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Abstract

In this paper, we propose a level set regularization approach combined with a split strategy
for simultaneous identification of piecewise constant diffusion and absorption coefficients from
a finite set of optical tomography data (Neumann-to-Dirichlet data). This problem is a high
nonlinear inverse problem combining together the exponential and mildly ill-posedness of diffu-
sion and absorption coefficients, respectively. We prove that the parameters-to-measurement
map satisfies sufficient conditions (continuity in the L'-topology) to guarantee regularization
properties of the proposed level set approach. On the other hand, numerical tests considering
different configurations bring new ideas on how to propose a convergent split strategy for the
simultaneous identification of the coefficients. Therefore, the proposed numerical algorithm is
stable and convergent as shows in the presented examples as well as it saves computational
effort.
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1 Introduction

Optical tomography has demonstrated to be a powerful tool to obtain relevant physiologically
information of tissues in a non-invasive manner. This puts optical tomography modalities very
popular and with a large range of application in medial images. See [1, 17] and references therein
for details.
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There are many different approaches to modeling the physics of light propagation in a medium,
e.g. [1, 17] and references therein. In this contribution we are interested in the so called diffusion
optical tomography (DOT). In other words, the DOT regime assumes visible (or near infrared)
light in the predefined wavelength to probe highly scattering medium. The aim of DOT is to
obtain quantitative information on optical properties of an object embedded in the medium. For
a complete overview on optical tomography modalities the reader can consult the topical review
[1, 17] and references therein.

A simple physical formulation of DOT, where light propagation is modeled by a diffusion approx-
imation and the excitation frequency is set to zero, is governed by the following boundary value
problem

—V - (a(z)Vu) +c(z)u=0 in Q (1)
a(x)O,u=g onl, (2)

where Q C RN, N € {2,3,4}, is open, bounded and connected with boundary I' Lipschitz; the
diffusion and absorption coefficients a(x) and ¢(x), respectively, are measurable real-valued functions
and v is the outer normal to the boundary of €2, that we denote by I'. Moreover, g € H~'/?(T) is
the Neumann boundary data.

Although most of the physiological information is contained in the absorption coefficient, the
scattering coefficient in tissue is, in general, considerably larger. It is well known that the presence
of unknown scatter can lead to artifacts and false structure in the reconstruction of the absorption
properties of the medium [1, 17]. Hence, the problem of interest in DOT is the simultaneous
identification of absorption and the scattering properties.

Since the absorbed and scattered characteristic of the medium are unique determined by the
pair of coefficients (a,c) in (1)-(2) (see [1, 17]), in this contribution, we proposed an level set regu-
larization approach [15, 10, 7, 8] coupling with a split strategy for stable simultaneous identification
of the location and the shape of piecewise constant real-valued diffusion a(x) and absorption ¢(z)
coefficients in (1)—(2), from the knowledge of a finite set of available measurements of the potential
h := ulp, corresponding to the current profiles g € H~/2(T) in (2).

Related works: In [21], a Levenberg-Marquardt method for recovering internal boundaries of
piecewise constant coefficients of an elliptic PDE as (1) was implemented. The proposed method
is based on the series expansion approximation of the smooth boundaries and on the finite element
method. However, in [21], there is not a theoretical result that guarantees regularizing properties of
the iterated approximated solution. Indeed, as far as the authors are aware, there is not theoretical
regularization approaches in the literature for recovering the pair of coefficients (a, ¢) in (1) for data
in the boundary.

In [27], the authors did a carefully designed experiment aimed to provide solid evidence that
both absorption and scattering images of a heterogeneous scattering media can be reconstructed
independently from diffusive optical tomography data. The author’s also discuss the absorption
scattering cross-talk issue.

Although, it is well known that the identification of a and ¢ (simultaneously) is not possible
in a general case, as is shown by Arridge and Lionheart in [2], recently, B. Harrach [18] obtained
uniqueness results of simultaneous determination of a and ¢ in (1)-(2) assuming that a > ag > 0 is



piecewise constant and ¢ € L5° 'is piecewise analytic, from the knowledge of all pairs of Newmann
and Dirichlet boundary values ad,u|r and u|, on an arbitrarily small open part [ of the boundary
I'. The differences between B. Harrach [18] results and our approach is that we are considering a
more practical approach: we have access only to a finite number Newmann-Dirichlet pairs.

We also remark that the now well known QPAT (quantitative photo-acoustic tomography)
problem, in the diffusive approach, also aims to simultaneous recover (a,¢) in an elliptic boundary
valued problem. See for example [25] and references therein. However, in the QPAT situation the
solution of the "first inverse problem” generate internal data for the reconstruction. In this sense,
the QPAT problem is very different to the identification problem that we are facing here.

Novelties: The novelties of this contribution are divided as follows:

e We prove the continuity of the parameter-to-measurement (forward) map F' (as defined in
(3)) in the L'(Q2)-topology. It is done in Theorem 3 in Section 2. This is possible thanks to a
generalization of Meyer’s theorem [22] for the regularity of the solution of (1)-(2) in WP(Q),
for some p > 2 (see Theorem 1). The generalization of Meyer’s theorem for the equations
(1)-(2) is presented in details in the Appendix 7.

In Section 3, we introduce a level set approach. In contrast to the seminal approach of
Santosa in [24] on level set for inverse problems, our approach consists in a parametrization
of the non-smooth admissible set of parameters with a pair of H'(£2) functions concatenated
with a restriction of the search space using nonlinear constraints. Such approach allows us
to enforce the desired additional properties on the pair of parameters (a,c) (namely: (a,c) is
a piecewise constant pair of function, describing the high diffusion and absorption contrast
between the optical properties of the object) that are not smooth.

Given the continuity of F' in the L'(£2)-topology, it is now a standard result to prove that the
level set approach is a regularization method as in the classical theory of regularization [13],
e.g. [7, 8, 11, 10]. Therefore, we only point out the convergence and stability results without
a formal proof in Subsection 3.2.

e Another improvement of the proposed level-set approach is related to the numerical implemen-
tation in Section 5. It is worth to remind the reader that we aim to simultaneous reconstruct
the pair (a, ¢) of piecewise constant functions from a finite set of optical measurements. With
this aim, we first run several numerical experiments in order to recover the absorption coeffi-
cient ¢, based on either total or partial knowledge of a. From this experiments we saw that
the level set method for identifying ¢* performs well, even if a good approximation for a* is
not known. This is presented in Subsection 5.1. After that, in Subsection 5.2 we run another
set of experiments but know concerning the identification of the diffusion coefficient a, based
on either total or partial knowledge of c¢. In this case, we saw that the level set method for
identifying a* performs well if a good approximation for ¢* is available, but may generate
a sequence ai that does not approximate a* if the initial guess for the coefficient ¢ is far
from c¢*. Such features of the identification problems suggests one of the main results in the

!The subscript '+’ denotes positive essential infima.



numerical perspective presented in Subsection 5.3. Given the initial guess (ay, ¢p), we adopted
the strategy to freeze the coefficient a;, = a¢ during the first iterations, and to iterate the
algorithm only w.r.t to the coefficient ¢. We follow this strategy until the iterated sequence
¢, stagnates. Then, we freeze” the absorption coefficient ¢ = ¢, and iterate the algorithm
w.r.t. a after stagnation of the iteration. Finally, iterate both simultaneously. This numerical
strategy gives very good results and save computational effort as well.

We ended this contribution in Section 6 with some conclusions and further developments.

General Notation. We denote by RY, N > 2, the N-dimensional Euclidean space endowed

the usual scalar product z-y = Zf\il z;y; and norm |z| = /7 -z, where x = (z;)Y, and y = (y;)¥,.
Given two normed vector spaces (X, | - [|x) and (), | - ||y) we always consider the product space
X x Y enwowed with the product topology generated by the norm ||(z,v)|| := ||z| + [|y| (or the

equivalent norms (||z||? + ||y|[2)"? or max{||z||, |y||}), where (z,y) € X x Y. We also use the short
notation X? = X x X.

