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Abstract. The theory of decision under uncertainty has been extensively devel-

oped last years and it is yielding relevant consequences in economic theory. It

is interesting to investigate if new models for uncertainty aversion are robust

when incorporated within classic economic frameworks. Results of [4] indicate

that maxmin preferences are asymptotically irrelevant in a general equilibrium

model. In this paper, variational preferences (axiomatized by [10, 11]) are tested

in a survival problem based on [3]. This paper shows that to determine survival it

is necessary to compare levels of uncertainty aversion and aggregate risk, permit-

ting the survival of an agent with persistent uncertainty aversion.
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1. Introduction

The market selection hypothesis has long been invoked by economists to justify

the assumption that economic agents have rational expectations, i.e., that their

beliefs are identical to the probabilistic model that governs the events. The ratio-

nale is the following: in an economy populated by heterogeneous agents, those who

have such a feature will obtain advantages over others and in the long-term will

accumulate more wealth; their decisions will be more important to the economy;

asymptotically, such individuals will be the ones to influence prices and dominate

the market. However, for this reasoning to work, it is necessary to assume certain

hypotheses. To achieve positive results, i.e., those where selection for who makes

accurate predictions happen, [12] and [3] suppose that agents have expected util-

ities and markets are complete. Without market completeness there are negative

results as in [3], [1] and [5].

Our focus is on the exclusion of the first assumption, since we want to study the

effects of ambiguity aversion. An important work in such a direction is that of [4],

whose main result indicates that the influence of maxmin agents in complete mar-

kets becomes irrelevant when compared with rational expectations individuals.

Such a result could make it seem that ambiguity averse preferences are econom-

ically unimportant, but this is not true. This kind of preference has been used to

improve economic theory in many areas, providing new approaches and solving

problems with a realistic appeal (see [8] for a brief survey in finance).

The survival analysis by [12] and [3] shows that if agents behave according

to expected utilities, then what matters in determining survival are the inter-

temporal discount factors and beliefs. [4] analyzes survival of maxmin agents, who

are ambiguity averse, and concludes that survival for this type of agent is difficult

to happen if a rational expectation agent is present, due to the aggregate risk.

By considering a general type of ambiguity averse preference, we can reconcile

survival of ambiguity averse agents with the presence of aggregate risk.
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Next section presents the framework. Preferences are discussed in Section 3.

Considerations with respect to Pareto optimality are in Section 4. The Section

5 brings examples of asymptotic behavior of consumption decisions in different

situations where optimality conditions are met. The mean results are presented

in Section 6, the Section 7 concludes, proofs and auxiliary results are in Appendix.

2. Dynamic Model of General Equilibrium

Consider a dynamic model with discrete time T = {0, 1, . . . }. There is a finite

set of agents I = {1, . . . , I}, which have common information modeled by a filtered

space (Ω, (Ft)t∈T ), where Ω := {ω0} ×
∏

t≥1 St, with ω0 the sure state occurring

for the first time and St = {1, . . . , St} the set of possible states occurring at each

time t ≥ 1. A representative element of Ω will be denoted by ω = (ω0, ω1, . . . ) and

time-t history ωt = (ω0, . . . , ωt) ∈ Ωt := {ω0} ×
∏t

τ=1 Sτ . Let Ft be the σ-algebra

generated by (t + 1)-dimensional cylinders, i.e., Ft = σ({Gt(ω);ω ∈ Ω}), where

Gt(ω) := {ωt} ×
∏

τ>t Sτ .

Let F0 = ∪t∈TFt be the algebra of finite-time events and F = σ(F0) the σ-

algebra generated by F0. The filtered space (Ω, (Ft)t∈T ,F) represents the infor-

mational process known by agents. Process ωt is governed by probability P(·|ωt−1)

on St, which can be understood as the conditional probability given ωt−1 in the

past. These probabilities generate law P on (Ω,F) by constructing the partials

P(ωt) = P(ωt−1)P(ωt|ωt−1) on Ft for each t ∈ T , and evoking Kolmogorov’s extension

theorem (see [13]).

