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Abstract

In this article we combine the projective Landweber method, recently proposed
by the authors, with Kaczmarz’s method for solving systems of non-linear ill-posed
equations. The underlying assumption used in this work is the tangential cone
condition. We show that the proposed iteration is a convergent regularization
method. Numerical tests are presented for a non-linear inverse problem related to
the Dirichlet-to-Neumann map, indicating a superior performance of the proposed
method when compared with other well established iterations. Our preliminary
investigation indicates that the resulting iteration is a promising alternative for
computing stable solutions of large scale systems of nonlinear ill-posed equations.
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1 Introduction

The classical Kaczmarz iteration consisting of cyclic orthogonal projections was devised
in 1937 by the Polish mathematician Stefan Kaczmarz for solving (large scale) systems
of linear equations [17]. Since then, this method was successfully used for solving ill-
posed linear systems related to several relevant applications, e.g. X-ray Tomography1

[15, 16, 26, 27, 28, 29] and Signal Processing [6, 31, 37].
In this manuscript we couple the projective Landweber (PLW) method [23] with the

Kaczmarz method. The resulting iteration, designated here by projective Landweber-
Kaczmarz (PLWK) method, is a new cyclic type method for obtaining stable approximate
solutions for systems of nonlinear ill-posed equations.

1In the Tomography community, the Kaczmarz method is called “Algebraic Reconstruction Technique”
(ART).
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The inverse problem we are interested in consists of determining an unknown quantity
x ∈ X from the set of data (y0, . . . , yN−1) ∈ Y N , where X, Y are Hilbert spaces and N ≥ 1
(the case yi ∈ Yi with possibly different spaces Y0, . . . , YN−1 can be treated analogously).
In practical situations, the exact data are not known. Instead, only approximate measured
data yδi ∈ Y are available such that

‖yδi − yi‖ ≤ δi , i = 0, . . . , N − 1 , (1)

with δi > 0 (noise level). We use the notation δ := (δ0, . . . , δN−1).
The finite set of data above is obtained by indirect measurements of the parameter

x, this process being described by the model Fi(x) = yi, for i = 0, . . . , N − 1. Here
Fi : Di ⊂ X → Y are ill-posed operators [10] and Di are the corresponding domains
of definition. Summarizing, the abstract functional analytical formulation of the inverse
problems under consideration consists in finding x ∈ X such that

Fi(x) = yδi , i = 0, . . . , N − 1 . (2)

Standard methods for the solution of system (2) are based in the use of Iterative type
regularization [1, 9, 14, 18, 19] or Tikhonov type regularization [9, 25, 33, 35, 36, 32] after
rewriting (2) as a single equation

F(x) = yδ, with F := (F0, . . . , FN−1) :
N−1⋂
i=0

Di → Y N , yδ :=
(
yδ0, . . . , y

δ
N−1

)
. (3)

A classical and general condition commonly used in the convergence analysis of these
methods is the Tangent Cone Condition (TCC) [14]. If one resorts to the functional
analytical formulation (3), one has to face the numerical challenges of solving a large
scale system of ill-posed equations [7]. When applied to (3), the above mentioned solu-
tion methods become inefficient if N is large or the evaluations of Fi(x) and F ′i (x)∗ are
expensive.

An alternative technique for solving system (2) in a stable way is to use Kaczmarz
(cyclic) type regularization methods. This technique was introduced in [13, 11], [8], [12], [3],
[24] and [5] for the Landweber iteration, the Steepest-Descent iteration, the Expectation-
Maximization iteration, the Levenberg-Marquardt iteration, the REGINN-Landweber it-
eration, and the Iteratively Regularized Gauss-Newton iteration respectively.

Our aim is to combine the newly proposed Projective Landweber Method [23] with
the Kaczmarz method. The Projective Landweber Method (PLW) is an iterative type
method for solving (2) when N = 1 and F0 satisfies the TCC. In each iteration k, a half
space separating xk from the solution set is defined and xk+1 is a relaxed projection of xk
onto this set. The resulting iterative method for solving F0(x) = yδ0 can be written in
the form

xδk+1 := xδk − θk λk F
′
0(xδk)

∗(F0(xδk)− yδ0
)
, (4)

where θk ∈ (0, 2) is a relaxation parameter and λk ≥ 0 gives the exact projection of xδk
onto H0,xδk

(see [23, Eq. (8)]). Observe that this iteration is a Landweber iteration with
a stepsize control. In the next paragraph we present a combination of the PLW method
with Kaczmarz method, for solving (2) when N > 1.
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The Projective Landweber Kaczmarz (PLWK) method:

The PLWK method for the solution of (2) proposed in this article consists in coupling
the PLW method (4) with the Kaczmarz (cyclic) strategy and incorporating a bang-bang
parameter, namely

xδk+1 := xδk − θk λk ωk F
′
[k](x

δ
k)
∗(F[k](x

δ
k)− yδ[k]

)
. (5)

Here the parameters θk, λk have the same meaning as in (4) (see (12) for the precise
definition of λk) while

ωk = ωk(δ[k], y
δ
[k]) :=

{
1 ‖F[k](x

δ
k)− yδ[k]‖ > τδ[k]

0 otherwise
, (6)

where τ > 1 is an appropriate chosen positive constant (12) and [k] := (k mod N) ∈
{0, . . . , N − 1}. We also consider PLKWr a “randomized” version of the method (in the
spirit of [34]) where [k] is randomly chosen in {0, . . . , N − 1}.

As usual in Kaczmarz type algorithms, a group of N subsequent steps (starting at some
integer multiple of N) is called a cycle. In the case of noisy data, the iteration terminates
if all ωk become zero within a cycle, i.e., if ‖Fi(xδk+i)− yδi ‖ ≤ τδi, i ∈ {0, . . . , N − 1}, for
some integer multiple k of N .