2 The Parameter to Measurement Map

We start this section by assuming that a(z) is known for all € T'. Then, for each input current
profile g € H='/2(T") in (1)-(2), we define parameter-to-measurement (forward) map

F:=F,:D(F)C L' Q) x L'(Q) — HY*T) (3)

(a,c¢) +— h:=ulr,

where u = u(g) is the unique corresponding solution of (1)-(2), for the parameter space D(F')
defined as:

Definition 1. Denote by D(F) the set of pairs of L*(2) functions (a, c) on ) satisfying the following
condition:

0<a<a(x)<a, 0<c<c(x)<e Vxae inf, (4)
where a,c,a and ¢ are known positive real numbers such that a < a and ¢ < €.

We now make some comments about Definition 1 and the definition of the forward map F'. First, it
is easy to check that D(F) is a convex subset of [L*(2)]%. Second, the forward map F' is well-defined
because for each (a,c) € D(F) there exists a unique solution v € H'(Q) of (1)—(2) (see e.g. [6]).
Third, since D(F') depends on the scalars a,c,a and ¢, it turns out that F' also depends on the
latter scalars. However, we are assuming the scalars to be known, fixed and independent of each
given current g. Fourth, we are not assuming any smoothness condition on the pair parameters
(a,c) € D(F). In particular the latter fact allow us to consider solutions of (1)—(2) corresponding
to piecewise constant coefficients.

This section is devoted to prove the continuity of the forward map F in the L'(Q) - topology.
In order to make such proof easy to understand we will consider the parameter-to-solution map G|,



defined as

G:=G, : D(F)C[L'(Q)]* — H'Y(Q)
(a,¢) — Ggy(a, c) :==ulyg) ()
where u(g) € H'(Q) is the (unique) solution of (1)-(2) for each input data ¢ € H~'/?(I') and

parameters (a,c) € D(F) (see [6]). Moreover, we will uses the following well know result: any weak
solution u = u(g) € H*(2) of (1)—(2) satisfies the (weak) formulation (see [6])

/aVu~Vgod:c+/ cugod:c:/ggodS Vo € HY(Q). (6)
0 Q r

Remark 1. Given the definition of the forward map F in (3), its turns out that it can be written
as

F:’}/OOGv (7)

where v : HY(Q) — HY?(T') is the trace operator of order zero [6]. Since the trace operator o is
linear and continuous [6], it follows that the continuity of F follows from the continuity of G.

In order to prove the continuity of the operator G defined in (5) in the desired topology, we will
use a generalization of Meyer’s theorem [16] on the regularity of the solution of (1) - (2). Since
the proof follows the general lines of presented in [16], we will show the main differences in the
Appendix.

Theorem 1 (Meyer’s theorem generalized). Let Q@ C RN, N € {2,3,4}, be a connected bounded
open set with a Lipschitz boundary I' and let (a,c) € D(F). Then, there exists a real number
Py > 2 depending only on S, a and @) such that the following condition hold for every p € (2,py):
If g € W=D where ¢ := p/(p—1), then the unique solution u of (1) (2) belongs to WP(Q).

Next we will present a lemma that is used in the main theorem of this section.

Lemma 2. Let h(x) be a measurable function such that M > |h(zx)| for all x a.e. in Q, for some
constant M > 0. Then, h € L*(Q) for all1 < s < oo and
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s—1)/s 1/s
) < MUV R

L3 (Q L)

Proof. Note that

1%

ey = [ @@ e < M ]
Q

which readily implies the desired result. O

In the next theorem we will prove the continuity of the forward map F in the [L'(£2)]? topology.
The latter result, will follow as a direct consequence of the continuity of the operator GG defined in

(5)-



Theorem 3. Let p € (2,py), where py > 2 is given by Theorem 1, and let ¢ :== p/(p — 1). Then,
for any g € W=WD9TY the operator G, defined in (5) is continuous (in the [L*(Q)]? topology).

As a consequence, for any g € W=WDUTY | the forward map F defined in (3) is also continuous
in the [L*(2)]? topology.

Proof. Let g € W1=(/9:9(T")" and consider the corresponding solutions v’ = u(a’, ¢’) and u = u(a, c)
of (1)-(2) with parameters (¢, ), (a,c) € D(F'), respectively.
Since (a’, ¢, u') and (a, c,u) satisfy the identity (6) for all ¢ € H*(Q2) we have

/(aVu —a'Vu') - Vdz + /(cu —du)pdr =0. (8)
Q Q

Defining w := u —u' € H'(Q) and using (8) with ¢ = w we obtain (after some algebraic manipula-
tions)

[c — dJu'wdz + / cwwdzr = 0,
Q

/[a —ad'|Vu' - Vwdz + / aVw - Vwdz + /
Q Q

Q

which in turn is equivalent to
/ a(z)|Vw|*dx + / c(x)|w|*dr = /[a' — a|Vu' - Vwdx + /[c’ — cJu'wdz. 9)
0 0 Q Q

In view of Theorem 1 (for a’(z) and ¢/(x)) we have u' € W'(Q). Thus, defining s := 2p/(p —2), it
follows from (9), (4), Lemma 2 and the Holder inequality (note that 1/s+1/p+1/2 =1) that

min{a, c}|wllfn < lla’ — allz- [ V|| [Vwlly + [l = ell el 1]l 2

< (Il = allpo 191, + ¢ = ellellefll ) lewl

Ls Ls

—_ _y\(s—1)/s 1/s
< 2max(@, ) ™ o |y, (' = all s+ 1€ = ll ) ol

The latter inequality combined with the facts that Gy(a',c’) = v/, Gy(a,¢) = w (see (5)) and
w=u—u gives

1/s
1Gy(a,c) = Gy(d', ) o < MW ||y (lla = 'l o+ lle =€l ) (10)
) o ) . 2 max{a, E})(S_l)/s
which proves the continuity of G, in the L'(Q2) topology, where M := n{a.c) . The last
min{a, c

statement of the theorem now follows easily from the first one and Remark 1.

We now make a few comments about Theorem 3. First, according to Theorem 1, the real number
py > 2 depends on €2 and, in the present setting, on a, ¢, @ and €. Second, since g < 2, it follows that
Wwi-Waa(T) ¢ H-'/(T). As a consequence of the latter inclusion, we have that the condition on g
that appeared on Theorem 3 is stronger that the usual inclusion g € H~/2(T"). Third, condition (10)
gives that both operators G and F are (locally) Holder continuous in the L'(Q) topology.



3 The level set framework with a finite number of experi-
ments

It is already known that in diffusive optical tomography the full Neumann-to-Dirichlet map (equiv-
alently, the boundary data h at I' corresponding to the a%) are required to obtain uniqueness of
the parameters (a,c) in (1)-(2)(see [18]). However, in real applications, only a finite number of
observations/measurements are available. Therefore, we are strongly invited to make a quantity ¢
of well-placed experiments in order to obtain reconstructions of acceptable quality. In other words,
the inverse problem that we are shall to deal with consists in identification of the pair of coefficients

(a,c) from a finite number ¢ of experiments, where the inputs g,, := a2 (z) are chosen in an
appropriate way such that the corresponding measurements w,,(z) = h,, for z € I, are available,
form=1,---,¢. As before, the corresponding potential u,, satisfies
V- (aVuy,) + cu, =0, mnQ, m=1,--- ¢, (11)
Oy,
a—— (%) = gm at I,
ov

This problem is known in the literature as the inverse problem for the Neumann-to-Dirichlet
operator with a finite number of experiments. In this context, the identification problem can be
written in terms of the system of nonlinear equations

F.(a,c) = hy,, m=1---,0, (12)

where F),, := F, is defined as in (3), for each m € {1,---,(}.
Moreover, given the nature of the measurements, we can not expect that exact data h,, € H/?(T)
are available. Instead, one disposes only an approximate measured data h® € L*(T") satisfying

[P = Pon| oy <0, form =1, ¢ (13)

where § > 0 is the noise level.

Remark 2. From Theorem 3, we know that each forward map F,, in (12) is continuous in the
L-topology.

