
Instituto Nacional de Matemática Pura e Aplicada

A Fully-Parallel Pipeline for
High-Quality Rendering of

Vector Graphics Illustrations

Francisco Ganacim

Doctoral Thesis

Advisor: Diego Nehab

Co-Advisor: Luiz Henrique de Figueiredo

Rio de Janeiro, March 2015

2

Agradecimentos

Agradeço aos meus pais pelo apoio e dedicação ao longo de todos os anos.

Agradeço a Nara, sem seu apoio, amor e companheirismo, esta conquista não seria
posśıvel. Agradeço a Cećılia, cuja presença, além de dar norte e propósito, é motivo
de felicidade constante.

Agradeço aos meus orientadores Diego Nehab e Luiz Henrique de Figueiredo por
compartilharem seu conhecimento e experiência. Além disso, agradeço por todas
as oportunidades de crescimento profissional que me foram dadas ao longo destes
anos.

Agradeço a todos os colegas de VISGRAF. Em especial aos amigos André Máximo,
Djalma Lúcio, Leandro Cruz, Leonardo Koller e Rodolfo Schulz, cuja ajuda foi
essencial em vários momentos. Agradeço ao professor Luiz Velho pelo ambiente
único que é o VISGRAF.

3

4

Abstract

Vector graphics are a versatile form of representing visual information. They are
resolution independent and can represent a broad range of content: text fonts,
maps, user interfaces, and games.

Rendering vector graphics is not an easy task. High quality rendering requires huge
amount of processing power. To achieve real-time performance, many applications
sacrifice the quality of their resulting images. The solution is to parallelize rendering
using GPUs.

In this thesis we describe a rendering pipeline that is fully parallel, and imple-
mented on the GPU. We show how to create a novel acceleration data structure,
called shortcut tree, that allow us to render high quality images using antialiasing
filters of large support. Our results surpass the state-of-the-art in quality and
performance.

5

6

Contents

Agradecimentos 3

Abstract 5

Introduction 9

1 Preliminaries 13
1.1 Vector Graphics . 13

1.1.1 Structure of a Scene . 13
1.1.2 Spaces and Transformations 14
1.1.3 Shapes and Paths . 16
1.1.4 Colors, Gradients and Textures 26
1.1.5 Color Compositing . 30
1.1.6 Clip Paths . 31
1.1.7 Evaluation . 31

1.2 Image Sampling . 32
1.2.1 Sampling and Reconstruction 33
1.2.2 Computing Samples . 38

1.3 Rendering Vector Graphics . 42
1.3.1 Algorithm Analysis . 43

1.4 Basic Optimization . 43
1.4.1 Gradients . 44
1.4.2 Front-to-Back Sampling . 45

2 Previous Work 47
2.1 Immediate Mode . 47

2.1.1 Loop and Blinn [2005] . 49
2.1.2 Kilgard and Bolz 2012 . 51

2.2 Vector Textures . 52
2.2.1 Nehab and Hoppe [2008] . 52

7

3 Optimizations 55
3.1 Rendering Loop . 55

3.1.1 Kernels . 55
3.1.2 Computation . 56

3.2 Acceleration Data Structures . 58
3.2.1 Splitting the scene . 58
3.2.2 Sampling with the quadtree 61
3.2.3 Experiments . 64

3.3 Moving to the GPU . 66

4 Massively Parallel Vector Graphics 69
4.1 Abstraction . 70

4.1.1 Monotonization and Implicitization 72
4.1.2 Scene Abstraction . 75

4.2 The shortcut tree . 76
4.2.1 Subdivision . 77
4.2.2 Parallel Subdivision . 80
4.2.3 Pruning . 82
4.2.4 Parallel Pruning . 83

4.3 Rendering . 86
4.3.1 Sampling . 86
4.3.2 Scheduling . 89

5 Results 91
5.1 Quality Comparison . 91

5.1.1 Conflation . 91
5.1.2 Integration in Linear RGB 91
5.1.3 Anti-aliasing Quality . 93

5.2 Performance . 95

Conclusion and Future Work 105

8

Introduction

Vector graphics are a versatile form of representing visual information. They are
resolution independent and can represent a wide variety of content; from text fonts
to maps, from user interfaces to games.

In general, vector graphics follow the model created in the seminal work of Warnock
and Wyatt [1982]. In their model, an illustration is composed by many layers,
each layer containing a shape or other geometric primitives colored by a solid
color, a gradient or a texture. The final figure is the composition of the layers in
order.

Alternative models exist, such as Diffusion Curves [Orzan et al., 2008], where
instead of specifying a shape’s color or texture, we specify the figure’s gradient at
the boundary of the many shapes composing the scene. The final result is found
by solving a Poisson problem. Nevertheless, the majority of the vector graphics
in use today, such as SVG and OpenVG, use the classic specification. Therefore,
rasterizing these figures is a problem of major importance.

Many CPU implementations of raterizers exist today, such as Cairo [Packard
and Worth, 2003], Skia [2015] and others, with varying degrees of quality and
performance. We believe that one way of meeting today’s users’ expectations of
performance and quality is to heavily parallelize the rasterization. For that, the
platform of choice are the GPUs.

Bringing vector graphics rasterization to the GPU is not a trivial task. The non-
locality of the point-in-shape problem poses a challenge that requires a reformulation
of traditional CPU methods. GPU methods can be classified into two categories:
immediate mode and vector textures.

In immediate mode, shapes are sequentially processed and the results are blended
into the output image. Parallelism is achieved when processing the fragments
created by each shape. Many such systems approximate antialiasing by transforming
per-pixel coverage into transparency prior to blending. This conflation leads to

9

incorrect rendering of correlated layers. This policy of immediate-mode rendering
is analogous to the z-buffering algorithm for 3D rendering.

Traditionally, vector textures methods sequentially preprocess the scene in order
to build an acceleration data structure that is later used for rendering. These
data structures are built by exploiting spatial coherence to reduce the amount of
computation needed for rendering. When rendering, samples can be collected in
parallel to create the output image. Antialiasing may be computed by an analytic
approximation or by supersampling. Vector textures are analogous to rendering by
ray-casting in 3D. They allow samples to be freely evaluated using an acceleration
data structure that is adapted to the geometry of the scene.

We built our pipeline [Ganacim et al., 2014] to be massive parallel in each stage
from preprocessing to rendering. At preprocessing we create an acceleration data
structure called the shortcut tree. When rendering, we query the shortcut tree to
evaluate sample colors. Our renderer component is able to share sample colors
among many pixels, allowing the use of antialiasing filters with large support. Since
both preprocessing and rendering are efficient and fully parallel, we can render
complex illustrations surpassing state-of-the-art quality and performance.

Our contributions include:

• The shortcut tree, a novel hierarchical acceleration data structure that enables
efficient random access to the color of each point in the illustration;

• Fully parallel construction of the shortcut tree, including novel subdivision
and pruning algorithms;

• New segment abstraction that eliminates the need for all intersection com-
putations throughout the pipeline. Conversion from input segments during
preprocessing requires only monotonization, splitting at double and inflection
points, and implicitization;

• The flat clipping algorithm that supports arbitrary nesting of clip-paths
without resorting to recursion or even a stack.

• A front-to-back rendering pipeline that aborts computation when full opacity
is reached. This is done independently per sample;

• Support for user-defined effects in image space, sharing samples under wide
antialiasing filters, using large sampling rates, minimizing control-flow diver-
gence as well as memory and bandwidth usage.

We begin chapter 1 by defining a model for vector graphics. We introduce the
concept of filled paths and how they can be colored to create complex illustrations.

10

11

This model is expressive enough so we can encompass most of the functionality
described in the SVG (Dahlström et al. [2011]) and OpenVG (Rice and Simpson
[2008]) standards. Next, we show how images can be sampled and discretized with
high quality, avoiding common problems such as aliasing and noise. At the end of
the chapter, we provide a complete but unoptimized algorithm for vector graphics
rasterization.

In chapter 2, we review the state of the art in area and discuss the most relevant
work on GPU rasterization of vector graphics.

In chapter 3, we show how the algorithm presented in chapter 1 can be accelerated.
By rearranging the rendering loop, we can compute high quality images evaluating
each sample only once. We also build an acceleration data structure (quadtree)
to speed up the evaluation of sample colors. This chapter lays the foundation in
which we build our GPU rasterization pipeline (chapter 4).

Results of our work are presented in chapter 5. The last chapter discusses future
directions.

12

Chapter 1

Preliminaries

1.1 Vector Graphics

1.1.1 Structure of a Scene

Our model for vector graphics follows the model proposed in the seminal work of
Warnock and Wyatt [1982]. We begin with an empty canvas over which, we paint
layers of colored shapes to compose the final image.

The operation of painting a colored shape onto the canvas corresponds to the
metaphor of a silk-screen printer pushing colored ink through a stencil onto paper.
Figure 1.1 exemplifies of this operation. The ink (or paint) above defines the colors
to be used at all points in the plane. This color can be constant throughout the
plane or vary spatially. In the middle, geometric shapes delineate the stencil. Points
inside the shape should be thought of as open and let the ink pass through the
stencil to be deposited onto the canvas. Points outside the shape are closed, and
block the ink. At the bottom, we see the result of the painting operation.

To create complex scenes we can apply the painting operation repeatedly, depositing
layer upon layer of ink onto the canvas. Some examples of complex vector graphics
scenes are shown in figure 1.3.

Many of the terms used above remain loosely defined. For instance, we have not
defined precisely what a color is, or how we specify colors that vary spatially. How
does the color of one painting operation interact with the colors already on the
canvas? How do we specify shapes and what is inside in this context? We answer
those questions on the next few sections.

13

14 CHAPTER 1. PRELIMINARIES

Figure 1.1: Examples of the silk-screen metaphor.

1.1.2 Spaces and Transformations

The space in which the scene (or illustration) is defined is called the scene space
(or world space). The scene space is a copy of R2 with an affine frame of reference:
an origin point o and two orthogonal directions ~x and ~y. Coordinates is this space
are called scene (or world) coordinates. Shapes are defined in their own coordinate
system, called the object space (with object coordinates). An affine transformation
on the plane maps shapes from object space into scene space. These transformations
are called modeling transformations.

It is our ultimate goal to produce an image of a given scene. For that we select a
rectangular area in scene space to be rasterized. We call this area window. We also
choose the width w and height h of the image, in pixels. The window is mapped
into a third space called image space. The resulting set of points is called viewport.
In image space the viewport has its bottom left corner at (0, 0) and its size is w×h.
In image space two consecutive samples have distance 1.

Figure 1.2 shows one shape defined in object space being mapped by three different
transformations into scene space.

o o

object space scene space image space

window view port

Figure 1.2: Examples of modeling transformation.

1.1. VECTOR GRAPHICS 15

(a) Lion.

(b) Paper.

(c) Drops.
(d) Tiger.

(e) Butterfly.

(f) Map of Paris (Paris30k).

Figure 1.3: Complex vector graphics scenes.

16 CHAPTER 1. PRELIMINARIES

1.1.3 Shapes and Paths

To define the geometry of shapes we use paths. A path is a collection of contours
on the plane. A contour α is a function

α : [a, b] ⊂ R→ R2

t 7→ (x(t), y(t))

that is continuous and piecewise smooth. Figure 1.4 shows examples of paths: on
the left a path with many contours, on the right a self-intersecting contour.

Figure 1.4: Examples of paths.

Shapes are defined by paths in two different ways: filled paths and stroked paths.
Filled paths use contours to enclose a limited area of the plane, whose points are
filled with some color. Figure 1.5a shows a typical use of filled paths. Stroked
paths are constructed using contours as guides. These guides—along with others
parameters such as width and dash pattern—define lines in a drawing. Figure 1.5b
shows a stroked path.

Filled Paths

Given a closed contour, the following theorem gives us a rigorous notion of inside.

Theorem 1. (Jordan Curve) Let α be a simple (non-self-intersecting) closed curve
in the plane R2 and let C be its trace. Then, the open set of points R2 \ C consists
of exactly two connected components. One of these components is bounded (and is
called the interior) and the other is unbounded (and is called the exterior), and
C is the boundary of each component.

1.1. VECTOR GRAPHICS 17

fill

contour

(a) A filled path.

dashes

guide path

(b) A stroked path.

Figure 1.5: Example of filled and stroked of paths.

Therefore, a point p in the plane is inside the shape delimited by the closed contour
α if p belongs to the interior component of R2 \ C, given by the Jordan Curve
theorem. The theorem also gives the tool we need to define a procedure that
determines whether a given point is inside any given contour.

Given a point p ∈ R2 and a simple closed contour α, we choose a direction d ∈ R2,
d 6= 0, and define a ray r(u) = p + ud. We count the number of intersections
between the ray r and the curve α. If the number is odd, then p is inside. Otherwise,
p is outside. This is called the even-odd rule. Figure 1.6 shows an example of this
method.

1 111 1 1 6

1 111 1 5

(a) Shooting rays to determine the
interior of the shape.

(b) The interior region painted.

Figure 1.6: Even-odd test.

We can justify the method as follows: Jordan’s Curve theorem states that C is the
boundary of each component (inside and outside). Each intersection indicates a
transition from outside to inside or the opposite. Hence the number of intersection

18 CHAPTER 1. PRELIMINARIES

indicates the number of transitions between inside and outside. We know that the
point r(u) is outside for a large value of u > 0, since inside is bounded. Following
the parameter u as it decreases to zero, we have that the first intersection (the
intersection with the largest u) is a transition from outside to inside. The next
intersection will necessarily be a transition from inside to outside. This is valid
for all consecutive pairs of intersections. Therefore an even number of transitions
indicates that r(0) is also outside. It follows that an odd number of transitions
indicates that r(0) is inside. We can ignore points where the curve only tangencies
the ray, since there is no transition between inside and outside.

We would like to generalize our method for a larger class of contours. Consider what
happens when we apply our method to contours with self intersections. Figure 1.7a
shows a self-intersecting contour and the result of the method is shown in figure 1.7b.
This result seems somewhat arbitrary. Region A could be considered inside since it
is surrounded by the curve. Another common situation appears when we want to
draw regions with holes (figure 1.5a).

A

(a) (b) (c)

Figure 1.7: In (a) we show that the inside/outside criteria is not well defined for
region A. In (b) we show the result of applying the even-odd rule. In (c) we show
the result of applying the non-zero rule.

To deal with this situation in a more consistent fashion, we need to generalize
the even/odd rule. We begin by assigning, to each intersection between a ray
r(u) = p+ ud and a contour α, a sign. Intersections are characterized by a pair of
parameters (ū, t̄) satisfying the following relations:

ū > 0,

t̄ ∈ [a, b],

r(ū) = α(t̄). (1.1)

We define the sign of the intersection at (ū, t̄) as +1 if the contour crosses r(u)
going counterclockwise, −1 if it crosses going clockwise, and 0 if the r is only

1.1. VECTOR GRAPHICS 19

tangent to the curve. This is shown in figure 1.8. This definition can be made
mathematically precise: we find ε > 0 such that no other intersection occurs in the
interval (t̄− ε, t̄+ ε) ⊂ [a, b]. Let s be the segment going from r(t̄− ε) to r(t̄+ ε).
If s does not cross r then the intersection is a tangent. If a crossing does occur,
then the sign is given by comparing the direction d (from r definition) with the
direction of the segment s using a vector product. We will give an easier way to
computed this sign after defining monotonic segments.

+1

0

-1

p

Figure 1.8: Intersection crossing.

Now we can count the intersections using the sign as defined above; this number is
called the winding number of the point about the contour.

With the winding number, two different rules can be applied to determine if points
are inside or outside the contour. The even-odd rule, which is the same as before,
but now applied to signed numbers. And another rule called non-zero rule, which
defines as inside those points that have the winding number different from zero,
and define as outside those points with winding number zero. Figure 1.7b and
Figure 1.7c shows examples of both rules applied to a self intersecting contour. It
is worth noticing that for simple contours both rules give the same result.

The extension of the method to general paths is straightforward. We define the
winding number of a point relative to a path as the sum of the winding numbers
of the point relative to each contour in the path. Now we can form complex
regions, including regions with holes. Figure 1.9 shows this procedure written as
an algorithm.

20 CHAPTER 1. PRELIMINARIES

function is_inside(p, S)

−− Receives: the point ’p’ in R2, and the path ’S’ defining a shape.
−− Returns: true if p is inside the shape, false otherwise.
local r = ray(p, {1, 0}) −− creates a ray in the direction (1,0).
local wn = 0 −− sets winding number to zero.
for c in contours(S) do −− iterates over all contours in S.

local I = intersections(r, c) −− finds the intersections between r and c
for {u, t} in I do −− iterates over the intersections

if u > 0 and a <= t and t <= b then

−− sum the sign to the intersection
local wn = wn + sign(r, u, c, t)

end

end

end

−− apply the path’s rule: even/odd or non-zero
return apply_rule(C, wn)

end

Figure 1.9: in/out procedure.

Stroked Paths

Conceptually, stoked paths are drawn by dragging a straight-line pen held perpen-
dicular to the path’s contours, to create a “wide” line. The width is chosen by the
user creating the path. Figure 1.10 illustrates this operation.

Figure 1.10: stroke definition.

It is also possible to define dashed patterns. Dashed patterns are a periodic sequence
of lengths defining segments where the pen is “up” or “down”. Along with the
pattern, the user may specify a dashing phase. The dash phase defines the starting
point at the pattern that is associated with the start of the path.

If an open contour is stroked, the points at the beginning and end of each dash
in the contour may be decorated with a cap. Many types of caps are possible,
figure 1.11a shows some of them. When the pen reaches a non-differentiable point

1.1. VECTOR GRAPHICS 21

in the path, a gap may occur. To keep the drawing consistent, we add, at theses
points, a line join. Figure 1.11b shows examples of common joins.

Butt

Round

Square

(a) Stroke caps.
BevelRoundMiter

(b) Stroke joins.

Figure 1.11: Stroked paths decoration.

Figure 1.12: Conversion from stroked path to filled path.

To decide whether a given point p in the plane is inside the painted region of
a stroked path, we could use a procedure based on the distance from p to the
contours, followed by a test if p is inside a cap or line joint. But this procedure is
computationally expensive and somewhat intricate. Instead, we chose to convert
strokes to paths. To convert a stroked path to a filled path, we create a new path
that encompass the region painted by the stroked path. This conversion is not
without its difficulties, yet it allows us to deal with stroked and filled paths in a
uniform fashion. Figure 1.12 exemplifies the conversion.