The PLWK iteration scheme in (5), (6) exhibits the following characteristics:
• For noise free data, ωk = 1 for all k and each cycle consist of exactly N steps of type
(4). Thus, the numerical effort required for the computation of one cycle of PLWK rivals
the effort needed to compute one step of PLW (or LW) for (3).
• In the realistic noisy data case, the bang-bang relaxation parameter ωk will vanish for
some k (especially in the last iterations). Consequently, the computational evaluation of
F ′[k](x

δ
k)
∗ might be avoided, making the PLWK method a fast alternative to conventional

regularization techniques for the single equation approach (3).
• The convergence of the residuals in the maximum norm better exploits the estimates
for the noisy data (1) than the standard regularization methods for (3), where only
N−1

∑N−1
i=0 ‖Fi(xδk)−yδi ‖2 (the squared average of the residuals) falls below a certain thresh-

old. Moreover, the parameter ωk in (6) effects that the iterates xδk in (5) become stationary
in such a way that each residual ‖Fi(xδk) − yδi ‖ in (2) falls below some threshold. This
makes (5) a convergent regularization method in the sense of [9].

Outline of the article:

In Section 2 we state the main assumptions and derive some preliminary results and
estimates. In Section 3 we define the convex sets Hi,x related to the operator equations
in (2) and prove a special separation property of these sets. The PLWK iteration is
described in detail and a stopping criteria is defined (in the noisy data case), which is
proved to be finite. Moreover, the first convergence analysis results are obtained, namely:
monotonicity of the iteration error (Proposition 3.4) and square summability of iteration
steps (18). In Section 4 weak convergence of the PLWK method for exact data is proven.
Moreover, stability and semi-convergence results are presented. Section 5 is devoted
to the investigation of a randomized version of the PLWK method, here denoted by
PLWKr method. In Section 6 we present numerical experiments for a nonlinear parameter
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identification problem related to the Dirichlet-to-Neumann map [23, 3, 11, 22, 21, 4],
while Section 7 is devoted to final remarks and conclusions. In the Appendix a strongly
convergent version of the PLWK method for exact data is analyzed.

2 Main assumptions and auxiliary results

In this section we state our main assumptions and discuss some of their consequences,
which are relevant for the forthcoming analysis. In what follows, we adopt the simplified
notation

Fi,δ(x) := Fi(x)− yδi and Fi,0(x) := Fi(x)− yi . (7)

Throughout this work we make the following assumptions, which are standard in the
recent analysis of iterative regularization methods (cf., e.g., [9, 18, 32]):

A1 Each Fi is a continuous operator defined on D(Fi) ⊂ X, and the domain D :=⋂
i D(Fi) has nonempty interior. Moreover, the initial iterate x0 ∈ D and there

exist constants C, ρ > 0 such that F ′i , the Gateaux derivative of Fi, is defined on
Bρ(x0) ⊂ D and satisfies

‖F ′i (x)‖ ≤ C , x ∈ Bρ(x0) , i = 0, . . . , N − 1 ; (8)

A2 The local tangential cone condition (TCC) [14, 18, 9]

‖Fi(x̄)− Fi(x)− F ′i (x)(x̄− x)‖Y ≤ η‖Fi(x̄)− Fi(x)‖Y , ∀ x, x̄ ∈ Bρ(x0) (9)

holds for some η < 1 and i = 0, . . . , N − 1;

A3 There exists an element x? ∈ Bρ/2(x0) such that Fi(x
?) = yi, for i = 0, . . . , N − 1,

where yi ∈ Rg(Fi) are the exact data satisfying (1);

A4 All operators Fi are continuously Fréchet differentiable on Bρ(x0);

(in A2 – A4 the point x0 ∈ X and the constant ρ > 0 are as in A1).

Observe that in the TCC we require η < 1 (see [23]) whereas in classical convergence
analysis for the nonlinear Landweber under this condition, η < 1/2 is required instead
(see [9, 18]).

The next proposition contains a collection of auxiliary results and estimates that follow
directly from A1 – A3. For a complete proof we refer the reader to [23, Section 2].

Proposition 2.1. If A1 – A3 hold, then for any x, x̄ ∈ Bρ(x0), and i = 0, . . . , N − 1
we have

1. (1− η)‖Fi(x)− Fi(x̄)‖ ≤ ‖F ′i (x)(x− x̄)‖ ≤ (1 + η)‖Fi(x)− Fi(x̄)‖.

2. 〈F ′i (x)∗Fi,0(x), x− x̄〉 ≤ (1 + η)(‖Fi,0(x)‖2 + ‖Fi,0(x)‖‖Fi,0(x̄)‖).

3. 〈F ′i (x)∗Fi,0(x), x− x̄〉 ≥ (1− η)‖Fi,0(x)‖2 − (1 + η)‖Fi,0(x)‖‖Fi,0(x̄)‖.

4. If, additionally, Fi,0(x) 6= 0 then

(1−η)‖Fi,0(x)‖−(1+η)‖Fi,0(x̄)‖ ≤ ‖F ′i (x)∗(x−x̄)‖ ≤ (1+η)(‖Fi,0(x)‖+‖Fi,0(x̄)‖).
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5. Fi,0(x) = 0 if and only if F ′i (x)∗Fi,0(x) = 0.

6. For any (xk) ∈ Bρ(x0) converging to x̄, the following statements are equivalent:

a) lim
k→∞
‖F ′i (xk)∗Fi,0(xk)‖ = 0; b) lim

k→∞
‖Fi,0(xk)‖ = 0; c) Fi,0(x̄) = 0.

7. If x? ∈ Bρ(x0) ∩ F−1
i,0 (y) then ‖yi − yδi − Fi,δ(x)− F ′i (x)(x? − x)‖ ≤ η ‖yi − yδi −

Fi,δ(x)‖.

We conclude this section proving that, under the TCC, the graph of each operator Fi
is weak×strong sequentially closed.

Proposition 2.2. Let A1 – A2 be satisfied and i ∈ {0, . . . , N − 1}. If (xk) in Bρ(x0)
converges weakly to some x̄ in Bρ(x0) and (Fi(xk)) converges strongly to z ∈ Y , then
Fi(x̄) = z.