The set of all probabilities on a measurable space (A,A) is denoted by ∆(A,A),

or ∆(Ω) instead ∆(Ω,F) for simplicity. If P ∈ ∆(Ω), Pt denotes its restriction to Ft,

and Pt+1(s|ωt) := Pt+1(ωt,s)
Pt(ωt)

denotes the conditional one-step-ahead probability from

P . Note that we can consider Pt+1(·|ωt) ∈ ∆(Gt(ω),Ft+1).

For two probabilities, P and Q, we say that Q is absolutely continuous with

respect to P if for A ∈ F , P (A) = 0 implies Q(A) = 0, and we denote Q � P .

We say that Q is locally absolutely continuous with respect to P if for A ∈ F0 ,
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P (A) = 0 implies Q(A) = 0, and we denote Q
loc
� P . If Q � P and P � Q we say

that P and Q are equivalents and denote Q ∼ P . Again for P and Q we denote the

total variation distance1 between P and Q by ‖P −Q‖.

The acts considered by the agents must be based on their knowledge of the

world, hence the consequences of an act at period t will be contingent to events at

Ft. The individual choice space is a subset of

X =

{
(xt)t∈T ; xt : Ω→ R is Ft-adapted and sup

t,ω
|xt(ω)| <∞

}
,

whose dual, which contains the prices, is

X∗ =

{
(pt)t∈T ; pt : Ω→ R is Ft-adapted and

∑
t,ω

|pt(ω)| <∞

}
2,

considering the duality pair 〈x, p〉 =
∑
t,ω

xt(ω)pt(ω) that generates the Mackey

topology τ(X,X∗) on X and the weak topology σ(X∗, X) on X∗. It is interesting

to note that X could be identified by{
x :
⋃
t∈T

({t} × Ωt)→ R; sup
t,ω
|x(t, ωt)| <∞

}
,

which in turn is basically `∞.

3. Variational Preferences

To make his decision, the agent considers at first every belief (probability) in

∆(Ω). His utility is determined as if he were playing a game against a malevo-

lent Nature that tries to choose a belief that minimizes agent’s expected utility,

but Nature has a kind of cost to realize a probability as effective belief. Varia-

tional preferences were developed by ([10, 11]), and there they explore in detail the

behavioral properties of this kind of preference.

1For two probabilities on a σ-algebra G the total variation distance is defined by

‖ P − Q ‖ := supA∈G |P (A)−Q(A)|
2The sum

∑
t,ω |pt(ω)| makes sense because for each t there are a finite number of values pt(ω)

since pt is Ft-measurable.



Survival and Uncertainty through Variational Preferences 5

Agent i’s utility functional is given by

V i(c) = min
P∈∆(Ω)

{
EP

[∑
t∈T

βtui(ct)

]
+ Γi(P )

}
and by its recursive form

V i
t (ω, c) = ui(ct(ω)) + min

P∈∆(Ω,Ft+1)

{
EP
[
V i
t+1(ω, c)

]
+ γit(ω, P )

}
.

Where β ∈ (0, 1) is the inter-temporal discount factor, common to all agents, ui :

R+ → R is agent i’s utility index, Γi : ∆(Ω)→ [0,∞] and γit(ω, ·) : ∆(Ω,Ft+1)→ [0,∞]

are the ambiguity index and dynamic ambiguity index, respectively.

It is supposed that Γi and γit are convex, lower semi-continuous and with 0 in

their image; furthermore, γit satisfies: fixed P , γit(·, P ) is Ft-measurable and fixed

ω

domγit(ω, ·) := {P ∈ ∆(Ω); γit(ω, P ) <∞} ⊂ ∆(Gt(ω),Ft+1).

Conditions on ambiguity indexes ensure that beliefs in domΓ are updated ac-

cording to Bayes’ rule3. By recursiveness we need to treat only with one-step-

ahead decisions and beliefs, and it simplifies analysis.

Examples of variational preferences are the maxmin preferences where

Γ(P ) =

 0; if P ∈ C

∞; otherwise

and

γt(ω, P ) =

 0; if P = Qt+1(·|ωt) for some Q ∈ C

∞; otherwise

where C ⊂ ∆(Ω) is closed, convex and rectangular (for definitions see [7]), the

expected utility preferences that are maxmin with C = {Q}, and the Q-multiplier

preferences where

Γ(P ) =

 θEP
[
log
(
dP
dQ

)]
; if P � Q

∞; otherwise

3For details see [11].
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and

γt(ω, P ) =

 θβ−tEP
[
log
(

dP
dQt+1(·|ωt)

)]
; if P � Qt+1(·|ωt)

∞; otherwise

with θ > 0.

