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Abstract

Abstract. Time series of financial returns are characterized by presenting heavy

tails, gain/loss asymmetry and volatility clusters. These characteristics make Gener-

alized Orthogonal GARCH (GO-GARCH) models an excellent option for the model-

ing of such series, as it is a conditional volatility model for multivariate returns that

can incorporate heavy tails and asymmetric returns quite naturally. In this report,

we review the definition of GO-GARCH models and compare two different estimation

strategies that are based on the Method of Moments and on Independent Component

Analysis using Brazilian market data.

Keywords. GO-GARCH, independent component analysis, method of moments,

simultaneous diagonalization, principal component analysis.
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1 Introduction

Generalized autoregressive conditional heteroskedasticity (GARCH) models have proven

to be quite valuable in practice for the modeling of financial returns. Not surprisingly,

GARCH models are also of great importance in the multivariate case, as many applica-

tions in mathematical finance rely on multivariate probabilistic models to represent the

joint dynamics of asset returns. Among multivariate models, the Generalized Orthogonal

GARCH (GO-GARCH) model has distinguished itself from other multivariate models for

incorporating features commonly found in time series of financial returns, and for the sim-

plicity and robustness of the procedures available for the estimation of model parameters.

We start by reviewing the definition of the GO-GARCH model in Section 2 and the

estimation of model parameters using Independent Component Analysis (ICA) [3] and

the Method of Moments (MM) [2] in Section 3. In the sequence, we present our test

methodology. In Section 4.1, we describe the historical data used in the experiments, and

the implemented software in Section 4.2. Then, we compare the estimation methods by
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comparing estimation errors and Value at Risk (VaR) forecasts for a portfolio of Brazilian

stocks in Sections 4.3.2 and 4.3.1. Finally, in Section 5, we present our conclusions.

2 The GO-GARCH Model

The GO-GARCH model, introduced by Van der Weide [20], is a multivariate conditional

volatility model that supports random vectors with probability distributions that are asym-

metric and heavy tailed, making it an excellent choice to represent financial returns. As

shown by Cont [6], these features are commonly found in time series of financial returns.

At time t, the random vector xt is considered to be a linear combination of the hidden

factors yt:

xt = Z yt, (1)

where Z ∈ Rm×m is a non singular matrix and the m-dimensional stochastic process

{yt}t≥1 is stationary, ergodic and with finite kurtosis. Factors are also considered to have

zero conditional mean,

E [yt|Ft−1] = 0, (2)

and uncorrelated coordinates,

Cov (yt|Ft−1) = diag (h1t, . . . , hmt) . (3)

The structure of {yt}t≥1 is also specified in the GO-GARCH model:

yt = H
1/2
t εt, (4)

where

H
1/2
t = diag

(√
h1t, . . . ,

√
hmt

)
, (5)

with hit following an univariate conditional volatility model with unitary variance,

E [hit] = 1, hit ≥ 0. (6)

The coordinates of the innovation series {εt}t≥1 are considered to form sequences of iid

random variables with zero conditional mean,

E [εit|Ft−1] = 0, (7)
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and with unitary conditional variance,

Var (εit|Ft−1) = 1. (8)

Usually, GARCH(1,1) models are adopted for hit [3]. That is,

hit = (1− αi − βi) + αiy
2
i,t−1 + βihi,t−1, (9)

but it is possible to use different univariate models as well. This flexibility explains how GO-

GARCH models with different features can be easily specified. In our case, the innovations

of the univariate GARCH(1,1) processes are specified as random variables with skewed

Student’s-t distributions [7], resulting in a multivariate model for asymmetric returns with

heavy-tails. Gaussian innovations, for example, would result in a GO-GARCH model

without asymmetry and without heavy-tails. Notice that it is also possible to mix different

univariate models by choosing different models for the components of yt.

2.1 Covariance Matrices

The conditional covariance matrix is of particular interest to many applications in finance,

such as the the computation of VaR forecasts and the construction of minimum risk port-

folios.