Proof. It follows from A2 that

η2‖Fi(xk) − Fi(x̄)‖2 ≥ ‖Fi(xk)− Fi(x̄)− F ′i (x̄)(xk − x̄)‖2

= ‖Fi(xk)− Fi(x̄)‖2 + ‖F ′i (x̄)(xk − x̄)‖2 − 2 〈Fi(xk)− Fi(x̄), F ′i (x̄)(xk − x̄)〉
≥ ‖Fi(xk)− Fi(x̄)‖2 − 2 〈Fi(xk)− Fi(x̄), F ′i (x̄)(xk − x̄)〉 .

Consequently,

(1− η2)‖Fi(xk) − Fi(x̄)‖2
Y ≤ 2 〈Fi(xk)− Fi(x̄), F ′i (x̄)(xk − x̄)〉

= 2 〈Fi(xk)− z, F ′i (x̄)(xk − x̄)〉+ 2〈z − Fi(x̄), F ′i (x̄)(xk − x̄)〉
≤ 2 ‖Fi(xk)− z‖C‖xk − x̄‖+ 〈F ′i (x̄)∗[z − Fi(x̄)], xk − x̄〉 (10)

where the second inequality follows from Cauchy-Schwarz inequality and A1. Since
Fi(xk)− z → 0, xk − x̄ ⇀ 0 as k →∞ (and (xk) bounded), both terms on the right hand
side of the last inequality converge to zero. By A2, 0 < η < 1; therefore, Fi(xk)− Fi(x̄)
also converges to zero.

3 The PLWK method

In this section we describe in detail the PLWK method and its relaxed variants. A
stopping index is defined (in the noisy data case). Additionally, preliminary convergence
results are proven, namely: monotonicity of the iteration error, square summability of
the iterative steps norm (in the exact data case) and finiteness of the above mentioned
stopping index (in the noisy data case).

Define, for each x ∈ D and i = 0, . . . , N − 1, the sets

Hi,x :=
{
z ∈ X

∣∣∣ 〈z − x, F ′i (x)∗Fi,δ(x)〉 ≤ −‖Fi,δ(x)‖
(

(1− η) ‖Fi,δ(x)‖ − (1 + η)δi

)}
.

(11)

Notice that Hi,x is either an empty set, a closed half-space, or X. The next lemma contains
a separation result.
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Lemma 3.1 (Separation). Suppose that A1 and A2 hold. If x ∈ Bρ(x0), then for Hi,x

as in (11)

{z ∈ Bρ(x0) | Fi(z) = yi} ⊂ Hi,x.

Moreover, if ‖Fi,δ(x)‖ > (1 + η)(1− η)−1δi then x /∈ Hi,x.

Proof. The first assertion follows from [23, Lemma 4.1] and (11). The second assertion
follows directly from (11).

Remark 3.2. Two facts related to Lemma 3.1 deserve special attention:
• Since ‖Fi,δ(x)‖ > (1 + η)(1 − η)−1δi is sufficient for separation of x from F−1

i (yi) in
Bρ(x0) via Hi,x, this condition also guarantees that F ′i (x)∗Fi,δ(x) 6= 0.
• In the exact data case (i.e., max{δ0, . . . , δN−1} = 0) the definition (11) reduces to
Hi,x := {z ∈ X | 〈z − x, F ′i (x)∗Fi,0(x)〉 ≤ −(1 − η) ‖Fi,0(x)‖2}. Therefore, in this case,
we have strict separation, x /∈ Hi,x whenever Fi(x) 6= yi.

Let

τ > (1 + η)(1− η)−1 , (12a)

pi(t) := t((1− η)t− (1 + η)δi) , (12b)

λk :=


p[k](‖F[k],δ(x

δ
k)‖)

‖F ′[k](x
δ
k)
∗F[k],δ(xδk)‖2

, if F ′[k](x
δ
k)
∗F[k],δ(x

δ
k) 6= 0

0 , otherwise

(12c)

for i ∈ {0, . . . , N − 1} and k ≥ 0.2 The iteration formula of the PLWK method and its
relaxed variants is given by (5), (6) with τ and λk as in (12).

The (exact) PLWK method is obtained by taking θk = 1 in (5), which amounts to
define xδk+1 as the orthogonal projection of xδk onto Hi,xδk

. A relaxed variant of the PLWK

method uses θk ∈ (0, 2) so that xδk+1 is defined as a relaxed projection of xδk onto Hi,xδk
.

The computation of the sequence (xδk) should be stopped at the index kδ∗ ∈ N defined by

kδ∗ := min
{
lN ∈ N | xδlN = xδlN+1 = · · · = xδlN+N

}
, (13)

In what follows bkc denotes the biggest integer less or equal to k (notice that k =
bk/Nc ·N + [k] for all k ∈ N).

Remark 3.3. Concerning the above definition of the stopping index kδ∗:

i) Equivalently, one can define kδ∗ as the smallest multiple of N such that

ωkδ∗ = ωkδ∗+1 = . . . = ωkδ∗+N−1 = 0. (14)

ii) The element xδ
kδ∗

satisfies ‖Fi(xδkδ∗)− y
δ
i ‖ ≤ τδi , i = 0, . . . , N .

iii) For j < kδ∗, there exists at least one index l ∈ {bjc, . . . , bjc + N − 1} with ωl 6= 0.
In other words, in the bjcth-cycle, for (at least) one of the N equations in (2) it holds
‖F[l](x

δ
l )− yδ[l]‖ > τδl.

2Notice that F ′[k](x
δ
k)∗F[k],δ(x

δ
k) 6= 0 iff F[k],δ(x

δ
k) 6= 0; see Proposition 2.1, item 5.
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Notice that, if ‖F[k],δ(x
δ
k)‖ > τδ[k] then ‖F ′[k](x

δ
k)
∗F[k],δ(x

δ
k)‖ 6= 0. This fact follows

from Proposition 2.1 item 3 (choose x̄ = x? and x = xδk), since all Fi,δ also satisfy A1
and A2. Consequently, the sequence (xδk) defined by iteration (5), (6) is well defined for
k = 0, . . . , kδ∗.

The next result estimates the gain in the square of the iteration error ‖x? − xδk‖ for
the PLWK method.

