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Abstract

In this thesis we study the space of lines and conics on special varieties, and we apply
this study to address relevant problems concerning the geometry of Fano varieties. In the
first part of this thesis we study general codimension 2 linear sections of the Grassmannians
G(1, 4) and G(1, 5) (in the Plücker embedding). We give a description of their spaces of
lines passing through any given point. As an application we show that these Fano manifolds
are not weakly 2-Fano, completing the classification of weakly 2-Fano manifolds of high
index, initiated by Araujo and Castravet. In the second part, we study conic-connected
manifolds. We prove that the spaceWx,y of conics on a conic-connected manifoldX passing
through two general points x, y ∈ X is smooth, and we define a natural polarization on
this space. Relating this study with the study of minimal pointed rational curves by de
Jong and Starr, we give a formula for the canonical bundle of Wx,y in terms of the second
Chern character of X and the first Chern class of our polarization. We conclude that Wx,y

is Fano if X is weakly 2-Fano.
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Chapter 1

Introduction

Rational curves of low degree on projective varieties is one of the oldest subjects in
Algebraic Geometry. It goes back to the nineteenth century with the study of lines on
hypersurfaces in the projective space. For example, in 1849 A. Cayley presented in [Cay49]
G. Salmon’s proof that a general cubic surface contains 27 lines. In the same year, Salmon
generalized this fact for any smooth cubic surface. In 1904, G. Fano presented his work
[Fan04] on the variety of lines on a general complex cubic hypersurface of dimension 3.

In this thesis we study the space of lines and conics on special varieties, and we apply
this study to address relevant problems concerning the geometry of Fano varieties. A
smooth complex projective variety X is called Fano if it has ample anti-canonical class,
−KX > 0. Fano varieties play a major role in birational geometry. For example, from
the point of view of the Minimal Model Program they are one of the building blocks of
all complex projective varieties (together with the varieties X with KX = 0, and KX > 0).

Many Fano varieties are covered by lines. This is the case for those with high index.
The index of a Fano variety X is the largest natural number iX such that −KX = iXH,
for some Cartier divisor H. For Fano varieties X covered by lines the study of the variety
Hx of lines on X passing through a general point x ∈ X has shown to be a powerful
tool for the study of X. This was very much recognized after the work [Mor79] of S.
Mori, with a systematized study of Hx. In some cases it is important to know Hx for all
points x ∈ X, not just general points. The first result of this thesis is a description of
Hx for every x in two linear sections of Grassmannians. Let X be a general codimension
2 linear section (in the Plücker embedding) of G(1, 4) or G(1, 5). First, we prove that
the automorphism group of X acts with finitely many orbits and in each case there are
4 orbits. Then we identify the space of lines passing through points in each orbit. For
G(1, 4), the possibilities are the twisted cubic, the union of a line and a conic, the union
of 3 lines, and the union of a double line and a line (see Theorem 3.3.1 for details). For
G(1, 5), the possibilities are the quartic scroll S2,2, the quartic scroll S1,3, the union of a
cubic scroll and a plane, and the union of a quadric surface and two planes (see Theorem
3.3.2 for details). The main motivation for this work is that these varieties occur in the
classification of Fano manifolds of dimension n and index i ≥ n − 2. As a consequence,
we complete the Araujo-Castravet classification of weakly 2-Fano manifolds of high index,
showing that the codimension two linear sections of G(1, 4) and G(1, 5) are not weakly
2-Fano (see Corollary 3.4.1 for details). A Fano variety X is called weakly 2-Fano if it has
non-negative second Chern character, ch2(X) ≥ 0.

1



2 CHAPTER 1. INTRODUCTION

Next we investigate another special class of Fano varieties, namely conic-connected
varieties. An embedded smooth variety X ⊂ PN is called conic-connected if for any two
general points x, y ∈ X there is an irreducible conic on X passing through x, y. Complex
conic-connected varieties were classified in [IR10] by P. Ionescu and F. Russo (see Theorem
4.1.1). Let X be a complex conic-connected variety and let x, y ∈ X be general points.
We define Wx,y to be the space of conics on X passing through x, y (this is viewed as a
subvariety of a certain Kontsevich moduli space of stable maps; see Section 4.2 for details).
It comes with universal family morphisms

C
π

��

µ // X

Wx,y

sx

<<

sy

]] .

We define a natural polarization on Wx,y as follows. Consider the morphism

τx : Wx,y −→ P (TxX)

which maps a conic to its tangent direction at x. We show that this is a finite morphism
and define a polarization on Wx,y to beMx,y = τ∗xOP(TxX)(1) (see Lemma 4.2.2 for details).
We propose to use the polarized variety (Wx,y,Mx,y) to study conic-connected varieties.
As a first step we give a formula for the canonical class KWx,y of Wx,y:

KWx,y = −π∗µ∗ ch2(X)− 2 c1(Mx,y).

(see Subsection 4.3.3 for details). In particular, we see that if X is weakly 2-Fano, then
Wx,y is Fano.



Chapter 2

Preliminaries

In this chapter we gather the prerequisites for our study of rational curves on varieties.
In Sections 2.1–2.5 we define several spaces parameterizing rational curves on varieties.
We present in Section 2.4 the main results concerning deformation of rational curves on
varieties, and in Section 2.6 we focus on the varieties that we will work with, namely Fano
varieties and rationally connected varieties. Finally, in Section 2.7 we study Grassmannian
varieties and Schubert Calculus, which will be essential in Chapter 3. We omit the proofs
of most of the results in this chapter. References will be given in each section.

2.1 Hilbert Scheme

Studying the geometry of an algebraic variety frequently involves understanding some
of its subvarieties. For that reason, it is very useful to consider some space parameteriz-
ing such subvarieties. Among the several notions of parameter space, here we define the
Hilbert scheme, which parameterizes closed subvarieties of a projective variety. We refer
to [Kol96, Section I.1] for generalities and proofs.

Let X be a scheme over a field k. The Hilbert functor

Hilb(X) : (schemes over k) −→ (sets)

from the category of schemes over k to the category of sets is defined by

Hilb(X)(S) =

{
subschemes Z ⊂ X × S
which are proper and flat over S

}
.

Theorem 2.1.1 ([Kol96, Thm. I.1.4]). Let X be a projective scheme over a field k. Then
the functor Hilb(X) is representable. More precisely, there exist a scheme Hilb(X) over k,
called Hilbert scheme, and a closed subscheme UHilb(X) ⊂ X × Hilb(X) which is flat over
Hilb(X) together with universal family morphisms

UHilb(X)

πHilb(X)

��

πX // X

Hilb(X)

,

satisfying the following property: for every scheme S over k and every closed subscheme
Z ⊂ X × S which is flat over S, there exists a unique morphism S → Hilb(X) such that

3



4 CHAPTER 2. PRELIMINARIES

Z ∼= UHilb(X)×Hilb(X)S. The scheme Hilb(X) has countably many connected components,
each of them is a projective scheme over k.

In particular, we have a bijection between the set of closed subschemes of X and closed
points of Hilb(X). For a closed subscheme Z of X, we will denote by [Z] the corresponding
point in Hilb(X). In order to give some local properties of the scheme Hilb(X), assume
that X is smooth. We have the following results:

(i) T[Z] Hilb(X) ∼= H0(Z,NZ/X), where NZ/X denotes the normal sheaf of Z in X;

(ii) if Z is a locally complete intersection, then

dim[Z] Hilb(X) ≥ h0(Z,NZ/X)− h1(Z,NZ/X);

(iii) if Z is a locally complete intersection, and if H1(Z,NZ/X) = 0, then Hilb(X) is
smooth at [Z].

2.2 Hom Scheme

As an application of the Hilbert scheme, we construct the scheme Hom(Y,X), which
parameterizes morphisms between two projective schemes Y and X. A morphism can be
identified with its graph, and thus it is natural to construct the scheme Hom(Y,X) as a
subscheme of Hilb(Y ×X). We refer to [Kol96, Section I.1] for generalities and proofs.

Let Y and X be schemes over a field k. Consider the functor

Hom(Y,X) : (schemes over k) −→ (sets)

from the category of schemes over k to the category of sets, defined by

Hom(Y,X)(S) = {S-morphisms Y × S → X × S} .

Theorem 2.2.1 ([Kol96, Thm. I.1.10]). Let Y and X be projective schemes over a
field k. Then the functor Hom(Y,X) is representable. More precisely, there exists a
locally Noetherian subscheme Hom(Y,X) of Hilb(Y ×X) together with universal family
morphisms

Y ×Hom(Y,X)

π

��

F // X

Hom(Y,X)

,

satisfying the following property: for every scheme S over k and every S-morphism
FS : Y × S → X × S, there exist a unique morphism ϕ : S → Hom(Y,X) such that
FS(y, s) = (F (y, ϕ(s)), s), for every (y, s) ∈ Y × S.

In particular, there exists a bijection between the set of morphisms from Y to X and
the closed points of Hom(Y,X). For a morphism f : Y → X, we will denote by [f ] the
corresponding point in Hom(Y,X).

Let g : B → X be a morphism from a fixed closed subscheme B of Y . It is useful to
consider morphisms f : Y → X that restricts to g on B. For that reason, consider the
functor

Hom(Y,X; g) : (schemes over k) −→ (sets)
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from the category of schemes over k to the category of sets, defined by

Hom(Y,X; g)(S) =

{
S-morphisms f : Y × S → X × S
such that f |B×S = g × idS

}
.

Let
R : Hom(Y,X) −→ Hom(B, Y )

be the restriction morphism. Then the functor Hom(Y,X; g) is represented by the sub-
scheme Hom(Y,X; g) := R−1(g) of Hom(Y,X). In order to give some local properties of
the scheme Hom(Y,X; g) at a point [f ] (we allow B and g to be empty), assume that X
is smooth along the image of f . Then we have the following results:

(i) T[f ] Hom(Y,X; g) ∼= H0(Y, f∗TX ⊗IB), where IB denotes the ideal sheaf of B on Y ;

(ii) Hom(Y,X; g) can be defined by h1(Y, f∗TX ⊗ IB) equations in a smooth variety of
dimension h0(Y, f∗TX ⊗ IB); in particular,

dim[f ] Hom(Y,X; g) ≥ h0(Y, f∗TX ⊗ IB)− h1(Y, f∗TX ⊗ IB),

and if H1(Y, f∗TX ⊗ IB) = 0, then Hom(Y,X; g) is smooth at [f ].

2.3 Chow Scheme

Here we define the Chow scheme, which parameterizes effective cycles on a projective
scheme. We refer to [Kol96, Section I.3] for precise definitions, generalities and proofs.

Let X be a scheme over a field k of characteristic zero. The Chow functor

Chow(X) : (schemes over k) −→ (sets)

from the category of schemes over k to the category of sets is defined by

Chow(X)(S) =

{
families of effective, proper,
algebraic cycles of X × S over S

}
.

Theorem 2.3.1 ([Kol96, Thm. I.3.21]). Let X be a projective scheme over a field k. Then
the functor Chow(X) is representable. More precisely, there exist a scheme Chow(X) over
k, called Chow scheme, and a subscheme UChow(X) ⊂ X×Chow(X) together with universal
family morphisms

UChow(X)

u

��

η // X

Chow(X)

,

satisfying the following property: for every normal scheme S over k and every family
C → S of effective cycles on X, there exists a unique morphism S → Chow(X) such that
C is the pullback of UChow(X) to X × S. Every connected component V of Chow(X) is a
reduced projective scheme over k and UChow(X)×Chow(X) V is an effective cycle on X ×V .

In general, the schemes Hilb(X) and Chow(X) may look different at the points corre-
sponding to a closed subscheme Z of X. However, if Z is reduced and pure dimensional,
and if Hilb(X) is smooth at [Z], then Hilb(X) and Chow(X) are locally isomorphic at [Z].
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2.4 Rational Curves on Varieties

In the previous sections we defined several spaces parameterizing subvarieties of a given
variety. The general results for these spaces are used to study rational curves on varieties.
In this case everything takes a particularly simple form. In fact, general deformation
theory tells us that the tangent spaces to Hilb or Hom are given by the cohomology group
H0 of certain sheaves and the obstructions are the cohomology group H1 of the same
sheaves. In the curve case, H0 − H1 is the Euler characteristic, which can usually be
computed easily using Riemann-Roch’s Theorem. In Subsection 2.4.3 we study objects
for which the obstruction H1 is zero.

2.4.1 Parameterizing Rational Curves

Let X be a projective variety over a field k. One way to study rational curves on X
is by looking at the parameter space Hom(P1, X), defined in the Section 2.2. However,
that parameter space is too big if we are interested in studying rational curves on X as
closed subschemes or 1-cycles on X. In fact, a morphism f : P1 → X and the composition
of f with any automorphism of P1 have the same image. In this subsection we define the
scheme RatCurves(X), a refined parameter space for rational curves on X. For details
and proofs, we refer to [Kol96, Section II.2].

Let X be a projective variety over a field k. Consider the scheme Hom(P1, X). Let
V be an irreducible component of Hom(P1, X). Let Ṽ be the normalization of the open
subscheme of V parameterizing morphisms that are birational onto their images. By the
universal property of the scheme Chow(X), there exists a natural morphism

ϕ : Ṽ −→ Chow(X)

[f ] 7−→ f∗[P1].

The automorphism group Aut(P1) of P1 acts naturally on Ṽ , and the morphism ϕ is
invariant under this action. Let W V ⊂ Chow(X) be the closure of the image of ϕ. Let
WV be the open subset of W V parameterizing irreducible reduced 1-cycles, and let HV be
its normalization. We define

RatCurves(X) =
⋃
V

HV ,

where V runs through all irreducible components of Hom(P1, X).
Let V be an irreducible component of Hom(P1, X). Let U be the normalization of the

universal family over HV . We have the commutative diagram

P1 × Ṽ

��

Φ //

F

""
U

π

��

η // X

Ṽ
ϕ // HV

,

where π is a P1-bundle, Φ and ϕ are smooth of relative dimension 3 with fibers isomorphic
to Aut(P1).
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We can carry out the above construction starting with Hom(P1, X; o 7→ x) instead of
Hom(P1, X). We denote by RatCurves(X,x) the scheme obtained in this way. For each
irreducible component Vx of Hom(P1, X; o 7→ x), there exist an irreducible component Hx

of RatCurves(X,x) and morphisms

P1 × Ṽx

��

Φx //

Fx

""
Ux
πx

��

ηx // X

Ṽx
ϕx // Hx

,

where Ux is the normalization of the universal family over Hx, πx is a P1-bundle, Φx and
ϕx are smooth of relative dimension 2 with fibers isomorphic to Aut(P1, o).

2.4.2 Bend and Break Lemmas

We present here the bend and break technique, a powerful tool developed by S. Mori
in [Mor79] to prove Hartshorne’s conjecture, characterizing projective spaces as the only
smooth projective varieties over an algebraically closed field with ample tangent bundle.
The tool provides means of producing rational curves on varieties. The idea is that if a
curve deforms in a projective variety while passing through a fixed point, then it must at
some point break up with at least one rational component. The proofs are simple and can
be found in [Kol96, Section II.5], [KM98, Section 1.1] and [Deb01, Section 3.1].

Lemma 2.4.1 (Bend-and-Break I, [Deb01, Prop. 3.1]). Let X be a projective variety
over an algebraically closed field. Let C be a smooth curve and let p ∈ C be a point. Let
f : C → X be a morphism and assume that dim[f ] Hom(C,X; f |{p}) ≥ 1. Then there

exist a morphism f ′ : C → X and a connected, non-zero, effective, rational 1-cycle Z on
X passing through f(p) such that

f∗[C] ∼ f ′∗[C] + Z.

Lemma 2.4.2 (Bend-and-Break II, [Deb01, Prop. 3.2]). Let X be a projective variety
over an algebraically closed field. Let f : P1 → X be a morphism and assume that
dim[f ] Hom(P1, X; f |{0,∞}) ≥ 2. Then the cycle f∗[P1] is numerically equivalent to a
connected, non-integral, effective, rational 1-cycle passing through f(0) and f(∞).

2.4.3 Free Rational Curves

Let X be a smooth variety of dimension n and let f : P1 → X be a morphism.
Since X is smooth, its tangent sheaf TX is locally free of rank n; hence, so is f∗TX . By
Grothendieck’s Theorem, every vector bundle on P1 decomposes as a sum of line bundles
(see [Har77, Ex. V.2.6]). Therefore, for suitable integers a1, . . . , an,

f∗TX ∼= OP1(a1)⊕ · · · ⊕ OP1(an), (2.1)

where we assume a1 ≥ · · · ≥ an.

Definition 2.4.1. Let r ≥ 0 be an integer. We will say that a morphism f : P1 → X is
r-free if f∗TX(−r) is generated by its global sections, or equivalently, if an ≥ r. We will
say “free” instead of “0-free”, and “very free” instead of “1-free”.
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Note that, by Serre Duality,

H0
(
P1,
⊕n

i=1OP1(−ai + r − 1)
) ∼= H1

(
P1,
⊕n

i=1OP1(ai − r + 1)
)
.

Therefore, a morphism f : P1 → X is r-free if and only if H1(P1, f∗TX(−r−1)) = 0. Also,
by the Semi-continuity Theorem, the set of r-free morphisms on X is an open subset of
Hom(P1, X), possibly empty, which is smooth (see Section 2.2).

Example 2.4.1. Let f : P1 → X be a constant morphism with image x ∈ X. Then

f∗TX = f−1TX ⊗f−1OX
OP1
∼= TX,x ⊗OX,x

OP1
∼=
⊕n

i=1OP1 .

Therefore every constant morphism f : P1 → X is free.

Because of the previous example, from now on, we will consider only non-constant
morphisms f : P1 → X, that is, rational curves on X. In this case, the differential

df : TP1 → f∗TX

is zero at only finitely many points of P1. This means that df is not identically zero at
a general point. Since TP1 is a line bundle, its stalk at any point is just a free module
of rank 1 over the local ring. Thus, non-zero implies injective. Therefore, f∗TX contains
TP1
∼= OP1(2).

Example 2.4.2. Let f : P1 → X be a very free rational curve on X. Then

f∗TX ∼= OP1(a1)⊕ · · · ⊕ OP1(an), with an ≥ 1.

Let φ : P1 → P1 be a ramified finite morphism of degree r > 0. Then, the composition
g = f ◦ φ is such that

g∗TX = φ∗f∗TX ∼= OP1(ra1)⊕ · · · ⊕ OP1(ran), with ran ≥ r.

Therefore, if a smooth variety contains a very free rational curve, then it contains an r-free
rational curve, for every r > 0.

Example 2.4.3. Let f : P1 → X be a free rational curve on a smooth variety X with
canonical divisor KX . Then

−KX · f∗P1 = deg(f∗TX) = a1 + · · ·+ an ≥ 2.

Therefore, there are no free rational curves on a smooth variety whose canonical divisor
is nef.

Example 2.4.4. Let f : P1 → Pn be a rational curve of degree d on the projective space
Pn. Consider the dual of the Euler’s exact sequence

0→ OPn →
⊕n+1

i=1 OPn(1)→ TPn → 0.

By taking the pullback under f we obtain⊕n+1
i=1 OP1(d)→ f∗TPn ∼=

⊕n
i=1OP1(ai)→ 0.

Therefore, every rational curve f : P1 → Pn of degree d is d-free.
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As we can see from the remarks and examples above, r-free rational curves enjoy many
nice properties. The next result says that, the freer a rational curve is, the more it can be
moved while keeping points fixed.

Proposition 2.4.1 ([Deb01, Prop. 4.8]). Let X be a smooth projective variety. Let
f : P1 → X be an r-free rational curve on X. Let B be a finite subscheme of P1 of length
b, and let s > 0 be an integer such that s+ b ≤ r + 1. Then the evaluation morphism

ev : (P1)s ×Hom(P1, X; f |B) −→ Xs

(t1, . . . , ts, [g]) 7−→ (g(t1), . . . , g(ts))

is smooth at (t1, . . . , ts, f) if {t1, . . . , ts} ∩B = ∅.

Proof. The differential of ev at (t1, . . . , ts, f) is given by⊕s
i=1 TP1,ti ⊕H

0(P1, f∗TX(−B)) −→
⊕s

i=1 TX,f(ti)

(u1, . . . , us, σ) 7−→ (dt1f(u1) + σ(t1), . . . , dtsf(us) + σ(ts))

(see [Kol96, Prop. 3.4]). This map is surjective if the evaluation map

H0(P1, f∗TX(−B)) −→ H0(P1, f∗TX) −→
⊕s

i=1 TX,f(ti)

σ 7−−−−−−−−−−−−−−−−→ (σ(t1), . . . , σ(ts))

is surjective. With the notation in (2.1), this is in turn the case if the map

H0(P1,OP1(aj − b)) −→ H0(P1,OP1(aj)) −→
⊕s

i=1 kti

is surjective, for every j = 1, . . . , n. This holds, because {t1, . . . , ts} ∩B = ∅ and aj − b ≥
s − 1. On the other hand, since aj − b ≥ −1, we have H1(P1, f∗TX(−B)) = 0; hence
Hom(P1, X; f |B) is smooth at [f ]. Therefore, ev is smooth at (t1, . . . , ts, f).

There exists a partial converse of this result. The proof is very similar to the previous
one, and for that reason, we only state it.

Proposition 2.4.2 ([Deb01, Prop. 4.9]). Let X be a smooth projective variety over a
field of characteristic zero. Let f : P1 → X be a rational curve on X. Let B be a finite
subscheme of P1 of length b, and let s > 0 be an integer. If the differential of the evaluation
morphism

ev : (P1)s ×Hom(P1, X; f |B) −→ Xs

(t1, . . . , ts, [g]) 7−→ (g(t1), . . . , g(ts))

is surjective at some point of P1 × {f}, then f is min{2, b+ s− 1}-free.

The next result says that a rational curve through a very general point of a smooth
variety is free.

Proposition 2.4.3 ([Deb01, Prop. 4.20]). Let X be a smooth quasi-projective variety
over a field of characteristic zero. Let B be a subscheme of X of length b ≤ 2 (we allow B
to be empty). Then there exists a subset X free

B of X, which is the intersection of countably
many dense open subsets of X, such that every rational curve on X containing B and
whose image meets X free

B is b-free. If we restrict to rational curves on X with bounded
degree, then X free

B is the intersection of finitely many dense open subsets of X.
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The following lemma will be useful in the future.

