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Modeling of Biophysical Phenomena:

Multiscale Analysis, Parameter Estimation,

and Point Pattern Analysis

Nara Bobko

Advisor: Dr. Jorge P. Zubelli

Rio de Janeiro

March, 2015



To my family.



Acknowledgments

I would like to express my gratitude to my advisor, Jorge P. Zubelli, for encouraging and

guiding my research. I would also like to thank the committee members, professor Alexei

Mailybaev, professor Chiara Mocenni, professor Max Oliveira de Souza, professor Roberto

Imbuzeiro Oliveira, and professor Yuan Jin Yun. Thanks for the valuable suggestions, and

interest in my work.

My deepest gratitude to my family, specially to my parents, for their encouragement and

constant support. Special thanks to my sweet daughter Cećılia, whose hugs and smiles motivated
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Abstract

This PhD thesis consists of two parts, both of them related to the modeling of biophysical

phenomena.

In the first part we study a differential equation system designed to model the dynamics of

the human immunodeficiency virus (HIV) within the host organism. This model generalizes a

number of other models that have been extensively used to describe the HIV dynamics, including

antigenic variation and antiretroviral therapy. Based on global stability properties of this model,

we analyze the influence of the antiretroviral therapy in the long term dynamics. We characterize

the outcome steady-state as a function of the antiretroviral efficacy. Additionally, we performed

a multiscale analysis using Tikhonov’s theorem, in order to deal with the two intrinsic time

scales of the model. This analysis leads to a way of approximating the solutions of the system

by a lower dimensional nonlinear model. This reduced system is faster to evaluate numerically,

and is globally asymptotically stable, as we have shown by using Lyapunov’s stability theory.

We also introduce a method to estimate parameters of the HIV dynamics by comparing clinical

data in the chronic stage with predicted equilibrium points of a well accepted mathematical

model. We apply this method to estimate two parameters, using clinical data.

In the second part, our focus is the study of the dynamics of residential burglaries. Aiming

to explain the presence of agglomerations (hotspots) in this dynamics, many theories have been

raised. In order to investigate such theories, we analyze real data of residential burglaries of a

Brazilian city with respect to the point pattern. Specifically, we analyze the data regarding the

spatial, temporal, and spatio-temporal agglomerations. The main tool used in the analysis was

the measure of homogeneity given by the Ripley’s K function. The analysis shows that, on a

small scale, the dynamics of residential burglaries looks like a homogeneous Poisson process. On

the other hand, on a larger scale, such dynamics cannot be explain as a homogeneous Poisson

process, since the intensity of burglaries varies significantly along the regions of the city.

Keywords: HIV Dynamics, Multiscale Analysis, Parameter Estimation, Dynamics of Residen-

tial Burglaries, Point Pattern Analysis.
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Introduction

The subject of this PhD thesis is the study of biophysical phenomena using mathematical

methods. Mathematical tools are of great importance in the natural sciences by enabling to

improve the understanding of complex systems, study the effects of different components, perform

simulations, test hypotheses, and so forth. In this work we study two distinct phenomena. The

first one, addressed in Part I, is the HIV dynamics within the host organism. The second one

concerns the dynamics of residential burglaries. It is addressed in Part II. Hereafter we clarify

which problems have been addressed and what results have been obtained.

In Part I, HIV-1 Dynamics, we study a system of ordinary differential equations designed to

model the dynamics of HIV-11 within host organism. This model, originally proposed by Nowak

and Bangham [NB96], addresses the disease dynamics describing the interaction between the

HIV-1 particles and the host immune system. Additionally, it includes the antigenic variation,

which significantly increases the complexity of the system. In fact, we consider a slightly

generalized form of this system, since we also consider the antiretroviral therapy (ART). We

start by rewriting the system in a dimensionless form. The change of variables that we made

allowed us to simplify the units involved and emphasize system properties. Based on global

stability properties of this model made by Souza and Zubelli [SZ11], we analyze the influence

of the ART in the long term dynamics. Strictly speaking, we compare the steady-state of the

system that considers ART with the steady-state of the system that does not consider it. From

this, we obtain Theorem 3.1, which provides what will be the steady-state to the system with

ART, from the expected steady-state before the treatment, and from the value of the efficiency

of the antiretrovirals. From biological view point, this result allows evaluating the minimum

efficacy required for a successful treatment. This is very relevant, since the treatment may

be associated with unwanted side effects not directly related to the HIV-1 infection, such as

cardiovascular disease, liver abnormalities, bone loss, as well as cancers and loss of neurocognitive

functions [dep13]. Another aspect of this system concerns the presence of two time scales. While

1HIV type 1, the most common and pathogenic type of HIV [DRK09,C+08].
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CD4+T cells have a half-life of the order of days, virions2 have a half-life of about a few hours.

This leads to a singularly perturbed system with numerical as well as biological implications. In

order to deal with this problem, we perform a multiscale analysis, using Tikhonov’s theorem.

Thus, we obtain Theorems 4.5 and 4.6 that provide a way of approximating the solutions

of the perturbed system by solutions of a reduced system. The interest in such a reduction

lies on the fact that the complexity of the problem is considerably reduced. Furthermore, for

certain parameters, the original system becomes very stiff, while the reduced system offers

a robust approximation. These results were published in the article A Singularly Perturbed

HIV Model with Treatment and Antigenic Variation, written by the author in collaboration

with Jorge P. Zubelli. Finally, we introduce a method to estimate parameters of the HIV-1

dynamics by comparing clinical data in the chronic stage with predicted equilibrium points of

a mathematical model. This system is a particular case of the model mentioned above, and

is considered to appropriately describe the dynamics of HIV-1 in the acute infection phase.

To show the efficiency of our approach, we analyzed the errors obtained from synthetic data

generated by the mathematical model, added multiplicative noise to our simulations. Applying

the proposed method, we estimate the basic reproductive ratio in the presence of the immune

response and the infection rate of 31 patients. Furthermore, we estimate a lower bound to the

basic reproductive ratio in the absence of the immune response of those patients.

In Part II, Dynamics of Residential Burglaries, our focus is the study of the agglomerations

(hotspots) of residential burglaries. A better understanding of such dynamics is very relevant,

with major implications for the development of strategies for effective prevention of it. An

important aspect in crime dynamics are the hotspots, i.e. regions with a high crime intensity.

These hotspots maybe occur not only in the spatial domain, but also in temporal and spatio-

temporal domains. Aiming to explain the hotspots, many theories have been presented. Among

them are the repeat (or near-repeat) effects, the broken windows effects, the structure of the

urban environment, and seasonal conditions. In order to investigate these theories, we analyze

real data from a Brazilian city. This data refers to the residential burglaries that have been

reported to police over three years. We analyze the data with respect to the presence of

statistically significant agglomerations in the spatial, temporal, and spatio-temporal domains.

According to the temporal analysis, at the end of the first year there is a spike in the number

of residential burglaries that cannot be explained by simply randomness. However, this spike

seems to be an outlier, and not a pattern of the dynamics of residential burglaries. For the

spatial and spatio-temporal analysis, the main tool used was the measure of homogeneity given

by the Ripley’s K function. The spatial analysis shows that, on a small scale, the dynamic of

residential burglaries looks like a homogeneous Poisson process. This is also the outcome of

the spatio-temporal analysis. However, the intensity of burglaries varies significantly along the

residential regions of the city. This indicates that, on a larger scale, the residential burglaries

cannot be explain as a simple homogeneous Poisson process.

2Viral particles outside the host cell.



Outline of the Thesis. This work is organized in two parts that can be read independently.

Part I (Chapters 1 to 5), deals with the HIV-1 dynamics within the host organism. In

Chapter 1 we introduce an extended version of HIV-1 model proposed by Nowak and Bangham

[NB96, NM00], providing the necessary biological background. This model is described by a

system of ordinary differential equations. In Chapter 2, we propose a dimensionless form of

this system. Then, we review some of its properties that will be used in the other chapters.

In Chapter 3, we analyze the changes in the system steady-state due to the antiretroviral

therapy. Our analysis allows us to determine the necessary efficiency of the antiretroviral to

ensure a successful treatment. In Chapter 4, we perform a multiscale analysis of the HIV

system, using Tikhonov’s theorem. This chapter is a transcription of the published paper A

Singularly Perturbed HIV Model with Treatment and Antigenic Variation, written by the author

in collaboration with Jorge P. Zubelli. In Chapter 5, we introduce a novel method to estimate

parameter of the HIV system by comparing clinical data with predicted equilibrium points.

Part II (Chapter 6), concerns the study of residential burglaries. In this chapter, we present

an analysis about the spatial, temporal, and spatio-temporal agglomerations for residential

burglary data of a Brazilian city.



Part I

HIV-1 Dynamics
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CHAPTER 1

Mathematical Modeling of the HIV-1 dynamics

In this chapter we will introduce the HIV model studied along of this work. Motivated by the

epidemic of the acquired immunodeficiency syndrome (AIDS), that started in the early 1980s,

several models have been proposed in order to describe the HIV in-vivo [NB96,PKDB93,PN99,

FM94, Kir96, NP02, NM00, Kor04, SZ11, Pas05, Bob10, BMSN97, SDL03, WS07, PH+00, BZ15,

Coo86, PH+95, PH+96, GKCM13]. Among them, is the as well accepted model proposed by

Nowak and Bangham [NB96]. This model addresses the disease dynamics within an infected

individual, describing the interaction between the HIV and the cells of the host. In this thesis,

we consider a slightly generalized form of this model, as we describe in Section 1.2. Before

explaining this model in details, we provide a brief biological background in Section 1.1.

1.1 Biological Background

The HIV is a retrovirus that causes AIDS, one of the most devastating infectious diseases to

have emerged in recent history [DRK09,SH11,C+08,MK06,LF85,oH12]. As with all viruses,

HIV replicates only inside the living cells of other organisms. However, the main target cells of

HIV are vital cells of the human immune system, the CD4+T cells. Therefore, the HIV infection

causes the depletion and dysregulation of the immune system and leads to life-threatening

tumors and opportunistic infections [DRK09,C+08,MK06].

The replication cycle of the HIV begins with fusion of the viral envelope with the host cell

membrane. After the HIV has bound to the target cell, the HIV RNA and various enzymes are

injected into the cell. Then, an enzyme called reverse transcriptase liberates the single-stranded

RNA genome from the attached viral proteins and copies it into a complementary DNA molecule.

This process is extremely error-prone, generating a high genetic variability of HIV which may

allow the virus to evade the body’s immune response. After that occurs, the integration of the
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viral DNA into the host cell’s genome is carried out by another viral enzyme called the integrase.

Mediated by the viral protease, the final step of the viral cycle is the assembly of the new HIV

virions. Finally, the viral protease mediates the assembly of the new HIV virions, and then

these new virions are released.

The entry of viral genetic material into host cells triggers the adaptive immune system. The

adaptive immune system, or acquired immune, is part of a sophisticated network of biological

processes within the body. These processes result in the activation of CD8+T lymphocytes that

will bind to infected cells and induce apoptosis.

Despite the induction of the immune response, this is late and insufficient in magnitude to

eradicate the HIV infection [SdMB+13]. Then, to avoid the progressive failure of the immune

system, medical treatments are required.

The treatments consist of antiretrovirals drugs that aim at suppressing the virus and stop the

progression of the HIV disease. There are several classes of drugs to treat the HIV infection and

the use of these drugs in combination is termed antiretroviral therapy (ART). The antiretrovirals

are classified by the phase of the replication cycle that the drug inhibits

Entry inhibitors (or fusion inhibitors) interfere with binding, fusion and entry of HIV into

the host cell;

Reverse transcriptase inhibitors inhibit the transcription of the viral RNA to DNA;

Integrase inhibitors inhibit the enzyme integrase, which is responsible for integration of viral

DNA into the DNA of the infected cell;

Protease inhibitors inhibit enzyme protease necessary to produce mature virions, then the

new copies of HIV will not be able to infect new cells.

