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Abstract

We define two algorithms for propagating information in classification problems with pairwise

relationships. The algorithms involve contraction maps and are related to non-linear diffusion

and random walks on graphs. The approach is also related to message passing and mean field

methods. The algorithms we describe are guaranteed to converge on graphs with arbitrary

topology. Moreover they always converge to a unique fixed point, independent of initialization.

We prove that the fixed points of the algorithms under consideration define lower-bounds on the

energy function and the max-marginals of a Markov random field. Our theoretical results also

illustrate a relationship between message passing algorithms and value iteration for an infinite

horizon Markov decision process. We illustrate the practical feasibility of our algorithms with

preliminary experiments in image restoration and stereo depth estimation.

1 Introduction

In many classification problems there are relationships among a set of items to be classified. For

example, in image reconstruction problems adjacent pixels are likely to belong to the same object

or image segment. This leads to relationships between the labels of different pixels in an image.

Energy minimization methods based on Markov random fields (MRF) address these problems in

a common framework [3, 18, 14]. Within this framework we introduce two new algorithms for

classification with pairwise information. Our algorithms are based on contraction maps and are

related to non-linear diffusion and random walks on graphs.

The setting under consideration is as follows. Let G = (V,E) be an undirected simple graph and

L be a set of labels. A labeling of V is a function x : V → L assigning a label from L to each vertex

in V . Local information is modeled by a cost gi(a) for assigning label a to vertex i. Information

∗Partially supported by NSF under grant 1161282 and the Brown-IMPA collaboration program.
†Partially supported by CNPq grants 474996/2013-1, 302962/2011-5 and FAPERJ grant E-26/201.584/2014.

1



on label compatibility for neighboring vertices is modeled by a cost hij(a, b) for assigning label a

to vertex i and label b to vertex j. The total cost for a labeling x is defined by an energy function,

F (x) =
∑
i∈V

gi(xi) +
∑
{i,j}∈E

hij(xi, xj). (1)

In the context of MRFs the energy function defines a Gibbs distribution on random variables X

associated with the vertices V ,

p(X = x) =
1

Z
exp(−F (x)). (2)

Minimizing the energy F (x) corresponds to maximizing p(X = x). This approach has been

applied to a variety of problems in image processing and computer vision [10]. A classical example

involves restoring corrupted images [11, 4]. In image restoration there is a grid of pixels and the

problem is to estimate an intensity value for each pixel. To restore an image I one looks for

an image J that is similar to I and is smooth almost everywhere. Similarity between I and J is

defined by local costs at each pixel. The smoothness constraint is defined by pairwise costs between

neighboring pixels in J .

1.1 Basic Definitions and Overview of Results

Let G = (V,E) be an undirected, simple, connected graph, with more than one vertex. For

simplicity let V = {1, . . . , n}. Let N(i) and d(i) denote respectively the set of neighbors and the

degree of vertex i,

N(i) = {j ∈ V | {i, j} ∈ E}, d(i) = |N(i)|.

Let L be a set of labels. For each vertex i ∈ V we have a non-negative cost for assigning label a

to vertex i, denoted by gi(a). These costs capture local information about the label for each vertex.

For each edge {i, j} ∈ E we have a non-negative cost for assigning label a to vertex i and label b

to vertex j, denoted by hij(a, b) or hji(b, a). These costs capture relationships between labels of

neighboring vertices.

gi : L→ [0,∞) for i ∈ V ;

hij , hji : L2 → [0,∞) for {i, j} ∈ E with hij(a, b) = hji(b, a)

Let x ∈ LV denote a labeling of V with labels from L. A cost for x that takes into account

both local information at each vertex and the pairwise relationships can be defined by an energy

function F : LV → R,

F (x) =
∑
i∈V

gi(xi) +
∑
{i,j}∈E

hij(xi, xj). (3)
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This leads to a natural optimization problem where we look for a labeling x with minimum energy.

Throughout the paper we assume L is finite. The optimization problem defined by F is NP-

hard even when |L| = 2 as it can be used to solve the independent set problem on G. It can also

be used to solve coloring with k colors when |L| = k. The optimization problem can be solved

in polynomial time using dynamic programming when G is a tree [1]. More generally dynamic

programming leads to polynomial optimization algorithms when the graph G is chordal and has

bounded tree-width. For general graphs G, when the pairwise functions define a metric there are

polynomial time approximation algorithms [13]. In some important cases the optimization problem

can be solved using graph cuts and maximum flow algorithms [12, 7, 6, 15].