Lemma 2.4.3. Let X be a smooth projective variety over a field of characteristic zero,
and let d > 0 be an integer. Assume that through s general points x1, . . . , xs ∈ X there
passes a rational curve C on X of degree d. Then h1(C,NC/X(−

∑s
i=1 xi)) = 0.

Proof. Let f : P1 ∼−→ C ⊂ X be a morphism representing a degree d rational curve C on
X passing through s general points x1, . . . , xs ∈ X. By the remark after Example 2.4.1, we
can write f∗TX ∼= OP1(2)⊕OP1(a2)⊕· · ·⊕OP1(an), and NC/X

∼= OP1(a2)⊕· · ·⊕OP1(an).
To prove that h1(C,NC/X(−

∑s
i=1 xi)) = 0 we have to prove that ai ≥ s − 1, for every

i = 2, . . . , s. Considere the evaluation morphism

evd : (P1)s ×Homd(P1, X) −→ Xs

(t1, . . . , ts, [g]) 7−→ (g(t1), . . . , g(ts)).

By hypothesis this morphism is dominant, and by Proposition 2.4.3 and the results in
Section 2.2 the scheme Homd(P1, X) is generically smooth. By Generic Smoothness, the
differential of evd at (t1, . . . , ts, [f ])⊕s

i=1 TP1,ti ⊕H
0
(
P1,
⊕n

i=1OP1(ai)
)
−→

⊕s
i=1 TX,f(ti)

(u1, . . . , us, σ) 7−→ (dt1f(u1) + σ(t1), . . . , dtsf(us) + σ(ts))

is surjective. This implies the evaluation map⊕n
i=1H

0(P1,OP1(ai)) −→
⊕s

i=1

(
TX,f(ti)/ im(dtif)

) ∼= {0} ⊕ ks ⊕ · · · ⊕ ks
is surjective as well. Therefore, ai ≥ s− 1, for every i = 2, . . . , s, as we wanted.

2.4.4 Smoothing of Morphisms of Curves

In Subsection 2.4.2 we saw ways to deform smooth curves into reducible ones. In this
subsection, we are interested in the reverse process, that is, we are interested in smoothing
a union of rational curves. For this subject we refer to [Kol96, Section II.7], [Deb01, Section
4.6] and [AK03].

Definition 2.4.2. A (rational) smoothing of a curve C is a flat morphism q : C → (T, o),
where (T, o) is a connected, smooth, pointed curve such that

(i) q−1(o) ∼= C;

(ii) q−1(t) ∼= P1, for every t ∈ T \ {o}.

More generally, a (rational) smoothing of a morphism f : C → X is a diagram

C
q

��

F // X

(T, o)

,

where q : C → (T, o) is a rational smoothing of C and F : C → X is a morphism such
that F |q−1(o) = f under the isomorphism q−1(o) ∼= C. For t ∈ T \ {o}, the restriction

F |q−1(t) : q−1(t)→ X is called a nearby smoothing of f . Let p1, . . . , pr be distinct smooth
points of C. A smoothing keeping f(p1), . . . , f(pr) fixed is a smoothing of f with r sections
s1, . . . , sr : T → C such that
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(i) si(o) = pi, for every i = 1, . . . , r;

(ii) F ◦ si(T ) = f(pi), for every i = 1, . . . , r.

Definition 2.4.3. A (rational) tree is a projective, connected, reduced, at worst nodal
curve C satisfying the following equivalent properties:

(i) χ(C,OC) = 1;

(ii) the irreducible components of C are all isomorphic to P1, and there exist
# Sing(C) + 1 of them;

(iii) the irreducible components of C are all isomorphic to P1, and they can be listed
as C1, . . . , Cm in such a way that, for every i = 1, . . . ,m − 1, the component Ci+1

intersects C1 ∪ · · · ∪ Ci transversely in a single smooth point.

The irreducible components of a rational tree are called twigs.

Given a rational tree C, there always exists a rational smoothing of C. The proof is
by induction on the number m of irreducible components of C. If C is irreducible, that
is, C ∼= P1, then the projection (to anyone of the factors)

P1 × P1 −→ (P1, o)

is a rational smoothing of C. Assume that the claim holds for every rational tree C ′

with m− 1 ≥ 1 irreducible components. Let C be a rational tree with m ≥ 2 irreducible
components C1, . . . , Cm. The subcurve C ′ = C1 ∪ · · · ∪Cm−1 is a rational tree, and by the
induction hypothesis, there exists a rational smoothing of C ′

C′ −→ (T, o).

Let {p} = Cm−1 ∩ Cm and let π : C → C′ be the blow-up of C′ at the point p. Then

C π−→ C′ −→ (T, o)

is a rational smoothing of C.

The proposition below says that, under certain conditions, a morphism from a rational
tree can be smoothable keeping points fixed.

Proposition 2.4.4 ([Deb01, Prop. 4.24]). Let X be a smooth projective variety, and let
f : C → X be a morphism from a rational tree C with irreducible components C1, . . . , Cm.
Let p1, . . . , pr be distinct smooth points of C, with ri of them on Ci. Assume that the
restriction f |C1

is (r1 − 1)-free and, for each i = 2, . . . ,m, the restriction f |Ci
is ri-free.

Then f is smoothable into an (r − 1)-free rational curve keeping f(p1), . . . , f(pr) fixed.

2.5 Kontsevich Moduli Space of Stable Maps

In this section we introduce the Kontsevich moduli space, another parameter space for
rational curves on a projective variety. The advantages of adopting this space is that it is
compact, much more manageable and many recent works have been developed concerning
its Picard group, effective cone and virtual canonical bundle (at least for the projective
space). The downside is that, because of its compactness, we are forced to consider many
objects in the boundary which we never wanted to consider in the first place. For this
topic we refer to the already classical notes [FP97], and [KV07].
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2.5.1 Stable Maps and the Kontsevich Functor

We start with the basic definitions.

Definition 2.5.1. An n-pointed, genus g, quasi-stable curve (C, p1, . . . , pn) is a projective,
connected, reduced, at worst nodal curve C of arithmetic genus g with n distinct, non-
singular, marked points p1, . . . , pn. Let S be an algebraic scheme over C. A family of
n-pointed, genus g, quasi-stable curves over S is a flat projective map π : C → S with
n sections s1, . . . , sn such that each geometric fiber (Cs, s1(s), . . . , sn(s)) is an n-pointed,
genus g, quasi-stable curve. Let X be an algebraic scheme over C. A family of maps over S
from n-pointed genus g curves to X consists of the data (π : C → S, {si}1≤i≤n, µ : C → X),
where

(i) π : C → S is a family of n-pointed, genus g, quasi-stable curves with n sections
s1, . . . , sn;

(ii) µ : C → X is a morphism.

Two families of maps over S, (π : C → S, {si}, µ) and (π′ : C′ → S, {s′i}, µ′), are isomorphic
if there exists a scheme isomorphism τ : C → C′ satisfying π = π′ ◦ τ , s′i = τ ◦ si and
µ = µ′ ◦ τ . When π : C → Spec(C) is the structure map, (π : C → Spec(C), {si}, µ) will
be simply denoted by (C, {pi}, µ), where p1, . . . , pn are the distinct, non-singular, marked
points on C. Let (C, {pi}, µ) be a map from an n-pointed quasi-stable curve to X. The
special points of an irreducible component E ⊂ C are the marked points on E and the
component intersections of C that lie on E. The map (C, {pi}, µ) is stable if the following
conditions hold for every component E ⊂ C:

(i) If E ∼= P1 and E is contracted by µ, then E contains at least three special points;

(ii) If E has arithmetic genus 1 and E is contracted by µ, then E contains at least one
special point.

A family of pointed maps (π : C → S, {si}, µ) is stable if the pointed map on each
geometric fiber of π is stable. Let β be a curve class on X. We will say that a map
µ : C → X represents β if the µ-push-forward of the fundamental class [C] is equal to β.
The Kontsevich functor

Mg,n(X,β) : (alg. schemes over C) −→ (sets)

from the category of complex algebraic schemes to the category of sets is defined by

Mg,n(X,β)(S) =


isomorphism classes of stable families over S
of maps from n-pointed genus g curves to X
representing the class β

 .

The first result concerning the representability of the Kontsevich functor is the follow-
ing:

Theorem 2.5.1 ([FP97, Thm. 1]). Let X be a complex, projective, algebraic scheme.
ThenMg,n(X,β) is coarsely represented for any non-negative integers g, n and curve class
β. More precisely, there exists a complex projective scheme Mg,n(X,β) with a natural
transformation of functors

φ :Mg,n(X,β) −→ Hom(− ,Mg,n(X,β))

satisfying the following properties:



2.5. KONTSEVICH MODULI SPACE OF STABLE MAPS 13

(i) φ(Spec(C)) :Mg,n(X,β)(Spec(C))→ Hom(Spec(C),Mg,n(X,β)) is a set bijection;

(ii) If Z is a scheme and ψ : Mg,n(X,β) → Hom(− , Z) is a natural transformation of
functors, then there exists a unique morphism of schemes γ : Mg,n(X,β) → Z such
that ψ = γ̃ ◦ φ, where γ̃ is the natural transformation induced by γ.

Example 2.5.1. The moduli space of stable maps to a point coincides with the moduli
space of curves, that is, Mg,n(P0, 0) ∼= Mg,n.

Example 2.5.2. The moduli space of degree zero stable maps to a complex algebraic
scheme X is described by the isomorphism Mg,n(X, 0) ∼= Mg,n×X, because a degree zero
map from a connected curve is determined by specifying a point of X.

Example 2.5.3. The moduli space of degree one maps to PN is isomorphic to the Grass-
mannian of lines in PN , that is, M0,0(PN , 1) ∼= G(1, N).

Example 2.5.4. The moduli space M0,0(P2, 2) is isomorphic to the space of complete
conics, or equivalently, it is isomorphic to the blow up of the Hilbert scheme of conics in
P2 along the Veronese surface of double lines.

Let (C, {pi}, µ) be a map from an n-pointed quasi-stable curve to X. An automorphism
of the map is an automorphism τ of C satisfying τ(pi) = pi and µ = µ◦τ . We will denote by
M
∗
g,n(X,β) the open locus of Mg,n(X,β) parameterizing stable maps with no non-trivial

automorphisms.

We recall that a smooth variety X is convex if H1(P1, f∗TX) = 0, for every map
f : P1 → X. The projective space PN is a convex variety.

Theorem 2.5.2 ([FP97, Thm. 2]). Let X be a complex, smooth, projective variety. Then

(i) M0,n(X,β) is smooth at the points parameterizing automorphism-free stable maps
whose restriction to each irreducible component is a free map; its dimension at these
points is

dim(X)−KX · β + n− 3;

(ii) if X is convex, then M
∗
0,n(X,β) is a smooth fine moduli space for automorphism-free

stable maps, and it is equipped with a universal family.

Proof. When X is a convex variety, these results are explicitly stated and proved in [FP97,
Theorem 2]. To see that (i) holds, we simply note that Lemma 10 and Lemma 11 in
[FP97] are immediately satisfied by a stable map with the assumed properties; hence, all
the arguments used to compute the dimension in the convex case holds for X.

We will denote by U free the open locus of M0,n(X,β) parameterizing stable maps whose
restriction to each irreducible component is a free map.

2.5.2 The Boundary

Here we summarize the main results concerning the boundary of the Kontsevich moduli
space M0,n(X,β).

Definition 2.5.2. Let X be a projective algebraic scheme over C. The boundary of the
moduli space Mg,n(X,β) is the locus corresponding to stable maps whose domain curves
are reducible.
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Definition 2.5.3. Let X be a projective, algebraic scheme over C. A curve class β on X
is effective if it is represented by some stable map to X.

If n = 0, then the boundary of M0,0(X,β) decomposes into a union of irreducible
components which are in bijective correspondence with partitions β1 + β2 = β, with β1

and β2 effective curve classes. For general n, the boundary of M0,n(X,β) decomposes
into a union of irreducible components in bijective correspondence with data of weighted
partitions (A,B;β1, β2), where

(i) A ∪B is a partition of [n] = {1, 2, . . . , n};

(ii) β1 + β2 = β, with β1 and β2 effective curve classes;

(iii) If β1 = 0 (resp. β2 = 0), then #A ≥ 2 (resp. #B ≥ 2).

The divisor D(A,B;β1, β2) corresponding to the data of weighted partitions (A,B;β1, β2)
is the locus of stable maps f : CA ∪ CB → X satisfying the following conditions:

(i) C = CA∪CB, with CA and CB genus 0, quasi-stable curves meeting in a single point;

(ii) CA (resp. CB) has #A (resp. #B) marked points;

(iii) The map µA = µ|A (resp. µB = µ|B) represents β1 (resp. β2).

Theorem 2.5.3 ([FP97, Thm. 3]). Let X be a complex, smooth, projective, convex
variety. Then the boundary of M0,n(X,β) is a normal crossing divisor up to a finite group
quotient.

2.5.3 Evaluation Morphisms

Let X be a complex, projective, algebraic scheme, and consider the Kontsevich moduli
space Mg,n(X,β) of stable maps with n marked points. For each i = 1, . . . , n, we have
the evaluation morphism

evi : Mg,n(X,β) −→ X

[C, p1, . . . , pn, f ] 7−→ f(pi),

which evaluates each stable map at its i-th marked point. Taking the product of all of
these evaluation morphisms we obtain the total evaluation morphism

ev : Mg,n(X,β) −→ X × · · · ×X
[C, p1, . . . , pn, f ] 7−→ (f(p1), . . . , f(pn)).

Although simple, these evaluation morphisms allow us to relate the geometry of X to the
geometry of Mg,n(X,β).

Lemma 2.5.1 ([dS06b, Lemma 5.1]). Let X be a complex, smooth, projective variety, and
let β be a curve class on X. Assume that every point in a general fiber of the evaluation
morphism

ev : M0,n(X,β)→ Xn

parameterizes an automorphism-free stable map whose irreducible components are all free.
Then a non-empty general fiber of ev is smooth of expected dimension

−KX · β − (n− 1) dim(X) + n− 3

and the intersection with the boundary ∆ is a simple normal crossing divisor.
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Proof. The open locus U free parameterizing stable maps whose domains are unions of free
rational curves is smooth. Consider the restriction ev|U free : U free → Xn. By Generic
Smoothness applied to this restriction, the intersection of U free with a general fiber of
ev is smooth. But this intersection is the general fiber itself if it is contained in U free.
The second part of the lemma follows from Theorem 2.5.3 and 2.4.4 (see [dS06b, Lemma
5.1]).

2.5.4 Forgetful Morphisms

Let X be a complex, projective, algebraic scheme, and consider the Kontsevich moduli
space Mg,n+k(X,β) of stable maps with n+k marked points. For each subset {i1, . . . , ik} ⊂
{1, . . . , n+ k}, we have the forgetful morphism

ϕi1,...,ik : Mg,n+k(X,β) −→Mg,n(X,β),

which forgets the marked points pi1 , . . . , pik of each stable map [C, p1, . . . , pn+k, f ] ∈
Mg,n+k(X,β). To have this a well defined morphism, curves that become unstable by
the absence of the suppressed marked points must be contracted (note that this happens
only for twigs of degree 0, and hence, the new stable map obtained also represents the
curve class β).

Example 2.5.5. Consider the forgetful morphism

ϕn+1 : Mg,n+1(X,β) −→Mg,n(X,β)

[C, p1, . . . , pn, pn+1] 7−→ [C, p1, . . . , pn, f ],

which forgets the (n + 1)-th marked point. Figure 2.1 below shows the images of two
morphisms with source curves that become unstable by the absence of the suppressed
marked point pn+1.

pn+1
0

7−→

pn+1

pi

0

7−→ pi

Figure 2.1: Forgetting the marked point pn+1.

We can have the inverse situation, when we want to mark more points on a source curve
of a stable map that becomes unstable with this new marked point. In this situation, we
have to add degree 0 twigs to the curve. We call this process of stabilization of a stable
map, with a point marked twice or with a marked node. In Figure 2.1, the curves at the
left-hand side are the stabilizations of the curves at the right-hand side, respectively with
a marked node and with the point pi marked twice.
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2.5.5 The Universal Family over M
∗
0,n(X, β).

Let X be a complex, smooth, projective, convex variety. As stated in Theorem 2.5.2,
the open set M

∗
0,n(X,β) of automorphism-free stable maps is a fine moduli space for the

functorM∗0,n(X,β). Let us describe its universal family. Consider the forgetful morphism

ϕn+1 : M0,n+1(X,β) −→M0,n(X,β)

[C, p1, . . . , pn, pn+1, f ] 7−→ [C, p1, . . . , pn, f ],

which forgets the (n+ 1)-th marked point. Let [C, p1, . . . , pn, f ] ∈M∗0,n(X,β), and denote

by F[C,f ] the fiber of ϕn+1 over this stable map. It is clear that F[C,f ] ⊂ M
∗
0,n+1(X,β).

Note that we have a natural bijection between C and the fiber F[C,f ]. Indeed, for each
non-marked smooth point pn+1 ∈ C associate the stable map [C, p1, . . . , pn, pn+1, f ]; for
each marked point pi ∈ C, 1 ≤ i ≤ n, associate the stabilization of f with the point pi
marked twice; and for each node q ∈ C associate the stabilization of f with the node q
marked. As a matter of fact, this correspondence is an isomorphism. In order to have
a morphism from C to M0,n+1(X,β), by the coarse representability of M0,n(X,β), it is
sufficient to provide a family over C of (n+ 1)-pointed stable maps representing the class
β. Before providing such a family, consider the evaluation morphism

evn+1 : M0,n+1(X,β) −→ X

[C, p1, . . . , pn+1, f ] 7−→ f(pn+1),

which evaluates each stable map at its (n+1)-th marked point. If we identify the fiber F[C,f ]

with C, then the restriction of evn+1 to C coincides with the map f itself. Hence, ϕn+1

and evn+1 restricted to the open set of automorphism-free stable maps are the candidates
for the universal family. Going back to the question of the isomorphism between F[C,f ]

and C, note that we have a family over C of maps from n-pointed genus 0 curves to X
representing the class β

C
π1
��

µ // X

C

si, i=1,...,n

]] ,

where C = C × C, the morphism π1 is the first projection, si is the section given by
si(p) = (p, pi) and µ(p, q) = f(q). Now, a result due to F. F. Knudsen, [Knu83, Theorem
2.4], assures that this family with the diagonal section ∆(p) = (p, p) gives rise to a family
over C of (n + 1)-pointed stable curves. The idea is the following: consider the exact
sequence

0→ OC
δ→ I∨ ⊕OC(s1 + · · ·+ sn)

p→ K → 0, (2.2)

where I is the defining ideal of the image of the section ∆ and δ is the diagonal morphism,
given by δ(t) = (t, t). Define Cs = ProjC (SymK). The union of the images of the sections
s1, . . . , sn and ∆ support sheaves Ls = K/p(I∨) and L∆ = K/p(OC(s1 + · · · + sn)), and
there exist surjections s∗iK → s∗iLs and ∆∗K → ∆∗L∆. The important fact is that (2.2)
commutes with base-change and that the sheaves s∗iLs and ∆∗L∆ are invertible. Hence
these surjections define liftings of the sections making Cs together with the lifted sections
a family of (n+ 1)-pointed stable curves. Composing the projection morphism π : Cs → C
with π1 and with µ, we obtain the desired family of (n + 1)-pointed stable maps. The
corresponding morphism from C to M0,n+1(X,β) is an isomorphism onto its image F[C,f ].

Therefore, the considerations above show that (ϕn+1, {si}1≤i≤n, evn+1), restricted to
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the open set of automorphism-free stable maps, play the role of the universal family over
M
∗
0,n(X,β).

2.6 Fano Varieties

In this subsection we study smooth projective varieties with ample anti-canonical sheaf.
Varieties with this property were first studied by G. Fano, and for that reason are called
Fano varieties. Although they are varieties satisfying a very restrictive condition, Fano
varieties appear naturally as important examples of varieties. Also, Fano varieties plays
an important role in the birational classification of algebraic varieties. We recall that a
minimal model in the sense of Mori is a normal projective Q-Gorenstein variety with a
numerically effective canonical divisor. According to the Mori Minimal Model Program,
which is completely carried out in dimension up to 3 and partially in higher dimensions,
every irreducible algebraic variety X over an algebraically closed field of characteristic
zero is birationally equivalent either to a minimal model (if X has Kodaira dimension
κ(X) ≥ 0) or to a fibration over a variety of smaller dimension with rational singularities
whose general fiber is a Fano variety (if X is covered by rational curves). For a treatment
on the Minimal Model Program, see [Mat02] and [KM98]. References for Fano varieties
are [IP99], [Kol96] and [Deb01].

2.6.1 Definition and Examples

We begin with the formal definition of smooth Fano varieties:

Definition 2.6.1. We say that a smooth projective variety X is a Fano variety if its anti-
canonical sheaf ω∨X is ample, or equivalently, if its anti-canonical class −KX has positive
intersection with every non-zero 1-cycle in the Mori cone NE(X).

Kollár, Miyaoka and Mori proved in [KMM92a] and [KMM92b] that, fixed the di-
mension n, there exist only finitely many smooth Fano varieties of dimension n up to
deformation. In this sense, smooth Fano varieties are quite rare. Despite this, it is not
difficult to find examples of Fano varieties; in fact, many of them are quite elementary.

Example 2.6.1. The anti-canonical class of a projective space Pn is given by −KPn =
(n+ 1) ·H, where H denotes the hyperplane class of Pn. Therefore, projective spaces are
Fano varieties.

Example 2.6.2. Let X ⊂ PN be a smooth complete intersection of k hypersurfaces of
degrees d1, . . . , dk. By the Adjunction Formula, the anti-canonical class of X is given by

−KX =
(
n+ 1−

∑k
i=1 di

)
·H|X , where H denotes the hyperplane class of Pn. Therefore,

X is Fano if and only if
∑k

i=1 di ≤ n.

Example 2.6.3. Let G = G(k,N) be the Grassmannian of k-planes in a projective

space PN embedded in P(N+1
k+1) under the Plücker embedding. Then G has Picard group

Pic(G) ∼= Z[OG(1)] and its anti-canonical class is given by −KG = (N + 1) · H|G, where

H denotes the hyperplane class of P(N+1
k+1). Therefore, Grassmannians are Fano varieties.

