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Abstract

A volume-preserving diffeomorphism is said to be hyperbolic,
in the non-uniform sense, if its Lyapunov exponents are different
from zero at almost every point. This work is concerned with
the classical question: which diffeomorphisms may be approxi-
mated by non-uniformly hyperbolic ones? More specifically, is
that always the case for a partially hyperbolic diffeomorphism?

While the latter question is completely solved (in the affirma-
tive) in the C1 case, only a few results are known for the Cr topol-
ogy with r > 1. We use the Invariance Principle of Avila and
Viana to give a partial answer in the symplectic setting. Indeed,
we prove that every partially hyperbolic symplectic diffeomor-
phism with 2-dimensional center bundle, and satisfying certain
pinching and bunching conditions, can be Cr-approximated by
non-uniformly hyperbolic diffeomorphisms.
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1 Introduction

In the theory of Dynamical Systems, hyperbolicity is a core concept whose
roots may be traced back to Hadamard and Perron and which was first
formalized by Smale [S] in the 1960’s. It implies several features that are
most effective to describe the system’s dynamical behavior.

While Smale’s uniform hyperbolicity was soon realized to be a fairly re-
strictive property, a more flexible version was proposed by Pesin [P] about
a decade later: one speaks of non-uniform hyperbolicity when all the Lya-
punov exponents are different from zero, almost everywhere with respect to
some preferred invariant measure (for instance, a volume measure).

While being more general, non-uniform hyperbolicity still has many im-
portant consequences, most notably: the stable manifold theorem (Pesin
[P]), the abundance of periodic points and Smale horseshoes (Katok [K])
and the fact that the fractal dimension of invariant measures is well defined
(Barreira, Pesin and Schmelling [BPS]). Thus, the question of how general
non-uniform hyperbolicity is, naturally arises, and indeed, it goes back to
Pesin’s original work.

However, the set of non-uniform hyperbolic systems is usually not dense.
Herman (see the presentation of Yoccoz [Y]) constructed open subsets of Cr,
with large r, volume-preserving diffeomorphisms admitting invariant subsets
with positive volume consisting of codimension-1 quasi-periodic tori: on such
subsets all the Lyapunov exponents vanish identically. Other examples with
a similar flavor were found by Cheng and Sun [CS] and Xia [X].

Before that, in the early 1980’s, Mañé [Ma] observed that every area-
preserving diffeomorphism that is not Anosov can be C1-approximated by
diffeomorphisms with zero Lyapunov exponents. His arguments were com-
pleted by Bochi [B1] and were extended to arbitrary dimension by Bochi
and Viana [BV1, B2]. In particular, Bochi [B2] proved that every partially
hyperbolic symplectic diffeomorphism can be C1-approximated by partially
hyperbolic diffeomorphisms whose center Lyapunov exponents vanish.

By the end of last century, Alves, Bonatti and Viana were studying the
ergodic properties of partially hyperbolic diffeomorphisms. In [BV2, ABV]
they proved that under some amount of hyperbolicity along the center bun-
dle (‘mostly contracting’ or ‘mostly expanding’ center direction) the diffeo-
morphism admits finitely many physical measures and the union of their
basins contains almost every point in the manifold.

This again raised the question of how frequent non-uniform hyperbol-
icity is, this time focusing on the partially hyperbolic setting. Can one
always approximate the diffeomorphism by another whose center Lyapunov
exponents are non-zero? This question was the origin of a whole research
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program, focusing first on linear cocycles and dealing more recently also
with non-linear systems. We refer the reader to the book of Viana [V] for a
detailed survey of some of the progress attained so far.

Our own results are based on methods that were developed in these
15 years or so and may be viewed as the fulfillment of that program in
the context of symplectic diffeomorphisms with 2-dimensional center. We
proved (all the keywords will be recalled in the next section):

Theorem A. Let f : M −→ M be a partially hyperbolic symplectic Cr

diffeomorphism on a compact manifold M . Assume that f is accessible,
center-bunched and pinched, the set of periodic points is non-empty, and
the center bundle Ec is 2-dimensional. Then, f can be Cr-approximated by
non-uniformly hyperbolic symplectic diffeomorphisms.

Let us stress that our perturbation holds in the Cr topology, for any
r ∈ [2,+∞). The case r = 1 is very special and much better understood.

The first result along these lines was due to Shub and Wilkinson [SW1],
who proved that certain partially hyperbolic skew-products with circle center
leaves can be perturbed to make the center Lyapunov exponent different
from zero. Their approach relates the issue of non-uniform hyperbolicity into
the analysis of the center foliation and its measure-theoretical properties, a
connection that has been much deepened and clarified in the recent work of
Avila, Viana and Wilkinson [AVW].

Baraviera and Bonatti [BB] extended the approach of Shub and Wilkin-
son to prove that any stably ergodic partially hyperbolic diffeomorphism
can be C1-approximated by another for which the sum of the center Lya-
punov exponents is non-zero. This fact, together with the results mentioned
above of Bochi and Viana [BV1], were used by Bochi, Fayad and Pujals
[BFP], to prove that every C1+α stably ergodic diffeomorphism can be C1-
approximated by non-uniformly hyperbolic ones. More recently, Avila, Cro-
visier and Wilkinson [ACW] proved a general theorem that implies that
every partially hyperbolic volume-preserving diffeomorphism can be C1-
approximated by non-uniformly hyperbolic ones, thus solving the question
completely in the C1 case.

Perturbative results in the Cr topology, r > 1, are notoriously more diffi-
cult and, in fact, there is good evidence suggesting that the conclusions may
also be very different. In this regard, we refer the reader to the discussions
in Chapter 12 of Bonatti, Dı́az and Viana [BDV], Chapter 10 of Viana [V]
and Theorem A of [AV1].

An important tool in our approach is the Invariance Principle, which was
first developed by Bonatti, Gomez-Mont, Viana [BGV] for linear cocycles
over hyperbolic systems, and was extended to general (diffeomorphism) co-
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cycles by Avila, Viana [AV1] and by Avila, Santamaria, Viana [ASV]: in the
first paper the base dynamics is still assumed to be hyperbolic, whereas in
the second one it is taken to be partially hyperbolic and volume-preserving.

The Invariance Principle asserts that for the Lyapunov exponents to
vanish the system must exhibit rather rigid (holonomy invariant) features.
Often, one can successfully exploit those features to describe the system
in a rather explicit way. One fine example is the main result of Avila,
Viana and Wilkinson [AVW]: small perturbations of the time-1 map of the
geodesic flow on a surface with negative curvature either are non-uniformly
hyperbolic or embed into a smooth flow.

Another fine application was made by Avila and Viana [AV1], who ex-
hibited partially hyperbolic diffeomorphisms for which the Lyapunov expo-
nents can not vanish because structure arising from the Invariance Principle,
namely invariant line fields, is incompatible with the topology of the center
leaves (which are assumed to be surfaces of genus g > 1).

Perhaps the main novelty in this work is that we are able to use the
Invariance Principle in a perturbative way, to prove that the Lyapunov ex-
ponents can be made non-zero. At a more technical level, another main
novelty resides in our handling of the accessibility property, namely the way
su-paths and their holonomies vary, under perturbations of the diffeomor-
phism; see Section 5 and 6.

As an example of the reach of Theorem A, let us state the following result
that is related to Question 1b) in [SW1]. Let f : T2d −→ T2d be a Anosov
symplectic Cr diffeomorphism and gλ : T2 −→ T2 denote the standard map
on the 2-torus.

Corollary. If λ is close enough to zero, then f×gλ can be Cr-approximated
by non-uniformly hyperbolic symplectic diffeomorphisms.
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2 Preliminaries and Statements

A diffeomorphism f : M −→ M of a compact manifold M is partially
hyperbolic if there exists a nontrivial splitting of the tangent bundle

TM = Es ⊕ Ec ⊕ Eu

invariant under the derivative map Df , a Riemannian metric ‖·‖ on M , and
positive continuous functions µ, µ̂, ν, ν̂, γ, γ̂ with

µ < ν < 1 < ν̂−1 < µ̂−1 and ν < γ < γ̂−1 < ν̂−1,

such that for any unit vector v ∈ TpM ,

µ(p) < ‖Dfp(v)‖ < ν(p) if v ∈ Es(p),
γ(p) < ‖Dfp(v)‖ < γ̂(p)−1 if v ∈ Ec(p),

ν̂(p)−1 < ‖Dfp(v)‖ < µ̂(p)−1 if v ∈ Eu(p).

(1)

The stable and unstable bundles Es and Eu are uniquely integrable and
their integral manifolds form two tranverse (continuous) foliations W s and
W u, whose leaves are immersed submanifolds of the same class of differencia-
bility as f . These foliations are called the strong-stable and strong-unstable
foliations. They are invariant under f , in the sense that

f(W s(x)) = W s(f(x)) and f(W u(x)) = W u(f(x)),

where W s(x) and W u(x) denote the leaves of W s and W u, respectively,
passing through any x ∈M .

We consider in M the distance associated to such a Riemannian struc-
ture. The Lebesgue class is the measure class of the volume induced by this
(or any other) Riemannian metric on M .

We say f is volume-preserving if it preserves some probability measure in
the Lebesgue class of M . For r ≥ 2, denote by PHr

µ(M) the set of partially
hyperbolic volume-preserving Cr diffeomorphisms. If M is a symplectic
manifold and ω is the symplectic form, then PHr

ω(M) denote the set of
partially hyperbolic Crdiffeomorphisms preserving ω.

Given two points x, y ∈M , x is accessible from y if there exist a C1 path
that connects x to y, tangent at every point to Eu∪Es. We call this type of
path, su-path. This is a equivalence relation and we say that f is accessible
if M is the unique accessible class.

From the works in [A] and [HPS], we know that for every partially hy-
perbolic C2 diffeomorphism, the subbundles in the splitting of the tangent
bundle are Hölder. Moreover, the Hölder exponent depend on some relation
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between the functions in Equation (1). From [PSW1], we have analogous
results for the W s and W u holonomies.

For α > 0, we are going to define a pinching condition that will imply
that Ec, and the W s and W u holonomies are α-Hölder:

Definition 2.1 (α-pinched). Let f be a partially hyperbolic diffeomorphism.
We say that f is α-pinched if the functions in Equation (1) satisfy,

ν < γµα and ν̂ < γ̂µ̂α,

ν < γµ̂α and ν̂ < γ̂µα.

We say that a partially hyperbolic diffeomorphism is center bunched if

ν < γγ̂ and ν̂ < γγ̂.

For technical reasons that will be clear later this notion is not enough for
our work and we need to define a similar condition.

Definition 2.2 (α-bunched). For α > 0, if f is a partially hyperbolic dif-
feomorphism, we say that f is α-bunched if the functions in Equation (1)
satisfy,

να < γγ̂ and ν̂α < γγ̂.

Observe that for any α < 1, α-bunched implies center bunched.

At this point we are ready to give the precise definition of the set of
partially hyperbolic systems where Theorem A holds. From now on, M will
denote a compact manifold and ∗ ∈ {µ, ω} where µ denotes some probability
measure in the Lebesgue class and ω denotes a symplectic form.

Definition 2.3. If r ≥ 2, we will denote Br
∗(M), the subset of PHr

∗(M)
where f is accessible, α-pinched and α-bunched for some α > 0, and the
center bundle Ec is 2-dimensional.