Path Representation

We have described, so far, an abstract model for paths. Our ultimate goal is to
implement this model in a computer and to use it for practical purposes. That will
limit our model to the class of paths that can be represented in a computer. In fact,
we want paths that have a finite representation. We choose to use curves that are
composed by sequences of integral and rational Bézier segments [Farin et al., 2002].
Bézier segments are defined by polynomials, and polynomials can be represented
by a finite number of coefficients. We limit our model to integral Bézier segments
of degree 1, 2, and 3 and rational Bézier segments of degree 2.

Each Bézier segment is specified by a sequence of control points. Two of the control
points are the start and end points of the segment. For linear segments, those

22 CHAPTER 1. PRELIMINARIES

points are enough, but for segments of higher degree, additional control points are
necessary: one point for quadratic segments and two points for cubic segments.
Rational quadratics also require an additional real number, which we call projective
weight. The structure of Bézier segments is shown on Figure 1.13.

Integral Bézier segments is defined by:

b1(t) = p0(1− t) + p1t, (1.2)

b2(t) = p0(1− t)2 + 2p1t(1− t) + p2t
2, (1.3)

b3(t) = p0(1− t)3 + 3p1t(1− t)2 + 3p2t
2(1− t) + p3t

3. (1.4)

p0

p1

(a) linear.

p0

p1

p2

(b) quadratic.

p0

p1

p2

p3

(c) cubic.

p0

p1

p2

(d) rational quadratic.

Figure 1.13: Examples of Bézier segments.

1.1. VECTOR GRAPHICS 23

In general,

bn(t) =
n∑
i=0

Bi,n(t)pi, (1.5)

where

Bi,n(t) =
n!

i!(n− i)!
ti(1− t)n−i. (1.6)

are the nth-degree Bernstein polynomials. The points pi are the control points of
the segments. In general a n-degree Bézier segment has n+ 1 control points.

Arcs of ellipses can be represented by rational quadratic Bézier segments.

a2(t) =
b2(t)∑2

i=0Bi,n(t)wi

=
p0(1− t)2 + 2p1t(1− t) + p2t

2

w0(1− t)2 + w12t(1− t) + w2t2
. (1.7)

We would like to be able to transform paths using transformations on the plane.
Common transformations include scales, rotation, translation and their composi-
tions. All these transformations can be modeled as affine transformations in the
plane. The defining property of an affine transformation A : R2 → R2 is: given a
set of points {pi ∈ R2, i = 1, . . . , n} and a set of real numbers {λi ∈ R; i = 1, . . . , n},
such that

∑
i=1,...,n

λi = 1, A satisfies

A

(
n∑
i=1

λipi

)
=

n∑
i=1

λiApi. (1.8)

On the other hand, the Bernstein basis satisfies

n∑
i=0

Bi,n(t) ≡ 1. (1.9)

This allow us to transform Bézier segments by affine transformations easily

A (bn(t)) =
n∑
i=0

Bi,n(t)Api. (1.10)

That is, paths defined by Bézier segments can be transformed by an affine transfor-
mation by simply transforming their control points with the sample transforma-
tion.

24 CHAPTER 1. PRELIMINARIES

Monotonization of Bézier Segments

Each input segment is specified as a parametric curve γ : [0, 1]→ R2,

γ(t) =
(
x(t), y(t)

)
.

A segment γ is monotonic if the derivatives x′(t) and y′(t) never change sign in
the interval [0, 1]. Given any segment, we can break it into monotonic pieces by
finding the parameter values tj

0 = t0 < t1 < · · · < tk−1 < tk = 1

that satisfy either of the equations

x′(tj) = 0 or y′(tj) = 0. (1.11)

These tj values break γ into k monotonic segments corresponding to the inter-
vals [tj−1, tj], for j ∈ {1, . . . , k}. Each monotonic segments (i.e., γ restricted to
[tj−1, tj]) can be recast as a Bézier segment in the interval [0, 1]. For that we use the
multiaffine representation of Ramshaw [1988] to generate the control points corre-
sponding to each parameter interval. Linear segments are monotonic on their own.
Otherwise, finding the tj leads to linear equations for integral quadratic segments,
and to quadratic equations for rational quadratic and integral cubic segments. We
use an algorithm by Blinn [2005] to solve the quadratics in a numerically robust
way.

(a) (Loop) double point. (b) (Serpentine) inflexion point.

Figure 1.14: Cubic Bézier segments may have a double point or inflexion points.

We also break cubic Bézier at double points and inflexion points (see figure 1.14).
Breaking at double point is useful for implicitization. Along with monotonization,

1.1. VECTOR GRAPHICS 25

Figure 1.15: Monotonic segments never crosses the diagonal connecting its end-
points.

breaking at inflexion points guarantees that the resulting segments follow the
pattern shown in figure 1.15. That is, the bounding box of the segment is the
bounding box of the endpoints and the segment is either to the left or the right of
the diagonal defined by the endpoints.

Monotonic segments simplify the task of computing intersection with horizontal
rays easier. Since either y′(t) ≤ 0 or y′(t) ≥ 0, the y component of the segment is
either a nondecreasing or nonincreasing function respectively. The y component
of a horizontal ray is constant. Hence, the ray and the segment can intersect at
most once. Figure 1.16 shows all possible cases of intersection. Intersections can
be ruled out if the sample is above, below, or to the right of the bounding box. If
it is to the left then there is an intersection. Otherwise, if the sample and segment
are on opposite sides of the diagonal defined by the segment’s endpoints, there is
an intersection if, and only if, the sample is to the left of the diagonal. When the
sample and the segment are on the same size of the diagonal, we must solve the
system of equations 1.1.

0

0

0±1

?

±1

Figure 1.16: Possible cases of intersection between a ray and the segment.

26 CHAPTER 1. PRELIMINARIES

1.1.4 Colors, Gradients and Textures

We have described how paths are represented. To continue with the description
of our model we need to detail how to define the color layers used to fill paths.
We start by defining what colors are and how we use them to fill paths. Next, we
define gradients, which are a procedural way of defining color variations on the
plane. After that, we describe textures, which use images as the color filling. We
finish the section describing how colors in different layers interact to create the
final image.

Colors

Physically, colors are a distribution of energy in the electromagnetic spectrum, more
specifically in the visible light range of wave lengths. The set of all visible colors
forms an infinite dimensional vector space. Different colors—i.e., different energy
distributions—may be perceived as the same by a human observer, due to the human
eyes and brain physiology. Using data from experiments with human subjects, it
has been determined that the space of perceived color is a tree-dimensional space,
more precisely a three-dimensional cone [Wyszecki and Stiles, 1982, Young, 1802].
Hence, we can represent visible colors by the linear combination of three basic
colors, conventionally called red, green, and blue. Although these colors are not
the pure spectral red, green and blue colors, they have a peak of energy at the red,
green and blue regions of the spectrum. Along with the chromatic information, we
carry with each color an opacity coefficient: a real number between 0 and 1. The
opacity of a color determines how overlapped colored layers interact. A plausible,
but not accurate, physical interpretation for the opacity is that it represents the
percentage of the media covered by opaque tiny particles. Figure 1.17 illustrates
this idea. A color is then represented by a tuple of tree number (r, g, b) along with
the opacity coefficient α. The set of all colors is denoted by C .

Filling Paths

A simple way of painting a filled path is by specifying one color for all points inside
the path. This is called solid color filling and is the most common way of filling a
path.

Solid colors alone are not expressive enough. For some illustrations, we need to
specify colors in a richer way. For that, there are two useful methods. First, there
are gradients, in which colors vary following a defined procedure. Second, there are
textures, which are used to map an image onto the plane.

1.1. VECTOR GRAPHICS 27

Figure 1.17: Opacity model showing incident and reflected light rays.

Gradients are composed of three different maps. The first maps the interval [0, 1]
into a linear transition of colors. It is called ramp. The second, extends ramp
to the whole real line. The third, maps the entire plane into the real line and is
defined by the type of gradient (linear or radial) and its many parameters.

To define a color ramp, we choose a set of colors with at least two elements, and to
each element we associate a value in the interval [0, 1]. The first color associated
with 0 and the last with 1. More precisely we have the set

S = {(c0, 0), (c1, s1), . . . , (cn−1, 1)} ,

where ci are colors and n ≥ 2. We call each element of S a stop. Then, we define
the function

ramp: [0, 1]→ C .

Function ramp is a linear interpolation of each stop in S. The procedure to compute
the color associated with a t ∈ [0, 1] is shown in Figure 1.18.

function ramp(t, S)

−− find the previous and next values of t,
−− tprev <= t <= tnext.
t_prev, t_next = find_prev_and_next_t(t, S)

d = (t - t_prev)/(t_next - t_prev)

−− interpolates the colors in tprev and tnext.
return (1-d)*color(S, t_prev) + d*color(S, t_next)

end

Figure 1.18: Ramp.

28 CHAPTER 1. PRELIMINARIES

To extend ramp to all real numbers we may use one of the following three extension
functions:

clamp(d) = max (0,min (1, d)) , (1.12)

repeat(d) = d− bdc, (1.13)

mirror(d) = hat (2 repeat (d/2)) , (1.14)

where

hat(d) =

{
d if t ≤ 1

2− d if t > 1
. (1.15)

Their graphs are plotted in Figure 1.19.

(a) clamp. (b) repeat. (c) mirror.

Figure 1.19: Mappings between 0,1 and R

In Figure 1.20 we show how linear and radial gradients map points from plane into
the real line. Linear gradients use two points to define a base segments, p0 and p1.
Points in the plane are orthogonally projected into this segment, and the signed
distance (d) between the projection and p0 is computed:

d =
〈p− p0, p1 − p0〉
〈p1 − p0, p1 − p0〉

, (1.16)

where 〈u, v〉 is the inner-product of the vectors u and v.

Radial gradients operate in a similar way. Their definition is comprised by a circle
(center and radius) and a focus (a point f inside the circle). To find the value of d,
we shoot a ray from the focus in the direction of p, the intersection between this
ray and the circle is our projection:

p̄ = projf→p(p), (1.17)

d =
|p− f |
|p̄− f |

. (1.18)

1.1. VECTOR GRAPHICS 29

(a) Linear gradient.

p

f

p

c

| -f|p

|p-f|

(b) Radial gradient.

Figure 1.20: Computing the gradient projection.

Both types of gradient can be accompanied by an affine transformation. These
transformations allow us to create, for instance, ellipsoidal gradients and other
deformations. We allow for f to be different from c to increase the generality of the
radial gradients. The deformations created by making f different from c cannot be
reproduced by changing the affine transformation of the radial gradient. We will
discuss more of gradients transformations on section 1.4.1. Examples are shown in
Figure 1.21.

(a) Linear gradient (b) Radial gradient (c) Displaced focus

Figure 1.21: Gradients transformed by an affine transformation.

The final form of coloring is using textures. Textures are specified by an image:

tex : [0, 1]× [0, 1]→ C

(u, v) 7→ tex(u, v).

along with an affine transformation T . To evaluate a texture we first apply the
transformation T

(ū, v̄) = T (u, v).

30 CHAPTER 1. PRELIMINARIES

Then, we map (ū, v̄) onto the set [0, 1]× [0, 1] using either one of the functions
clamp, repeat, or mirror in each coordinate. After that, we evaluate tex to find
the color.

1.1.5 Color Compositing

Now that we know how to find the color of a point inside a filled shape, we need to
understand the effect of having multiples shapes in a scene. When shapes overlap,
the color of the covered points are a composition of the color in the canvas with
the color of the shape being painted. When an opaque (opacity 1) shape is painted
on the canvas, the color of its internal points will be the color assigned to the
shape, obscuring the layer below. Suppose we have a semi-transparent layer of
color Cf = (rf , gf , bf) and opacity αf over a layer of opaque color Cb = (rb, gb, bb).
The final color is given by:

Cf B Cb = αfCf + (1− αf)Cb (1.19)

And its opacity is 1 since all light is reflected. The symbol ABB is short for “A
over B”. This definition only works for a color A over an opaque color B.

We would like to determine how two non-opaque colors interact. Following the
computations made by Wallace [1981], we define the compositing operator in a way
that the following equality holds for any pair of colors C1 and C2 and an opaque
color Cb:

(C1 B C2) B Cb = C1 B (C2 B Cb).

Lets call the color C1 B C2 by C, with opacity α, then

C B Cb = C1 B (C2 B Cb).

Developing both sides we have,

αC + (1− α)Cb = α1C1 + (1− α1) (α2C2 + (1− α2)Cb) (1.20)

= α1C1 + (1− α1)α2C2 + (1− α1)(1− α2)Cb, (1.21)

which gives

C =
α1C1 + (1− α1)α2C2

α
, (1.22)

α = 1− (1− α1)(1− α2). (1.23)

1.1. VECTOR GRAPHICS 31

One way of simplifying these computations is to keep colors premultiplied by their
opacity [Porter and Duff, 1984]. Rewriting the example above we have

C̄1 = (α1r1, α1g1, α1b1, α1),

C̄2 = (α2r2, α2g2, α2b2, α2),

C̄b = (αbrb, αbgb, αbbb, αb).

Then, the premultiplied color C and its opacity are given by

C̄ = C̄1 + (1− α1)C̄2, (1.24)

α = 1− (1− α1)(1− α2)

= α1 + (1− α1)α2. (1.25)

1.1.6 Clip Paths

(a) Clip-path. (b) Shape to be clipped. (c) The result of the clip-
ping.

Figure 1.22: The action of the clip-path on a shape.

A clip-path is a closed path used as mask to other paths. The effect of a clip-path
on a shape is to conceal all points of the shape that are outside the clip-path.
Figure 1.22 shows an example of a clip-path applied to a shaped. Clip-paths may
be grouped (union of paths) or nested (intersection of paths) to create complex
regions. Clip-paths may affect many shapes at once.

1.1.7 Evaluation

We have thus far defined the structure of vector graphics and how its many
components interact. This structure allows us to associate to each vector graphics

32 CHAPTER 1. PRELIMINARIES

scene a function f on the plane. This function maps each point in the plane to its
color. For scenes without clip-paths the algorithm to evaluate f is straightforward
and is shown by figure 1.23. When clip-paths are present, the decision of whether
to blend a sample’s color is based on a Boolean expression involving the results of
the inside-outside tests for the path and all active clip-paths. Since this expression
can be arbitrarily nested, its evaluation seems to require a stack or some kind
of recursion. A simplified form of evaluation, without any stack or recursion, is
presented in section 4.3.

To display and manipulate these images in a computer, we need a discrete version
of them. A method to discretize images in a reasonable way is the subject of the
next section.

−− receives a scene and a point
−− returns the point’s color
function evaluate(scene, p)

color = background_color −− set the color as the background color
−− iterate over all shapes, from the back of the scene
−− to the front.
for shape in iterate_back_to_front(scene)

−− test if the point is inside the shape using the
−− ’is inside’ function defined before.
if is_inside(p, shape) then

−− compute the premultiplied color of the shape.
shape_color = pre_multiply_by_alpha(color(shape))

−− use the ’over’ operator to find the new color.
color = over_compositing(shape_color, color)

end

do

−− this color has a premultiplied alpha,
−− we need to divide its components to find the
−− final color.
color = divide_by_alpha(color)

return color

end

Figure 1.23: Basic evaluation of a sample’s color.

1.2 Image Sampling

We define a continuous image as a function f : Ω ⊂ R2 → C that maps each point
in the subset Ω ⊂ R2 into a color in C . The set f(C) is the gamut of the image.

1.2. IMAGE SAMPLING 33

A digital image or discrete image is a discrete set of colors indexed by two indices
corresponding to the pixel location. For instance, a discrete image of size w by h is
the set{

cij = (rij, gij, bij, αij) ∈ [0, 1]4; i ∈ {0, . . . , h− 1} , j ∈ {0, . . . , w − 1}
}

and is usually represented as vector of tuples with 4 components and length h · w.
The process of creating a discrete image from an image is called sampling. On the
other hand, to produce an image from a discrete image is called reconstruction.

1.2.1 Sampling and Reconstruction

To sample an image f : Ω ⊂ R2 → C , we start by choosing a rectangular domain
V ⊂ Ω that is aligned with the coordinate axis. V is called the viewport and can be
fully characterized by two points: pmin = (xmin, ymin) and pmax = (xmax, ymax). To
produce a discrete image of size w× h, we sample f regularly at the points defined
by:

∆x =
xmax − xmin

w
,

∆y =
ymax − ymin

h
,

xj = xmin + ∆x(0.5 + j),

yi = ymin + ∆y(0.5 + i),

cij = f(xj, yi), i = 0, . . . , h− 1 and j = 0, . . . , w − 1. (1.26)

This is shown in figure 1.24.

The reconstruction of an image from a set of discrete samples starts by the choice
of a reconstruction kernel. A reconstruction kernel is a function ϕ : R2 → R,
such that the family of functions {ϕij(x, y) = ϕ(x− j, y − i); i, j ∈ Z} is linearly
independent. A few examples of kernels are shown in Figure 1.25.

Now, given a chosen kernel ϕ(x, y), we define

ϕ∆x,∆y(x, y) = ϕ

(
x

∆x

,
y

∆y

)
. (1.27)

The reconstructed image is given by

f̃(x, y) =
h−1∑
i=0

w−1∑
j=0

cijϕ∆x,∆y(x− xj, y − yi). (1.28)

34 CHAPTER 1. PRELIMINARIES

x

y

xmin xmax

ymin

ymax
V

Figure 1.24: Sampling domain.

(a) Box. (b) Hat. (c) Cubic B-Spline.

Figure 1.25: Examples of reconstruction kernels.

The first question to arise is: how close are f and f̃? For a certain class of functions
and for a specially chosen kernel, the answer is given by the Shannon-Whittaker
theorem.

Theorem 2. (Shannon–Whittaker) Let f(t) be a signal (image) and F (w) its
Fourier transform. If F has compact support, that is, supp(F) is bounded, then,
there is a real number w0 such that w0 = inf{w ∈ R; supp(F) ⊂ [−w,w]} and the
following relation holds:

f(t) =
∑
k∈Z

f

(
k

2w0

)
sinc(2w0t− k),

where

sinc(t) =
sin(πt)

πt
.