Proposition 3.4. Let assumptions A1 – A3 hold true and θk ∈ (0, 2). If xδk ∈ Bρ(x0)
and ‖F[k],δ(x

δ
k)‖ > τδ[k], then

‖x? − xδk‖2 ≥ ‖x? − xδk+1‖2 + θk(2− θk)

(
p[k](‖F[k],δ(x

δ
k)‖)

‖F ′[k](x
δ
k)
∗F[k],δ(xδk)‖

)2

, (15)

for all x? ∈ Bρ(x0) ∩ F−1
[k] (y) and, in particular, for all x? satisfying A3.

Proof. If xδk ∈ Bρ(x0) and ‖F[k],δ(x
δ
k)‖ > τδ[k], then wk = 1 and xδk+1 is a relaxed orthogo-

nal projection of xδk onto H[k],xδk
with a relaxation factor θk. The conclusion follows from

this fact, the iteration formula (5), and the separation Lemma 3.1 (compare with [23,
Prop. 4.2]).

Proposition 3.4 is an essential tool for proving that (xδk) does not leave the ball Bρ(x0)
for k = 0, . . . , kδ∗. The next theorem guarantees this fact, as well as the finiteness of the
stopping index kδ∗ in the noisy data case (i.e., whenever min{δ0, . . . , δN−1} > 0).

Theorem 3.5. If Assumptions A1 – A3 hold true and θk ∈ (0, 2), then the sequence
(xδk) in (5), (6) (with τ , pi, λk as in (12)) is well defined and

xδk ∈ Bρ/2(x?) ⊂ Bρ(x0) , k = 0, . . . , kδ∗ , (16)

where kδ∗ is the stopping index defined in (13). Moreover, if θk ∈ [a, b] ⊂ (0, 2) for all
k ≤ kδ∗, then kδ∗ = O(δ−2

min), where δmin := min{δ0, . . . , δN−1}.
Additionally, in the particular case of exact data, the sequence (xk) defined by the

PLWK method is well defined, xk ∈ Bρ/2(x?) ⊂ Bρ(x0) for all k ∈ N,

∞∑
k=0

λk ‖F[k],0(xk)‖2 < ∞ (17)

and
∞∑
k=0

‖xk+1 − xk‖2 < ∞. (18)

Proof. The proof of the first statement follows using an inductive argument. Indeed,
xδ0 = x0 obviously satisfies (16). Moreover, if ‖F[k],δ(x

δ
k)‖ ≤ τδ[k] then ωk = 0 and

xδk+1 = xδk. Otherwise, inequality (15), assumption 0 < θk < 2, and A3 imply xδk+1 ∈
Bρ/2(x?) ⊂ Bρ(x0).
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To prove the second statement, first observe that since θk ∈ [a, b], we have θk(2−θk) ≥
a(2− b) > 0. Thus, it follows from Proposition 3.4 that for any k < kδ∗

‖x? − x0‖2 ≥ a(2− b)
k∑
j=0

F[j],δ(x
δ
j )6=0

ωj

(
p[j](‖F[j],δ(x

δ
j)‖)

‖F ′[j](xδj)∗F[j],δ(xδj)‖

)2

≥

≥ a(2− b)
C2

k∑
j=0

F[j],δ(x
δ
j )6=0

ωj

(
p[j](‖F[j],δ(x

δ
j)‖)

‖F[j],δ(xδj)‖

)2

. (19)

Observe that, if t > τδi, then

pi(t)

t
= (1− η)t− (1 + η)δi >

[
τ − 1 + η

1− η

]
(1− η)δi > C̃ δmin,

where C̃ := [(1− η)τ − (1 + η)]. On the other hand, as already observed in Remark 3.3,
item (iii), each cycle l0 with 0 ≤ l0 < bkδ∗/Nc contains at least one index l = l0.N + l1
(with l1 ∈ {0, . . . , N − 1}) such that ‖F[l],δ(x

δ
l )‖ = ‖Fl1,δ(xδl )‖ > τδl1 = τδ[l], i.e., wl = 1.

Therefore, for any k < kδ∗

‖x? − xδ0‖2 ≥ a(2− b)
C2

C̃2 δ2
min bk/Nc,

from were we conclude kδ∗ = O(δ−2
min).

Next we address the statements related to the exact data case. Arguing as in the
first part of the proof, one concludes that the sequence (xk) is well defined and satisfies
xk ∈ Bρ/2(x?) ⊂ Bρ(x0), for all k ≥ 0. In order to prove (17), notice that if the data is
exact then pi(t) = (1− η) t2 for i = 0, . . . , N − 1. Thus, it follows from (19) that

‖x? − x0‖2 ≥ a(2− b)
k∑
j=0

F[j],δ(x
δ
j )6=0

(
p[j](‖F[j],0(xj)‖)
‖F ′[j](xj)∗F[j],0(xj)‖

)2

≥

≥ a(2− b)
k∑
j=0

F[j],δ(x
δ
j ) 6=0

(1− η)λj‖F[j],0(xj)‖2 = a(2− b)(1− η)
k∑
j=0

λj‖F[j],0(xj)‖2,

for all k ∈ N (the identity follows from (6) and (12)), proving (17). Finally, in order to
prove (18) we derive from (4), (6) and (12) the estimate

‖xk+1 − xk‖2 = θ2
k ω

2
k λ

2
k ‖F ′[k](xk)

∗F[k],0(xk)‖2

≤ 4λ2
k ‖F ′[k](xk)

∗F[k],0(xk)‖2 = 4λk ‖F[k],0(xk)‖2.

Therefore, (18) follows from (17).
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4 Convergence analysis

We start by stating and proving a convergence result for the PLWK method in the case of
exact data. Theorem 4.1 gives a sufficient condition for weak convergence of the relaxed
PLWK iteration to some element x̄ ∈ Bρ(x0), which is a solution of (2).

In the Appendix an alternative strong convergence result for the PLWK method is
given (see Theorem A.1). The proof of this result, however, requires a modification in the
definition of the stepsize λk in (12) (for details, please see (23) below).