One difficulty of the HIV treatment is its high genetic variability, especially for HIV type

1 [SdMB+13,GC04,MK06,RHS95,RPCH04]. Despite the difference between the mechanisms

of the two types of HIV is not clearly defined, it is known that HIV-1 is more virulent, more

pathogenic and is the cause of the majority of the HIV infections [DRK09,C+08].

In the first stage of the HIV-1 infection, the acute phase, the virus enters the body and it

begins to infect CD4+T lymphocytes. The virus uses CD4+T cells to replicate and destroys them

in the process. Since large amounts of virus are being produced, the CD4+T count decreases

rapidly. On the other hand, the dissemination of the virus induces the immune response, causing

the increase of CD8+T cells, which in turn will begin to bring the level of virus back down to a

level called a viral set point, which is a relatively stable level of the viral load [SdMB+13,RP+10].

This set point is a strong predictor for the HIV-1 disease chronicity [SdMB+13,SH03]. After

the acute stage of the HIV-1 infection, the disease moves into a stage called chronic stage or

clinical latency stage. In this stage, CD8+T cells exert partial control of the infection, but not

enough to prevent, in the absence of therapy, the slow and progressive depletion of CD4+T cells.

This will lead eventually to AIDS1. Figure 1.1 depicts the progression of the HIV-1 infection.

1When the number of CD4+T cells falls below 200 cells per cubic millimeter of blood.



Figure 1.1: Typical HIV-1 infection course. The graph shows the typical course of the HIV-1 in
an untreated individual. After an individual becomes infected, the viral load rises rapidly to a very
high peak level, and then drops sharply to a set point level that remains more or less stable for several
years (chronic infection). Eventually, CD4+T cells fall below a critical level (200 CD4+T cells per
cubic millimeter of blood), which defines the onset of AIDS.

1.2 The Mathematical Model

The model proposed by Nowak and Bangham [NB96] has four variables: uninfected CD4+T

cells (X), infected CD4+T cells (Y), virions (V) and CD8+T cells (Z). These quantities denote

the abundance of the corresponding quantities in a given volume of blood or tissue. The model

considers that uninfected CD4+T cells are produced at a constant rate λ and die at a rate dX.

Virions attack uninfected cells at a rate proportional to the product of their concentrations,

βXV . The infection rate β describes the efficacy of this process, including the rate at which

viral particles find uninfected cells, the rate of virus entry, and the probability of successful

infection. Infected cells produce virions at a rate proportional to their abundance, kY , die at

a rate aY and are killed by CD8+T cells at a rate pY Z. Free viral particles die at a rate uV .

CD8+T cells have a proliferation rate given by cY Z and, in absence of stimulation, decay at a

rate bZ. Figure 1.2 depicts the dynamics described above.

Susceptible cells
(X)

Free virus 
(V)

Infected cells 
(Y)

+

Immune cells 
(Z)

k

ba+pZu d

c

Figure 1.2: Schematic illustration of the dynamics of the HIV-1 infection. The virions infect
CD4+T cells with an infection rate, β and then these infected cells will produce virions at a rate k.
Uninfected CD4+T cells, CD8+T cells and virions die at a rate d, b and u, respectively. Infected
CD4+T cells die at a rate a and are eliminated by CD8+T response at the rate pZ. Uninfected CD4+T
cells are replenished at a rate λ. The rate of the CD8+T cells proliferation is given by cY Z.



This dynamics leads to the following four-by-four system of ordinary differential equations

Ẋ = λ− dX − βXV
Ẏ = βXV − aY − pY Z
V̇ = kY − uV
Ż = cY Z − bZ

(1.1)

with initial conditions X(0) = X0, Y (0) = Y0, V (0) = V0 and Z(0) = Z0.

Furthermore, taking into account the ART, we will have another variable in the model:

the defective virions (H), whose dynamic is analogous to the dynamics of the active virions.

Additionally, the efficacy of the inhibitors affects the process of cell infection and virion

production.

To describe the high genetic variability of HIV-1 and its interaction with the immune response,

Nowak and Bangham [NB96] consider n strains of virus, and the corresponding infected cells

and CD8+T cells. Following Souza and Zubelli [SZ11], we consider a generalized form of this

model, since we consider that the parameters a, p, u, c and b can depend on the strain. Thus

we obtain the following first-order system of ordinary differential equations

Ẋ =λ− dX − (1− EE)X
∑
i∈N

βiVi

Ẏi =(1− EE)XβiVi − aiYi − piYiZi
V̇i =(1− ET )(1− EP )(1− EI)kiYi − uiVi
Ḣi =EPkiYi − uiHi

Żi =ciYiZi − biZi

(1.2)

for i ∈ N = {1, . . . , n}. Table 1.1 summarizes the biological meaning of the parameters.

Parameter Meaning

λ CD4+T cells supply rate
βi infection rate for the i-th strain
ki free virus production rate
ci CD8+T cells production rate
pi elimination rate of infected CD4+T due to CD8+T cells
ET efficacy of the reverse transcriptase inhibitor
EE efficacy of the entry inhibitor
EP efficacy of the protease inhibitor
EI efficacy of the integrase inhibitor
1/d mean lifetime of uninfected CD4+T cells
1/ai mean lifetime of infected CD4+T cells
1/ui mean lifetime of free virus
1/bi mean lifetime of cytotoxic T cells

Table 1.1: Parameters description. Meaning of the parameters involved in the compartmental
Model (1.3). The parameters ET , EE , EP and EI are in [0, 1). The other parameters are positive. For
the parameters with subscript i, the meaning described corresponds to the i-th strain.



Note that the equation describing the evolution of Hi is uncoupled from the other ones in

Equation (1.2). Therefore, we will consider the system without these equations

Ẋ =λ− dX − (1− EE)X
∑
i∈N

βiVi

Ẏi =(1− EE)XβiVi − aiYi − piYiZi
V̇i =(1− ET )(1− EP )(1− EI)kiYi − uiVi
Żi =ciYiZi − biZi.

(1.3)

Discussion

Although the model described in this chapter adequately describes several aspects of the HIV-1

dynamics, it has some limitations. This model does not consider the latent infected cells,

neither the other cells susceptible to the HIV-1 infection, such as macrophages and dendritic

cells [WDP98]. However, the latent cells are only a minor source [PH+97] and the other cells

susceptible to HIV-1 are responsible for the generation of only 1% of virions [BMSN97,NM00].

The main limitation of this model concerns the efficacy of the ART. The model assumes that

the efficacy of each inhibitor is constant over time, ignoring the saturation of these drugs. The

model also assumes that the inhibitors are homogeneously distributed in the body. However,

not all drugs penetrate the blood–brain barrier effectively, and thus drug concentrations in

the brain and central nervous system tend to be lower than in the circulation [PN99]. Also,

the immune-system cells have limited access to the central nervous system, and hence this site

may act as sanctuary for the virus [P+97]. Considering these aspects open up a variety of new

directions for modeling and studying the HIV-1 dynamics.

Another aspect omitted in this model is the intracellular delays. A possible future work

would be to consider models that take into account this aspect, as those proposed by Nelson et

al. [NP02].

Finally, many authors include drug-resistant viruses in order to describe the lack of success

of therapy for many patients [KW97,BMSN97,NM00,VRM+10,GKCM13,WDP98]. Although

the model described in this chapter does not consider such viruses, we can still interpret this

phenomenon due to the basic reproductive ratios. Indeed, as we will show in Chapter 5, the

infection rate (β) will depend on the patient. Consequently, the basic reproductive ratios

also depend on the individual. Then, the minimum efficacy of ART necessary to ensure the

eradication of the infection will also vary according to the patient, as we will show in Chapter 3.

This explains why the HIV-1 treatment is more effective for some than for other patients.

Note that if we consider that the effectiveness of each of the inhibitors varies from one strain

to another, then we cover the case where the drug-resistant virus are included. However the

descending order regarding the basic reproductive numbers post-treatment Ri
0 would be lost,

affecting the results of Chapter 3, since it is necessary to ensure that system with ART meets

the conditions of the Theorem 2.2.



CHAPTER 2

Model Properties

In this chapter we briefly review some properties of System (1.3), which are used in the results

of the following chapters. These properties, shown in Section 2.2, concern the equilibrium points

and the global stability and have been proven by Souza and Zubelli [SZ11] for an equivalent

model (without antiretroviral therapy). Bobko [Bob10] details the proof of these properties

and extends them to a model that considers the latent period of the infected cells and the

antiretroviral therapy.

In order to simplify the units involved and to emphasize system properties, we will show these

properties considering the system in a dimensionless form, which we describe in Section 2.1.

2.1 The Dimensionless System

Note that we can reduce some parameters by renaming (1− ET )(1− EP )(1− EI)ki by ki and

(1− EE)βi by βi, for i ∈ N .

Before perform the adimensionalization of System (1.3), we should take into account that

are already known some dimensionless parameters which are important in determining the

asymptotic equilibrium, see [NB96,NM00,Kor04,Pas05,SZ11]. These constants are the basic

reproductive ratio in the absence of the immune response

Ri
0 =

βiλki
daiui

,

and the basic reproductive ratio in the presence of the immune response

Ri
I = 1 +

Ri
0

I i0
,

where I i0 = ciλ
aibi

, for i ∈ N .

11



Letting t = d · T , x = d
λ
X , yi = ai

λ
Yi, vi = βi

d
Vi, zi = pi

ai
Zi and taking the derivatives w.r.t.

t, we obtain the following system

ẋ =1− x− x
∑
i∈N

vi

ẏi =γi (xvi − yi − yizi)

v̇i =ηi
(
Ri

0yi − vi
)

żi =σi
(
I i0yizi − zi

)
(2.1)

for i ∈ N , where γi = ai
d

, ηi = ui
d

and σi = bi
d

.

2.2 Equilibrium Points and Global Stability

Before describing the equilibrium points, we shall introduce some notation in order to deal

with the variety of equilibria that arises in System (2.1). Following [SZ11] and without loss of

generality, we assume that the strains are indexed in a non increasing order of the constants Ri
0.

Given a set of indices I ⊆ N , we denote RII = 1 +
∑

i∈I
Ri

0

Ii0
. Additionally, for a more

concise notation, y denotes the vector (y1, y2, ..., yn) (similarly for v and z), and WjJ =

(xjJ , yjJ , vjJ , zjJ ) where J is a subset of N and j ∈ {N − J }. From the biological viewpoint,

J is the set of indices of the strains that remain in the organism and are fought by the immune

system while j is the strain index that remains in the organism without being fought by the

immune system.

Using this notation, we have

Theorem 2.1. [SZ11] If the basic reproductive ratios of the virus strains are distinct, then

Equation (2.1) has 2n−1(2 + n) equilibrium points WjJ where

1. For J = ∅ and j = 0, we have x0∅ = 1 and yi0∅ = vi0∅ = zi0∅ = 0, ∀i ∈ N .

2. For J = ∅ and j ∈ N , we have xj∅ = 1/Rj
0, y

j
j∅ = 1 − 1

Rj
0

, vjj∅ = Rj
0 − 1, zjj∅ = 0, and

yij∅ = vij∅ = zij∅ = 0, ∀i 6= j.

3. For J 6= ∅ and j = 0, we have x0J = 1/RJI , yi0J = 1
Ii0

, vi0J =
Ri

0

Ii0
, zi0J =

Ri
0

RJ
I

− 1, ∀i ∈ J ,

and yi0∅ = vi0∅ = zi0∅ = 0 , ∀i /∈ J .

4. For J 6= ∅ and j ∈ N − J , we have xjJ = 1/RJI , yjjJ = 1− RJ
I

Rj
0

, vjjJ = Rj
0 −RJI , zjjJ = 0.

Furthermore if i ∈ J , we have yijJ = 1
Ii0

, vijJ =
Ri

0

Ii0
, zijJ =

Ri
0

RJ
I

− 1, and yijJ = vijJ = zijJ = 0

otherwise.