3.1 Modeling the parameter space: The level set framework

In contrast with the previous section, now we assume that the pair of parameter (a, c) are piecewise
constant function assuming two distinct values, i.e. a(x) € {a',a?} and c(z) € {c',c*} a.e. in
Q C RY  but, still (a(z), c(z)) € D(F). Hence, one can assume the existence of open and mensurable
sets A; CC Q and C; cC Q, with H'(9A;) < oo and H*(OC;) < 00,2 s.t. a(z) = a',x € Ay,
cx)=c,ze€Cand a(z) =a*,x € Ay :=Q — Ay, c(x) =c?, 2 €Cy:=Q—C,.

Consequently, with the assumption that the conductivity and the absorption coefficients are
piecewise constant, the pair of parameter distribution in (1)—(2) can be modeled as

(a(@), c(z)) = (a® + (a' — a®)xa, (), ¢* + (¢! = *)xe, (7)), (14)

where yg is the indicator function of the set S.

2Here H'(S) denotes the one-dimensional Hausdorff-measure of the set S.
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Level set framework: In order to model the space of admissible parameters (the pair of piecewise
constant function (a, c), we use a standard level set (sls) approach proposed in [15, 9, 7, 8, 10]. We
remark that many other level set approaches are known in the literature, e.g., [11, 10, 9, 7, 12, 5, 21,
28, 26]. In particular, the analysis of level set approach for the pair of parameter that have many
piecewise components follows essentially from the techniques derived in [8]. Finally, if o/, ¢’ are
assuming unknown then one can use the ideas of the level set approach in [7] to recover the levels
values as well. Recently in [9, 10, 11], piecewise constant level set approaches (PCLS) were derived
for identification of piecewise parameters. The (PCLS) approach consists in introducing constraints
in the admissible level set function s.t. it becomes piecewise constant. In the (PCLS) approaches,
we do not need to introduce the Heaviside projections H (see below) to model the parameter space.
However, the introductions of constraints imply in other difficulties in the level set regularization
analysis [9, 10]. Advantages and disadvantages of (sls) and (PCLS) approaches were discussed in
9, 10].

According to the (sls) representation strategy, level set functions ¢, ¢. : Q@ — R, in H*(Q), are
chosen in such a way that its zero level-set Iy, == {x € Q; ¢ () =0} and Iy, .= {x € Q; ¢.(z) =
0} defines connected curves within €2 and that the discontinuities of the parameters are located
‘along’ I'y, and I'y_, respectively.

Introducing the Heaviside projector

1. if ¢t
Hp) = b =0
0, ift<0

the conductivity /absorption parameter distribution (a(z), c¢(x)) is represented in the form

(a(z),c(@)) = (a"H(¢a) +a*(1 = H(¢a)), ¢ H(¢e) + c*(1 = H(0c))) =t P(da,dc). (1)
Notice that (a(x),c(x)) = (a',¢), x € A; N C; for i,j € {1,2}, where the sets A; and C; are
defined by A; = {z € Q; ¢.(x) > 0}, Ay = {x € Q; ¢o(x) <0}, C; = {x € Q; ¢(r) > 0} and
Cy = {z € Q; ¢.(r) < 0}. Thus, the operator P establishes a straightforward relation between
the level sets of ¢, and ¢, and the sets A; and C; representing our a priori knowledge about the
solution (a, c).
As already observed in [8], the operator H maps H'(Q) into the space

Voi = {2€L®(Q)|z=xs, S C Qmeasurable, H'(0S) < oo} . (16)
Therefore, the operator P in (15) maps H'(Q2) x H'(€) into the admissible class V defined by
Vo= {(a1,2) € (L¥(Q)?] (21, 22) = (a1 + (a2 — a1) Xay, 1 + (€2 — &1) Xe ) » A1, €1 € Q}. (17)

Within this framework, the inverse problem in (12), with data given as in (13), can be written
in the form of the system of operator equation

Fm(P(¢aa¢c)) = hfn m = 17 e ’f, (18)

Let we make the following general assumption

(A1) Equation (18) has a solution, i.e. there exists (a*,c¢*) € L®(Q) x L*(Q) satisfying
F((a*,c*)) = h; there exists a pair of function (¢,*, ¢.") € [H'(Q2)]? satisfying |Vé,"| # 0 and
IVo. | # 0, in a neighborhood of {¢," = 0} and {¢." = 0} such that H(¢,") = z, € L*(Q),
H(¢p.") = z. € L™(Q) such that P(z,, z.) = (a*, c").
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Since an approximate solution (¢, ¢.) of (18) is calculated, a corresponding approximate solu-
tion of (12) is obtained in a straightforward way: (a,c) = P(¢q, ¢c)-

3.2 Leve set regularization

Since the unknown coefficients (a, ¢) are piecewise constant function, a natural alternative to obtain
stable solutions of the operator equation (12) is to use a least-square approach combined with
a total variation regularization. This corresponds to a Tikhonov-type regularization [7, 8, 10].
Within the level-set framework presented aboveHowever, in real applications, only a finite number of
observations/measurements are available, the Tikhonov-type regularization approach for obtaining
a regularized solution to the operator equation (18) is based on the minimization of the energy
functional

Folba, @) = ZHF P(¢a; de)) = Il + aR(¢a, 6c) (19)

where
R(¢a, ¢c) = <|H(¢a)\BV(Q) + |H(¢e)|sui) + l|¢a — ¢ao“%{1(9) + [|pe — @o“%{l(ﬂ))

and a > 0 plays the role of a regularization parameter. This approach is based on TV-H'! penal-
ization. The H'-terms act simultaneously as a control on the size of the norm of the level set
function and as a regularization on the space H'(£2). The BV())-seminorm terms are well known
for penalizing the length of the Hausdorff measure of the boundary of the sets {z € Q : ¢,(z) > 0},
{z €Q : ¢.(x) >0} (see [14]).

In general, variational minimization techniques involve compact embedding arguments on the
set of admissible minimizers and continuity of the operator in such set to guarantee the existence of
minimizers. The Tikhonov functional in (19) does not allow such characteristic, since the Heaviside
operator H and consequently the operator P are discontinuous. Therefore, given a minimizing
sequence (¢*, ¢*) for F, we cannot prove existence of a (weak-*) convergent subsequence. Conse-
quently, we cannot guarantee the existence of a minimizer in [H'(Q2)]> x R?. In other words, the
graph of F, is not closed in the desired topology.

To overcome this difficulty in [15, 7, 8] was introduced the concept of generalized minimizers were
the graph F, becomes closed. It allow us to guarantee the existence of minimizers of the Tikhonov
functional (19). For sake of completeness, we present the concept of generalized minimizers below.

The concept of generalized minimizers: For each ¢ > 0, we define the smooth approximation
to H given by:

[ 1+t/e for te[—e0
H:(t) = { H(t) for teR/[—z,0]

and the corresponding operator

Pa(¢aa ¢c) = (alHe(¢a) + a2(1 - He(¢a))> CIHE(QSC) + 02(1 - He(¢c))) . (20)



Definition 2. Let the operators H, P, H. and P- be defined as above.
a) A vector (21, 22, pa, Oc) € [Loo())? x [HY(Q))? is called admissible when there exists sequences

{0k} and {¢F} of HY(Q)-functions satisfying
Jim 195 = Gallz2@) = 0, Jim 195 — Gell2(@) = 0
and there exists a sequence {ex} € Rt converging to zero such that

]}1_{20 | H., (6F) — 21| =0 and kh_{go |H., (¢}) — 2|1 = 0.

b) A generalized minimizer of the Tikhonov functional F, in (19) is considered to be any admis-
sible vector (21, 22, Pa, Pc) MiNiMizing

N
ga(zla ar (bau ¢c) = Z HFm(Q(zlv 22)) - h’fn“?’—[l/Q(Q) + aR(Zlv 225 ¢av (bC) (21>
m=1

over the set of admissible vectors, where
Q: [Loo()]? x R? 3 (21, 20) = (a'z1 + (1 — ), ¢tz + (1 — 22)) € [Loo())?,

and the functional R is defined by

R(217z27¢a7¢0) = p(Z17Z27¢a7¢C)7 (22)
with
- . k k 2 2
pla1, 22,60, 8c) 1= int {lim inf (|H, (65) vy + [ (68 vy + 160 = Buolliy ) + 190 = Geolliney ) } -
(23)

Here the infimum is taken over all sequences {ey} and {¢F, ¢*} characterizing (21, 2o, da, dc) as an
admissible vector.