Theorem 4.1 (Convergence for exact data).
Let assumptions A1 – A3 hold true, δ0 = · · · = δN−1 = 0 and (xk) be defined by the

PLWK method in (5), (6) with τ , pi, λk as in (12). If inf θk > 0 and sup θk < 2, then
(xk) converges weakly to some x̄ ∈ Bρ(x0) solving (2).

Proof. The proof is divided in four main steps:

(i) ‖F[k](xk)− y[k]‖ → 0 as k →∞.
Let Q ⊂ N be the set of indices k such that λk 6= 0. Then, it follows from (17) that3

∞ >
∑
k∈Q

λk ‖F[k],0(xk)‖2

= (1− η)
∑
k∈Q
‖F[k],0(xk)‖4‖F ′[k](xk)

∗F[k],0(xk)‖−2

≥ (1− η)C−2
∑
k∈Q
‖F[k],0(xk)‖2 = (1− η)C−2

∑
k∈N
‖F[k],0(xk)‖2.

To complete the proof of this first step, we use the above inequalities and recall that
Fi,0(x) = Fi(x)− yi.
(ii) Every x̄ weak limit of a subsequence of (xk) satisfy the equations Fi(x̄) = yi.
Suppose that xkj ⇀ x̄. Take i ∈ {0, . . . , N − 1}. In view of the definition of [k], for each
j there exists a k′j such that

[k′j] = i, kj ≤ k′j ≤ kj +N − 1.

Since

‖xkj − xk′j‖ ≤
kj+N−2∑
k=kj

‖xk+1 − xk‖,

it follows from (18) that xk′j ⇀ x̄. It follows from step (i) and the definition of k′j that

that Fi,0(xk′j) → 0. Since Fi satisfies the TCC, it follows from Proposition 2.2 that

Fi(x̄)− yi = 0.

(iii) The sequence (xk) has a unique weak adherent point x̄ and such a point belongs to
the set Bρ(x0).
Since the data is exact, Theorem 3.5 guarantees that (xk) is in Bρ/2(x0). Hence, there
exists a subsequence (xkj) converging weakly to some x̄ ∈ Bρ(x0). Suppose that (xmj)
converges to x̂. By step (ii), Fi(x̄) = yi = Fi(x̂) for i = {0, . . . , N − 1}. It follows from
this result and Proposition 3.4 that

‖x̄− xk+1‖ ≤ ‖x̄− xk‖ , ‖x̂− xk+1‖ ≤ ‖x̂− xk‖ , k = 1, 2, . . .

3Notice that, for exact data λk = 0 iff F[k],0(xk) = 0.
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If x̂ 6= x̄, it follows from the above inequalities and Opial’s Lemma [30] that

lim
k→∞
‖x̄− xk‖ = lim inf

j→∞
‖x̄− xkj‖ < lim inf

j→∞
‖x̄− xmj‖ = lim

j→∞
‖x̄− xk‖

and

lim
k→∞
‖x̂− xk‖ = lim inf

j→∞
‖x̂− xmj‖ < lim inf

j→∞
‖x̂− xkj‖ = lim

j→∞
‖x̂− xk‖ ,

which is an absurd.

(iv) The sequence (xk) converges weakly to x̄.
Since the (xk) ∈ Bρ(x0) is a bounded sequence, this assertion follows from step (iii).

In the next theorem we discuss a stability result, which is an essential tool to prove
the last result of this section, namely Theorem 4.3 (the semi-convergence of the PLW
method). Notice that this is the first time were the strong assumption A4 is needed in
this manuscript.

Theorem 4.2. Let assumptions A1 – A4 hold true. For each fixed k ∈ N, the element
xδk, computed after kth-iterations of the PLWK method (5), depends continuously on the
data yδi .

Proof. From (12), assumptions A1, A4 and Theorem 3.5, it follows that the mappings
ϕi : D(ϕi)→ X with

D(ϕi) :=
{

(x, yδi , δi) | x ∈ D; δi > 0; ‖yδi − yi‖ ≤ δi; F
′
i (x)∗(Fi(x)− yδi ) 6= 0

}
,

ϕi(x, y
δ
i , δi) := x− pi(‖Fi(x)− yδi ‖)

‖F ′i (x)∗(Fi(x)− yδi )‖2
F ′i (x)∗(Fi(x)− yδi )

are continuous on the corresponding domains of definition. Therefore, whenever the iter-
ate xδk =

(
ϕ[k](·, yδ[k], δ[k])

)
◦· · ·◦

(
ϕ0(·, yδ0, δ0)

)
(x0) is well defined,4 it depends continuously

on (yδi , δi)
N−1
i=0 .

Theorem 4.2 together with Theorem 4.1 are the key ingredients in the proof of the
next result, which guarantees that the stopping rule (13) renders the PLWK iteration
a regularization method. The proof of Theorem 4.3 uses classical techniques from the
analysis of Landweber-type iterative regularization techniques (see, e.g., [9, Theor. 11.5]
or [18, Theor. 2.6]) and thus is omitted.

Theorem 4.3 (semi-convergence). Let assumptions A1 – A4 hold true, (δj0, . . . , δ
j
N−1)j →

0 as j →∞, and (yj0, . . . , y
j
N−1) ∈ Y N be given with ‖yji − yi‖ ≤ δji for i ∈ {0, . . . , N − 1}

and j ∈ N. If the PLWK iteration (5) is stopped with kj∗ according to (13), then (xδ
kj∗

)

converges weakly to a solution x̄ ∈ Bρ(x0) of (2) as j →∞.

4This composition is to be understood in a cyclic way.
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5 The randomized PLWK method

In the spirit of [34], we consider a “randomized” version of the PLWK method where in
the q-th cycle k = (q − 1)N, (q − 1)N + 1, . . . , qN − 1,

[(q − 1)N ], [(q − 1)N + 1], . . . , [qN − 1]

is a random permutation of 0, . . . , N − 1. In our numerical tests, the randomized version
of the PLW method performed slightly better than the deterministic version.

All convergence results stated for the “deterministic” PLWK method extend trivially
for the “randomized version” (here called PLWKr), provided the same sequence of random
permutations is considered in Theorems 4.2 and 4.3.