While maxmin individuals deal with beliefs in an “all or nothing” way, the mul-

tiplier individual has a “smoother” method of dealing with beliefs. We can see that

variational preferences are able to encompass several kinds of behavior.

4. Pareto Optimality

Following [3] the analysis will be made from the Pareto optimal allocations,

hence, the consequences will be valid for complete markets.

We suppose that each agent is endowed with an initial consumption stream

ei ∈ X+.

Definition 1. An allocation (ci)i∈I is called Pareto optimal if it is feasible, that

is,
∑

i c
i =

∑
i e
i, and there is no feasible allocation (ċi)i∈I such that V i(ċi) ≥ V i(ci)

∀i and V i0(ċi0) > V i0(ci0) for some i0 ∈ I.

We consider only consumptions in X++, and if c∗ = (c1∗, . . . , cI∗) ∈ XI++ is Pareto

optimal, there is (λ1, . . . , λI)� 0 such that c∗ is the solution for problem
max

(c1,...,cI)

∑
i

λiV
i(ci)

s.t.
∑
i

(ci − ei) ≤ 0.
(1)

By the first order conditions [6, 124] for that problem there are constants ηt(ω) >

0 such that

λip
i
t(ω) = ηt(ω) (2)

for some pi = (pit) ∈ ∂V i(ci∗), for any i ∈ I.

Next lemma is part of Theorem 18 of [10] and characterizes the superdifferential

of a variational utility.
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Lemma 1. The superdifferential of variational utility V has the form

∂V (c) =

{
(βtu′(ct)dPt);P ∈ arg min

Q∈∆(Ω)

{
EQ

[∑
t∈T

βtu(ct)

]
+ Γ(Q)

}}
,

for any c ∈ X++.

If (c1, . . . , cI) is Pareto optimal, by equation (2) and by previous lemma we get for

each i ∈ I a probability Pi ∈ arg minQ∈∆(Ω)

{
EQ
[∑

t∈T β
tu(ct)

]
+ Γ(Q)

}
that is the

effective belief of agent i. Such probabilities are related with the fixed allocation

and carry all information needed to determine survival4.

We can derive from (2) some useful relations: for all t ∈ T , ω ∈ Ω and i, j ∈ I

λiβ
tu′i(c

i
t(ω))Pit(ω) = λjβ

tu′j(c
j
t(ω)) Pjt(ω), (3)

moreover, we get for every s ∈ St

u′i(c
i
t(ω

t−1, s))

u′i(c
i
t−1(ωt−1))

Pit(s|ωt−1) =
u′j(c

j
t(ω

t−1, s))

u′j(c
j
t−1(ωt−1))

Pjt(s|ωt−1) (4)

and, ∀r, s ∈ St
u′i(c

i
t(ω

t−1, s))

u′j(c
j
t(ω

t−1, s))

Pit(s|ωt−1)

Pjt(s|ωt−1)
=
u′i(c

i
t(ω

t−1, r))

u′j(c
j
t(ω

t−1, r))

Pit(r|ωt−1)

Pjt(r|ωt−1)
. (5)

By Lemma 1 and recursive form of utilities we get

Pit(·|ωt−1) ∈ arg min
P∈∆(Gt(ω),Ft+1)

{
EP
[
u(cit)

]
+ γit(ω, P )

}
.

5. Examples

This section presents some representative situations for general results about

the survival problem. The context, in terms of uncertainty and endowments, is the

same in all cases. There are two states of nature and two agents, S = {1, 2} = I,

P is generated by i.i.d. trials uniformly on S, i.e., Pt(1|ωt−1) = 1/2, ∀ t. Agent 1

always has expected utility with correct belief and his utility is given by

V1(c1) = EP

[
∞∑
t=0

(
1

2

)t
log c1

t

]
.

4Remember that we assume the same inter-temporal discount factor for every agent.
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Agent 2 is different in each case, allowing for a comparative analysis. The endow-

ments depend only on the current nature state, e1
t (1) = e2

t (1) = 1/2, e1
t (2) = e2

t (2) =

1/2 + δ/2, with δ > 0.