By the previous definitions, the conditional covariance Σt of the GO-GARCH model is

given by:

Σt = E [xtx
′
t|Ft−1] = E [Zyty

′
tZ
′|Ft−1] = ZHtZ

′, (10)

and its unconditional counterpart, Σ, is:

Σ = E [Σt] = E [ZHtZ
′] = Z E [Ht] Z

′ = ZZ ′. (11)

3 Estimation of Parameters

Decomposing the financial returns {rt}t≥1 into components related to its expected value

{µt}t≥1 and its volatility {xt}t≥1,
rt = µt + xt, (12)
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model parameters are estimated in two stages, as illustrated in Figure 1.

rt

VAR Estimation µt

xt

GO-GARCH Estimation yt

zt

Figure 1: Procedure for parameter estimation

In the first stage, the parameters of a Vector Autoregressive (VAR) [11] process are

estimated using Ordinary Least Squares (OLS). Using the OLS approach, instead of the

maximization of a likelihood function, there is no need for the specification of probability

distributions for the returns. Therefore, for consistency, we have chosen this approach

when using the GO-GARCH model, as probability distributions are already chosen for the

components of yt.

In the second stage, the parameters of the GO-GARCH model are estimated using the

time series of the VAR residuals. In this stage, estimating the mixing matrix Z is the first

step to fully specify a GO-GARCH model. Once the estimate Ẑ is available, the yt factors

can be extracted from the VAR residuals using the inverse Ẑ−1:

ŷt = Ẑ−1xt. (13)

In the sequence, the parameters of the univariate processes driving the volatility of the

returns can be estimated. Following the definitions in Section 2, that means estimating a

GARCH(1,1) process for each component of ŷt.

To estimate the mixing matrix Z, we use a three step procedure based on its polar

decomposition, Z = S U :

1. Estimate S
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2. Estimate U

3. Compute Ẑ = Ŝ Û

Since S is related to the unconditional covariance Σ,

Σ = ZZ ′ = (SU) (SU)′ = SS ′ = S2, (14)

it can be estimated using the spectral decomposition of the sample covariance matrix:

Σ̂ = PLP ′ −→ Ŝ = PL
1/2P ′. (15)

For the computation of Û , two alternatives were considered in this study: ICA [3] and

MM [2].

Both alternatives use the standardized returns {st}t≥1, which are defined as

st = Σ−
1/2xt = S−1xt. (16)

These returns provide a relation to the hidden factors {yt}t≥1 that can be explored in

estimation procedures:

st = S−1 xt = S−1 (S U) yt = U yt. (17)

3.1 Using Independent Component Analysis (ICA)

In ICA [14], a signal {wt}t≥1 is considered to be a linear combination of other independent

signals {vt}t≥1. That is,

wt = Avt. (18)

The estimation of the A matrix, therefore, is performed by maximizing a metric of proba-

bilistic independence. As an example, the mutual information of a random vector x, which

is defined as

I (x) =
m∑
i=1

H (xi)−H (x) , (19)

where H (x) is the differential entropy of x.

Comparing Equation 1 and Equation 18, it is easy to notice that the ICA can be applied

directly over {st}t≥1 to compute an estimate for U [3].
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3.2 Using the Method of Moments (MM)

U can also be regarded as the orthogonal matrix that diagonalizes the covariance Γ (s) of

{st}t≥1, since

Γ (s) = UΓ (y)U ′ = U ImU
′. (20)

Similarly, for the correlation Φ (s) of {st}t≥1:

Φ (s) = U Φ (y)U ′. (21)

For robustness, a set of autocorrelation matrices from {st}t≥1 can be used to estimate

Û . For such a set,

CU =
{

Φ̃1, . . . , Φ̃p

}
, (22)

Û is then defined as the solution of a simultaneous diagonalization problem:

Û = argmin
B∈Om

p∑
k=1

m∑
i,j=1
i 6=j

(
BΦ̃kB

′
)2
ij
. (23)

Notice that, following Boswijk & van der Weide [2], the regular sample autocorrelation

matrices Φ̂k were replaced by a symmetric version,

Φ̃k =
1

2

(
Φ̂k + Φ̂′k

)
, (24)

for additional robustness.

4 Methodology

In order to compare the estimations methods, two strategies were chosen. In the first

strategy, we conduct a series of simulation/estimation experiments, using GO-GARCH

processes with known parameters and evaluating the estimation error in each experiment.

In order to compare our results with previously published ones, we use the metric for

estimation errors used by Boswijk & van der Weide [2] and the same model parameters

defined by Zheng & Wei [21], which can found in Figure 4.

In the second testing strategy, we use the ICA and MM estimators with the same time

series of historical prices and compare the VaR forecasts obtained with each estimator. We
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also use VaR forecasts computed using Principal Component Analysis (PCA).