We want to remark two properties of the set Br
∗(M). Avila and Viana

[AV2] proved, under the hypothesis of 2-dimensional center bundle, that
accessibility is an open property, this implies that Br

∗(M) is an open set.
We will give the precise statement and some ideas of the proof of this result
in Section 6. Moreover, Theorem 0.1 in [BW] implies that every f ∈ Br

∗(M)
is ergodic.

If f is a volume-preserving C1 diffeomorphism, by Oseledets Theorem for
µ almost every point x ∈ M , there exist k(x) ∈ N, real numbers λ1(f, x) >

· · · > λk(x)(f, x) and a splitting TxM = E1
x ⊕ · · · ⊕ E

k(x)
x of the tangent

bundle at x, all depending measurably on the point x, such that

lim
n→±∞

1

n
log ‖Dfnx (v)‖ = λj(f, x) for all v ∈ Ejx \ {0}.
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The real numbers λj(f, x) are the Lyapunov exponents of x. We say that
f is non-uniformly hyperbolic if the set of points with non-zero Lyapunov
exponents has full measure.

If f ∈ Br
∗(M), the Oseledets Theorem can be applied and because of

the ergodicity, the functions k and λj are constants almost everywhere.
Moreover, the Oseledets splitting is a measurable refinement of the original
splitting and it is possible to talk of Lyapunov exponents of Ec. They are
called center Lyapunov exponents and will be denoted by λc1 and λc2.

In the symplectic case λc1 = λc2 is equivalent to λc1 = λc2 = 0, because
the Lyapunov exponents of symplectic diffeomorphisms have the following
symmetry property: If dim M = 2d, then

λj(f, x) = −λ2d−j+1(f, x) for all 1 ≤ j ≤ d.

Now we have all the necessary definitions to give the precise statement of
the main Theorem.

Theorem A. Let f ∈ Br
ω(M) and assume the set of periodic points of f

is non-empty, then f can be Cr-approximated by non-uniformly hyperbolic
symplectic diffeomorphisms.

Remark 2.4. Observe that the hypothesis of existence of a periodic point
can be replace with the hypothesis of f having a periodic compact Cr center
leaf. In this case, we can find a diffeomorphism arbitrarily Cr-close to f
having a periodic point. See [XZ].

The proof of Theorem A relies in two principal cases determined by the
periodic point being hyperbolic or elliptic. The hyperbolic case has a gener-
alization to the volume-preserving setting with the appropriate modifications
in the hypotheses. This Theorem will be state as Theorem B.

Definition 2.5. Let f be a partially hyperbolic diffeomorphism and p a
periodic point with n0 = per(p). We say that p is a pinching periodic point
if Dfn0 |Ec(p) has two real eigenvalues whit different norms.

Recall ∗ ∈ {µ, ω}.

Theorem B. Let f ∈ Br
∗(M) and assume f has a pinching periodic point,

then f can be Cr-approximated by volume-preserving (symplectic) diffeo-
morphisms whose center Lyapunov exponents are different. In particular,
f can be Cr-approximated by diffeomorphisms with some center Lyapunov
exponent non-zero.

Invariance Principle
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As already mentioned, one important tool in our proof is the Invariance
Principle. Here we give some preliminaries and state it in the form of [ASV].

Let f be a partially hyperbolic diffeomorphism and π : V −→ M a
continuous vector bundle with fiber N = Rk for some k. A linear cocycle
over f : M −→ M is a continuous transformation, F : V −→ V, satisfying
π ◦ F = f ◦ π and acting by linear isomorphisms, Fx : Vx −→ Vf(x), on the
fibers. By Fustenberg, Kesten [FK], the extremal Lyapunov exponents

λ+(F, x) = lim
n→∞

1

n
log ‖Fnx ‖ and λ−(F, x) = lim

n→∞

1

n
log
∥∥(Fnx )−1

∥∥−1 ,
exist at µ-almost every x ∈M , relative to any f -invariant probability mea-
sure µ. If (f, µ) is ergodic, then they are constant on a full µ-measure set.
It is clear that λ−(F, x) ≤ λ+(F, x) whenever they are defined.

The projective bundle associated to a vector bundle π : V −→ M is the
continuous fiber bundle π : P(V) −→ M whose fibers are the projective
quotients of the fibers of V. This is a fiber bundle with smooth leaves
modeled on N = P(Rk).

The projective cocycle associated to a linear cocycle F : V −→ V is
the smooth cocycle P(F ) : P(V) −→ P(V) whose action P(Fx) : P(Vx) −→
P(Vf(x)) on the fibers is given by the projectivization of Fx.

Observe that if µ is a f -invariant probability measure in the Lebesgue
class of M , then a P(F )-invariant probability measure m that project down
to µ always exist in this setting, because the projective cocycle is continuous
and the domain is compact. Moreover,

λ+(P(F ), x, ξ) ≤ λ+(F, x)− λ−(F, x) and

λ−(P(F ), x, ξ) ≥ λ−(F, x)− λ+(F, x).

Let R > 0 be fixed, then the local strong-stable leaf W s
loc(x) of a point x ∈M

is the neighborhood of radius R around x inside W s(x). The local strong-
unstable leaf is defined analogously. Since we are working in the context
of [ASV], the choice of R here will be the same than in Section 5 of their
paper.

Definition 2.6. We call invariant stable holonomy for P(F ) a family hs of
homeomorphisms hsx,y : P(Vx) −→ P(Vy), defined for all x and y in the same
strong-stable leaf of f and satisfying

(a) hsy,z ◦ hsx,y = hsx,z and hsx,x = Id;

(b) P(Fy) ◦ hsx,y = hsf(x),f(y) ◦ P(Fx)

(c) (x, y, ξ) 7→ hsx,y(ξ) is continuous when (x, y) varies in the set of pairs
of points in the same local strong-stable leaf;
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(d) there are C > 0 and η > 0 such that hsx,y is (C, η)-Hölder continuous
for every x and y in the same local strong-stable leaf.

Invariant unstable holonomy is defined analogously, for pairs of points in
the same strong-unstable leaf.

Let m be a probability measure in P(V) such that π∗m = µ, then there
exist a disintegration of m into conditional probabilities {mx : x ∈M} along
the fibers which is essentially unique, that is, a measurable family of prob-
ability measures such that mx(P(Vx)) = 1 for almost every x ∈M and

m(U) =

∫
mx(U ∩ P(Vx))dµ(x),

for every measurable set U ⊂ P(V). See [Rok].

Definition 2.7. A disintegration {mx : x ∈M} is s-invariant if

(hsx,y)∗mx = my for every x and y in the same strong-stable leaf.

The definition of u-invariant is analogous and we say the disintegration is
bi-invariant if it is both s-invariant and u-invariant.

Invariance Principle (Theorem B of [ASV]). Let f : M −→ M be a C2

partially hyperbolic, volume-preserving, center bunched diffeomorphism and
µ be an invariant probability in the Lebesgue class. Let F be a linear cocycle
such that P(F ) admits holonomies and suppose that λ−(F, x) = λ+(F, x) at
µ-almost every point.

Then every P(F )-invariant probability m on the projective fiber bundle
P(V) with π∗m = µ admits a disintegration {mx : x ∈M} along the fibers
such that

(a) the disintegration is bi-invariant over a full measure bi-saturated set
MF ⊂M ;

(b) if f is accessible then MF = M and the conditional probabilities mx

depend continuously on the base point x ∈ M , relative to the weak∗

topology.
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3 Toy Model and Structure of the Proof

In this section, we present a toy model that give the necessary intuition to
understand the ideas behind the proof of Theorem B and explain the several
steps needed for it.

Given f ∈ Br
∗(M), the linear cocycle F = Df |Ec will be called the center

derivative cocycle defined by f . In Section 4, we prove that we can apply the
Invariance Principle to this cocycle when λc1 = λc2. For this, we prove the
existence of holonomies for P(F ) and how they vary under the perturbation
of the diffeomorphism.

For the toy model suppose f ∈ Br
∗(M), λc1 = λc2 and there exist p ∈

Per(f), a hyperbolic fixed point, with z ∈W ss(p) ∩W uu(p). Then, we can
apply the Invariance Principle and conclude that there exist a, b ∈ P(Ecp)
such that for any P(F )-invariant probability, m, we have supp mp ⊂ {a, b}.
Moreover, if hs(f) and hu(f) denote the holonomies along the stable and
unstable strong manifolds, then (hs(f))∗mp = mz and (hu(f))∗mp = mz.

We will make a perturbation supported in a neighborhood of z, Bδ(z),
which has the property that all iterates of z do not belong to it. The
perturbation, g, is chosen to satisfy hs(g) = Rβ ◦ hs(f) and hu(g) = hu(f),
where Rβ denotes a rotation of angle β > 0. This implies that g can not
satisfy the Invariance Principle, therefore λc1(g) 6= λc2(g).

The first step in order to generalize these arguments is to find a su-path
from p to itself with some kind of slow recurrence. This is done in Section
5 where we give details of how to construct the perturbation. In the toy
model the su-path has no recurrence and it is stable under the perturbation
of f . This is not the case anymore and we need estimations about how the
su-path is changing with the perturbation.

In order to conclude the argument we need to understand some relation
between the disintegration given by the Invariance Principle for f and for
the perturbation. This difficulty is solved using the hyperbolicity of p and
the results in Section 6 and 7. In Section 6, we state the results from [AV2]
and prove a corollary about some kind of continuity for su-paths under the
variation of the diffeomorphism. In Section 7, we study the disintegration
given by the Invariance Principle for a particular case.

Finally, in Sections 8 we combine all this results to give the proof of The-
orem B. The proof of Theorem A will be given in Section 9 and, as already
mentioned, will be divide in two cases: the elliptic and the hyperbolic cases.
In Section 10, we apply Theorem A to partially hyperbolic diffeomorphisms
of the torus and give the proof of the Corollary stated above.
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4 Derivative Cocycle

In order to prove Theorem B we need to be able to apply the Invariance
Principle to the center derivative cocycle, F = Df |Ec. That is, to prove that
P(F ) admits holonomies. Since f ∈ Br

∗(M), there exist α > 0 such that f is
α-pinched, then Ec is α-Hölder and the cocycle is a C0,α cocycle. Moreover,
its Lyapunov exponents coincide with the center Lyapunov exponents of f .
These properties together with the hypothesis of α-bunched are enough to
prove the existence of holonomies using the results in Section 3 of [ASV].
Here we provide a new proof that allow us to give estimations about how
these holonomies change under the variation of the diffeomorphism. These
are new results that we had to prove in order to be able to work in a
perturbative way.

Although the statements are for f ∈ Br
∗(M), the only necessary hypothe-

ses are the α-pinched and α-bunched conditions.

The next Proposition prove the existence of a family of maps for F ,
Hs
x,y, with certain properties that will imply that P(Hs

x,y) define an invariant
stable holonomy for P(F ). Analogously, we will find an invariant unstable
holonomy.

Proposition 4.1. Fix f ∈ Br
∗(M) and denote F = Df |Ec. Then, for any

pair of points x, y in the same leaf of the strong-stable foliation W s, there
exist a linear homeomorphism Hs

x,y : Ecx → Ecy satisfying:

(a) Fy ◦Hs
x,y = Hs

f(x),f(y) ◦ Fx;

(b) Hs
y,z ◦Hs

x,y = Hs
x,z and Hs

x,x = Id.