Although there is a large number of equilibria, Theorem 2.2 guarantees that only four of

them can be globally stable. Before presenting this theorem we shall introduce some definitions.



Definition 2.1. We define the set of the strong responders as

S = {i ∈ N ;Ri
0 > Ri

I}.

Definition 2.2. We shall say that the set S of strong responders is consistent if j ∈ S implies

i ∈ S for all i ∈ N such that i < j.

Definition 2.3. We shall say that I ⊆ S is an antigenic set if Ri
0 > RII for all i ∈ I. In

addition, if Ri
0 6 RII for all i /∈ I also holds, we shall say that I is a purely antigenic set.

Definition 2.4. Let l be the largest integer such that I = {1, 2, ..., l} is an antigenic set. If

I 6= ∅, then we shall say that I is the maximal antigenic set.

We are now ready to present the result about the global stability

Theorem 2.2. [SZ11] Assume that Ri
0 > Ri+1

0 for i = 1, ..., n − 1 and that the set of strong

responders is consistent. Then, System (2.1), defined on R3n+1
>0 , with initial condition in its

interior, has a globally asymptotically stable equilibrium given as follows

1. W0∅ if R1
0 6 1;

2. W1∅ if R1
0 > 1 and R1

0 6 R1
I ;

3. If R1
0 > R1

I , let J be the antigenic maximal set.

a. W0J if J is a purely antigenic set;

b. WjJ otherwise, where j is the smallest integer outside J .

The proof of Theorems 2.1 and 2.2 can be found in [SZ11]. See also [Bob10].



CHAPTER 3

Influence of the Antiretroviral Therapy

A number of viral dynamics models including antiretroviral therapy (ART) have been proposed

and studied to understand better the influence of these drugs in the HIV-1 dynamics [SDL03,

KW97,BMSN97,PN99,NP02,VRM+10,PH+97,GKCM13,WDP98]. In order to predict whether

the ART can eradicate HIV-1 or maintain viral loads at low levels, Perelson et al. [PN99]

and Wein et al. [WDP98] analyze the steady-state behavior of a mathematical model that

incorporates two types of antiretroviral (reverse transcriptase and protease inhibitors). We

perform this analysis considering further CD8+T cells, antigenic variation and the inhibitors of

entry and integrase.

Specifically, we compare the steady-state of the system considering ART with the steady-state

of the system without considering it. Both are given by Equation (1.3). Note that, for the

system without ART, the inhibitor efficacy vanishes (ET = EE = EP = EI = 0). Although

these two systems can be written in the dimensionless form of System (2.1), the change of

variables needed for this results in different values for the basic reproductive rates Ri
0 and Ri

I .

Consequently, the steady-state provided by Theorem 2.2 will also change, as we will show in

Theorem 3.1.

Before the main result, Theorem 3.1, shown in Section 3.2, we introduce some notation and

prove some lemmas, which will be useful in the proof of the main theorem (Section 3.1).

3.1 Preliminaries Results

Let us fix the parameters βi, λ, ki, d, ai, ui, bi, ci and pi of Equation (1.3), which will fix the

parameters γi, ηi and σi in System (2.1).

In order to simplify the notation, we define the efficacy of the ART as

ψ = 1− (1− EP )(1− EE)(1− ET )(1− EI).
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Then, we consider two cases of System (1.3): without ART and with ART. That is, the first

system considers ψ = 0, while the second one considers a given ψ ∈ (0, 1). Note that we do

not consider the case that ψ = 1 because this implies in inhibitors 100% effective, which is not

realistic.

For the system without ART we denote the basic reproductive ratio in the absence of the

immune response by Ri
0, while for the system with ART by Ri

0. Analogous notation will be used

for the basic reproductive ratio in presence of the immune response, the set of strong responders,

the maximal antigenic set and the equilibrium points.

As our intention is to apply Theorem 2.2 to both systems, the following assumption will be

considered.

Assumption 3.1. Assume that Ri
0 > Ri+1

0 for i = 1, .., n−1 and that the set of strong responders

S = {i ∈ N ;Ri
0 > Ri

I} and S = {i ∈ N ;Ri
0 > Ri

I} are consistent.

Note that

Ri
0 = Ri

0(1− ψ) < Ri
0. (3.1)

Thus, Ri
0 > Ri+1

0 for i = 1, .., n − 1 implies that Ri
0 > Ri+1

0 for i = 1, .., n − 1, and then

Assumption 3.1 ensures that both systems will satisfy the hypotheses of Theorem 2.2.

Before enunciating the main theorem of this chapter, we will prove some results.

Lemma 3.1. Let Assumption 3.1 be satisfied and suppose that the maximal antigenic set is

equal for both systems (J = J ). If J is purely antigenic, then so is J .

Proof. Suppose J is purely antigenic and J is not. As J is the maximal antigenic set and is

not purely antigenic, we have that J 6= N . Then, let j ∈ N be the smallest integer outside J .

Note that this index will satisfy

Rj
0 > 1 +

∑
l∈J

Rl
0

I l0
(3.2)

otherwise J would be purely antigenic since, for all i > j,

Ri
0 < Rj

0 6 1 +
∑
l∈J

Rl
0

I l0
.

On the other hand j /∈ J , since J = J and j /∈ J . As J is purely antigenic, it follows that

Rj
0 6 1 +

∑
l∈J

Rl
0

Il0
. From this and using that ψ ∈ (0, 1), he have

Rj
0 = Rj

0(1− ψ) 6

(
1 +

∑
l∈J

Rl
0

I l0

)
(1− ψ) 6 1 +

∑
l∈J

Rl
0

I l0
(1− ψ) = 1 +

∑
l∈J

Rl
0

I l0
,

since ψ ∈ (0, 1). This contradicts the inequality (3.2), since J = J .



Lemma 3.2. Let Assumption 3.1 be satisfied and Ri
0 > Ri

I . Then, Ri
0 6 Ri

I if, and only if,

ψ > Ri
0−Ri

I

Ri
0−Ri

I+1
. Additionally, Ri

0 > Ri
I if, and only if, ψ <

Ri
0−Ri

I

Ri
0−Ri

I+1
.

Proof. Note that

Ri
0 6 Ri

I ⇔ Ri
0(1− ψ) 6 1 +

Ri
0

I i0
(1− ψ) = Ri

I(1− ψ) + ψ

⇔ Ri
0 −Ri

I 6 (Ri
0 −Ri

I + 1)ψ.

As Ri
0 > Ri

I , we have that Ri
0 −Ri

I + 1 > 0 and the above inequality is equivalent to

ψ >
Ri

0 −Ri
I

Ri
0 −Ri

I + 1
.

Similarly we prove the other case.

Lemma 3.3. Let Assumption 3.1 be satisfied. Then, the sets of strong responders satisfy S ⊆ S.

Additionally, let i be an element of S. Then i /∈ S if, and only if, ψ > Ri
0−Ri

I

Ri
0−Ri

I+1
.

Proof. If i /∈ S, then Ri
0 6 Ri

I and

Ri
0 = Ri

0(1− ψ) 6 Ri
I(1− ψ) = 1 +

Ri
0

I i0
(1− ψ)− ψ = Ri

I − ψ < Ri
I .

Then, i /∈ S and thus S ⊆ S. On the other hand if i ∈ S, then i /∈ S if, and only if, Ri
0 6 Ri

I .

By Lemma 3.2 this is equivalent to

ψ >
Ri

0 −Ri
I

Ri
0 −Ri

I + 1
.

Lemma 3.4. Let Assumption 3.1 be satisfied. Then, the maximal antigenic sets satisfy J ⊆ J .

Proof. Suppose that the lemma is false. As J = {1, ..., j − 1} and J = {1, ..., j − 1}, for some

j and j, we must have that j < j. Then j ∈ J ⊆ S ⊆ S where the last inclusion is due to

Lemma 3.3. It follows that Rj
0 < 1 +

∑
l∈J

Rl
0

Il0
+

Rj
0

Ij0
, otherwise J is not the maximal antigenic

set once J ∪ {j} ∈ S would also be antigenic. As J ∪ {j} ∈ J , then

Rj
0(1− ψ) < 1− ψ +

∑
l∈J

Rl
0

I l0
(1− ψ) +

Rj
0

Ij0
(1− ψ)

< 1 +
∑
l∈J

Rl
0

I l0
(1− ψ) +

Rj
0

Ij0
(1− ψ) 6 1 +

∑
l∈J

Rl
0

I l0
(1− ψ).

But this contradicts j ∈ J .



Lemma 3.5. Let Assumption 3.1 be satisfied and let j be the smallest integer outside J . If

W0∅ is the asymptotic equilibrium of the system without ART, then the system with ART cannot

has W1∅, W0J , and WjJ as asymptotic equilibriums. Furthermore, if W1∅ is the asymptotic

equilibrium of the system without ART, then the system with ART cannot has W0J and WjJ as

asymptotic equilibriums.

Proof. Let W0∅ be the asymptotic equilibrium of the system without ART. By Theorem 2.2 we

have that R1
0 6 1. From this and using Equation (3.1), it follows that R1

0 6 1. This ensures

that W1∅, W0J , and WjJ cannot be the asymptotic equilibrium point.

Consider now that W1∅ is the asymptotic equilibrium point of the system without ART.

Using Theorem 2.2 we have that R1
0 6 R1

I . Multiplying this inequality by (1 − ψ) we get

R1
0 6 R1

I − ψ < R1
I . This ensures that W0J and WjJ cannot be the asymptotic equilibrium

point.

Lemma 3.6. Let Assumption 3.1 be satisfied and let WjJ and WjJ be the asymptotic equilibrium

points of the systems without and with ART, respectively. Then J ∪ {j} ⊆ J ∪ {j} ∪ {0}.

Proof. Lemma 3.4 ensures that J ⊆ J . Then, if J is an empty set, so is J . In this case, the

possible values for j and j are 0 and 1. Thus, the only case that would contradict the result is

j = 0 and j = 1. However, Lemma 3.5 ensures that this is not possible.

Consider now the case where J 6= ∅. As WjJ is the asymptotic equilibrium point of the

system without ART, we have the following possibilities:

1. J = ∅ and j = 0: then J ∪ {j} = {0}.
2. J = ∅ and j = 1: then J ∪ {j} = {1} ⊆ J , since J is an antigenic maximal set.

3. J 6= ∅ and j = 0: then J ∪ {j} = J ∪ {0} ⊆ J ∪ {0}, since J ⊆ J by Lemma 3.4.

4. J 6= ∅ and j the smallest integer outside J :

- if j = 0, then J is a purely antigenic set but J is not. In this case we have J  J , by

Lemmas 3.1 and 3.4. From this we get J ∪ {j} ⊆ J .

- if j 6= 0, then j is the smallest integer outside J . As J ⊂ J by Lemmas 3.4, it follows

that j = j or j ∈ J . Thus J ∪ {j} ⊆ J ∪ {j}.

3.2 Changes in the Steady-state

In this section we will state the main theorem of this chapter. This result will indicate which

changes in the steady-state of the system are due to the inclusion of ART. Surprisingly, this

theorem shows that ART may change the equilibrium W0J to WjJ with j 6= 0. In biological

terms, this means that the immune system will tend to stop combating the j strain. Nevertheless,

the theorem also ensures that, in all cases, the viral load equilibrium of each strain will not

increase.



Theorem 3.1. Let Assumption 3.1 be satisfied. For each possible asymptotic equilibrium point

of the system without ART, the efficacy of the ART, ψ, determines which point will be the

asymptotic equilibrium point of the system with ART, according to table bellow. Furthermore,

the components of the asymptotic equilibrium points will satisfy x 6 x and vi > vi for all i ∈ N ,

with strict inequality for the viral loads in the case vi 6= 0.