6 Numerical experiments

In this section the PLWK method is implemented for solving an exponentially ill-posed
inverse problem related to the Dirichlet to Neumann map and its performance is com-
pared against the benchmark methods LWK (Landweber-Kaczmarz [13, 11]) and LWKls
(Landweber-Kaczmarz with line search [8]).

6.1 The inverse doping problem

We briefly describe the inverse doping problem considered in [21, 22, 23] with the same
setup used in [23, Section 5.3]. This problem consists in determining the doping profile
function from measurements of the linearized Voltage-Current map.

After several simplifications, the problem becomes to identify the parameter function
γ in the PDE model

− div (γ∇û) = 0 in Ω û = U(x) on ∂Ω (20)

from measurements of the Dirichlet-to-Neumann map

Λγ : H1/2(∂Ω) → H−1/2(∂Ω) ,
U 7→

(
γ?ûν

)
|∂Ω

where γ? is the exact coefficient to be determined. Only a finite number N of measure-
ments is available, i.e., one knows{

(Ui,Λγ?(Ui))
}N−1

i=0
∈
[
H1/2(∂Ω)×H−1/2(∂Ω)

]N
.

Moreover, γ? is assumed to be known at ∂Ω, the boundary of the domain Ω ⊂ R2 repre-
senting the semi-conductor device [4].

In [23, Section 5.3] this inverse problem was addressed for N = 1 (i.e., parameter iden-
tification from a single experiment). Here the more general setting N ≥ 1 is considered,
which can be written within the abstract framework of (2) with

Fi(γ) = Λγ(Ui), yi = Λγ?(Ui) , i = 0, . . . , N − 1 , (21)
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where Ui ∈ H1/2(∂Ω) are fixed Dirichlet boundary conditions (representing the voltage
profiles for the experiments), Y := H1/2(∂Ω) and X := L2(Ω) ⊃ Di := {γ ∈ L∞(Ω);
0 < γm ≤ γ(x) ≤ γM , a.e. in Ω}.

The operators Fi : H1(Ω) 3 γ 7→ Λγ(Ui) ∈ H−1/2(∂Ω) in (21) are continuous maps
[4]. Up to now, it is not known whether the Fi’s satisfy the TCC (9). However, in
[20] it was established that the discretization of each Fi in (21), using the finite element
method, does satisfy the TCC. Furthermore, for each fixed U = Ui in (20), the map
H1(Ω) 3 γ 7→ û ∈ H1(Ω) satisfies the TCC with respect to the H1(Ω) norm [18]. Due
to these considerations, the analytical convergence results of Sections 3 and 4 do apply
to finite-element discretizations of (21) in this particular setting. Moreover, H1(Ω) is a
natural choice of parameter space for the PLW and PLWK methods.

6.2 Setup of the numerical experiments

The setup of the numerical experiments presented in this section is as follows:

• The domain Ω ⊂ R2 for the elliptic PDE model (20) is the unit square (0, 1) × (0, 1)
and the parameter space for the above described inverse problem is H1(Ω).

• The “exact solution” γ? ∈ Di ⊂ H1(Ω) of system (21) is shown in Figure 1 (Top).

• The number of available experiments is N = 12 and the Dirichlet boundary conditions
used in (20) are the continuous functions Ui : ∂Ω→ R, i = 0, . . . , N − 1, defined by

U2i = sin(s(t)(i+ 1)π/2), U2i+1 = cos(s(t)(i+ 1)π/2) (22)

where s(t) is the length of the counterclockwise oriented arc along ∂Ω, connecting (0, 0)
to t, that is

s(t) =


x, t = (x, 0), 0 ≤ x < 1

1 + y, t = (1, y), 0 ≤ y < 1

3− x, t = (x, 1), 0 < x ≤ 1

4− y, t = (0, y), 0 < y ≤ 1

In Figure 1 (Center) two distinct voltage profiles Ui(x) are plotted, together with the
corresponding solutions of (20).

• The TCC constant η in (9) is not known for this particular setup. In our computations
we used the value η = 0.45, which is in agreement with assumption A2 as well as with
[14, Eq. (1.5)].

• The “exact data” yi in (21) is obtained by solving the direct problem (20) (with γ = γ?

and U = Ui) using a finite element type method and adaptive mesh refinement (mesh
with approx 131.000 elements). In order to avoid inverse crimes, a coarser uniform mesh
(with ca. 33.000 elements) was used in the implementation of the finite element method,
employed for solving the PDE’s related to the iterative methods tested.

• The choice of the initial guess γ0 is a critical issue. According to assumptions A1 –
A3, γ0 has to be sufficiently close to γ?, otherwise the convergence analysis developed
previously does not apply. As explained in [23, Remark 5.1] we choose γ0 as the solution
the Dirichlet boundary value problem ∆γ0 = 0 in Ω, γ0 = γ? at ∂Ω.

• In the numerical experiment with noisy data, artificially generated (random) noise of 2%
was added to the exact data yi in order to generate the noisy data yδi . For the verification
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of the stopping rule (13) we assumed exact knowledge of the noise level and chose τ = 3
in (12), which is in agreement with the above choice for η.

• The computation of the adjoints F ′i,δ(γ)∗, for i = 0, . . . , N−1, is done using the H1-inner
product, as developed in [23, Remark 5.2].

6.3 Experiments for exact data and noisy data

In our numerical experiments, we implement four different Landweber-Kaczmarz type
methods for solving the ill-posed system (21), namely,

LWK Landweber-Kaczmarz method [13, 11];

LWKls Landweber-Kaczmarz method with line-search [8];

PLWK Projective Landweber-Kaczmarz method, as developed in Section 3;

PLWKr randomized Projective Landweber-Kaczmarz method, as developed in Section 5;

In order to compare the performance of these methods, the iteration error as well as
the residual are computed at the end of each cycle, i.e., our plots describe the quantities

‖γkN − γ?‖H1(Ω) and
N−1∑
i=0

‖Fi(γkN)− yi‖L2(∂Ω) , k = 0, 1, 2, . . .