Fano varieties have rich geometry. An example of that is the next theorem, which
says that a smooth Fano variety X over an algebraically closed field is covered by rational
curves with bounded (−KX)-degree.
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Theorem 2.6.1 ([Mor79, Thm. 6]). Let X be an n-dimensional smooth Fano variety
over an algebraically closed field. Then through any point of X there exists a rational
curve on X with (−KX)-degree at most n+ 1.

Varieties X with the property that through any given point of X passes a rational
curve on X are called uniruled varieties. The formal definition is below.

Definition 2.6.2. Let X be a smooth projective variety over an uncountable algebraically
closed field of characteristic zero. We say that X is uniruled if for any point x ∈ X there
exists a rational curve on C passing through x.

Like Fano manifolds, uniruled varieties have a rich geometry and they are very much
studied. The following proposition is an example.

Proposition 2.6.1 ([Deb01, Cor. 4.11]). Let X be a smooth projective variety over an
uncountable algebraically closed field of characteristic zero. Then X is uniruled if and
only if there exists a free rational curve on X passing through a general point of X.

Another theorem concerning the geometry of smooth Fano varieties is the following.

Theorem 2.6.2 ([KMM92a, Thm. 0.1]). Let X be a smooth Fano variety over an un-
countable algebraically closed field of characteristic zero. Then given two points x, y ∈ X
there exists a rational curve on X connecting x and y.

Smooth varieties satisfying the property in the above theorem are called rationally
connected varieties. The formal definition below is in fact the summary of many theorems.

Definition 2.6.3. Let X be a smooth projective variety over an uncountable algebraically
closed field of characteristic zero. We say that X is rationally connected if it satisfies the
following equivalent conditions:

(i) for every x1, x2 ∈ X there exists a chain of rational curve on X connecting x1 and
x2;

(ii) for every x1, x2 ∈ X there exists a rational curve on X passing though x1 and x2;

(iii) for any general points x1, x2 ∈ X there exists a rational curve on X passing though
x1 and x2;

(iv) for every x1, x2 ∈ X there exists a free rational curve on X passing through x1 and
x2;

(v) there exists a very free rational curve on X.

The conditions (i)-(iv) can be restated replacing the pair of points x1, x2 ∈ X by any
finitely many points x1, . . . , xm ∈ X.

Like Fano manifolds, rationally connected varieties have a rich geometry and they are
very much studied. We gather in the proposition below some properties that a rationally
connected variety satisfies.

Proposition 2.6.2 ([Deb01, Cor. 4.18]). Let X be a rationally connected variety over
an uncountable algebraically closed field k of characteristic zero. Then X satisfies the
following properties:

(i) H0
(
X,
(
Ωp
X

)⊗m)
= 0, for every integers m, p > 0. In particular, χ(X,OX) = 1;

(ii) there exists a very free rational curve passing through any finite subset of X;

(iii) if k = C, then X is simply connected.
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2.6.2 Classification of Fano Manifolds

Let X be a smooth projective curve of genus g. The anti-canonical class −KX of X
has degree 2− 2g. For −KX to be ample, this number must be positive, that is, X must
have genus g = 0. Hence X ∼= P1, because X is smooth. Therefore, the projective line P1

is the only Fano curve.
The situation becomes more complicated for surfaces. The classification of Fano sur-

faces, also known as del Pezzo surfaces, is a classical result. They are P2, P1× P1 and the
blow-up of P2 at n points in general position, with 1 ≤ n ≤ 8.

The classification of Fano threefolds with Picard number equals 1 was established by
V. A. Iskovskih in [Isk77] and [Isk78]. Iskovskih proved that there exist 17 deformation
types of these. The classification of Fano threefolds with higher Picard number was es-
tablished by S. Mori and S. Mukai in [MM82] and [MM03]. They proved that there exist
88 deformation types of these.

In higher dimensions, there do not exist complete classification. However, if we fix some
invariants of the Fano manifold we can obtain partial results. Two important invariants
are the index and the degree, which we define as follows.

Definition 2.6.4. Let X be an n-dimensional Fano manifold. The index iX of X is
defined by

iX = max{m ∈ N | −KX = mH, for some Cartier divisor H}.

Assume that X has Picard number equals 1. Let L be the ample generator of Pic(X).
The degree dX of X is defined as dX = c1(L)n.

The following result, due to S. Kobayashi and T. Ochiai, gives an upper bound for the
index of a Fano manifold and characterizes those whose index are the highest ones.

Theorem 2.6.3 ([KO73]). Let X be an n-dimensional Fano manifold over a field of
characteristic zero. Then

(i) iX ≤ n+ 1;

(ii) iX = n+ 1 if and only if X ∼= Pn;

(iii) iX = n if and only if X ∼= Q ⊂ Pn+1, a quadric hypersurface.

The following result is due to J. A. Wísniewski.

Theorem 2.6.4 ([Wís91]). Let X be an n-dimensional Fano manifold with index iX ≥
n+1

2 . Then X satisfies one of the following conditions:

(i) X has Picard number ρ(X) = 1;

(ii) X ∼= P
n
2 × P

n
2 , and n is even;

(iii) X ∼= P
n−1
2 ×Q

n+1
2 , and n is odd;

(iv) X ∼= P
(
T
P

n+1
2

)
, and n is odd;

(v) X ∼= P
P

n+1
2

(
O(1)⊕O

n−1
2

)
, and n is odd.

An n-dimensional Fano manifold X with index iX = n−1 is called del Pezzo manifold.
These manifolds were classified by T. Fujita in [Fuj82a] and [Fuj82b]:



20 CHAPTER 2. PRELIMINARIES

Theorem 2.6.5. Let X be an n-dimensional del Pezzo manifold with n ≥ 3.

(1) Assume that X has Picard number ρ(X) = 1. Then the degree dX of X satisfies
1 ≤ dX ≤ 5. Moreover, for each d = 1, . . . , 4 and each n ≥ 3, and for d = 5 and
each n = 3, . . . , 6, there exists a unique deformation class of n-dimensional del Pezzo
manifolds Yd with ρ(Yd) = 1 and dYd = d. They have the following description:

(i) Y1 is a hypersurface of degree 6 in the weighted projective space P(3, 2, 1, . . . , 1);

(ii) Y2 → Pn is a double cover branched along a quartic hypersurface in Pn; al-
ternatively, Y2 is a hypersurface of degree 4 in the weighted projective space
P(2, 1, . . . , 1);

(iii) Y3 is a cubic hypersurface in Pn+1;

(iv) Y4 is the intersection of two quadrics in Pn+2;

(v) Y5 is a linear section of the Grassmannian G(1, 4) embedded in P9 under the
Plücker embedding.

(2) Assume that X has Picard number ρ(X) > 1. Then X is isomorphic to one of the
following:

(i) P2 × P2, and n = 4;

(ii) P (TP2), and n = 3;

(iii) P (OP2(1)⊕OP2), and n = 3;

(iv) P1 × P1 × P1, and n = 3.

An n-dimensional Fano manifold X with index iX = n − 2 is called Mukai manifold.
The classification of such manifolds was first announced in [Muk89] by S. Mukai. The
complete list can be found in [IP99] and [AC13]. We only note that, among all Fano vari-
eties appearing in the classification of Mukai manifolds, we have the general codimension
2 linear section of the Grassmannian G(1, 5) embedded by the Plücker embedding. This
linear section of G(1, 5) and the general codimension 2 linear section of G(1, 4) will be
studied in Chapter 3.

2.6.3 2-Fano Manifolds

In 2003, T. Graber, J. Harris and J. Starr proved the following beautiful theorem:

Theorem 2.6.6 ([GHS03, Thm. 1]). Let f : X → B be a proper morphism of complex
varieties with B a smooth curve. If the general fiber of f is rationally connected, then f
has a section.

This theorem says that if K is the function field of a curve over C, then any rationally
connected variety X defined over K has a K-point. This generalizes the following C.
Tsen’s Theorem in the case of function fields of curves.

Theorem 2.6.7. Let K be a field of transcendence degree r over an algebraically closed
field k. Let Y ⊂ PNK be a hypersurface of degree d. If dr ≤ N , then Y has a K-point.

A hypersurface of degree d in PN is Fano or rationally connected if and only if d ≤ N .
Hence, for r = 1, the Graber-Harris-Starr’s Theorem replaces in Tsen’s Theorem the con-
dition of Y being a hypersurface of degree d ≤ N with the condition of Y being rationally
connected. This means much because rationally connected varieties form the largest class
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of varieties for which such statement holds true for r = 1. This motivated a search for the
suitable geometric conditions on Y that generalizes Tsen’s Theorem for function fields of
higher dimensional varieties. In [dHS11], A. J. de Jong, X. He and J. M. Starr established
a generalization of Tsen’s Theorem for function fields os surfaces. They replaced the con-
dition of Y being a hypersurface of degree d, d2 ≤ N , with the condition of X satisfying
a notion of rationally simply connectedness. Roughly speaking, a rationally connected
variety is rationally simply connected if the space of based 2-pointed rational curves is
rationally connected. In order to find geometric conditions that imply rationally simply
connectedness, in [dS06c] and [dS07] de Jong and Starr introduced 2-Fano manifolds. We
will define this notion after some notation.

Let X be a smooth, complex, projective variety, and let k ≥ 1 be an integer. Let
Ak(X) be the group of k-cycles on X modulo rational equivalence, and let Ak(X) be the
k-th graded piece of the Chow ring A∗(X) of X. Let Nk(X) be the quotient of Ak(X) by
numerical equivalence, and let Nk(X) be the quotient of Ak(X) by numerical equivalence.
The Abelian groups Nk(X) and Nk(X) are finitely generated, and intersection product
induces a perfect pairing

Nk(X)×Nk(X) −→ Z.

We will denote Nk(X)R = Nk(X) ⊗ R and Nk(X)R = Nk(X) ⊗ R. We will denote
by NEk(X) ⊂ Nk(X)R the closure of the convex cone generated by classes of effective
k-cycles.

Let α ∈ Nk(X)R. We say that α is nef if α ·β ≥ 0, for every β ∈ NEk(X)R. We write
α ≥ 0 for α nef.

Definition 2.6.5. Let X be a smooth, complex, projective variety with second Chern
character ch2(X). We say that X is 2-Fano (respectively weakly 2-Fano) if X is Fano and
ch2(X) · α > 0 (respectively ch2(X) · α ≥ 0), for every α ∈ NE2(X)R \ {0}.

In [AC13], C. Araujo and A.-M. Castravet gave a complete classification for 2-Fano
manifolds and an almost complete classification for weakly 2-Fano manifolds, both cases
for manifolds of dimension n ≥ 3 and index at least n − 2. The only cases left open
were the general codimension 2 linear sections of Grassmannians G(1, 4) and G(1, 5). In
Chapter 3 we will complete this classification proving that these manifolds are not weakly
2-Fano.

2.7 Grassmannians

This section is devoted to Grassmannians, which are varieties parameterizing (k + 1)-
dimensional vector subspaces of a given finite-dimensional vector space, or equivalently,
k-planes in a projective space. Grassmannians are widely studied and they appear very
often in classification theorems. We cite [Har92] and [Sha13a] as references for Grassman-
nians.

2.7.1 Plücker Embedding

Let V be an (N + 1)-dimensional vector space and let k ≥ 0 be an integer such that
k ≤ N . The Grassmannian G(k,P(V )) is the set of all k-planes in the projective space
P(V ).
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Notation. A k-plane in the projective space P(V ) is the projectivization P(W ) of a
(k + 1)-dimensional vector subspace W ⊂ V . We will denote by [P(W )] the correspond-
ing point in the Grassmannian G(k,P(V )). Often we will work over the field of complex
numbers, so it will be convenient to denote by G(k,N) the Grassmannian of k-planes in
the projective space PN = P(CN+1).

Example 2.7.1. For V = CN+1, the Grassmannian G(0,PN ) is the set of all points in
PN , that is, G(0, N) = PN , and G(1,P3) is the set of all lines in P3.

We can give to the Grassmannian G(k,P(V )) the structure of a projective variety
as follows. Let P(W ) be a k-plane in P(V ) which is the projectivization of a (k + 1)-
dimensional vector subspace W ⊂ V . Choose a basis {w1, . . . , wk+1} for W and consider
the (k + 1)× (N + 1)-matrix of maximal rank w1

...
wk+1

 =

 w1,1 · · · w1,N+1
...

. . .
...

wk+1,0 · · · wk+1,N+1

 .

Denote by Wi1···ik+1
the (i1, . . . , ik+1)-minor of this matrix, that is, the determinant of the

submatrix formed by the columns 1 ≤ i1 < · · · < ik+1 ≤ N + 1. Then we have a well
defined map

ψ : G(k,P(V )) −→ P(N+1
k+1)−1

[P(W )] 7−→ (· · · : Wi1···ik+1
: · · · ).

Indeed, if {w′1, . . . , w′k+1} is another basis for W , then there exists an invertible matrix
M ∈ GL(k + 1,C) such that (wij) = M(w′ij). Hence, the minors of the matrices (wij)
and (w′ij) differ from one another by the multiplication of det(M), a non-zero number.
Moreover, since the matrix (wij) has maximal rank, at least one of the minors Wi1···ik+1

is non-zero. Therefore, ψ is well-defined. Furthermore, one can prove that ψ is one-
to-one and its image is a smooth algebraic variety which is the intersection of quadric
hypersurfaces (see, for example, [Har92, Lecture 6] or [Sha13a, Subsection 1.4.1]). This
map ψ is known as the Plücker embedding.

There exists another way to represent the Plücker embedding, making less use of
homogeneous coordinates. In this way, the Plücker embedding is given by

ψ : G(k,P(V )) −→ P
(∧k+1 V

)
[P(W )] 7−→ P(w1 ∧ · · · ∧ wk+1).

Let OG ⊗ V be the trivial vector bundle (of rank N + 1) on the Grassmannian
G(k,P(V )). The tautological or universal bundle of the Grassmannian G(k,P(V )) is the
vector sub-bundle UG ofOG⊗V (of rank k+1) whose fiber over a point [P(W )] ∈ G(k,P(V ))
is the vector subspace W ⊂ V itself, that is,

f : UG = {(w, [P(W )]) ∈ V ×G(k,P(V )) | w ∈W} −→ G(k,P(V ))

(w, [P(W )]) 7−→ [P(W )].

The quotient QG = OG ⊗ V/UG, called tautological or universal quotient bundle on the
Grassmannian G(k,P(V )), is the vector bundle (of rank N − k) whose fiber over a point
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[P(W )] is the vector space V/W . The exact sequence of vector bundles on G(k,P(V ))

0→ UG → OG ⊗ V → QG → 0

is referred as the tautological or universal exact sequence on the Grassmannian G(k,P(V )).

Note that, the line bundle O(1) on P
(∧k+1 V

)
restricts to

∧k+1 U∨ on the Grassmannian

G(k,P(V )), because O(−1) is the tautological vector sub-bundle of P
(∧k+1 V

)
, as we

can see from the example below.

Example 2.7.2. The tautological bundle of the projective space PN = G(0, N) is the line
bundle U whose fiber over a point x = (x0 : · · · : xN ) ∈ PN is the line defined by x, that
is,

f : U = {(z, x) ∈ CN+1 × PN | z = λ(x0, . . . , xN ) for some λ ∈ C} −→ PN

(z, x) 7−→ x.

If we cover the projective space PN with the N + 1 affine open subsets

Ui := {(x0 : · · · : xN ) ∈ PN | xi 6= 0}, for i = 0, . . . , N,

then the trivializations of U over this cover are

ϕi : f−1(Ui) −→ Ui × C, for i = 0, . . . , N.

(z, x) 7−→ (x, zi)

Denote by Uij the intersection of Ui and Uj . The transition function for U relative to the
trivializations ϕi and ϕj is

ϕij : Uij × C
ϕ−1
i−→ f−1(Uij)

ϕj−→ Uij × C
(x, t) 7−−−−−−−−−−−−→ (x, (xi/xj)t).

Therefore, the tautological bundle U of PN is represented by co-cycles {gij}i,j ∈ H1(PN ,O∗PN ),
where

gij : Uij −→ C∗

x 7−→ xi/xj .

On the other hand, if H is a hyperplane in PN , say H : x0 = 0, then we have isomorphisms

OPN (H)|Ui

∼−→ OPN |Ui
, for i = 0, . . . , N,

given by the multiplication by x0/xi. Hence, OPN (H) is represented by the co-cycles
{g−1
ij }i,j ∈ H1(PN ,O∗PN ), and therefore f : U → PN is the line bundle associated to the

invertible sheaf OPN (−1).

It is not difficult to prove that the tangent bundle TG of the Grassmannian G(k,P(V ))
is described by

TG ∼= Hom (UG,QG) ∼= U∨G ⊗QG

(see [Sha13b, Example 6.24]), and thus the cotangent bundle is described by

ΩG ∼= UG ⊗Q∨G.
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In particular, taking the highest exterior power, we can describe the canonical bundle ωG
of the Grassmannian G(k,P(V )) by

ωG ∼=
(∧k+1 UG

)⊗(N−k)
⊗
(∧N−kQ∨G

)k+1
.

But, by the tautological exact sequence,
∧k+1 UG and

∧N−kQG are dual vector bundles.
Since

∧k+1 UG ∼= OG(−1), we conclude that

ωG ∼= OG(−N − 1).

One can prove more: the Grassmannian G(k,P(V )) has Picard group

Pic(G(k,P(V ))) ∼= Z[OG(1)].

We end this section describing lines on the Grassmannian G(k,P(V )); we will conclude
that G(k,P(V )) is covered by lines.

Example 2.7.3. Let U be a k-dimensional vector space and let V be a (k+2)-dimensional
vector space such that U ⊂ V . We claim that

LU,V = {[P(W )] ∈ G(k,N) | U ⊂W ⊂ V } ∼= P(V/U)

is a line on G(k,N). Moreover, every line on G(k,N) is determined by the choice of vector
spaces U and V satisfying the properties above. Indeed, let {u1, . . . , uk} be a basis for U ;
since U ⊂ V , we can complete a basis to V , say {u1, . . . , uk, vk+1, vk+2}. Then, for every
point [P(W )] ∈ LU,V , the corresponding (k+1)-dimensional vector subspace W has a basis
{u1, . . . , uk, λvk+1 + µvk+2}, for some (λ : µ) ∈ P1. Using the linearity of the determinant
map (in the (k + 1)-th coordinate), we conclude that

[P(W )] = (· · · : Wi1···ik+1
: · · · ) = (· · · : λW k+1

i1···ik+1
+ µW k+2

i1···ik+1
: · · · ),

where W k+1
i1···ik+1

is the (i1 · · · ik+1)-minor of the matrix consisting of rows u1, . . . , uk, vk+1

and W k+2
i1···ik+1

is the (i1 · · · ik+1)-minor of the matrix consisting of rows u1, . . . , uk, vk+2.

Therefore, it shows that LU,V is a line on the Grassmannian G(k,N).

Conversely, let L be a line on G(k,N), passing through two distinct points [P(W )] and
[P(W ′)]. Using the equations defining the Grassmannian variety G(k,N) and by usual
computations, one can see that the condition L ⊂ G(k,N) implies that L is given as
claimed.

2.7.2 Schubert Calculus

Enumerative Geometry is an important part of the Algebraic Geometry. The goal is to
count the number of objects (points, curves, etc.) satisfying certain incidence conditions.
A very useful tool for this task is the Schubert Calculus, which refers to the calculus of
enumerative geometry concerning linear subspaces. For this subject we refer to [Har92,
Section 1.5] and the nice I. Coskun’s notes [Cos06].

Definition 2.7.1. Let F• be a complete flag

F• : 0 = F0 ⊂ F1 ⊂ · · · ⊂ FN+1 = CN+1
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of the vector space CN+1. Given a partition λ = (λ1, . . . , λk+1) satisfying

N − k ≥ λ1 ≥ · · · ≥ λk+1 ≥ 0,

the Schubert variety Σλ(F•) = Σλ1,...,λk+1
(F•) of type λ with respect to the flag F• is

defined by

Σλ1,...,λk+1
(F•) = {[P(W )] ∈ G(k,N) | dim(W ∩ FN−k+i−λi) ≥ i, for i = 1, . . . , k + 1.} .

Note that this definition does not depend on the choice of the flag. Indeed, let E• and
F• be two complete flags of the vector space CN+1. Because of the transitive action of
PGL(N +1,C) on G(k,N), there exists an automorphism of CN+1 mapping the flag E• to
the flag F• and, consequently, the Schubert varieties Σλ(E•) and Σλ(F•) are isomorphic.
For that reason, we simply denote the Schubert variety of type λ by Σλ1,...,λk+1

.

The dimension of the Schubert variety Σλ1,...,λk+1
is (k + 1)(N − k)−

∑k+1
i=1 λi.

It can be proved that the Schubert varieties give a cell-decomposition of the complex
Grassmannian G(k,N) with only even dimensional cells. It follows that the classes of the
Schubert varieties generate the homology of G(k,N). Applying Poincaré Duality we obtain
the following fundamental theorem about the cohomology of G(k,N). We will denote the
cohomology class that corresponds to the Schubert variety Σλ1,...,λk+1

by σλ1,...,λk+1
. We

omit the indices that are zero.

Theorem 2.7.1 (Chow Basis Theorem). The Schubert classes σλ freely generate the
Chow group A∗(G(k,N)).

Example 2.7.4. Consider the Grassmannian G(1, 3) of lines in P3. A complete flag on P3

corresponds to a choice of a point p ∈ P3, a line ` ⊂ P3 containing p and a plane P ⊂ P3

containing `. In this case, the Schubert variety Σ1 parameterizes lines that intersect `. Σ2

parameterizes lines that contain p. Σ1,1 parameterizes lines that are contained in P . Σ2,1

parameterizes lines that are contained in P and contain p.

Example 2.7.5. How many lines are contained in the intersection of two general quadric
hypersurfaces in P4? The answer to this question is given by the self-intersection of the
class [Ω], where Ω is the set of lines contained in a quadric hypersurface in P4. The
dimension of Ω is 3. Since the Schubert cycles σ3 and σ2,1 generate the group of 3-cycles
on X, we can write [Ω] = aσ3 + bσ2,1, with a, b ∈ Z. The cycle σ3 is self-dual. Hence
a = [Ω]σ3, and it corresponds to the number of lines contained in a quadric hypersurface
and passing through a fixed point. As long as the point is not contained in the quadric
hypersurface, we have a = 0. The cycle σ2,1 is also self-dual. Hence b = [Ω]σ3, and it
corresponds to the number of lines contained in the intersection of a quadric hypersurface
with a P3 and intersecting a P1 ⊂ P3. We claim that b = 4. Indeed, the intersection of
the quadric hypersurface with the P3 is a quadric surface. The lines have to be contained
in this surface and must pass through the two points of intersection of the P1 with the
quadric surface. There exist 4 such lines. Therefore, there exist [Ω]2 = 16 lines contained
in the intersection of two general quadric hypersurfaces in P4.