5.1. Expected Utility Example. Beginning with a well known example based on

[12] where there are two agents with expected utilities, one of whom has a wrong

belief, being driven out of the market by the other one with correct belief. The key

to achieve this result is the law of large numbers.

Here, agent 2 also has expected utility, but with wrong belief, his utility is given

by

V2(c2) = EP̄

[
∞∑
t=0

(
1

2

)t
log c2

t

]
,

with P̄t(1|ωt) = 1/2− ε and 0 < ε < 1/2.

By (3) we get
(1

2
)tc2

t (ω
t)

(1
2
− ε)n(1

2
+ ε)t−nc1

t (ω
t)

=
λ2

λ1

, ∀t ∈ N,

where n is the number of times that state 1 occurs.

The law of large numbers gives us n ≈ t/2, then

(1
2
)t

(1
2
− ε)n(1

2
+ ε)t−n

≈
(1

2
)t

(1
2
− ε)t/2(1

2
+ ε)t/2

=

( 1
4

1
4
− ε2

)t/2
t→∞−−−→∞.

Whereas λ2
λ1

is a positive constant, c
2
t (ωt)

c1t (ωt)
→ 0 with probability 1, and by c1

t (ω
t) ≤ 1+δ

we get c2
t (ω

t)→ 0 P a.s.

This example is related to Proposition 2 (1) of [12] and Theorem 3 (ii) of [3]. Note

that the only important fact about endowments is their limitation. Below we will

show that for survival of an averse ambiguity agent, other features matter.

5.2. Maxmin Utility Example. The next example is based on [4] where an agent

with maxmin utility cannot survive in the presence of an expected utility with

correct belief. In turn, this conclusion strongly depends on the aggregate risk. The

ambiguity averse customer acts as if he were an expected utility with wrong belief,

and he cannot survive as well as in the previous case. But there is a particularity
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of maxmin utility that does not occur in the more general model of variational

utilities. A maxmin agent deals with his possible beliefs in a homogeneous way, so

aggregate risk forces him to take a precautionary attitude that moves away from

the one that ensures survival.

In this example the utility of agent 2 is given by

V2(c2) = min
P∈∆(Ω)

[
EP

(
∞∑
t=0

(
1

2

)t
log c2

t

)
+ Γ(P )

]
,

where γt(Pt) =

 0; if Pt(1|ω) ∈ [1/3, 2/3]

∞; otherwise.

Figure 1: γ2
t (Pt) versus Pt(1|ωt−1)

By (5) we get

c2
t (ω

t−1, 1)

c1
t (ω

t−1, 1)

Pt(1|ωt−1)

P2
t (1|ωt−1)

=
c2
t (ω

t−1, 2)

c1
t (ω

t−1, 2)

Pt(2|ωt−1)

P2
t (2|ωt−1)

.

and by market clearing

1 + δ − c2
t (ω

t−1, 2)

1− c2
t (ω

t−1, 1)

c2
t (ω

t−1, 1)

c2
t (ω

t−1, 2)
=

P2
t (1|ωt−1)

P2
t (2|ωt−1)

. (6)

If c2
t (ω

t−1, 1) > c2
t (ω

t−1, 2) then Pt(1|ωt−1) = 1/3, because P2
t (·|ωt−1) minimizes

EP
[(

1
2

)t
(log c2

t (ω
t−1, ·))

]
subject to P (1) ∈ [1/3, 2/3], and by (6)

1+δ−c2t (ωt−1,2)

1−c2t (ωt−1,1)
< 1/2 whence we get

1 + δ − c2
t (ω

t−1, 2) < 1/2− 1/2c2
t (ω

t−1, 1) < 1− c2
t (ω

t−1, 1)
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so c2
t (ω

t−1, 2) > c2
t (ω

t−1, 1), a contradiction.

If c2
t (ω

t−1, 1) = c2
t (ω

t−1, 2), since consumption is positive, from equation (6) we get5

P2
t (1|ωt−1)

P2
t (2|ωt−1)

> 1+δ. If c2
t (ω

t−1, 2) > c2
t (ω

t−1, 1), then agent 2 acts like an expected utility

assigning probability 2/3 for state 1. In both cases we get P2
t (1|ωt−1)

P2
t (2|ωt−1)

≥ min{1 + δ, 2},

so agent 2 does not survive as in the previous example because he always makes

inaccurate predictions. Such an example fits Theorem 1 of [4].