Max-product belief propagation [18, 14] is a local message passing algorithm that is equivalent

to dynamic programming when G is a tree. Both dynamic programming and belief propagation

aggregate local costs by sequential propagation of information along the edges in E.

For i ∈ V we define the value function fi : L→ R,

fi(τ) = min
x∈LV

xi=τ

F (x). (4)

The value functions fi are exactly what is computed by the dynamic programming and belief

propagation approaches for minimizing F when G is a tree. In the context of MRFs the value

functions are also known as “max-marginals”. Each value function defines a cost for assigning a

label to a vertex that takes into account the whole graph. If x∗ minimizes F (x) than x∗i minimizes

fi(τ), and when fi(τ) has a unique minimum we can minimize F (x) by selecting

x∗i = argmin
τ

fi(τ). (5)

A local belief is a function ϕi : L→ R. A field of beliefs specifies a local belief for each vertex

in V , and is an element of

(RL)V = {ϕ = (ϕ1, . . . , ϕN ) | ϕi : L→ R}. (6)

We define our algorithms in terms of maps,

T : (RL)V → (RL)V ,

S : (RL)V → (RL)V .

The maps S and T are are closely related, both are contractions, but each of them has its own

unique fixed point. Each of these maps defines a fixed point iteration algorithm: for z ∈ {T, S}
we compute a sequence (ϕ0, ϕ1, . . .). The algorithm starts with an initial value ϕ0 and sequentially

computes ϕk+1 = z(ϕk), so that ϕk = zk(ϕ0). Both Sk(ϕ0) and T k(ϕ0) are convergent to the

unique fixed points of S and T respectively. After convergence to a fixed point ϕ̄ we select a

labeling x by selecting the label minimizing the belief at each vertex,

xi = argmin
τ

ϕ̄i(τ). (7)
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Our algorithms depend on parameters p ∈ (0, 1), q = 1 − p and weights wij ∈ [0, 1] for each

i ∈ V and j ∈ N(i). The weights from each vertex are constrained to sum to one,∑
j∈N(i)

wij = 1, ∀i ∈ V. (8)

These weights define random walks on G where the one step transition from vertex i to vertex j

has probability wij . In a uniform random walk we have wij = 1/d(i). Non-uniform weights can

be used to capture additional information about an underlying application. For example, in the

case of stereo depth estimation (Section 5.2) we have used non-uniform weights that reflect color

similarity between neighboring pixels.

The maps S and T define belief updates that propagate information along the edges of G,

Definition 1.1.

(Tϕ)i(τ) = pgi(τ) +
∑
j∈N(i)

min
uj∈L

p

2
hij(τ, uj) + qwjiϕj(uj) (9)

(Sϕ)i(τ) = pgi(τ) +
∑
j∈N(i)

wij min
uj∈L

phij(τ, uj) + qϕj(uj) (10)

The map defined by T corresponds to a form of non-linear diffusion of beliefs along the edges

of G. The map defined by S corresponds to value iteration for a Markov decision process (MDP)

[2] defined by random walks on G. Our results show that both S and T are contractions. We also

show that the fixed point ϕ̄T of T defines a lower bound on the energy function F , and that the

fixed point ϕ̄S of S defines lower bounds on the value functions fi,∑
i∈V

ϕ̄Ti (xi) ≤ F (x), ∀x ∈ LV , (11)

ϕ̄Si (τ) ≤ fi(τ), ∀i ∈ V, τ ∈ L. (12)

In Section 3 we study the algorithm defined by T and the relationship between ϕ̄T and F . To

the extent that
∑

i∈V ϕ̄
T
i (xi) approximates F (x) this justifies selecting a labeling x by minimizing

ϕ̄Ti at each vertex. This approach is related to a mean field approximation and variational inference

with the Gibbs distribution p(X = x) [18, 14].

In Section 4 we study the algorithm defined by S and the relationship between ϕ̄Si and fi. To

the extent that ϕ̄Si (τ) approximates fi(τ) this justifies selecting a labeling x by minimizing ϕ̄Si
at each vertex. The fixed point ϕ̄S defines the value of an optimal policy for an infinite horizon

discounted Markov decision process. This process is defined in terms of random walks on G with

transition probabilities given by the weights wij .