In the previous example (and many others found in the literature) we pretend that all
intersections are transverse. This is indeed the case, but it requires some attention. We can
either explicitly calculate the tangent spaces to check that the intersections are transverse
or appeal to a general theorem that guarantees the result. We state that theorem for the
sake of completeness.
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Theorem 2.7.2 (Kleiman’s Transversality). Assume the ground field is algebraically
closed of characteristic zero. Let X be an integral algebraic scheme, on which an integral
algebraic group G acts. Let f : Y → X and g : Z → X be two morphisms of integral
algebraic schemes. For each rational element of g ∈ G, denote by gY the X-scheme given
by y 7→ gf(y). Then there exists a dense open subset U of G such that for every rational
element g ∈ U , the fiber product (gY ) ×X Z is either empty or equidimensional of the
expected dimension

dim(Y ) + dim(Z)− dim(X).

Furthermore, if Y and Z are regular, for a dense open set this fiber product is regular.

The dual of the Schubert cycle σλ1,...,λk+1
, denoted by σ∗λ1,...,λk+1

, is the cycle
σN−k−λk+1,...,N−k−λ1 . If σλ and σµ are Schubert cycles of complementary dimensions,
then Duality Theorem (see [Ful98, Ex. 14.7.4]) assures that

σλ · σµ =

{
1, if σµ = σ∗λ;

0, otherwise.

Other useful formulas, such as Pieri’s Formula and Giambelli’s Formula are given below.
We will say that a Schubert cycle σλ is special if λ = (h, 0, . . . , 0) and we will denote such
a cycle by σh.

Theorem 2.7.3 (Pieri’s Formula). Let σh be a special Schubert cycle and σλ be any
Schubert cycle. Then

σh · σλ =
∑
µ

σµ,

where the sum is over all partitions |µ| such that |µ| = h+ |λ| and

N − k ≥ µ1 ≥ λ1 ≥ · · · ≥ µk+1 ≥ λk+1.

Theorem 2.7.4 (Giambelli’s Formula). Any Schubert cycle σλ1,...,λk+1
can be expressed

as a linear combination of products of special Schubert cycles as follows

σλ1,...,λk+1
= det


σλ1 σλ1+1 · · · σλ1+k

σλ2−1 σλ2 · · · σλ2+k−1
...

...
. . .

...
σλk+1−k σλk+1−k+1 · · · σλk+1

 .

The next result gives a description of the cohomology ring of the Grassmannian G(k,N)
in terms of the Chern classes of the tautological bundle UG and the universal quotient
bundle QG on G(k,N).

Theorem 2.7.5. As a ring, the cohomology ring of the Grassmannian G(k,N) is isomor-
phic to

R[c1(UG), . . . , ck+1(UG), c1(QG), . . . , cN−k(QG)]/(c(UG) c(QG) = 1).

Moreover, the Chern classes of the tautological quotient bundleQ generate the cohomology
ring.

Proposition 2.7.1. The Chern classes of the tautological bundle UG on the Grassmannian
G(k,N) are given by

ci(UG) = (−1)iσ1,...,1,
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where the Schubert cycle has length i. The Chern classes of the tautological quotient
bundle QG on G(k,N) are given by

ci(QG) = σi.
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Chapter 3

Lines on Varieties

In some sense a straight line is the simplest example of embedded rational curve. For
that reason, it is natural to begin the study of rational curves on projective varieties by
considering their varieties of lines, sometimes satisfying some additional condition. Our
interest is in lines on projective varieties passing through a general point of the variety.
In Section 3.1 we present some basic facts about these varieties of lines and then we
compute some examples in the case of hypersurfaces, Grassmannians and linear sections
of Grassmannians. In this last case we focus attention on linear sections of codimension 2
of the Grassmannians G(1, 4) and G(1, 5). In order to give a more satisfactory description
of their varieties of lines through a fixed point, in Section 3.2 we study their automorphism
groups, which were determined by J. Piontkowski and A. Van de Ven in [PVdV99]. We
will see that these automorphism groups act with finitely many orbits and we will describe
such orbits. Then, in Section 3.3 we describe the variety of lines on these linear sections
passing through a fixed point in each orbit of the actions. Finally, as an application of
these results, in Section 3.4 we prove that these linear sections of Grassmannians are not
weakly 2-Fano, completing the classification of weakly 2-Fano manifolds of high index,
initiated by C. Araujo and A.-M. Castravet in [AC13].

3.1 Fano Variety of Lines

Let X ⊂ PN be an n-dimensional variety. We will denote by F (X) the Hilbert scheme
Hilbt+1(X) of lines on X. This scheme was studied by G. Fano, and for that reason is
called the Fano variety of lines on X. We stress that F (X) is not always a Fano variety in
the sense of Definition 2.6.1. The Fano variety of lines F (X) can be viewed as the image
of the morphism

Hom1(P1, X) −→ G(1, N)

[f ] 7−→ [f(P1)],

where Hom1(P1, X) denotes the irreducible component of the scheme Hom(P1, X) param-
eterizing morphisms f : P1 → X of degree 1, and G(1, N) denotes the Grassmannian of
lines in the projective space PN . The induced morphism

ρ : Hom1(P1, X) −→ F (X)

is simply the quotient by the automorphism group Aut(P1) of P1. Assume that X is
smooth along a line ` on X parameterized by [f ] ∈ Hom1(P1, X). By the results in

29
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Section 2.2, the differential map of ρ at [f ] fits into an exact sequence

0→ H0(P1, TP1)→ H0(P1, f∗TX)
d[f ]ρ−−−→ H0(P1, f∗N`/X)→ 0.

Since f is an isomorphism onto its image, the same exact sequence can be considered on
the line `. Therefore,

T[`]F (X) ∼= H0(`,N`/X),

as we already expected from the results in Section 2.3.

We can carry out the above description starting with Hom1(P1, X; o 7→ x) instead of
Hom1(P1, X). The quotient of Hom1(P1, X; o 7→ x) by the automorphism group Aut(P1;x)
of P1 fixing the point x parameterizes lines on X passing through the point x ∈ X. This
scheme will be denoted by F (X;x) and we refer to it as the Fano varieties of lines on
X passing through x. The tangent space to F (X;x) at a point [`] is described by the
isomorphism

T[`]F (X;x) ∼= H0(`,N`/X(−x)).

Next we present some basic facts concerning the Fano varieties of lines F (X) and
F (X;x). The following result, proved by W. Barth and A. Van de Ven, considers the case
that X is a hypersurface.

Theorem 3.1.1 ([BVdV79, Thm. 8]). Let Xd ⊂ PN be a hypersurface of degree d.

(i) If d ≤ 2N − 3, then F (Xd) 6= ∅;

(ii) If d ≤ 2N − 3 and Xd is general, then F (Xd) is smooth of dimension 2N − 3;

(iii) If d ≤ 2N − 4, then F (Xd) is connected, except in the case of a smooth quadric
hypersurface X2 ⊂ P3.

Proposition 3.1.1 ([Deb01, Prop. 2.13]). Let X ⊂ PN be a variety defined by equations
of degrees d1, . . . , dk. Set |d| = d1 + · · ·+ dk.

(i) dimF (X;x) ≥ N − 1− |d|, for every point x ∈ X; in particular, if |d| ≤ N − 1 then
F (X;x) 6= ∅;

(ii) Assume |d| ≤ N − 1. If X is general (and therefore, a complete intersection) and `
is a general line on X, then

N`/X ∼= O`(1)N−1−|d| ⊕O|d|−k` .

Sketch of proof of (i). LetX be given by the zeroes of homogeneous polynomialsG1, . . . , Gk
of degrees d1, . . . , dk. Let x ∈ X. Fix a hyperplane H ⊂ PN such that x 6∈ PN . The lines
in PN passing through x are parameterized by H ∼= PN−1. Let y ∈ H. The line passing
through these points,

Lx,y = {(λx0 + µy0 : · · · : λxN + µyN ) ∈ PN | (λ : µ) ∈ P1},

is contained in X if and only if

Gi(λx0 + µy0, . . . , λxN + µyN ) = 0,

for every (λ : µ) ∈ P1 and every i = 1, . . . , k. Each of these equations is homogeneous
polynomial of degree di in the variables λ, µ, with di + 1 coefficients. Note that the
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coefficient of the term λdi of each of these equations is zero, since x ∈ X. Therefore,
dimF (X;x) ≥ N − 1− |d|.

Example 3.1.1 (Lines on a Cubic Hypersurface Through a Point). Let X3 be a cubic
hypersurface in a projective space PN , with N ≥ 4, given by the polynomial equation∑

i0+···+iN=3

c(i)x
i0
0 · · ·x

iN
N = 0.

Let us describe the Fano variety F (X3; r) of lines on X3 passing through a general point
r ∈ X3. Under a projective change of coordinates, we can assume that r = (1 : 0 : · · · : 0),
that is, c30···0 = 0. The lines in PN passing through r are parameterized by the hyperplane
H ∼= PN−1 given by the equation x0 = 0. Let s = (0 : s1 : · · · : sN ) be a point of H. The
line passing through these points,

Lr,s = {(λ : µs1 : · · · : µsN ) ∈ PN | (λ : µ) ∈ P1},

is contained in X3 if and only if  ∑
i1+···+iN=1

i0=2

c(i)s
i1
1 · · · s

iN
N

λ2µ

+

 ∑
i1+···+iN=2

i0=1

c(i)s
i1
1 · · · s

iN
N + 2s0

∑
i1+···+iN=1

i0=2

c(i)s
i1
1 · · · s

iN
N

λµ2

+

 ∑
i1+···+iN=2

c(i)s
i1
1 · · · s

iN
N

µ3 = 0,

for every (λ : µ) ∈ P1. Therefore, F (X3; r) is isomorphic to a complete intersection of type
(1, 2, 3) in PN−1. Note that, the vanishing condition of the coefficient of the monomial
λ2µ means that s is in the tangent space of X3 at the point r. The vanishing condition of
the coefficient of the monomial µ3 means that s is a point of X3.

For the next examples we will consider the Grassmannian G(k,N) of k-planes in a
(complex) projective space PN embedded into P(

∧k+1 CN+1) by the Plücker embedding

G(k,N) −→ P
(∧k+1 CN+1

)
P(span{u1, . . . , uk+1}) 7−→ P(u1 ∧ · · · ∧ uk+1).

Example 3.1.2 (Lines on a Grassmannian Through a Point). Let G = G(k,N) be the

Grassmannian of k-planes in a projective space PN embedded in P(N+1
k+1) under the Plücker

embedding. Let us compute the Fano variety F (G;x) of lines on G passing through a fixed
point x ∈ G. Let us say that the point x ∈ G corresponds to a (k+ 1)-dimensional vector
subspace W . We know from Example 2.7.3 that a line on G passing through x = [P(W )] is
determined by the choice of a k-dimensional vector subspace U and a (k+ 2)-dimensional
vector subspace V such that U ⊂W ⊂ V . Such a line, denoted by LU,V , is given by

LU,V = {[P(W ′)] ∈ G | U ⊂W ′ ⊂ V }.
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Therefore, the Fano variety F (G;x) can be identified in the following way:

F (G;x) =

{
lines on G passing
through x = [P(W )]

}
←→ P(W )∨ × P(CN+1/W ) ∼= Pk × PN−k−1

LU,V 7−→ (P(U),P(V/W )).

Example 3.1.3 (Lines on a Linear Section of Grassmannian Through a Point). We will
assume notation as in Example 3.1.2. Let H l be a linear subspace of codimension l of

P
(∧k+1 CN+1

)
. Consider the linear section of Grassmannian X = G(k,N) ∩ H l. The

Fano variety of lines F (X;x) of lines on X passing through a point x ∈ X is a subvariety
of the Fano variety F (G;x). The Fano variety F (X;x) is an intersection of l divisors Di

of type (1, 1) in F (G;x) ∼= Pk×PN−k−1, obtained from the condition that the lines are on
each hyperplane defining H l. If H l and x are general, then using some geometric invariant
theory one can prove that F (X;x) is smooth (this is true for every complex, projective,
connected variety X; see [Mor79, Lemma 9]). For the cases treated in the next sections,
F (X;x) will be given explicitly. Thus, we can check the smoothness of F (X;x), for x
general, using Jacobi’s Criterion.

For varieties X covered by lines the study of the Fano variety F (X;x) of lines on X
passing through a general point x ∈ X has shown to be a powerful tool for the study
of the variety X. However, in some cases it is important to know F (X;x) for all points
x ∈ X, not just general points. The work presented in this chapter is an example. In the
next sections we investigate general codimension 2 linear sections of the Grassmannians
G(1, 4) and G(1, 5). We give descriptions of their varieties of lines passing through any
given point of them. With such descriptions we are able to show that this linear sections
of Grassmannians are not weakly 2-Fano, completing the Araujo-Castravet classification
of weakly 2-Fano manifolds of high index.

More generally, for the study of uniruled varieties X (see Definition 2.6.2) we consider a
minimal family of rational curves on X through a general point x ∈ X. For completeness,
but very briefly, we discuss this tool. Let X be a smooth, complex, projective, uniruled
variety. Let x ∈ X be a general point. Let RatCurves(X,x) be the scheme parameterizing
rational curves on X passing through x (see Subsection 2.4.1 for definition). An irreducible
component Hx of RatCurves(X,x) is called a family of rational curves through x; if Hx is
proper, thenHx is called a minimal family of rational curves through x. There always exists
such a minimal family: one can takeHx to be an irreducible component of RatCurves(X,x)
parameterizing rational curves through x having minimal degree with respect to some fixed
ample line bundle. Let Hx be a minimal family of rational curves through x. It comes
with universal family morphisms

Ux

πx
��

evx // X,

Hx

σx

[[

where πx is a P1-bundle and σx is the unique section of πx such that evx(σx(Hx)) = {x}.
A natural polarization Lx is defined on Hx as follows. There exists an inclusion of sheaves

σ∗xTπx ↪−→ σ∗x ev∗x TX
∼= TxX ⊗OHx .

By [Keb02, Theorem 3.3 and Theorem 3.4], the quotient is locally free and defines a finite
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morphism
τx : Hx −→ P(TxX),

which maps a curve that is smooth at x to its tangent direction at x. Then we define
Lx = τ∗xOP(TxX)(1). The polarized variety (Hx, Lx) is called a polarized minimal family
of rational curves through x. It is a powerful tool for the study of uniruled varieties. The
morphism τx has been studied extensively in a series of papers by J.-M. Hwang and N.
Mok (see, for example, [Hwa01] and [HM04]).

3.2 Automorphism Groups of Linear Sections
of the Grassmannians G(1, N)

In this section we present some results concerning the automorphism groups of lin-
ear sections of Grassmannians of lines in a projective space. These results were proven
by J. Piontkowski and A. Van de Ven in [PVdV99], to which we refer for proofs and details.

Before we begin, we introduce the following notation:

Notation. Given a subvariety Y of a variety X, we will denote by Aut(Y,X) the group
of automorphisms of X that induce automorphisms of Y , that is,

Aut(Y,X) = {ϕ ∈ Aut(X) | ϕ(Y ) ⊂ Y }.

Throughout this section we will consider the Grassmannian G(k,N) of k-planes in a

(complex) projective space PN embedded in P
(∧k+1 CN+1

)
under the Plücker embed-

ding. We will follow the notation in Subsection 2.7.1: given a k-plane P(W ) in PN , we
will denote by [P(W )] the corresponding point in the Grassmannian G(k,N).

The following is a well known theorem about the automorphism group of Grassman-
nians.

Theorem 3.2.1 ([Har92, Thm. 10.19]). For N > 2k + 1,

Aut(G(k,N)) ∼= Aut(G(k,N),P(
∧k+1 CN+1)) ∼= PGL(N + 1,C),

and for N = 2k + 1,

Aut(G(k, 2k + 1)) ∼= Aut(G(k, 2k + 1),P(
∧k+1 C2(k+1))) ⊃ PGL(2(k + 1),C),

where the inclusion has index 2.

Denote by H l a general linear subspace of codimension l of P(
∧k+1 CN+1). For gen-

eral linear sections of Grassmannians, J. Piontkowski and A. Van de Ven in [PVdV99]
determined the automorphism groups of G(1, N) ∩H2. Their first result is the following:

Theorem 3.2.2 ([PVdV99, Thm. 1.2 and Cor. 1.3]). For N ≥ 4 and a general linear
subspace H l ⊂ P(

∧2 CN+1) of codimension l ≤ 2N − 5,

Aut(G(1, N) ∩H l) ∼= Aut(G(1, N) ∩H l, H l).

If l ≤ N − 2, then

Aut(G(1, N) ∩H l) ∼= Aut(G(1, N),P(
∧2 CN+1)) ∩Aut(H l,P(

∧2 CN+1)).
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When N ≥ 4 and l ≤ N −2, the theorem says that the automorphisms of G(1, N)∩H l

are the automorphisms in Aut(G(1, N),P(
∧2 CN+1)) ∼= PGL(N + 1,C) such that their

induced action on the dual space P(
∧2 CN+1)∨ fixes (H l)∨. If {e1, . . . , eN+1} is a basis of

CN+1 and Eij ∈ Mat(N + 1,C) the matrix with the entry (i, j) equal to 1 and otherwise
equal to 0, then (∧2 CN+1

)∨
−→ Antisym(N + 1,C)∑

i,j λi,j(ei ∧ ej)∨ 7−→
1
2

∑
i,j λi,j(Ei,j − Ej,i)

is an isomorphism of vector spaces; that allows us to identify P(
∧2 CN+1)∨ with

P(Antisym(N + 1,C)). A point [P(span{p, q})] ∈ G(1, N) is contained in a hyperplane
H = P(A)∨, with A ∈ Antisym(N + 1,C), if and only if, pAtq = 0. The action of an
automorphism P(T ) ∈ PGL(N + 1,C) on P(Antisym(N + 1,C)) is given by

P(Antisym(N + 1,C)) −→ P(Antisym(N + 1,C))

P(A) 7−→ P(tT−1AT−1).

Therefore, a linear subspace H l ⊂ P(
∧2 CN+1) of codimension l, dually given by

P(span{A1, . . . , Al})∨, is preserved under T if and only if,

tT−1AiT
−1 ∈ span{A1, . . . , Al}, for all i = 1, . . . , l. (3.1)

The second step in the task of determining the automorphism groups is done separately
for the different cases using the above description.

Consider the case l = 1. The automorphism group of Y = G(1, 2n−1)∩H, where H =
P(A)∨ is a general hyperplane of P(

∧2 C2n), is isomorphic to the group Sp(2n,C)/{±I},
where Sp(2n,C) denotes the symplectic group associated to A. Its action on Y is ho-
mogeneous (see [PVdV99, Prop. 2.1]). The automorphism group of X = G(1, 2n) ∩ H,
where H = P(A)∨ is a general hyperplane of P(

∧2 C2n+1), act on X with two orbits (see
[PVdV99, Prop. 5.3] for details).

3.2.1 The Case G(1, 2n) ∩H2

Now let L = H2 = H1 ∩ H2 ⊂ P(
∧2 C2n+1) be a linear subspace of codimension 2

given by the intersection of two distinct hyperplanes H1 = P(A)∨, H2 = P(B)∨, with
A,B ∈ Antisym(2n + 1,C). As before, L is dual to the line L∨ = P(λA − µB) ⊂
P(Antisym(2n+ 1,C)). It can be shown that the dual Grassmannian of G(1, 2n) is given
by

G(1, 2n)∨ = {P(C) ∈ P(Antisym(2n+ 1,C)) | rank(C) ≤ 2n− 2}

and that it is a subvariety of codimension 3 in P(Antisym(2n + 1,C)) (see [PVdV99,
Corollary 1.7]). We will say that L = H2 is general if L∨ does not intersect G(1, 2n)∨.
Since antisymmetric matrices have even rank, the ones λA − µB corresponding to the
hyperplanes H(λ:µ) = P(λA− µB)∨ have all corank 1. The corresponding point c(λ : µ) ∈
P2n of the 1-dimensional kernel of λA− µB is called center of H(λ:µ). The map

c : P1 −→ P2n

(λ : µ) 7−→ c(λ : µ) = P(ker(λA− µB))
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is a parametrization of a rational normal curve C of degree n, called center curve. Denoting
by the same symbol c(λ : µ) a generator of the kernel of λA− µB, we have λc(λ : µ)A =
µc(λ : µ)B. Then we have a well defined map

h : P1 −→ (P2n)∨

(λ : µ) 7−→ h(λ : µ) = P
(

ker

(
c(λ : µ)A
c(λ : µ)B

))
,

which is a parametrization of a rational normal curve E of degree n − 1 in the space of
hyperplanes containing the center curve.

Any automorphism P(T ) ∈ Aut(G(1, 2n) ∩ H2) ⊂ PGL(2n + 1,C) maps the center
curve onto itself and also the projective space P ∼= Pn spanned by the center curve onto
itself. Hence P(T ) induces an automorphism on the rational normal curve E in the dual
projective space (P2n/P )∨. The group of automorphisms of Pn fixing a rational normal
curve of degree n is isomorphic to PGL(2,C) (see, for example, [Har92, Example 10.12]).
In other words, we know how to describe P(T ) when restricted to C and E. With such a
description and using (3.1) Piontkowski and Van de Ven obtain:

Theorem 3.2.3 ([PVdV99, Thm. 6.6]). The automorphism group of the intersection of
G(1, 2n) with a general linear subspace of codimension 2 of P(

∧2 C2n+1) is isomorphic to
the subgroup of PGL(2n+ 1,C) that consists of the elements(

αIn 0
S In+1

)
·
(

tt−1
n 0
0 tn+1

)
,

where α ∈ C∗, S ∈ Mat((n+ 1)× n,C) with sij = skl for i+ j = k+ l, tn ∈ Aut(H,Pn−1)
and tn+1 ∈ Aut(C,Pn).