The comparison of VaR forecasts is performed using the Kupiec test [15], which checks

the frequency of VaR violations, and two independence tests introduced by Christoffersen

[5] and by Christoffersen & Pelletier [4]. Appropriate VaR forecasts should exhibit a series

of independent violations, indicating that the risk model is properly adjusted from one day

to another.

4.1 The Data

In the experiments, we have used historical stock prices from BM&F Bovespa in the period

between 2006-Jan-01 and 2013-Jan-14. Five important companies were chosen (PETR4,

VALE5, GGBR4, USIM5, CSNA3) and their historical prices adjusted for different quoting

factors and corporate events (dividends, splits, etc.). The importance of adjusting stock

prices is illustrated in Figure 2, where it is possible to notice how different adjusted prices

can be. In Figure 3, we show the historical log returns for the selected companies.
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Figure 2: CMIG4 stock prices before and after correction

4.2 The Software

The software used in the experiments, described in Section 4, has been written in R [18],

using several of the available packages. For example: vars for the estimation of VAR

models; rugarch [10] for the estimation of GARCH(1,1) processes with skewed Student’s-t

innovations; fastICA [17] to estimate U using the FastICA [13] algorithm; and portes [16]

for the multivariate autocorrelation tests.
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Figure 3: Historical log returns for the selected companies

To estimate U using the method of moments, we have implemented the FG algorithm [9]

for the simultaneous diagonalization of a set of matrices, which provides a solution for Prob-

lem 23. We have also implemented the VaR/CVaR estimator introduced by Rockafellar &

Uryasev [19]. Finally, the backtesting procedures used to check the Value at Risk forecasts

in Section 4.3.2 were implemented by Ferreira [8].

4.3 Results

4.3.1 Comparing Estimation Errors

Since the estimation methods being tested only differ in the computation of the estimate

for U , the estimation errors can be computed as the distance between U and an estimate

Û . As Boswijk & van der Weide [2], we use the following distance between orthogonal

matrices:

d(Ûi, U) =

√
1

2

[
D(U, Ûi) +D(Ûi, U)

]
, (25)

where

D(Û , U) = 1− 1

m

m∑
i=1

max
1≤j≤m

|u′iûj|. (26)

For a sample of N time series the average estimation error can be computed as the
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square root of the mean quadratic distance (RMSD) between U and its estimates Ûi:

RMSD =

√√√√ 1

N

N∑
i=1

d(U, Ûi)2. (27)

In the experiments, N = 500 time series were simulated with varying length (from

1000 to 8000 days). As mentioned before, we have used the same GO-GARCH processes

specified by Zheng & Wei [21], which can be found in Figure 4. Figure 5 contains the

results obtained.

α3 =

0.030.08
0.12

 β3 =

0.940.89
0.85

 Z3 =

−0.6300 3.2030 −4.4890
0.3470 4.6790 −1.4470
2.3780 1.4940 1.7820



α4 =


0.03
0.08
0.12
0.15

 β4 =


0.94
0.89
0.85
0.82

 Z4 =


−0.9860 −3.5920 4.7760 −6.7020
−1.6110 0.9870 −0.6420 −4.6880
0.7470 0.0700 −3.1620 −4.3350
−1.1560 4.5710 −0.4010 −2.5800



α6 =


0.03
0.08
0.11
0.14
0.16
0.18

 β6 =


0.95
0.90
0.87
0.84
0.82
0.80

 Z6 =


1.8680 −2.4810 2.1760 −5.2500 −4.1570 1.4740
0.6240 5.0450 4.4930 3.8410 −4.0520 −1.1120
4.7850 2.0860 0.2510 −2.8270 8.0870 −3.6840
−0.1670 0.9070 0.1060 −2.2990 1.7230 3.1190
−4.0590 −1.6580 −2.0360 −11.4510 −4.3180 −1.5050
6.3010 −4.8140 7.1500 3.8200 −2.8200 2.4580