1.2. IMAGE SAMPLING 35

In other words, band-limited signals can be reconstructed exactly from a suit-
able discrete set of uniformly spaced samples, using sinc as the reconstruction
kernel.

We cannot use this theorem directly when dealing with vector graphics for several
reasons. First, most images do not have limited band. Second, we want to create
discrete images of arbitrary sample rates, not only the ones allowed by the theorem.
Finally, when displaying an image on a computer display, we do not control the
reconstruction process, which is performed by the display and constrained by its
pixel geometry.

Figure 1.26 shows the result of sampling images with high frequency content at
low sampling rates. The image chosen is given by the function

f(x, y) = (c(x, y), c(x, y), c(x, y), 1), (1.29)

where c is given by

c(x, y) =
sin(x2 + y2) + 1

2
. (1.30)

Figure 1.26a shows the restriction of f to the x axis in the interval [0, 2π]. We
would expect a discrete image of f to show the same behavior on the plane: a
sinusoidal wave of increasing frequency irradiating from the lower-left corner of
the image. Figure 1.26b shows the result of sampling the set [0, 2π]× [0, 2π] with
512× 512 samples.

(a) The restriction of f to the x axis. (b) 512× 512 samples.

Figure 1.26: Aliasing.

36 CHAPTER 1. PRELIMINARIES

The visual artifacts created by the sampling and reconstruction processes are called
aliasing. Aliasing occurs when high-frequency content in the signal is mixed with
the low-frequency content, resulting in structured interference in the signal. A
compressive analysis of aliasing is found in Nehab and Hoppe [2014].

To attenuate aliasing, we need to suppress high-frequency content before sampling.
For that, we choose an antialiasing filter and, instead of sampling f , we sample
the convolution of f with the filter. That is, if we choose a function ψ as the
antialiasing filter, we sample f ∗ ψ.

The rationale behind this method is simple: the frequency content of f ∗ ψ is given
by its Fourier transform

F(f ∗ ψ) = F(f) · F(ψ).

Therefore, choosing a band-limited ϕ will make f ∗ ϕ band-limited. It is difficult,
if not impossible, to use a band-limited filter. Functions with compact support in
the frequency domain (Fourier domain) have non-compact support in the spatial
domain, making the computation of the sample values impractical. Therefore,
we use antialiasing kernels that attenuate high frequencies. Searching for good
antialiasing filter is an active research area. In figure 1.27, we show the result of
using the Box, Hat and cubic B-spline kernels as anti-aliasing filters applied to the
function f above at the same sampling rate. Figure 1.28 shows the magnitude of

(a) Box. (b) Hat. (c) BSpline3.

Figure 1.27: Anti-aliasing filters applied to f .

the Fourier transform of those same kernels.

Going back to our first example (equations 1.26) of image sampling, we can redefine
our method in the following way. Given an image f and a anti-aliasing filter ψ, we
define

ψ∆x,∆y(x, y) = ψ

(
x

∆x

,
y

∆y

)
, (1.31)

1.2. IMAGE SAMPLING 37

(a) |F(Box)|. (b) |F(Hat)|. (c) |F(Cubic B-Spline)|.

Figure 1.28: Anti-aliasing kernels frequency response.

where

∆x =
xmax − xmin

w
,

∆y =
ymax − ymin

h
,

xj = xmin + ∆x(0.5 + j),

yi = ymin + ∆y(0.5 + i). (1.32)

And the samples values are computed by

cij = (f ∗ ψ∆x,∆y)(xj, yi),

i = 0, . . . , h− 1,

j = 0, . . . , w − 1, (1.33)

The reason why we choose to define the reconstruction and anti-aliasing kernel
using

ϕ∆x,∆y(x, y) = ϕ

(
x

∆x

,
y

∆y

)
, (1.34)

ψ∆x,∆y(x, y) = ψ

(
x

∆x

,
y

∆y

)
, (1.35)

is that we want to draw these kernels out of a uniform (or canonical) space
of functions, where kernels are independent of scale and image size (sampling
rate).

38 CHAPTER 1. PRELIMINARIES

1.2.2 Computing Samples

The question that remains for computing the samples cij is how to evaluate the
expression

cij = (f ∗ ψ∆x,∆y)(xj, yi)

=

∞∫
−∞

∞∫
−∞

f(x, y) · ψ∆x,∆y(xj − x, yi − x) dx dy (1.36)

which is a double integral.

We can not solve it analytically, since f can be arbitrarily complex and most
probably lacks a closed form primitive (anti derivative). Since the only alternative
is to use numerical methods, we chose to use Monte-Carlo estimators.

A complete treatment of Monte-Carlo integration applied to image synthesis can
be found in Glassner [2014]. We can summarize the method in the following way:
given an integrable function g : [a, b]× [c, d]→ R, we define the sequence

gn =
(b− a)(d− c)

n

n−1∑
i=0

g(Zi), (1.37)

where Zi is a uniform random variable in the domain [a, b]× [c, d]. As n increases,
the expected value of the estimator converges to the value of the integral

lim
n→∞

gn =

∫∫
[a,b]×[c,d]

g(x, y) dx dy. (1.38)

Since in practice we can not draw an infinite number of samples, we need to
be concerned with the variance of the estimator gn. The variance of gn is given
by:

Var[gn] = Var

[
(b− a)(d− c)

n

n−1∑
i=0

g(Zi)

]

=
(b− a)(d− c)

n2

n−1∑
i=0

Var[g(Zi)]

=
(b− a)(d− c)

n
Var[g(Z)]. (1.39)

Since the variance of g(Z) is constant, the variance of the estimator decreases with
the number of samples.

1.2. IMAGE SAMPLING 39

The method calls for uniformly distributed samples in the plane. There are many
ways of generating these samples [Dippé and Wold, 1985]. The first and most
obvious way is to simply generate random numbers for the samples coordinates
(figure 1.29a). This process tends to generates clusters of points, and for low
number of samples this may create unwanted visual artifacts. We say that this
point distribution has high discrepancy. A way of reducing discrepancy is to start
the process with samples placed in a regular grid on the area, and then applying a
small random displacement to each sample. This method is called stratified jittering,
and it is shown in Figure 1.29b. A third class of patterns is called low-discrepancy.
Low-discrepancy patterns distribute the samples in the area and apply a global
optimization that displaces the samples in order to eliminate clusters, but keeping
the randomness of the samples. One particular instance of this class is called
blue-noise, shown in Figure 1.29c.

(a) Uniform. (b) Stratified. (c) Blue noise.

Figure 1.29: Sample pattern in the plane.

In figure 1.30, we show the results of using different sample patterns when evaluating
the estimator 1.37 on an image f as defined in equation 1.29. We use 64 samples per
pixel using Box as the antialiasing filter. While the structured artifacts (aliasing)
in the image are almost the same, the amount of noise decreases as we go from
uniform to stratified and then to blue noise.

The expression for the estimator gn for equation 1.36 is somewhat convoluted.
We can simplify it by rewriting our problem using a different frame of reference.
We have the viewport in which we would like to discretize our image. And we
have the size of the final discrete image w × h. We define the following affine
transformation

T =

 1
∆x

0 0

0 1
∆y

0

0 0 1

 ·
0 0 −xmin

0 0 −ymin
0 0 1

 . (1.40)

40 CHAPTER 1. PRELIMINARIES

(a) Uniform. (b) Stratified. (c) Blue noise.

Figure 1.30: Result of applying different sample pattern.

The effect of T is to translate the viewport by −(xmin, ymin) and then scale the
x and y axes so that the spaces between two consecutive samples (vertically or
horizontally) is 1. This is shown if figure 1.31. This is, not surprisingly, analogous
to the viewport transformation of section 1.1.2.

x

y

xmin xmax

ymin

ymax

1

x

y

1

h

w

Figure 1.31: Action of T

1.2. IMAGE SAMPLING 41

Now, we define the image f̃(x, y) = f ◦ T−1(x, y) and recast our problem as

cij = (f̃ ∗ ϕ)(xj, yi),

xj = 0.5 + j,

yi = 0.5 + i,

i = 0, . . . , h− 1,

j = 0, . . . , w − 1. (1.41)

This simplifies the estimator gn to

gn =
4δ2

n

n−1∑
k=0

f̃(xj +Xk, yi + Yk)ϕ(−Xk,−Yk), (1.42)

with (X̄k, Ȳk) uniformly distributed over [−δ, δ] × [−δ, δ]. Where [−δ, δ] is the
support of ϕ. The simplified version of the algorithm is shown in figure 1.32.

function evaluate_simplified_monte_carlo(scene, p, kernel)

−− create a sampling pattern on the support of
−− the kernel
local pattern = load_pattern(support(kernel))

−− new ”empty” color
local color = new_color(0,0,0,0)

for s in iterate_over_samples(pattern) do

−− point in the scene for this sample
local q = point(p.x + s.x, p.y + s.y)

−− use our previous define evaluate function
local c = evaluate(scene, q)

−− find the kernel value for this sample
local w = kernel(-s)

color = color + w*c

end

−− number of samples in the pattern
local n = size(pattern)

−− return the Monte-Carlo estimator
−− with area(kernel) = δxδy
return (area(kernel)/n)*color

end

Figure 1.32: Simplified Monte-Carlo evaluation.

42 CHAPTER 1. PRELIMINARIES

1.3 Rendering Vector Graphics

In the previous sections we have detailed the two main steps for creating an image
for a vector graphics scene. First, we have defined the structure of scenes and
created a method to evaluate our scene—viewed as a function on the plane—and
called it ‘evaluate’ (Figure 1.23). Then, we investigated how to rasterize images
and create discrete representations of the original input. Those are the tools we
need to create a complete algorithm to rasterize vector graphics scenes. This is
shown in Figure 1.33.

−− receives a scene
−− returns an discrete image
function rasterize(scene, kernel, viewport, width, height)

−− preprocess the scene: compute f̃ = f ◦ T−1

scene = prepare_scene(scene, viewport, width, height)

−− create an empty image
image = create_image(width, height)

−− iterate over all pixels
for i=0, height-1 do

y_i = 0.5 + i

for j=0, width-1 do

x_j = 0.5 + j

p = point(x_j, y_i)

−− evaluate color using simplified version of
−− Monte-Carlo sampling
color = evaluate_simplified_monte_carlo(scene, p, kernel)

−− store the color in the image
image.set(i, j, color)

end

end

return image

end

Figure 1.33: Complete algorithm.

The function ‘prepare scene’ receives the scene to be rasterized and the data
necessary to compute the transformation T−1(equation 1.40). It iterates over all
shapes in the scene transforming the Bézier segments of all paths along with all
gradients and textures. The resulting scene is the equivalent of the image f̃ defined
before. The scene is sampled at the points (j + 0.5, i + 0.5) using the simplified
version of the Monte-Carlo method, and the colors of the output image are stored
on the ‘image’ object, before being returned by the function.

1.4. BASIC OPTIMIZATION 43

1.3.1 Algorithm Analysis

In figure 1.34 we show the rendering time for algorithm shown in figure 1.33 when
running on benchmark scenes. Each scene contains from 1 to 256 polygons. Each
polygon has 4 sides and is created randomly. The graphs confirms the expected
behavior: the algorithm is linear in the number of segments in the scene, since it
tests all segments in the scene. Each intersection test is done in constant time. We
can change this behavior using acceleration data structures or other strategies. We
discuss these options in chapter 2.

Figure 1.34: Rendering

1.4 Basic Optimization

There are some optimizations we can implement in a basic renderer. These
optimizations do not change the complexity of the algorithm, but are important
in common situations: illustrations with large areas covered by gradient paints or
illustrations with many overlapping polygons.

44 CHAPTER 1. PRELIMINARIES

1.4.1 Gradients

Gradients carry along with their defining parameters an affine transformation T
(Section 1.1.4). This transformation maps points from the gradient’s reference
frame G into points in the scene’s reference frame S:

G T−→ S.

The gradient’s reference frame defines the space where the gradient’s parameters
are defined, such as the initial and ending point for linear gradients and the center,
focus and radius for radial gradients. Therefore, before evaluating the gradient
on a sample p of the scene, we should apply the inverse of the transformation:
p̄ = T−1(p).

This seems the opposite to what we would expect: why not specify T−1 instead of T ?
This is done so we can transform gradients (and textures) along with paths or even
the whole scene. Suppose we have an affine transformation A that modifies the
scene, then the new gradient transformation will be given by A ◦ T .

In order to simplify the gradient evaluation, we define a new frame of reference
and call it the normalized gradient space N . We also define a transformation O
that maps the gradient space into the new space N . Once we have O computed,
the new gradient transformation will follow the diagram

N O←− G T−→ S,

and will be given by O−1 ◦ T : N → S.

To compute O for linear gradients we follow the sequence of transformations shown
in Figure 1.35. First we apply a translation t−p0 to position p0 on the origin. Then
we rotate, using rθ, the segment p0p1 so it lays on the positive side of the x-axis.
And finally we scale by λ = 1

|p1−p0| , using sλ, to make the point p1 sit on the

coordinates (0, 1). This sequence of operations is summarized by

O = sλ ◦ rθ ◦ t−p0.

Now, to find the value of d (as defined for linear gradients in section 1.1.4), we
simply take the x coordinate of O◦T−1(p). All of these operations can be computed
once for each linear gradient and O ◦ T−1 can be stored to be used for sampling.
Since O ◦ T−1 is an affine transformation, it is represented as a 3× 3 matrix, and
since we are only interested in the x coordinate of transformed points, we can store
only its first row, i.e., only 3 floating point numbers.

A similar process is employed to simplify radial gradients. First we apply a scale,
both in x and y, to make circle unitary. Then, a translation is used to make f the

1.4. BASIC OPTIMIZATION 45

p

p0

p1

p

|p1-p0|

| -p
0|p

-p0

(a) Translation.

p

p0

p1

p

|p1-p0|

| -p
0|p

(b) Rotation.

p

p
0 p

1p

|p1-p0|

| -p0|p

(c) Scale.

Figure 1.35: Simplification of linear gradients.

origin. Followed by a rotation to place the center c on the x-axis. If the focus f and
the center c coincide, then the value of d is the norm of p. If not, the computations
are made as before, but the equations are greatly simplified.

Color ramps can be precomputed to generate textures that approximate the visual
appearance of the ramp. Given a color ramp, we choose a number of samples n
and sample the ramp at the points

xi =
0.5 + i

n
, i = 0, . . . , n− 1. (1.43)

After computing d and applying the extension functions—clamp, repeat, or mirror—
we find the color by sampling the linearly interpolated texture (i.e. reconstructed
with the Hat kernel). This method is especially useful when dealing with GPUs
that have dedicated hardware to sample textures.

1.4.2 Front-to-Back Sampling

One minor optimization in sampling comes from changing the order in which the
scene is iterated. By definition (see section 1.1.5) the color of a sample is computed
by

(C1 B (C2 B (. . . (Cn B Cb)))).

where C1, . . . , Cn are the colors of the shapes containing the point being sampled,
and Cb is the background color.

Using equation 1.22 and premultiplied alpha values, we are able to switch this
computation order to

((((C1 B C2) B . . .)Cn B Cb)).

46 CHAPTER 1. PRELIMINARIES

This means that we can traverse the scene, from front to back, computing the color
of the sample. Once the composed color is opaque enough, the whole computation
can be stopped. This is justified by the fact that

Ca B Cb = Ca,

for any opaque color Ca and any color Cb. The algorithm for color sampling shown
in Figure 1.23 can be rewritten as shown in Figure 1.36.

−− receives a scene and a point
−− returns the point’s color
function front_to_back_evaluate(scene, p)

color = blank_color() −− set the color as blank
−− iterate over all shapes, from the front of the scene
−− to the back.
for shape in iterate_front_to_back(scene)

−− test if the point is inside the shape using the
−− ’is inside’ function defined before.
if is_inside(p, shape) then

−− compute the premultiplied color of the shape.
shape_color = pre_multiply_by_alpha(color(shape))

−− use the ’over’ operator to find the new color.
color = over_compositing(shape_color, color)

if color.a >= 1 -0.5/255 then

−− alpha is 1, so no division is needed
return color

end

end

do

−− at this point we’ve reached the background
color = over_compositing(color, background_color())

−− we need to divide its components to find the
−− final color (background may be transparent!).
color = divide_by_alpha(color)

return color

end

Figure 1.36: Front to back sampling.

Chapter 2

Previous Work

In chapter 1 we have shown the structure of vector graphics and a basic rendering
method. We have also shown that rendering vector graphics with high quality
is a computationally expensive task. While the method we presented before is
sequential, much effort has been put into the parallelization of rendering methods.
CPU implementations use vector instructions (SIMD) to efficiently collect samples,
but are limited by the small number of cores available. On the other hand, GPUs
have a massive number of processing units available, but the architecture of GPUs
demands an adaptation of the rendering methods.

Real time implementations (both in CPU and GPU) of vector graphics renderers fall
into one of two categories: immediate mode and retained mode. In immediate mode
the scene is rendered one shape at a time. Each shape is broken into fragments and
the fragment’s colors are blended into a frame buffer. In retained mode, the scene is
preprocessed to create an acceleration data structure, which is later used to render
the output image. Methods in this category are also called vector textures.

2.1 Immediate Mode

Immediate-mode methods generally exploit spatial coherence in the scene by
subdividing complex geometry into simple primitives that are easier to fill. Scanline-
based algorithm follow the work of Wylie et al. [1967] and break shapes into
horizontal spans that cover interior pixels [Foley, 1996]. The Direct2D [Kerr,
2009], Cairo [Packard and Worth, 2003], and Skia renderers decompose shapes into
trapezoids. Loop and Blinn [2005] use a constrained triangulation, while Kilgard
and Bolz [2012] use a triangle fan and the stencil buffer—we will discuss these

47

48 CHAPTER 2. PREVIOUS WORK

two works in more detail later. Each primitive is broken into fragments which are
painted and blended over a frame buffer. The cost of the rendering is amortized
within paths, since fragments of the primitives can be computed in parallel. We
illustrate these methods in figure 2.1.

scan
line

Figure 2.1: To rasterize a path (left), it can be triangulated (middle) or broken into
line spans (right).