3.3 Convergence analysis of the level set approach

In this subsection we present the regularization properties of the proposed level set approach to
the inverse problem of identifying (a,c) in the diffusive optical tomography model (1)—(2). Since
the resutls follows straightforward arguments presented before in [7, 8, 10] we do not strave in
presenting the proves.

Theorem 4. The following assertions hold true.

i) The functional G, in (19) attains minimizers on the set of admissible vectors.

ii) [Convergence for exact data] Assume that we have exact data, i.e. h® = h. For every a > 0
denote by (21,22, Gun, Ge) @ minimizer of G, on the set of admissible vectors. Then, for every
sequence of positive numbers {ay} converging to zero there exists a subsequence, denoted again by
{o}, such that (2,22, Gan, Pea,,) is strongly convergent in L'(Q) x L*(Q). Moreover, the limit
is a solution of (18).

10



iii) [Convergence for noise data] Let a = «(0) be a function satisfying lims_o a(d) = 0 and
lims o 6% ()" = 0. Moreover, let {0} be a sequence of positive numbers converging to zero and
{h%} € HY2(0Q) be corresponding noise data satisfying (13). Then, there exists a subsequence,
denoted again by {0y}, and a sequence {oy = a(0)} such that (2}, 22 , Gan, Pea,) COMVETgES N
[LY ()] x [L*(Q)]* to solution of (18).

Proof. The proof follows straightforward the arguments in [8], Theorem 6, Theorem 8 and Theorem 9,
respectively and therefore will be omitted. O

4 Numerical realization

In this section we introduce the functional G, ,, which can be used for the purpose of numerical
implementations. This functional is defined in such a way that it’s minimizers are 'close’ to the
generalized minimizers of F, in a sense that will be made clear later (see Proposition 5). For each
e > 0 we define the functional

Ge.a(Par b)) ZHF (G0, 0e)) — B, |13 + aRe(ba, 0c) (24)

where
R.(¢a, Oc) = (‘He(¢a>|BV(Q) + |He, (0c) |sv) + || P — ¢a0“?{1(9) + [|pe — ¢co“§{1(g)> .

The next result guarantees that for ¢ — 0 the functional G, , attain a minimizer. Moreover, the
minimizers of G, , approximate a generalized minimizer of F,.

Proposition 5.

i) Given o, € > 0 and ¢qg, deo in H(Q), then the functional G., in (24) attains a minimizer on
[H'(Q)]* x R2.

ii) Let «, be given. For each ¢ > 0 denote by (¢a. , Pec o) a minimizer of G.o. There exists a
sequence of positive numbers {ey.} converging to zero such that (H, (Pac, o), He, (Pce, 0)s Pacy.cr Pecy )
converges strongly in [LY(Q2)]? x [Lo(Q)]? and the limit is a generalized minimizer of F, in the set
of admissible vectors.

Proof. The proof follows the ideas in [8], Lemma 10 and Theorem 11 respectively. Therefore we
will not present the details it in this paper. O

Proposition 5 justify the use functional G, , in order to obtain numerical approximations to
the generalized minimizers of F,. It is worth noticing that, differently from F,, the minimizers
of G. , can be actually computed. In the next subsection we compute the first order conditions of
optimality for the functional G, ,, which will allow us to compute the desired minimizers.

4.1 Optimality conditions for the Tikhonov functional G, ,

For the numerical purposes we have in mind, it is necessary to derive the first order optimality
conditions for a minimizer of the functionals G. ,,. To this end we consider G. , in (24) and we look
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for the Gateaux directional derivatives with respect to ¢,, ¢.. For simplicity of presentation, we will

assume that the values a', a?, ¢!, ¢* are known. Since H.(y) is self-adjoint,® the optimality conditions

for a minimizer of the functional G, , can be written in the form of the system of equations
(A = I)(¢a = bag) = Lio(Pasbc) s (A = I)(¢e = Peg) = L2 o(Pas bc) , in © (25a)
($a — Pap)y =0, (e — deg)y =0, at T (25b)

where v(z) is the external unit normal vector at € T', and

l *
Li,a(gbaa ¢c) = (al - &2) Hé(gba) [Z <8Fm(PEa(a¢a> ¢C))) (Fm(Pa(¢a> ¢C)) - hfn)]

—af {Hé(%)v-(igﬁgzg)} (26a)
I2,(0000) = (e~ ) H() LZ (2Ot DY 1, (P01 - h;;)]
—afs {Hé(@)v(%ﬂ (26D)

Note that, in order to implement the numerical algorithm for solving the optimal condition (26),
we need to calculate the adjoint of the derivatives % and %. Moreover, for any ¢,, ¢. € H(Q),
the residual F,(P.(¢q, ¢c)) — h®, € L*(T).

Remark 3. Note that, if we define (ag,c) = P.(¢F, ¢¥), we have that (ay,cx) € D(F). We will
use this fact in the next Lemma and in the level-set algorithm below.

Remark 4. Let (ay,c;) € D(F) and r* € L*(T"). Then,

0F,, *
<—(ak’ C’“)) (1) = Vi, - Vo, (27)
da
and
0F,, *
<W(ak’ Ck)) (T]ng"b) = _USQ ’w];z (28)
where ufy, and w}, are the unique solutions of the elliptic BVP of Neumann type
our
akaLT;n = gm , on F 7
—V(aVuwy,) +cgw, =0, in Q (30)
Ow*
Ak m =Tm, on I ,
on
form =1,--- 1, respectively.
3Notice that H.(t) = {1/5 te (—5,0)'
0 else
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1. Evaluate the residual [r,]! _, = [F.(P.(¢F, ¢F)) — RS )L _ = [us|r —hS]!,—,, where
[ug)t ., € [HY(Q)]" solves (29)

l

2. Evaluate [(W) rm] = [Vwn, - Vu,l,_, € [L*Q)], and
m=1
* l
[(781%(%(0%,@))) rm] = —|wnunl _, € [L*(Q)])', where [u,]' _, is the
m=1
function computed in Step 1. and [w,]',_; € [HY(Q)]' solves (30)

3. Calculate L! (¢, ¢F) and L2 (¢}, ¢F) as in (26).

4. Evaluate the updates dyp, d € H'(Q) by solving (25) and (25Db)

5. Update the level set functions ¢f"!'=¢F+1dgk, oft!=¢k415¢k.

Table 1: An explicit algorithm based on the iterative regularization method for solving the identi-
fication problem in diffusive optical tomography.

In the sequel we describe an explicit algorithm to implement the iterative regularization method

for the coefficient identification problem (see Table 1). Each iteration of this algorithm consists of
five steps:

e In the first step the residual vector [ry,|5_, € [L*(T)]" corresponding to the iterate (¢}, ¢¥) is
evaluated. This requires the solution of [ elliptic BVP’s given by (29).

e In the second step the solutions [w,,]',_; € H*(Q) of the adjoint problems for the residual
components [r,,],_, are evaluated. This corresponds to solving [ elliptic BVP given by (30).
e The third step is the computation of adjoint of partial derivatives of F},, applied to the residual.
It consist in to computing [ scalar product and [ inner-product in L? (namely —[u,, w,,]’,—;
and [V|wy, - Vu, b ;.

e The fourth step consists in the computation of L ,(¢%, ¢%) and L2 ,(¢F, ¢}). Each computa-
tion requires the sum of ! inner products in L?.

e Finely, the updates d¢F, d¢F € H'(Q) for the level-set functions ¢F and ¢F are evaluated.
This corresponds to solving two non-coupled elliptic BVP’s of Neumann type, namely (25) and
(25b).

A similar algorithm was successfully used in [15, 8] to solve the inverse potential problem under

the framework of level-sets and multiple level-sets respectively. However, what concerns the identifi-
cation problem in diffusion optical tomography the method outlined above becomes disadvantageous
if the number of physical experiments [ in (11) is large. Indeed, in each iteration one has to solve
20 + 2 elliptic BVP’s.