For the proof of this Proposition, we will need the following definitions
and Lemma 4.2 given below.

For n ∈ N, let

Fn(x) = F (fn−1(x)) ◦ · · · ◦ F (x),

and for any continuous function τ : M −→ R+ denote

τn(x) = τ(x)τ(f(x)) · · · τ(fn−1(x)).

Since M is compact, we can define a distance in TM in the following way:
For every x, y ∈ M close enough, denote πx,y : TxM −→ TyM the parallel
transport along ζ, where ζ is the geodesic satisfying dist(x, y) = length(ζ).
Then, given two points (x, v) and (y, w) in TM define

d((x, v), (y, w)) = dist(x, y) + ‖πx,y(v)− w‖ .

15



To simplify the notation we are going to write

d((x, v), (y, w)) = d(v, w) and πnx,y = πfn(x),fn(y).

Since f is C2, there exist C0 > 0 such that ∀ (x, v), (y, w) ∈ TM ,

d(Df(x, v), Df(y, w)) < C0 d(v, w).

We also need a definition for the distance between two subspaces of TM .
Let V be a vector space with inner product and let E1 and E2 be subspaces.
Then, define dist(E1, E2) = max{δ1, δ2} where

δ1 = sup
x∈E1,‖x‖=1

inf
y∈E2

‖x− y‖ ,

and δ2 is defined analogously changing the places of E1 and E2. If PE denote
the orthogonal projection to the subspace E, then

inf
y∈E
‖x− y‖ = ‖x− PE(x)‖ .

Therefore δ1 = ‖(Id− PE2)PE1‖ and we have an analogous identity for δ2.

If x and y are close enough, given Ex and Ey subspaces of TxM and
TyM respectively, define

dist(Ex, Ey) = dist(πx,y(Ex), Ey) = dist(Ex, πy,x(Ey)).

Since Ec is α-Hölder, there exist C1 > 0 such that

dist(Ecx, E
c
y) < C1 dist(x, y)α.

Moreover, the constant C1 can be taken uniform in a C2 neighborhood
of f , see [W].

Lemma 4.2. Fix f ∈ Br
∗(M) and denote F = Df |Ec. Then, there exist

C2 > 0 and m < 1 such that for all x ∈M , y, z ∈W s
loc(x) and n ≥ 1,

n−1∏
j=0

∥∥F (f j(y))
∥∥∥∥F (f j(z))−1

∥∥ ≤ C2 ν
n(x)−αm.

Proof. If f ∈ Br
∗(M), then f is α-bunched, that is Definition 2.2. Moreover,

since the functions are continuous and M is compact, there exist m < 1
such that

ναm < γγ̂ and ν̂αm < γγ̂.
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Since Ec is α-Hölder, there exist C > 0 such that∥∥F (f j(y))
∥∥ / ∥∥F (f j(x))

∥∥ ≤ exp(C dist(f j(x), f j(y))α)

≤ exp(C νj(x)αdist(x, y)α).

Analogously for
∥∥F (f j(z))−1

∥∥ /∥∥F (f j(x))−1
∥∥. Now since ν < 1 we can take

C2 a bound for

exp

C n−1∑
j=0

νj(x)α(dist(x, y)α + dist(z, x)α)

 .

Then,

n−1∏
j=0

∥∥F (f j(y))
∥∥∥∥F (f j(z))−1

∥∥ ≤ C2

n−1∏
j=0

∥∥F (f j(x))
∥∥∥∥F (f j(x))−1

∥∥
≤ C2

n−1∏
j=0

γ̂(f j(x))−1γ(f j(x))−1

≤ C2

n−1∏
j=0

ν(f j(x))−αm.

Now we are ready to prove Proposition 4.1.

Proof. Fix f ∈ Br
∗(M) and let F = Df |Ec. If x, y ∈M with y ∈W s

loc(x),
define

An(x, y) = Fn(y)−1 ◦ PEc(fn(y)) ◦ πnx,y ◦ Fn(x),

for every n ∈ N. Recall PE denotes the orthogonal projection to the subspace
E.

We are going to prove that the limit exists when n goes to infinity and
then define

Hs
x,y = lim

n→∞
An(x, y).

Observe that

An+j(x, y) = F j(y) ◦An(f j(x), f j(y)) ◦ F j(x),

then we can apply this identity to prove the general case where y ∈ W s(x)
and to prove (a).

We want to see that An(x, y) is a Cauchy sequence, then we need to
estimate for every n ∈ N,

‖An+1(x, y)−An(x, y)‖ .
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Using the definition of An(x, y) we get an expression of the form:∥∥Fn(y)−1
∥∥ ‖Fn(x)‖ ‖B(x, y, n)‖ ,

where B depends on the n+ 1 and n terms.

Let C3 = sup
z∈M
{‖F (z)‖ ,

∥∥F (z)−1
∥∥}. We have the following estimations

in order to bound B(x, y, n),∥∥(Id− PEc(fn+1(y))) ◦ πn+1
x,y ◦ F (fn(x))

∥∥
≤
∥∥(Id− PEc(fn+1(y))) ◦ πn+1

x,y ◦ PEc(fn+1(x))

∥∥ ‖F (fn(x))‖
≤ C3 dist(E

c(fn+1(x)), Ec(fn+1(x)))

≤ C3C1 dist(f
n+1(x), fn+1(y))α

≤ C3C1 ν
n(x)α dist(x, y)α.

For any v ∈ Ec(fn(x)) with ‖v‖ = 1, define w = PEc(fn(y)) ◦ πnx,y(v). Then,∥∥πn+1
x,y ◦ F (fn(x))(v)− F (fn(y))(w)

∥∥
≤ d (F (fn(x))(v), F (fn(y))(w))

≤ C0 (dist(fn(x), fn(y)) +
∥∥πnx,y(v)− w

∥∥)

≤ C0 [νn(x) dist(x, y) + dist(Ec(fn(x)), Ec(fn(y)))]

≤ (C0 + C1) ν
n(x)α dist(x, y)α.

This two inequalities implies that there exist Ĉ0 > 0 such that

‖B(x, y, n)‖ ≤ Ĉ0 ν
n(x)α dist(x, y)α.

Then, the difference ‖An+1(x, y)−An(x, y)‖ is bounded by

Ĉ0

∥∥Fn(y)−1
∥∥ ‖Fn(x)‖ νn(x)α dist(x, y)α.

Using Lemma 4.2, we have that this expression is bounded by

C2 Ĉ0 ν
n(x)(1−m)α dist(x, y)α.

Since ν < 1, this implies that An(x, y) is a Cauchy sequence and then
the limit exists.

The following estimations prove that ‖An(x, y)−An(z, y) ◦An(x, z)‖ is
going to zero when n goes to ∞. This is enough to have property (b).

We need to estimate
∥∥πnz,y ◦ πnx,z − πnx,y∥∥, for this fix v ∈ Ec(fn(x)) with

‖v‖ = 1, then ∥∥πnz,y ◦ πnx,z(v)− πnx,y(v)
∥∥

≤ d(πnx,z(v), πnx,y(v))

≤ d(πnx,z(v), v) + d(v, πnx,y(v))

≤ dist(fn(z), fn(x)) + dist(fn(x), fn(y)).

18



This finish the proof of the Proposition.

Remark 4.3. For every y ∈W s
loc(x) we have

Hs
x,y =

∞∑
j=0

(An+1(x, y)−An(x, y)) +A0(x, y).

Let Ĉ1 > 0 be a bound for
∑∞

j=0 ν
n(x)(1−m)α and let C = C2 Ĉ0 Ĉ1, then

∥∥Hs
x,y −A0(x, y)

∥∥ ≤ ∞∑
j=0

‖An+1(x, y)−An(x, y)‖

≤ C2 Ĉ0 dist(x, y)α
∞∑
j=0

νn(x)(1−m)α

≤ C dist(x, y)α.

(2)

Then, we have proved that there exist C > 0 such that for every y ∈W s
loc(x),∥∥Hs

x,y

∥∥ ≤ 1 + C dist(x, y)α.

Moreover, the constant C depends only on f .

Observe that all the estimations in the proof of the Proposition and in
the Remark can be taken uniform in a C2 neighborhood of f . In the sequel,
always that we refer to some g close to f , we are thinking that g is in this
neighborhood.

Now that we have proved the existence of Hs
x,y, we can define hsx,y =

P(Hs
x,y). To show that the family hsx,y is an invariant stable holonomy for

P(F ), we need to prove (c) in Definition 2.6.

We are going to prove a much stronger result, that will imply (c), but
provides also an estimation about how Hs

x,y change under the variation of
the diffeomorphism. More precisely,

Proposition 4.4. Fix f ∈ Br
∗(M), x ∈M , y ∈W s

loc(x, f) and a ∈ Ec(x, f).
For every ε > 0 there exist δ > 0 and a neighborhood of f in the C2-topology,
V(f), such that for every g ∈ V(f), every w, z ∈ M with w ∈ W s

loc(z, g),
dist(x, z) < δ and dist(y, w) < δ and every b ∈ Ec(z, g) with d(a, b) < δ, we
have

d(Hs
x,y(f)(a), Hs

z,w(g)(b)) < ε.

Proof. Let F = Df |Ec(f) and G = Dg|Ec(g). Similar estimations that the
ones in Equation (2), provides a C > 0 such that for any n ≥ 1,∥∥Hs

x,y(f)−An(f, x, y)
∥∥ ≤ C νn(x)α(1−m)
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and ∥∥Hs
z,w(g)−An(g, z, w)

∥∥ ≤ C νn(z)α(1−m).

So, in order to prove the Proposition, we only need to estimate

d(An(f, x, y)(a), An(g, z, w)(b)).

Define

c = PEc(fn(y),f) ◦ πnx,y ◦ Fn(x)(a) and d = PEc(gn(w),g) ◦ πnz,w ◦Gn(z)(b).

Then,

d(An(f, x, y)(a), An(g, z, w)(b)) = d(Fn(y)−1(c), Gn(w)−1(d)).

This distance is bounded by some expression involving the distance be-
tween f and g, the distance between the n-th first iterates of the points y, w,
the distance between the center bundles and the following term,

n−1∏
j=0

∥∥F (f j(y))−1
∥∥ d(c, d).

Let ã = Fn(x)(a) and b̃ = Gn(z)(b). From the definition of c and d,
we can bound the distance between them by an expression involving the
distance of fn(y) and gn(w), the distance between the center bundles in
these points and

d(PEc(fn(y),f) ◦ πnx,y(ã), ã) + d(b̃, πnz,w(b̃)) + d(ã, b̃). (3)

The first term is bounded by

d(Ec(fn(x), f), Ec(fn(y), f)) ‖ã‖ ≤ C1 ‖ã‖ dist(fn(x), fn(y))α.

The second term is bounded by

dist(gn(z), gn(w))α.

And the last term is equal to d(Fn(x)(a), Gn(z)(b)). Like before, this
distance is bounded by some expression involving the distance between f
and g, the distance between the first n-th iterates of the points x, z, the
distance between the center bundles and d(a, b).

So, in order to finish the proof of the continuity we need to prove that
the following expressions goes to zero as n goes to ∞,

n−1∏
j=0

∥∥F (f j(y))−1
∥∥ ‖Fn(x)‖ νn(x)α
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and
n−1∏
j=0

∥∥F (f j(y))−1
∥∥ νn(z)α.