The Orbits of Aut(G(1, 4) ∩ H2). For the particular case X = G(1, 4) ∩ H2,
Piontkowski and Van de Ven proved that Aut(X) acts on X with finitely many orbits
and they described such orbits with very geometrical conditions. First they showed that,
up to changing coordinates, the antisymmetric matrices A,B ∈ Antisym(5,C) correspond-
ing to hyperplanes H1 = P(A)∨ and H2 = P(B)∨ defining H2 can be written as

A =


0 0 −1 0 0
0 0 0 −1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 and B =


0 0 0 −1 0
0 0 0 0 −1
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0

 (3.2)

(see [PVdV99, Prop. 6.4]). In this basis, computations are clearer. Note that, in this
basis the center curve C is given by c(λ : µ) = (0 : 0 : µ2 : µλ : λ2).

Proposition 3.2.1 ([PVdV99, Prop. 6.8]). The action of Aut(G(1, 4) ∩ H2) on X =
G(1, 4) ∩H2 has four orbits:

• o1 = {x = [l] ∈ X | l is tangent to the center conic C};

• o2 = {x = [l] ∈ X | l is secant to the center conic C};

• o3 = {x = [l] ∈ X | l intersects the center conic but does not lie in P}, where P
denotes the plane spanned by C;
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• o4 = {x = [l] ∈ X | l does not intersect the plane P}.

There do not exist lines in X that intersect the plane P but not the conic C. Also,
lines in P4 contained in P are contained in X.

3.2.2 The Case G(1, 2n− 1) ∩H2.

We begin this subsection by stating the theorem that describes the automorphism
group of the intersection of the Grassmannian G(1, 2n− 1) with a general linear subspace
of codimension 2 of P(

∧2 C2n). Using such a description we are able to compute the orbits
of the action of the automorphism group on that linear section of the Grassmannian.

Theorem 3.2.4 ([PVdV99, Thm. 3.5]). For n ≥ 3 the automorphism group of the
intersection of G(1, 2n− 1) with a general linear subspace of codimension 2 of P(

∧2 C2n)
is isomorphic to the subgroup of PGL(2n,C) that consists of elements

Pσ ·

 t1 0
. . .

0 tn


where t1, . . . , tn ∈ SL(2,C) and Pσ is the identity for n ≥ 5 and otherwise defined by
Pσ(e2i) = e2σ(i), Pσ(e2i−1) = e2σ(i)−1,

for σ ∈
{
S(n), if n = 3;
{(1 2 3 4), (2 1 4 3), (3 4 1 2), (4 3 2 1)}, if n = 4.

Let us explain the generality condition on H2 assumed in the theorem. A linear
subspace L = H2 = H1 ∩ H2 ⊂ P(

∧2 C2n) of codimension 2, given by the intersection
of two distinct hyperplanes H1 = P(A)∨, H2 = P(B)∨, with A,B ∈ Antisym(2n,C), is
dual to the line L∨ = P(λA − µB) ⊂ P(Antisym(2n,C)). It can be shown that the dual
Grassmannian of G(1, 2n− 1) is given by

G(1, 2n− 1)∨ = {P(C) ∈ P(Antisym(2n,C)) | rank(C) ≤ 2n− 2}

and it is an irreducible hypersurface of degree n (see [PVdV99, Corollary 1.7]). Therefore
the line L∨ intersects G(1, 2n− 1)∨ in at most n distinct points. We will say that L = H2

is general if L∨ and G(1, 2n− 1)∨ have n distinct points in common, which we denote by
P(λiA− µiB), i = 1, . . . , n. The corresponding hyperplanes Hi = P(λiA− µiB)∨, are tan-
gent to the Grassmannian G(1, 2n− 1) at the points [li], where li = P(ker(λiA− µiB)) ⊂
P2n−1 are called exceptional lines.

The Orbits of Aut(G(1, 5) ∩ H2). J. Piontkowski and A. Van de Ven in [PVdV99] do
not compute the orbits of the action of the automorphism group of X = G(1, 5) ∩ H2.
But, following similar argument as in the case of the linear section G(1, 4) ∩ H2 we can
compute the orbits of Aut(X).

For j = 1, 2, 3, let Vj be the 3-plane in P5 generated by the exceptional lines li
′s with
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i 6= j. Let V = ∪3
i=1Vi. Up to changing coordinates we can write

A =



0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0

 and B =



0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 (3.3)

(see [Don77] or [PVdV99, Proposition 3.2]). The exceptional lines are l1 = P(span{e1, e2}),
l2 = P(span{e3, e4}) and l3 = P(span{e5, e6}).

Lemma 3.2.1. The automorphism group Aut(G(1, 5)∩H2) ⊂ PGL(6,C) acts transitively
on P5 \ V .

Proof. It is sufficient to prove the existence of an automorphism in Aut(G(1, 5) ∩ H2)
mapping p = (1 : 0 : 1 : 0 : 1 : 0) to a given point q = (q1 : q2 : q3 : q4 : q5 : q6) ∈ P5 \ V .
Any block diagonal matrix T = diag(t1, t2, t3) ∈ Mat(6,C) with

t1 =

(
q1 a12

q2 a22

)
, t2 =

(
q3 a34

q4 a44

)
, t3 =

(
q5 a56

q6 a66

)
∈ Mat(2,C)

defines a projective transformation P(T ) of P5 such that P(T )(p) = q. Since q 6∈ V , that
is, (q1, q2), (q3, q4), (q5, q6) 6= (0, 0), we can choose the aij

′s satisfying det(t1) = det(t2) =
det(t3) = 1. Then we have P(T ) ∈ Aut(G(1, 5) ∩H2).

Lemma 3.2.2. The automorphism group Aut(G(1, 5)∩H2) ⊂ PGL(6,C) acts transitively
on V \ ∪3

i=1li.

Proof. Let p, q ∈ V \∪3
i=1li. By a permutation Pσ on the exceptional lines we can suppose

p = (0 : 0 : p3 : p4 : p5 : p6), q = (0 : 0 : q3 : q4 : q5 : q6) ∈ V1 \ ∪3
i=1li. Let

T = diag(t1, t2, t3) ∈ Mat(6,C) be a block diagonal matrix with

t1 =

(
a11 a12

a21 a22

)
, t2 =

(
a33 a34

a43 a44

)
, t3 =

(
a55 a56

a65 a66

)
∈ Mat(2,C).

The induced projective transformation P(T ) satisfies P(T )(p) = q if

(p3a33 + p4a34)e3 + (p3a43 + p4a44)e4 + (p5a55 + p6a56)e5 + (p5a65 + p6a66)e6 =
∑6

i=3 qiei.

Since p, q 6∈ ∪3
i=1li we can choose the aij

′s satisfying the condition above and the three
additional ones det(t1) = det(t2) = det(t3) = 1.

Lemma 3.2.3. Let x = [l] ∈ G(1, 5)∩H2. If the line l intersects one Vi, then it intersects
the other two.

Proof. By a permutation Pσ on the exceptional lines we can suppose that l ∩ V1 6= ∅.
Then l = P(span{p, q}), where p = (0, 0, p3, p4, p5, p6) and q = (q1, q2, q3, q4, q5, q6), with
p5q6− p6q5 = 0 and p3q4− p4q3 = 0. Denote by Mij , 1 ≤ i < j ≤ 6, the (i, j)-minor of the
matrix (

0 0 p3 p4 p5 p6

q1 q2 q3 q4 q5 q6

)
.
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Note that M34 = M56 = 0. We have

q3p− p3q = (−p3q1,−p3q2, q3p4 − p4q3, q3p4 − p3q4, q3p6 − p3q5, q3p6 − p3q6)

= (M13,M23, 0, 0,−M35,−M36)

q4p− p4q = (−p4q1,−p4q2, q4p3 − p4q3, q4p4 − p4q4, q4p5 − p4q5, q4p6 − p4q6)

= (M14,M24, 0, 0,−M45,−M46)

q5p− p5q = (−p5q1,−p5q2, q5p3 − p5q3, q5p4 − p5q4, q5p5 − p5q5, q5p6 − p5q6)

= (M15,M25,M36,M46, 0, 0)

q6p− p6q = (−p6q1,−p6q2, q6p3 − p6q3, q6p4 − p6q4, q6p5 − p6q5, q6p6 − p6q6)

= (M16,M26,M35,M45, 0, 0).

Since p and q are linearly independent, it is clear that l intersects V2 and V3.

Proposition 3.2.2. The action of Aut(G(1, 5)∩H2) on X = G(1, 5)∩H2 has four orbits:

• o1 = {x = [l] ∈ X | l intersects two exceptional lines};

• o2 = {x = [l] ∈ X | l intersects only one exceptional line};

• o3 = {x = [l] ∈ X | l intersects V \ ∪3
i=1li};

• o4 = {x = [l] ∈ X | l does not intersect V }.

Note that none of the exceptional lines lies in X and that no line in P5 intersects the
three exceptional lines. A line in P5 intersecting two excepcional lines is contained in X.

Proof. Since any automorphism permutes the exceptional lines, it is clear by the geometric
description that the four kinds of lines described lie in different orbits.

Let x = [l], x′ = [l′] ∈ o1. By a permutation Pσ on the exceptional lines we reduce to
particular cases. The first one is when there is only one exceptional line intersecting both
l and l′, say l = P(span{re1 + se2, te3 + ue4}) and l′ = P(span{r′e1 + s′e2, t

′e5 + u′e6}).
Let T = diag(t1, t2, t3) ∈ Mat(6,C) be a block diagonal matrix with

t1 =

(
a11 a12

a21 a22

)
, t2 =

(
a35 a36

a45 a46

)
, t3 =

(
1 0
0 1

)
∈ Mat(2,C).

The induced projective transformation P(P(2 3) · T ) satisfies P(P(2 3) · T )(re1 + se2) =
r′e1 + s′e2 and P(P(2 3) · T )(te3 + ue4) = t′e5 + u′e6 if

(ra11 + sa12)e1 + (ra21 + sa22)e2 = r′e1 + s′e2

(ta53 + ua54)e5 + (ta63 + ua64)e6 = t′e5 + u′e6.

Since (r, s), (t, u), (r′, s′), (t′, u′) 6= (0, 0) we can choose the aij
′s satisfying the conditions

above and the two additional ones det(t1) = det(t2) = 1. With these values of aij
′s,

P(P(2 3) · T )(x) = x′. The second case, when two exceptional lines intersect both l and l′,
can be treated similarly.

Similarly to the previous case, it is shown that o2 is an orbit.
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Let x = [l], x′ = [l′] ∈ o3. Since l and l′ do not intersect any of the exceptional lines
li, by Lemma 3.2.3 and its proof we can suppose l = P(span{p = (0, 0, p3, p4, p5, p6), q =
(q1, q2, 0, 0, q5, q6)}) with p5q6 − p6q5 = 0 and l′ = P(span{p′ = (0, 0, p′3, p

′
4, p
′
5, p
′
6), q′ =

(q′1, q
′
2, 0, 0, q

′
5, q
′
6)}) with p′5q

′
6 − p′6q

′
5 = 0. By Lemma 3.2.2 the group Aut(X) acts

transitively on P5 \ V , so we can suppose p = p′ = (0, 0, 1, 0, 1, 0), q6 = q′6 = 0 and
q5 = q′5 = 1. Hence l = P(span{p = (0, 0, 1, 0, 1, 0), q = (q1, q2, 0, 0, 1, 0)}) and l′ =
P(span{p′ = (0, 0, 1, 0, 1, 0), q′ = (q′1, q

′
2, 0, 0, 1, 0)}) with (q1 : q2), (q′1 : q′2) ∈ P1. Let

T = diag(t1, t2, t3) ∈ Mat(6,C) be a block diagonal matrix with

t1 =

(
a11 a12

a21 a22

)
, t2 =

(
a33 a34

a43 a44

)
, t3 =

(
a55 a56

a65 a66

)
∈ Mat(2,C).

The induced projective transformation P(T ) satisfies P(T )(p) = p and P(T )(q) = q′ if

a33e3 + a43e4 + a55e5 + a65e6 = e3 + e5

(a11q1 + a12q2)e1 + (a21q1 + a22q2)e2 + a55e5 + a65e6 = q′1e1 + q′2e2 + e5.

Hence we put a33 = 1, a43 = 0, a55 = 1, a65 = 0, a44 = a66 = 1. Since (q1, q2), (q′1, q
′
2) 6=

(0, 0) we can choose the rest of the aij
′s satisfying the last equation above and the addi-

tional one det(t1) = 1. With these values of aij
′s, P(T )(x) = x′.

To show that o4 is an orbit it is sufficient to find an automorphism in Aut(X) map-
ping the line l0 = [P(span{(1, 0, 1, 0, 1, 0), (1, 1, 1,−2, 1, 1)})] to a given x = [l] ⊂ P5 \ V .
By Lemma 3.2.1 the group Aut(X) acts transitively on P5 \ V , so we can suppose l =
P(span{(1, 0, 1, 0, 1, 0), (q1, q2, q3,−2q2, q5, q2)}). Note that q2 6= 0, otherwise l ∩ V3 6= ∅.
We can put q2 = 1. The block diagonal matrix T = diag(t1, t2, t3) ∈ Mat(6,C) with

t1 =

(
1 q1 − 1
0 1

)
, t2 =

(
1 (1− q3)/2
0 1

)
, t3 =

(
1 q5 − 1
0 1

)
∈ Mat(2,C)

defines an automorphism P(T ) of X such that P(T )(x0) = x.

3.3 Varieties of Lines on Linear Sections of Grassmannians

Let X = G(1, N) ∩H2 be a general linear section of codimension 2 of G(1, N), with
N ∈ {4, 5}. In the previous section we saw that the automorphism group Aut(X) acts on
X with finitely many orbits. Moreover, each of these orbits was described by geometrical
conditions that allow us now to describe the variety Zx of lines on X passing through
a fixed point x ∈ X, for x in each of the orbits. Such descriptions for Zx are given in
Theorem 3.3.1 and Theorem 3.3.2 below. As an application of these theorems, in the next
subsection we show that these linear sections of Grassmannians are not weakly 2-Fano,
completing the classification of weakly 2-Fano manifolds of high index.

Notation. For shortness, we will denote by Hx the variety of lines on G(1, N) passing
through a point x ∈ G(1, N) (see Example 3.1.2). We will denote by Zx the variety of lines
on the linear section X = G(1, N)∩H2 passing through a point x ∈ X (see Example 3.1.3).

To make computations easier, in the proof of the following theorem we will work with
the normal form (3.2).



40 CHAPTER 3. LINES ON VARIETIES

Theorem 3.3.1. Let X = G(1, 4) ∩ H2 be a general linear section of codimension 2 of
G(1, 4), and let Zx ⊂ P1× P2 be the variety of lines on X passing through a point x ∈ X.
Then Zx has pure dimension 1, and its numerical class in N1(P1×P2) is [Zx] ≡ 2[L1]+[L2],
where [L1] is the class of a line in a fiber of the first projection P1 × P2 → P1 and [L2] is
the class of a fiber of the second projection. For x in each orbit of the action of Aut(X)
on X we have the following description of Zx:

• for x ∈ o1, Zx has two irreducible components, all rational. One of them has
numerical class [L1] (and multiplicity 2), and the other one has numerical class [L2];

• for x ∈ o2, Zx has three irreducible components, all rational. Two of them has
numerical class [L1], and the other one has numerical class [L2];

• for x ∈ o3, Zx has two irreducible components, all rational. One of them has
numerical class [L1] and the other one has numerical class [L1] + [L2];

• for x ∈ o4, Zx ∼= P1.

Proof. We know from Example 3.1.3 that the subvariety Zx is the intersection of two
divisors D1 and D2 in Hx

∼= P1×P2, both of type (1, 1). We will see in the next paragraphs
that this is a complete intersection. This means that, if [α] and [β] denote, respectively,
the numerical classes of the pullbacks of the hyperplanes classes of P1 and P2 by the
projections, then

[Zx] ≡ ([α] + [β])2 ≡ 2[α][β] + [β]2 ≡ 2[L1] + [L2],

where [L1] ≡ [α][β] is the class of a line in a fiber of the first projection and [L2] ≡ [β]2

the class of a fiber of the second projection.

Let us write down the equations defining the subvariety Zx. If x = [l], with l =
P(span{p, q}), then any line LU,V on G(1, 4) passing through x is determined by two
vector subspaces U and V given by

U = span{rp+ sq} ⊂ span{p, q} ⊂ V = span{p, q, v},

where (r : s) ∈ P1 and v ∈ P(C5/ span{p, q}). Such a line LU,V is on X if and only if,
every point x′ = [l′] ∈ LU,V , with l′ = P(span{rp+ sq, r′p+ s′q + t′v}), is contained in X,
that is, {

(rp+ sq)At(r′p+ s′q + t′v) = 0

(rp+ sq)Bt(r′p+ s′q + t′v) = 0
∼

{
(rp+ sq)Atv = 0

(rp+ sq)Btv = 0.
(3.4)

The equivalence holds because since x ∈ X, we have pAtq = pBtq = 0; and since A and
B are antisymmetric matrices, we also have uAtu = uBtu for any u ∈ C5. The subvariety
Zx is defined by the equations (3.4).

Let x = [l] ∈ o1, with l a line tangent to the center conic C. We can work with
a particular x. We choose l = P(span{p = (0, 0, 1, 0, 0), q = (0, 0, 0, 1, 0)}) (recall that
C ⊂ P ∼= P4

(0:0:x3:x4:x5) is given by x2
4−x3x5 = 0, so the tangent line to C at c(0 : 1) = P(p)

is given by x5 = 0). In this case, the system of equations (3.4) is{
rv1 + sv2 = 0

sv1 = 0.
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The matrix associated to that system has only one nonzero minor, namely M12 = −s2.
Therefore, for (r, s) = (1, 0) the subspace of solutions to that system is 4-dimensional
(containing span{p, q}). Hence, there is an irreducible component of Zx with numerical
class [L1] (and multiplicity 2). Clearly, the 3-dimensional vector subspace span{e3, e4, e5}
is solution for the system for every (r, s) ∈ C2. This means that there is an irreducible
component of Zx with numerical class [L2].

Let x = [l] ∈ o2, with l = P(span{p = (0, 0, 1, 0, 0), q = (0, 0, 0, 0, 1)}) a secant line to
the center conic C through the points c(0 : 1) = P(p) and c(1 : 0) = P(q). The system of
equations (3.4) is {

rv1 = 0

sv2 = 0.

The only nonzero minor of that system M12 = rs says that for (r, s) = (1, 0) and
(r, s) = (0, 1) the solution space for that system is 4-dimensional (containing span{p, q}).
Therefore, there are two irreducible components of Zx with numerical class [L1]. The
3-dimensional vector subspace span{e3, e4, e5} is the solution for the system that does not
depend on (r, s) ∈ C2. Hence, there is an irreducible component of Zx with numerical
class [L2].

Let x = [l] ∈ o3, with l = P(span{p = (0, 0, 1, 0, 0), q = (qi)}) a line intersecting the
center conic C at c(0 : 1) = P(p), but not contained in the plane P spanned by C. The
condition x ∈ X implies q1 = 0, and consequently q2 6= 0. We have the system of equations{

(r + sq3)v1 + sq4v2 − sq2v4 = 0

sq4v1 + sq5v2 − sq2v5 = 0.

Looking at the second equation and the minor M45 = s2q2 we see that only for (r, s) =
(1, 0) the solution space for that system is 4-dimensional (containing span{p, q}). There-
fore, there is an irreducible component of Zx with numerical class [L1]. Now, note that
any vector v = (vi) ∈ C5 that does not depend on (r, s) and is a solution for the sys-
tem is contained in span{p, q}, which implies that the other irreducible component of Zx
must have numerical class [L1] + [L2]. Indeed, for (r, s) = (1, 0) we get v1 = 0 and for
(r, s) = (0, 1) we get v4 = q4v2/q2 and v5 = q5v2/q2. Hence, v = (v3−v2q3/q2)p+(v2/q2)q.

Let x ∈ o4. Since x is general, Zx is smooth. By the Adjunction Formula (see [Har77,
Proposition II.8.20]) the canonical divisor KZx of Zx is

KZx = (KP1×P2 +D1 +D2)|Zx

= (−2[α]− 3[β] + 2([α] + [β])|Zx

= −[β] · (2[α][β] + [β]2)

= −2[P ],

where [P ] denotes the numerical class of a point. In particular, deg(KZx) = −2. But, as
a well known consequence of Riemann-Roch Theorem, degKZx = 2g− 2, where g denotes
the genus of Zx. Therefore, g = 0, and Zx ∼= P1.

To make computations easier, in the proof of the following theorem we will work with
the normal form (3.3).
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Theorem 3.3.2. Let Y = G(1, 5) ∩ H2 be a general linear section of codimension 2 of
G(1, 5), and let Zx ⊂ P1 × P3 be the variety of lines on Y passing through a point x ∈ Y .
Then Zx has pure dimension 2, and its numerical class in N2(P1×P3) is [Zx] ≡ 2[P ] + [L],
where [P ] is the class of a plane in a fiber of the first projection P1×P3 → P1 and [L] the
class of the inverse image under the second projection of a line in P3. For x in each orbit
of the action of Aut(Y ) on Y we have the following description of Zx:

• for x ∈ o1, Zx has three irreducible components. Two of them have numerical class
[P ], and the other one has numerical class [L];

• for x ∈ o2, Zx has two irreducible components. One of them has numerical class [P ],
and the other one has numerical class [P ] + [L];

• for x ∈ o3, Zx is isomorphic to the blowup of a quadric cone in P3 at the vertex, or
equivalently, isomorphic to the Hirzebruch surface F2 = P(OP1 ⊕OP1(−2));

• for x ∈ o4, Zx is isomorphic to a smooth quadric in P3.

Proof. We know from Example 3.1.3 that the subvariety Zx is the intersection of two
general divisors D1 and D2 in Hx

∼= P1 × P3, both of type (1, 1). We will see in the
next paragraphs that this is a complete intersection. Therefore, if [α] and [β] denote,
respectively, the numerical classes of the pullbacks of the hyperplanes classes of P1 and P3

by the projections, then

[Zx] ≡ ([α] + [β])2 ≡ 2[α][β] + [β]2 ≡ 2[P ] + [L],

where [P ] ≡ [α][β] is the class of a plane P in a fiber of the first projection and [L] ≡ [β]2

the class of the inverse image under the second projection of a line in P3.
Let x = [l], with l = P(span{p, q}). Any line LU,V on G(1, 5) passing through x is

determined by two vector subspaces U and V given by

U = span{rp+ sq} ⊂ span{p, q} ⊂ V = span{p, q, v},

where (r : s) ∈ P1 and v ∈ P(C6/ span{p, q}). Such a line LU,V is on X if and only if,
every point x′ = [l′] ∈ LU,V , with l′ = P(span{rp+ sq, r′p+ s′q + t′v}) is contained in Y ,
that is, {

(rp+ sq)At(r′p+ s′q + t′v) = 0

(rp+ sq)Bt(r′p+ s′q + t′v) = 0
∼

{
(rp+ sq)Atv = 0

(rp+ sq)Btv = 0.
(3.5)

These are the equations defining the subvariety Zx.