5.3. Motivating Example. The last example gives an idea of how a variational

agent can survive even in a presence of an expected utility with correct belief

agent, and with aggregate risk. An individual could be ambiguity averse and

survive as long as his ambiguity index is not so small. Such a constraint depends

on how big the aggregate risk is.

While agent 1 has expected utility with correct belief, agent 2’s utility is given

by

V2(c2) = min
P∈∆(Ω)

[
EP

(
∞∑
t=0

(
1

2

)t
log c2

t

)
+ Γ(P )

]
,

where

γt(Pt) =

 (1
2
− Pt(1|ωt−1))ε; if Pt(1|ωt−1) ≤ 1

2

(Pt(1|ωt−1)− 1
2
)ε; if Pt(1|ωt−1) ≥ 1

2

Figure 2: γ2
t (Pt) versus Pt(1|ωt−1)

5Note that 1 + δ < 1+δ−x
1−x <∞, ∀ 0 < x < 1.
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Again, as in (6)

1 + δ − c2
t (ω

t−1, 2)

1− c2
t (ω

t−1, 1)

c2
t (ω

t−1, 1)

c2
t (ω

t−1, 2)
=

P2
t (1|ωt−1)

P2
t (2|ωt−1)

by rearranging this expression

P2
t (1|ωt−1)

(
1

c2
t (ω

t−1, 1)
− 1

)
= P2

t (2|ωt−1)

(
1 + δ

c2
t (ω

t−1, 2)
− 1

)

Consider the possibilities for P2
t (·|ωt−1).

If P2
t (1|ωt−1) < P2

t (2|ωt−1) we get
c2
t (ω

t−1, 2)

c2
t (ω

t−1, 1)
> 1 + δ > 1, then

P2
t (1|ωt−1) log c2

t (ω
t−1, 1) + P2

t (2|ωt−1) log c2
t (ω

t−1, 2) + γt(Pt)

> 1/2 log c2
t (ω

t−1, 1) + 1/2 log c2
t (ω

t−1, 2)

and P2
t is not a minimizer.

If P2
t (1|ωt−1) > P2

t (2|ωt−1) we get
c2
t (ω

t−1, 1)

c2
t (ω

t−1, 2)
>

1

1 + δ
. Therefore

EP2
t (·|ωt−1)[log c2

t (ω
t−1, ·)] + γt(ω, Pt)− EPt(·|ωt−1)[log c2

t (ω
t−1, ·)]

= (P2
t (1|ωt−1)− 1/2) log c2

t (ω
t−1, 1) +

+(P2
t (2|ωt−1)− 1/2) log c2

t (ω
t−1, 2) + (P2

t (1|ωt−1)− 1/2)ε

= (P2
t (1|ωt−1)− 1/2)[log

(
c2
t (ω

t−1, 1)

c2
t (ω

t−1, 2)

)
+ ε]

> (P2
t (1|ωt−1)− 1/2)[log

(
1

1 + δ

)
+ ε]

So if ε− log(1 + δ) > 0, Pt = Pt is the only minimizer.

Therefore, agent 2 acts as an expected utility with correct belief if, for example,

ε = δ = 1, which fits into the context of previous examples. The message given to

us by these examples is that the relation between survival of an ambiguity averse

agent and the presence of aggregate risk could be made in a more precise way than

that found in [4]. Theorem 2 is an effort in that direction.
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6. Survival

A Pareto optimal allocation (ci)i∈I and beliefs Pi given in (3), for each i ∈ I, are

fixed.

Definition 2. Agent i survives on the path ω if lim cit(ω) > 0. We say that i survives

if there is A ∈ F with P(A) = 1 such that i survives on all ω ∈ A.

Some assumptions are needed to achieve the results.

Assumption 1. Let e :=
∑

i e
i. For every i ∈ I endowments satisfy e < ei < e < ē,

for positive constants e and ē.

Assumption 2. u′i > 0, u′′i < 0 and u′i(x)
x→0−−→∞ for all i ∈ I.