(here k is an index for cycles).
For solving the elliptic PDE’s, needed for the implementation of the iterative methods,

we used the package PLTMG [2] compiled with GFORTRAN-4.8 in a INTEL(R) Xeon(R)
CPU E5-1650 v3.

Evolution of iteration error and evolution of residual in the exact data case are shown
in Figure 2. The PLWK method (GREEN) is compared with the LWK method (BLUE),
with the LWK method using line-search (LWKls, RED) and with the randomized PLWK
method (PLWKr, LIGHT-BLUE).

Evolution of iteration error and evolution of residual in the noisy data case are shown
in Figure 3. The PLWK method (GREEN) is compared with the LWK method (BLUE),
with the LWK method using line-search (LWKls, RED) and with the randomized PLWK
method (PLWKr, LIGHT-BLUE). The stop criteria (13) is reached after 29 steps for the
PLWK iteration, 42 steps for the LWKls iteration, 22 steps for the PLWKr iteration, and
74 steps for the LWK iteration.

Altogether, the PLWK and PLWKr outperformed the other methods in our prelim-
inary numerical experiments. It is worth mentioning that the LWKls, due to the line
search, demands in each iteration the solution of three PDE’s, while the other methods
require the solution of two PDE’s per iteration. In the noisy data case, very soon many
residuals drop bellow the threshold in each cycle, and, in the corresponding iterations,
only one PDE has to be solved (see Figure 3).
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7 Final remarks and conclusions

In this article we combine the projective Landweber method [23] with Kaczmarz’s method
[17] for solving systems of non-linear ill-posed equations.

The underlying assumption used in convergence analysis presented in this manuscript
is the tangential cone condition (9). Notice that the convergence analysis of the PLWK
method requires η < 1 while the LWK method requires the TCC with η < 0.5 [13].

The numerical experiments depicted in Figure 3 indicate that, in the noisy data case,
the bang-bang relaxation parameter ωk in (6) vanishes for several k (already after the
first iterations; see Figure 3 Bottom). Consequently, the computational evaluation of the
adjoint F ′[k](x

δ
k)
∗ is avoided, making the PLWK and PLWKr methods a fast alternative to

conventional regularization techniques for solving (3) (single equation approach).
The truncation technique used in the Appendix is analogous to the one proposed in

[8] to prove a similar result for a steepest-descent type method. The role played by this
truncation is merely to provide a sufficient condition for proving strong convergence of
the PLWK method. In the realistic noisy data case, this truncation does not modify the
original PLWK method introduced in Section 3, whenever the constant λmax is chosen
large enough.

The PLWK and PLWKr methods have proven to be efficient alternatives to the LWK
and LWKls methods for solving ill-posed systems. Comparison with Newton type methods
will be the subject of future work.

Appendix: Strong convergence for exact data

In what follows we consider the PLWK iteration in (5) with ωk defined as in (6), and τ ,
pi defined as in (12). However, differently from (12), λk is now defined by

λk := Λ
( p[k](‖F[k],δ(x

δ
k)‖)

‖F ′[k](x
δ
k)
∗F[k],δ(xδk)‖2

)
, if F ′[k](x

δ
k)
∗F[k],δ(x

δ
k) 6= 0, λk := 0, otherwise. (23)

Here Λ : R+ → R is a truncation function satisfying Λ(t) = min{t, λmax} for t ≥ 0, where
λmax > (1− η)C−2 is some positive constant.

In the exact data case we have

pi(t) := (1− η) t2, i ∈ {0, . . . , N − 1} and ωk :=

{
1 F[k],0(xk) 6= 0

0 otherwise
, k ∈ N.

Moreover, we have either λk = 0 (whenever F[k],0(xk) = 0) or

λk := min
{ (1− η)‖F[k],0(xk)‖2

‖F ′[k](xk)
∗F[k],0(xk)‖2

, λmax

}
>

(1− η)

C2
=: λmin. (24)

The inequality in (24) follows from the fact that xk ∈ Bρ(x0) for k ≥ 0, together with
assumption A1 (notice that both Proposition 3.4 and Theorem 3.5 remain valid for PLWK
with the new definition of λk in (23)).

In the next theorem we use this setup to prove a strong convergence result for the
PLWK iteration in the case of exact data. The truncation function Λ is essential for
obtaining the estimate (28).
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Theorem A.1 (Strong convergence for exact data).
Let assumptions A1 – A3 hold true, δ0 = · · · = δN−1 = 0 and (xk) be defined by the

PLWK method in (5), (6) with λk defined as in (23). If inf θk > 0 and sup θk < 2,
then (xk) converges strongly to some x̄ ∈ Bρ(x0) solving (2).

Proof. We define ek := x?− xk. Since we have exact data, it follows from Proposition 3.4
that ‖ek‖ is monotone non-increasing. Thus, ‖ek‖ converges to some ε ≥ 0. In the
following we show that the sequence (ek) is a Cauchy sequence. In order to prove this
fact, it suffices to show that

|〈el − ek, el〉| → 0 and |〈el − ej, el〉| → 0 (25)

as k, j → ∞, where k ≤ j and l ∈ {k, . . . , j} (see, e.g., [14, Theorem 2.3] for the
Landweber method or [13, Theorem 2.3] for the LWK method).