Most of these renderers use box filtering for antialiasing. Therefore, the color of
a pixel is a numerical approximation of the average color of the primitive over
the pixel area. As we have seen, the correct way of computing the pixel’s color
is to collect many samples taking in account all the shapes that overlap with
the pixel’s area. Instead, these methods implement an optimization where the
antialiasing is computed for each shape independently. Pixel coverage is converted
into semi-transparent colors prior to blending into the frame buffer. When more
than one shape partially covers a pixel, the resulting blended color is not opaque,
even when the union of all shapes entirely cover the pixel area [Porter and Duff,
1984]. This conflation of color is shown in figure 2.2. To eliminate this problem, it

(a) Shared edge. (b) Rendered correctly. (c) Color conflation.

Figure 2.2: Color conflation.

2.1. IMMEDIATE MODE 49

is necessary to allocate memory for many samples per pixel. Each sample will have
its color blended with the color in the frame buffer independently. The resulting
pixels are computed by averaging the samples final colors (box filtering). This is
the approach implemented by Kilgard and Bolz [2012].

2.1.1 Loop and Blinn [2005]

Loop and Blinn [2005] describe a way of displaying filled paths using the GPU
hardware. The control polygon of each path are triangulated. Completely filled
triangles are simply painted by a trivial shader. Triangles whose interior are only
partially filled are treated by a special shader. This special shader uses an implicit
version of the input Bézier segments to distinguish fragments that are inside from
fragments that are outside the shape. Anti-aliasing is performed on boundary pixels
using a distance function derived from the implicit representation’s derivative.

(a) Quadratic. (b) Cubic. (c) Cubic.

Figure 2.3: Quadratic segments have a natural triangulation given by the control
points. Cubic segments may be triangulated in more the one way.

Rendering filled shapes using their work requires a preprocessing phase where paths
are prepared for rendering. The preprocess stage triangulates the control points
of the path to create a mesh that contains the shape to be filled. Control points
of a quadratic segment naturally give a triangle containing the segment, while for
cubic segments it is necessary to compute a local triangulation of the four control
points, see figure 2.3. After triangulating all Bézier segments these triangles are
constrained and a global Delaunay triangulation is computed. Figure 2.4 shows
two input paths, followed by their triangulations.

The triangulation yields two types of triangles: completely covered triangles and
partially covered triangles. The completely covered triangles are inside the path
and are ready to be processed by the rendering stage. Partially covered triangles
contain quadratic or cubic Bézier segments and require the definition of an implicit

50 CHAPTER 2. PREVIOUS WORK

(a) A shape with quadratic segments.

(b) A shape with cubic segments.

Figure 2.4: Constrained triangulation.
Image from Loop and Blinn [2005].

function inside the triangle: f : R2 → R. Function f is created such that f(p) < 0
if p is inside the path, f(p) > 0 if p is outside, and f(p) = 0 if p lies on the Bézier
segment.

The triangles are broken into fragments by the GPU hardware and processed by
the fragment shader. Fragments from covered triangles are painted with the path’s
color. Fragments from partially covered triangles are tested by the implicit function.
If the fragment is inside the path, then it is painted. Otherwise it is discarded.

Finding an implicit function for both quadratics and cubics is an extensive part of
their work. They use a result by Salmon [1852] that ensures it is always possible
to find affine functionals k, l, and m such that the implicit function f applied to a
point (in homogeneous coordinate) s =

[
sx sy 1

]
is given by

integral quadratic: f(s) = (k s)2 − l s, (2.1)

rational quadratic: f(s) = (k s)2 − (l s)(m s), (2.2)

integral cubic: f(s) = (k s)3 − (l s)(m s). (2.3)

2.1. IMMEDIATE MODE 51

At the preprocessing stage, the functionals are evaluated on the vertices of the
triangles and the results are stored. To evaluate the functionals at any point inside
the triangle it is sufficient to compute the barycentric interpolation of the functional
values stored at the triangle’s vertices. This is exactly what is done by the hardware
when generating fragments at the rasterization phase of the 3D pipeline.

2.1.2 Kilgard and Bolz 2012

Kilgard and Bolz [2012] build on the ideas of Loop and Blinn [2005] to create a com-
plete rendering pipeline integrated with OpenGL. They introduce a programming
interface called “Stencil then Cover” (StC). Stencil then Cover explicitly decouples
the two-stage of rendering a path: deciding which point to paint (Stencil) and then
paint it (Cover).

Before StC can take place all paths have to be preprocessed (baked). The baking
process converts each path into a resolution-independent representation from which
they can be stenciled. Baking a path yields four types of geometric primitives:

1. Polygonal anchor geometry, structured as a triangle fan and rendered with
no shader.

2. Quadratic and cubic discard triangles, rendered with Loop–Blinn implicit
shader.

3. Arc of ellipses discard triangles.

4. Conservative covering geometry, typically a triangle fan or quadrilateral.

Primitives from 1 to 3 are rendered at the stencil fill step. Fragments from front face
triangles increment the stencil buffer while fragments from back facing triangles
decrement it. This process is equivalent to computing the winding number of
each sample and storing it in the stencil buffer. Primitives from 4 are rendered
in the cover step and the stencil buffer is used to exclude outside fragments. The
fragments inside the path are then covered using the path’s paint computed by a
fragment shader. Figure 2.5 shows the geometric primitives above.

The quality of the rendered scene depends directly on the number of samples
supported by the hardware (and selected by the user) when rendering the scene.
More samples per pixel implies better images at the cost of more memory to
store the stencil and color buffers. The antialiasing used is also dependent of the
hardware capabilities: at this time only box filtering is natively supported. It is
possible to use better antialiasing filter by rendering in multiple passes. Better
quality comes at the expense of a performance penalty.

52 CHAPTER 2. PREVIOUS WORK

Figure 2.5: The geometry yield by the baking process. From left to right: the path
to be filled, its control points, the triangle fan, the discard geometry for curved
segments, the conservative covering geometry.
Image from Kilgard and Bolz [2012].

2.2 Vector Textures

In retained mode, all layers in the illustration are sampled in a single pass without
conflation. A particular class of retained-mode methods are vector textures [Kilgard,
1997, Frisken et al., 2000, Sen et al., 2003, Sen, 2004, Ramanarayanan et al.,
2004, Ray et al., 2005, Lefebvre and Hoppe, 2006, Qin et al., 2006, Nehab and
Hoppe, 2008, Qin et al., 2008, Parilov and Zorin, 2008, Rougier, 2013]. Vector
textures combine the resolution independence of vector graphics with the random-
access sampling from images. This enables a range of new applications, such as
direct mapping of vector graphics onto 3D surfaces and creative warping effects.
Unfortunately, most of these methods restrict the complexity of the input, which is
not acceptable in a general-purpose rendering scenario. More importantly, these
methods build acceleration data structures during expensive preprocessing stages
that are sequential in nature, and this precludes their use with dynamic content.
We review the work of Nehab and Hoppe [2008], since it is the most influential
method to our work.

2.2.1 Nehab and Hoppe [2008]

Nehab and Hoppe [2008] introduce a novel method for simplifying and encoding a
vector graphics scene into a coarse grid of cells. These encoded cells are interpreted

2.2. VECTOR TEXTURES 53

at runtime within a pixel shader in order to evaluate the fragment’s color. Anti-
aliasing is done using analytical prefiltering or supersampling.

Each pixel color in the image is computed independently by a fragment shader in
the GPU. The fragment shader uses the fragment coordinates in image space to
find which cell in the grid contains the fragment. This is done in constant time,
since both the image and the grid size are known. Then, the data corresponding
the cell is loaded from a GPU buffer. This data contains a representation of the
scene inside the boundary of the cell, and is coded in a special form: it is the result
of the lattice-clipping algorithm. The scene data is traversed to compute the pixel
color.

If only a few shapes are inside the cell, an analytic approximation to anti-aliasing
is used. Prefiltering is performed independently for each shape. The filter weight is
computed as a function of the distance between the pixel center and the shape. If
many shapes cross the cell, those simplifications break down and supersampling is
used. In this case, the colors of many samples inside the pixels area are computed
and the pixel color is determined by a combination of the colors and weights given
by an anti-aliasing filter.

Fast sampling is possible due to the simplicity of the scene inside each cell of the
grid. To compute the content of each cell, one could employ a clipping algorithm,
and clip each shape against each grid cell. This is very inefficient. Instead, Nehab
and Hoppe show an elegant method to construct the grid.

ΔΔhh==++11ΔΔhh== 11

ΔΔhh==++11ΔΔhh== 11

001111

001111

00000

(a) Winding number increments. (b) Method applied to a scene.

Figure 2.6: Fast lattice-clipping algorithm.
Images from Nehab and Hoppe [2008].

They begin by making the following assumption: sampling operations only use
horizontal rays the right to compute intersections. The sequence of operations to
compute the content of the cells is shown in figure 2.6a, and is applied to each path
in the scene. Each segment in the path is clipped against the cells borders, but
no new geometry is created at this stage. Then, for each segment that crosses the

54 CHAPTER 2. PREVIOUS WORK

right side of a cell, a shortcut segment is added. If the segment is entering the cell,
a shortcut coming from the top of the cell and ending at the segment’s beginning
vertex is added. If the segment is leaving the cell, then the shortcut begins at the
ending vertex and ends at the top of the cell. By doing so, the winding numbers
of the points inside the cell may be incorrect, but the difference between the new
winding number and the original winding number is constant through the cell.
The difference between the new and old winding numbers can be computed by
finding the winding number of the lower right corner of the cell and storing it
as the initial winding number of the path inside the cell. This procedure will be
explained in depth in chapter 4, along with a proof of its correctness. Figure 2.6b
illustrates the method. Sampling with this new representation is straightforward.
Besides the normal intersection between the ray and segments (shortcuts are just
regular segments), one just adds the initial winding number before applying the
inside/outside rule of choice.

Chapter 3

Optimizations

We start this chapter introducing a few optimizations to the algorithm given in
chapter 1. These optimizations reorganize the process of sampling and integration
of colors. When using antialiasing kernels with large support, the computation of
neighbor pixels will collect samples in a shared area. We take advantage of the
overlapping between the support of antialiasing kernels to restructure the rendering
loop: each sample is evaluated once and their colors are shared among many pixels.
To speed up sampling, we use an acceleration data structure that exploits geometric
coherence to split and simplify the scene. The ideas presented in this chapter will
be translated to the GPU in chapter 4.

3.1 Rendering Loop

In this section, we show that, by rearranging the rasterization loop, we can exploit
the overlap between the support of anti-aliasing kernels to speed up the integration
of samples. We focus our attention on symmetric piecewise polynomial kernels.
Elements of this family are simple to evaluate and give an uniform structure to the
problem of integrating the color of samples.

3.1.1 Kernels

If ψ is symmetric, that is ψ(−x) = ψ(x), for all x ∈ R, so is Ψ. The symmetry of
ψ makes its Fourier transform a real valued function (F [ψ](w) ∈ R, for all w ∈ R),
which means that using ψ as a kernel does not change the signal’s phase.

55

56 CHAPTER 3. OPTIMIZATIONS

A piecewise polynomial function is defined by multiple polynomials, each one
applied to an interval of the function’s domain. These polynomials are carefully
chosen to ensure desirable properties, such as continuity and differentiability. One
additional constraint that we impose is that each polynomial part should be defined
over an interval whose length is an integer number.

These properties induce a grid structure in the plane. We fix the position of the
samples as defined in the set of equations 1.41. These positions are called pixel
centers, as they are the position of the samples we take from the convolution of
the image with the anti-aliasing kernel. Kernels with even support induce a primal
grid, while kernels with odd support sizes induce a dual grid. Examples of both
grids are shown in Figure 3.1. The areas delimited by the dashed lines are the
areas of the plane in which the anti-aliasing kernel is defined by a single polynomial
function. We call these areas unit areas of the image.

(a) Primal grid for a kernel with support
width 4.

(b) Dual grid for a kernel with support
width 5.

Figure 3.1: Examples of grids.

3.1.2 Computation

Suppose we want to compute an image with w × h pixels, with n samples per
pixel, using an anti-aliasing filter Ψ(x, y) = ψ(x) · ψ(y) in which supp(ψ) = k. In
algorithm 1.33, the number of evaluations of the scene will be given by w ·h ·n.

3.1. RENDERING LOOP 57

We can rearrange the computation, iterating over the unit areas. The samples inside
each unit area will affect k2 pixels, and can be computed only once. Suppose we
have chosen n, such that n = sk2. That is, the n samples can be evenly distributed
over the k2 unit areas around a pixel. The algorithm is straightforward: for each
unit area compute the s samples inside it. Then, for each pixel affected by this
unit area, compute the color contribution of the samples to that pixel and add to
the pixel’s color. This is shown in Figure 3.2. This time, the number of evaluations
is given by w · h · s, which is exactly k2 times smaller than before.

function rasterize(. . .)

−− iterate over the unit areas of the image
for ua in unit_areas_iterator() do

−− allocate a buffer to hold the
−− colors of the ’s’ samples in this
−− unit area
local colors = { }

−− iterate over the samples computing
−− their colors and storing them.
for s in sample_pattern_iterator() do

color[s] = evaluate(ua, s)

end

−− iterate over the pixels affected by this
−− unit area
for p in pixel_affected(ua) do

−− for each pixel, one polynomial part of
−− the filter is selected
local filter = select_filter_polynomial(ua, p)

−− empty color
local pcolor = {}

−− loop over the samples again computing the
−− the color
for s in sample_pattern_iterator() do

pcolor = pcolor + filter(s, ua)*color[s]

end

−− update the output image, pixel p
−− adding the color from this unit area
image.add(p, pcolor)

end

end

end

Figure 3.2: Rendering the scene iterating over the unit areas.

58 CHAPTER 3. OPTIMIZATIONS

3.2 Acceleration Data Structures

The algorithm presented above is faster than the initial version, but it has not
changed the asymptotic behavior of the method. Most of its effort is put on
computing the color of the samples. This is exactly the operation we wish to
optimize (Figure 1.9).

3.2.1 Splitting the scene

We know that the cost of sampling lies in the procedure that computes the
intersection between the ray emanating from the point and the Bézier segments
that comprise the boundary of the paths. We can speed up computations by
avoiding those tests altogether. To do that, we will exploit the geometry of the
scene and create an acceleration data structure that partitions the space, separating
the complex regions from the simpler ones. Our choice is a quadtree [Warnock,
1969].

To build a quadtree that fits into our purposes, we will suppose the existence
of two functions. The first one, which we shall call simplify, takes as input two
arguments: a vector graphics scene and a rectangular area in the plane, called a
cell. The return of simplify is a new scene in which the winding number of each
path, when evaluated at points inside the cell, remains the same as in the original
scene. Hopefully, simplify will change the scene so that the computation of those
winding numbers is simpler than before. We try to exploit the geometric coherence
of the scene: segments that are far from a sample might not affect the computation
of the winding number. The second function, or predicate, is called is complex and:
given the same arguments, should answer whether the cell is worth being simplified.
We are going to show concrete examples of these function later.

We start with the original scene and the area of interest represented by a bounding
box. This bounding box is the root of the quadtree and usually corresponds to
the viewport or to an area containing it. We apply simplify to the root in order
to guarantee that the representation of the scene is simple and correct inside its
boundary (see figure 3.3a). Then, we recursively apply a procedure that goes
through the following steps:

1. Apply is complex to test whether the node is worth subdividing. If true then;

2. Split the cell at the middle point into four parts;

3. For each sub cell, apply simplify and recursively call the procedure.

3.2. ACCELERATION DATA STRUCTURES 59

This is depicted in figure 3.3b.

(a) Root node. (b) After simplification.

Figure 3.3: The root node is simplified to guarantee consistency and then split into
child cells.

Now, we show two ways of defining the function simplify. The first one is built upon
the algorithm for cutting polygons create by Sutherland and Hodgman [1974]. The
second simplifies the paths without cutting segments. Both methods yield useful
simplify functions, with slight different results; the second is less efficient.

The first method simplifies paths by clipping its segments against the lines defined
by the cell’s borders, one line at a time. Each line divides the plane in two disjoint
semi-spaces. One of them containing the cell and the line. The method iterates
over all segments in the path, testing whether the segment is completely inside the
semi-space that contains the cell. If so, this segment must be kept intact to avoid
changing the geometry of the path inside the cell. A segment that is not completely
inside the semi-space presents an opportunity for the simplification of the path.
This segment is broken into pieces that are either completely inside, or completely
outside the semi-space. The pieces that are inside are kept. The pieces that are
outside are replaced by line segments to keep the winding number computations
correct. These segments will necessarily lie over the cell’s boundary. Figure 3.4a
shows the intersection between the path and the cell’s boundaries while figure 3.4b
shows the result of the method.

60 CHAPTER 3. OPTIMIZATIONS

a
(a) Intersection points.

a
(b) Cutting.

a
(c) Without cutting.

Figure 3.4: Different methods of simplifying a complex path.

Another option is to simplify the path without clipping the segments. This method
iterates over the path’s segments keeping those that intersect the cell. When a
segment is found that begins inside the semi-space that contains the cell but ends
outside, all the following segments that are completely outside the semi-space are
replaced by linear segments. The result is a simplified path that is not completely
inside the cell, but whose parts that are outside are comprised by just a few line
segments. This is shown in figure 3.4c.

These methods have similar behavior but they may produce different outputs.
Cutting may not always produce a simpler path. For instance, Figure 3.5 shows
a situation where it may add segments to the path, making the evaluation more
costly. This may be avoided by not cutting segments.

(a) Path with 4 segments. (b) Path with 8 segments.

Figure 3.5: Cutting paths may create more complex paths.

3.2. ACCELERATION DATA STRUCTURES 61

The interplay between simplify and is complex is an important factor to consider
when designing a quadtree algorithm. It is important that is complex is able to
detect situations where the subdivision of a cell would not improve the simplification.
Such situations occur when the path covers the whole cell. In this case the path
could be replaced by a rectangle covering the cell, for example. It is very difficult
to detect this situation when we are not cutting segments, since the test would be
very costly. On the other hand, cutting segments would produce a result where
all output segments lie on the border of the cell, which is an easy configuration to
detect.

In figure 3.6 we show an example of quadtree.