Assumption 3. For all path ω, suppose that Pt(·|ωt−1) > 0 and

dom γit(ω, ·)⊂∆+(Gt(ω),Ft+1) := {r ∈ ∆(Gt(ω),Ft+1); r(A) > 0 ∀A ∈ Ft+1\{∅}}.

Assumption 4. Agent 1 has expected utility with correct belief.

Assumptions 1 and 2 guarantee that the solutions to (1) are in X++. Assump-

tion 3 says that every state has a positive chance of occurring any time and after

any history; furthermore, relevant beliefs have this same property. Assumption

4 is supposed to test other agents in an unfavorable environment, since they are

competing with a well informed agent.

The next lemmata are known results and can be found in [3].

Lemma 2. Consider i 6= j. Agent i does not survive on the event
{
u′i(c

i
t(ω))

u′j(cjt (ω))
→∞

}
.

If agent i does not survive on ω, then for some j ∈ I, lim
u′i(c

i
t(ω))

u′j(cjt (ω))
=∞.

Lemma 3. Agent i survives Pi almost surely.

By the previous lemma, a criterion for survival of an agent i is that P is abso-

lutely continuous with respect to Pi, Lemma 4 shows that this condition is also

necessary.
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Lemma 4. Agent i survives if, and only if, P� Pi.

To know about survival relies in verifying if two probabilities are equivalent.

Next result give us a way to do this. As hypothesis we need local equivalence,

what in our case is supplied by Assumption 3

Lemma 5. If P,Q ∈ ∆(Ω) satisfies Qt � Pt for every t, then are equivalents:

(i) ‖P (·|ωt)−Q(·|ωt)‖ t→∞−−−→ 0 Q-a.s.;

(ii) Q� P .

The survival analysis as we can see in [12] and [3] does not take in account

the dynamic of aggregate endowments. On the other hand, in [4]‘s arguments the

asymptotic variation of aggregate endowments plays a crucial role. Next is defined

aggregate risk

Definition 3. Define the functional δ : X × Ω→ R by

δ(x, ω) := lim
t

(
sup{|xt(ωt−1, r)− xt(ωt−1, s)|; r, s ∈ St}

)
.

There is aggregate risk on the path ω if δ(e, ω) > 0, if there is aggregate risk P

almost surely we simply say that there is aggregate risk.

The next definition is analogous to the strict minimum consensus property of

[4], and the following theorem is a generalization of his Theorem 1 for variational

preferences.

Definition 4. We say that agent i satisfies property P if ∃ T ∈ T and ε > 0 such

that ∀t > T , if P ∈ ∆(Gt(ω),Ft+1) satisfies ‖P (s)−Pt(s|ωt−1)‖ ≤ ε, then γit(ω, P ) <∞.

Variational preferences encompass a large spectrum of...

Definition 5. We say that agent a is more ambiguity averse than agent b if ua = ub

and Γa ≤ Γb.

Theorem 1. Assume that there is aggregate risk. If agent i is more ambiguity

averse than a maxmin agent that satisfies property P, then i does not survive.
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The subsequent result can be understood as limiting the scope of maxmin util-

ities in survival analysis, because a variational agent can survive even believing

in “distributions which differ from the truth in all feasible directions”6.

Theorem 2. Suppose that ui(0) > −∞ and St = S for all t > 0. If there is T ∈ T

such that for every t > T , γit−1(ω,Pt(·|ωt−1)) = 0 and

γit−1(ω, P ) ≥ Smax{|ui(0)|, |ui(ē)|}‖P (s)− Pt(s|ωt−1)‖,

then i survives on ω.

Lemma 3 and Lemma 5 together compose the main tool to attain survival re-

sults. Lemma 3 tell us that an individual always acts to guarantee his survival

based on his effective belief, and if its posteriors converge to the truth posteriors

then, according to Lemma 5, such an agent survives.

According to the proof of Theorem 2, we can see that relevant one-step-ahead

beliefs at time t belongs to set

Ait(ω) =
{
P ∈ ∆(Gt(ω),Ft+1); γit(ω, P ) ≤ S(|ui(0)| ∨ |ui(ē)|)‖P − Pt+1(·|ωt)‖

}
,

for each t ∈ T . So, if Bi
t = {P ∈ ∆(Ω);Pτ+1(·|ωτ ) ∈ Aiτ (ω) ∀τ ≤ t} the set of relevant

beliefs7 is Bi = ∩t∈TBt.