1.2 Examples

Figure 1 shows two examples of fixed points of T when the graph G = (V,E) is a cycle with 5

vertices. In this case we have a binary labeling problem L = {1, 2}. The local costs are all zero
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(a) Attractive relationships (b) Repulsive relationships

Figure 1: The fixed points of T on two problems defined on the graph above. In this case L = {1, 2}.
In both cases the local costs gi are all zero except for vertex 1 who has a preference towards label 2.

In (a) the pairwise costs encourage neighboring vertices to take the same label. In (b) the pairwise

costs encourage neighboring vertices to take different labels.

except that vertex 1 has a preference for label 2. This is encoded by a cost for label 1,

g1(1) = 1, (13)

g1(2) = 0, (14)

gi(a) = 0, ∀i 6= 1, a ∈ L. (15)

In example (a) we have pairwise costs that encourage equal labels for neighboring vertices,

hij(a, b) =

0 a = b

1 a 6= b,
(16)

In example (b) we have pairwise costs that encourage different labels for neighboring vertices,

hij(a, b) =

1 a = b

0 a 6= b,
(17)

Figure 1 shows a graphical representation of the local costs for each vertex, and the value

of ϕ̄, the fixed point of T for each example. In (a) local selection of xi minimizing ϕ̄i leads to
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x = (2, 2, 2, 2, 2). In (b) local selection of xi minimizing ϕ̄i leads to x = (2, 1, 2, 2, 1). In both

examples the resulting labeling x is the global minimum of F (x). For these examples we used

p = 0.1 and wij = 1/d(i).

Of course in general local minimization of ϕ̄ does not lead to a labeling minimizing F (x) and

it would be interesting to characterize when this happens.

1.3 Relationship to Message Passing and Mean-Field

Our algorithms are similar to message passing methods, in particular to min-sum (or equivalently

max-product) belief propagation [18, 14]. When the graph G is a tree, Min-sum belief propagation

converges and solves the optimization problem defined by F . Unfortunately the algorithm is not

guaranteed to converge and it can have multiple fixed points for general graphs. Some form of

dampening can help the algorithm converge in practice, and there are provably convergent versions

of Belief propagation [17]. However, in the min-sum case even those methods do not have a unique

fixed point, and the results depend on initialization. Our algorithms provide a simple alternative

to min-sum belief propagation that is guaranteed to converge to a unique fixed point, regardless of

initialization. Our algorithms are also guaranteed to converge “quickly”.

The mean-field algorithm [18, 14] is an iterative method for approximating the Gibbs distribu-

tion p(x) by a factored distribution q(x),

q(x) =
∏
i∈V

qi(xi). (18)

The mean-field approach involves minimization of the KL divergence between p and q using fixed

point iterations that repeatedly update the factors qi defining q. A drawback of the approach is

that the fixed point is not unique and the method is sensitive to initialization.

The algorithm defined by T is related to the mean-field method in the sense that the fixed

points of T appear to approximate F (x) by a function H(x) that is a sum of local terms,

H(x) =
∑
i∈V

ϕ̄i(xi). (19)

We do not know, however, if there is a measure under which the resulting H(x) is an optimal

approximation to F (x) within the class of functions defined by a sum of local terms.

2 Preliminaries

Our algorithms are efficient in the following sense. Let m = |E| and k = |L|. Each iteration in

the fixed point algorithm involves evaluating T or S. This can be done in O(mk2) by “brute-

force” evaluation of the expressions in Definition 1.1. In many applications, including in image

restoration and stereo matching, the pairwise cost hij has special structure that allows for faster
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computation using the techniques in [9]. This leads to an O(mk) algorithm for each iteration of

the fixed point method. Additionally, these algorithms are easily parallelizable. The fixed point

iteration algorithms defined by T and S converge quickly because the maps are contractions in

(RL)V .

Let z : RK → RK and ‖x‖ be a norm in RK . For γ ∈ (0, 1), z is a γ-contraction if

‖z(x)− z(y)‖ ≤ γ‖x− y‖. (20)

When z is a contraction it has a unique fixed point x̄. It also follows directly from the contraction

property that fixed point iteration xk = z(xk−1) converges to x̄ quickly,

‖xk − x̄‖ ≤ γk‖x0 − x̄‖. (21)

The weights wij in the definition of T and S define a random process that generates random

walks on G. We have a Markov chain with state space V . Starting from a vertex S0 we generate

an infinite sequence of random vertices (S0, S1, . . .) with transition probabilities

p(St+1 = j|St = i) = wij . (22)

A natural choice for the weights is wij = 1/d(i), corresponding to moving from i to j with uniform

probability over N(i). This choice leads to uniform random walks on G [16].