13



5 Numerical Experiments

In this section we implement numerical algorithms based on the levelset approach derived in the
previous sections for identifying the coefficient pair (a,c¢) in (1)-(2). The separate identification
of the absorption coefficient ¢, based on either total or partial knowledge of a, is considered in
Section 5.1. The separate identification of the diffusion coefficient a, based on either total or partial
knowledge of ¢, is considered in Section 5.2. The simultaneous identification of the pair (a,c) is
investigated in Section 5.3.

©1 a1 ©1 a1 ©1 (.1 o1 a.n

. P
| P
s /
.

§ 500 steps 1000 steps
(0,0) (1,0) (0,0) (1,0) (0,0) (1,0) 00)

(a) (b) () (d)

Figure 1: (a) Exact coefficients for the first experiments in Sections 5.1 and 5.2. (b) Number of iterations
needed for the identification of the absorption coefficient ¢*, starting from distinct initial guesses ¢g (a* is
given; see Section 5.1). (¢) Number of iterations needed for the identification of the diffusion coefficient a*,
starting from distinct initial guesses ag (c¢* is given; see Section 5.2). (d) Exact coefficients for the second
experiments in Sections 5.1 and 5.2.

5.1 Identification of the absorption coefficient

In what follows we consider the identification of the absorption coefficient ¢, based on either total or
partial knowledge of a. In the first set of experiments, we consider problem (1)-(2) in the unit square
with four sets (I = 4) of DtN experiments,? and exact solution (a*, ¢*) as shown in Figure 1 (a)

() = 10, inside blue inclusion () = 10, inside red inclusion
G\ = 1, elsewhere O = 0, elsewhere.

As initial guess for the leveset method we choose distinct piecewise constant functions ¢y, whose
supports are depicted in Figure 1 (b). The constant values assumed by the exact solution ¢* are
assumed to be known, as well as the exact diffusion coefficient a*. Moreover, exact data are used
for the reconstruction (i.e., § = 0).

Thus, the inverse problem reduces to a shape identification problem for the absorption coefficient.
Notice that, for each initial guess ¢q in Figure 1 (b), a corresponding number of steps is plotted. It
stands for the number of iterations needed to compute an approximation of ¢* (starting from the
corresponding ¢;) with a precision of 1072 in the L?-norm.

4Four distinct L2-functions are used as Dirichlet boundary condition, in order to compute the corresponding
Neumann data for the DtN operator. Each of these functions is supported at one of the four sides of 9.
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This experiment allow us to determine the computational effort necessary for the reconstruction
of ¢* w.r.t. distinct choices of ¢g. The identification problem for the absorption coefficient
is known to be mildly ill-posed [13, 20]. This fact is in agreement with the values plotted
in Figure 1 (b), in the sense that the number of iterations necessary to achieve a good quality
reconstruction do not strongly oscillate with the initial guess.

We conduct yet another experiment for identifying only the absorption coefficient. This time, we
assume the exact solution of problem (1)-(2) to be given by the coefficient pair (a*, ¢*) in Figure 1 (d).
The setup of the inverse problem remains the same (domain, available data, parameter to output
operator, ...).

On the first run of the algorithm, see Figure 2 (a)—(c), the diffusion coefficient a* is assumed to be
exactly known. The levelset method is able to identify the absorption coefficient (see Figure 2 (a)
for the evolution of the iteration error), and the iteration stagnates after that. The corresponding
iteration errors for the initial guess ¢o and for the final iterate cso00 are plotted in pictures (b) and (c)
respectively.

On the second run, see Figure 2 (d)—(f), we use the approximation a(z) = 1 for diffusion coefficient
a* and iterate to recover c¢*. The levelset method is still able to identify the absorption coefficient,
however with a poorer accuracy. Once again the iteration stagnates after the numerical convergence
is reached (see Figure 2 (d) for the evolution of the iteration error). The corresponding iteration

e = el Difference ¢’ - ¢, — lterationk =0 Difference ¢’ - ¢, —= lteration k = 2500
2

0 500 1000 1500 2000 2500 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Iteration k X X

(a) (b) ()

e = el Difference ¢’ - ¢, — lterationk =0 Difference ¢’ - ¢, —= lteration k = 2500
2

0 500 1000 1500 2000 2500 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Iteration k X X

(d) (e) (f)

Figure 2: Section 5.1, 2nd example. (a)—(c) Identification of ¢* from exact knowledge of a*. (a) Evolution
of the iteration error. (b) Difference between the initial guess ¢y and ¢*. (c) Difference between co500 and
c*. (d)—(f) Identification of ¢* from partial knowledge of a*. (d) Evolution of the iteration error. (e)
Difference between the initial guess ¢y and ¢*. (f) Difference between co509 and c*.
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errors for the initial guess ¢g and for the final iterate cg509 are plotted in pictures (e) and (f)
respectively.

Notice that the number of iteration steps needed to recover ¢* (approximately 2000 in both runs)
is much larger than in the previous experiment. This can be explained by the complexity of the
geometry of the support of ¢* in this experiment [15].

5.2 Identification of the diffusion coefficient

In what follows we consider the identification of the diffusion coefficient a, based on either total
or partial knowledge of c¢. In the first set of experiments, we consider problem (1)-(2) in the unit
square with four sets of DtN experiments, and the same exact solution (a*, ¢*) as in Section 5.1 (see
Figure 1 (a)).

As initial guess for the levelset method we choose distinct piecewise constant functions ag, whose
supports are depicted in Figure 1 (c). Analogous as in Section 5.1, the constant values assumed
by the exact solution a* are assumed to be known, as well as the exact absorption coefficient c¢*.
Moreover, exact data are used for the reconstruction (i.e., § = 0).

This time, the inverse problem reduces to a shape identification problem for the diffusion
coefficient. Once again we plot, for each initial guess ag, a corresponding number of steps (see

Il =2l Difference a’ - a -~ lterationk =0 Difference a' - a, —= lteration k = 5000
2

3l 1
251 . . 1
8
5 . : > 05fF
~o2r 1
: | .
0.25

0 1000

3000 4000 5000 0 0.5 0.75 1 0 0.25 0.5 0.75 1
Iteration k X X

(a) (b) ()

lha'-all . .
kL, Difference a -a, - lteration k=0 Difference a - a, -~ lteration k = 5000

5 . 1
g o ]
e, > 051
i
3l 1 .
0.25

[ 1000 2000 3000 4000 5000 0 0‘,5 U“75 1
Iteration k X

(d) ()

Figure 3: Section 5.2, 2nd example. (a)—(c) Identification of a* from exact knowledge of ¢*. (a) Evolution
of the iteration error. (b) Difference between the initial guess ag and a*. (c) Difference between asgog and
a*. (d)—(f) Identification of a* from partial knowledge of ¢*. (d) Evolution of the iteration error. (e)
Difference between the initial guess ag and a*. (f) Difference between asoog and a*.
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Figure 1 (¢)). It stands for the number of iterations needed to compute an approximation of a*
(starting from the corresponding ag) with a precision of 1072 in the L?-norm.

This experiment allow us to determine the computational effort necessary for the reconstruction
of a* w.r.t. distinct choices of ay. The identification problem for the diffusion coefficient
is known to be exponentially ill-posed [13, 19]. This fact is in agreement with the values
ploted in Figure 1 (c¢), meanig that the number of iterations necessary to achieve a good quality
reconstruction does strongly oscilate with the initial guess.

We conduct yet another experiment for identifying only the diffusion coefficient. This time, we
assume the exact solution of problem (1)-(2) to be given by the coefficient pair (a*, ¢*) in Figure 1 (d).
The setup of the inverse problem remains the same (domain, available data, parameter to output
operator, ...).

On the first run of the algorithm, see Figure 3 (a)—(c), the absorption coefficient ¢* is assumed to
be exactly known. The levelset method is able to identify the diffusion coefficient (see Figure 3 (a)
for the evolution of the iteration error), and the iteration stagnates after that. The corresponding
iteration errors for the initial guess @y and for the final iterate aspo are plotted in pictures (b)
and (c) respectively.

On the second run, see Figure 3 (d)—(f), we use the approximation ¢(z) = 1 for the absorption
coefficient ¢* and iterate to recover a*. The levelset method is no longer able to identify the diffusion
coefficient. The iteration once again stagnates, this time at some configuration close to the initial
guess (see Figure 3 (d) for the evolution of the iteration error). The corresponding iteration errors
for the initial guess ay and for the final iterate asgp are plotted in pictures (e) and (f) respectively.