For the first expression we only need to apply Lemma 4.2. We are going
to need some new definitions for the second one.

For the functions in Equation (1) and p ∈M define

ν(p, r) = sup
q∈Br(p)

ν(q) and γ(p, r) = inf
q∈Br(p)

γ(q).

Then by continuity of the functions and compactness of M , there exist
r0 > 0 and θ < 1 such that ν(p, r0) < θ γ(p, r0) for every p ∈M .

Suppose dist(x, y) < r0, then dist(f j(x), f j(y)) < r0 for every j ≥ 1. If
dist(gj(z), f j(x)) < r0 for every 0 ≤ j ≤ n, then

n−1∏
j=0

∥∥F (f j(y))−1
∥∥ νn(z)α ≤

n−1∏
j=0

γ(f j(y))−1ν(gj(z))

≤
n−1∏
j=0

γ(f j(x), r0)
−1ν(f j(x), r0)

≤ θn.

Then, we fix n big enough such that all the terms going to zero are small
enough and define δ > 0 and V(f) in order to have the other terms also
small enough. This proves the Proposition.

By Proposition 4.1 and Proposition 4.4, we have proved that hsx,y =
P(Hs

x,y) is an invariant stable holonomy for P(F ). We are going to refer to
both hsx,y and Hs

x,y as stable holonomies.

Observe that Proposition 4.4 implies the continuity of stable holonomies
in compact parts of the strong-stable manifold, that is, the application

(f, x, y) 7→ Hs
x,y(f),

is continuous on W s
N (f) = {(g, x, y) : g ∈ V(f) and gN (y) ∈ W s

loc(g
N (x))},

for every N ≥ 1.

There are analogous Propositions and properties for the invariant un-
stable holonomy, hux,y. Locally, they will be defined by the projectivization
of

Hu
x,y = lim

n→−∞
Fn(y)−1 ◦ PEc(fn(y)) ◦ πnx,y ◦ Fn(x),
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where
F−n(x) = F−1(f−n+1(x)) ◦ · · · ◦ F−1(x),

for every n ∈ N.

Given a su-path for f , we can define the holonomy associated to the
su-path by the composition of the stable and unstable holonomies defined
by the nodes. Let ζ = [z0, z1, .., zn] be a su-path and denote Hzi = H∗zi−1,zi
with ∗ ∈ {s, u}, then Hζ = Hzn ◦ . . . Hz1 . The following Corollary gives an
estimation about how this holonomy change under the variation of f and
the su-path.

Corollary 4.5. If g is close enough to f and ζf = [x0, ..., xn] and ζg =
[y0, ..., yn] are two su-paths for f and g respectively, a ∈ Ec(x0, f), b ∈
Ec(y0, g), then

d(Hζf (a), Hζg(b)) ≤
n−1∑
i=0

n∏
j=i+2

∥∥Hxj

∥∥ψ(Hxi+1) +
n∏
j=1

∥∥Hxj

∥∥ d(a, b),

where
ψ(Hxi+1) = d(Hxi+1(ai), Hyi+1(πxi,yi(ai)))

and
ai = Hxi ◦ · · · ◦Hx1(a).

By Remark 4.3, if xj−1 ∈ W ∗loc(xj), then
∥∥Hxj

∥∥ < 1 + C dist(xj−1, xj)
α

where C > 0 does not depend on the points. Then, if ζ = [x0, ..., xn] is a
su-path with xj−1 ∈ W ∗loc(xj) and dist(xj−1, xj) < L for every j ∈ [1, ..n],
we have

n∏
j=1

∥∥Hxj

∥∥ < (1 + C Lα)n.

This proves that we can find a bound for
∏n
j=1

∥∥Hxj

∥∥ depending only
on the number of legs of the su-path and the distance between the nodes.
This will be important in Section 7.
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5 Perturbation

As explained in the toy model the first steps for the proof of Theorem B can
be summarized in the following way: We need to find a special su-path for
f , make a local perturbation and estimate how the dynamics change. These
are going to be the goals of this section.

Fixed r ∈ [2,∞), we are going to define the (Cr) Whitney topology in
the volume-preserving and symplectic case specifying basic neighborhoods,
ηr∗ with ∗ ∈ {µ, ω}.

Let µ be a volume form and pick two finite open coverings U = {(Ui, φi) :
i = 1, ...., k}, V = {(Vi, ψi) : i = 1, ..., k} of M by Cr conservative coordi-
nates charts such that f(Ui) ⊂ Vi for all i. This means that we are using
[Mo] to find φi : Ui −→ Rd and ψi : Vi −→ Rd, Cr diffeomorphisms with
µ = φ∗i (du1 ∧ · · · ∧ dud) = ψ∗i (du1 ∧ · · · ∧ dud) where (u1, . . . , ud) are coordi-
nates in Rd.

Let ε > 0. Define ηrµ(f,U ,V, ε) to be the set of diffeomorphisms g ∈
Diff rµ(M) such that

(a) g(Ui) ⊂ Vi for all i and

(b)
∥∥∂ρψigφ−1i (x)− ∂ρψifφ−1i (x)

∥∥ < ε for x ∈ φ(Ui), |ρ| ≤ r, for all i.

Here ρ = (ρ1, ...., ρr) is a multi-index of non-negative integers, |ρ| = ρ1 +
....+ ρr, and ∂ρ denotes the corresponding partial derivative.

For the symplectic case, pick two finite open coverings by Cr symplectic
charts. That is, use Darboux’s Theorem to find φi : Ui −→ R2d and ψi :
Vi −→ R2d, Cr diffeomorphisms with ω = φ∗i (du ∧ dv) = ψ∗i (du ∧ dv) where
(u, v) are coordinates in R2d. Then, ηrω(f,U ,V, ε) is defined analogously.

We will write ηr∗(f,U ,V, ε) with ∗ ∈ {µ, ω}.

Lemma 5.1. Fix r ∈ [2,∞). Let f be a partially hyperbolic volume-
preserving (symplectic) diffeomorphism with dim Ec = 2. Then, there exist
ε0 > 0, δ0 > 0 and C0 > 0 such that for every 0 < ε < ε0, 0 < δ < δ0 and
z ∈M , there exist g ∈ ηr∗(f,U ,V, ε) such that

(a) g(x) = f(x) if x /∈ Bδ(z),

(b) g(z) = f(z) and

(c) Dgz = Dfz ◦Aβ with sin β = C0 δ
r−1ε,
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where Aβ is the linear map from TMz to TMz given byIdu 0 0
0 Rβ 0
0 0 Ids


whit Id∗∗ : E∗∗z −→ E∗∗z being the identity map for ∗∗ ∈ {s, u} and Rβ the
rotation of angle β in some (symplectic) base for Ec(z), {e1, f1}.

Proof. Define another finite cover U ′ such that Ui ⊂ U
′
i , f(U

′
i ) ⊂ Vi and

φ
′
i|Ui = φi. Then there exist C1 > 0 depending on f , such that if

h ∈ ηr∗(id,U ,U
′
, ε)

then for g = f ◦ h, we have

g ∈ ηr∗(f,U ,V, C1 ε).

This reduces the problem to find h with the right properties near the
identity and then define g = f ◦ h.

Fix i such that z ∈ Ui. By composition with a translation, we can
suppose that φi(z) = 0. From now on, we denote U = Ui and φ = φi.

Let λ : R −→ [0, 1] be a C∞ function such that λ(z) = 1 if z ≤ 1/2 and
λ(z) = 0 if z ≥ 1. Let

σ = sup
x∈R
{1, |λ′(x)|, . . . , |λ(r+1)(x)|}.

Fix ε > 0, δ > 0 and β > 0 an suppose δ is smaller than the Lebesgue
number for U .

At this point we need to consider the volume-preserving and the sym-
plectic cases separately.

Volume-Preserving Perturbation

Define Ẽ∗ = Dφz(E
∗
z ) for ∗ ∈ {u, c, s}, then

Ẽu ⊕ Ẽc ⊕ Ẽs = Rd.

Let us consider the inner product associated to this decomposition:

< u, v >=< uu, vu >∗ + < uc, vc >∗ + < us, vs >∗,

where <,>∗ is the usual inner product in Rd. Then there exist c1, c2 > 0
such that c1 ‖u‖ ≤ ‖u‖∗ ≤ c2 ‖u‖.
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Define
ψ(v) = β λ(‖v‖ /δ)

and h̃ : Rd −→ Rd by

h̃(vu + vc + vs) = vu +Rψ(v)(v
c) + vs.

Here for every θ ∈ [0, π/2], Rθ denotes the rotation of angle θ for the base
Dφz(e1), Dφz(f1).

Then we have the following properties:

(a) h̃ preserves volume,

(b) h̃(0) = 0 and Dh̃0(v) = vu +Rβ(vc) + vs,

(c) h̃(v) = v if ‖v‖ ≥ δ,

(d)
∥∥∥h̃− id∥∥∥

r
≤ C2 σ δ

−(r−1) sin β for some C2 > 0.

Define,

h(x) =

{
φ−1 ◦ h̃ ◦ φ(x) if x ∈ U
x if x /∈ U.

Then, there exist K1 and K2 (depending only on the charts and the Rie-
mannian metric on M) such that h ∈ ηrµ(id,U ,U ′ ,K1 δ

−(r−1) sin β) and
h(x) = x if dist(x, z) ≥ K2 δ.

So, if sin β < (C1K1)
−1εδr−1, we have h ∈ ηrµ(id,U ,U ′ , C−11 ε) and

h(x) = x if dist(x, z) ≥ K2 δ. This proves the Lemma in the volume-
preserving setting.

Symplectic Perturbation

We are going to recall some elementary facts about generating functions
before doing the proof in the symplectic case. See [N] for more details.

Let (u1, . . . , ud, v1, . . . , vd) be coordinates of Rd and

f(u, v) = (ξ(u, v), η(u, v))

be a Cr symplectic diffeomorphism defined in a simply connected neighbor-
hood V of (0, 0) with r > 0. Then

∑d
i=1 dξi∧dηi =

∑d
i=1 dui∧dvi. Suppose

∂η
∂v (u, v) is non-singular at each point of V . Then we have a new Cr system of
coordinates on a neighborhood of (0, η(0, 0)) given by (u1, . . . , ud, η1, . . . , ηd),
and v = v(u, η). Since the 1-form α =

∑d
i=1(ξidηi + vidui) is closed, there

exist S = S(u, η) a Cr+1 real valued function unique up to a constant satis-
fying ∂S

∂ηi
= ξi and ∂S

∂ui
= vi. The function S is called a generating function

for f .
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Conversely, given a Cr+1 real valued function S = S(u, η) defined in a

neighborhood of (0, η(0, 0)) such that the matrix ∂2S
∂ui∂ηj

is non-singular for

every (u, η), define ξi(u, η) = ∂S
∂ηi

(u, η) and vi(u, η) = ∂S
∂ui

(u, η). We can
solve η in terms of (u, v) and obtain a symplectic diffeomorphism f(u, v) =
(ξ(u, η(u, v)), η(u, v)).

Remember we fixed some chart such that z ∈ U and φ(z) = 0. Choose
a symplectic base for TzM , {e1, e2, . . . , ed, f1, . . . , fd} where {e1, f1} is the
chosen base for Ecz. Let A : R2d −→ R2d be the symplectic map defined by
Dφz(ei) = ui and Dφ(fi) = vi.