3.2.2 Sampling with the quadtree

To compute the color of a sample using the quadtree, we need to find the leaf node
of the quadtree that contains the sample, i.e., we need to traverse the quadtree.
This can be done using a simple procedure. First we test whether the sample is
inside the root node. If so, we compare the sample’s coordinates with the root’s
middle point to find which child cell contains the sample. This is done recursively
for each node in the tree until the leaf node is found. Then, the part of the scene
corresponding to the leaf can be used to compute the color of the sample.

At first, the quadtree traversal needs to be done for each sample in order to produce
the final image. Every traversal followed by loading the scene has costs, both in
computation time and I/O. We can mitigate this cost by aligning the quadtree to
the primal or dual grid associated with the anti-aliasing filter. By aligning we mean
that the boundaries between adjacent cells in the quadtree are over the grid’s lines
(figure 3.7). This has two consequences. First, the cells in the quadtree are made
of the union of unit areas in the grid. Second, the smallest cells in the quadtree
are no smaller than one unit area.

To create an aligned quadtree, we perform the following steps:

1. From the viewport and anti-aliasing kernel, compute the grid of unit areas:
[xmin, xmax]× [ymin, ymax];

2. Compute the smallest number i ∈ N such that the grid’s width and height
are smaller than or equal to 2i;

3. Use [xmin, xmin + 2i]× [ymin, ymin + 2i] as bounding box of the root cell.

Since every subdivision step in the creation of the quadtree implies a division by
2 in both x and y dimension, choosing the root’s bounding box as above ensures

62 CHAPTER 3. OPTIMIZATIONS

Figure 3.6: Dancer subdivided to level 7 using the method of cutting segments.

3.2. ACCELERATION DATA STRUCTURES 63

that cell’s borders always fall over the grids lines. We also limit the number of
subdivisions of our tree to i in order to ensure the second condition. The steps
above are illustrated in figure 3.7.

subdivision lines

root node boundary

Figure 3.7: The root node is the smallest square containing the unit areas’ grid,
whose side is a power of 2. Its lower left corner is at (xmin, ymin).

With the aligned quadtree, computing the colors of all samples in a unit area can
be done with one traversal followed by one operation of loading the cell’s content.
We usually choose the center of the unit area as the point used to traverse the
quadtree, since all samples in that unit area are computed as offsets from the center.
These offsets are given by the sampling pattern (figure 1.29). This scheme fits
perfectly with the algorithm shown in figure 3.2. We can rewrite it to take the unit
area being processed and compute its center, then traverse the quadtree to fetch
the part of the scene relative to the leaf. This part of the scene can be used exactly
as shown before (figure 1.23), given that its content is a well formed scene.

64 CHAPTER 3. OPTIMIZATIONS

3.2.3 Experiments

To validate the ideas in this chapter we designed an experiment. We compared the
rendering time of the algorithm when processing benchmark scenes. These scenes
were constructed using randomly placed polygons, the number of polygons varies
such that the total number of segments in the scene is in the interval from 4 to
1024. Each benchmark scene was created having either small or large polygons,
and each polygon in the scene has either 4 or 8 sides. We show examples of these
scenes in table 3.1.

Small Large

4
S
id

es
8

S
id

es

Table 3.1: Examples of the scenes used as benchmark.

Figure 3.8 shows the result. Along with the times for this experiment we provide
for comparison the results shown in section 1.3.1 for randomly generated scenes

3.2. ACCELERATION DATA STRUCTURES 65

rendered with no acceleration data structure. Looking at the results, two distinct
groups are evident: one for scenes with large polygons and the other for small
polygons. The gap between these two groups can be explained by the fact that the
subdivision process of the quadtree easily isolates the small polygons. Since they
are small and uniformly distributed in the scene, there are very little overlapping
between then. This configuration results in leaf cells whose geometry are simple
and that can be sampled fast. On the other hand, large polygons will overlap.
After subdivision, the quadtree will generate leaf cells whose complexity is larger
than the cells generated before. They may contain many different paths. Again,
looking at the curves for large polygons, we see that the performance for polygons
of 4 sides is worse than the performance for polygons of 8 sides. This is the effect
of cutting the polygons against the cells’ borders. Polygons with 8 sides are more
heavily simplified, resulting in paths with fewer segments. The same effect can be
seen for scenes with small polygons, but with less impact.

4 sides random

8 sides large

4 sides small
8 sides small

4 sides large

Figure 3.8: Rendering times for benchmark scenes.

It is disappointing that the performance for large polygons is close to the perfor-
mance of the naive method from chapter 1. The solution, in this case, is to use
front-to-back rendering. Figure 3.9 shows the experiment using front-to-back ren-
dering with large polygons with 4 sides. It is clear that performance has improved.
The reason is that most of the leaf cells yielded by the quadtree have paths that
completely cover them. This makes the front-to-back sampling very efficient.

66 CHAPTER 3. OPTIMIZATIONS

4 sides large back-to-front
4 sides large front-to-back

8 sides large back-to-front
8 sides large front-to-back

Figure 3.9: Rendering times with front-to-back rendering.

One last question that remains is whether the naive algorithm from chapter 1,
using front-to-back rendering, would be as effective. The answer is no. The reason
is that without the elimination of paths from the cells performed by the quadtree,
many point-in-shape tests would have to be performed before the first hit was
found.

We can justify the way we constructed the scenes for these experiments by pointing
out that scenes with these same properties are common: pages of text have many
small paths, figures such as Lion and Drops (see 1.3) have many large overlapping
paths.

3.3 Moving to the GPU

In the next chapter we describe our pipeline for vector graphics rendering. It was
designed as a extension of the ideas presented in chapter 1 and this chapter. We
briefly describe it as follows.

The window and viewport, as defined by the user, are used to define the image
transformation (section 1.1.2). As the scene enters the pipeline, all segments are
transformed to image coordinates and then converted into monotonic abstract
segments. Rendering occurs in image coordinates. The chosen antialiasing kernel

3.3. MOVING TO THE GPU 67

defines the grid of unit areas. This grid defines the root node of our acceleration
data structure: the shortcut tree. The shortcut tree is computed in breadth first
order, as a sequence of subdivisions and pruning steps. The tree is sampled in
order to compute the final image. Each sample collected affects as many pixels as
the size of the support of the antialiasing kernel. Samples are shared in order to
maximize performance while achieving great quality.

The conversion of segments into abstract segments is performed in parallel at
the segment level. Each segment is broken into monotonic pieces. The resulting
segments are implicitized using the method of Loop and Blinn [2005], and an
abstract segment is created. Abstract segments can be queried efficiently for
intersections with horizontal rays.

The computation of the shortcut tree is done by a novel algorithm that encodes the
scene using a method inspired by the lattice-clipping from Nehab and Hoppe [2008].
Instead of clipping, we simply detect intersections between the segments and the
cells of the quadtree. The local nature of the decision taken by the algorithm allow
us to implement it in parallel. We process each abstract segment independently.
After subdivision, pruning is done. It simplifies the tree’s cells in order to reduce
the complexity of the newly created nodes.

When rendering, all samples are computed in parallel. For that, we created a
scheduler that maps each sample to be evaluated to its containing quadtree node.
This map is then transposed, that is, we create a list of samples for each node.
This list is broken into chunks, that are consumed by working groups of threads.
Grouping samples in this way reduces I/O and computation. The contribution of
color of each unit area is computed in local memory and then committed to global
memory.

Our pipeline delivers high quality images with high performance.

68 CHAPTER 3. OPTIMIZATIONS

Chapter 4

Massively Parallel Vector
Graphics

As we have seen in previous chapters, previous works have at least one sequen-
tial stage. Nehab and Hoppe [2008] construct their acceleration data structure
sequentially before rendering. Kilgard and Bolz [2012] have to process each path
sequentially in order to compute the sample’s colors. We designed our vector
graphics pipeline to be massively parallel at every stage. As shown in figure 4.1,
it is divided into a preprocessing component that is parallel at the input segment
level, and a rendering component that is parallel at output sample and pixel levels.

Preprocessing

Abstraction

Input graphics

Shortcut tree

Subdivision

Pruning

Parallel by segment

Rendering

Scheduling

Shortcut tree

Output image

Sampling

Integration

Parallel by sample and by pixel

Figure 4.1: Structure of the pipeline.

At preprocessing, every Bézier segment in the scene is converted into an abstract
segment using monotonization and implicitization. Monotonic segments can be
intersected only once by horizontal rays, and can be efficiently queried for the

69

70 CHAPTER 4. MASSIVELY PARALLEL VECTOR GRAPHICS

existence of such intersections. Abstract segments are used to create the shortcut
tree. A shortcut tree is a quadtree adapted to the scene that allows the color of each
point in the illustration to be evaluated very efficiently. Each of its leaves contains
the minimal amount of geometry necessary to correctly evaluate the winding number
of its internal points. The shortcut tree is constructed in a breath-first fashion. At
each subdivision level, all segments in all cells marked for subdivision are processed
in parallel and routed to the appropriated child cells. As subdivision progresses,
pruning stage considers all segments in parallel and eliminates those that have been
clipped or entirely occluded by other paths.

The rendering component finds the leaf cell that contains each sample, loads the
appropriate cell contents, and performs the required computations to evaluate
the sample colors. To enable efficient support for user-defined warps, the samples
are scheduled so that those falling within the same leaf cell are grouped together.
This allows the sampler to evaluate these samples in parallel, without control-flow
divergence, while reusing the bandwidth required to load cell contents. Moreover,
samples falling under the overlapping supports of antialiasing filters associated with
neighboring pixels are evaluated only once and shared between them. Integration
of sample colors happens in fast local memory, before pixels are written to global
memory. This setup enables antialiasing filters with wide support (e.g., 4× 4) and
large sampling rates (e.g., 512 samples/pixel) for sharp, noise-free renderings.

4.1 Abstraction

The color of a sample is computed by selectively blending the paints of all paths for
which the sample passes the inside-outside test, in addition to the inside-outside test
of all active clip-paths. The fundamental inside-outside test consists of applying the
path’s fill rule to the winding number of the path about the sample. The winding
number is computed by counting the number of intersections between a horizontal
ray, shot from the sample to infinity in the +x direction, and all segments in the
path, incrementing or decrementing depending on whether segments are going up
or down at each intersection.

Nehab and Hoppe [2008] compute winding numbers by solving for the parameter
values corresponding to the intersections between each segment and the ray (by
solving linear, quadratic, or cubic equations), keeping those in the interval [0, 1],
substituting into the parametric equation of the segment to find the intersection
point, and accepting only the intersections to the right of the sample point.

4.1. ABSTRACTION 71

Figure 4.2: The segments in each path are classified and decomposed into monotonic
abstract segments. Abstract segments can be queried for their bounding box, their
orientation (NE,NW,SE,SW), and for the side on which a sample lies.

We use abstract segments (using monotonization and implicitization) to greatly
simplify this process. Abstract segments can be queried for a bounding box, for an
orientation (NE, NW, SE, SW), and for the side of the segment on which a given
sample lies. Figure 4.2 illustrates the decomposition of a contour into abstract
segments.

Since abstract segments are monotonic, they can be intersected only once by
horizontal rays. As seen in section 1.1.3, we can identify whether there is an
intersection by comparing the sample’s position with the segment’s bounding box.
The difference in this case is that instead of solving the system of equations 1.1 we
use the implicit form of the segment. By testing the sign of the implicit form of the
parametric segment at the sample position, we can determine the side of the segment
on which the sample lies. If it is on the left, there is an intersection, otherwise
there isn’t. The intersection itself need not be computed. Similar reasoning applies
to vertical rays, which are used during the construction of the shortcut tree. This
is shown in figure 4.3.

72 CHAPTER 4. MASSIVELY PARALLEL VECTOR GRAPHICS

Figure 4.3: Monotonic segments can appear in one of four configurations. Intersec-
tions with horizontal rays can be ruled out or confirmed trivially unless the sample
and the segment are in the same side of the dashed bounding box diagonal. In that
case, an implicit test is used. The intersection itself need not be computed.

4.1.1 Monotonization and Implicitization

Monotonization of segments is done, as shown in section 1.1.3, by splitting the
segments at the extreme points of its derivatives: x′(t) = 0 or y(t) = 0.

The implicit representation of the segments is found using the method of Loop
and Blinn [2005] (section 2.1.1) Each abstract segment stores the row vectors
corresponding to the required affine functions, and we use them to quickly perform
implicit tests on the required samples.

There is one important caveat. Within the region where implicit tests are used, we
must ensure that the implicit function changes sign only once along axis-aligned
rays. This is to prevent the situations depicted in figure 4.5, which would cause an
incorrect number of detected intersections and ultimately to incorrect rendering.
Since segments have been monotonized, it suffices to prove that the parametric
curve is outside the test region for all parameters outside of [0, 1]. The diagrams in
figure 4.4 illustrate the proofs that follow.

4.1. ABSTRACTION 73

Figure 4.4: Linear segments pose no problems. Implicit tests must be restricted to
triangle Q0B1Q2 in the case of quadratics, and to triangle C0CC3 in the case of
cubics.

Figure 4.5: Within the implicit test region, the implicit function must only change
sign once along any horizontal rays, or the algorithm would report incorrect inter-
section counts as in the examples.

Quadratic segments It is sufficient to restrict the test to triangle Q0B1Q2.
This requires one implicit test against segment Q0Q2 and two comparisons against
bounding box coordinates.

Proof: The quadratic curve cannot cross segment Q0Q2 outside of points Q0 and Q1

since it can intersect a straight line at most twice. Similarly, it cannot cross
segments Q0Q1 and Q1Q2. Indeed, since the curve is tangent at both Q0 and Q2,
these points count as double intersections. Finally, note the quadratic cannot
intersect segments Q0B1 and B1Q2 without first incurring forbidden additional
intersections with segment Q0Q1 or Q1Q2, respectively.

74 CHAPTER 4. MASSIVELY PARALLEL VECTOR GRAPHICS

Loop and Blinn [2005] use the GPU rasterizer to generate fragments only inside
triangle Q0Q1Q2. Using their solution would require us to perform three implicit
line tests.

Cubic segments Cubics are more demanding. To prevent the curve from looping
back and intersecting segment C0C3 (and the curve itself), Loop and Blinn [2005]
split cubics at a double point whenever one is found for a parameter td with
0 < td < 1. This requires solving a quadratic equation, and we do the same. We go
one step further and split the cubics at an inflection point whenever one is found
for ti with 0 < ti < 1. This requires solving another quadratic, but ensures the
intersection of lines C0C1 and C2C3 happens at a point C inside the bounding box.
Then, it is sufficient to restrict the implicit test to the triangle C0CC3. Note that
these quadratics must be solved during the implicitization process anyway.

Proof: We again use root-counting arguments. First, we show that the curve cannot
intersect segment C0C3. If it did, it would either have to exit triangle C0CC3

again through segment C0C3 (but it cannot have four intersections with line C0C3),
or it would have to self-intersect (but by assumption it has no double point for
t ∈ (0, 1)). The arguments for why the curve cannot intersect segment C0C and CC3

are analogous, so consider segment C0C. We start from the part of the curve that
exits triangle C0CC3 at C0. If it is below C0C, then C0 is an inflection and exhausts
all three possible intersections with line C0C. If it is above C0C, then C0 is only
a tangent. Now recall the curve cannot intersect C0C3. Therefore, in order to
intersect C0C a third time, it would have to either go up around triangle C0CC3,
thereby intersecting CC3 four times (twice at the tangent C3 and twice before it
can reach C0C), or go down back into C0C (wasting the third and last intersection
with line C0C at a point outside of segment C0C). Now consider the part of the
curve exiting at C3. If it exits to the right of CC3, then C3 is an inflection and
precludes the fourth intersection with line CC3, needed to reach segment C0C. If it
exits to the left, it would intersect line C0C the third time outside of segment C0C,
since it cannot intersect segment C0C3.

Loop and Blinn [2005] use the GPU rasterizer to generate fragments only inside the
two triangles that form the convex hull of the cubic control polygon. Adopting this
approach would require us to perform at least four implicit line tests and maintain
some bookkeeping.

4.1. ABSTRACTION 75

4.1.2 Scene Abstraction

We store a vector graphics scene as a stream that contains the geometry, as well as
auxiliary information, such as paint data and delimiters for clipping operations.
The structure of the stream is best described by a context-free grammar, whose
production rules are:

scene → (fill∗) (4.1)

fill → F (4.2)

fill → (clip-path∗ | fill∗) (4.3)

clip-path → C (4.4)

clip-path → (clip-path∗ | clip-path∗) (4.5)

Here, terminal production (4.2) stands for a filled path. Terminal production (4.4)
stands for a clip test. The geometry of filled paths and clip tests is given by a list
of segments that form the outlines of the shape. Filled paths contain additional
paint information enabling the computation of sample colors (e.g., gradient and
texture paints).

The remaining terminals ‘(’, ‘|’, and ‘)’ are short for push, activate, and pop,
respectively, and are used to delimit clipping operations. The clip-path area starts
empty with a push, and is given by the union of an arbitrary number of clip tests
appearing before its matching activate. An union of clip-paths can be seen as an or
operator, that is, if a sample lies inside one of the clip-paths then it is considered
inside the union of all clip-paths. These clip-paths can themselves be clipped by
other clip-paths, so that nesting is equivalent to intersection. The clip-path is
active between the activate and its matching pop. The entire scene is delimited by
a dummy push–pop pair. Production (4.5) can be seen as an and operator, that is,
a clipping test succeeds if it succeeds at both sides of the expression.

Scenes can be represented in two ways: back-to-front or front-to-back order. In
back-to-front representation, the first path (clipping or fill) to appear in the stream
is the bottommost path in the scene. In front-to-back representation, the first path
to appear in the stream is the topmost path in the scene. Back-to-front is the
most commonly used representation. It fits directly into the vector graphics model
given so far, and allow the scene to be evaluated easily. Front-to-back makes more
convenient to blend samples from front to back and abort the computation as soon
as the sample color becomes opaque (see section 1.4.2).

76 CHAPTER 4. MASSIVELY PARALLEL VECTOR GRAPHICS

4.2 The shortcut tree

Figure 4.6: Contours on the left column are equivalent to contours in the central
and right columns. The intuitive representation in the center requires knowledge
about segments that can be far apart in the input. The equivalent representation on
the right can be generated locally by inspecting segments independently.