5.3 Identification of both diffusion and absorption coefficients

In this last set of experiments we consider the levelset algorithm for the simultaneous identification
of the coefficient pair (a,c) in (1), (2). Three examples are considered; the corresponding exact
solutions are shown in Figure4. The setup of the inverse problem is the same as in Sections 5.1
and 5.2 (domain, available data, parameter to output operator, ...).

0,1) 1,1) 0,1) (1,1) 0,1) (1,1)

(0,0) (1,0) (0,0) (1,0) (0,0) (1,0)

(a) (b) (c)

Figure 4: Section 5.3. (a)—(c) Exact solution for the first, second and third examples.
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In the first example, the solution pair (a*, ¢*) is the one shown in Figure 4 (a). In order to devise
an efficient iteration strategy for the simultaneous identification of both coefficients, we must take
some facts into account:

F1) From the 2nd example in Section 5.1, we learn that the levelset method for identifying c*
performs well, even if a good approximation for a* is not known (see Figure 2 (d)—(f)).

F2) On the other hand, from the 2nd example in Section 5.2, we learn that the levelset method for
identifying a* performs well if a good approximation for ¢* is available, but may generate a sequence
ay that does not approximate a* if ||cx — ¢*|| is large.

F3) In the first run of the levelset algorithm for simultaneous identification of (a*, ¢*) we updated
both coefficients (ay, ¢x) in every step, and observed that the iteration error ||c; —c*|| decreases from
the very first iteration. However, the iteration error ||a; — a*|| only starts improving when ||cx — ¢*||
is sufficiently small.

Thus, in order to save computational effort, we adopted the strategy to ”freeze” the coefficient
ar(z) = ap(x) = 1 during the first iterations, and to iterate only w.r.t to ¢,. We follow this strategy
until the sequence ¢ stagnates (this is an indication that the iteration error ||c; — ¢*| is small). In
Figure 5 (a) and (e) this stage corresponds to the first k1 = 250 iterative steps (notice that ||ax —a*||
remains constant for k =0, ..., k;, while the difference ¢, — ¢* is plotted in (g)).

After this first iteration stage, we freeze ¢, = ¢, and iterate only w.r.t. a;. This characterizes
the second stage of the method. A natural question at this point would be: Why not to iterate
with respect to both (ax,cx) for k& > k7 We tried to proceed this way, but what we observed is
that: as long as [|ax — a*|| does not significantly improve, the iterates ¢, stagnate with ||c, — cx,||
almost constant.

lla'-a,ll, Difference a' - a, -~ lteration k=0 Difference a - a, - Iteration k = 750 Difference a' - a, —— Iteration k = 2500

> 05 > \
025
(7 500 1000 1500 2000 2500
eration

(a) (b) () (d)

lhe"=c, ll, Difference ¢ ¢, ~= lieration k = 0 Difference ¢ - ¢, — lteration k = 250 Difference ¢~ ¢, — lteration k = 2500

0 500 1000 1500 2000 2500
e

(e) (f) (g) (h)

Figure 5: Section 5.3, 1st example. (a)—(d) Iterative reconstruction of a*. (a) Evolution of the iteration
error. (b) Difference ag — a*. (c) Difference azs0 — a*. (d) Difference agsoo — a*. (e)—(h) Iterative
reconstruction of ¢*. (e) Evolution of the iteration error. (f) Difference ¢y — ¢*. (g) Difference co50 — *.
(h) Difference co509 — c*.
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This second stage of the iteration can be observed in Figure 5 (a) and (e). Notice that |la; — a*||
decreases significantly, while [|c, — ¢*|| remains constant for k = ky,..., ks = 750 (the difference
ax, — a* is plotted in (c)).

After the conclusion of the second iteration stage, the pair (ag, c) is already a good approxima-
tion for (a*, c*) (see Figure 5 (c¢) and (g)). As a matter of fact, this approximation is so good that,
proceeding with the iteration simultaneously w.r.t both (ay, cx), the iteration errors ||ax — a*|| and
lcx — ¢*|| are monotone decreasing. However, having in mind the convergence of the diffusion coef-
ficient a; to the correct solution a* takes more iterations than the absorption coefficient ¢, in this
third stage we decided that iteration step consist in one iteration w.r.t. the absorption coefficient
¢x and two iterations w.r.t the diffusion coefficient aj. (see Figure 5 (a) and (e) for k > k).

The introduction of this 3-stage iteration is motivated by the above mentioned facts (F1) —
(F3). The calculation of optimal transition indexes ki, ko between the three stages is a difficult
task. However, since the degree of ill-posedness of the separate inverse problems for a and c is very
distinct from each other it’s not hard to get approximate values for ki and ko that will lead to a
large gain in computational effort by using this 3-stage strategy.

The following second and third examples in this section do belong together. The corresponding
exact solutions are shown in Figure 4 (b) and (c) respectively. Our goal is to investigate how the
distance between the supports of components a* and ¢* of the exact solution pair may interfere with
the quality of the reconstruction of each single coefficient. In the second example there is a positive
distance between optimal , while in the third example both supports overlap.

Although the distance between supp(a*) and supp(c*) in example 2 is smaller than in example 1
above, the 3-stage iteration behaves similarly in both examples. The 1st-stage is ended after ky =

lla'-a,ll, Difference a’ -, - lteration k =0 Difference a' - a, —- Iteration k = 750 Difference a' - a, —— Iteration k = 1500
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Figure 6: Section 5.3, 2nd example. (a)—(d) Iterative reconstruction of a*. (a) Evolution of the iteration
error. (b) Difference ag — a*. (c) Difference azs0 — a*. (d) Difference ajs00 — a*. (e)—(h) Iterative
reconstruction of ¢*. (e) Evolution of the iteration error. (f) Difference ¢y — c¢*. (g) Difference ca50 — ™.
(h) Difference 1500 — c*.
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250 iterations, when the residual for the iterates ¢ stagnate (see Figure 6 (g)). The 2nd-iteration
stage corresponds to k1 < k < ko = 750; the residual for the iterates a; stagnate after ks steps (see
Figure 6 (c)). The 3rd-stage of the iteration corresponds to k > ko, where a substantial decrease
in the iteration error ||ax — a*|| can be observed (Figure 6 (a)), while ||cx — ¢*|| decreases faster and
stagnates after 2000 steps (Figure 6 (e)).

The third and last example reveled itself as the most difficult identification problem among all
three considered in this section. The solution pair (a*, ¢*) is chosen such that the supports of a*
and ¢* intersect (see Figure 4 (c)). We start the iteration once again keeping a;, constant during the
first stage, until the residual stagnates with k = k; = 250. This part of the method is successful,
since ¢, delivers a good approximation for the solution ¢* (Figure 4 (g)). For k > ki we start
iterating w.r.t. a,. This is the point where the difficulties arise. No matter how many iterations
we compute w.r.t ag, the approximation does not get better than the one plotted in Figure 4 (c),
which is computed after ko = 750 steps (when the residual once again stagnates). For k > ko we
have the configuration (ay, ¢x) shown in Figure 7 (c¢) and (g), and iterate further until the residual
once more stagnates. After 1500 steps, no significant improvement can be observed in the iteration
error (see Figure 7 (a) and (e)). The reconstruction of the absorption coefficient is very precise, but
the obtained approximation for the diffusion coefficient is a poor one.

It is worth noticing that the poor reconstruction of a* is not due to non-stable behaviour of our
3-stage algorithm. The particular exact solution (a*, ¢*) in this example (with intersecting supports)
leads to a very hard identification problem. As a matter of fact, if we assume ¢* to be known (as in
Section 5.2) and try to identify only a* in example 3 (starting from the same initial guess ag), we
experience exactly the same difficulty.

It is worth mentioning that all problems presented in this Section were solved using the standard
levelset method described in Section 3.2, i.e., updating both (ax,ci) in every iterative step (and
neglecting the 3-stage strategy). The final results of these iterations were the same as the ones
presented here. However, the computational effort involved in the computation was by far much
larger.