We consider in (RL)V the partial order

ϕ ≤ ψ ⇐⇒ ϕi(τ) ≤ ψi(τ) ∀i ∈ V, ∀τ ∈ L. (23)

It follows trivially from the definitions of T and S that both maps preserve order in (RL)V , that is

ϕ ≤ ψ ⇒ Tϕ ≤ Tψ, Sϕ ≤ Sψ. (24)

We claim that for any α ∈ RV , ∑
i∈V

∑
j∈N(i)

wjiαj =
∑
j∈V

αj . (25)

This follows from re-ordering the double summation and the constraints that the weights out of

each vertex sum to one, ∑
i∈V

∑
j∈N(i)

wjiαj =
∑
j∈V

∑
i∈N(j)

wjiαj =
∑
j∈V

αj

We note that the algorithms defined by T and S are related in the following sense. For a regular

graph with degree d, if we let wij = 1/d the maps T and S are equivalent up to rescaling if the

costs in T and S are rescaled appropriately.

7



3 Algorithm defined by T (Diffusion)

In this section we study the fixed point algorithm defined by T . We show that T is a contraction

in (RL)V and that the fixed point of T defines a “factored” lower bound on F .

We start by showing that T is a contraction with respect to the norm on (RL)V defined by

‖ϕ‖∞,1 =
∑
i∈V
‖ϕi‖∞. (26)

Lemma 3.1. (Contraction) For any ϕ,ψ ∈ (RL)V

‖(Tϕ)i − (Tψ)i‖∞ ≤ q
∑
j∈N(i)

wji‖ϕj − ψj‖∞ ∀i ∈ V, (27)

‖(Tϕ)− (Tψ)‖∞,1 ≤ q‖ϕ− ψ‖∞,1. (28)

Proof. Take i ∈ V and τ ∈ L. For any x ∈ LV

(Tϕ)i(τ) = pgi(τ) +
∑
j∈N(i)

min
uj∈L

p

2
hij(τ, uj) + qwjiϕj(uj)

≤ pgi(τ) +
∑
j∈N(i)

p

2
hij(τ, xj) + qwjiϕj(xj)

≤ pgi(τ) +
∑
j∈N(i)

p

2
hij(τ, xj) + qwji(ψj(xj) + |ϕj(xj)− ψj(xj)|)

≤ pgi(τ) +
∑
j∈N(i)

p

2
hij(τ, xj) + qwji(ψj(xj) + ‖ϕj − ψj‖∞)

If we let x minimize the right hand side of the last inequality we conclude

(Tϕ)i(τ) ≤ (Tψ)i(τ) + q
∑
j∈N(i)

wji‖ϕj − ψj‖∞.

Since this inequality holds interchanging ϕ with ψ we have

|(Tϕ)i(τ)− (Tψ)i(τ)| ≤ q
∑
j∈N(i)

wji‖ϕj − ψj‖∞.

Taking the τ maximizing the left hand side proves (27). To prove (28), we sum the inequalities

(27) for all i ∈ V and use (25).

The contraction property above implies the fixed point algorithm defined by T converges to

a unique fixed point independent on initialization. It also implies the distance to the fixed point

decreases quickly, and we can bound the distance to the fixed point using either the initial distance

to the fixed point or the distance between consecutive iterates (a readily available measure).
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Theorem 3.2. The map T has a unique fixed point ϕ̄ and for any ϕ ∈ (RL)V and integer k ≥ 0,

‖ϕ̄− T kϕ‖∞,1 ≤ qk‖ϕ̄− ϕ‖∞,1, (29)

‖ϕ̄− ϕ‖∞,1 ≤
1

p
‖Tϕ− ϕ‖∞,1. (30)

Proof. Existence and uniqueness of the fixed point, as well as the first inequality follows trivially

from Lemma 3.1. To prove the second inequality observe that since T kϕ converges to ϕ̄,

‖ϕ̄− ϕ‖∞,1 ≤
∞∑
k=0

‖T k+1ϕ− T kϕ‖∞,1 ≤
∞∑
k=0

qk‖Tϕ− ϕ‖∞,1. (31)

Now note that since p ∈ (0, 1) and p+ q = 1,

∞∑
k=0

qkp = 1 =⇒
∞∑
k=0

qk =
1

p
. (32)

The map T and the energy function F are related as follows.