ψ ∈
(

0,
R1

0−R
1
I

R1
0−R1

I+1

)
ψ ∈

[
R1

0−R
1
I

R1
0−R1

I+1
, 1− 1

R1
0

)
ψ ∈

[
1− 1

R1
0
, 1
)

W0∅ W0∅ W0∅ W0∅
W1∅ W1∅ W1∅ W0∅

W0J
W0J if J purely antigenic

WjJ otherwise
W1∅ W0∅

WjJ
W0J if J purely antigenic

WjJ otherwise
W1∅ W0∅

Proof. We analyze every possible combination of steady-states, i.e. the combinations that are

not addressed in Lemma 3.5. In each case, we find out the values of φ that allow the occurrence

of it. In addition, we compare the equilibrium components corresponding to viral load and

CD4+T cells concentration, according to Theorem 2.1.

1. W0∅ and W0∅

If ψ ∈ (0, 1), then R1
0 = (1− ψ)R1

0 < 1, since R1
0 6 1. This ensures that W0∅ will be the

asymptotic equilibrium point of the system with ART. Furthermore,

x0∅ − x0∅ = 1− 1 = 0 6 0 and

vi0∅ − vi0∅ = 0− 0 = 0 > 0 ∀i ∈ N .

2. W1∅ and W0∅

As R1
0 > 1, it is possible to take ψ ∈

[
1− 1

R1
0
, 1
)
⊆ (0, 1), and then R1

0 = (1− ψ)R1
0 6 1.

This ensures that W0∅ will be the asymptotic equilibrium point of the system with ART.

Furthermore,

x1∅ − x0∅ =
1

R1
0

− 1 < 0,

v11∅ − v10∅ = (R1
0 − 1)− 0 > 0, and

vi1∅ − vi0∅ = 0− 0 = 0 > 0 ∀i 6= 1.

3. W1∅ and W1∅

As R1
0 > 1, it is possible to take ψ ∈

(
0, 1− 1

R1
0

)
⊆ (0, 1), and then R1

0 = (1− ψ)R1
0 > 1.

This ensures that W1∅ will be the asymptotic equilibrium point of the system with ART.



Furthermore,

x1∅ − x1∅ =
1

R1
0

− 1

(1− ψ)R1
0

= − 1

R1
0

ψ

1− ψ
< 0,

v11∅ − v11∅ = [R1
0 − 1]− [R1

0(1− ψ)− 1] = R1
0ψ > 0, and

vi1∅ − vi1∅ = 0− 0 = 0 > 0 ∀i 6= 1.

4. W0J and W0∅

As R1
0 > 1, it is possible to take ψ ∈

[
1− 1

R1
0
, 1
)
⊆ (0, 1), and then R1

0 = (1− ψ)R1
0 6 1.

This ensures that W0∅ will be the asymptotic equilibrium point of the system with ART.

Furthermore,

x0J − x0∅ =
1

RJI
− 1 = −

∑
i∈J

Ri
0

Ii0

RJI
< 0,

vi0J − vi0∅ = (Ri
I − 1)− 0 > 0 ∀i ∈ J , and

vi0J − vi0∅ = 0− 0 = 0 ∀i /∈ J .

Note that the first inequality is strict because 1 ∈ J , and thus
∑

i∈J
Ri

0

Ii0
> 0.

5. W0J and W1∅

As R1
0 > R1

I , Lemma 3.2 ensures that R1
0 6 R1

I if, and only if, ψ > R1
0−R1

I

R1
0−R1

I+1
. On the other

hand R1
0 > 1 if, and only if, ψ < 1− 1

R1
0
. Note that this interval is not empty because

[
1− 1

R1
0

]
−
[

R1
0 −R1

I

R1
0 −R1

I + 1

]
=

1

R1
0(I

1
0 − 1)

> 0.

Then, W1∅ will be the asymptotic equilibrium point of the system with ART if, and only

if, ψ ∈
[

R1
0−R1

I

R1
0−R1

I+1
, 1− 1

R1
0

)
⊂ (0, 1). Furthermore, as 1 ∈ J we have R1

0 6 R1
I < R1

I 6 RJI .

Whence,

x0J − x1∅ =
1

RJI
− 1

R1
0

< 0,

v10J − v11∅ =
[
R1
I − 1

]
−
[
R1

0 − 1
]
> 0,

vi0J − vi1∅ = (Ri
I − 1)− 0 > 0 ∀i ∈ J \ {1}, and

vi0J − vi1∅ = 0− 0 = 0 ∀i /∈ J .

6. W0J and W0J

It follows from Lemma 3.2 that W0J will be the asymptotic equilibrium point of the

system with ART if, and only if, ψ ∈
(

0,
R1

0−R1
I

R1
0−R1

I+1

)
⊂ (0, 1) and J is purely antigenic.



Furthermore, as ψ ∈ (0, 1) and J ⊆ J (Lemma 3.4), we have RJi > RJI , whence

x0J − x0J =
1

RJI
− 1

RJI

< 0.

From Ri
I > Ri

I for all i such that Ri
0 6= 0 (particularly for all i ∈ J ), it follows that

vi0J − vi0J =
[
Ri
I − 1

]
−
[
Ri
I − 1

]
> 0 ∀i ∈ J ∩ J ,

vi0J − vi0J =
[
Ri
I − 1

]
− 0 > 0 ∀i ∈ J \ J , and

vi0J − vi0J = 0− 0 = 0 ∀i /∈ J .

7. W0J and WjJ

It follows from Lemma 3.2 that W0J will be the asymptotic equilibrium point of the

system with ART if, and only if, ψ ∈
(

0,
R1

0−R1
I

R1
0−R1

I+1

)
⊂ (0, 1) and J is not purely antigenic.

Similarly to the Case 6 we have

x0J − xjJ =
1

RJI
− 1

RJI

< 0.

We know that the maximal sets have the form J = {1, ..., j − 1} and J = {1, ..., j − 1},
with j > j is due to Lemma 3.4. Furthermore, as J is purely antigenic and J is not,

Lemma 3.1 ensures that j 6= j. Consider then the following cases to analyze the values of

the viral load components.

(a) i < j

In this case i ∈ J ∩ J . Then

vi0J − vijJ =

[
Ri

0

I i0

]
−

[
Ri

0

I i0

]
= ψ

Ri
0

I i0
> 0.

(b) i = j

In this case i ∈ J . Then

vi0J − vijJ =

[
Rj

0

Ij0

]
−
[
Rj

0 −RJI
]

=
Rj

0

Ij0
−Rj

0 + 1 +
∑
l∈J

Rl
0

I l0
. (3.3)

If j ∈ S then Rj
0 < 1 +

∑
l∈J

Rl
0

Il0
+

Rj
0

Ij0
, otherwise J is not the maximal antigenic set.

Returning to Equation (3.3)

vi0J − vijJ >
Rj

0

Ij0
−

1 +
∑
l∈J

Rl
0

I l0
+
Rj

0

Ij0

+ 1 +
∑
l∈J

Rl
0

I l0
=
Rj

0

Ij0
− Rj

0

Ij0
=
Rj

0

Ij0
ψ > 0.



If j /∈ S then Rj
0 6 1 +

Rj
0

Ij0
. Returning to Equation (3.3)

vi0J − vijJ >
Rj

0

Ij0
−

1 +
Rj

0

Ij0

+ 1 +
∑
l∈J

Rl
0

I l0
=
Rj

0

Ij0
ψ +

∑
l∈J

Rl
0

I l0
> 0.

(c) i > j and i < j

In this case i ∈ J and i /∈ J ∪ {j}. Then,

vi0J − vijJ =
[
Ri
I − 1

]
− 0 > 0.

(d) i > j

In this case i /∈ J and i /∈ J ∪ {j}. Then,

vi0J − vijJ = 0− 0 = 0.

8. WjJ and W0∅

Similarly to the Item 4, we have that xjJ − x0∅ < 0 and that W0∅ will be the asymptotic

equilibrium point of the system with ART if, and only if, ψ ∈
[
1− 1

R1
0
, 1
)

. Furthermore

vijJ − vi0∅ =
Ri

0

I i0
− 0 > 0 ∀i ∈ J ,

vjjJ − v
j
0∅ = (Rj

0 −R
j
I)− 0 > 0, and

vijJ − vi0∅ = 0− 0 = 0 ∀i /∈ J ∪ {j}.

9. WjJ and W1∅

Similarly to the Item 5, we have that xjJ − x1∅ < 0 and that W1∅ will be the asymptotic

equilibrium point of the system with ART if, and only if, ψ ∈
[

R1
0−R1

I

R1
0−R1

I+1
, 1− 1

R1
0

)
.

Furthermore, as 1 ∈ J and R1
I > R1

0, we have

v1jJ − v11∅ =
R1

0

I10
− (R1

0 − 1) = R1
I −R1

0 + ψ
R1

0

I10
> ψ

R1
0

I10
> 0 ∀i ∈ J ,

vijJ − vi1∅ =
Ri

0

I i0
− 0 > 0 ∀i ∈ J \ {1},

vjjJ − v
j
1∅ = (Rj

0 −R
j
I)− 0 > 0, and

vijJ − vi1∅ = 0− 0 = 0 ∀i /∈ J ∪ {j}.

10. WjJ and W0J

Similarly to the Item 6, we have that xjJ − x0J < 0 and that W0J will be the asymptotic

equilibrium point of the system with ART if, and only if, ψ ∈
(

0,
R1

0−R1
I

R1
0−R1

I+1

)
and J is

purely antigenic.



Furthermore

vijJ − vi0J =
Ri

0

I i0
−
[
Ri
I − 1

]
= ψ

Ri
0

I i0
> 0 ∀i ∈ J ∩ J

vijJ − vi0J =
Ri

0

I i0
− 0 > 0 ∀i ∈ J \ J ,

vjjJ − v
j

0J =
[
Rj

0 −R
j
I

]
− 0 > 0, and

vijJ − vi0J = 0− 0 = 0 ∀i /∈ J ∪ {j}.

11. WjJ and WjJ

Similarly to the Item 7, we have that xjJ − xjJ < 0 and that WjJ will be the asymptotic

equilibrium point of the system with ART if, and only if, ψ ∈
(

0,
R1

0−R1
I

R1
0−R1

I+1

)
and J is not

purely antigenic. Furthermore,

vijJ − vijJ =
Ri

0

I i0
− Ri

0

I i0
= ψ

Ri
0

I i0
> 0 ∀i < j,

vijJ − vijJ =
Ri

0

I i0
− 0 > 0 ∀i > j and i < j,

vjjJ − v
j

jJ =
[
Rj

0 −RJI
]
− 0 > 0, and

vijJ − vijJ = 0− 0 = 0 ∀i > j.

Finally, for i = j the proof is similar to the Item 7(b).

Remark 1. Theorem 3.1 is also true to original System (1.3). The first part of this theorem

follows from the fact that the conditions that determine the asymptotically stable equilibrium

point depend on the dimensionless parameters Ri
0 and Ri

I . These parameters do not change in

the dimensionless system. Denote by X and Vi the components of the stable equilibrium point

of original System (1.3) without ART corresponding to the concentration of CD4+T and the

viral load, respectively. Analogously to the original system with ART, X and Vi. Note that

Vi − Vi =
βi
d

(vi − vi) and X −X =
λ

d
(x− x) .

Since λ/d and βi/d are positive parameters, the second part of Theorem 3.1 also holds.



3.3 Numerical Example

According to Theorem 3.1, it is possible that the ART changes the equilibrium point W0J to

WjJ , with j not null. This means that the introduction of the treatment induces the immune

system to stop fighting the j-th strain, in the long term. However, Theorem 3.1 also ensures

that the viral load equilibrium of the j-th strain will be reduced, even in this case.

In this section, we illustrate this case with an example. Consider System (2.1) with one

virus strain and with basic reproductive ratios given by R1
0 = 15 and R1

I = 6. By Theorem 2.2,

the globally asymptotic stable equilibrium is W0{1}.