6 Conclusions

In this paper, we develop a level set regularization approach for simultaneous reconstruction of
the piecewise constant coefficients (a,c) from a finite set of boundary measurements of optical
tomography in the diffusive regime. From the theoretical point of view, we prove that the forward
map F' is continuous in the L'-topology. Hence, follows the standard argumentation in previous
papers of the authors (see [8]) we get that the proposed level set strategy is a regularization method.
The main result behind the continuity of F'is the generalization of Meyers Theorem for our case.
On the other hand, given the acknowledgment acquired assuming that one of the two parameters
is known, we propose a split strategy (that consist in frizzing a = ao and first iterate w.r.t. ¢ until
the iteration stagnate; then keep ¢ = ¢, and start to iterate the level set approach w.r.t. a) for
the simultaneous identification. Such strategy produces convergent results when a* and ¢* have no
crossing sections. This strategy also reduces significatively the numerical computation effort.

The situation of non-convergence of the level set algorithm, i.e, when the solution (a*, ¢*)) have a
crossing section (as in Subsection 5.3) is not a easy problem as was already reported in [27, 21, 3]. We
conjecture that the level set algorithm will perform well if enough data (Newmann-Dirichlet pairs)
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are available (remember that we shall have a uniqueness of identification under our assumptions
[18]). However, we did not carefully explore this situation numerically. Since the numerical situation
with many measurements is numerically demanding, a strategy like the one proposed in [23] become
more appropriated. We let this problem for future and careful investigation.
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7 Appendix

The main propose of this appendix is to show that under mild assumptions on the boundary
(Neumann) data g, the solution u of (1), (2) belongs to W?(€2), for some p > 2 (therefore better
than the standard regularity u € H'()).

7.1 On the regularity of the solution of elliptic problems

As far as we know, this type of regularity, namely u € WHP(Q), goes back to pionering the work
of Meyers [22], for elliptic BVPs with Dirichlet boundary conditions. Later on, Gallouet and
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Figure 7: Section 5.3, 3rd example. (a)—(d) Iterative reconstruction of a*. (b) Difference ay — a*. (c)
Difference azs0 —a*. (d) Difference ajz00 —a*. (€)—(h) Iterative reconstruction of ¢*. (f) Difference ¢y —c*.
(g) Difference co50 — ¢*. (h) Difference c1500 — ¢*.
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Monier [16] generalized Meyers’ result to Neumann BVPs was presented. However, for the best of
the authors acknowledgment there is no proves of such a result for the the solution u of (1)—(2).

In what follows, we show that: a) Meyers’ theorem can be generalized for the problem Dirichlet (34)—
(35); b) Gallouet and Monier’s result can be generalized for the Neumann problem (34)—(35). The
latter result in presented in Theorem 1, the proof follows the same outline of [16, Theorem 2].

We start by considering the (elliptic) boundary value problem (BVP):

V- (A(x)Vu)=f inQ (31)
u=0 onl, (32)

where 2 C R” is a bounded connected open set with boundary I' Lipschitz, and the diffusion matrix
A(z) € L(Q)V*N satisfies the following conditions for some a, 3 > 0:

A@)E-€> e} (ac) VoeQ VEERY,  [Alw <. (33)
The following theorem is due to Meyers [22].

Theorem 6. (Meyers) Let  C RN be a bounded connected open set of class C* and let o, 3 > 0.
Then, there exists a real number py > 2 (depending on 2, o and ) such that the following condition
hold for every p € [2,po):

If A(x) satisfies (33) and f € W=LP(Q), then the unique solution u of (31)— (32) belongs to
Wy (Q). Moreover, there exists a constant C(p) > 0 such that

lllyao < OOl fllw 1o

Our goal now is to generalize Theorem 6 to the followsing class of BVPs:

-V (A(x)Vu) + c(z)u = f in (34)
u=0 onl, (35)

where 0 C RY satisfies the same assumptions of Theorem 6, N € {2,3,4}, the diffusion matrix
A(z) satisfies (33) (for some «a, 3 > 0) and ¢(z) is real-valued measurable function satisfying the
following condition:

0<c<c(zr)<e ae Vrel, (36)

for some 0 < ¢ <C.

Proposition 7. Let Q C RY be a bounded connected open set of class C*, where N € {2,3,4}. Let
also o, 8 >0 and 0 < ¢ < €. Then, there exists a real number py > 2 (depending only on ), a and
() such that the following condition hold for every p € (2,pp):

If A(z) and c(z) satisfy (33) and (36), respectively, and f € W=1P(Q), then the unique solution
w of (34)~ (35) belongs to Wy P(Q).

Proof. Let py > 2 be the real number given by Theorem 6 (which depends only on 2, o and ).
Take p € (2, po), let ¢ := p/(p—1) be its conjugate and assume that f € W=12(Q) = Wy *(Q), and
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that A(z) and c(z) satisfy (33) and (36), respectively. We know, in this case, from the Lax-Milgram
Theorem, that the unique solution u € H*(Q) of (34)-(35) satisfies

/Q A(z)VuVedz —l—/Q c(z)updz = (f, o) -1 Y € Hy(S). (37)

Define f : W, 9(Q) — R by
(Fo) = (@) msmy — / (wyupds Vo € WHI(Q). (35)

Since f € W=tP(Q), it follows that (f, @) r-1xm is well-defined for every ¢ € Wy Q). In what
follows, we shall prove that the map h : ¢ — [, c(x)updz is also well-defined for every ¢ € VVO1 Q)
and belongs to W~1P(Q). To this end, consider first the case N = 2. In this case, since ¢ < 2,
we have the continuous embedding [4, Corollary 9.14] W, () < Wh4(Q) — L9 (Q), where ¢* =
2q/(2 — q) > 2. Letting s := ¢*/(¢* — 1) be the conjugate of ¢* we have s < 2 (because ¢* > 2)
and, as a consequence, the continuous embedding [4] H}(Q) — L*(Q) — L*(Q). Using the latter
inclusions, the fact that u € H}(Q), condition (36) and the Holder inequality, we obtain (for all
p € Wy '(92)):

[(h, )| =

<?||lu

<P||Lq*
Py, (39)

which proves that h € W=?(Q). Consider now the case N € {3,4} and let ¢* := ¢N/(N—q) > 1 and
(as before) s := ¢*/(q¢* — 1) its conjugate. In this case, we have also the continuous embeddings [4,
Corollary 9.14] W;%(Q) — W9(Q) < L9 (Q) and, since 1 < s < 2* := 2N/(N — 2), H}(Q) —
H'(Q) — L*(Q). Using the same reasoning as in the case N = 2 we find that (39) also holds when
N € {3,4}, which in turn proves that f is well-defined and belongs to W~1?(Q). Using the latter
fact, conditions (37) and (38) and the definition of A we obtain that u satisfy

LS

/Q c(x)updr

< lu

LS

| AT s = (Fchny o € HYO) (10)

where f = f —h € W2 ie., uis a solution of (31)-(32) with f = f given by (38). The result
now follows as a direc application of Theorem 6 to A(x) and f. O

We note that, unlike Theorem 6, in Proposition 7 we have 2 < N < 4 and p > 2. Moreover, the
scalar pg > 2 depends only on 2, @ and § and no longer depends on ¢ and c.

Consider now the BVP (1)-(2), where  C R satisfies the same assumption as in (31)—(32),
N € {2,3,4}, and the diffusion and absorption coefficients (a(x),c(x)) € D(F'). Then, we are ready
to present a proof for Theorem 1.

Proof of Theorem 1 The proof presented here follows the same outline of [16, Theorem 2]. We

will skip some details of the proof that are analogues to the ones presented in the latter reference,
whenever we fell that clarity is not sacrificed. It follows from [16, Proposition 1] that there exits a
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family {U;}%_, of open sets in RY satisfying Uy C Q, Q C Uf:o Ui, and a family of homeomorphisms
J; : Uy — B sucht that (for all i = 1,--- k) J; and H; := J; ! are Lipscthitz continuous and
Ji(QNU;) = By and J;(I'NU;) = BV, where B :={z € RV ||z| < 1}, By := BN {(2,zn) |2’ €
RN 2 > 0} and BN~ := BN {(2/,0)]| 2’ € RV},

For 2 < p < 2* := 2N/(N —2), ¢ := p/(p— 1) and g € W'=WD9T) let u := u(a,c) be the
(weak) solution of (1)—(2), for some pair (a,c) € D(F'). We know that u satisfies (6) (The existence
of such w is given by the Lax-Milgram theorem and the definition of D(F)).