Assume that we have partitioned the illustration area into a union of small cells.
The key strategy for speeding up the inside-outside test within each cell is to reduce
the number of segments that must be tested for intersection during the computation
of winding numbers. We will specialize the representation of the illustration within
each cell while maintaining the following invariant: the winding number of any
path about any sample in a cell, computed by shooting a horizontal ray from the
sample to infinity in the +x direction, is the same as in the original illustration. It
is clear that we can eliminate a segment whenever its bounding box is completely
above, below, or to the left of the cell. The difficulty is what to do otherwise. The
breakthrough in the lattice clipping algorithm of Nehab and Hoppe [2008] is to
include in each cell only the parts of segments that overlap with them, with the
addition of winding increments and shortcut segments that restore the invariant.
We describe an improved version of the idea that does not clip segments to the
interior of cells and thus eliminates all intersection computations.

4.2. THE SHORTCUT TREE 77

The examples in figure 4.6 show how a contour’s behavior to the right of a cell
boundary can be summarized with shortcut segments. Since all input contours
are closed, any contour that leaves a cell by crossing its right boundary must
later return to the cell. If the contour does not return to the cell via the right
boundary, it must return from a different side. In order to do that, the contour
must first leave the row of cells, and this must happen in the region to the right
of the cell. Therefore, there are only three possibilities: (1) the contour comes
back inside by crossing the right boundary again; (2) it exits to the row above;
or (3) it exits to the row below. In case 1, we can represent all omitted segments
by a shortcut connecting the end of the exiting segment and the beginning of
the entering segment. In case 2, we can add a shortcut going up from the end of
the segment that intersects the right boundary. Finally, in case 3, we can add a
shortcut going down from the end of the segment that intersects the right boundary.
The reasoning is similar for contours entering the cell from the right boundary. In
figure 4.6, note how the winding numbers obtained from the input contours in the
left column are the same as those obtained with the compressed representation in
the central column, no matter where the sample lies inside the cell area.

Unfortunately, no local procedure can distinguish between these cases by inspecting
one segment at a time. Nehab and Hoppe solve this problem by always assuming
case 2 and adding a shortcut going up. This change in the shortcut direction will
induce an error in the computation of the winding number for all samples in the cell.
Fortunately, this error is consistent throughout the cell: it sums +1 to the winding
number of all samples about this path. All errors combined add to a value k. The
invariant–that is, the winding number of each sample–can be restored by modifying
the initial winding number of all cells to the left of the violating intersection by −k.
The value −k can be found by explicit computing the correct winding number of
the bottom-right corner of the cell. Its winding number is given by the number of
intersection between segments of the path and the horizontal line emanating from
the point.

The result of the original lattice clipping algorithm is a regular grid of cells. We
now proceed to the description of the shortcut tree, our hierarchical data structure
based on the same ideas and, more importantly, how to build it efficiently and in
parallel.

4.2.1 Subdivision

The key operation when building the shortcut tree is cell subdivision. Assuming
that a parent cell respects the invariant, our task is to find subdivision rules that

78 CHAPTER 4. MASSIVELY PARALLEL VECTOR GRAPHICS

produce child cells that also respect it. Then, by induction, the resulting tree will
satisfy the invariant everywhere.

Figure 4.7: Example subdivision of a shortcut tree cell. Segments are included in
a child cell if and only if they intersect its area. Marked intersections generate
shortcut segments and winding increments that restore the invariant within each
child cell.

Figure 4.7 shows an example of cell subdivision. A child cell includes a segment
(in its original form, including the parts outside the cell) if and only if the segment
intersects its area. The intersections with the TL /TR and the BL /BR boundaries
respectively generate shortcut segments in child cells TL and BL. The intersection
with the TR /BR boundary generates a winding increment in child cell TL that
corrects the misclassification of child cell TL from case 2 to case 3.

In general, for each segment in the parent cell, we must decide in which child cells to
include it, and whether it generates shortcut segments and we minding increments.
The inclusion test is particularly simple: a segment is included in a cell if one of its
endpoints is inside the cell or if it intersects one of the cell’s boundaries. Figure 4.8
illustrates the procedure used to identify shortcut segments and winding increments.
During tree creation, the root of the shortcut tree is generated first. Shortcut

4.2. THE SHORTCUT TREE 79

segments are generated for all segments crossing boundary A. Winding increments
are generated for all segments crossing the half-line boundary B (which extends
to infinity). Cell subdivision is performed in a similar way. Shortcut segments
are generated in child cells TL and BL for all segments intersecting boundaries C

and D, respectively. Segments intersecting boundary E and G generate winding
increments in child cells TL and BL, respectively. Segments intersecting the half-line
boundary F generate winding increments in both child cells TL and TR. Likewise,
segments intersecting the half-line boundary H generate winding increments in
both child cells BL and BR. We can detect intersections by testing whether cell
boundary vertices lie on different sides of the abstract segment. To distinguish
between intersections with C and D, with E and F, or with G and H, we test the
side of their shared vertex.

TL TR

BL BR

Initial cell
B

A

C

D

E F

Cell subdivision
G H

Figure 4.8: During subdivision, segments are classified based on their endpoints,
and on intersections with the marked boundaries.

Stopping criteria We stop cell subdivision when: (1) the amount of memory
taken by the shortcut tree reaches a maximum threshold; (2) the number of segments
in a cell is smaller than a minimum threshold. Criterion 1 allows users to limit
memory consumption; criterion 2 prevents futile subdivisions. More sophisticated
criteria will be investigated as future work.

80 CHAPTER 4. MASSIVELY PARALLEL VECTOR GRAPHICS

4.2.2 Parallel Subdivision

The shortcut tree is generated in parallel, in breadth-first order, with each step
subdividing all cells at progressively deeper tree levels. The cells to be subdivided
are laid out contiguously in memory. Each cell contains a specialized description
of the scene that is correct within the cell’s boundaries. The contents of each
path in the specialized scene are also laid out contiguously. Paths are represented
as sequences of lightweight segment entries. Each segment entry uses a few bits
to distinguish between clipping control terminals, abstract segments, shortcut
segments, and winding increments. (The initial winding number for a path is
the sum of all its winding increments.) There is also room for references to the
corresponding abstract segment, the originating path, and the originating cell.

Figure 4.9: Parallel shortcut tree subdivision. Entries for each segment are shaded
with its hue. Abstract segments, shortcut segments, and winding increments are
respectively marked with a, s, and ±1.

Each round of subdivision independently processes every entry, of every path, of
every cell at the current subdivision level. According to the subdivision rules, each
parent entry may generate, in each of the four child cells: a reference to an abstract
segment, a shortcut segment, and a winding increment. In other words, the number

4.2. THE SHORTCUT TREE 81

of outputs varies by input entry. This requires us to compute an output offset
before we can write the child cells, which in turn forces us to split the process
into four computational CUDA kernels [Kirk and Hwu, 2012]. Figure 4.9 shows
an example in which two cells are subdivided in parallel. For simplicity, each cell
contains a single path and only a few entries.

The first kernel is the most important. It computes an array of splits, with one slot
for each parent entry in each of the four child cells. Each thread inspects a single
parent entry and generates one split for that entry in each child cell. These splits
specify whether to include a parent abstract segment in the child cell and whether
to add a shortcut segment. The kernel also computes two additional values per
entry: a winding increment, if any, and an offset that counts the number of output
entries generated by the parent split entry. For layout reasons in figure 4.9, these
are shown as two independent arrays. In reality, we represent them as an array of
pairs.

The purpose of the second kernel is to consolidate the winding increments into a
single entry per path, per cell. Consolidation is necessary because the first kernel
can produce multiple winding increments within each path in a child cell, and we
need to prevent their uncontrolled proliferation. Consolidation is achieved with an
inclusive segmented scan on the winding increment array. This scan adds together
the winding increments that belong to the same path, leaving the result as the last
entry for that path in the windings array.

The role of the third kernel is to compute the global offset for the output of each
parent entry into each child cell. This is accomplished with exclusive scan on the
windings/offset array. (Recall they are stored as pairs in a single array.) Besides
adding the values in the offset entry, the operator used for the scan checks the
corresponding value in the windings entry. If the entry is the last in a path, and
if the windings entry is non-zero (as consolidated by the second kernel), the scan
operator adds an extra 1 to the value to make room for a single winding increment
for the path.

The fourth and final kernel inspects all split entries in parallel. Each thread loads
the corresponding offset and writes the appropriate segments to their final positions
in the child cell. If an entry is the last in a path, the kernel also inspects the
windings array, and generates the appropriate winding increment if needed. The
offsets are such that the order in which the paths appear in the child cells is the
same as their order in the parent cell. In fact, even the order of entries within each
path is preserved. Note that all kernels involved in the subdivision process are
parallel at the segment level.

82 CHAPTER 4. MASSIVELY PARALLEL VECTOR GRAPHICS

4.2.3 Pruning

After every subdivision step, the total number of entries in the child cells is likely
to be greater than the original number of segments in the parent cell. After all,
segments that cross the subdivision boundaries are replicated and may generate
additional shortcut segments. Certain optimizations can be performed locally per
segment and help attenuate this growth. For example, shortcut segments that
cannot be intersected by any ray emanating from a cell need not even be generated.
Conversely, shortcut segments that are intersected by all rays can be converted to
the equivalent winding increment.

The most powerful strategies for keeping this growth in check, however, involve path
interactions at the cell level. For example, when a path is opaque and covers the
entire cell, all paths underneath it can be pruned. Clip-paths complicate the pruning
algorithm, but also provide us with additional opportunities for optimization. For
example, if a clip-path is empty when restricted to a cell, it can be pruned along
with all paths under its influence.

Pruning is easiest to understand by means of stream rewriting rules. Each rewrite
rule simplifies the stream while maintaining the following invariant: within the cell,
the output stream is valid and equivalent to the input stream. Pruning is performed
by the repeated application of rewrite rules, until no rule can be applied.

We introduce new terminals F0 and C0 to represent filled paths and clip tests,
respectively, that fail all inside-outside tests for samples in the cell area. Conversely,
F1 and C1 refer to paths that pass the inside-outside test for all samples in the cell
area, and in addition the paint associated to F1 is fully opaque. Since our shortcut
tree is tight, such paths are easy to identify: simply apply the inside-outside test
to the initial winding number of paths that contain no segments. Finally, non-
terminals A, B , and C represent well-formed streams, while ε represents the empty
stream. Given these definitions, the stream rewrite rules are as follows:

F0 → ε (4.6)

C0 → ε (4.7)

(A | B F1 C) → (A | B F1) (4.8)

(| A) → ε (4.9)

(A |) → ε (4.10)

(A C1 B | C) → C (4.11)

(A | B C1 C) → (A | C1) (4.12)

4.2. THE SHORTCUT TREE 83

Two key properties have guided the selection of rewrite rules: (1) there is no
reordering, only elimination of elements, and (2) the rules can be applied in parallel
since they do not interfere with each other.

Rules (4.6) and (4.7) state that empty paths can be summarily eliminated from the
stream. Rule (4.8) states that a fully opaque path covering the entire cell occludes
all content that comes behind it at the same clipping nesting depth. Rule (4.9)
states that a clip-path that always fails can be eliminated along with all content
under its influence. Rule (4.10) states that a clip-path that has no content under
its influence can also be eliminated. Rule (4.11) short-circuits the evaluation of a
clip-path that always succeeds within the cell, leaving behind only the content that
was under its influence. Since the inside/outside test of C1 always return inside,
testing against AC1B will always return inside as well. The whole expression will
evaluate as inside if, and only if, it evaluates as inside when tested against C .

Rule (4.12) is more subtle. It implements short-circuiting in the evaluation of a
nested clip-path. When rules are evaluated one at a time, we could prune more
aggressively:

(A | B C1 C) → A (4.13)

Which is analogous to rule (4.11), but applied to the right side of the expression.
However, in the next section we will parallelize the pruning and rule (4.11) will
be applied simultaneously in a single step. The aggressive rule (4.13) combines
with (4.11) to produce incorrect results:

(A C1 B | C C1 D)
4.11, 4.13−→ ε 6= C1 (4.14)

Rule (4.12) does not interact with rule (4.11), and results are correct:

(A C1 B | C C1 D)
4.11, 4.12−→ C1 (4.15)

4.2.4 Parallel Pruning

Pruning is a challenging operation to perform efficiently and in parallel. The key
is to split the computation into simple massively parallel tasks, and to ensure
our invariant is preserved at each step. We proceed with multiple iterations of
mark-and-sweep. During each iteration, we mark the elements in the stream that
each rewrite rule wants to eliminate. We then sweep the marked elements away by
compacting the stream. The mark-and-sweep process is repeated until no element
can be eliminated. Naturally, the difficult part is marking the correct elements for
elimination.

84 CHAPTER 4. MASSIVELY PARALLEL VECTOR GRAPHICS

A B C

C

Input

Elimination array

After scan

Elimination array

After scan

Rewritten

ED

D

Rewritten D

Rule action (4.8)(4.11)(4.6)

(4.8)(4.10)Rule action

Figure 4.10: Parallel pruning example. The first pruning round engages three
different rules. The segment entries that trigger action in each rule are colored. The
second and final round engages only two rules. Elements selected for elimination
are marked in gray.

Other than rules (4.6) and (4.7), all rules require the matching of delimiters (, | ,
and) . We start by cross-linking them so we can freely move from one to the other
in constant time. To do so, we first obtain the clip nesting depth of each element.
This is a simple matter of initializing to 0 a linear array with one element per
segment entry. Values associated to (are then set to +1, and values immediately
to the right of) are set to −1. An inclusive-scan of this array produces the required
result. For a maximum nesting depth n, we then perform n segmented scans. Each
segmented scan produces the links from all elements at depth d to their matching (.
To do so, the initialization sets all entries to 1, and marks as boundaries all (
elements at depth d. The segmented scan results in spans that start at 1 and
progressively increase, but that restart for every (at depth d. In other words, all
elements at depth d are associated to their distance to the matching (, which we
convert to absolute pointers. To complete the process, we use this information to
cross-link the matching (, | , and) at depth d between them. Recall we already
could reach (from the matching | and) . After n segmented scans, all matching
delimiters are properly cross-linked.

Given this information, we can finally describe the procedure that marks segment
entries for elimination. Marking starts with the allocation of an elimination array
with one element associated to each segment entry, all initially set to 0. Then,
all segment entries are inspected in parallel, and each rule is given a chance to
conditionally modify the elimination array by atomic increments or decrements
to appropriates elements. When all rules have been executed, the elimination
array is subjected to an inclusive scan. The segment entries to be eliminated are
the ones associated to a positive element in the elimination array. Figure 4.10

4.2. THE SHORTCUT TREE 85

Figure 4.11: Integration with sample sharing for 2× 2 anti-aliasing filters. Samples
in each unit area are evaluated only once. Unit area E sends appropriately weighted
sums to pixels p, q, r, and s. Pixel p receives contributions from unit areas A, B,
D, and E.

shows an example that includes two rounds of pruning with the execution of
multiple simultaneous rules. We describe rules (4.10) and (4.11). Other rules are
analogous.

Rule (4.10) only requires action when inspecting a | segment entry. In that case,
it checks the segment entry to its right, in search of a matching) . If it finds one, it
atomically adds +1 to the element associated to its matching (in the elimination
array, and atomically adds −1 to the element to the right of that associated to
the matching) . After the scan, the effect is to add +1 to all elements between (

and) (including the terminals themselves), thereby marking them for elimination
as the rule dictates.

Rule (4.11) is a bit more involved. It acts unconditionally when inspecting a C1
segment entry. It atomically adds +1 to the elimination array element associated
to the (that is reachable from C1. From the (, the matching | is also accessible.
The rule atomically adds −1 to the elimination array element immediately past it.
The rule can also reach) . There, it atomically adds +1, and adds −1 to element
immediately past it. After the scan, only the region matched by the C is preserved.
Note that this works even in the presence of multiple elements C1 between the |

and) . The only side effect is that certain elements that are marked for elimination
may end up associated to numbers larger than 1 after the scan.

86 CHAPTER 4. MASSIVELY PARALLEL VECTOR GRAPHICS

4.3 Rendering

In antialiased rendering, the color of each pixel is given by the convolution between
the illustration and an antialiasing filter (section 1.2.1). To compute the color we
use a Monte-Carlo estimator (section 1.2.2). Choosing box as the anti-aliasing
kernel simplifies the computation since its support has one unit area in terms of
the inter-pixel spacing. In that case, the integral can be computed independently
for each pixel. In contrast, higher-quality filters can have support larger than 4× 4
unit areas, where at least 16 filters overlap each sample in the illustration. Since
computing sample colors dominates the cost of rendering, we cannot afford to
recompute them so many times. The sampling and integration phases of our
pipeline are based on the method presented in section 3.1: each sample is computed
once and their values are shared among all pixels whose support cover them.

A key property of this method is that it uses a fixed amount of memory per
pixel, regardless of the number of samples per unit area. Our pipeline supports a
variety of different filters and sample distributions. The default high-quality setting
uses a blue-noise pattern generated with the method of Balzer et al. [2009] with
32 samples per unit area, weighted by the 4× 4 cubic B-spline. The combination is
equivalent to 32× 16 = 512 samples per pixel. The B-spline filters are then reshaped
to cardinal cubic B-splines with a post-processing parallel recursive-filter [Nehab
et al., 2011]. This explains the high quality of our results.

4.3.1 Sampling

When clip-paths are absent, the sampling algorithm is straightforward: it iterates
over the shapes in front-to-back order blending the colors until a opaque color is
computed. This is shown in section 1.1.7.

In the presence of clip-paths things get more complicated. Since general polygon
clipping is out of the question due to its complexity, we decide to perform clipping
operations per sample and with object precision. For that, we add clip-paths to
the shortcut tree like any other path geometry, and maintain in each shortcut tree
cell a stream that matches the scene grammar described in section 4.1. Clipping
operations are performed per sample and with object precision.

When evaluating the color of each sample, the decision of whether or not to blend
the paint of a filled path is based on a Boolean expression that involves the results
of the inside-outside tests for the path and all currently active clip-paths. Since this
expression can be arbitrarily nested, its evaluation seems to require one independent
stack per sample (or recursion). This is undesirable in code that runs on GPUs.