Let S1(u, η) be the generating function for the symplectic map B(u, v) =
Rβ(u1, v1) + (0, u2, . . . , ud, 0, v2, . . . , vd).

Define

S0(u, η) =

d∑
i=1

uiηi,

and

S(u, η) =

{
λ(‖(u,η)‖δ )S1(u, η) +

[
1− λ(‖(u,η)‖δ )

]
S0(u, η) if ‖(u, η)‖ < δ,

S0(u, η) if ‖(u, η)‖ ≥ δ.

Then, S is Cr+1 and there exist C2 > 0 such that

‖S − S0‖r+1 < C2 σ δ
−(r−1) sin β.

Let h̃ be the Cr symplectic diffeomorphism defined by S, then

(a) h̃((0, 0)) = (0, 0) and Dh̃0(u, v) = B(u, v),

(b) h̃((u, v)) = (u, v) if ‖(u, v)‖ ≥ δ,

(c)
∥∥∥h̃− id∥∥∥

r
≤ C1 σ δ

−(r−1) sin β.

Define,

h(x) =

{
φ−1 ◦A−1 ◦ h̃ ◦A ◦ φ(x) if x ∈ U
x if x /∈ U.

Now, like before, there exist K1 and K2 such that

h ∈ ηrω(id,U ,U ′ ,K1 δ
−(r−1) sin β),

and h(x) = x if dist(x, z) ≥ K2 δ.

So, if sin β < (C1K1)
−1εδr−1, we have h ∈ ηrω(id,U ,U ′ , C−11 ε) and

h(x) = x if dist(x, z) ≥ δ. This finish the proof.
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The following Proposition is stated and proved as Proposition 8.2 in
[ASV].

Proposition 5.2. Let f be a partially hyperbolic accessible C2 diffeomor-
phism. Then, for every x ∈ M , there exist a su-loop, ζ = [z0, ..., zn] with
x = z0 = zn, l ∈ {0, ..., n} and c > 0 such that

dist(f j(zi), zl) ≥
c

1 + j2
,

for every j ∈ Z and every i ∈ {0, ..., n} except j = 0 and i = l.

Given δ̂ > 0 we can suppose that the su-loop in the Proposition above
was construct to satisfy dist(zi, zi+1) < δ̂ for every i ∈ {0, ..., n− 1}. This is
a technical observation that we need to consider in the estimations below.

Let ∗ ∈ {µ, ω}, f ∈ Br
∗(M) and p a periodic point for f . Apply Propo-

sition 5.2 to f and p and let z = zl. We are going to construct a sequence
of perturbations for f , like in Lemma 5.1, supported in this point.

Define
δk =

c

1 + (qk)2
,

for every k ≥ 1, where c > 0 is given by Proposition 5.2 and q > 0 is
a fixed (technical) constant depending on f . More precisely, it depends on
the functions in Equation (1), the α for which f is α-pinched and α-bunched,
the period of p and the number of nodes in the su-path.

Recall there exist ε̂0 > 0 such that all the estimation in Section 4 for the
holonomies are uniform for every g ε̂0-close to f . Then, using Lemma 5.1
we have the following:

Lemma 5.3. There exist C0 > 0 and k0 ∈ N such that for any ε > 0
smaller that ε0 and ε̂0 and k ≥ k0, there exist fk ∈ Br

∗(M) ∩ ηr∗(f,U ,V, ε)
with ∗ ∈ {µ, ω} such that

(a) fk(z) = f(z),

(b) Dfk(z) = Df(z) ◦Aβk with sin βk = C0 δ
r−1
k ε,

(c) fk(x) = f(x) if x /∈ Bδk(z) and

(d) fk → f in the C1 topology when k →∞.

Estimations

The property of the point z = zl given by Proposition 5.2 give information
about how much time the nodes stay outside of the support of the perturba-
tion. We will use this information to estimate how the dynamics is changing.
Some results similar to these appear in [DW].
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Let ∗ ∈ {µ, ω}, f ∈ Br
∗(M) and p a periodic point for f . Let ζ =

[z0, ..., zn] be the su-path given by Proposition 5.2. Fix ε > 0 and consider
k0 and fk with k ≥ k0 given by Lemma 5.3.

For the functions on Equation (1), define

ν(x, r) = sup
y∈Br(x)

ν(y) γ(x, r) = inf
y∈Br(x)

γ(y),

ν̂(x, r) = sup
y∈Br(x)

ν(y) and γ̂(x, r) = inf
y∈Br(x)

γ(y).

Then, by continuity of the functions and compactness of M , there exist
r0 > 0 and τ0 < 1 such that

ν(x, r0) < τ0 γ(x, r0) and ν̂(x, r0) < τ0 γ̂(x, r0),

for every x ∈M .

Lemma 5.4. Fix τ ∈ (τ0, 1). There exist C1 > 0 and ε1 > 0 such that for
every x ∈ M , y ∈ W s

loc(x) and g ε1-close to f in the C1-topology, if there
exist k′ ∈ N with f j(x) = gj(x) and f j(y) = gj(y) for every 1 ≤ j ≤ k′, then
there exist w ∈W s(x, g) ∩B(y, C1τ

k′).

Proof. Since f is partially hyperbolic, there exist Kcu a cone family around
Eu ⊕ Ec such that

(a) Df(Kcu(x)) ⊂ Kcu(f(x)) for every x ∈M ,

(b) Kcu is uniformly transverse to Es,

(c) For every v ∈ Kcu(x),

‖Dfx(v)‖ ≥ τ ν(x, r0) ‖v‖ ,

for every x ∈M .

For every g C1-close enough to f all the above are still valid.

Let V be a topological disk of dimension u + c passing through y such
that TV ⊂ Kcu. Since fk

′
(x) = gk

′
(x) and fk

′
(y) = gk

′
(y), we have

dist(gk
′
(x), gk

′
(y)) < ν(x, r0)

k′ .

Then, there exist C1 = C1(f), depending only on f , and w′ ∈W s(gk
′
(x), g)∩

gk
′
(V ) such that

dist(gk
′
(x), w′) < C1 ν(x, r0)

k′ .

Define w = g−k
′
(w′), then w ∈W s(x, g) and

dist(y, w) < C1 τ
k′ .
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There is an analogous statement of this Lemma for W u. We apply these
two results to fk and obtain the following.

Lemma 5.5. If ζ = [z0, ..., zn] is the su-path given by Proposition 5.2 and
fk is given by Lemma 5.3, then there exist C1 > 0, τ ∈ (0, 1) and k1 ∈ N
such that for every k ≥ k1 there exist points wki ∈M with

wki ∈W ∗(zi−1, fk) ∩B(zi, C1 τ
qk),

for every i ∈ {1, ..., n} where

W ∗(zi−1, fk) =

{
W s(zi−1, fk) if zi ∈W s(zi−1, f),

W u(zi−1, fk) if zi ∈W u(zi−1, f).

We can suppose that fk and f are α-pinched for the same α. By [PSW1],
the α-pinched condition implies that the W s and W u holonomies are α-
Hölder. Moreover, there exist a C2 neighborhood of f , V(f), such that the
holonomies for every g ∈ V(f) are α-Hölder with uniform Hölder constant.
See [W].

For every k ≥ k1, define zk1 = wk1 by Lemma 5.5, then

dist(zk1 , z1) < C1 τ
qk.

Suppose z3 ∈ W s(z2, f). If k is big enough, z1, z
k
1 and wk2 are all in the

same W s foliation box U . Let Σ(x) be a smooth foliation by admissible
transversals defined in U . Then, define zk2 to be the only point of intersection

of W s(zk1 , fk) with Σ(wk2), then there exist Ĉ1 = Ĉ1(f) such that

dist(wk2 , z
k
2 ) < Ĉ1 dist(z

k
1 , z1)

α.

Then,

dist(zk2 , z2) < dist(z2, w
k
2) + dist(wk2 , z

k
2 ) < C1 τ

qk + Ĉ1C
α
1 τ

qkα.

If z3 ∈W u(z2, f), we proceed in the same way using a foliation box for W u.

Repeating the argument for all the other nodes of ζ we have the following:

Proposition 5.6. If ζ = [z0, ..., zn] is the su-path given by Proposition 5.2
and fk is given by Lemma 5.3, then there exist C2 > 0 and k2 ∈ N such
that for every k ≥ k2 there exist ζk = [zk0 , ..., z

k
n] su-path for fk such that

zk0 = z0 = p and
dist(zi, z

k
i ) < C2 τ

mk,

for i ∈ {1, ..., n}, where m = qαn.
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Now we study how the splitting in the tangent bundle is changing under
the variation of the diffeomorphism. Let V be a vector space with inner
product and let E1 and E2 be subspaces. Define ∠ (E1, E2) = max{δ1, δ2}
where

δ1 = sup
x∈E1,x 6=0

inf
y∈E2,y 6=0

∠ x, y,

and δ2 is defined analogously, changing the places of E1 and E2.

The relation of this definition with the distance of subspaces defined in
Section 4 is given by

sin ∠ (E1, E2) = dist(E1, E2).

By Equation (1), there exist C3 > 0 and θ0 > 0 such that for every F u+c

and F c+s distributions of dimension u+ c and c+ s respectively, such that

max{∠(Eu+c, F u+c),∠(Ec+s, F c+s)} ≤ θ0, (4)

we have
∠(Df jx(F u+cx ), Df jx(Eu+cx )) ≤ C3 ρ

j , (5)

and
∠(Df−jx (F c+sx ), Df−jx (Ec+sx )) ≤ C3 ρ

j . (6)

for every x ∈M and j ≥ 0, where

ρ = max
x∈M

(max {ν(x)/γ(x), ν̂(x)/γ̂(x)}) .

Lemma 5.7. There exist C3 > 0, ρ ∈ (0, 1) and ε3 > 0 such that if g is
ε3-close to f in the C1-topology, g = f outside some compact set I and there
exist k′ ∈ N such that f j(x) do not enter I for every j with |j| ≤ k′, then

∠(Eu+c(x, g), Eu+c(x, f) ≤ C3 ρ
k′ (7)

and
∠(Ec+s(x, g), Ec+s(x, f)) ≤ C3 ρ

k′ (8)

Proof. Since f j(x) /∈ I, we have f j(x) = gj(x) and Df(f j(x)) = Dg(gj(x))
for every j with |j| ≤ k′. If g is close enough to f , then inequality in
Equation (4) holds for F u+c = Eu+c(g) and F c+s = Ec+s(g) and

∠(Eu+c(g, x), Eu+c(f, x))

= ∠(Dgk
′
(Eu+c(g, g−k

′
(x))), Dfk

′
(Eu+c(f, f−k

′
(x))))

= ∠(Dfk
′
(Eu(g, f−k

′
(x))), Dfk

′
(Eu(f, f−k

′
(x)))).

Then, by Equation (5) we prove Equation (7). The stable case is analogous:
we use Equation (6) to prove Equation (8).
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This provides a result for the center bundle of fk.