Step 1: Localization. Let {0;}*_, be a partition of unity associated to the family of open sets
{U;}x_,. For each i € {1,---,k}, define
w; = 0;u.

Since u satisfies (6), it follows that u; satisfies (for all i = 0,--- | k)

/Qa(:c)Vungod:c—i—/Q c(x)umdx:/Qa(:c)V@i[uV@—Vuap]dx—l—/r(ﬁigo)gda Vo € HY(Q).
(41)

For p € HY(Q2) and i € {0,--- , k}, consider a function v € C°*(R") such that supp(6;) C supp(y) C
U; and ~(x) = 1 for all x € supp(6;). Direct calculations yields

/Qa(a:)Vu,-V(vap)d:BjL/ (x)umgpd:)s:/

c a(x)Vu;Vodr + / c(x)u;pdx
0 QNSuUpp ;)

QNSUPP(6:)

= / a(x)Vu;Vedx +/ c(zx)uspd.
QNU; QNU;
Combining the latter identity with (41) for ¢ in the place of ¢, we obtain the following identity
foralli=0,--- ,kand p € HY(QNU;),

/mUi a(x)Vu;Vpdr + /mm c(z)updr = /Q a(z)V0;[uV (yp) — (yo)Vu]dz + /F (6iv) gdo

= {fi, @) H (@nUyy x HY (903) (42)

where vy is extended by zero on 2. Since p < 2%, it follows from the Sobolev embedding theorem
that f; € Wh(QNU;) for alli=0,--- k.

Step 2: Interior estimates. Let Bi be a open ball with radius R > 0 such that Uy C Bp.
Extending uy by zero outside Uy and noting that f, € W~'?(Bg), we conclude from (42) that
ug € Hi(Bpg) satisfies the following condition:

/ a(x)VuoVedz —i—/ c(x)uopdr = (fo, ¥) w1 (Bry ' (Br) V¥ € H&(BR) (43)
Br

Bpr

ug =0, on 0Bpg. (44)

Thus, using Proposition 7 for 2 = Br, a = a, f =a, A = a and f = f; we conclude that there
exists po > 2 such that uy € W1(Bg) whenever p € (2, pg) (we can assume that py < 2*).

Step 3: Estimates near the boundary. Fix i € {0,--- &k}, define v = w; and denote f = f;,
U=U;, J=J, etc. In this case, (42) becomes

/ a(x)VoVpds +/ c(x)vedr = (f, ) m vy <mony Ve € H'(QNU). (45)
onU onU
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Defining w = vo H, y = Jz (for all z € QN U) we have v = wo J and x = Hy (for all y € B,).
For ¢y € H'(B,) define also ¢ = 1) o J. Direct calculations yields the following identities, for all
Vee QNU:

(a) Vou(z) = VJ(z)'Vw(Jz);
(b) Ve(z) = VJ(2)" Vi (Jz);
(c) a(x)Vu(x

)
Using (a), (b), (¢) and the formulae of change of variables, we find

p(r) =
Vo(z) = VJ(x)a(z)VJ(z)'Vw(Jz) - Vi (Jx).

/Q  a(o) V(o) - Vipla)da - / Ay)Vuly) - Viy)dy. (46)
and
/ ()0 (x)p(z)dz = / Cly)wly)(y)dy, (47)
QU By
where

Aly) := a(Hy)|detVH(y)|VJ(Hy)VJ(Hy)",  Cly):=c(Hy)|detVH(y)| Vye By (48)

Since H = J~! is Lipschitz continuous, it follows that VH (y) (which is defined almost everywhere)
and detV H (y) are uniformly bounded. Therefore, using (?7), we conclude that there exist o/, 3" > 0
and 0 < C < ' such that

A)E-€>d|¢ (Vaeye B, VEeRY), A <8, 0<C<C(y)<C Vae y€B,.
(49)

Now, let us look at the right hand side of (45). Since f € Wh(Q N U), it follows from the Riez
Representation Theorem that there exist f € LP(QNU) and F € LP(Q N U)" such that

(f, D) wra@ruy xwia@nu) = fodz + / F(z)-Vo(z)dz Vo e WH(QNU). (50)
onu onu

Using the latter identity, (b) and the formulae of change of variables, we obtain for ¢ € H*(B,)
(recall that ¢ =1 o J):

S T / F(HY) [detV H ()] (y)dy + / etV H () [V I (Hy)F(Hy) - Viy)dy

By

=t (h, V) (B yxHL(BY ) (51)

where h € Wh4(B_ ). Tt follows from (45)—(47) and the latter idendity that w satisfies the following
conditions:

w e Hl(B+)>
/B Ay)Vuw(y) - Voy)dy+ | Cly)w(y)(y)dy = (b, vy mpyxmp,) Yo € H'(By). (52)

By
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Step 3a: Extention of w(y) and h. The funcion w(y) and the functional h are extended by
reflection. Let w* € Hg(B) and h* € W~'P(B) be defined, respectively, by

w(r, zy), if x>0

w* (2, xy) = { (53)

’UJ(SL’/, —LL’N), if xy <0,
and

(h*, ywrasy xwram) = (B Q) wras,yxwras,) + (b (@, —2n)ywias,yxwras,) Vo € WH(B).
(54)

Step 3b: Extension of A(y) and C(y). Denote A(y) = (a;;(y)) for y € By, where A(y) is
defined in (48), and define A*(z) = (o] ;(x)) (for x = (2/,zx) € B) as follows:

i.j
a;j(x) if xy >0,

a; (@', —zy) if i,j<N-—1landazy <0,
—a; (@', —xy) if i=Norj=Nbut(ij)# (N,N), and xy <0,

ayn(z',—xy) if i=j=Nandazy <O0.

(55)

Using the above definition of A*(y) and (53) we have that

[ M@V Vs = [ AT Vol -udy Vo€ H(B). (50
where B_ = {z = (2/,zy) € B|axy < 0}.

Analogously to w(y), the coeffient C(y) is also extended to B by reflection. Define for all
x= (2 zy) € B:

C(x) if xy >0,
/

C*(l’) - {C(l’ y —LL’N) if Ty < 0. (57)

It follows from (48), (49) and from the definitions of A*(z) and C*(z) that there exist a*, 3" > 0

and 0 < C* < C* such that

A (@) €>a*f)* (VaexzeB, VEeRY), [N <pB% 0<C*<C(z)<C* Vae xz€B.

(58)
Step 4: Conclusion. Using the latter facts in Step 3, one can show that
| @@= [ C—an)ul’ ~aw)ola’, )iz
= | Cwy)oly,—yn)dy Yo € H'(B). (59)

By
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From (53)—(59), we find

/B A (2) Ve (2) V() der + / C* (o) (2)(x)dx = / AW Vo) V) + Vo' —yn)ldy

B

+ [ CWlol) + oy, —yn)ldy

By
= (h, o(y) + o(v/, _yN)>H1(B+)’><H1(B+)
= (W, o) mpyxm ) Vo€ Hy(B).

The latter identity proves that w* € H}(B) is the (unique) solution of the problem

-V - (A" (x)Vw*) + C*(x)w*=h" inB (60)
w"=0 on JdB. (61)

Let 2 < p; < 2* (recall that ¢ € {0,1,---,k} is fixed in Step 3) be given by Proposition 7 (for
Q= B, a=a"and = 3*). Assuming that p € (2, p;) and using the latter theorem with A = A*,
¢ =C*"and f = h*, we conclude that w* belongs to VVO1 P(B). Using a restriction argument we
conclude that v = u; € Wol’p(Q) foralli e {0,--- ,k} and 2 < p < pp = min;_g.... ;, p;. The desired

regularity result for u follows from the latter inclusion and from the fact that u = Zf:o Us.
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