Let x = [l] ∈ o1, with l = P(span{p = (1, 0, 0, 0, 0, 0), q = (0, 0, 1, 0, 0, 0)}). Then, the
system of equations (3.5) becomes {

−rv2 − sv4 = 0

−rv2 = 0.

The only nonzero minor of that system is M24 = −rs, which says that for (r, s) = (1, 0)
and (r, s) = (0, 1) the solution subspace for that system is 5-dimensional (and contains
span{p, q}). Therefore, there are two irreducible components of Zx with numerical class
[P ]. Clearly the 4-dimensional vector subspace span{p, q, e5, e6} is solution for the system
and does not depend on (r, s) ∈ C2. Hence, there is an irreducible component of Zx with
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numerical class [L].

Let x = [l] ∈ o2, with l = P(span{p = (1, 0, 0, 0, 0, 0), q = (0, 0, 1, 0, 1, 0)}). Now, the
system of equations (3.5) is {

−rv2 − sv4 − sv6 = 0

−rv2 + sv6 = 0.

The nonzero minors of that system M24 = −rs,M26 = −2rs and M46 = −s2 say that
(r, s) = (1, 0) is the only value for which the solution subspace for that system is 5-
dimensional. Therefore, there is a unique irreducible component of Zx with numerical
class [P ]. Since any vector which is solution for the system and does not depend on (r, s)
is in the 3-dimensional vector subspace span{p, q, e5}, we conclude that Zx does not have
irreducible components with numerical class [L]. Therefore, the other irreducible compo-
nent of Zx has numerical class [P ] + [L].

Let x = [l] ∈ o3, with l = P(span{p = (0, 0, 1, 0, 1, 0), q = (1, 0, 0, 0, 1, 0)}). We have
the system {

−sv2 − rv4 − (r + s)v6 = 0

−sv2 + (r + s)v6 = 0
∼

{
−rv4 − 2(r + s)v6 = 0

−sv2 + (r + s)v6 = 0.

Consider span{p, q, e1, e2, e4, e6} basis for C6. Any vector v = (vi) ∈ C6 in that basis is
written as v = v3p+(v5−v3)q+(v1−v5+v3)e1+v2e2+v4e4+v6e6. Hence, the homogeneous
coordinates of v in P(C6/ span{p, q}) ∼= P3 are (v1 − v5 + v3 : v2 : v4 : v6) =: (ti). With
these homogeneous coordinates, Zx is given by the equations{

−rt2 − 2(r + s)t3 = 0

−st1 + (r + s)t3 = 0.
(3.6)

Using Jacobi’s Criterion, we can see that Zx is smooth. Denote by π2 : P1
(r:s)×P

3
(ti)
→ P3

(ti)

the second projection. A point (ti) ∈ P3 is in the image of Zx under π2 if and only if there
is a point (r : s) ∈ P1 such that ((r : s), (ti)) satisfies (3.6), or equivalently,

det

(
−t2 − 2t3 −2t3

t3 t3 − t1

)
= t1t2 + 2t1t3 − t2t3 = 0.

This is the equation of a quadric cone Q with vertex o = (1 : 0 : 0 : 0). It is easy
to see that the restriction of π2 to π−1

2 (Q \ {o}) is an isomorphism onto Q \ {o}, and
π−1

2 (o) = P1 × {o} ∼= P1. Therefore Zx is isomorphic to the blowup of Q at the vertex
o, or equivalently, isomorphic to the Hirzebruch surface F2 = P(OP1 ⊕OP1(−2)) (see, for
example, [Bea96, Ex. IV.18(1)]).

Let x = [l] ∈ o4, with ` = P(span{p = (1, 0, 1, 0, 1, 0), q = (0, 1, 0,−2, 0, 1)}). We have
the system {

−2s(v3 − v5)− r(v4 + 2v6) = 0

s(v1 − v5)− r(v2 − v6) = 0.

Consider span{p, q, e1, e2, e3, e4} basis for C6. Any vector v = (vi) ∈ C6 in that basis is
written as v = v5p+ v6q+ (v1− v5)e1 + (v2− v6)e2 + (v3− v5)e3 + (v4 + 2v6)e4. Hence, the
homogeneous coordinates of v in P(C6/ span{p, q}) ∼= P3 are (v1 − v5 : v2 − v6 : v3 − v5 :
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v4 + 2v6) =: (ti). With these homogeneous coordinates, Zx is given by the equations{
−2st2 − rt3 = 0

st0 − rt1 = 0.

Using Jacobi’s Criterion, we can see that Zx is smooth. By Adjunction Formula and
similar computations as in the proof of Theorem 3.3.1 we can find the anticanonical class
−KZx of Zx in N1(P1 × P3); it is

−KZx = 2 · [β]|Zx
.

Now, note that there is no curve in Zx contracted by the second projection P1
(r:s)×P3

(ti)
→

P3
(ti)

. This implies that −KZx is ample, with index iZx = 2. By Kobayashi-Ochiai’s

Theorem (see Theorem 2.6.3), Zx is isomorphic to a smooth quadric in P3.

3.4 Application: Weakly 2-Fano Manifolds

As an application of the results from the previous sections, we complete the classifi-
cation of weakly 2-Fano manifolds, initiated in [AC13]. Recall that a smooth, complex,
projective variety X with second Chern character ch2(X) is weakly 2-Fano if

ch2(X) · [S] ≥ 0,

for all surface S ⊂ X. Weakly 2-Fano manifolds were introduced by de Jong and Starr in
[dS06c] and further studied by Araujo and Castravet in [AC12] and [AC13]. This notion is
related to the problem of finding sections of fibrations over surfaces, and with the notion
of rational simple connectedness introduced by de Jong and Starr. In [AC13], Araujo and
Castravet gave an almost complete classification of weakly 2-Fano manifolds of dimension
n ≥ 3 and index at least n − 2. The only cases left open were the general linear sections
G(1, 4) ∩ H2 and G(1, 5) ∩ H2. Here we will prove that these manifolds are not weakly
2-Fano.

Let X = G(1, N)∩H2 be a general linear section of codimension 2 of the Grassmannian
G(1, N), with N ∈ {4, 5}. By [AC13, Prop. 31] we have

ch2(X) =

(
N − 3

2

)
σ2|X −

(
N − 3

2

)
σ1,1|X , (3.7)

where σ2 and σ1,1 are Schubert cycles, generators of the (2N − 4)-th graded piece of the
Chow ring of G(1, N). The strategy to prove that X is not weakly 2-Fano is to find a
surface S ⊂ X with class σ∗1,1 in G(1, N). By Duality Theorem (see Subsection 2.7.2) we
will have

ch2(X) · [S] = ch2(X) · σ∗1,1 = −
(
N − 3

2

)
< 0, for N = 4, 5.

Corollary 3.4.1. The general linear sections of codimension 2 of Grassmannians G(1, 4)∩
H2 and G(1, 5) ∩H2 under the Plücker embedding are not weakly 2-Fano.

Proof. Let X = G(1, 4) ∩ H2. Take x = [l] ∈ X, with l = P(W ), in the first or second
orbit of the action of Aut(X) on X (see Proposition 3.2.1). By Theorem 3.3.1, the variety
Zx of lines passing through x and contained in X has an irreducible component C with
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numerical class [L2] in P(W ) × P(C5/W ). Geometrically, it means that there exists a
3-dimensional vector subspace V ⊃ W such that for all 1-dimensional vector subspace
U ⊂ W , the line LU,V = {[P(W ′)] ∈ G(1, 4) | U ⊂ W ′ ⊂ V } is contained in X. Consider
the universal family morphisms

Ux
πx
��

ex // X

Zx

. (3.8)

We claim that the surface S defined by

S = ex(π−1
x (C)) =

⋃
U

LU,V ⊂ X

has Schubert class σ∗1,1 = σ2,2 in G(1, 4). To see that, take a complete flag of C5 of the
form

F• : 0 = F0 ⊂ F1 ⊂ F2 ⊂ F3 := V ⊂ F4 ⊂ F5 = C5.

Note that S = {[P(W ′)] ∈ G(1, 4) | W ′ ⊂ F3 = V }. Indeed, if [P(W ′)] 6= [P(W )] is such
that W ′ ⊂ V , then [P(W ′)] ∈ LW∩W ′,V ⊂ Y . The reverse inclusion of sets is trivial.
Hence,

S = {[P(W ′)] ∈ G(1, 4) |W ′ ⊂ F3 = V }
= {[P(W ′)] ∈ G(1, 4) | dim(W ′ ∩ F3) ≥ 2}
= {[P(W ′)] ∈ G(1, 4) | dim(W ′ ∩ F(4−1)+i−2) ≥ i, for i = 1, 2}
= Σ2,2.

Thus S has Schubert class σ2,2 and ch2(X) · [S] = −1
2 < 0. Therefore, X = G(1, 4) ∩H2

is not weakly 2-Fano.

Now let Y = G(1, 5) ∩ H2. Take x = [l] ∈ Y , with l = P(W ), in the first orbit of
the action of Aut(Y ) on Y (see Proposition 3.2.2). By Theorem 3.3.2, the variety Zx of
lines passing through x and contained in Y has an irreducible component with numerical
class [L] in P(W ) × P(C6/W ). Geometrically, it means that there exists a 4-dimensional
vector subspace V ⊃ W such that for all 1-dimensional vector subspace U ⊂ W , the
line LU,V = {[P(W ′)] ∈ G(1, 5) | U ⊂ W ′ ⊂ V } is contained in Y . In particular, there
exists an irreducible curve C ⊂ Zx parameterizing lines LU,V ′ contained in Y , where V ′

is a fixed 3-dimensional vector subspace such that W ⊂ V ′ ⊂ V and U ⊂ W is any 1-
dimensional vector subspace. Consider the universal family morphisms analogue to (3.8).
The surface S defined by S = ex(π−1

x (C)) ⊂ Y has Schubert class σ∗1,1 = σ3,3 in G(1, 5),

and ch2(X) · [S] = −1 < 0. Therefore, Y = G(1, 5) ∩H2 is not weakly 2-Fano.
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Chapter 4

Conics on Varieties

In this chapter we investigate another special class of Fano manifolds, namely conic-
connected manifolds. In Section 4.1 we define conic-connected manifolds and we present
the Ionescu-Russo classification of conic-connected manifolds. In Section 4.2 we define
the space Wx,y of conics on a conic-connected manifold X passing through general points
x, y ∈ X. We prove that this space is smooth and we provide several examples. Then,
in Subsection 4.2.2 we define a natural polarization Mx,y on Wx,y. In Section 4.3 we
relate this polarization with the polarization defined by de Jong and Starr for the space of
minimal pointed rational curves. As a consequence, in Subsection 4.3.3 we give a formula
for the canonical bundle of Wx,y in terms of the second Chern character of X and the first
Chern class of our polarization. We conclude that Wx,y is Fano if X is weakly 2-Fano.

4.1 Conic-connected Varieties

As we saw in Chapter 2, many birational properties of a variety can be detected by
studying rational curves on it. A birational class of varieties fairly studied are the ratio-
nally connected varieties, introduced by J. Kollár, Y. Miyaoka and S. Mori in [KMM92a].
Recall that a smooth, complex, projective variety X is rationally connected if any two gen-
eral points of X are connected by a rational curve on X. A way to measure the complexity
of such X is studying a family of rational curves of minimal degree on X connecting two
general points. The first case, that of varieties containing a line joining two general points
on them, is completely classified by Lemma 4.1.1.

First we introduce the following notation:

Notation. We will always work over the field C of complex numbers. Given a smooth
complex projective variety X ⊂ PN , we will denote by OX(1) the restriction of OPN (1) on
X. By the degree of a curve on X we mean its OX(1)-degree.

Lemma 4.1.1. A projective variety X ⊂ PN is a linear variety if and only if for any two
general points x, y ∈ X the line on PN joining x and y is contained in X.

Proof. If X is a linear variety, that is, a projective space linearly embedded, then it is
clear that for any two points of X the line joining these two points is contained in X.
Conversely, assume that there exists an open dense subset U ⊂ X such that for any two
points of U the line in PN joining these two points is contained in X. Take x ∈ U a smooth
point of X, and consider TxX the Zariski tangent space of X at x embedded in PN . Every
line passing through x and any other point y ∈ U is contained in TxX. In particular,

47
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U ⊂ TxX. Therefore X = U ⊂ TxX, and thus X = TxX, since dim(X) = dim(TxX) and
TxX is irreducible.

The next lemma generalizes the previous one, and characterizes projective spaces and
quadric hypersurfaces as the only smooth projective varieties with low degree rational
curves passing through too many general points.

Lemma 4.1.2 ([dS06b, Lemma 5.5]). Let X ⊂ PN be a smooth projective variety and
assume that −KX is an integral multiple of c1(OX(1)). Let n ≥ 2 be an integer and
assume that through n general points of X there passes a rational curve of degree less
than n. Then (X,OX(1)) is isomorphic to either (Pd,OPd(1)) or a quadric hypersurface
(Q, OPd+1(1)|Q), where d = dim(X).

Proof. Given n general points x1, . . . , xn ∈ X, let C be a rational curve on X of degree
less than n passing through x1, . . . , xn. By Lemma 2.4.3

h1(C,NC/X(−
∑n

i=1 xi)) = 0,

and therefore
χ(C,NC/X(−

∑n
i=1 xi)) ≥ 0.

By Riemann-Roch’s Theorem, we have

0 ≤ χ(C,NC/X(−
∑n

i=1 xi)) = χ(C, TX |C (−
∑n

i=1 xi))− χ(C, TC(−
∑n

i=1 xi))

= −KX · C + (1− n) dim(X)− (2− n+ 1)

= −KX · C − 2− (n− 1)(dim(X)− 1),

that is,
−KX · C ≥ 2 + (n− 1)(dim(X)− 1).

Denote by iX the index of X. Since −KX is an integral multiple of c1(OX(1)), we have
−KX = iX c1(OX(1)). Intersecting with the curve C, using the inequality obtained above
and the hypothesis that c1(OX(1)) · C ≤ n− 1, we conclude that

iX ≥
2

n− 1
+ dim(X)− 1.

Therefore, by Kobayashi-Ochiai’s Theorem (see Theorem 2.6.3), if n = 2 then (X,OX(1)) ∼=
(Pd,OPd(1)), and if n ≥ 3, then (X,OX(1)) is isomorphic either to (Pd,OPd(1)) or to a
quadric hypersurface (Q, OPd+1(1)|Q).

The next case is that of conic-connected varieties, defined below.

Definition 4.1.1. A projective variety X ⊂ PN is called conic-connected if for any two
general points x, y ∈ X there exists an irreducible conic contained on X passing through
x, y ∈ X.

Conic-connected varieties have been studied by many authors; for example, in [IR10]
and [MMT11]. In [IR10] P. Ionescu and F. Russo give the following classification of conic-
connected manifolds:

Theorem 4.1.1 ([IR10, Thm. 2.2]). Let X ⊂ PN be an n-dimensional conic-connected
manifold. Assume that X is linearly normal and non-degenerate. Then either X is a Fano
manifold with Picard group Pic(X) ∼= Z[OX(1)] and index iX ≥ n+1

2 , or it is isomorphic
to one of the following:
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(i) ν2(Pn) ⊂ P
n(n+3)

2 , the image of Pn by the Veronese embedding of degree 2;

(ii) the projection of ν2(Pn) from the linear space 〈ν2(Ps)〉, where Ps ⊂ Pn is a linear
subspace with 0 ≤ s ≤ n−2; equivalently, X ∼= BlPs(Pn) embedded in PN , with N =
n(n+3)

2 −
(
s+2

2

)
, by the linear system of quadric hypersurfaces of Pn passing through

Ps; alternatively, X ∼= PPr(E ) with E ∼= OPr(1)⊕n−r ⊕ OPr(2) and 1 ≤ r ≤ n − 1,
embedded in PN by |OP(E )(1)|.

(iii) Pr × Ps ⊂ Prs+r+s Segre embedded, where r, s ≥ 1 are integers such that r + s = n;

(iv) a hyperplane section of Pr×Ps ⊂ Prs+r+s Segre embedded, where n ≥ 3 and r, s ≥ 2
are integers such that r + s = n+ 1.

4.2 Space of Conics Through Two Points

In this section we introduce tools for our study of conic-connected manifolds. We begin
by defining the space of conics through two general points of a conic-connected manifold.

Let X ⊂ PN be a conic-connected manifold. Typically, the space of conics on X
passing through two general points x, y ∈ X is not compact. We compactify it with the
Kontsevich moduli space of stable maps. Let β be a class of a conic on X passing through
x, y. Recall from Section 2.5 that the Kontsevich moduli space M0,2(X,β) parameterizes
data [C, p, q, f ], where

(i) C is a projective, connected, reduced, at worst nodal curve C of arithmetic genus 0,

(ii) p and q are distinct, non-singular, marked points on C,

(iii) f : C → X is a morphism such that: (1) f∗[C] = β; (2) if E is an irreducible
component of C contracted by f then E contains at least one special point.

There exists an evaluation morphism

ev : M0,2(X,β) −→ X ×X
[C, p, q, f ] 7−→ (f(p), f(q)).

The fiber of ev over the general point (x, y) ∈ X × X parameterizes conics on X (with
class β) passing through the two general points x, y ∈ X.

Proposition 4.2.1. Let X ⊂ PN be a conic-connected manifold, and let β be a class of a
conic passing through general points x, y ∈ X. Let Wx,y be the fiber over (x, y) ∈ X ×X
of the evaluation morphism

ev : M0,2(X,β) −→ X ×X.

Assume that X is not a linear variety. Then every point in Wx,y parameterizes an
automorphism-free stable map. Moreover, Wx,y is smooth of expected dimension

−KX · β − dim(X)− 1

and it intersects the boundary ∆ in a simple normal crossing divisor.
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Proof. Let [C, p, q, f ] ∈ Wx,y. Since X ⊂ PN is not a linear variety, by Lemma 4.1.1, the
line in PN joining x, y ∈ X is not contained in X. Hence, every irreducible component of
C has degree 1 over its image. Therefore, [C, p, q, f ] is automorphism-free.

For the second part, note that, by Lemma 2.4.3 the restrictions of f to the irreducible
components of C are free. This is because f : C → X has fixed class β and passes through
general points x, y ∈ X. By Lemma 2.5.1 the result follows.

4.2.1 Examples

Here we compute several examples of spaces of conics on a conic-connected variety
passing through two general points on it.

Let X ⊂ PN be a conic-connected manifold, and let β be a class of a conic passing
through general points x, y ∈ X. Let Wx,y be the fiber over (x, y) ∈ X × X of the
evaluation morphism

ev : M0,2(X,β) −→ X ×X.

There exists a natural evaluation morphism

Wx,y −→ Hilb(X)

[C, p, q, f ] 7−→ [f(C)].

The image of this morphism, denoted by Hilb2t+1(X;x, y), is also a parameter space for
conics on X passing through x, y ∈ X. The spaces of conics Wx,y and Hilb2t+1(X;x, y) can
be different. This happens when there exists a stable map in Wx,y with automorphisms.
For example, for X = PN , there exist double coverings of the line in PN joining the points
x, y. By Proposition 4.2.1 this is the only case when Wx,y parameterizes some stable map
with automorphisms.

Example 4.2.1. Consider the projective space PN withN ≥ 2. Let us describe the Hilbert
scheme Hilb2t+1(PN ; p, q) of conics in PN passing through two fixed points p, q ∈ PN . Since
PN is a bihomogenous variety (that is, given two pairs of points in PN , there exists an
automorphism of PN mapping one pair to the other one), we can assume that the fixed
points are p = (1 : 0 : · · · : 0) and q = (0 : 1 : 0 : · · · : 0). Let ΣN−2,N−2 ⊂ G(2, N) be the
Schubert variety of planes in PN containing these points. Note that ΣN−2,N−2

∼= PN−2.
Indeed, every plane in PN parameterized by ΣN−2,N−2 has a unique representative W of
the matricial form

W =

 1 0 0 · · · 0
0 1 0 · · · 0
0 0 a2 · · · aN

 , with (a2 : · · · : aN ) ∈ PN−2.

For such planes we will always take the representatives of this form. The plane in PN
corresponding to [W ] ∈ ΣN−2,N−2 will be denoted by

Π(a2:···:aN ) :=
{

(x : y : za2 : · · · : zaN ) ∈ PN | (x : y : z) ∈ P2
}
.

A conic C ⊂ Π(a2:···:aN ), given by the zeroes of a homogeneous polynomial of degree 2

c0x
2 + c1xy + c2xz + c3y

2 + c4yz + c5z
2 ∈ Sym2(W∨),

passes through p = (1 : 0 : · · · : 0) and q = (0 : 1 : 0 : · · · : 0) if and only if c0 =
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c3 = 0. Hence, conics C ⊂ Π(a2:···:aN ) passing through p and q are parameterized by the

projectivization of a 4-dimensional sub-vector space V(a2:···:aN ) ⊂ Sym2(W∨). Therefore,

Hilb(PN ; p, q) must be the projective bundle associated to some sub-vector bundle E of

Sym2
(
U|∨ΣN−2,N−2

)
,

where U denotes the tautological bundle on G(2, N) (see 2.7). Let us describe this vector
bundle E . Cover the Schubert variety ΣN−2,N−2 with the affine open subsets

Ui := {[W ] ∈ ΣN−2,N−2 | ai 6= 0}, for i = 2, . . . , N,

and denote by Uij the intersection of Ui and Uj . The trivializations of U|ΣN−2,N−2
over

this cover are

ϕi : f−1(Ui) −→ Ui × C3, for i = 2, . . . , N,

(w, [W ]) 7−→ ([W ], x, y, z)

where x, y and z are the coordinates of w ∈W with respect to the basis

{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), (0, 0, a2/ai, . . . , aN/ai)}.