4.3. RENDERING 87

Fortunately, as discussed in section 4.2.3, certain conditions (see the pruning rules)
allow us to skip the evaluation of large parts of the scene. These conditions are
closely related to the short-circuit evaluation of Boolean expressions. Once we
include these optimizations, it becomes apparent that the value at the top of the
stack is never referenced. The successive simplifications that come from this key
observation lead to the flat clipping algorithm, which does not require a stack (or
recursion).

Flat clipping The intuition is that, during a union operation, the first inside-
outside test that succeeds allows the algorithm to skip all remaining tests at that
nesting level. The same happens during an intersection when the first failed inside-
outside test is found. Values on the stack can therefore be replaced by knowledge
of whether or not we are currently skipping the tests, and where to stop skipping.
The required context can be maintained with a finite-state machine.

The machine has three states: processing (P), skipping (S), and skipping by activate
(SA). Inside-outside tests and color computations are only performed when the
machine is in state P . The S and SA states are used to skip over entire swaths of
elements in the stream.

In addition to the machine state, the algorithm maintains the sample color currently
under computation and three state variables that control the short-circuit evaluation.
The first two state variables keep track of the current clipping nesting depth d and
the number u of nested clip-paths that have not yet been activated. These variables
are updated when the machine comes across terminals (, | , and) :

(⇒ d← d+ 1, u← u+ 1 (4.16)

| ⇒ u← u− 1 (4.17)

) ⇒ d← d− 1 (4.18)

Skipping is interrupted when one of terminals | or) is found at a depth at least as
shallow as the current stopping depth s. The stopping depth is set right before any
transition to a skipping state, and is the third and last state variable needed by
the algorithm.

Figure 4.12 shows the state transition diagram. Each transition is marked by
an annotated arrow. Arrow annotations can have one or two rows. The first
row specifies the conditions that trigger the transition. The first condition is the
triggering terminal. Besides the clipping operators | and) , terminals f1 and c1
can also trigger transitions. These terminals denote, respectively, a filled path
and a clip test for which the current sample has passed the inside-outside test.
(This is in contrast to terminals F1 and C1 from section 4.2.3, which denoted paths

88 CHAPTER 4. MASSIVELY PARALLEL VECTOR GRAPHICS

that pass inside-outside tests for all samples in the cell area.) After the triggering
terminal, additional required conditions can be specified. The second row in arrow
annotations is optionally used to update the stopping depth d.

Figure 4.12: State transition diagram for the finite-state machine of the flat-clipping
algorithm.

The machine starts in P with d← 0, u← 0. Consider the transitions between P
and S. In the transition triggered by f1, the additional condition α = 1 tests if the
sample color is now opaque. In that case, since we render primitives front-to-back,
there is no point in continuing. The machine transitions to S, and sets s to 0.
Condition c1 means a clip test has succeeded. The remaining clip tests in the
clip-path can therefore be skipped by short-circuit. The machine transitions to S
and sets the stop depth to d. There are two transitions away from S. The first
transition happens when an activate operation is found. Looking at the scene
grammar, we see that this can only happen if the machine arrived at S due to
a c1 transition from P . In other words, an entire clip-path test has succeeded, and
therefore we transition unconditionally back to P . The second transition happens
when a matching) is found. The condition u = 0 means the machine is not inside a
nested clip-path test, so it simply transitions back to P . If the machine is skipping
inside a nested clip-path test, one of the inner clip tests must have passed, and
therefore the outer test can be short-circuited as well. The machine simply resets
the stop depth to the outer level and continues in state S.

The remaining transitions are between P and SA. If the machine finds a | while
in state P , it must have been performing a clip-path test that failed. Otherwise, it
would have been in state S. Since the test failed, it can skip until the matching) .
This is what motivates the name skipping by activate.

4.3. RENDERING 89

4.3.2 Scheduling

The pipeline allows a user to specify a 3× 3 projective transformation to be applied
to the sample coordinates. Experienced users can design arbitrary warping functions
in CUDA.1 Since the pipeline remaps individual samples, and not the rendered
image, results are exactly the same as if the illustration had been warped in object
space by the inverse of the warp function, and only then rendered.

With the integration and sampling algorithms in place, we can complete the
rendering algorithm. The sample positions from each unit area must be warped by
the user-supplied function and pushed down the shortcut tree until the appropriate
leaf cell is found. With the cell contents and warped sample positions, the sampling
algorithm computes their colors. These colors are weighted, added together, and
routed to all the appropriate pixels by the integration algorithm.

The scheduler plays two key roles: it minimizes the global memory bandwidth
requirements by allowing cell contents to be loaded once and reused by multiple
unit areas, and it minimizes control-flow divergence by grouping together samples
that fall in the same cell. To do so, we use three computational kernels.

The first kernel goes over each unit area and identifies the set of leaf cells that
contain at least one of the warped sample positions. This information is obtained
by descending with each warped sample position down the shortcut tree until a
leaf cell is found. The resulting list of cell IDs is compressed within shared memory
to eliminate repetitions. A list with pairs containing the originating unit area ID
and the required cell ID is stored into global memory.

The role of the second kernel is to transpose the results of the first kernel, which
come naturally sorted by unit area ID, so that they are instead sorted by cell ID.
This is accomplished with a simple parallel sort.

The third and last kernel performs the actual rendering. Each computational block
is responsible for a batch of U unit areas from the list produced by the second
kernel. The different unit areas in each batch send at least one warped sample
position to the same given cell. There is enough shared memory to load I input
segments. The context for the S samples that will be evaluated simultaneously is
stored in the registers of independent threads. While there are unit areas to be
processed, the algorithm warps their samples and eliminates those that fall outside
the cell. This process is repeated until S samples are found (potentially originating
from distinct unit areas). Then, it loops over the cell stream, loading chunks of I
segments to shared memory. For each chunk, it advances the sampling algorithm

1This feature currently requires recompiling the scheduler. Changing the API to support
warps defined at runtime is a simple if tedious task.

90 CHAPTER 4. MASSIVELY PARALLEL VECTOR GRAPHICS

in parallel for the S samples over these I input segments. When the entire cell
contents have been processed, the algorithm computes independent weighted sums
for the samples originating from each unit area, and atomically adds them to the
appropriate pixels. It then goes back for more unit areas in the batch until they
have all been processed. We use S = 128, I = 32, and U = 32 in all our tests. With
this setup, we are able to process 4 unit areas in the same cell, with 32 samples
each, without reloading the input.

A specialized version of the scheduler handles the common case when there is no
user-defined warp. We align the shortcut tree cell boundaries with the unit areas,
so that all samples originating from a given unit area fall within the same cell.
This greatly simplifies the generation of the list of unit areas per cell: it suffices
to descend on the shortcut tree with the unit area center. It also simplifies the
integration step: there is no need to keep track of which samples belong to each
unit area since no sample is ever eliminated.

Chapter 5

Results

Comparisons between our work and other vector graphics renderers is done in two
different axis: quality of the rendering and performance.

5.1 Quality Comparison

5.1.1 Conflation

Figure 5.1 shows renderings of a contour plot (exported as SVG by the Mathematica
software), in which areas of constant color are unions of precisely abutting triangles.
When independently rendered triangles are blended together, as many renderers
do (e.g., Cairo, Adobe Reader, Apple’s Quartz, etc.), the correlated mattes lead
to incorrect results and the underlying mesh appears. Our pipeline renders these
areas as intended.

5.1.2 Integration in Linear RGB

Another common problem is with renderers that evaluate the anti-aliasing inte-
gral (1.36) in gamma space. This leads to dark regions that look wider than
intended. Our renderer can transform colors to linear space before integration and
reapply gamma in the end. The difference is obvious on the right of figure 5.2,
which renders text with the correct weight. Unfortunately, many users have grown
accustomed to incorrect rendering. As a compromise, we support both alternatives.

91

92 CHAPTER 5. RESULTS

Figure 5.1: (Left) Artifacts appear when polygons that share an edge are inde-
pendently resolved to pixels before blending. (Right) Our renderer blends colors
independently per sample and resolve later.

Figure 5.2: (Left) Integration in gamma space incorrectly widens dark regions and
produces heavier text. (Right) Our renderer integrates in linear space to produce
text with the intended weight.

5.1. QUALITY COMPARISON 93

5.1.3 Anti-aliasing Quality

Figure 5.3 shows an aliasing-prone resolution chart rendered with different an-
tialiasing strategies. Nehab and Hoppe [2008] (NH) employ a very efficient 1D
prefiltering approximation. Although results are very good in certain areas, aliasing
and conflation artifacts are clearly visible in others. Modes 1×8 and 1×32 are
box-filtered with respectively 8 and 32 samples per unit area. As shown in figure 5.3,
mode 1×8 shows significant amounts of noise. It is included in our tests simply
because it is the limit of what Kilgard and Bolz [2012] (NVPR) can accomplish
in a single pass using multisampling in current hardware (8×MS). Although the
hardware supports a hybrid single-pass mode 32× (8×MS, 24×CS), it is too crude
an approximation for 1×32. NVPR’s demo offers a much better approximation
by accumulating 4 passes with 8×MS. The amount of aliasing is a property of the
box filter and remains the same regardless of the number of samples. Our 4×4×32
mode uses a cardinal cubic B-spline with 512 samples under the 4×4 support of
each pixel’s filter, sharing samples across overlapping filters. The results are visibly
reduced aliasing in challenging areas and renderings that are virtually free of noise.

94 CHAPTER 5. RESULTS

NH 1D

1×8 / NVPR single-pass 8×MS

1×32 / NVPR 4-pass 8×MS

NVPR single-pass 32× (8×MS, 24×CS)

4×4×32

Figure 5.3: An aliasing-prone resolution chart rendered by NH’s 1D mode is free of
noise but shows aliasing and conflation. Mode 1×8 shows both noise and aliasing.
As expected, mode 1×32 reduces noise, but aliasing persists. NVPR’s single pass
mode 32× (8×MS, 24×CS) is too crude an approximation. The sharper antialiasing
filter we use in mode 4×4×32 is made possible by sample sharing.

5.2. PERFORMANCE 95

5.2 Performance

Figure 5.4: Different levels of detail can be obtained for the same region using
OpenStreetMaps. (Left) Paris 50k. (Right) Paris 70k.

Table 5.1 shows statistics for some of the illustrations we used in our tests. These
illustrations are available in the supplemental materials1. Drops, Car, and Em-
brace make heavy use of semitransparent gradient fills, but are otherwise simple
illustrations. Reschart is the alias-prone resolution chart that contains the pat-
tern of figure 5.3. Contour appears in figure 5.1, and is a dense triangulation
with flat-colored triangles. Tiger is the standard PostScript sample and contains
many opaque overlapping paths that simulate gradients. Paper 1 and Paper 2
are SIGGRAPH paper pages using Type 1 and TrueType fonts, respectively (i.e.,
cubics vs. quadratics). Boston, Paris, and Hawaii are maps. Hawaii appears in
figure 5.5 and includes many overlapping semi-transparent layers. We tested maps
of Paris at different scales (from OpenStreetMaps), spanning a large variation in
complexity. These maps include finely dashed strokes with decorations that signifi-
cantly increase the rendering complexity beyond the number of input segments.
See figure 5.4.

Table 5.1 also shows a performance comparison between our work and those of Kil-
gard and Bolz [2012] (NVPR) and of Nehab and Hoppe [2008] (NH)2. Rendering
times do not include preprocessing time, although we also provide preprocessing
times and memory consumption for our method. Our tests were run on an NVIDIA
GeForce GTX Titan (2688 CUDA cores, 6GB of global memory) hosted by an Intel

1http://w3.impa.br/~diego/projects/GanEtAl14/
2Nehab and Hoppe [2008] only include a subset of the inputs we tested.

http://w3.impa.br/~diego/projects/GanEtAl14/

96 CHAPTER 5. RESULTS

Core i7 980 at 3.33GHz with 24GB of system memory. When comparing against
competing algorithms, we used the original published implementation and demo
programs, running on the same hardware.

5.2. PERFORMANCE 97

T
ab

le
5.

1:
D

es
cr

ip
ti

on
of

te
st

s
an

d
pe

rf
or

m
an

ce
co

m
pa

ri
so

n
.

Im
ag

es
w

er
e

re
n

de
re

d
w

it
h

10
24

w
id

th
an

d
pr

op
or

ti
on

al
he

ig
ht

,
ex

ce
pt

fo
r

th
e

P
ar

is
da

ta
se

t:
70

k-
47

0×
45

3,
50

k-
65

7×
63

5,
an

d
30

k-
10

96
×

10
60

.
N

u
m

be
r

of
fi

ll
ed

an
d

st
ro

ke
d

pa
th

s
a

re
gi

ve
n

,
w

it
h

se
gm

en
ts

br
o

ke
n

in
to

ea
ch

ty
pe

.
A

ll
ti

m
es

a
re

ex
p

re
ss

ed
in

m
il

li
se

co
n

d
s

(s
m

a
ll

er
a

re
be

tt
er

).
“P

re
.”

de
n

ot
es

th
e

pr
ep

ro
ce

ss
in

g
ti

m
e,

“M
em

.”
is

m
em

or
y

u
sa

ge
in

M
iB

(i
.e

.,
m

eb
ib

y
te

,
or

22
0

by
te

s)
.

A
ll

re
n

de
ri

n
g

m
od

es
(1
×8

,
1×

32
et

c.
)

ar
e

ex
pl

ai
n

ed
in

th
e

“a
n

ti
al

ia
si

n
g

qu
al

it
y”

di
sc

u
ss

io
n

.

R
es

.
10

24
×

F
il
le

d
p
at

h
s

F
il
l

se
gm

en
ts

S
tr

ok
ed

p
at

h
s

S
tr

ok
e

se
gm

en
ts

T
ot

al
se

gm
en

ts

O
u
r

m
et

h
o
d

N
V

P
R

N
H

In
p
u
t

L
Q

C
L

Q
C

P
re

.
M

em
.

1×
8

1×
32

4×
4×

3
2

1×
8

1×
3
2

1
D

1×
3
2

C
ar

68
2

36
1

70
1

16
5

31
87

59
32

12
18

3
42

80
28

.4
5

8.
68

12
.8

6
14

.7
3

2
8
.8

5
3
.4

2
1
0
.5

6
D

ro
p
s

11
43

20
4

45
13

59
14

04
21

.7
7

2.
83

14
.2

8
18

.5
9

4
6
.0

3
2
.6

3
5.

11
0
.9

1
3
3
.6

1
E

m
b
ra

ce
10

96
22

5
25

46
21

46
46

24
.0

6
4.

14
15

.5
0

19
.3

8
4
8
.0

7
2
.7

8
5.

08
0
.8

8
3
1.

18
R

es
ch

ar
t

62
5

72
3

78
23

96
24

14
0

80
59

24
.9

6
3.

10
8.

51
11

.1
4

3
2
.3

4
2
.8

8
1
0
.8

4
0
.5

8
1
9
.3

3
T

ig
er

62
5

23
6

17
7

19
88

66
16

34
6

25
27

31
.0

4
4.

12
12

.8
9

17
.2

4
52

.7
0

2
.6

6
5
.5

0
0
.8

2
3
4
.1

5
B

os
to

n
91

7
12

2
18

18
13

66
9

18
00

13
7

12
47

0
28

09
4

12
8.

02
46

.9
2

37
.2

2
41

.8
1

7
1
.1

4
8
.2

8
3
1
.0

2
2
.4

5
6
6
.7

7
H

aw
ai

i
84

4
10

08
63

12
6

43
20

8
13

1
8

6
21

29
51

66
9

11
5.

29
42

.1
5

26
.1

6
29

.4
8

50
.5

0
3
.6

8
1
4
.7

0
P

ap
er

1
13

25
50

99
39

57
3

59
70

8
9

23
99

30
4

53
.1

7
13

.2
2

19
.2

8
23

.7
1

6
7
.6
5

20
.8

0
7
8
.6

4
P

ap
er

2
13

25
56

21
42

62
0

85
21

6
26

09
6

68
11

1
39

15
40

82
72

.5
1

13
.8

6
10

.8
0

17
.5

0
3
5
.0
9

2
4.

95
95

.7
2

C
on

to
u
r

10
24

53
24

1
18

83
40

18
83

40
77

.5
8

41
.2

9
30

.0
7

30
.3

6
6
3
.2
1

20
3
.9

3
1
02

5
.1

1
P

ar
is

70
k

32
45

4
29

83
19

99
13

13
6

98
7

14
87

74
56

10
1.

85
45

.9
6

22
.3

9
21

.0
0

2
8
.4
5

15
1
.6

7
7
9
6
.3

4
P

ar
is

50
k

32
63

9
24

43
41

49
13

15
7

75
9

16
79

90
30

11
0.

12
51

.0
3

26
.8

2
25

.2
2

3
4
.9
6

15
5
.8

8
73

7
.2

0
P

ar
is

30
k

34
75

1
71

86
22

15
5

15
93

9
54

37
18

10
9

52
88

7
19

2.
94

94
.7

2
49

.5
1

48
.8

1
7
8
.5
9

17
6
.5

4
9
0
4
.1

7

98 CHAPTER 5. RESULTS

Let us focus on the 1×32 rendering mode. For each input, the times for the fastest
method are shown in blue, and the others in red. The key comparison is between
our method and NVPR. This is because NH was optimized for the 1D mode, where
it excels. In 1×32 mode, it performs its own supersampling instead of taking
advantage of hardware-accelerated multisampling.

Results show that, once input complexities are sufficiently high, our pipeline has the
advantage. We believe that the main reason for this behavior is that NVPR renders
each individual path one after the other. Even though the hardware rasterizer
can process paths much faster than our pipeline, as the number of paths increases,
this sequential processing becomes a bottleneck. Our performance advantage can
already be noticed while rendering a typical page of text, with subpixel positioning
of characters, at 32 samples per pixel and 100 pixels per inch. Grouping shapes with
the same paint into a single path would significantly improve NVPR’s performance.
Unfortunately, this could result in incorrect rendering where such shapes overlap
spatially. An optimization along these lines could be implemented at the application
level, at least for simple and common cases such as pages of text, where it would
be very effective.