Let k ≤ j be arbitrary. Define k0 := bk/Nc, j0 := bj/Nc and k1 := [k], j1 := [j].
Consequently, k = k0N + k1, j = j0N + j1. Now, choose l0 ∈ {k0, . . . , j0} such that

N−1∑
n=0

‖Fn,0(xl0N+n)‖ ≤
N−1∑
n=0

‖Fn,0(xi0N+n)‖ (26)

for all i0 ∈ {k0, . . . , j0}, and set l := l0N +N − 1. Therefore,

|〈el − ej, el〉| =
∣∣∣ j−1∑
i=l

〈(xi+1 − xi), (x? − xl)〉
∣∣∣ =

∣∣∣ j−1∑
i=l

θi λi 〈y[i] − F[i](xi), F
′
[i](xi)(x

? − xl)〉
∣∣∣

≤
j−1∑
i=l

θi λi ‖F[i],0(xi)‖ ‖F ′[i](xi)(x? − xi) + F ′[i](xi)(xi − xl)‖

≤ 2
j−1∑
i=l

λi ‖F[i],0(xi)‖ (1 + η)
[
‖F[i](x

?)− F[i](xi)‖ + ‖F[i](xi)− F[i](xl)‖
]

= 2 (1 + η)
j−1∑
i=l

λi ‖F[i],0(xi)‖
[
‖F[i],0(xi)‖+ ‖F[i](xi)− y[i] + y[i] − F[i](xl)‖

]
≤ 2 (1 + η)

j−1∑
i=l

λi ‖F[i],0(xi)‖
[
2‖F[i],0(xi)‖ + ‖F[i](xl)− y[i]‖

]
= 4 (1 + η)

j−1∑
i=l

λi ‖F[i],0(xi)‖2 + 2 (1 + η)
j−1∑
i=l

λi ‖F[i],0(xi)‖ ‖F[i],0(xl)‖ (27)

(in the second inequality we used Proposition 2.1, item 1). Next we estimate the term
‖F[i],0(xl)‖ on the right hand side of (27) (to simplify the notation we write i = i0N + i1,
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with ii ∈ {0, . . . , N − 1}).

‖F[i],0(xl)‖ = ‖F[i](xl)− y[i]‖ = ‖Fi1(xl0N+N−1)− yi1‖ ≤

≤ ‖Fi1(xl0N+i1)− yi1‖ +
N−2∑
n=i1

‖Fi1(xl0N+n+1)− Fi1(xl0N+n)‖

≤ ‖Fi1,0(xl0N+i1)‖ +
1

(1− η)

N−2∑
n=i1

‖F ′i1(xl0N+n)(xl0N+n+1 − xl0N+n)‖

≤ ‖Fi1,0(xl0N+i1)‖ +
C

(1− η)

N−2∑
n=i1

‖xl0N+n+1 − xl0N+n‖

≤ ‖Fi1,0(xl0N+i1)‖ +
C

(1− η)

N−2∑
n=i1

θl0N+n λl0N+n ‖F ′n(xl0N+n)∗Fn,0(xl0N+n)‖

≤ ‖Fi1,0(xl0N+i1)‖ +
2C2

(1− η)

N−2∑
n=i1

λmax ‖Fn,0(xl0N+n)‖

≤ C̃
N−2∑
n=i1

‖Fn,0(xl0N+n)‖ ≤ C̃
N−1∑
n=0

‖Fn,0(xl0N+n)‖ (28)

(the second inequality follows from Proposition 2.1, item 1). Here C̃ =
[
2(1 − η) +

4C2λmax
]

(1−η)−1. Using (28) we estimate the second sum on the right hand side of (27)
(once again we adopt the notation i = i0N + i1).

j−1∑
i=l

λi ‖F[i],0(xi)‖ ‖F[i],0(xl)‖ ≤
j0∑

i0=l0

N−1∑
i1=0

λi ‖Fi1,0(xi)‖ ‖Fi1,0(xl)‖

≤
j0∑

i0=l0

[ N−1∑
i1=0

λi ‖Fi1,0(xi)‖
(
C̃

N−1∑
n=0

‖Fn,0(xl0N+n)‖
)]

≤ C̃ λmax
j0∑

i0=l0

(N−1∑
i1=0

‖Fi1,0(xi0N+i1)‖
)(N−1∑

n=0

‖Fn,0(xl0N+n)‖
)

≤ C̃ λmax
j0∑

i0=l0

(N−1∑
i1=0

‖Fi1,0(xi0N+i1)‖
)2

≤ C̃ λmax
j0∑

i0=l0

N
N−1∑
i1=0

‖Fi1,0(xi0N+i1)‖2

= C̃ N λmax
j0N+N−1∑

i=l0

‖F[i],0(xi)‖2, (29)

where the third inequality follows from (26). Substituting (29) in (27) we obtain

|〈el − ej, el〉| ≤ 4(1 + η)λmax
j−1∑
i=l

‖F[i],0(xi)‖2 + 2(1 + η)C̃Nλmax
j0N+N−1∑

i=l0

‖F[i],0(xi)‖2

≤ ˜̃
C

∞∑
i=l0

λi ‖F[i],0(xi)‖2,

where
˜̃
C = 2λmax (1 + η) [2 + C̃N ]λ−1

min (in the last inequality we used (24)).
From (17) and the definition of the index l ∈ {k, . . . , j} it follows that, given ε > 0

there exists some Nε ∈ N such that |〈el − ej, el〉| ≤ ε/2 for k, j ≥ Nε. Analogously, one
shows that |〈el − ek, el〉| ≤ ε for k, j ≥ Nε. This is sufficient to guarantee (25).
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Consequently, xk = x? − ek converges to some x̄ ∈ Bρ(x0). Since, due to (17), the
residuals ‖F[k],0(xk)‖ converge to zero as k →∞, we conclude that x̄ is a solution of (2),
completing the proof.
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Figure 1: Setup of the inverse doping problem. Top: Parameter function γ∗ to be
identified; Center: Functions U1 and U6 (the Dirichlet boundary conditions at ∂Ω for
(20)) and the solutions û2, û6 of the corresponding PDE’s; Bottom: Initial guess γ0 for
the iterative methods PLWK, LWK and LWKls.
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Figure 2: Experiment with exact data. The PLW method (GREEN) is compared with the
LW method (BLUE) and with the LWls method (RED). Top: Evolution of the iteration
error ‖γkN − γ?‖H1(Ω); Bottom: Evolution of the residual

∑N−1
i=0 ‖Fi(γkN)− yi‖L2(∂Ω).
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Figure 3: Experiment with noisy data. The PLW method (GREEN) is compared with the
LW method (BLUE), the LWls method (RED) and the PLW-random method (LIGHT-
BLUE). Top: Evolution of the iteration error; Center: Evolution of the residual Bot-
tom: Number of computed iterative steps per cycle.
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