Proposition 5.8. If ζ = [z0, ..., zn] is the su-path given by Proposition 5.2
and fk is given by Lemma 5.3, then there exist C4 > 0, ρ ∈ (0, 1) and k4 ∈ N
such that for every k ≥ k4 and i ∈ [1, ..., n], we have

∠(Ec(zi, fk), E
c(zi, f)) ≤ C4 ρ

(q−1)k. (9)

Proof. If i 6= l, that is, zi is not the point where we did the perturbation,
then by the definition of fk we have that f j(zi) do not enter the closure of
the neighborhood of perturbation for every j ∈ Z with |j| ≤ (q− 1)k. So we
can apply the Lemma above for Eu+c and Ec+s. Then, we can conclude the
Proposition because Ec is the intersection of this two transversal bundles.

Equation (9) is also true for zl = z because, although Dfk(z) 6= Df(z),
they are related by Aβk and this application leaves invariant the subbundles
in the splitting Euz ⊕Ecz⊕Esz , so we can do a similar proof and conclude the
Proposition like for the other nodes.

Summarizing the results in this section we have the following: For f ∈
Br
∗(M) and p a periodic point, Proposition 5.2 gives a su-path from p to p,

ζ = [z0, ..., zn], with slow recurrence. Recall we denote zl = z. This allows
us to find a sequence fk given by Lemma 5.3 and satisfying Proposition 5.6
and 5.8.

Let
ζ1 = [z0, ..., zl] and ζ2 = [zn, ..., zl].

In the notation of Proposition 5.6, define

zk = zkl , pk = zkn,

ζk1 = [p, ..., zk] and ζk2 = [pk, ..., zk].

In the following, for i ∈ {1, 2}, Hζi will denote the holonomy defined by ζi
for F = Df |Ec(f) andHζki

the holonomy defined by ζki for Fk = Dfk|Ec(fk).

Using Corollary 4.5 combined with Propositions 5.6 and 5.8 we can es-
timate the variation in the holonomies for fk:

Corollary 5.9. There exist C > 0, λ ∈ (0, 1) and K ∈ N such that for
every k ≥ K, a ∈ Ec(p) and ak ∈ Ec(pk, fk) we have

d(R−1βk ◦Hζ1(a), Hζk1
(a)) ≤ C λk,

and
d(Hζ2(a), Hζk2

(ak)) ≤ C λk + C d(a, ak).
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6 Accessibility

We obtain a continuity property for su-paths under the variation of the
diffeomorphism using the results and techniques in [AV2]. In order to clarify
the presentation we state here the results that we are going to need.

In this section, all the maps will be C1 and we will always consider
the C1-topology. If f is a partially hyperbolic diffeomorphism, we denote
u = dim Eu, s = dim Es.

Recall that given two points x, y ∈M , x is accessible from y if there exist
a C1 path that connects x to y, tangent at every point to Eu ∪ Es. The
equivalence classes defined by this relation are called accessibility classes.
We say that f is accessible if M is the unique accessible class.

One of the main results in [AV2] implies the following Theorem, that we
already mentioned in Section 2.

Theorem 6.1. If f is a partially hyperbolic accessible diffeomorphism and
the center bundle Ec is 2-dimensional, then f is stably accessible.

In the sequel, we state the principal results in [AV2] which will allow us
to explain the proof of Theorem 6.1 and prove the main results in this Sec-
tion. The next Theorem provides a kind of parametrization for accessibility
classes.

Theorem 6.2. For every partially hyperbolic diffeomorphism f : M −→M ,
there exist k ≥ 1, a neighborhood of f , V(f), and a sequence Pl : V(f) ×
M × Rk(u+s)l −→ M of continuous maps such that, for every (g, z, v) ∈
V(f)×M × Rk(u+s)l,

(a) Pm(g, Pl(g, z, v), w) = Pm+l(g, z, (v, w)) for every w ∈ Rk(u+s)m;

(b) ξ 7→ Pl(g, ξ, v) is a homeomorphism from M to M and Pl(g, ∗, 0) = id;

(c)
⋃
l≥0 Pl({(g, z)} × Rk(u+s)l) is the g-accessibility class of z.

Using this Theorem, Avila and Viana introduce a class of paths, called
deformation paths, contained in accessibility classes and having a useful
property of persistence under the variation of the diffeomorphism and the
base point. More precisely,

Definition 6.3. A deformation path based on (f, z) is a map γ : [0, 1] −→M
such that there exist l ≥ 1 and a continuous map Γ 7→ Rk(u+s)l satisfying
γ(t) = Pl(f, z,Γ(t)).

The continuity of the sequence of maps Pl given by Theorem 6.2 implies
the following Corollary.
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Corollary 6.4. If γ is a deformation path based on (f, z), then for every
g close to f and any w close to z, there exists a deformation path based on
(g, w) that is uniformly close to γ.

The main technical step in the proof of Theorem 6.1 is a result of ap-
proximation of general paths in accessibility classes by the deformation paths
defined above. We state a simpler version of this result that is sufficient for
our purposes.

Theorem 6.5. If f is accessible, then for every z ∈M the set of deforma-
tion paths based on (f, z) is dense on C0([0, 1],M).

The final ingredient is what it is called Intersection Property, and it is
in this result where the hypothesis of dim Ec = 2 is necessary.

Theorem 6.6 (Intersection Property). Let f be a partially hyperbolic diffeo-
morphism with 2-dimensional center. Let D be a 2-dimensional disk trans-
verse to Es ⊕ Eu and ηu, ηs be smooth paths in D intersecting transversely
at some point. Then, for every C1 diffeomorphism g close to f and any
continuous paths γu, γs uniformly close to ηu, ηs, there are points xu, xs in
the images of γu, γs such that W u(xu, g) intersects W s(xs, g).

The proof of the Intersection Property follows by considering a local
change of coordinates near the transverse intersection of ηu and ηs and
applying the following Lemma.

Lemma 6.7. Let d = u + 2 + s. There exist ε > 0 with the following
property. Let W u and W s be foliations with C1 leaves in Rd, tangent to
continuous distributions Eu and Es of u and s-dimensional planes. Assume
that Eux is ε-close to Ru×{02+s} and Esx is ε-close to {0u+2}×Rs for every
x in the unit ball Bd of Rd. Let γu, γs : [−1, 1] −→ Rd be continuous paths
ε-close to the paths ηu, ηs : [−1, 1] −→ Rd given by ηu(t) = (0, t, 0, 0) and
ηs(t) = (0, 0, t, 0). Then there exist tu, ts ∈ (−1, 1) such that W u(γu(tu))
intersects W s(γs(ts)).

Proof. Let ρu(t) = γu(t)− ηu(t) and ρ̂u be a continuous extension to R with
compact support. Let φu be the only continuous map φu : [−1/4, 1/4]u+1 −→
R2+s such that φu(0, t) = 0 and x 7→ (x, φu(x, t)) + γu(t) is a C1 map from
[−1/4, 1/4]u to W u(γu(t)), for every t ∈ [−1/4, 1/4]. Let φ̂u be a continuous
extension of φu to Ru+1 with compact support. Define for (x, t) ∈ Ru+1,

Φu(x, t) = (x, φ̂u(x, t)) + ηu(t) + ρ̂u(t).

This map admits a continuous extension

Φu : Su × S1 −→ Su × S1 × S1 × Ss
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and by the hypotheses if ε is small enough, Φ is homotopic to the map
(x, t) 7→ (x, t, 0, 0). Analogously for γs and W s we obtain Φs homotopic
to the map (t, x) 7→ (0, 0, t, x). Then the intersection number of Φu and
Φs is 1 and this implies that exist (xu, tu, ts, xs) such that Φu(xu, tu) =
Φs(ts, xs). Again if ε is small enough we can suppose that (xu, tu, ts, xs) ∈
[−1/4, 1/4]d. Then, by the definition of Φu and Φs we conclude the proof of
the Lemma.

Let us see how the above mentioned results conclude the proof of Theo-
rem 6.1.

Proof. Let f be a partially hyperbolic accessible diffeomorphism. It
suffices to prove that for every x, y ∈ M there exist a neighborhood of f ,
V(f), and a neighborhood of y, U(y), such that for every g ∈ V(f) and
z ∈ U(y), z is in the g-accessibility class of x.

Fix a small 2-disk D, ηu and ηs like in the hypotheses of Theorem 6.6.
By Theorem 6.5, there exists a deformation path based on (f, x) which is
uniformly close to ηu and there exist a deformation path based on (f, y)
which is uniformly close to ηs. Then, by Corollary 6.4, for each g close
enough to f and z close enough to y, there exists

(a) a deformation path γu based on (g, x) which is still close to ηu and

(b) a deformation path γs based on (g, z) which is still close to ηs.

Applying Theorem 6.6, we find points xu, xs in the images of γu, γs such
that W u

g (xu) intersects W s
g (xs). Since, xu is in the g-accessibility class of x

and xs is in the g-accessibility class of z, the conclusion follows.

By Theorem 6.1 we have that for every f accessible and x, y ∈ M , if g
close enough to f , then there exist some su-path for g from x to y. Moreover,
the proof gives more information, it provides a way to find the su-path for
g. The following results uses that information to prove relations between
the su-paths for f and for g. More precisely, we prove a relation between
su-paths for f and for a sequence fk → f .

Proposition 6.8. Let f be a partially hyperbolic accessible diffeomorphism
with 2-dimensional center bundle. For every x, y ∈M , yk → y and every se-
quence fk → f in the C1-topology, there exist a subsequence kj, su-paths for
fkj denoted by ζkj and a su-path for f denoted by ζ satisfying the following:

(a) ζkj = [zj0, ..., z
j
n] joins x to ykj ,

(b) ζ = [z0, ..., zn] joins x to y and
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(c) for every ε > 0 there exist K ∈ N such that for every kj ≥ K,

dist(zi, z
j
i ) < ε

for every i ∈ [0, ..., n].

Proof. We proceed in the same way that in the proof of Theorem 6.1.

Fix a small 2-disk D, ηu and ηs like in the hypotheses of Theorem 6.6.
By Theorem 6.5, there exists a deformation path based on (f, x) which
is uniformly close to ηu and there exist a deformation path based on (f, y)
which is uniformly close to ηs. Then, by Corollary 6.4, for each k big enough,
there exists

(a) a deformation path γku based on (fk, x) which is still close to ηu and

(b) a deformation path γks based on (fk, yk) which is still close to ηs.

Theorem 6.6 implies that there exist tku, t
k
s ∈ [0, 1] and wk ∈M such that

wk ∈W u(γku(tku), fk) ∩W s(γks (tks), fk).

Then, for every k big enough, we have a su-path for fk, joining x to yk,
denoted by ζk and defined by the nodes of γku(tku), the intersection point wk
and the nodes of γks (tks).

By some change of coordinates, using the notation of Lemma 6.7, we
have functions Φk

u and Φk
s and points xku and xks such that

wk = Φk
u(tku, x

k
u) = Φk

s(x
k
s , t

k
s).

By compactness, there exist a subsequence kj and tu, ts, xu and xs such
that

t
kj
∗ → t∗ and x

kj
∗ → x∗,

for ∗ ∈ {s, u}.

Since fk → f and W s and W u are continuous under the variation of the
diffeomorphism, there exist w ∈M such that

w = Φu(tu, xu) = Φs(xs, ts),

this implies that

w ∈W u(γu(tu), f) ∩W s(γs(ts), f).

Then, denote ζ the su-path for f joining x to y and defined by the nodes
of γu(tu), the intersection point w and the nodes of γs(ts).