Proposition 3.3. For any ϕ ∈ (RL)V and x ∈ LV∑
i∈V

(Tϕ)i(xi) ≤ pF (x) + q
∑
i∈V

ϕi(xi). (33)

Proof. Direct use of the definition of T yields∑
i∈V

(Tϕ)i(xi) =
∑
i∈V

pgi(xi) +
∑
j∈N(i)

min
uj∈L

p

2
hij(xi, uj) + qwjiϕj(uj)

≤
∑
i∈V

pgi(xi) +
∑
j∈N(i)

p

2
hij(xi, xj) + qwjiϕj(xj)

= p

∑
i∈V

gi(xi) +
∑
i∈V

∑
j∈N(i)

1

2
hij(xi, xj)

 + q
∑
i∈V

∑
j∈N(i)

wjiϕj(xj)

= pF (x) + q
∑
j∈V

ϕj(xj),

where the last equality follows from the fact that hij(xi, xj) = hji(xj , xi) and Equation (25).

Now we show the fixed point of T defines a lower bound on F in terms of a sum of local terms.

Theorem 3.4. Let ϕ̄ be the fixed point of T and

H(x) =
∑
i∈V

ϕ̄i(xi).

Then 0 ≤ ϕ̄ and H(x) ≤ F (x).
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Proof. The fact that H(x) ≤ F (x) follows directly from Proposition 3.3.

To prove 0 ≤ ϕ̄ consider the sequence (0, T0, T 20, . . .). The non-negativity of gi and hij implies

0 ≤ T0. By the monotonicity of T it follows by induction that T k0 ≤ T k+10 for all k ≥ 0. Since

the sequence is pointwise non-decreasing and converges to ϕ̄ we have 0 ≤ ϕ̄.

3.1 Linear Programming Formulation

Let a be a vector of coefficients in (RL)V and consider the linear programming problem in (RL)V ,

max
ϕ

aTϕ

ϕi(ui) ≤ pgi(ui) +
∑
j∈N(i)

p

2
hij(ui, uj) + qwjiϕj(uj) ∀i ∈ V,∀u ∈ LV .

Note that the constraints in the LP are equivalent to ϕ ≤ Tϕ. Now we show the fixed point of T

corresponds to an optimal solution for the LP.

Theorem 3.5. If a is a non-negative vector of coefficients the fixed point of T is an optimal solution

for the LP. If a is a positive vector the fixed point of T is the unique optimal solution for the LP.

Proof. Let ϕ̄ be the fixed point of T . First note that ϕ̄ is a feasible solution since ϕ̄ ≤ T ϕ̄.

Let ϕ ∈ (RL)V be any feasible solution for the LP. The linear constraints are equivalent to

ϕ ≤ Tϕ. Since T is monotone it follows by induction that T kϕ ≤ T k+1ϕ for all k ≥ 0. Since the

sequence (ϕ, Tϕ, T 2ϕ, . . .) converges to ϕ̄ and it is pointwise non-decreasing we conclude ϕ ≤ ϕ̄.

If a is non-negative we have aTϕ ≤ aT ϕ̄ and therefore ϕ̄ must be an optimal solution for the LP.

If a is positive and ϕ 6= ϕ̄ we have aTϕ < aT ϕ̄. This proves the fixed point is the unique optimal

solution for the LP.

4 Algorithm defined by S (Optimal Control)

In this section we study the algorithm defined by S. We start by showing that S corresponds to

value iteration for an infinite horizon discounted Markov decision process (MDP) [2].

An infinite horizon discounted MDP is defined by a tuple (Q,A, c, t, γ) where Q is a set of states,

A is a set of actions and γ is a discount factor in R. The cost function c : Q × A → R specifies a

cost c(s, a) for taking action a on state s. The transition probabilities t : Q × A ×Q → R specify

the probability t(s, a, s′) of moving to state s′ if we take action a in state s.

Let o be an infinite sequence of state and action pairs, o = ((s1, a1), (s2, a2), . . .) ∈ (Q × A)∞.

The (discounted) cost of o is

c(o) =

∞∑
k=0

γkc(sk, ak). (34)
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A policy for the MDP is defined by a map π : Q→ A, specifying an action to be taken at each

state. The value of a state s under the policy π is the expected cost of an infinite sequence of state

and action pairs generated using π starting at s,

vπ(s) = E[c(o)|π, s1 = s]. (35)

An optimal policy π∗ minimizes vπ(s) for every starting state. Value iteration computes vπ∗ as

the fixed point of L : RQ → RQ,

(Lv)(s) = min
a∈A

c(s, a) + γ
∑
s′∈Q

t(s, a, s′)v(s′). (36)

The map L is known to be a γ-contraction with respect to the ‖ · ‖∞ norm.

