributed — the Jarque-Bera test rejected hypothesis for
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4 Analysis of Model Results

Figure 4.9: Regression analysis p-values, R2 statistic, and Pearson correlation coefficient
related to Figure 4.8.

Figure 4.10: Scatter plot of the parameters of the volatility equation versus the 10-minute
standard deviation of the mid price log returns.

all the three cases. It is worth to mention that the same regression analysis was realized
with equivalent relations such as σ2 versus λ/D(f) and log σ2 versus log (λ/D(f)), but
none of them presented normally distributed residuals.

Furthermore, by analyzing the components of the factor
√
λ/D(f) as in Figure 4.10,

we can see clearly that both components are positively correlated with σ. This result is
different from the result in previous section, where 1/

√
D(f) had no correlation with σ.

Moreover, as in Figure 4.8, we can see in Figure 4.10 that we can not apply the
results for the regression analysis, but we can still use the correlation coefficients. In
Figures 4.9 and 4.11, the correlation coefficients show that both the ratio

√
λ/D(f) and

the factor 1/
√
D(f) estimated with the second method presented the poorest estimation

of σ, while the other methods yielded good results. This result is quite surprising if we
consider that the second method did not need to assume the independence between the
marginal distributions for f and f̃ and that the third method is clearly detached from
the parameter definition — since it was not computed from a distribution conditioned
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4.4 Volatility

Figure 4.11: Regression analysis p-values, R2 statistic, and Pearson correlation coeffi-
cient related to Figure 4.10.

to mid price changes —. It may suggest that the dynamics of the movements when
the bid-ask spread gets to the one-tick value is different from the general dynamics.
Alternatively, we can notice that the estimation of D(f) by this method is the one that
had the fewer number of observations, and considering that it is a statistic of the tail of
a distribution and considering its bad results in the previous section for chunks of data
of only 30-minute, this lack of samples could lead to poor estimation of D(f).

As a final remark, we should consider that this analysis is actually the comparison
between two forms of estimating the volatility of an asset. Because of that, we have
estimation error in both sides, which produces more variance in the scatter plot than if
we had an observable parameter versus a regression factor. In Figures 4.9 and 4.11, we
can see that the observations with estimated volatility is farther to the main cluster of
between 0.1 and 0.2 introduce nonlinearity. These potential outliers are probably due
to estimation errors by the sample standard deviation method.
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5 Conclusions

We have studied the model assumptions, and noted that there are some facts that
contradict the model, namely,

1. The bid and ask distributions are not independent, they present negative correla-
tion (Section 2.1);

2. While the mid price is constant, the bid and ask trajectories are not descending in
mean, they are mainly convex (Section 2.2);

3. Moreover, the bid and ask quantities follows a mean-reverting process (Section 2.3);

4. Even for one of the most liquid markets, the stocks from the Dow Jones Index,
the assumption that the bid-ask spread is exactly one tick is still violated for some
stocks (Section 2.4);

5. When there is a queue depletion, the bid-ask spread rarely preserves at the one-tick
level (Section 3.3).

However, when considering the model parameters, for most stocks we had all the
desired features, namely,

1. λbid = λask and µbid + θbid = µask + θask (Section 3.2);

2. µ+ θ > λ (Section 3.2);

3. µ+ θ ≈ λ (Section 3.2).

4. f(i, j) = f̃(j, i) for all (i, j) ∈ N2 (Section 3.3);

Furthermore, in spite of the assumptions violations, the model could still handle many
empirical features of the dataset, including

1. Negative first autocorrelation (Section 4.2);

2. Tail indices for the durations distribution (Section 4.3).

And, finally, we have seen that the simple and elegant formula for the volatility pro-
vided in (4.3) had a good fit for different stocks and even for different time periods inside
a trading session (Section 4.4).

Therefore, the model seems to be, as stated in Cont and de Larrard (2013), a good
starting model for further extensions. Further research is necessary to better under-
stand the probabilities for mid price increase when the bid and ask quantities are small
(Section 4.2) and to study the results of the model which are not covered in this thesis.
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