α8 =



0.02
0.06
0.09
0.11
0.13
0.15
0.17
0.19


β8 =



0.96
0.92
0.89
0.87
0.85
0.83
0.81
0.79


Z8 =



−8.4960 4.5640 1.5260 −2.8840 −0.3660 1.4390 −5.7900 3.0480
−1.3430 −5.4180 6.4020 −4.2590 0.9180 −10.7550 −1.1990 −1.9340
−2.4820 −5.7960 −3.5670 −6.3800 1.8280 −8.1560 −3.3280 7.5840
−4.6440 −5.6890 0.2640 −0.6390 5.7650 1.8350 8.4050 −0.4790
3.3600 −3.2280 −3.0830 −2.1630 13.2690 3.4750 −3.9330 5.2420
−1.1210 1.6190 −0.8550 5.2890 −2.2670 −6.5510 −3.2760 −1.3080
2.6160 6.6740 3.4010 −2.3740 4.1780 7.9270 2.9450 −4.7090
4.8540 −2.1450 −3.2710 3.9950 −4.8070 −1.9060 −5.5120 5.4640



Figure 4: Parameters for the simulation of GO-GARCH processes

By examining the results in Figure 5, we can notice that estimation errors diminish

as the length of the time series increase. Estimation errors also seem to increase with an

increase in the dimension of the GO-GARCH process. The errors presented by the process

with dimension three, however, seem higher than expected when using the ICA estimator.

This result could be an indication of high variance in the estimation errors. Finally, it

is important to note that, in general, smaller estimation errors are found using the ICA

estimator.
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Figure 5: Estimation errors
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4.3.2 Comparing VaR Forecasts

Before computing VaR forecasts for a portfolio comprised of the selected stocks, we verified

if the GO-GARCH model could capture their joint dynamics correctly. Therefore, we

followed the estimation procedure illustrated in Figure 1 using the first 600 historical stock

prices available in our data set. First, the parameters for a vector autoregressive process

of order 5 were computed and then the parameters of a GO-GARCH model using ICA.

Using the multivariate portmanteau test introduced by Hosking [12], we verified that

the VAR and GO-GARCH models captured the joint dynamics of the stocks correctly.

More specifically, as illustrated in Figure 6, no autocorrelations were found in the residuals

{zt}t≥1 and {z2t }t≥1. Notice in the same figure that autocorrelations were detected in the

returns series {rt}t≥1 and in its square (indicated by the low p-values). However, as the

historical returns were filtered by the VAR and GO-GARCH models, the autocorrelations

disappear, indicating that an appropriate model was estimated.

Lags Statistic df p-value
6 192.3920 150 0.0111

10 309.9618 250 0.0058
15 427.7906 375 0.0309
20 578.5314 500 0.0085

(a) Hosking test for rt

Lags Statistic df p-value
6 354.7336 150 0

10 464.2409 250 0
15 645.1586 375 0
20 784.1894 500 0

(b) Hosking test for r2t

Lags Statistic df p-value
6 22.0671 25 0.6319

10 140.5794 125 0.1614
15 245.1438 250 0.5748
20 403.0684 375 0.1528

(c) Hosking test for xt

Lags Statistic df p-value
5 279.7014 125 0

10 398.5589 250 0
15 562.6849 375 0
20 680.7541 500 0

(d) Hosking test for x2
t

Lags Statistic df p-value
5 13.7861 125 1.0000

10 150.8289 250 1.0000
15 247.7314 375 1.0000
20 393.7500 500 0.9998

(e) Hosking test for zt

Lags Statistic df p-value
5 118.6954 125 0.6418

10 257.9895 250 0.3507
15 388.3685 375 0.3062
20 540.3178 500 0.1033

(f) Hosking test for z2t

Figure 6: Analysis of residuals - Autocorrelation tests

The QQ-plots of the residuals {zt}t≥1 also confirm the adequacy of the model, as illus-

trated in Figure 7. In Figure 8, the estimated conditional variances and covariances are

shown.

Finally, after the estimation of an appropriate model for the returns {rt}t≥1, we compute

Value at Risk forecasts with the horizon of a single day for portfolio Π (defined in Table 1)

using Monte Carlo simulations and the VaR/CVaR estimator introduced by Rockafellar
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Figure 7: Analysis of residuals - QQ-plots

& Uryasev [19]. Using a sliding window approach, we compute each forecast using the

previous 600 returns to estimate the GO-GARCH model and a total of 50000 simulated

scenarios for the log-return of the following date. The forecasts obtained using the ICA

estimator for GO-GARCH parameters are shown in Figure 9.

After computing the VaR forecasts, a time series of violations is computed and tested

for their frequency and independence (using the tests described in Section 4). In Figure 10,

we show an example of the VaR/CVaR forecasts along with the VaR violations.