Now we show that S is equivalent to value iteration for an MDP defined by random walks on

G. Intuitively we have states defined by a vertex i ∈ V and a label a ∈ L. An action involves

selecting a different label for each possible next vertex, and the next vertex is selected according

to the random walk defined by the weights wij .

Lemma 4.1. Define an MDP (Q,A, c, t, γ) as follows. The states are pairs of vertices and labels

Q = V ×L. The actions specify a label for every possible next vertex A = V L. The discount factor

is γ = q. The transition probabilities and cost function are defined by

t((i, τ), u, (j, τ ′)) =

wij j ∈ N(i), τ ′ = uj

0 otherwise
(37)

c((i, τ), u) = pgi(τ) +
∑
j∈N(i)

pwijhij(τ, uj) (38)

The map S is equivalent to value iteration for this MDP. That is, if ϕi(τ) = v((i, τ)) then

(Sϕ)i(τ) = (Lv)((i, τ)).

Proof. The result follows directly from the definition of the MDP, L and S.

(Lv)((i, τ)) = min
u∈V L

c((i, τ), u) + γ
∑

(j,τ ′)∈Q

t((i, τ), u, (j, τ ′))v(j, τ ′) (39)

= min
u∈V L

pgi(τ) +
∑
j∈N(i)

pwijhij(τ, uj) + q
∑
j∈N(i)

wijv(j, uj) (40)

= pgi(τ) +
∑
j∈N(i)

wij min
uj∈L

phij(τ, uj) + qv(j, uj) (41)

= (Sϕ)i(τ) (42)
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The relationship to value iteration shows S is a contraction and we have the following results

regarding fixed point iterations with S.

Theorem 4.2. The map S has a unique fixed point ϕ̄ and for any ϕ ∈ (RL)V and integer k ≥ 0,

‖ϕ̄− Skϕ‖∞ ≤ qk‖ϕ̄− ϕ‖∞, (43)

‖ϕ̄− ϕ‖∞ ≤
1

p
‖Sϕ− ϕ‖∞. (44)

Proof. The first inequality follows directly from Lemma 4.1 and the fact that L is a γ-contraction

with γ = q. The proof of the second inequality is similar to the proof of the analogous result for

the map T in Theorem 3.2.

4.1 Random Walks

The formalism of MDPs is quite general, and encompasses the fixed point algorithm defined by S.

In this section we further analyze this fixed point algorithm and provide an interpretation using

one-dimensional problems defined by random walks on G.

The weights wij define a random process that generates infinite walks on G. Starting from some

vertex in V we repeatedly move to a neighboring vertex, and the probability of moving from i ∈ V
to j ∈ N(i) in one step is given by wij .

An infinite walk ω = (ω1, ω2, . . .) ∈ V∞ can be used to define an energy on an infinite sequence

of labels z = (z1, z2, . . .) ∈ L∞,

Fω(z) =
∞∑
t=0

pqtgωt(zt) + pqthωtωt+1(zt, zt+1). (45)

The energy Fω(z) can be seen as the energy of a pairwise classification problem on a graph G′ =

(V ′, E′) that is an infinite path,

V ′ = {1, 2, . . .}, (46)

E′ = {{1, 2}, {2, 3}, . . .}. (47)

The graph G′ can be interpreted as a one-dimensional “unwrapping” of G along the walk ω. This

unwrapping defines a map from vertices in the path G′ to vertices in G.

Consider a policy π : V × L× V → L that specifies zk+1 in terms of ωk, zk and ωk+1,

zk+1 = π(ωk, zk, ωk+1). (48)

Now consider the expected value of Fω(z) when ω is a random walk starting at i ∈ V and z is a

sequence of labels defined by the policy π starting with z1 = τ ,

vπ(i, τ) = E[Fω(z)|ω1 = i, z1 = τ, zk+1 = π(ωk, zk, ωk+1)]. (49)

There is an optimal policy π∗ that minimizes vπ(i, τ) for every i ∈ V and τ ∈ L. Let ϕ̄ be the fixed

point of S. Then ϕ̄i(τ) = vπ∗(i, τ). This follows directly from the connection between S and the

MDP described in the last section.
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4.2 Bounding the Value Functions of F

Now we show that the fixed point of S defines lower bounds on the value functions fi defined in

(4). We start by showing that fi can be lower bounded by fj for j ∈ N(i).