In many situations it is natural to suppose that ambiguity aversion vanishes

over time. In such a case, dynamic ambiguity indexes will increase with t and

sets Ait will decrease, as sketched in Figure 3. If sets Ait collapse in a point, by the

same hypotheses made in Theorem 2, any probability in Bi will be equivalent to

P8. Therefore, we have conditions on ambiguity indexes that ensure survival. An

interesting consequence follows.

6This quotation from [4] is part of his explanation about property P that ensures the non survival

of maxmin agents.
7We refer to belief as relevant when it is a candidate to minimize EQ

[∑
t∈T β

tui(ct)
]

+ Γi(Q).
8If γit(ω,Pt+1(·|ωt)) = 0, then Pt+1(·|ωt) ∈ Ait(ω). We know that Pit+1(·|ωt) ∈ Ait(ω), so if the

sequence of sets Ait(ω) collapses into a single point we get ‖Pt+1(·|ωt)− Pit+1(·|ωt)‖ → 0.
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Figure 3: γ2
t (Pt) versus Pt(1|ωt−1)

Scholium 1. A multiplier agent i, such that ui(0) > −∞, survives if, and only if,

P� Qi where Qi is his reference probability.

In the next proposition we assume that there are only two agents. While agent 1

has an expected utility, agent 2 has a more general variational utility. For agent 2

we consider that two distinct types are possible, a and b. Type a is less ambiguity

averse than b, so their utility index are the same and the ambiguity index of a

is greater than the ambiguity index of b. Note that if (c1, c2) is a Pareto optimal

allocation when agent 2 is of type b, then, assuming that Γa(Pb) = Γb(Pb), the same

allocation is Pareto optimal even when agent 2 is of type a. Proposition 1 gives an

inverse relationship between the level of ambiguity aversion and survival.

Proposition 1. Suppose that a is less ambiguity averse than b and Γa(Pb) = Γb(Pb).

If type b survives, then type a also survives.

7. Conclusion

Survival of individuals behaving according to expected utility depends on inter-

temporal discount factors and compatibility between beliefs and the truth as shown
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Figure 4: γ2
t (Pt) versus Pt(1|ωt−1)

in [12] and [3]. To study the influence of ambiguity aversion, the step taken by [4]

was to introduce agents with maxmin utilities.

Considering βi = βj ∀i, j to isolate aversion ambiguity effects, he finds that

ambiguity averse agents survive under aggregate risk only in special cases. By

introducing variational preferences that are more general than maxmin, we find

that ambiguity averse individuals, with analogous characteristics to those in [4]’s

case, can survive under aggregate risk. Moreover, in particular cases it is possible

to make finer relations between the level of ambiguity aversion and the magnitude

of aggregate risk that lead to survival.

8. Appendix

Proof of Lemma 2: If u′i(c
i
t(ω))

u′j(cjt (ω))
→∞, then cit(ω)→ 0, by assumptions 1 and 2.

On the other hand, if cit(ω)→ 0, by assumption 1 there is j ∈ I such that cjt > e/I

for infinite indexes t. Hence, the denominator of u′i(c
i
t(ω))

u′j(cjt (ω))
is upper bounded, and the

result follows by assumption 2.

2
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Proof of Lemma 3: Let j 6= i in I. Define the following random variables on

(Ω,F),

Lt(ω) =
Pjt(ω)

Pit(ω)
.

Will be proven that {Lt} is martingale with respect to (Ft) and Pi. Indeed,

EPi [Lt+1|Ft](ω) =
∑
s∈S

Pjt+1(ωt, s)

Pit+1(ωt, s)

Pi({(ωt, s)} × Ω)

Pi({ωt} × Ω)
=
∑
s∈S

Pjt+1(ωt, s)/Pit(ωt) = Lt(ω).

It is also easy to see that E[Lt] = 1, ∀t. Therefore, by martingale convergence (see

[13]) (Lt) converges and its limit is finite Pi almost surely. Finally, by equation (3)

and by Lemma 2 agent i survives Pi almost surely.