Finally, by the construction of the su-paths and, again, Corollary 6.4,
we have that for every ε > 0 the distance between the nodes of ζ and ζkj
are ε-close if kj is big enough.

35



Moreover, the su-paths in the above Proposition can be chosen in a
uniform way. That is, with a uniform number of legs and a uniform bound
for the distance between the nodes.

Corollary 6.9. Let f be a partially hyperbolic accessible diffeomorphism
with 2-dimensional center bundle. Then, there exist L > 0 and N > 0
such that for every x, y ∈ M , yk → y and every sequence fk → f in the
C1-topology, the su-paths defined by Proposition 6.8 can be taken to have at
most N legs and distance between the nodes bounded by L.

Proof. Observe that in order to prove this Corollary it is sufficient to prove
the following claim.

Claim. Fix η ∈ C0([0, 1],M) and ε > 0. Then, there exist L > 0 and
N > 0 such that for every x ∈ M there exist a deformation path based on
(f, x), denoted γ, which is ε-close to η and satisfies that for every t ∈ [0, 1],
the su-path defined by γ(t) has at most N legs and the distance between the
nodes is bounded by L.

By Theorem 6.5, for every x ∈ M there exist a deformation path based
on (f, x), that is ε-close to η, then the claim follows from the persistence of
the deformations under the variation of the base point and the compactness
of M .

This Corollary, together with Remark 4.3 and Corollary 4.5 give the
following result.

Corollary 6.10. For f ∈ Br
∗(M), there exist C > 0 such that for every

x, y ∈ M , yk → y and every sequence fk → f in the C1-topology, the su-
paths given by Proposition 6.8, ζkj and ζ, can be taken to satisfy the following
estimation for the holonomies defined by them,

d(Hζ(a), Hζkj
(b)) ≤ ψ(kj) + C d(a, b),

where ψ(kj) goes to zero as kj goes to ∞.

Observe that there are analogous estimations for hζ = P(Hζ) and hζkj =

P(Hζkj
). We are going to use this result to prove the main Proposition in

Section 7 and we are going to apply it to the sequence of perturbations
constructed in Section 5 to conclude the proof of Theorem B in Section 8.
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7 Disintegration

Let f ∈ Br
∗(M) and p be a pinching periodic point for f . That is, Dfn0 |Ec(p)

has two real eigenvalues whit different norms, where n0 = per(p).

Then, there exist C1 > 0, θ0 > 0, ρ ∈ (0, 1) and one-dimensional sub-
spaces of Ecp, E1, E2, such that for every F1 and F2 one-dimensional sub-
spaces of Ecp with

max{∠(E1, F1),∠(E2, F2)} < θ0, (10)

and for every j ≥ 0, we have

∠(Df jn0(E1), Df
jn0(F1)) ≤ C1 ρ

j (11)

and
∠(Df−jn0(E2), Df

−jn0(F2)) ≤ C1 ρ
j . (12)

Suppose λc1(f) = λc2(f), then for every P(F )-invariant probability measure,
m, the Invariance Principle gives a disintegration, {mx : x ∈ M} invariant
by holonomies and continuous with the weak∗ topology. The continuity of
mx and the invariance of m implies that P(F (x))∗mx = mf(x) for every
x ∈M .

Then, if a, b ∈ P(Ecp) are defined by a = [E1] and b = [E2], we have

supp mp ⊂ {a, b}.

Fix ε > 0 small enough and consider k0 and the sequence of perturbations
fk defined by Lemma 5.3. Suppose for every k ≥ k0, λ

c
1(fk) = λc2(fk). We

will denote Fk = Dfk|Ec(fk) the center derivative cocycle and P(Fk) its
projectivization. We can suppose that k0 is big enough to have O(p) /∈
Bδk(z) for every k ≥ k0. Then, for any P(Fk)-invariant probability, mk, we
have

supp mk
p ⊂ {a, b}.

For every k ≥ k0 fix some mk. Then, there exist a subsequence kj and a
measure m in P(TM) such that mkj → m in the weak∗ topology. The limit
measure m has the following properties:

(a) supp m ⊂ P(Ec(f)),

(b) m project down to µ,

(c) m is P(F )-invariant.

Denote m
kj
p and mp the element of the disintegration given by the Invariance

Principle at p for mkj and m respectively. We have the following relation.

37



Proposition 7.1. If |suppmp| = 1, then there exist a subsequence of kj,
that we continue to denote kj, and K ∈ N such that

supp mp ⊂ supp m
kj
p ,

for every kj ≥ K.

Proof. Suppose that supp mp = {a}. The case supp mp = {b} is analogous.

Consider C > 0 given by Corollary 6.10 and fix some 0 < δ < d(a, b)/4C.

Define the function σ : M −→ P(V) by σ(x) = (x, supp mx) and the set

Tδ = {(x, v) ∈ P(TM) : (x, v) ∈ Bδ(σ(x))} .

The Invariance Principle implies that the function σ is continuous and there-
fore Tδ is an open set. Moreover, by definition, m(Tδ) = 1. This two prop-
erties implies that

mkj (Tδ) =

∫
m
kj
x (Tδ ∩ P(Ecx(kj)))dµ(x)→ 1.

Then, there exist a subsequence of kj , that we continue to denote kj , x ∈M
and k1 ∈ N such that Tδ ∩ supp m

kj
x 6= ∅ for every kj ≥ k1.

We apply Proposition 6.8 to fkj , x and ykj = p. Then, we have a new
subsequence, that we continue to denote kj , su-paths ζkj for fkj and ζ for
f , all joining x to p. Moreover, they have the property that we can make
the distance between the nodes arbitrarily small, letting kj →∞.

Denote h the holonomy defined by ζ for P(F ) and hkj the holonomy
defined by ζkj for P(Fkj ). By Corollary 6.10, there exist C > 0 and a
function ψ(kj) going to zero as kj →∞, such that for every a′ ∈ P(Ecx) and
every b′ ∈ P(Ecx(fkj )), we have

d(h(a′), hkj (b
′)) < ψ(kj) + C d(a′, b′).

Since the disintegration given by the Invariance Principle is invariant by

holonomies, we have supp mx = h−1(a). Moreover, supp m
kj
x ∩ Tδ 6= ∅ for

every kj ≥ k1, then there exist a′kj ∈ suppm
kj
x with d(a′kj , h

−1(a)) < δ.

Define akj = hkj (a
′
kj

), then akj ∈ supp m
kj
p and for kj big enough,

d(a, akj ) = d(h(h−1(a)), hkj (a
′
kj

)) < ψ(kj) + C d(h−1(a), a′kj ) < d(a, b)/2.

Since suppm
kj
p ⊂ {a, b}, this implies akj = a and finish the proof.
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8 Proof of Theorem B

In the following we recall the statement of Theorem B and give the details
of its proof.

Definition 8.1. Let f be a partially hyperbolic diffeomorphism and p a
periodic point with n0 = per(p). We say that p is a pinching periodic point
if Dfn0 |Ec(p) has two real eigenvalues whit different norms.

Theorem B. Let ∗ ∈ {µ, ω}, f ∈ Br
∗(M) and assume f has a pinching peri-

odic point, then f can be Cr-approximated by volume-preserving (symplectic)
diffeomorphisms whose center Lyapunov exponents are different.

Proof. Let f ∈ Br
∗(M) have a pinching periodic point, p, with n0 = per(p),

and suppose λc1 = λc2. As before, consider F = Df |Ec.

We prove in the previous section that there exist a, b ∈ P(Ecp) such that
for every P(F )-invariant probability, m, the element of the disintegration
given by the Invariance Principle at p satisfies, supp mp ⊂ {a, b}.

Consider the su-path given by Proposition 5.2 and denote z = zl. Fix
ε > 0 small enough and let C0 > 0, k0 ∈ N and fk be defined by Lemma 5.3,
that is,

(a) fk(z) = f(z),

(b) Dfk(z) = Df(z) ◦Aβk with sin βk = C0 δ
r−1
k ε,

(c) fk(x) = f(x) if x /∈ Bδk(z),

(d) fk → f in the C1 topology when k →∞ and

(e) fk ∈ ηr∗(f, ε) with ∗ ∈ {µ, ω}.

Suppose λc1(fk) = λc2(fk) for every k ≥ k0 and denote Fk = Dfk|Eck. Then,
for every k ≥ k0 and any P(Fk)-invariant probability, mk, we have suppmk

p ⊂
{a, b}.

It is enough to prove the Theorem in the following two cases:

(i) ∀ k ≥ k0 there exist a P(Fk)-invariant probability, mk, such that
suppmk

p = {a, b}.

(ii) ∀ P(F )-invariant probability, m, we have |suppmp| = 1.

In order to see this suppose the Theorem is true for both cases. Then,
if we are not in case (i) there exist k′ ∈ N such that fk′ ∈ Br

∗(M), p is
a pinching periodic point for fk′ , λ

c
1(fk′) = λc2(fk′) and fk′ is in case (ii).
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Then, we can find a diffeomorphism ε-close to fk′ and having different center
Lyapunov exponents. This implies, there exists a diffeomorphism having
different center Lyapunov exponents which is 2 ε-close to f which proves
Theorem B.

Since the proof of case (i) and the proof of case (ii) are very similar,
we are going to explain both of them simultaneously. We will need to take
subsequences of fk several times, but in order to simplify the notation we will
continue to denote them as fk. We are also going to use the same symbol to
denote both a nonzero vector in Ecx and the corresponding element of P(Ecx)
for x ∈M .

If we are in case (i), there exist mk satisfying suppmk
p = {a, b}, then we

define m to be the limit of mk as we did in Section 6. If we are in case (ii),
we choose any P(Fk)-invariant measure, mk, define m as the limit of them
and apply Proposition 7.1. From now on, it is understood that, if we are in
the case (ii), we are working with the subsequence given by this Proposition.

Suppose a ∈ suppmp, the other case is analogous. Proposition 5.6 defines
pk = zkn such that dist(p, pk) < C τmk with C > 0 and τ ∈ (0, 1). Then, for
qk = f−n0k

k (pk), there exist L > 0 such that

dist(p, qk) ≤ L−n0kdist(p, pk) ≤ C (L−n0τm)k.

Here m = qαn and we can suppose q in the perturbation was chosen in order
to have this expression going to zero exponentially fast.

Claim. Let θ0 > 0 be the constant for p defined in Equation (10). Then,
there exist k1 ∈ N such that for every k ≥ k1, there exist dk ∈ suppmk

qk
with

d(a, dk) < θ0.

Proof. Since qk → p, we can apply Theorem 6.8 for fk, x = p and yk = qk.
Then, there exist su-paths for fk denoted by ζk joining p to qk and a su-path
for f denoted by ζ joining p to p. Moreover, they satisfy Corollary 6.10.

Denote by h the holonomy defined by ζ for P(F ) and hk the holonomy
defined by ζk for P(Fk).

If we are in case (i), we have to possibilities: h(a) = a or h(a) = b. Then,
define

dk =

{
hk(a) if h(a) = a,

hk(b) if h(a) = b.

Since suppmk
p = {a, b}, in any case we have dk ∈ suppmk

qk
.

If we are in case (ii), then h(a) = a and we define dk = hk(a). Proposition
7.1 implies that dk ∈ suppmk

qk
.
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Then, by Corollary 6.10 there exist ψ(k)→ 0 as k →∞, such that

d(a, dk) ≤ ψ(k).