Proposition 4.3. Let i ∈ V and j ∈ N(i).

fi(ui) ≥ pgi(ui) + min
uj

phij(ui, uj) + qfj(uj), (50)

fi(ui) ≥ pgi(ui) +
∑
j∈N(i)

wij min
uj

phij(ui, uj) + qfj(uj). (51)

Proof. The second inequality follows from the first one by taking a convex combination over j ∈
N(i). To prove the first inequality note that,

fi(ui) = min
x∈LV

xi=ui

F (x) (52)

= min
uj∈L

min
x∈LV

xi=ui,xj=uj

F (x) (53)

= min
uj∈L

min
x∈LV

xi=ui,xj=uj

pF (x) + qF (x) (54)

≥ pgi(ui) + min
uj∈L

phij(ui, uj) + min
x∈LV

xi=ui,xj=uj

qF (x) (55)

≥ pgi(xi) + min
uj∈L

phij(ui, uj) + min
x∈LV

xj=uj

qF (x) (56)

= pgi(xi) + min
uj∈L

phij(ui, uj) + qfj(uj). (57)

The first inequality above follows from F (x) ≥ gi(xi) + hij(xi, xj) since all the terms in F (x) are

non-negative. The second inequality follows from the fact that we are minimizing F (x) over x with

fewer restrictions.

The map S and the value functions are related as follows.

Proposition 4.4. Let f = (f1, . . . , fN ) ∈ (RL)V be the field of beliefs defined by the value functions.

Sf ≤ f. (58)

Proof. The result follows directly from Proposition 4.3.

Now we show that the fixed point of S defines lower bounds on the value functions.

Theorem 4.5. Let ϕ̄ be the fixed point of S. Then

0 ≤ ϕ̄i(τ) ≤ fi(τ).
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Proof. Since the costs gi and hij are non-negative we have 0 ≤ S0. Using the monotonicity of S

we can conclude 0 ≤ ϕ̄.

Since Sf ≤ f and S is monotone, Skf ≤ f for all k. To end the proof, take the limit k → ∞
at the left hand-side of this inequality.

5 Numerical Experiments

In this section we demonstrate the practical feasibility of our algorithms with preliminary experi-

ments in the problems of image restoration and depth estimation.

5.1 Image Restoration

In many applications we expect idealized images to be piecewise smooth, changing slowly almost

everywhere, but with potentially large intensity discontinuities across object boundaries. Let I be a

grayscale image that has been corrupted by noise. To restore the image I we can look for an image

J that is similar to I and changes slowly almost everywhere. In this case the graph G = (V,E) is a

grid. The vertices V corresponds to the pixels in I and J . The edges E connect neighboring pixels.

The set of labels L are possible intensity, or brightness, values for pixels in J . For our numerical

experiments we use L = {0, . . . , 255} corresponding to the possible values in an 8-bit image.

In image restoration with a piecewise smooth model such as the weak string and membrane

in [5] the local costs gi(a) penalize differences between I and J while the pairwise costs hij(a, b)

penalize intensity differences for neighboring pixels in J .

Let I(i) be the intensity of pixel i in image I. The model we used in our image restoration

experiments is defined by,

gi(a) = (I(i)− a)2; (59)

hij(a, b) =


0 a = b,

α |a− b| = 1,

β |a− b| > 1.

(60)

The discontinuity cost hij(a, b) depends on two parameters α, β ∈ R with α ≤ β. These disconti-

nuity costs encourage two neighboring pixels in J to have the same value (cost 0), or differ by one

(cost α), but also allows for arbitrarily large discontinuities (cost β).

Figure 2 shows an example result of the algorithm defined by T for image restoration. In this

example the noisy image was obtained from a clean image by adding independent Gaussian noisy

to each pixel, with standard deviation σ = 20. We used α = 500 and β = 10, 000 to define the

discontinuity costs above. The weights wij were defined to be uniform, wij = 1/d(i) and p = 0.001.

The fixed-point algorithm was run for 100 iterations which took 3 seconds on a 1.6Ghz Intel Core

i5 laptop computer. The example illustrates the algorithm is able to recover a clean image that
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Original Image Noisy Image Restoration Result

Figure 2: Image restoration using the fixed point algorithm defined by T . The algorithm was run

for 100 iterations.

is smooth almost everywhere while at the same time recovering the sharp discontinuities that are

present at the boundaries of objects.