By computing the transition functions relative to these trivializations, we see that U|ΣN−2,N−2

is represented by the co-cycles

hij : Uij −→ GL3(C)

(a2 : · · · : aN ) 7−→

 1 0 0
0 1 0
0 0 aj/ai

 ,

which correspond to the locally free sheaf O⊕2
PN−2 ⊕OPN−2(−1). Now, consider the vector

bundle

π : E :=
{

(C, [W ]) ∈ C6 × ΣN−2,N−2 | C ∈ V(a2:···:aN )

}
−→ ΣN−2,N−2

(C, [W ]) 7−→ [W ].

The trivializations of this vector bundle are

ϕi : π−1(Ui) −→ Ui × C4

(C, [W ]) 7−→ ([W ], c1, c2, c4, c5),

where c1, c2, c4, c5 are coordinates with respect to the basis {xy, xz, yz, z2} of V(a2:···:aN ).
By computing the transition functions relative to these trivializations, we see that E is
represented by the co-cycles

kij : Uij −→ GL4(C)

(a2 : · · · : aN ) 7−→


1 0 0 0
0 ai/aj 0 0
0 0 ai/aj 0
0 0 0 (ai/aj)

2

 ,
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which corresponds to the locally free sheaf OPN−2(2) ⊕ OPN−2(1)⊕2 ⊕ OPN−2 . Therefore,
PPN−2

(
OPN−2(2)⊕OPN−2(1)⊕2 ⊕OPN−2

)
is the Hilbert scheme of conics in PN passing

through two fixed points.

Let us compute the locus ∆ ⊂ Hilb2t+1(PN ; p, q) corresponding to reducible conics. A
conic C ⊂ Π(a2:···:aN ), given by the zeroes of a homogneous polynomial

c1xy + c2xz + c4yz + c5z
2,

is reducible if and only if

det

 0 c1 c2

c1 0 c4

c2 c4 2c5

 = 0,

that is, c1(c2c4 − c1c5) = 0. Therefore, we see that ∆ is the union of two irreducible
components ∆1 and ∆2. The component ∆1, corresponding to the vanishing of c1, pa-
rameterizes reducible conics with the line joining p and q as an irreducible component; it
is the projective bundle associated to the sub-vector bundle OPN−2(2)⊕OPN−2(1)⊕2 of E .
The component ∆2, corresponding to the vanishing of c2c4− c1c5, is the conic-bundle over
PN−2 whose fiber is the conic given by this same polynomial equation.

Example 4.2.2. Let X2 be a smooth quadric hypersurface of PN , with N ≥ 2. Let us
describe the Hilbert scheme Hilb2t+1(X2; p, q) of conics in X2 passing through two general
fixed points p, q ∈ X2. Under a projective change of coordinates, we can assume that X2

is given by the polynomial equation

x2
0 + · · ·+ x2

N = 0.

Under a permutation of coordinates, we can assume that p = (p0 : · · · : pN ) and
q = (q0 : · · · : qN ) with p0q1 − p1q0 6= 0. Let ΣN−2,N−2 ⊂ G(2, N) be the Schubert
variety of planes in PN containing these points. As we have seen in Example 4.2.1,
ΣN−2,N−2

∼= PN−2. Indeed, every plane in PN parameterized by ΣN−2,N−2 has a unique
representative W of the the matricial form

W =

 p0 p1 p2 · · · pN
q0 q1 q2 · · · qN
0 0 a2 · · · aN

 , with (a2 : · · · : aN ) ∈ PN−2.

For such planes we will always take the representative of this form. Also, the plane in PN
corresponding to [W ] ∈ ΣN−2,N−2 will be denoted by

Π(a2:···:aN ) =
{

(xpi + yqi + zai)
N
i=0 ∈ PN | (x : y : z) ∈ P2

}
,

where by convention we put a0 = a1 = 0. In the homogeneous coordinates x, y, z of
Π(a2:···:aN ), the intersection X2 ∩Π(a2:···:aN ) of X2 is given by the polynomial equation

2

(
N∑
i=0

piqi

)
xy + 2

(
N∑
i=0

piai

)
xz + 2

(
N∑
i=0

qiai

)
yz +

(
N∑
i=0

a2
i

)
z2 = 0.

Since we are assuming that p and q are general points of X2, we have
∑N

i=0 piqi 6= 0; hence,
the intersection X2 ∩ Π(a0:···:aN ) is a single conic C(a2:···:aN ). Therefore, Hilb2t+1(X2; p, q)

is isomorphic to PN−2.
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Let us compute the locus ∆ ⊂ Hilb2t+1(X2; p, q) corresponding to reducible conics.
The conic C(a0:···:aN ) is reducible if and only if

det

 0
∑N

i=0 piqi
∑N

i=0 piai∑N
i=0 piqi 0

∑N
i=0 qiai∑N

i=0 piai
∑N

i=0 qiai
∑N

i=0 a
2
i

 = 0,

that is,
N∑
i=0

 N∑
j=0

(2δij − 1)pjqj

 a2
i + 2

∑
0≤i<j≤N

(piqj + pjqi)aiaj = 0,

where δij denotes the Kronecker’s delta. Therefore ∆ is the quadric hypersurface in PN−2

given by the above polynomial equation. The locus ∆ could also be obtained in a more
geometrical way: reducible conics on X2 correspond to intersections with planes that are
tangent to X2.

Example 4.2.3. Let X3 be a smooth cubic hypersurface of PN , with N ≥ 4. Let us
describe the Hilbert scheme Hilb2t+1(X3; p, q) of conics in X3 passing through two general
fixed points p, q ∈ X3. The line Lp,q passing through p and q intersects X3 at a third point,
which we will denote by r. Since p and q are general points, so is r. A conic C ⊂ X3

passing through p and q generates a plane. The intersection of this plane and X3 is the
union of the conic C and a line through r. Conversely, a line L ⊂ X3 passing through r
and the line Lp,q determine a plane. The intersection of this plane and X3 is the union of
the line L and a conic through p and q. Therefore Hilb2t+1(X3; p, q) is isomorphic to the
Fano variety F (X3; r) of lines contained in X3 passing through a general point r ∈ X3.
We saw in Example 3.1.1 that the Fano variety F (X3; r) is a complete intersection of type
(1, 2, 3) in PN−1.

The locus ∆ ⊂ Hilb2t+1(X3; p, q) ∼= F (X3; r) corresponding to reducible conics is
obtained with similar computations to the Example 4.2.2. It is a complete intersection of
type (1, 2, 2, 3) in PN−1.

Example 4.2.4. Let r, s ≥ 1 be integers and let S : Pr × Ps → Prs+r+s be the Segre
embedding. Let us describe the Hilbert scheme Hilb2t+1(S(Pr × Ps);S(p), S(q)) of conics
in the Segre variety S(Pr × Ps) passing through two general fixed points S(p), S(q) ∈
S(Pr × Ps). Let π1 : Pr × Ps → Pr and π2 : Pr × Ps → Ps be the projections from Pr × Ps
to its factors. From the generality assumption, it follows that the points p and q are
not in a same fiber of either π1 or π2. Then a conic C ⊂ S(Pr × Ps) passing through
S(p) and S(q), as well as its inverse image S−1(C), has numerical class of type (1, 1) in
N1(Pr × Ps) ∼= Z ⊕ Z. Write p = (p1, p2) and q = (q1, q2). Since S−1(C) has numerical
class of type (1, 1), the image L1 of S−1(C) under π1 is the line through p1 and q1, and
the image L2 of S−1(C) under π2 is the line through p2 and q2. Thus

S−1(C) ⊂ π−1
1 (L1) ∩ π−1

2 (L2) ∼= P1 × P1.

Under the Segre embedding, this P1 × P1 is isomorphic to a smooth quadric hypersurface
of a P3 ⊂ Prs+r+s. Therefore, by Example 4.2.2, Hilb2t+1(S(Pr × Ps);S(p), S(q)) ∼= P1

and the locus ∆ ⊂ P1 corresponding to reducible curves is the union of two points.

Example 4.2.5. Assume the notation as in Example 4.2.4. Let H be a general hyperplane
of Prs+r+s. Let us describe the Hilbert scheme Hilb2t+1(S(Pr×Ps)∩H;S(p), S(q)) of conics
in S(Pr×Ps)∩H passing through two fixed general points S(p), S(q) ∈ S(Pr×Ps)∩H. We
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have seen that conics in S(Pr × Ps) passing through two fixed general points S(p), S(q) ∈
S(Pr × Ps) are contained in a smooth quadric hypersurface of a P3 ⊂ Prs+r+s. The
hyperplane H cuts this quadric into a conic, which must be the original conic. Therefore
Hilb2t+1(S(Pr × Ps) ∩H;S(p), S(q)) is a single point and ∆ = ∅.

Example 4.2.6. Let r be an integer such that 1 ≤ r ≤ n−1. Set E = OPr(1)⊕n−r⊕OPr(2).
Consider the projective bundle P(E) embedded by the complete linear system |OP(E)(1)|
into the projective space PN , where N = (n − r)(n − r) +

(
r+2

2

)
. Denote this embedding

by i : P(E) → PN , and by X its image. Let us describe the space of conics in X passing
through two fixed general points i(p), i(q) ∈ X. Let π : P(E) → Pr be the projection
morphism. Denote by ξ the divisor class of OP(E)(1) and by h the divisor class of the
pullback π∗(OPr(1)). Also, denote by f the curve class of a line contained in a fiber of
π, and by l the curve class of the image of a line under the section corresponding to the
surjection of sheaves E → OPr(1). We have the following intersection numbers

f · ξ = 1, f · h = 0, l · ξ = 1, l · h = 1.

Recall that the Mori cone NE(P(E)) of effective curves is generated by f and l. Hence, if
C is a conic contained in X, then

[i−1(C)] ≡ af + bl, for certain integers a, b ≥ 0.

We have
2 = [C] · [H] = [i∗C] · ξ = a+ b,

where [H] denotes the hyperplane class of PN . If C passes through points i(p) and i(q),
with p or q not contained in the image of the section, then a 6= 0. And if p and q are
not contained in a same fiber of the projection morphism π, then b 6= 0. In this general
situation, the image of i−1(C) under π is a line; thus we are reduced to the case r = 1. In
this case it is clear that there exists a unique such conic C.

Here is another way to see this example. View X as the blown-up BlPs(Pn) embedded

in PN , with N = n(n+3)
2 −

(
s+2

2

)
, by the linear system of quadric hypersurfaces of Pn

containing Ps, with 0 ≤ s ≤ n− 2. Then the conic C is the strict transform of the unique
line in Pn passing through the image of the two points. The generality condition gives
that this line does not meet the blown-up linear space Ps.

4.2.2 Polarization on the Space of Conics Through Two Points

When studying a uniruled variety, it is very useful to consider a polarized minimal
family of rational curves passing through a general point of it (see the final comments in
Subsection 3.1). For example, in [AC12], C. Araujo and A.-M. Castravet studied Fano
manifolds whose Chern characters satisfy some positivity conditions considering polar-
ized minimal families of rational curves through a general point. With this study the
authors found out new examples of higher Fano manifolds, and provided conditions for
these manifolds to be covered by subvarieties isomorphic to P2 and P3. Analogously, it
seems that when studying conic-connected manifolds one should consider a polarized va-
riety (Wx,y,Mx,y), where Wx,y is an irreducible component of the space of conics on X
passing through general points x, y ∈ X, and Mx,y is a natural polarization on Wx,y,
which we define below.

Let X ⊂ PN be a conic-connected manifold, and let β be a class of a conic passing
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through general points x, y ∈ X. Assume that X is not a linear variety. Let Wx,y be an
irreducible component of the fiber over (x, y) ∈ X ×X of the evaluation morphism

ev : M0,2(X,β) −→ X ×X.

By Proposition 4.2.1 the space Wx,y of conics on X (with class β) passing through x, y ∈ X
is automorphism-free and smooth. Therefore, there exists a universal family of stable maps
over Wx,y,

C
π

��

µ // X

Wx,y

sx

<<

sy

]] ,

where sx and sy are sections of π such that µ(sx(Wx,y)) = {x} and µ(sy(Wx,y)) = {y}.
We will denote by the same symbol both sx and its image in C, and analogously for sy.
Recall that, by the functorial property, the fiber F of the morphism π over a stable map
[C, p, q, f ] ∈ Wx,y is isomorphic to C, and under this isomorphism we have µ|F = f (see
Subsection 2.5.5). Consider the differentials of the universal family morphisms over Wx,y,

0

��
Tπ

��
TC

dµ //

dπ
��

µ∗TX .

π∗TWx,y

The smooth locus of the morphism π is the open subset U of C consisting only of smooth
points of its fibers. Hence the restriction

π|U : U −→Wx,y

is a smooth morphism of relative dimension 1, and then the restriction (Tπ)|U is a locally
free sheaf of rank 1. By stability condition, source curves of stable maps parameterized by
Wx,y do not have irreducible components contracted by their maps. Furthermore, since
we are assuming that X is not a linear variety, none of the stable maps in Wx,y is a double
covering. Thus the restriction of the differential (π|U ) to (Tπ)|U is non-zero, and therefore
we have the inclusion of sheaves

d (π|U ) : (Tπ)|U ↪−→ (µ|U )∗ TX .

The section sx is such that sx(Wx,y) ⊂ U . Thus, pulling back under sx we obtain the
inclusion of sheaves

s∗xTπ ↪−→ s∗xµ
∗TX ∼= TxX ⊗OWx,y .

The quotient is locally free and defines a morphism

τx : Wx,y −→ P(TxX)
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which maps a stable map [C, p, q, f ] ∈ Wx,y to the tangent direction at x to the image
conic f(C).

Lemma 4.2.1. The image of the morphism τx : Wx,y → P(TxX) does not contain the
direction of the line in PN joining x, y.

Proof. Denote by v the direction of the line in PN joining x, y. Suppose by contradiction
that there exists a conic C on X passing through x, y ∈ X with tangent direction v at x.
Then, by Bézout’s Theorem, the conic C must be reducible. Hence, X contains the line
in PN joining x, y. But, by Lemma 4.1.1, this contradicts the assumption that X is not a
linear variety. Therefore the result holds.

Lemma 4.2.2. The morphism τx : Wx,y → P(TxX) is a finite morphism.

Proof. Since a projective morphism with finite fibers is a finite morphism, it is sufficient to
prove that τx has finite fibers. Suppose by contradiction that there exists a 1-dimensional
family of conics on X passing through x, y ∈ X with the same tangent direction v ∈
P(TxX) at x. By Lemma 4.2.1, v and the line in PN joining x and y generate a plane P ,
which must contains the 1-dimensional family of conics. This family of conics cover P ,
and therefore P ⊂ X. By Lemma 4.1.1, this contradicts the assumption that X is not a
linear variety. Therefore the result holds.

Since the pullback of an ample sheaf under a finite morphism of noetherian schemes is
ample,

Mx,y = τ∗xOP(TxX)(1)

is an ample line bundle on Wx,y.

In order to study conic-connected manifolds, we propose to work with the polarized
variety (Wx,y,Mx,y). In the next section we will relate this polarization with that one
studied by A. J. de Jong and J. M. Starr in [dS06b].

4.3 Minimal Pointed Rational Curves

In the unpublished notes [dS06b], A. J. de Jong and J. M. Starr study a special class
of rationally connected varieties. They study rationally connected varieties X with the
property that through n general points x1, . . . , xn ∈ X there passes a rational curve of
degree exactly n. As tools, they consider the space of rational curves of degree n on X
passing through the general points x1, . . . , xn ∈ X, and define a natural polarization on
this space. In this section we review part of the theory developed by de Jong and Starr for
the study of these varieties. We will see that, in the case n = 2, the polarization defined
by de Jong and Starr coincides with our polarization defined in Subsection 4.2.2.

Although many of the results presented here have first been announced in [dS06b],
some of them were stated without precision and without proofs. Our work here is to
rewrite the definitions and provide complete proofs for these results with the appropriate
hypothesis. We give all credits to the authors.

Let X ⊂ PN be a smooth variety, and let β be a curve class on X of degree n. By the
space of rational curves on X (with class β) passing through general points x1, . . . , xn ∈ X
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we mean the fiber over (x1, . . . , xn) ∈ Xn of the evaluation morphism

ev : M0,n(X,β) −→ Xn

[C, p1, . . . , pn, f ] 7−→ (f(p1), . . . , f(pn)).

4.3.1 Minimal Curve Classes

Let X ⊂ PN be a smooth variety. We will consider rational curves on X having minimal
curve class among those passing through n general points of X. A curve satisfying this
property is called minimal pointed rational curve. This notion of minimality of a curve
class on X was introduced by de Jong and Starr; we define this notion below.

Definition 4.3.1. Let X ⊂ PN be a smooth variety. A curve class β on X is n-dominant
if the evaluation morphism

ev : M0,n(X,β) −→ Xn

is dominant. An n-dominant curve class β on X is n-minimal if for every partition

n = n1 + · · ·+ nr

and for every collection (β1, . . . , βr) of ni-dominant curve classes βi satisfying

r∑
i=1

βi ≤ β,

in fact occurs the equality
r∑
i=1

βi = β.

Lemma 4.3.1 ([dS06b, Lemma 5.3]). Let X ⊂ PN be a smooth variety, and let β be a
curve class on X. If β is n-minimal, then every point in a general fiber of the evaluation
morphism

ev : M0,n(X,β) −→ Xn

parameterizes a curve whose irreducible components are all free. Moreover, every point
in a general fiber parameterizes an automorphism-free stable map. Therefore, a general
fiber of ev is smooth of expected dimension

−KX · β − (n− 1) dim(X) + n− 3

and it intersects the boundary ∆ in a simple normal crossing divisor.

Proof. Let [C, p1, . . . , pn, f ] be a point in a fiber of ev over a general point (x1, . . . , xn) ∈
Xn. Let D be the union of all irreducible components of C which are free curves. Denote
by D1, . . . , Dr the connected components of D containing at least one of the marked points
p1, . . . , pn. Let E be the union of all irreducible components of C that are not contained
in D1, . . . , Dr. For each i = 1, . . . , n, every irreducible curve on X passing through xi is
free. Therefore every point pi is contained in one of the connected components D1, . . . , Dr.
Let Cj be an irreducible component of C contracted to xi. Every irreducible component
of C intersecting Cj is either contracted (and thus trivially free) or else mapped to an
irreducible curve on X passing through xi (and thus free). Therefore, by the stability
condition, every connected component Dk contains at least one irreducible component
that is not contracted.
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Denote by βi the curve class of f∗[Di]. Let

ni = #{pj | pj ∈ Di}.

Since every non-empty subset of {x1, . . . , xn} is general, βi is ni-dominant. Clearly

r∑
i=1

βi ≤ β.

In fact
r∑
i=1

βi = β,

because β is n-minimal. In particular, every irreducible component of E is contracted,
and thus free. Therefore, every irreducible component of C is a free curve.

To prove that [C, p1, . . . , pn, f ] is automorphism-free, it is sufficient to prove that every
non-contracted component Ci of C has degree 1 over its image. If the degree is greater
than 1, then Ci can be replaced by a curve with smaller curve class also meeting all
marked points contained in Ci, namely, the normalization of the image of Ci (maybe we
also need to attach some contracted components if any special point is mapped to the
same point on the image). Thus C can be replaced by an n-dominating curve with smaller
curve class. This contradicts the n-minimality of β. Therefore, [C, p1, . . . , pn, f ] is an
automorphism-free stable map.

The final statement now follows from Lemma 2.5.1.

Example 4.3.1. Let X ⊂ PN be a conic-connected manifold. Assume that X is not a
linear variety. Let β be the class of a conic on X passing through general points x, y ∈ X.
Then β is 2-minimal. Therefore, by Lemma 4.3.1, the space of conics on X (with class β)
passing through x, y ∈ X is automorphism-free and smooth of expected dimension. This
concurs with Proposition 4.2.1.

4.3.2 Polarization on the Space of Minimal Pointed Rational Curves

In this subsection we define a polarization on the space of minimal pointed rational
curves on a smooth projective variety. This polarization was introduced by A. J. de Jong
and J. M. Starr in [dS06b].

Definition 4.3.2. Let X ⊂ PN be a smooth variety, and let β be a curve class on X of
degree n, with 1 ≤ n ≤ N . Let x = (x1, . . . , xn) ∈ Xn ⊂ (PN )n be an n-tuple of linearly
general points, and denote by P the (n − 1)-plane in PN generated by x1, . . . , xn. The
linearly non-degenerate locus Ux of x is the maximal open substack of the corresponding
fiber of

ev : M0,n(X,β) −→ Xn

parameterizing stable maps for which none of the irreducible components are mapped into
the (n− 1)-plane P .

This condition is equivalent to asking that none of the non-contracted irreducible
components are mapped into P . Indeed, suppose by contradiction that there exists a stable
map (C, p1, . . . , pn, f) with none of the non-contracted irreducible components mapped
into P , but with an irreducible component E contracted to a point y ∈ P (note that y
may or may not be one of the points x1, . . . , xn). By stability condition, E contains at
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least three special points. Since x1, . . . , xn are distinct, E contains at most one marked
point. Hence E contains at least two special points which are intersection points of E
with others irreducible components of C. Therefore f(C) is singular at y; the image curve
f(C) and P have at least n + 1 points in common, counted with multiplicity. This is a
contradiction to Bézout’s Theorem, because n = deg(f) ≥ deg(f(C)).

Lemma 4.3.2. Let X ⊂ PN be a smooth variety, and let β be a curve class on X of
degree n, with 1 ≤ n ≤ N . Let x = (x1, . . . , xn) ∈ Xn ⊂ (PN )n be an n-tuple of linearly
general points. Denote by Wx the fiber over x of the evaluation morphism

ev : M0,n(X,β) −→ Xn.

If the linearly non-degenerate locus Ux of x is the whole corresponding stack of Wx, then
Wx is automorphism-free.

Proof. Let (C, p1, . . . , pn, f) be a stable map in the corresponding stack of Wx. By hy-
pothesis none of the non-contracted irreducible components of C are mapped into the
(n−1)-plane P generated by x1, . . . , xn. To prove that (C, p1, . . . , pn, f) is automorphism-
free, it is sufficient to prove that for every non-contracted irreducible component E of C,
f |E has degree 1 over its image. If for some non-contracted irreducible component E of C
the degree of f |E over its image has degree greater than 1, then deg(f |E) > deg(f(E)).
Hence n = deg(f) > deg(f(C)). Since the n distinct points x1, . . . , xn are in the intersec-
tion of f(C) with P , by Bézout’s Theorem P contains an irreducible component of f(C),
a contradiction.