Our improvements are even more pronounced for inputs of higher complexity. In
fact, due to sample sharing, we can render both faster and at a higher quality level.
Such results are marked in bold in table 5.1. We would like to stress that this is
not the result of extensive optimization. It is the result of new algorithms that
map better to massively-parallel hardware.

User-defined warps Figure 5.5 shows three user-defined warps: a twisting warp
on the Tiger, a zoom-lens effect on Paper 1, and a projective transformation on a
map of Hawaii. The pipeline renders these effects as if the illustration had been
warped in object space. The scheduler ensures samples are shared between all
pixels with overlapping antialiasing filters while minimizing control-flow divergence
as well as memory and bandwidth requirements.

Scalability to output resolution Figure 5.6 shows the behavior of our render-
ing stage as the number of output pixels is increased progressively from 256×256
to 2048×2048. For each sample, image dimensions were selected to maintain the
original aspect ratio while matching the specified number of output pixels. Results
show that the rendering algorithm scales close to linearly with image resolution.
Small deviations are due to the different shortcut tree structures that result for
different target resolutions.

5.2. PERFORMANCE 99

Figure 5.5: Examples of user-defined object-space warps.

Pruning and clipping Although typical illustrations do not include deeply
nested clip-paths, the pipeline supports them as specified by the standards. Fig-
ure 5.8 shows one of our test cases. Clipping (or equivalently, occlusion) is the main
justification for the pruning of the shortcut tree. Enabling pruning in the scene
shown in the figure leads to a 25% reduction in memory consumption and 45%
improvement in rasterization time. The total time reduction for preprocessing and
rasterization is 10%.

Front-to-back rendering Many vector graphics renderers draw shapes back-
to-front. This is inefficient when there is substantial overdraw. We address this
problem in two ways. First, we proceed front-to-back when rendering. As soon
as a sample becomes opaque, the remaining scene content can be safely ignored.
In scenes with high depth complexity, this optimization can significantly improve

100 CHAPTER 5. RESULTS

0

100

200

300

400

500

600

5122 10242 20482

Ti
m

e
(m

s)

Number of pixels

Scalability to output image resolution

Car
Drops
Embrace
Reschart
Tiger
Boston
Hawaii
Paper 1
Paper 2
Contour
Paris 70k
Paris 50k
Paris 30k
Paper 1 (w)
Tiger (w)
Hawaii (w)

Figure 5.6: Rendering times are linear on the number of output pixels. Small
variations are due to the different shortcut trees used at different target resolutions.

rendering performance (e.g., by 33% in the Paris 30k input). Second, the shortcut
tree pruning algorithm eliminates from the stream all paths that would have been
completely occluded by an opaque path within a cell. Pruning does not take into
account the possibility of multiple semi-transparent paths combining into an opaque
layer and obscuring the paths underneath. This would be difficult to accomplish,
especially in the presence of gradient fills and textures.

Subpixel positioning of text Our renderer treats character glyphs as regular
paths, in object precision. Many renderers pre-render glyphs in image precision.
This is especially noticeable when scrolling or resizing text, which causes pre-
rendered glyphs to move horizontally or vertically relative to one another. See the
animations of Paper 1 available in the supplemental materials3.

Shortcut tree behavior Table 5.2 shows the behavior of shortcut trees for
increasing levels of subdivision. The examples were selected to span the range of

3http://w3.impa.br/~diego/projects/GanEtAl14/

http://w3.impa.br/~diego/projects/GanEtAl14/

5.2. PERFORMANCE 101

0

20

40

60

80

100

120

140

160

Car
Drops

Embrace

Reschart

Tiger
Boston

Hawaii

Paper 1

Paper 2

Contour

Paris 70k

Paris 50k

Paris 30k

Ti
m

e
(m

s)

Subdivision

Write subdivided cells
Compute global offsets
Consolidate winding increments
Compute splits and windings

0

5

10

15

20

25

30

35

40

45

Car
Drops

Embrace

Reschart

Tiger
Boston

Hawaii

Paper 1

Paper 2

Contour

Paris 70k

Paris 50k

Paris 30k

Ti
m

e
(m

s)

Pruning

Compact stream to remove marked entries
Apply rules then scan to elimination array
Cross-link matching delimiters
Link to enclosing push
Find clip nesting depth

0

20

40

60

80

100

120

140

Car
Drops

Embrace

Reschart

Tiger
Boston

Hawaii

Paper 1

Paper 2

Contour

Paris 70k

Paris 50k

Paris 30k

Tiger (w)

Paper 1 (w)

Hawaii (w)

Ti
m

e
(m

s)

Rendering

Sample and integrate
Sort by cell
Find cells needed by each unit area

Figure 5.7: Relative costs of major steps in the rendering pipeline.

102 CHAPTER 5. RESULTS

behaviors observed in practice. Most content in Paper 1 consists of relatively small
characters. Once subdivision is deep enough to isolate them, it stops. The high
density of detail in Paris 30k, which also includes significant overdraw, forces tree
subdivision to proceed further. In general, we do not observe an explosion in the
number of segments shared by different cells.

Table 5.2: Behavior of the shortcut tree subdivision. Each horizontal bar represents
the number of segments after each subdivision level. The visualization shows there
is no explosion in the number of segments. Each bar is further divided to represent
the number of segments at each tree depth. Bar sizes are normalized by the highest
subdivision level in each input and are not comparable across inputs.

Segment distribution by tree depth

Level Paper 1 Paris 30k

0
1
2
3
4
5
6
7
8
9
10
11

5.2. PERFORMANCE 103

Figure 5.8: Nested clip-paths. A shape defined as the intersection a set of concentric
rings (in red) and a set of triangles (in blue) is used to clip the map of Paris.
Pruning speeds up the process.

104 CHAPTER 5. RESULTS

Conclusion and Future Work

Rendering vector graphics is not an easy task. High-quality rendering requires
huge amounts of processing power. To achieve real-time performance, many
implementations compromise on quality. The results, as we have shown, suffers
from many different problems. Low sampling rate and kernels with small support
lead to noise and aliasing. Conflating pixel coverage with color transparency leads
to rendering artifacts.

Beyond that, all prior implementations have at least one sequential component.
Methods using retained mode preprocess the scene sequentially to create an accel-
eration data structure. In immediate mode renderers, shapes must be processed
sequentially to avoid interference between different paths.

We have described a complete and fully parallel pipeline for rendering vector
graphics on the GPU. We build an acceleration data structure—parallel at segment
level—that allow us to render images at high sample rate—parallel at sample
level—with kernels of large support.

Our work opens the door for a variety of interesting follow-up research and engi-
neering problems.

Shortcut tree auto-tunning We would like to investigate the possibility of
creating methods that control the subdivision of cells, using statistics collected
from the scene, and heuristics driven by prior knowledge. We would like to train
classifiers to test the necessity of subdividing a node.

Bootstrapping the tree The shortcut tree is constructed from the root node in
a breadth-first order. This process could benefit of a prior stage in which the root
node is subdivided into a coarse regular grid. The fast lattice-clipping of Nehab
and Hoppe [2008] could be translated to the GPU using parallel primitives.

105

Rational cubic segments In order to make the entire pipeline closed under
projective transformations, we would have to support rational cubic segments.
Projective transformations such as perspective mappings may convert integral cubic
Bézier segments into rational cubic Bézier segments. Although the implicitization
of rational cubics is not a problem, the monotonization of these segments is.
Monotonizing a rational cubic requires solving for the roots of polynomials of
degree 4. There are analytic solutions to this problem, but numerical inaccuracies
when solving for the roots may lead to incorrect results. We believe that iterative
methods along with methods to isolate roots are necessary.

Stroked paths Stroked paths are converted into filled paths in the CPU, in a
step prior to rendering. This conversion involves approximating curved segments by
line segments. This is followed by a computation of the length of the newly created
segments along the entire path—in order to compute dashes. This processes are
sequential but can be reformulated in a more parallel fashion, and then mapped
into the GPU. This reformulation would allow us to incorporate the conversion
into the pipeline.

Filter effects Filter effects are graphical operations that can be applied to one or
more shapes, such as blur or lighting effects. These effects may require computations
in image space. Therefore, to fully support filter effects, our pipeline would have
to be able to render some shapes in the scene into a different buffer, apply the
effects, and then blend the result with the other shapes in the scene. This would
require support for multiple shortcut trees and some modifications on the sampling
algorithm.

Subpixel rendering Subpixel rendering (e.g., [Betrisey et al., 2000]) uses the
geometry of the elements that form each pixel in a computer display to increase the
density of points available when rendering text. This makes it possible to exhibit
text with better legibility at the cost of some color distortion. To support subpixel
rendering in our pipeline we would have to align the shortcut tree to the geometry
of the subpixels or use cells that overlap.

Mesh-based gradients Mesh-based gradients define another way of filling paths
with procedural colors. PDF [2006] defines gradients that are created over a
triangulation on the plane, where each vertex has a defined color. Points inside
the triangulation have their colors defined by the barycentric interpolation of the
colors of the vertexes. SVG [2011] specification defines mesh gradients that are

106

based on an array of Coons patches. A Coons patch is defined by colors placed
at the corners of an area enclosed by four Bézier curves. Supporting mesh-based
gradients requires the encoding of the gradient into the scene. Sampling the mesh
efficiently is also necessary.

CPU implementation We are particularly interested in investigating the im-
plementation of our pipeline on the CPU. On the one hand, it would seem overkill
to maintain the preprocessing stage parallel at the segment level and the rendering
parallel at the sample and pixel levels. A more coarse division of work between fewer
threads should be more appropriate. On the other hand, most of the effort we have
invested in minimizing control-flow divergence on the GPU should also be effective
when used with the vectorized instructions available in modern CPUs.

107

108

Bibliography

M. Balzer, T. Schlomer, and O. Deussen. Capacity-constrained point distributions:
A variant of Lloyd’s method. ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH 2009), 28(3):86, 2009. 86

C. Betrisey, J. F Blinn, B. Dresevic, B. Hill, G. Hitchcock, B. Keely, D. P. Mitchell,
J. C. Platt, and T. Whitted. Displaced filtering for patterned displays. Society
for Information Display Symposium Digest of Technical Papers, 31(1):296–299,
2000. 106

J. F. Blinn. How to solve a quadratic equation. IEEE Computer Graphics and
Applications, 25(6):76–79, 2005. 24

E. Dahlström, P. Dengler, A. Grasso, C. Lilley, C. McCormack, D. Schepers,
and J. Watt. Scalable vector graphics (svg) 1.1. W3C, 2011. URL http:

//www.w3.org/TR/SVG/. 11

M. A. Z. Dippé and E. H. Wold. Antialiasing through stochastic sampling. ACM
Siggraph Computer Graphics, 19(3):69–78, 1985. 39

G. Farin, J. Hoschek, and S. Kim. Handbook of Computer Aided Geometric
Design. Elsevier Science, 2002. URL http://books.google.com.br/books?

id=GGXcUS5p2CIC. 21

J.D. Foley. Computer Graphics: Principles and Practice. Addison-Wesley, 1996. 47

S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones. Adaptively sampled
distance fields: A general representation of shape for computer graphics. In
Proceedings of ACM SIGGRAPH 2000, pages 249–254, 2000. 52

F. Ganacim, R. S. Lima, L. H. de Figueiredo, and D. Nehab. Massively-parallel
vector graphics. ACM Transactions on Graphics (Proceedings of the ACM
SIGGRAPH Asia 2014), 36(6):229, 2014. 10

109

http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/
http://books.google.com.br/books?id=GGXcUS5p2CIC
http://books.google.com.br/books?id=GGXcUS5p2CIC

A.S. Glassner. Principles of Digital Image Synthesis. The Morgan Kaufmann Series
in Computer Graphics. Elsevier Science, 2014. URL https://books.google.

com.br/books?id=C2riBQAAQBAJ. 38

K. Kerr. Introducing Direct2D. MSDN Magazine, June 2009. 47

M. Kilgard. A simple OpenGL-based API for texture mapped text. Silicon Graphics,
1997. 52

M. J. Kilgard and J. Bolz. GPU-accelerated path rendering. ACM Transactions
on Graphics (Proceedings of ACM SIGGRAPH Asia 2012), 31(6):172, 2012. 47,
49, 51, 52, 69, 93, 95

D.B. Kirk and W.W. Hwu. Programming Massively Parallel Processors: A Hands-
on Approach. Elsevier Science, 2012. ISBN 9780123914187. URL https://

books.google.com.br/books?id=E0Uaag8qicUC. 81

S. Lefebvre and H. Hoppe. Perfect spatial hashing. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH 2006), 25(3):579–588, 2006. 52

C. Loop and J. F. Blinn. Resolution independent curve rendering using pro-
grammable graphics hardware. ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH 2005), 24(3):1000–1009, 2005. 47, 49, 50, 51, 67, 72, 73, 74

D. Nehab and H. Hoppe. Random-access rendering of general vector graphics.
ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2008), 27(5):
135, 2008. 52, 53, 67, 69, 70, 76, 77, 93, 95, 105

D. Nehab and H. Hoppe. A fresh look at generalized sampling. Foundations and
Trends in Computer Graphics and Vision, 8(1):1–84, 2014. 36

D. Nehab, A. Maximo, R. S. Lima, and H. Hoppe. GPU-efficient recursive filtering
and summed-area tables. ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH Asia 2011), 30(6):176, 2011. 86

A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and D. Salesin.
Diffusion curves: A vector representation for smooth-shaded images. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH 2008), 27(3):92,
2008. 9

K. Packard and C. Worth. A realistic 2d drawing system. 2003. 9, 47

E. Parilov and D. Zorin. Real-time rendering of textures with feature curves. ACM
Transactions on Graphics, 27(1):3, 2008. 52

PDF. Adobe Portable Document Format, v. 1.7. Adobe Systems Incorporated,
sixth edition, 2006. 106

110

https://books.google.com.br/books?id=C2riBQAAQBAJ
https://books.google.com.br/books?id=C2riBQAAQBAJ
https://books.google.com.br/books?id=E0Uaag8qicUC
https://books.google.com.br/books?id=E0Uaag8qicUC

T. Porter and T. Duff. Compositing digital images. Computer Graphics (Proceedings
of ACM SIGGRAPH 1984), 18(3):253–259, 1984. 31, 48

Z. Qin, M. McCool, and C. Kaplan. Real-time texture-mapped vector glyphs. In
Proceedings of Symposium on Interactive 3D Graphics and Games (I3D), pages
125–132, 2006. 52

Z. Qin, M. McCool, and C. Kaplan. Precise vector textures for real-time 3D
rendering. In Proceedings of Symposium on Interactive 3D Graphics and Games
(I3D), pages 199–206, 2008. 52

G. Ramanarayanan, K. Bala, and B. Walter. Feature-based textures. In 15th

Eurographics Symposium on Rendering, pages 265–274, 2004. 52

L. Ramshaw. Béziers and B-splines as multiaffine maps. In Theoretical Foundations
of Computer Graphics and CAD, volume 40 of NATO ASI Series, pages 757–776.
Springer Berlin Heidelberg, 1988. 24

N. Ray, X. Cavin, and B. Lévy. Vector texture maps on the GPU. Technical Report
ALICE-TR-05-003, INRIA, 2005. 52

Daniel Rice and RJ Simpson. Openvg specification, version 1.1. Khronos Group,
2008. 11

N. P. Rougier. Higher quality 2D text rendering. Journal of Computer Graphics
Techniques, 2(1):50–64, 2013. 52

G. Salmon. A Treatise on the Higher Order Plane Curves. Hodges & Smith, 1852.
50

P. Sen. Silhouette maps for improved texture magnification. In Graphics Hardware,
pages 65–73, 2004. 52

P. Sen, M. Cammarano, and P. Hanrahan. Shadow silhouette maps. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH 2003), 22(3):521–
526, 2003. 52

Skia. Skia website, 2015. URL http://skia.org/. 9

Ivan E Sutherland and Gary W Hodgman. Reentrant polygon clipping. Communi-
cations of the ACM, 17(1):32–42, 1974. 59

SVG. Scalable Vector Graphics, v. 1.1. W3C, second edition, 2011. 106

B. A. Wallace. Merging and transformation of raster images for cartoon animation.
Computer Graphics (Proceedings of ACM SIGGRAPH 1981), 15(3):253–262,
1981. 30

111

http://skia.org/

J. Warnock. A hidden surface algorithm for computer generated halftone pictures.
PhD thesis, University of Utah, 1969. 58

J. Warnock and D. K. Wyatt. A device independent graphics imaging model for use
with raster devices. Computer Graphics (Proceedings of ACM SIGGRAPH 1982),
16(3):313–319, 1982. 9, 13

C. Wylie, D. Romney, G. Evans, and A. Erdahl. Half-tone perspective drawings by
computer. In Proceedings Fall Joint Computer Conference, pages 49–58, 1967.
47

G. Wyszecki and W. S. Stiles. Color science, volume 8. Wiley New York, 1982. 26

Thomas Young. The bakerian lecture: On the theory of light and colours. Philo-
sophical transactions of the Royal Society of London, pages 12–48, 1802. 26

112

	Agradecimentos
	Abstract
	Introduction
	Preliminaries
	Vector Graphics
	Structure of a Scene
	Spaces and Transformations
	Shapes and Paths
	Colors, Gradients and Textures
	Color Compositing
	Clip Paths
	Evaluation

	Image Sampling
	Sampling and Reconstruction
	Computing Samples

	Rendering Vector Graphics
	Algorithm Analysis

	Basic Optimization
	Gradients
	Front-to-Back Sampling

	Previous Work
	Immediate Mode
	Loop and Blinn [2005]
	Kilgard and Bolz 2012

	Vector Textures
	Nehab and Hoppe [2008]

	Optimizations
	Rendering Loop
	Kernels
	Computation

	Acceleration Data Structures
	Splitting the scene
	Sampling with the quadtree
	Experiments

	Moving to the GPU

	Massively Parallel Vector Graphics
	Abstraction
	Monotonization and Implicitization
	Scene Abstraction

	The shortcut tree
	Subdivision
	Parallel Subdivision
	Pruning
	Parallel Pruning

	Rendering
	Sampling
	Scheduling

	Results
	Quality Comparison
	Conflation
	Integration in Linear RGB
	Anti-aliasing Quality

	Performance

	Conclusion and Future Work