The results in Figure 2 are similar to results obtained using max-product belief propagation [8]

and other standard algorithms.

5.2 Stereo Depth Estimation

In stereo matching we have two images Il and Ir taken at the same time from different viewpoints.

Most pixels in one image have a corresponding pixel in the other image, corresponding to the

projection of the same three-dimensional point. The difference in the coordinates of corresponding

pixels is called the disparity. We assume the images are rectified such that a pixel (x, y) in Il

matches a pixel (x− d, y) in Ir with d ≥ 0. For rectified images the distance of a three-dimensional

point to the image plane is inversely proportional to the disparity.

In practice we consider the problem of labeling every pixel in Il with an integer disparity in

L = {0, . . . , D}. In this case a labeling x is a disparity map for Il. The local costs gi(a) encourage

pixels in Il to be matched to pixels of similar color in Ir. The pairwise costs hij(a, b) encourage

piecewise smooth disparity maps.

The model we used in our stereo experiments is defined by,

gi(a) = min(γ, ||Il(i)− Ir(i− (a, 0))||1); (61)

hij(a, b) =


0 a = b,

α |a− b| = 1,

β |a− b| > 1.

(62)
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Here Il(i) is the value of pixel i in Il while Ir(i− (a, 0)) is the value of the corresponding pixel in

Ir assuming a disparity a for i. The `1 norm ||Il(i) − Ir(i − (a, 0))||1 defines a distance between

RGB values (matching pixels should have similar color). The color distance is truncated by γ to

allow for some large color differences which occur due to specular reflections and occlusions. The

discontinuity costs are the same as the ones used for image restoration. These costs encourage the

disparity values of neighboring pixels to be similar, but also allows for large discontinuities which

occur at object boundaries.

Figure 3 shows an example result of disparity estimation using the fixed point algorithm defined

by S. In this example we used non-uniform weights wij to emphasize the relationships between

neighboring pixels of similar color, since those pixels are most likely to belong to the same ob-

ject/surface. The specific parameters we used for the results in Figure 3 were defined by,

wij ∝ 0.01 + e−0.2||Il(i)−Il(j)||1 , (63)

p = 0.00001, α = 500, β = 1000 and γ = 20. The fixed-point algorithm was run for 1,000 iterations

which took 13 seconds on a laptop computer.

As in the case of image restoration, the results in Figure 3 are similar to results obtained using

max-product belief propagation [8] and other standard algorithms.

6 Conclusion and Future Work

The experimental results in the last section illustrate the practical feasibility of our algorithms.

Our theoretical results prove these algorithms are guaranteed to converge to unique fixed points on

graphs with arbitrary topology and with arbitrary pairwise relationships. This includes the case of

repulsive interactions which often leads to convergence problems for message passing methods.

Our results can be extended to other contraction maps similar to T and S and alternative

methods for computing the fixed points of these maps. Some specific directions for future work are

as follows.

1. Asynchronous updates. It is possible to define algorithms that update the beliefs ϕi one vertex

at a time in a sequential order. As long as all vertices are updated in a “sweep”, the resulting

algorithms converge to the same fixed point as the parallel update methods we assumed here.

2. Non-backtracking random walks. The algorithms defined by S and T can be understood in

terms of random walks on G. It is possible to define alternative algorithms based on non-

backtracking random walks. In particular, starting with the MDP in Section 4 we can increase

the state-space Q to keep track of the last vertex visited in the walk and define transition

probabilities that avoid the previous vertex when selecting the next one. The resulting value

iteration algorithm becomes very similar to belief propagation and other message passing

methods that involve messages defined on the edges of G.
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Il Ir

Ground truth Result of S

Figure 3: Stereo disparity estimation using the fixed point algorithm defined by S on the Tsukuba

image pair. The algorithm was run for 1,000 iterations.
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[16] László Lovász. Random walks on graphs: A survey. Combinatorics, Paul erdos is eighty,

2(1):1–46, 1993.

[17] Talya Meltzer, Amir Globerson, and Yair Weiss. Convergent message passing algorithms: a

unifying view. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial

Intelligence, pages 393–401, 2009.

[18] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and

variational inference. Foundations and Trends R© in Machine Learning, 1(1-2):1–305, 2008.

19