Therefore, choose k1 big enough such that ψ(k) < θ0.

As before, PE will denote the orthogonal projection to E and πx,y the
parallel transport between x and y.

Define
ak =

[
PEc

p
◦ πqk,p(dk)

]
,

where [∗] denote the class in the projective space, and

ck = P(Fn0
k (qk))(dk).

We have the following consequences:

ak ∈ P(Ecp), ∠(a, ak) < θ0 and ck ∈ supp mk
pk
.

Then, there exist C2 > 0 such that

d(a, ck) = d(P(Fn0k(p))(a),P(Fn0k
k (qk))(dk))

≤ d(P(Fn0k(p))(a),P(Fn0k(p))(ak))

+ d(P(Fn0k
k (p))(ak),P(Fn0k

k (qk))(dk))

≤ C1 ρ
k + Cn0k

2 dist(p, qk)

≤ C1 ρ
k + C (Cn0

2 L−n0τm)k.

(13)

The estimation in the first term is a consequence of Equation (7). Since
m = qαn, we suppose again that q was chosen to have the expression on the
second term going exponentially fast to zero.

If ζ = [z0, ..zn] is the su-path for p given by Propostition 5.2, denote
z = zl,

ζ1 = [z0, ..., z] and ζ2 = [z, ..., zn].

Then, Hζi and hζi denote the holonomies defined by ζi for F and P(F )
respectively, with i ∈ {1, 2}.

To finish the proof we need to consider two different cases. If we are
in case (i), we can have suppmp = {a, b} or suppmp = {a}. If we are
in case (ii), since we are supposing that a ∈ suppmp we only can have
suppmp = {a}. However, we are going to suppose that suppmp = {a, b},
since this case impose more restrictions than the other. We are also going
to suppose that there exist c, d ∈ P(Ecz) such that c = hζ1(a) = hζ2(a) and
d = hζ1(b) = hζ2(b). The other cases are analogous.

41



In the notation of Proposition 5.6 we have

zk = zk pk = zkn,

and su-paths for fk,

ζk1 = [p, ..., zk] and ζk2 = [pk, ..., zk].

Denote Hζki
and hζki

the holonomies defined by ζki for Fk and P(Fk) respec-

tively, with i ∈ {1, 2}.

Define Φk : Eczk(fk) −→ Ecz, by Φk = PEc
z
◦πzk,z. Then, for k big enough

Φk is an isomorphism. By Corollary 5.9 and Equation (13), there exist
C > 0, λ ∈ (0, 1) and K ∈ N such that for every k ≥ K,

(a)
∥∥∥R−1βk (c)− Φk(Hζk1

(a))
∥∥∥ < C λk,

(b)
∥∥∥R−1βk (d)− Φk(Hζk1

(b))
∥∥∥ < C λk and

(c)
∥∥∥c− Φk(Hζk2

(ck))
∥∥∥ < C λk.

Since
λk

sin2 βk
→ 0,

as k → ∞, and Φk is an isomorphism, we have that for k big enough, the
one-dimensional subspaces generated by Hζk1

(a), Hζk1
(b) and Hζk2

(ck) are all
different. In the projective level this means,

hζk1
(a), hζk1

(b) 6= hζk2
(ck).

On the other hand, since supp mk
p ⊂ {a, b}, the invariance by holonomies

given by the Invariance Principle implies

supp mk
zk
⊂ {hζk1 (a), hζk1

(b)}.

Moreover, since ck ∈ supp mk
pk

, then hζk2
(ck) ∈ supp mk

zk
.

We arrive to this contradiction because we were assuming that the In-
variance Principle could be applied for every fk with k ≥ k0, then there
exist k ∈ N such that λc1(fk) 6= λc2(fk), with fk in a ε Cr-neighborhood of f .
Since ε was chosen arbitrarily, this proves Theorem B.
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9 Proof of Theorem A

Theorem A. Let f ∈ Br
ω(M) and assume the set of periodic points of f

is non-empty, then f can be Cr-approximated by non-uniformly hyperbolic
symplectic diffeomorphisms.

The following observations are going to prove that we can reduce the
proof to two cases.

Suppose M is symplectic manifold and dim M = 2d. Given a periodic
point p of a symplectic diffeomorphism f , define the principal eigenvalues
to be those d eigenvalues with norm greater that one or with norm one and
imaginary part greater than zero and the half of the eigenvalues equals to
1 or -1. If the principal eigenvalues are multiplicative independent over the
integers, that is

∏
λpii = 1 with pi ∈ Z implies pi = 0 for every i ∈ {0, ..., d},

we say that p is elementary.

Let f ∈ Br
ω(M) and p a periodic point of f , then by the results in [Rob],

by making a perturbation if necessary, we can suppose that p is elementary.
This implies that the eigenvalues of Dfn0 |Ecp, where n0 = per(p), satisfy
one of the followings:

(i) there exist 0 < ρ < 1 such that the eigenvalues are ρ and ρ−1, or

(ii) there exist x, y ∈ R such that x + iy and x − iy are the eigenvalues,
x2 + y2 = 1 and they are not a root of unity.

We are going to call option (i) the hyperbolic case and option (ii) the elliptic
case. Then, it is sufficient to prove Theorem A under the hypothesis of p
being in one of these cases.

Hyperbolic Case

Fix f ∈ Br
ω(M) and suppose p is a periodic point for f satisfying (i). Then, p

is a pinching periodic point and we can apply Theorem B to find a symplectic
diffeomorphism, g, Cr-arbitrarily close to f , with λc1(g) 6= λc2(g). By the
symmetry of the Lyapunov exponents for symplectic diffeomorphisms, we
have that they are non-zero and therefore we proved Theorem A in this
case.

Elliptic Case

We are going to use the following result that appear in [N].
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Definition 9.1. We say that a periodic point p of period n0 is quase-elliptic
if there exist 1 ≤ k ≤ d such that Dfn0

p has 2k non-real eigenvalues of norm
one and its remaining eigenvalues have norm different from one.

Theorem 9.2. There exist a residual set R ⊂ Diff rω(M), 1 ≤ r ≤ ∞,
such that if f ∈ R, then each quasi-elliptic periodic point of f is the limit of
transversal homoclinic points.

Fix f ∈ Br
ω(M) and suppose p is a periodic point of f satisfying (ii).

Then, p is a quasi-elliptic periodic point. By Theorem 9.2, we can suppose
that besides of p, there exist q a hyperbolic periodic point of f . At this
point we could apply Theorem B to conclude the proof. However, we are
going to show that the coexistence of hyperbolic and elliptic periodic points
is an obstruction for the Invariance Principle. An argument similar to the
one we give here can be found in Remark 2.9 of [ASV].

Define F = Df |Ec and suppose λc1 = λc2. Then, we can apply the
Invariance Principle for the projective cocycle. Like already mentioned, this
implies that for every P(F )-invariant probability measure, m, there exist a
disintegration {mx : x ∈M} such that P(F (x))∗mx = mf(x).

Since f is accessible, there exist a su-path ζ joining q to p. Let hζ denote
the holonomy defined by ζ for P(F ).

We are going to show that the coexistence of hyperbolic and elliptic
periodic points is an obstruction for the Invariance Principle. An argument
similar to the one we give here can be found in Remark 2.9 of [ASV].

Denote n0 = per(p), l0 = per(q) and, mp and mq the elements of the
disintegration given by the Invariant Principle at p and q for some m. Then,

P(Fn0(p))∗mp = mp, P(F l0(q))∗mq = mq and (hζ)∗mq = mp.

By the second equality and the fact that q is hyperbolic, there exist
two points in P(Ec(q)), a and b, such that suppmq ⊂ {a, b}. By the third
equality we have that the support of mp contains at most two points, and
then by the first equality we have that P(Fn0(p)) has a periodic point of
period 1 or 2. This contradicts the fact of p being a elliptic periodic point
satisfying (ii).

Then we have that the center Lyapunov exponents of f must be different
almost everywhere. Then again, by the symmetry property, both center
Lyapunov exponents must be different from zero. This finish the proof of
Theorem A.
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10 Applications

In this section we prove some results using Theorem A. We will construct
examples of partially hyperbolic symplectic diffeomorphism that can be Cr-
approximated by diffeomorphisms in Br

ω(M) having a periodic point. Then,
by Theorem A, we will be able to approximate these examples by non-
uniformly hyperbolic systems.

Let r ≥ 2. Remember, Br
ω(M) is the subset of PHr

ω(M) where f is
accessible, α-pinched and α-bunched for some α > 0, and the center bundle
Ec is 2-dimensional.

Theorem A. Let f ∈ Br
ω(M) and assume the set of periodic points of f

is non-empty, then f can be Cr-approximated by non-uniformly hyperbolic
symplectic diffeomorphisms.

For d ≥ 1, let T2d denote the 2d-torus.

Corollary 1. Let f : T2d −→ T2d be a Cr Anosov symplectic diffeomor-
phism and g : T2 −→ T2 a symplectic linear map with eigenvalues of norm
one. Then, f × g can be Cr-approximated by non-uniformly hyperbolic dif-
feomorphisms.

Corollary 2. Let g : T2 −→ T2 be a Cr symplectic diffeomorphism. Then,
for every d ≥ 1 there exist f : T2d −→ T2d a Cr Anosov symplectic diffeo-
morphism such that f × g can be Cr-approximated by non-uniformly hyper-
bolic diffeomorphisms.

Since the arguments are the same, we are going to discuss the two proofs
together.

In the first Corollary, f ×g is a partially hyperbolic diffeomorphism that
is α-pinched and α-bunched for some α > 0. In the second one, we can find
f : T2d −→ T2d Anosov such that f × g has the same properties. Moreover,
we can suppose that f × g has a periodic point in both cases. For this, we
may have to perturb g in the second case if necessary.

The results in [SW2] imply that for every ε > 0, there exist a partially
hyperbolic accessible diffeomorphism h that is ε-close to f × g in the Cr-
topology. Moreover, we can suppose that h coincides with f × g in the orbit
of some periodic point and therefore has a periodic point.

If ε is small enough we have h ∈ Br
ω(M). Then, we can apply Theorem

A to Cr-approximate h by non-uniformly hyperbolic diffeomorphisms. This
finish the proof.

Let λ be a real parameter. The standard map gλ of the 2-torus is defined
by

gλ(z, w) = (z + w,w + λ sin(2π(z + w))),
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and it preserves the symplectic form in T2. By KAM theory, for all values
of λ near zero, gλ has a positive measure set of invariant circles. More-
over, there exist a neighborhood of gλ such that any diffeomorphisms in
this neighborhood has a positive measure subset where both Lyapunov ex-
ponents are zero. However, if we add some transverse hyperbolicity we are
able to remove the zero Lyapunov exponents.

Let f : T2d −→ T2d be a Cr Anosov symplectic diffeomorphism.

Corollary 3. If λ is close enough to zero, f × gλ can be Cr-approximated
by non-uniformly hyperbolic diffeomorphisms.

Proof. The argument is the same as before, we need to prove that f × gλ
can be approximated by diffeomorphisms in Br

ω(M) having a periodic point.
The only observation we need to make is that f × gλ is α-pinched and α-
bunched for λ close to zero because f × g0 is. The rest of the proof follows
using [SW2] and Theorem A.
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206 (1992), no. 754, 4, 311-344. Séminaire Bourbaki, Vol. 1991/1992.

49