2

Proof of Lemma 5: (i)⇒ (ii) follows by [9], on the other hand (ii)⇒ (i) is due to

[2].

2

Proof of Lemma 4: If P� Pi then, by Lemma 3, agent i survives P almost surely.

Note that, by Assumption 3, Pt and Pit are equivalents. If i survives then, ac-

cording to Lemma 2,

P
(
u′i(c

i
t(ω))

u′1(c1
t (ω))

9∞
)

= P (Lt(ω) 9∞) = 1,

where Lt(ω) = Pt(ω)

Pi
t(ω)

. By the proof of Theorem 1 p. 493 of [13] we get P(∃ limLt(ω)) =

1, therefore P(limLt(ω) <∞) = 1. Finally, by Theorem 2 p. 495 of [13], P� Pi.

2

Proof of Theorem 1: Suppose that i survives.

If cit(ωt−1, ·) is constant for a large enough t, by (4) and Lemma 5 for any j that

survives we get9

u′i(c
i
t(ω

t−1, s))

u′i(c
i
t−1(ωt−1))

≈
u′j(c

j
t(ω

t−1, s))

u′j(c
j
t−1(ωt−1))

.

9at ≈ bt means |at − bt|
t→∞−−−→ 1.
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Since cit(ω
t−1, ·) is constant, cjt(ωt−1, ·) is asymptotically constant, i.e., δ(cj) = 0.

Then δ(e) = δ(
∑

j survives c
j) = 0, a contradiction.

So, for any τ ∈ T there is t > τ such that cit(ωt−1, ·) is not constant. Then

‖Pit(·|ωt−1)− Pt(·|ωt−1)‖ ≥ ε

for a sequence t↗∞, and by Lemma 5 again, i does not survive.

2

Proof of Theorem 2: Let c ∈ X and ω ∈ Ω. For any P ∈ dom γit−1(ω, ·) we get{
EP
[
ui(ct(ω

t−1, ·))
]
+γit−1(ω, P )

}
−
{
EPt(·|ωt−1)

[
ui(ct(ω

t−1, ·))
]
+γit−1(ω,Pt(·|ωt−1)

}
=

∑
s∈S

ui(ct(ω
t−1, s))(P (s)− Pt(s|ωt−1)) + γit−1(ω, P )

≥
∑
s∈S

ui(ct(ω
t−1, s))(P (s)− Pt(s|ωt−1))

+ Smax{|ui(0)|, |ui(ē)|}‖P (s)− Pt(s|ωt−1)‖

≥ 0.

So {Pt(·|ωt−1)} = arg min
P∈dom γ2t−1(ω,·)

{
EP
[
u2(ct(ω

t−1, ·))
]

+ γ2
t−1(ω, P )

}
.

2

Proof of Scholium 1: The dynamic ambiguity index of agent i has the form

γt(ω, P ) =

 θβ−tEP
[
log
(

dP
dQt+1(·|ωt)

)]
, if P � Qt+1(·|ωt)

∞, otherwise

We define the sets

At = At−1∩
{
P ∈ ∆(Ω); γit(ω, Pt+1(·|ωt)) ≤ S{|ui(0)| ∨ |ui(ē)|}‖Pt+1(·|ωt)− Pt+1(·|ωt)‖

}
As γit is l.s.c. and Qi ∈ At for all t the sets are compact and ∩At 6= ∅. Since β−t →∞

any probability in ∩At will be a minimizer for

min
P∈∆(Ω)

{
EP

[∑
t∈T

βtui(ct)

]
+ γi(P )

}
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and by Lemma 5 such probabilities are equivalents to Qi. Therefore, according to

Lemma 4 the result follows.

2

Proof of Proposition 1: An agent a with utility V a is less ambiguity averse than

another with utility V b if ua = ub and Γa ≥ Γb. If Pb minimizes EP [ub(c2)] + Γb(P )

and Γa(Pb) = Γb(Pb), then, ∀P ∈ ∆(Ω)

EPb [ua(c2)] + Γa(Pb) = EP[ub(c2)] + Γb(Pb) ≤ EP [ub(c2)] + Γb(P ) ≤ EP [ua(c2)] + Γa(P ).

So Pb minimizes EP [ua(c2)] + Γa(P ) too, and if b survives then a survives.

2
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