From the biological viewpoint, the infection tends to remain in the host organism, while

being fought by the immune system.

Now, consider the case with ART and suppose that the treatment efficacy is ψ = 0.92. Then,

R1
0 = 1.2 and R1

I = 1.4. As ψ ∈
[
0.9, 0.93

)
=
[

R1
0−R1

I

R1
0−R1

I+1
, 1− 1

R1
0

)
, Theorem 3.1 ensures that the

globally asymptotic stable equilibrium is W 1∅.

In this case, the virions tend to remain in the host organism without being fought by

the immune system. Figure. 3.1(c) illustrates this change in behavior of the immune system

(CD8+T cells). In red we can see the CD8+T cells converging to a non-null value. This solutions

corresponds to the system without ART. The blue line depicts the CD8+T cells for the system

with ART. In this case, it vanishes.

Despite the immune system having stopped fighting the infection, note that the viral load

equilibrium shows a significant reduction (Figures. 3.1(b)). Furthermore, the concentration of

healthy CD4+T cells is larger for the case with ART (Figures. 3.1(a)).
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Figure 3.1: Numerical Example of the ART influence. Numerical solutions of the system
without ART (in red) and with ART (in blue). The parameters considered are R1

0 = 15, R1
I = 6, and

ψ = 0.92. Figures (a), (b), and (c) depict the concentrations of the health CD4+T cells, the virions,
and the CD8+T , respectively



3.4 Conclusion

Since the HIV-1 treatment consists of antiretroviral drugs that affect the virus replication

cycle, it is natural to expected that the treatment will reduce the basic reproductive ratios

(Ri
0 and Ri

I) of each viral strain. Indeed, we saw in Section 2.1 that the entry inhibitor affects

the infection rate (βi), while the other inhibitors affect the virions production rate (ki). This

causes a reduction in the basic reproductive ratio in the absence of the immune response of all

strains. More than this, we have that the reduction will be proportional to (1−ψ), according to

Equation (3.1). This mean that, the higher the efficiency of ART, the greater is the reduction in

the basic reproductive ratios. The same occurs with the basic reproductive ratios in the presence

of the immune response (Ri
I). For a model without the immune response or antigenic variation

and just for two of these inhibitors, similar results were obtained by Perelson et al. [PN99] and

also reported by Bonhoeffer et al. [BMSN97], for other HIV-1 models.

Another important aspect concerns the combination therapy. Since the efficacy of ART is

given by ψ = 1− (1−EP )(1−EE)(1−ET )(1−EI), our analysis shows that combined inhibitors

provide a better treatment than using them alone (consider fixed the efficacies of the inhibitors).

This is in accordance with [PR08,WDP98,PN99,KW97,NM00] and with the current medical

recommendation [dep13].

Moreover, our analysis allows much more than just ensuring that the treatment has a positive

effect. Firstly, Lemma 3.6 ensures that the strains that tend to vanish, in the long term, will

continue with this property after ART. This is quite consistent from the biological view point.

Additionally, Lemma 3.5 ensures that, depending on the expected equilibrium before ART, some

asymptotic steady state cannot be obtained regardless of the ART efficacy ψ. The first case of

the lemma is to be expected to happen since an individual capable of eradicating the infection,

in the long term, without ART, should still be able to do it with ART. The second case is not

so obvious. Along with Lemma 3.4, it ensures that the introduction of ART, regardless of ψ,

cannot increase the number of strains which are combated by the body. The other combinations

of steady-states of the systems with and without ART may be obtained depending on the ART

efficacy ψ. The detailed description of the intervals at which the efficiency must belong, in each

case, is given by Theorem 3.1.

Theorem 3.1 allows us to choose, strictly speaking, an ART with efficacy, ψ, that leads to

a more beneficial steady-state for the patient. In fact, by this theorem, if we take ART with

efficacy greater than 1− 1/R1
0, then the new expected equilibrium will be the equilibrium free

of the infection. This value gives us the necessary minimum efficacy for a successful treatment.

Note that this minimum efficacy depends only on the basic reproductive number of the most

virulent strain (R1
0). As this infection rate is a parameter whose value depends on the patient,

this minimum efficacy also depends on the patient. This corroborates to the recommendation of

specific treatments for each patient. Furthermore, we emphasize that it is very relevant to know

this minimal efficacy, especially taking into account that the treatment may be associated with

unwanted side effects not directly related to the HIV-1 infection, such as cardiovascular disease,



liver abnormalities, bone loss, as well as cancers and loss of neurocognitive functions [dep13].

From the biological viewpoint, maybe it is not possible to obtain this necessary minimum

efficacy for a successful treatment. Nevertheless, W1∅, W0J , and WjJ can mean an appropriate

treatment if the viral load equilibriums are small enough. In fact, the aim of ART is to maintain

low viral loads and to increase the concentration of CD4+T cells, preventing opportunistic

infections [dep13]. So it is also important to assess the change of the equilibrium components, even

in the case where there is no change in the equilibrium type. Note that, according to Theorem 3.1,

ART always results in a decrease of the viral load equilibrium (unless it is null), and increase (or

at least stay the same) the equilibrium of CD4+T cells concentrations. This is in accordance with

publications [PH+97,W+99,Xia07,WDP98,NP02,BMSN97,NM00,PN99,VRM+10]. Furthermore,

as the viral load equilibrium directly depends on the basic reproductive ratio, Ri
0, the reduction

in the viral load will be proportional to the efficacy of the ART. This generalizes the result

obtained by Equation [PN99] for a model without antigenic variation, CD8+T cells, integrase

and entry inhibitors.

Theorem 3.1 further shows that ART may induce, in the long term, the body to stop fighting

a strain, i.e. it changes the equilibrium W0J to WjJ , with j not null. Although this seems

unexpected from the biological view point, note again that the non-null viral load equilibrium

will decrease, even in this case. As mentioned above, the key point for a successful treatment is

to keep the viral load low.

Note that our study concerns the changes in the asymptotic equilibrium points. This

represents the behavior of the system in the long term. Therefore, even in the case that the new

equilibrium point will be the equilibrium free of the infection, there is no way to ensure the

eradication of the infection in finite time. What we know is that the viral load will be close

to zero for large enough time. Thus, in finite time, we still have all the components positive

(even if very small). Hence, if the treatment is interrupted, the asymptotic equilibrium point

return to be the same as before the treatment, that is, the infection may return. This shows the

importance of not interrupting the HIV-1 treatment.



CHAPTER 4

Multiscale Analysis of HIV Dynamics

This chapter is a transcription of the published paper A Singularly Perturbed HIV Model with

Treatment and Antigenic Variation, written by the author in collaboration with Jorge P. Zubelli.

The dynamics of the virions of HIV-1 is much faster than the dynamics of the cells that host

the viruses [GKCM13,Llo01,Kir96,PH+95,SR88,Qui96,M+00,Imm13]. While CD4+T cells have

a half-life of the order of days, virions have a half-life of about a few hours [SR88,Qui96,M+00].

These two intrinsic time scales of the HIV-1 dynamics leads to a singularly perturbed system.

In order to deal with perturbed problems, multiscale analysis techniques have been used in

many areas [OB78, Was02, KC96, VB90], including biological modeling of infectious diseases

in [BPL13,Sou11,Sie12].

In this chapter we perform a multiscale analysis of System (2.1), using Tikhonov’s theorem.

This result leads to a way of approximating the solutions of the perturbed system by solutions

of a reduced system. The interest in such a reduction lies on the fact that, in many cases, the

complexity of the problem is considerably reduced. Indeed, for certain parameters, System (2.1)

becomes very stiff and the respective reduced system offers a robust approximation, as we shall

see here.

We start the chapter providing the necessary background on Tikhonov’s theorem. After that,

we analyze the properties of the reduced system with respect to steady-state and global stability.

We prove the global stability of such system by exhibiting an appropriate Lyapunov’s function.

This function is inspired by the one used by Souza and Zubelli [SZ11]. Then we present the

main result, which consists of applying Tikhonov’s theorem to System (2.1). We conclude with

some numerical examples and a brief analysis of the performance of the systems involved in our

result, thus substantiating the applicability of our results.
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4.1 Preliminaries: Tikhonov’s Theorem

The singularly perturbed system that we are interested on has the form

ẋ =f(t, x, y), x(0) = x0,

εẏ =g(t, x, y), y(0) = y0,
(4.1)

where ε� 1 and x and y can be vectors. Thus, this system has two time scales of order 1 and

ε. The degenerate system associated with System (4.1) is obtained by considering ε = 0

ẋ =f(t, x, y), x(0) = x0

0 =g(t, x, y).
(4.2)

To apply Tikhonov’s theorem we need several assumptions, described below.

Assumption 4.1. Assume that the functions f and g

f : [0, T ]× Ū × V 7→ Rm1 ,

g : [0, T ]× Ū × V 7→ Rm2 ,

are continuous and satisfy the Lipschitz condition w.r.t. the variables x and y in [0, T ]× Ū × V,

where Ū is a compact set in Rm1, V is a bounded open set in Rm2, and T > 0.

Assumption 4.2. Assume that there exists a function φ(t, x) continuous in [0, T ] × Ū such

that φ(t, x) ∈ V and
g(t, x, φ(t, x)) ≡ 0.

This function will be referred to as a root of the equation g(t, x, y) = 0. Furthermore, assume

that the root φ is isolated in [0, T ]× Ū , i.e. there exists δ > 0, independently of x, such that

0 < ||y − φ(t, x)|| < δ

implies g(t, x, y) 6= 0 in [0, T ]× Ū .

Definition 4.1. The system of differential equations

dỹ

dτ
= g(t, x, ỹ) (4.3)

for which t and x are treated as parameters, is called the boundary layer equation associated to

System (4.1).

Assumption 4.3. Let ỹ be the solution of the boundary layer equation associated to System (4.1).

Assume that for any η > 0 there exists δ > 0 such that, for all (t, x) ∈ [0, T ]× Ū , the inequality

||ỹ(0, t, x)− φ(t, x)|| < δ implies

||ỹ(τ, t, x)− φ(t, x)|| < η and lim
τ→∞

ỹ(τ, t, x) = φ(t, x),

for all τ > 0, where the above convergence is uniform for (t, x) ∈ [0, T ]× Ū .



In other words, Assumption 4.3 requires that the singular point φ(t, x) of the boundary layer

is an asymptotically stable equilibrium, uniformly w.r.t. (t, x) ∈ [0, T ]× Ū .

Definition 4.2. The reduced system associated to System (4.1) is

˙̄x = f(t, x̄, φ(t, x̄)), (4.4)

x̄(0) = x0,

where φ(t, x) is a root of the equation g(t, x, y, ) = 0.

Note that the reduced system is the first equation of degenerate System (4.2), replacing a

root φ(t, x).

Assumption 4.4. Assume that the function (t, x) 7→ f(t, x, φ(t, x)) satisfies the Lipschitz

condition w.r.t. x in [0, T ] × Ū . Additionally, assume that the unique solution of reduced

System (4.4) on [0, T ] satisfies x̄(t) ∈ int(Ū) for all t ∈ (0, T ).

Assumption 4.5. Assume that y0 belongs to the basin of attraction of the solution y = φ(0, x0)

of equation g(0, x0, y) = 0. That is, the solution ŷ = ŷ(τ) of the simplified initial layer equation

dŷ

dτ
= g(0, x0, ŷ), (4.5)

with ŷ(0) = y0, satisfies ŷ(τ) ∈ V for all τ > 0, and

lim
τ→∞

ŷ(τ) = φ(0, x0).

Theorem 4.1 (Tikhonov’s Theorem). Under Assumptions 4.1-4.5, there exists ε0 > 0 such

that for any ε ∈ ]0, ε0] there exists a unique solution (x(t, ε), y(t, ε)) of the singularly perturbed

System (4.1) on [0, T ] satisfying

lim
ε→0

x(t, ε) = x̄(t), t ∈ [0, T ]

and
lim
ε→0

y(t, ε) = ȳ(t), t ∈ (0, T ],

where (x̄(t), ȳ(t)) is the solution of degenerate System (4.2).