The same procedure was performed with the MM estimator and with the O-GARCH

model [1], which is based on the PCA. The compiled results can be found in Figure 11.

Inspecting Figure 11, it is easy to verify that both GO-GARCH models have passed

all of the frequency and independence tests. Forecasts computed using the O-GARCH

model, however, failed two of the frequency tests. Checking the number of violations, it

is easy to see that this model overestimates the financial losses (it has a small number
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Stock Proportion

PETR4 0.25
VALE5 0.20
GGBR4 0.10
USIM5 0.15
CSNA3 0.30

Table 1: Composition of portfolio Π

of violations). Comparing only the GO-GARCH models, one could say that the MM

estimator also overestimates the losses when compared to the ICA estimator.

5 Conclusion

In this study, we compared two estimators for GO-GARCH models, which are multivariate

models for asymmetric returns with heavy tails.

Simulation/estimation tests have shown that estimation errors, using both estimators,

decrease as the time-series length increases. Also, the errors increase as the dimension of

the model increases.

The analysis of residuals, performed after the estimation of the parameters using histor-

ical data, has shown that the model is capable of capturing the dynamics of the financial

returns correctly. The analyzed residuals were found to be uncorrelated and with the

expected properties.

While comparing the ICA and MM estimators, we found that smaller estimation errors

are obtained when using the ICA estimator.

The estimators were also tested using an application. VaR forecasts were computed

and evaluated using common tests for their frequency and independence. The results seem

to indicate that both estimators would be appropriate for managing the risk of a portfolio

of financial assets.
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Figure 8: GO-GARCH conditional variances and covariances
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Figure 9: VaR forecasts
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Figure 10: VaR and CVaR forecasts at 95% with violations
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from to test VaR.level p.value samples violations non.violations.ratio
2010-01-26 2013-01-14 Kupiec 90 0.9412 736 73 90.0815
2010-01-26 2013-01-14 IT 90 0.9174 736 73 90.0815
2010-01-26 2013-01-14 DBIT 90 1.0000 736 73 90.0815
2010-01-26 2013-01-14 Kupiec 95 0.2354 736 30 95.9239
2010-01-26 2013-01-14 IT 95 0.1100 736 30 95.9239
2010-01-26 2013-01-14 DBIT 95 1.0000 736 30 95.9239
2010-01-26 2013-01-14 Kupiec 99 0.8930 736 7 99.0489
2010-01-26 2013-01-14 IT 99 0.7137 736 7 99.0489
2010-01-26 2013-01-14 DBIT 99 0.2361 736 7 99.0489

(a) GO-GARCH (ICA)

from to test VaR.level p.value samples violations non.violations.ratio
2010-01-26 2013-01-14 Kupiec 90 0.2820 736 65 91.1685
2010-01-26 2013-01-14 IT 90 0.1629 736 65 91.1685
2010-01-26 2013-01-14 DBIT 90 1.0000 736 65 91.1685
2010-01-26 2013-01-14 Kupiec 95 0.0544 736 26 96.4674
2010-01-26 2013-01-14 IT 95 0.1673 736 26 96.4674
2010-01-26 2013-01-14 DBIT 95 1.0000 736 26 96.4674
2010-01-26 2013-01-14 Kupiec 99 0.8930 736 7 99.0489
2010-01-26 2013-01-14 IT 99 0.7137 736 7 99.0489
2010-01-26 2013-01-14 DBIT 99 0.3924 736 7 99.0489

(b) GO-GARCH (MM)

from to test VaR.level p.value samples violations non.violations.ratio
2010-01-26 2013-01-14 Kupiec 90 0.0003 736 46 93.7500
2010-01-26 2013-01-14 IT 90 0.5612 736 46 93.7500
2010-01-26 2013-01-14 DBIT 90 1.0000 736 46 93.7500
2010-01-26 2013-01-14 Kupiec 95 0.0038 736 21 97.1467
2010-01-26 2013-01-14 IT 95 0.2663 736 21 97.1467
2010-01-26 2013-01-14 DBIT 95 0.3513 736 21 97.1467
2010-01-26 2013-01-14 Kupiec 99 0.1729 736 4 99.4565
2010-01-26 2013-01-14 IT 99 0.8343 736 4 99.4565
2010-01-26 2013-01-14 DBIT 99 1.0000 736 4 99.4565

(c) O-GARCH (PCA)

Figure 11: VaR violations testing
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