Example 4.3.2. Let X ⊂ PN be a conic-connected manifold, and let β be a class of
a conic on X passing through general points x, y ∈ X. Assume that X is not a linear
variety. Then the linearly non-degenerate locus of (x, y) ∈ X2 is the whole stack of the
corresponding fiber Wx,y of the evaluation morphism ev : M0,2(X,β)→ X2.

It is convenient to gather in a single paragraph all the necessary hypothesis to define a
polarization on the space of minimal pointed rational curves. Often we will refer to these
hypothesis.

Hypothesis 4.3.1. Let X ⊂ PN be a smooth variety, and let β be an n-minimal curve
class on X of degree n, with 1 ≤ n ≤ N . Assume that X is not a linear variety.
Furthermore, assume that for n ≥ 3 the variety X is not a quadric hypersurface. Let
x = (x1, . . . , xn) ∈ Xn ⊂ (PN )n be an n-tuple of linearly general points. Let Wx be an
irreducible component of the fiber over x ∈ Xn of the evaluation morphism

ev : M0,n(X,β) −→ Xn.

Assume that the linearly non-degenerate locus Ux of x is the whole corresponding stack of
Wx. By Lemma 4.3.1 every point in Wx parameterizes an automorphism-free stable map.
Moreover, Wx is smooth of expected dimension

−KX · β − (n− 1) dim(X) + n− 3

and it intersects the boundary ∆ in a simple normal crossing divisor. Therefore, there
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exists a universal family of stable maps over Wx,

C

π

��

µ // X ⊂ PN

Wx

si, i=1,...,n

]] , (4.1)

where s1, . . . , sn are sections of π such that µ(s1(Wx)) = {x1}, . . . , µ(sn(Wx)) = {xn}.
We will denote by the same symbol both s1 and its image in C, and analogously for
s2, . . . , sn. By the functorial property, the fiber F of the morphism π over a stable map
[C, p1, . . . , pn, f ] ∈ Wx is isomorphic to C, and under this isomorphism we have µ|F = f
(see Subsection 2.5.5).

Under Hypothesis 4.3.1, given a stable map [C, p1, . . . , pn, f ] ∈ Wx, the image curve
f(C) has degree n and it passes through the general points x1, . . . , xn ∈ X. Since the
linearly non-degenerate locus Ux is the whole corresponding stack of Wx, the image
curve f(C) generates an n-plane in PN , which contains the (n − 1)-plane P generated
by x1, . . . , xn. Therefore, we have a well defined point

[f(C)] ∈ P
(
CN+1/ span{x1, . . . , xn}

) ∼= PN−n.

In the next paragraphs we will prove that this correspondence is, indeed, a morphism from
Wx to PN−n.

We begin by proving the following claim:

Claim 4.3.1. The sheaf π∗µ
∗OPN (1) on Wx is locally free of rank n + 1. The fiber over

a stable map [C, p1, . . . , pn, f ] ∈ Wx of the corresponding vector bundle is isomorphic to
H0(C, f∗OPn(1)).

Proof. By Grauert’s Theorem is sufficient to prove that, for every fiber F of π, we have

h0(F, (µ∗OPN (1))|F ) = n+ 1.

We will prove this by induction on n. Let F be the fiber of π over a stable map
[C, p1, . . . , pn, f ] ∈Wx. If C is irreducible, that is, C ∼= P1, then

h0(F, (µ∗OPN (1))|F ) = h0(P1, f∗OPN (1)) = h0(P1,OP1(deg(f))) = n+ 1.

Assume that C is reducible, with r ≥ 2 irreducible components. Since C is a tree, we
can write C = E ∪D with E ∼= P1 and E ∩D = {r}. Note that f does not contract E,
otherwise E would contain at least two marked points pi and pj being mapped to the same
point xi = xj , a contradiction. Set β1 = f∗[E] and β2 = f∗[D]; it is clear that β1 +β2 = β.
Since we are assuming that X is not a linear variety and for n ≥ 3 the variety X is not
a quadric hypersurface, by Lemma 4.1.2 the image curves f(E) and f(D) pass through
deg(β1) and deg(β2) points, respectively. Moreover, these degrees are non-zero (because
E is not a contracted component) and less than n (because deg(β1) + deg(β2) = deg(β)).
In other words, β1 is deg(β1)-minimal and β2 is deg(β2)-minimal. Consider the exact
sequence

0→ OE(−r)→ OC → OD → 0.
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After tensorizing by f∗OPN (1) we obtain

0→ (f |E)∗OPN (1)⊗OE(−r)→ f∗OPN (1)→ (f |D)∗OPN (1)⊗OD → 0.

Then we have the long exact sequence of cohomology

0→ H0(P1,OP1(deg(f |E)− 1))→ H0(C, f∗OPN (1))→ H0(D, (f |D)∗OPN (1))→
→ H1(P1,OP1(deg(f |E)− 1))→ · · ·

Applying the induction hypothesis to D and using the fact that H1(P1,OP1(deg(f |E) −
1)) = {0}, we conclude that

h0(C, f∗OPN (1)) = h0(P1,OP1(deg(f |E)− 1)) + h0(D, (f |D)∗OPN (1))

= deg(f |E) + deg(f |D) + 1

= n+ 1,

as we wanted.

From now on, we will denote

E = π∗µ
∗OPN (1).

We have an evaluation morphism (of locally free sheaves)

π∗E −→ µ∗OPN (1),

whose morphism between the fibers over a point c ∈ C, with π(c) = [C, p1, . . . , pn, f ], is
given by

H0 (C, f∗OPN (1)) −→ OPN (1)⊗ k(µ(c))

s 7−→ s(c).

For each i = 1, . . . , n, we have π ◦ si = id and µ(si(Wx)) = {xi}. Hence, pulling back to
Wx under si gives the evaluation morphism at the point pi

E −→ (OPN (1)⊗ k(xi))⊗OWx ,

whose morphism between the fibers over a stable map [C, p1, . . . , pn, f ] ∈Wx is given by

H0 (C, f∗OPN (1)) −→ OPN (1)⊗ k(xi)

s 7−→ s(pi).

Taking the product of all of these morphisms, we obtain a total evaluation morphism

λ : E −→ (
⊕n

i=1 (OPN (1)⊗ k(xi)))⊗OWx .

For shortness, we will denote

F = (
⊕n

i=1 (OPN (1)⊗ k(xi)))⊗OWx .



62 CHAPTER 4. CONICS ON VARIETIES

Notation. We will denote by Lx the kernel of the sheaf homomorphism λ : E → F .

Claim 4.3.2. The sheaf Lx is invertible and generated by N − n+ 1 global sections.

Proof. The sheaf homomorphism λ factors the evaluation morphism

H0(PN ,OPN (1))⊗OWx −→ E
λ−→ F

H 7−−−−−−−→ (H(pi))
n
i=1

Clearly, this homomorphism is surjective, because x1, . . . , xn are general points of X (recall
that X is non-degenerate in PN ). Hence, λ is surjective, and therefore Lx is invertible. In
fact, λ is also surjective in global sections, which implies

h0(Wx,Lx) = h0(Wx, E)− h0(Wx,F ⊗OWx)

= h0(Wx, E)− n.

We claim that h0(Wx, E) = N + 1, and thus h0(Wx,Lx) = N −n+ 1. Indeed, since we are
assuming that the curve class β is n-minimal, the morphism µ dominates X, and since
X is non-degenerate in PN , the N + 1 global sections µ∗(X0), . . . , µ∗(XN ) are linearly
independent and generate H0(C, µ∗OPN (1)) = H0(Wx, E). Therefore, Lx is generated by
N − n+ 1 global sections.

By the above claim, the sheaf Lx is base-point-free, and therefore defines a morphism
from Wx to PN−n given by

φ : Wx −→ P
(
CN+1/ span{x1, . . . , xn}

) ∼= PN−n

[C, p1, . . . , pn, f ] 7−→ [f(C)].

Lemma 4.3.3. Assume Hypothesis 4.3.1 and additionally that n− 1 ≤ codim(X). Then
the line bundle Lx on Wx is ample.

Proof. We begin by recalling that the pullback of an ample sheaf under a finite morphism
of noetherian schemes is ample. On the other hand, a projective morphism with finite
fibers is a finite morphism. Therefore, to prove that Lx is an ample sheaf, it is sufficient to
prove that the morphism φ has finite fibers. Let y ∈ PN−n be a point in the image of the
morphism φ. Let T be the corresponding n-plane in PN containing x1, . . . , xn. A stable
map [C, p1, . . . , pn, f ] is contained in the pre-image of y if and only if the image curve f(C)
is contained in the intersection of X and T . Suppose that dim(T ∩X) = 1, that is, T ∩X is
a curve. Thus, the curve C have non-contracted irreducible components consisting of the
irreducible components of T ∩X. Since T ∩X has a finitely many irreducible components,
we conclude that the fiber is finite.

To prove that dim(T ∩X) = 1, it is sufficient to prove that dim(P ∩X) = 0, where P
denotes the (n− 1)-plane generated by the general points x1, . . . , xn. Recall the Trisecant
Lemma: let X ⊂ PN be a non-degenerate irreducible variety over a field of characteristic
zero. Given n general points x1, . . . , xn ∈ X such that n < codim(X), the (n− 1)-plane P
generated by these points is not (n+ 1)-secant, that is, P ∩X = {x1, . . . , xn}. Therefore,
when n − 1 < codim(X) the claim follows immediately from the Trisecant Lemma. The
case n− 1 = codim(X) needs more.

Assume that n − 1 = codim(X). Suppose by contradiction that dim(P ∩ X) = 1.
We claim that this only happens when X is a linear variety or a quadric hypersurface;



4.3. MINIMAL POINTED RATIONAL CURVES 63

and this contradicts Hypothesis 4.3.1. Let E be a 1-dimensional irreducible component
of P ∩X. Denote by P ′ the (n − 2)-plane generated by the general points x1, . . . , xn−1.
By Bézout’s Theorem, the intersection of E and P ′ is non-empty, and by the Trisecant
Lemma, P ′ ∩ X = {x1, . . . , xn−1}. Hence, E pass through at least one of the points
x1, . . . , xn−1, say x1. Denote by P ′′ the (n − 2)-plane generated by the general points
x2, . . . , xn. By Bézout’s Theorem, the intersection of E and P ′′ is non-empty, and by
the Trisecant Lemma, P ′′ ∩ X = {x2, . . . , xn}. Hence, E passes through at least one of
the points x2, . . . , xn, say x2. If deg(E) = 1, then by Lemma 4.1.1 X is a linear variety,
a contradiction. Thus, deg(E) ≥ 2. Again by Bézout’s Theorem, P ′′ intersects X at a
second point, say x3. If deg(E) = 2, then by Bézout’s Theorem, E is contained in the plane
generated by x1, x2, x3. Now we recall that a non-degenerate irreducible curve C ⊂ Pd
of degree d is a normal rational curve. Then, by Lemma 4.1.2, X is a linear variety or a
quadric hypersurface, a contradiction. Repeating this reasoning we conclude that we can
not have dim(P ∩X) = 1. Therefore, dim(P ∩X) = 0, as we desired.

Let X be a conic-connected manifold. Assume that X is not a linear variety. We end
this subsection showing that, the polarizationsMx,y and Lx,y on the space Wx,y of conics
on X passing through general points x, y ∈ X are isomorphic.

Proposition 4.3.1. Let X ⊂ PN be a conic-connected manifold, and let β be a class
of a conic on X passing through general points x, y ∈ X. Let Wx,y be an irreducible
component of the space of conics on X (with class β) passing through x, y. Assume that
X is not a linear variety. Then the polarizations Mx,y and Lx,y on Wx,y are isomorphic.

Proof. Denote by ` the line in PN joining the points x, y ∈ X. We have a commutative
diagram

Wx,y
φ //

τx
))

P
(
CN+1/ span{x, y}

) ∼= PN−2,

P(TX,x)

π`

OO

where π` is the projection from the line `. By Lemma 4.2.1 the image of τx is contained
in the open U where π` is defined. Thus π∗`OPN−2(1) ∼= OP(TxX)(1)

∣∣
U

, and therefore
Mx,y

∼= Lx,y.

4.3.3 Classes Computations

Here we will compute some cycles relations on the space of rational curves Wx.

Notation. Assume Hypothesis 4.3.1 and its notation. We will denote by

L = c1(Lx),

the corresponding class divisor of the polarization Lx on Wx.

Lemma 4.3.4 ([dS06b, Lemma 6.4]). With Hypothesis 4.3.1 and its notation, we have
the following identities of cycles on Wx:

(i) si · µ∗(α) = 0, for every α ∈ Ak(Wx), k ≥ 1;

(ii) µ∗ c1(OPN (1)) =
∑n

i=1 si + π∗L;

(iii) s2
i = −si · π∗L, for i = 1, . . . , n;
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(iv) π∗(si · si) = −L, for i = 1, . . . , n;

(v) π∗µ
∗ c1(OPN (1))2 = nL.

Proof. Since dimWx ≥ 1 and µ(si(Wx)) = {xi}, the identity (i) follows immediately from
Projection Formula. Consider the evaluation morphism

π∗π∗µ
∗OPN (1) −→ µ∗OPN (1).

Since Lx is a subsheaf of π∗µ
∗OPN (1), we can restrict this morphism to Lx. This gives us

a morphism of invertible sheaves

π∗Lx −→ µ∗OPN (1),

or equivalently, a global section of the twist π∗L∨x ⊗ µ∗OPN (1), which we denote by

σ : OC −→ π∗L∨x ⊗ µ∗OPN (1).

The zero locus of this section is

Zero locus(σ) = µ−1(P ),

where P denotes the (n−1)-plane in PN generated by x1, . . . , xn. Since µ(si(Wx)) = {xi},
we have

∪ni=1si(Wx) ⊂ µ−1(P ).

Suppose that this inclusion is strict. Then there exists a stable map [C, p1, . . . , pn, f ] ∈Wx

passing through a point y ∈ P different from x1, . . . , xn. We are assuming that the image
curve f(C) generates an n-plane, which contains P as a hyperplane. Since x1, . . . , xn and
y are distinct points in the intersection of f(C) with P , by Bézout’s Theorem f(C) have
an irreducible component contained in P . This is a contradiction, because the linearly
non-degenerate locus Ux = Wx parameterizes stable maps for which none of the irreducible
components are mapped into P . Therefore

Zero locus(σ) =
⋃m
i=1 si(Ux)

as closed subschemes of C. The global section σ induces an isomorphism of invertible
sheaves

OC(s1 + · · ·+ sn) ∼= π∗L∨x ⊗ µ∗OPN (1).

Taking the first Chern class and using its elementary properties, we obtain (ii). Intersecting
(ii) with si and using (i) and the Projection Formula, we obtain (iii). Pushing forward the
identity (iii) under π and using the Projection Formula, we obtain (iv). Finally, using the
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identities (ii) and (iii) we obtain the identity (v):

π∗µ
∗ c1(OPN (1))2 = π∗

(
n∑
i=1

si + π∗L

)

= π∗

(
n∑
i=1

s2
i + (π∗L)2 + 2

n∑
i=1

si · π∗L

)

= π∗

(
(π∗L)2 +

n∑
i=1

si · π∗L

)

= π∗ (π∗L · π∗L) +
n∑
i=1

π∗(si · π∗L)

= nL,

where the last equality holds because of the Projection Formula.

Now we state the formula for the first Chern class of the space of rational curves Wx.
This formula was computed by A. J. de Jong and J. M. Starr in [dS06b, Lemma 6.5] and it is
given in terms of the first and second Chern classes of X. This is a consequence of a much
more difficult computation: the virtual canonical class of the Kontsevich moduli space
M0,n(X,β). For the special case X = PN , this virtual canonical class and other divisor
class relations were computed by R. Pandharipande in [Pan97] and [Pan99]. With a com-
pletely different method from that used by Pandharipande, de Jong and Starr in [dS06a]
computed the virtual canonical class and other divisor class relations on M0,n(X,β) for
the general case. The authors make use of a perfect obstruction theory for M0,n(X,β),
defined by K. Behrend and B. Fantechi in [BF97]. This is a perfect complex E• of ampli-
tude [−1, 0] together with a map to the cotangent complex φ : E• → L•

M0,n(X,β)
such that

h0(φ) is an isomorphism and h−1(φ) is surjective. In many cases, φ is a quasi-isomorphism,
and then the dualizing sheaf on M0,n(X,β) is the determinant det(E•). For this reason,
det(E•) is called the virtual canonical bundle. The proofs reduce to local computations
and the use of Grothendieck-Riemann-Roch Theorem for the universal family over the
Artin stack of all prestable curves of genus 0. Since such proofs require too much effort
on subject not addressed in this thesis, we are content in just stating the result that we
are interested.

Lemma 4.3.5 ([dS06b, Lemma 6.5]). Assume Hypothesis 4.3.1 and additionally that X
has Picard number equal to 1. Let α be a curve class on X of degree 1. Then the first
Chern class of Wx is given by the formula

c1(Wx) = π∗µ
∗
(

ch2(X)− (n− 2) c1(X) · α+ 2n

2n
c1(O(1))2

)
+ 2∆. (4.2)

In particular, for n = 1,

c1(Wx) = π∗µ
∗
(

ch2(X) +
c1(X) · α− 2

2
c1(O(1))2

)
, (4.3)

and for n = 2,
c1(Wx) = π∗µ

∗ (ch2(X)− c1(O(1))2
)

+ 2∆. (4.4)

As we can see in the previous lemma, the linear map π∗µ
∗ plays an important role in
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the formula for the canonical bundle of the space of rational curves Wx. In order to study
this map, we introduce the following definition (see Subsection 2.6.3 for notation).

Definition 4.3.3. Assume Hypothesis 4.3.1. For every positive integer k, we define linear
maps

T k : Nk(X)R −→ Nk−1(Wx)R,
α 7−→ π∗µ

∗α
Tk : Nk(Wx)R −→ Nk+1(X)R

β 7−→ µ∗π
∗β.

Note that, by the Projection Formula,

T k+1(α) · β = α · Tk(β), (4.5)

for every α ∈ Nk+1(X)R and β ∈ Nk(Wx)R.

Following C. Araujo and A.-M. Castravet in [AC12], and using the identities in Lemma
4.3.4, we can prove that the linear maps T k and Tk preserve nice properties.

Lemma 4.3.6. Let X ⊂ PN be a smooth variety with Picard group Pic(X) ∼= Z[OX(1)].

(i) If D is an R-divisor on X, then

T k(Dk) =
dk

nk−1
Lk−1,

where d = deg(f∗D), for any stable map [C, p1, . . . , pn, f ] ∈Wx;

(ii) Tk maps NEk(Wx) \ {0} into NEk+1(X) \ {0};

(iii) T k preserves the property of being nef.

Proof. Since Pic(X) ∼= Z[OX(1)], every R-divisor D on X is written as D = a c1(OX(1)),
with a ∈ R. By Lemma 4.3.4

µ∗D = aµ∗ c1(OX(1)) = a

(
n∑
i=1

si + π∗L

)
.

Now let F be the fiber of π over a stable map [C, p1, . . . , pn, f ] ∈ Wx. We know that
F ∼= C, and under this isomorphism µ|F = f . Restricting the above identity to the fiber
F we conclude that

f∗(A) = a

(
n∑
i=1

si · F + π∗ c1(L) · F

)

= a
n∑
i=1

pi.

In particular, taking the degree, we have a = deg(f∗(A))/n. By Lemma 4.3.4 and Projec-
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tion Formula,

T k(Dk) = akπ∗

(
n∑
i=1

si + π∗L

)k

= akπ∗

 k∑
j=0

(
k

j

)( n∑
i=1

si

)k−j
· π∗Lj


= akπ∗

k−1∑
j=0

(
k

j

)( n∑
i=1

sk−ji · π∗Lj
)

+ π∗Lk


= akπ∗

k−1∑
j=0

(
k

j

)( n∑
i=1

(−1)k−j−1si · π∗Lk−1

)
+ π∗Lk


= akπ∗

k−1∑
j=0

(
k

j

)
(−1)k−j−1

( n∑
i=1

si · π∗Lk−1

)
+ π∗Lk


= akπ∗

[(
n∑
i=1

si · π∗Lk−1

)
+ π∗Lk

]
= aknLk−1

=
dk

nk−1
Lk−1,

and then we obtain (i).

It is clear that Tk maps effective cycles to effective cycles, and therefore, it maps
NEk(Wx) into NEk+1(X), by continuity. Let β ∈ NEk(Wx) \ {0}. Take A an ample
divisor on Wx. In view of (4.5), to prove that Tk(β) 6= 0, it is sufficient to prove that
T k+1(Ak+1) · β > 0. By item (i),

T k+1(Ak+1) · β =
dk+1

nk
Lk · β > 0,

because L is an ample divisor by Lemma 4.3.3, and thus Lk · β > 0. Therefore, (ii) holds.

In view of 4.5, T k+1(α) · β = α · Tk(β), for every α ∈ Nk+1(X)R and β ∈ Nk(Wx)R.
Together with (i) and (ii) above, this implies that T k preserves the property of nef, as
claimed in (iii).

Final remark. Let X ⊂ PN be a conic-connected manifold of Picard number 1, and let
β be a class of a conic on X passing through general points x, y ∈ X. Assume that X is
not a linear variety. Let Wx,y be an irreducible component of the space of conics on X
(with class β) passing through x, y. By Lemma 4.3.5, the anti-canonical class of Wx,y is
given by the formula

−KWx,y = π∗µ
∗ ch2(X)− π∗µ∗ c1(O(1))2 + 2∆.
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By Lemma 4.3.4 and Proposition 4.3.1, we know that

π∗µ
∗ ch2(X) = 2L = 2M,

where M is the corresponding divisor to the polarization Mx,y. It was also proved by de
Jong and Starr in [dS06b, Lemma 6.4] that

2L = ∆.

Hence, we have
−KWx,y = π∗µ

∗ ch2(X) + 2M. (4.6)

By Lemma 4.3.6, the linear map T 2 = π∗µ
∗ preserves the property of being nef. Therefore,

if X is weakly 2-Fano, then Wx,y is Fano (see Subsection 2.6.3 for the definition of weakly
2-Fano manifold).

The reason to obtain the formula (4.6) in terms of the polarizationMx,y is because the
tangent morphism τx has been studied extensively in a series of papers by J.-M. Hwang
and N. Mok (see, for example, [Hwa01] and [HM04]), and also studied by other authors
(see, for example, [Keb02]). We hope that this point of view is useful in the study of
weakly 2-Fano conic-connected manifolds.
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