Tikhonov’s theorem connects the solutions of the singularly perturbed system and the

degenerate system. Note that only the first convergence in Tikhonov’s theorem is uniform (w.r.t.

t ∈ [0, T ]). However, in the second limit the convergence is uniform on any interval [T0, T ] with

T0 > 0. This is the so-called initial layer effect and one can include the initial layer term to

obtain the uniform convergence on [0, T ].

Proposition 4.1. Let Assumptions 4.1-4.5 be satisfied. Then,

lim
ε→0

[y(t, ε)− ȳ(t)− ŷ(t/ε) + φ(0, x0)] = 0, t ∈ [0, T ],

where ȳ(t) is the solution of degenerate System (4.2), ŷ(t/ε) is the solutions of the simplified

initial layer problem given by equation (4.5), and φ is the root of Assumption 2.



We now add one extra assumption, namely

Assumption 4.6. Suppose that |δ1| < µ and |δ2| < µ where µ is a sufficiently small but fixed

number independent of ε. Assume that, for t ∈ [0, T ], f(t, x̄+δ1, ȳ+ŷ+δ2) and g(t, x̄+δ1, ȳ+ŷ+δ2)

are continuous together with their derivatives w.r.t. δ1 and δ2 up and including the second order.

Under this further assumption, one can prove the stronger result

Theorem 4.2. Let Assumptions 4.1-4.6 be satisfied and suppose that the partial derivative
∂g
∂y

(t, x, y)
∣∣∣
y=φ(t,x)

exists, is continuous and is negative for t ∈ [0, T ]. Then, we have the following

estimates

x(t, ε) = x̄(t) +O(ε),

and

y(t, ε) = ȳ(t) + ŷ (t/ε)− φ(0, x0) +O(ε),

uniformly on [0, T ].

For the proof of the above results we refer the reader to [TVS84,Was02,BPL13,VB90].

4.2 The Perturbed System

The difference in the time scales of the HIV-1 virions and the lymphocytes leads to a singularly

perturbed system. Indeed, the CD8+T cells and the healthy CD4+T cells have a half-life about

80 days, while the virions have a half-life of about 6 hours [H+99, SR88, Qui96, M+00]. This

leads to a ηi much bigger than γi and σi. Therefore, it is natural to consider the dynamics of

System (2.1) for ηi = ηi/ε, where ε is a small parameter and ηi has the same order of magnitude

of γi and σi. Applying the change of variables described above, System (2.1) takes the form

ẋ =1− x− x
∑
i∈N

vi

ẏi =γi (xvi − yi − yizi)

εv̇i =ηi
(
Ri

0yi − vi
)

żi =σi
(
I i0yizi − zi

)
(4.6)

subject to initial conditions x0, y
i
0, v

i
0 and zi0. Note that this system has the form of System (4.1).

Thus, we can use Tikhonov’s theorem to connect its solutions with the solutions of the reduced

system associated. In this case, the reduced system is

ẋ =1− x− x
∑
i∈N

Ri
0yi

ẏi =γi
(
xRi

0yi − yi − yizi
)

żi =σi
(
I i0yizi − zi

) (4.7)

with initial conditions x0, y
i
0 and zi0.



Note that this system has the form of a food chain System [HS98], where the uninfected

CD4+T cells act as the environmental resources, the infected CD4+T cells as prey and the

CD8+T cells as predators.

Reduced System Properties

Before applying Tikhonov’s theorem, we shall prove some properties of reduced System (4.7).

Note that the non-negative orthant of R2n+1 is invariant by the flow of the system. Moreover, if

the initial conditions are in the interior of R2n+1
>0 , then all solutions will remain in this open set

for all t > 0. We also have that the solutions are bounded, as stated in the proposition below.

The proof follows the ideas of Pastore [Pas05].

Proposition 4.2. Let ψ : [0,∞)→ R2n+1 be the solution of System (4.7) with ψ(t0) ∈ R2n+1
>0 .

Then, ψ ∈ L∞[t0,∞).

Proof. As the system is positively invariant, we have

ẋ(t) = 1− x(t)− x(t)
∑
i∈N

vi(t) 6 1− x(t).

This implies that d
dt

(etx(t)) 6 et. Then, integrating this inequality from t0 to t, we obtain

x(t) 6 1− et0−t + et0−tx(t0) 6 1 + x(t0),

which proves the limitation of x. With respect to yi, note that

ẏi(t) = γi
(
xRi

0yi − yi − yizi
)
6 γi

(
xRi

0 − 1
)
yi 6

(
γMxR

i
0 − γm

)
yi,

where γM = maxi∈N{γi} and γm = mini∈N{γi}. Denoting Y(t) =
∑

i∈N yi(t), we have

Ẏ(t) + γmY(t) 6γMx(t)
∑
i∈N

Ri
0yi(t) = γM(−ẋ+ 1− x(t)).

Thus, integrating from t0 to t, we have

Y(t) 6 Y(t0)e
γm(t0−t) + γMe

−γmt
∫ t
t0

(1− ẋ(s)− x(s)) eγmsds. (4.8)

Note that ∫ t

t0

x(s)eγm(s−t)ds 6
1 + x(t0)

γm
e−γmt0 ,

since x(t) 6 1 + x(t0). Using this, eγm(t0−t) 6 1, and x(t) > 0, we obtain from Equation (4.8)

that

Y(t) 6 Y(t0) +
γM
γm

+ γMx(t0) +
γM
γm

(γm − 1) (1 + x(t0)) e
−γmt0 .

Therefore, Y(t) is limited and, as yi(t) > 0 for all t > t0, it follows that yi(t) is limited.



Similarly, we can prove that

Z(t) 6 Z(t0) +
σM
σm

+ σMx(t0) +
σM
σm

(σm − 1) (1 + x(t0)) e
−σmt0 ,

where σM = maxi∈N{σi}, σm = mini∈N{σi} and Z(t) =
∑

i∈N zi(t). This and the positivity of

each zi(t) imply the result.

Using the same notation for the equilibrium points that was used in Chapter 2, we have the

following result

Theorem 4.3. If the basic reproductive ratios of each virus strain are distinct, then System (4.7)

admits 2n−1(2+n) equilibrium points WjJ that correspond to the points described in Theorem 2.1

omitting entries of vi.

The proof of this theorem follows the same idea of the analogous theorem presented in [SZ11].

Finally, we prove the global stability for System (4.7), using Lyapunov’s Theory.

Theorem 4.4. Assume that Ri
0 > Ri+1

0 for i = 1, ..., n− 1 and that the set of strong responders

is consistent. Then, System (4.7), defined on R2n+1
>0 , with initial condition in its interior, has a

globally asymptotically stable equilibrium given as follows

1. W0∅ if R1
0 6 1;

2. W1∅ if R1
0 > 1 and R1

0 6 R1
I ;

3. If R1
0 > R1

I , let J be the antigenic maximal set.

a. W0J if J is a purely antigenic set;

b. WjJ otherwise, where j is the smallest integer outside J .

Proof. The existence of the j mentioned in the case (3.a) is proved in [SZ11]. For each

asymptotically stable equilibrium point W ∗ = (x∗, y∗1, ..., z
∗
n) consider the following function

V = x− x∗ ln
x

x∗
+
∑
i∈N

[
1

γi

(
yi − y∗i ln

yi
y∗i

)
+

1

σiI i0

(
zi − z∗i ln

zi
z∗i

)]
,

where the term with logarithm should be omitted if the corresponding coordinate is zero. Then,

V̇ = 1− x− x∗

x
+ x∗ +

∑
i∈N

[
x∗yiR

i
0 − yi −Ri

0y
∗
i x+ y∗i + ziy

∗
i − z∗i yi +

z∗i
I i0
− zi
I i0

]
.

For each case, we will replace the respective equilibrium point in the equation above and we

will prove that V̇ 6 0, i.e. V is a Lyapunov’s function. In addition, we have that, for each case,

the set for which the equality V̇ = 0 is satisfied contains only one positively invariant subset

and this subset is exactly the respective equilibrium point. This proves the theorem.



Case (1)

Since Ri
0 6 R1

0 6 1, we have

V̇ =1− x− 1

x
+ 1 +

∑
i∈N

[
yiR

i
0 − yi −

zi
I i0

]
= −(1− x)2

x
+
∑
i∈N

[
yi(R

i
0 − 1)− zi

I i0

]
6 0.

Case (2)

Since R1
0 6 R1

I , we have

V̇ =1− x− 1

R1
0x

+
1

R1
0

−R1
0x+ x+ 1− 1

R1
0

+ z1

(
1− 1

R1
0

)
− z1
I10
−

n∑
i=2

zi
I i0

=− 1

R1
0x

(R1
0x− 1)2 + z1

(
1− R1

I

R1
0

)
−

n∑
i=2

zi
I i0

6 0.

Case (3.a)

Using that 1 +
∑

i∈J
Ri

0

Ii0
= RJI and that J is a purely antigenic set, we have

V̇ =1− x− 1

RJI x
+

1

RJI
+
∑
i∈J

[
−R

i
0

I i0
x+

Ri
0

RJI

1

I i0

]
+
∑
i/∈J

[(
Ri

0

RJI
− 1

)
yi −

zi
I i0

]
=− 1

RJI x

(
RJI x− 1

)2
+
∑
i/∈J

[(
Ri

0

RJI
− 1

)
yi −

zi
I i0

]
6 0.

Case (3.b)

Using that
∑

i∈J
Ri

0

Ii0
= RJI − 1, we have

V̇ =1− x− 1

xRj
0

+
1

Rj
0

+
∑
i∈J

[
−R

i
0

I i0
x+

Ri
0

Rj
0I
i
0

]
+

∑
i/∈J∪{j}

[(
Ri

0

Rj
0

− 1

)
yi −

zi
I i0

]

+

[
−Rj

0x

(
1− RJI

Rj
0

)
+

(
1− RJI

Rj
0

)
+ zj

(
1− RJI

Rj
0

)
− zj

Ij0

]
+

∑
i/∈J∪{j}

[(
Ri

0

Rj
0

− 1

)
yi −

zi
I i0

]

=− 1

Rj
0x

(
Rj

0x− 1
)2

+
zj

Rj
0

(
Rj

0 −RJI −
1

Ij0

)
+

∑
i/∈J∪{j}

[(
Ri

0

Rj
0

− 1

)
yi −

zi
I i0

]

6
zj

Rj
0

(
Rj

0 −RJI −
Rj

0

Ij0

)
+

∑
i/∈J∪{j}

[(
Ri

0

Rj
0

− 1

)
yi

]
.

Note that, if j belongs to the set of strong responders then Rj
0 − RJI −

Rj
0

Ij0
6 0 (since J is

maximal). Otherwise we have Ri
0 − 1 6 Rj

0

Ij0
, and then Rj

0 − RJI −
Rj

0

Ij0
6 −(RJI − 1) 6 0.

Furthermore, ∑
i/∈J∪{j}

[(
Ri

0

Rj
0

− 1

)
yi

]
6 0,

since for every i /∈ J ∪ {j} we have i > j and then, Ri
0 < Rj

0. Therefore, we have V̇ 6 0.



4.3 The Asymptotic Expansion of the Model

We shall now apply Tikhonov’s theorem in order to show that as ε → 0 the solution of

System (4.6) approaches the solution of the degenerate system. We know that solutions of

this system are bounded (see [Pas05]) and only the bounds on vi depend on ε. However, for

fixed ε0 > 0, we have that for all ε 6 ε0 the concentrations of vi are bounded by constants

independently of ε. Since the solution of the degenerate system is also bounded (independently

of ε), we can choose a compact set in Ū ⊂ R2n+1 and a bounded open set V ⊂ Rn such that the

solutions of both systems belong to Ū × V for all t > 0. Moreover, for initial conditions in the

interior of R3n+1
>0 , we can choose Ū such that the solutions (x, y, z) will remain in the interior of

this compact set for all t > 0.

Theorem 4.5. Let Ū and V be the sets described above. Then, there exists ε0 > 0 such that for

any ε ∈ (0, ε0] we have a unique solution (x(t, ε), y(t, ε), v(t, ε), z(t, ε)) of Problem (4.1) with

initial conditions in the interior of the corresponding sets. Moreover,

lim
ε→0

[x(t, ε)− x̄(t)] = 0

lim
ε→0

[yi(t, ε)− ȳi(t)] = 0

lim
ε→0

[
vi(t, ε)−Ri

0ȳi(t)−
(
vi0 −Ri

0y
i
0

)
e−t/ε

]
= 0

lim
ε→0

[zi(t, ε)− z̄i(t)] = 0

where (x̄, ȳ, z̄) is the solution of reduced System (4.7).

Proof. The result follows from Tikhonov’s Theorem 4.1 and Proposition 4.1 since the Assump-

tions 1− 5 are valid, as we show below.

We write System (4.6) as

ẋ =f1(t, x, y, z, v)

ẏ =f2(t, x, y, z, v)

ż =f3(t, x, y, z, v)

εv̇ =g(t, x, y, z, v)

where f and g are the appropriate entries of the right hand side of System (4.6).

Assumption 2: Let a φ : [0, T ] × Ū 7→ Rn be defined by φi(t, x, y, z) = Ri
0yi(t). Then, φ is an

isolated root of g since given δ > 0 we have, for any (t, x, y, z) ∈ [0, T ]× Ū

0 < ||v − φ|| < δ ⇔0 < |vi −Ri
0yi| < δ ∀i ∈ N

⇔gi(t, x, y, z, φ) 6= 0 ∀i ∈ N .



Assumption 3: The boundary layer equation is given by

dṽ

dτ
= g(t, x, y, z, ṽ)

where t, x, y, and z are treated as parameters. Then,

ṽi(τ, t, x, y, z) = Ri
0yi(t) + cie

−ηiτ ,

with ci constants. Given ν > 0, choose δ = ν. Thus, if

|ṽi(0, t, x, y, z)− φi(t, x, y, z)| < δ,

then |ci| < δ and

|ṽi(τ, t, x, y, z)− φi(t, x, y, z)| = |cie−ηiτ | 6 δe−ηiτ 6 δ = ν,

for all i ∈ N and (t, x, y, z) ∈ [0, T ]× Ū .

Furthermore,

lim
τ→∞

ṽi(τ, t, x, y, z) = Ri
0yi(t) = φi(t, x, y, z).

Assumption 4: As Ū is bounded, the Lipschitz condition of f follows and the choice of Ū yields

the second part of the assumption.

Assumption 5: Note that the solution v̂ of the simplified initial layer equation is

v̂i(τ) = Ri
0y
i
0 + (vi0 −Ri

0y
i
0)e
−ηiτ .

Thus, v̂i(τ) ∈ V , due to the choice of V , and

lim
τ→∞

v̂i(τ) = Ri
0y
i
0 = φi(0, x0, y0, z0).

Therefore, v0 belongs to the basin of attraction of the solution v = φ(0, x0, y0, z0) of equation

g(0, x0, y0, z0, v) = 0.

Applying Tikhonov’s Theorem, we have the limits for x, y and z. As for the limit of v, just

replace

v̄i = Ri
0ȳi(t)

v̂i = Ri
0yi(t) +

(
vi0 −Ri

0yi(t)
)
e−tηi/ε

φi(0, x0, y0, z0) = Ri
0y
i
0

in the limit of Proposition 4.1.



Theorem 4.6. Let (x(t, ε), yi(t, ε), vi(t, ε), zi(t, ε)) be the solution of Problem (4.1) with initial

condition in the interior of Ū × V and (x̄, ȳi, z̄i) be the solution of reduced System (4.7). Then,

we have the following estimates

x(t, ε) =x̄(t) +O(ε)

yi(t, ε) =ȳi(t) +O(ε)

vi(t, ε) =Ri
0ȳi(t) +

(
vi0 −Ri

0y
i
0

)
e−tηi/ε +O(ε)

zi(t, ε) =z̄i(t) +O(ε)

uniformly on [0, T ].

Proof. Take f and g as in the proof of the previous theorem. Since yi0 > 0, we have that

∂gi
∂v

(t, x, y, z, v)

∣∣∣∣
v=φ(t,x,y,z)

= −Ri
0yi(t) < 0 .

Furthermore, it is continuous for all t ∈ [0, T ]. Also, since x̄, ȳ, z̄ and v̂ are continuous, it is easy

to see that Assumption 6 is valid. Applying Theorem 4.2 we obtain the above estimates.

4.4 Numerical Examples

In this section we present some numerical illustrations of the results presented in this chapter.

Note that all parameters involved are non-dimensional. It is worth pointing out that the

numerical solutions of the original problem have been computed with relative tolerance of 10−10

to avoid any numerical instabilities. For simplicity, we consider first the case of one strain

(n = 1) without treatment.

Figure 4.1 shows the attractiveness of the quasi-steady state for viral load, i.e. it compares

the solution of the quasi-steady state v̄(t) = R0ȳ(t) with the approximation of v(t, ε), given

by Theorem 4.6, for different values of ε. Here ȳ is the solution of reduced System (4.7). This

illustrates that the initial layer term, given by (v0 −R0y0) e
−t/ε, tends to vanish for ε small

enough, except for the very small times due to the difference in initial conditions.

Figure 4.2 illustrates the expressions of Theorems 4.5 and 4.6 for the susceptible cells (x),

infected cells (y), viral load (v) and defense cells (z), respectively. According to our results, when

we decrease ε, the right hand side of the expressions approximate the solutions of Problem (4.6).

Similarly to the previous ones, Figure 4.3 illustrates the expressions of Theorems 4.5 and 4.6

when considering three strains. Note that the parameters were chosen to represent case (3.b) of

Theorem 2.2, where the set of strong responders is S = {1, 2} and the antigenic maximal set is

J = {1} and it is not purely antigenic. Then, the asymptotically stable equilibrium point is

W2{1}, i.e. the virion whose index is 2 (red) remains in the organism without being fought by

the immune system, the virion of index 1 (yellow) also remains in the body but being fought by

the immune system, while the other virion (green) vanish.



Figure 4.1: Attractiveness of the quasi-steady state for viral load. The continuous line is
v̄(t) = R0ȳ(t), where ȳ is the solution of the reduced system, and the dotted lines is the approximation
of v(t, ε), i.e. R0ȳ(t) + (v0 −R0y0) e

−t/ε for different values of ε. The parameters used are γ = 62,
σ = 5, x0 = 1, y0 = 10−3, v0 = 10−1, z0 = 10−6, R0 = 3, I0 = 2 and ε = 1, 0.3 and 0.1.
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Figure 4.2: Convergence of the asymptotic solution. We illustrate the convergence of the
asymptotic solution given by Theorems 4.5 and 4.6. The continuous line represents the solution of
System (4.6) while the dotted lines are the respective approximations of x(t, ε), y(t, ε), v(t, ε), and
z(t, ε) given by the results of Section 4.3. The parameters used are γ = 62, σ = 5, x0 = 1, y0 = 10−3,
v0 = 10−1, z0 = 10−6, R0 = 3, I0 = 2, η̄ = 1 and ε = 0.1, 0.01 and 0.001.
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Figure 4.3: Convergence of the asymptotic solution for multiple strains. We illustrate the
convergence given by Theorems 4.5 and 4.6 considering three virus strains. The continuous line
represents the solution of System (4.6) while the dotted lines are the approximations of the solutions
x(t, ε), y(t, ε), v(t, ε) and z(t, ε) given by the results of Section 4.3. The parameters used are γi = 62,
σi = 5, x(0) = 1, yi(0) = 10−3, vi(0) = 10−1, zi(0) = 10−6, Ii0 = 2, η̄i = 1 for i = 1, 2 and 3, ε = 0.001,
R1

0 = 5, R2
0 = 4 and R3

0 = 0.9. The indices 1, 2 and 3 are represented by the colors yellow, red and
green, respectively.



4.5 Computational Performance

In this section we present a brief analysis of the performance of the systems involved in our

results. We compare the numerical solution of System (4.6) with the approximate solution

of this system provided by our result. For simplicity, in this section we call these systems,

respectively, by FS (full system) and RS (once uses the reduced system). For the analysis, we

disregard the treatment with inhibitors, since that may be interpreted as a change of variables.

We compare the solutions of the FS and the RS w.r.t. runtime and number of one step of

the ordinary differential equation solver. We shall refer to that as one function evaluation.

To analyze each of these aspects we consider different numbers of strains (n), and for each

fixed number of strains, we perform 1000 tests with parameters taken randomly according to

Table 4.1. The dimensionless time interval considered is [0, 15].

Parameter Interval
x(0) 1± 20%
yi(0) 6× 10−9 ± 20%
vi(0) 6× 10−9 ± 20%
zi(0) 4× 10−6 ± 20%
γi 29± 20%
ηi 350± 20%
σi 1± 20%
I i0 7± 50%
Ri

0 8± 50%

Table 4.1: Parameters values. Description of parameters used in the analysis of performance.

Figure 4.4 shows the quartiles of the quotient between the performance of the FS and the RS

with regard to runtime and number of evaluations. Note that in all cases, the RS led to a better

performance than the FS. In the case of 250 strains, the RS showed a run time approximately

18 times smaller and required about 15 times fewer function evaluations. Although the running

time of one system evaluation is relatively small (we obtained 1.89s for the FS and 0.01073s for

the RS, both with 250 strains), recall that many methods of parameter estimation require the

use of numerical evaluations a large number of times.

Analogously, we studied the performance by varying the size of the time interval (and setting

the number of strains to 10). Again, the performance of the RS was much better than that of

the FS, as shown in Figure 4.5.



(a) Runtime (b) Function Evaluations

Figure 4.4: Performance analysis w.r.t. number of strains. Box plot of the quotient between
the performance of the FS and the RS considering different numbers of strains. For each strain, the
system is evaluated 1000 times with parameters taken randomly according to Table 4.1. (a) shows the
performance w.r.t. runtime while (b) w.r.t. the number of times that the ODE function was evaluated.

(a) Runtime (b) Function Evaluations

Figure 4.5: Performance analysis w.r.t. different time intervals. Box plot of the quotient
between the performance of the FS and the RS considering different time intervals. For each time
interval, the system is evaluated 1000 times with parameters taken randomly according to Table 4.1
and 10 strains. (a) shows the performance w.r.t. runtime, while (b) w.r.t. the number of times that
the ODE function was evaluated.



4.6 Conclusion

The existence of an asymptotic reduced dynamics for the model as proved in Section 4.3 allows a

number of applications. One of them is the possibility of solving a simpler system for numerical

simulations and predictions. Indeed, the full system leads to very stiff differential equations

for realistic biological parameters because some components of the solution decay much more

rapidly than others. By working with the reduced system we are avoiding this potential problem.

Another application is the possibility of using it to calibrate the model in a more robust form.

As mentioned in Subsection 4.5, we have that the time spent for the numerical solution of the

system using our results are at least 5 times less than those spent to solve the original system.

In some cases (higher number of strains) it came to be 17 times lower. The numerical solution of

the system using the approach of our results still showed a better performance by analyzing the

required number of function evaluations and the number of successful steps. This is very useful

especially when it is necessary to solve the system many times, which is common in methods of

parameter estimation. Yet another application is the possibility of inferring R0 from the behavior

and stability of the reduced dynamics in a simpler form. In fact, when we look at our results

considering the original parameters without strains or treatment we obtain that V (t) ∼ k
u
Y (t).

Since the mean lifetime of free virus 1/u is a known parameter [SR88, Qui96, M+00, SH03],

this allows us to estimate k based on the values of infected cells Y and viral load V . Despite

the clinical tests for HIV-1 used in large-scale provide the total CD4+T count (infected and

uninfected), a clinical test capable of estimating the infected CD4+T cell count is already used

in some research centers [S+95].

It is also worth noting that the reduced system has the form of a food chain system [HS98],

where the uninfected CD4+T cells act as the environmental resources, the infected CD4+T cells

as prey and the CD8+T cells as predators. Thus, a promising direction for future work is to

study known results of food chain systems that can be applied to the reduced system, and verify

the possibility of extending them to the original system.

Observe that, in the simplified case of only one strain, the system of ordinary differential

equations discussed is similar (but not the same) to the model discussed in [Sou11]. System (4.6)

has one more equation (z - equation) and the second equation has one more nonlinear term,

correlating the infected cells (y) and the immune system (z). Furthermore, even in the case

z(t) ≡ 0, the two systems do not match. Indeed, the equations involving the multiscale term

do not have the same format. Thus, the results of the present chapter are related to those

of [Sou11] but do not come as a consequence thereof.

One natural follow up of the present work would be to consider more general systems than

those described by System (4.1) and analyze then at the light of [Szm91,Fen79]. We are currently

pursuing such avenue.



CHAPTER 5

Parameter Estimation of HIV-1 Models

Knowledge of the values of the model parameters is of great relevance in the study of the in

vivo HIV-1 infection. As we saw in Chapter 2, the long term dynamics of System (1.3) can

be entirely described in terms of such parameters. From a biological view point, they exert

significant influence on the infection chronicity. This is turn is related to the challenge that the

immune response and the antiretroviral therapy has to overcome to defeat HIV-1.

In order to estimate the parameters involved in the dynamics of the HIV-1 infection several

studies have been performed [PH+95,PH+96,PH+00,PH+07,DBRP10,RP+10,BMSN97,Xia03,

WZMP08,Llo01, Imm13]. However, some important parameters are not well-established, such

as the HIV-1 basic reproductive ratio in the presence of the immune response and the HIV-1

infection rate.

In this chapter, we introduce a novel method to estimate these parameters by comparing

clinical data in the chronic stage with predicted equilibrium points of System (1.1). The latter

is considered to appropriately describe the dynamics of HIV-1 in the acute infection phase. The

approach relies heavily on the asymptotic results of Chapter 2, and without such results the

problem is much harder. To show the efficiency of our approach, we analyzed the errors obtained

from synthetic data generated by the mathematical model and added multiplicative noise. In

applying this method to actual data, we estimate the basic reproductive ratio in the presence of

the immune response and the infection rate of 31 patients. Furthermore, we estimate a lower

bound of the basic reproductive ratio in the absence of the immune response of these patients.

In Section 5.1, we present estimation methods, explaining the motivation and details involved.

We also discuss the applicability of the method with respect to the prior knowledge of the other

parameters involved. In Section 5.2, we complement this with an analyses of the method’s

robustness. For that, we evaluated the accuracy and precision of the relative error committed

considering synthetic data. We also present an algebraic expression for the relative error of the

methods. Finally, in Section 5.3, we performed the parameter estimates using clinical data.
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5.1 Parameter Estimation Methods

A central point in the parameter estimation from clinical data is to check the feasibility of

obtaining such data. Even more, when the parameters to be estimated are patient dependent,

which is the case, for example, of the so called set point [SdMB+13]. Concerning the HIV-1

infection data acquisition during the acute stage, there are two major problems. The first one

is that not all HIV-1 laboratory tests are able to detect early infection. Moreover, patients

rarely undergo HIV-1 laboratory tests in the first weeks of the infection because they do not

suspect that they carry the virus [F+03]. On the other hand, individuals with chronic infection

constitute the majority (more than 95%) of all the diagnosed cases [SdMB+13]. For this reason,

we chose to consider clinical data from the chronic stage to formulate the parameter estimation

methods.

With respect to the clinical data in the chronic stage, several studies have demonstrated that

the concentrations of CD4+T cells and the viral load balance remain relatively constant [SH03,

SdMB+13,GC04]. Sometimes, even CD8+T cells are considered approximately constant [GC04].

Then, we can use the clinical data of the patient obtained during the chronic stage to get an

approximation of these equilibrium concentrations for the patient.

On the other hand, System (1.1) is considered to appropriately describe the HIV-1 infection

in the acute phase, since the viral genetic variability occurs mainly in the chronic phase and, in

the beginning of the infection, the patient usually is not under treatment. Since, under certain

assumptions, this model has only one equilibrium point which is globally asymptotically stable

(Theorem 2.2), it is reasonable to assume that the equilibrium point of this system corresponds to

the chronic stage. As the description of the equilibrium point depends on the system parameters

(see Theorem 2.1), by comparing it with clinical data allow us to find expressions to estimate

some parameters. This is the main idea of the method that we are proposing.

The parameters of interest are the HIV-1 basic reproductive ratio in the presence of the

immune response, RI , the infection rate, β, and the HIV-1 basic reproductive ratio in the

absence of the immune response, R0.

The basic reproductive ratio is a crucial quantity to determine the behavior of the HIV-1

dynamics [NB96,NM00,Kor04,Pas05,SZ11]. This quantity is interpreted as the number of newly

infected cells that arise from one infected cell when almost all cells are uninfected. The infection

rate describes the efficacy that virions infect uninfected cells, including the rate at which viral

particles find uninfected cells, the rate of virus entry, and the probability of successful infection.

These parameters are of great relevance in the study of the HIV-1 dynamics, influencing

not only the behavior of the viral load, but also the concentrations of the cells involved in the

dynamics. They will impact the HIV-1 set point, which is a relatively stable level of the viral

load [SdMB+13,RP+10]. The set point is a strong predictor for the HIV-1 chronicity [SdMB+13,

SH03], being related to the challenge that the immune response and the ART has to overcome to

defeat HIV-1. Therefore, finding a way to determine these parameters for each patient is relevant

not only in the determination of the acute infection course, but also in the understanding of



other infection stages. Furthermore, these parameters may help even in the choice of the ART

appropriate to prevent AIDS.

Known Parameters

Some parameters and initial conditions involved in the HIV-1 dynamics are required to perform

the estimates proposed along this chapter. Among them are the parameters d and u, and the

initial condition X0, whose values are already known. Indeed, it is reasonable to assume that,

at the time preceding the infection, the CD4+T cells concentration is the normal concentration

of CD4+T cells for healthy individuals. As this concentration is about one thousand cells per

cubic millimeter [B+92,NM00,LF85,M+90], we have that X0 = 103 cells/mm3. Note that the

normal concentration of CD4+T cells for healthy individuals corresponds to the equilibrium

point of the CD4+T cells dynamics without infection. According to System (1.1), the CD4+T

cells dynamics without infection is given by

Ẋ = λ− dX,

whose only equilibrium point is λ/d. Thus, the initial CD4+T cell concentration is heavily

related to the parameters λ and d, i.e. X0 = λ/d.

As described in Chapter1, 1/d is the mean lifetime of uninfected CD4+T cells. Since the

half-life of susceptible cells is approximately 87 days [H+99], we have that d = ln(2)/87 days-1.

The mean lifetime of free virus is also known, about 6 hours [SR88,Qui96,M+00,SH03,PH+97],

whence u = ln(2)/0.25 days-1.

Regarding to estimating R0, also is necessary the prior knowledge of k/a. This quotient

describes the total number of virions produced from any one infected cell [NM00], so-called burst

size (Bs). Although many authors have performed estimates for Bs, its value is still controversial.

Some authors estimate Bs between 103 and 4×103 viral particles [DP04, HN+99, RWSH07],.

This is much lower than that estimated by Chen et al., which is more than 104 viral particles.

However all the aforementioned authors agree that the Bs is larger than 103viral particles. This

minimum value for the burst size will be denoted by Bmin
s .

Table 5.1 summarizes the values of the above parameters.

Parameter Value

X0 103 cells/mm3

d ln(2)/87 days-1

u ln(2)/0.25 days-1

Bmin
s 103 viral particles

Table 5.1: Known Parameters. Summary of parameter values that are required to perform the
estimates proposed along this chapter.



Description of the Method

Let X̂eq, V̂eq, and Ẑeq be the approximations of the CD4+T cell count, the viral load, and the

CD8+T cell count in the chronic stage, respectively. These approximations can be obtained by

the median of the clinical tests performed in the chronic phase.

On the other hand, let Xeq, Yeq, Veq, and Zeq be the components of the endemic equilibrium

point of System (1.1) that has an active immune response, i.e.

(Xeq, Yeq, Veq, Zeq) =

(
X0

RI

,
du

βk
(RI − 1),

d

β
(RI − 1),

a

p

(
R0

RI

− 1

))
. (5.1)

Note that these expressions can be obtained from Theorems 2.1 and 2.2 in the case that

R0 > RI . Indeed, as Equation (1.1) considers only one strain, the antigenic maximal set will be

J = {1}. Such set is trivially purely antigenic. Thus, the globally asymptotic stable equilibrium

is the point W0{1} given by Equation (5.1), where we use that X0 = λ/d.

Therefore, comparing the clinical data in the chronic stage with the equilibrium point means

comparing X̂eq with Xeq, V̂eq with Veq, and Ẑeq with Zeq. These allow us to obtain expressions

to the estimate RI , β, and R0, as will be explicit below.

RI Estimation

From the CD4+T cell component of Equation (5.1), we have

R̂I =
X0

X̂eq

. (5.2)

Note that this RI estimate only requires the prior knowledge of the parameter X0, which is

known.

β Estimation

From the CD4+T cell and viral load components of Equation (5.1), we have

β̂ =
d

V̂eq

(
X0

X̂eq

− 1

)
. (5.3)

If we consider the infection rate β as a parameter which is independent of the host, i.e. it is the

same for all individuals, we can propose an alternative method for the β estimate

β̂ = arg min
β>0

 n∑
i=1

(
β − d

V̂ i
eq

(
X0

dX̂ i
eq

− 1

))2
 (5.4)

where n is the number of patients and the index i corresponds to the i-th patient.



A priori, the second way to estimate β is more appropriate, since it minimizes the errors

from noise measurements. However, this method is strongly based on the assumption that the

rate of the infection must be approximately the same for all individuals, which is not necessarily

true. In fact, comparing the results obtained by the two methods from the clinical data, we

have a strong indication that this assumption is not valid. As detailed in Section 5.3, the size

of the interquartile range obtained by estimating β by Equation (5.3) is 3.52 × 10−5, while

the median estimate is 1.96 × 10−5. The large interquartile range is an indication that the

infection rate is patient dependent. Furthermore, the value obtained for the estimate using

Equation (5.4) (4.56× 10−5) was greater than the 3rd quartile obtained by using Equation (5.3)

(4.19 × 10−5), which is also an indication that this assumption is not valid. Therefore, we

consider more appropriate to estimate β individually by Equation (5.3). As the RI estimation,

the β estimation only requires prior knowledge of parameters already known, X0 and d.

R0 Estimation

From the CD8+T cell component of Equation (5.1) and the estimate for the basic reproductive

ratio in the presence of the immune response, R̂I , we can estimate R0 by

R̂0 =

(
pẐeq
a

+ 1

)
R̂I . (5.5)

An alternative way can be obtained using the estimate for the infection rate β̂

R̂0 =
β̂X0

u
Bs. (5.6)

It is noteworthy that some authors already have proposed ways to estimate R0. Lloyd et

al. [Llo01] proposes to estimating R0 with the same main idea of our work, i.e. they compare

clinical data with equilibrium points of a mathematical model. In fact, they propose comparing

the number of CD4+T cells at the endemic equilibrium with clinical data of post-acute infection.

As they consider the basic dynamics model, a model that does not include the influence of

CD8+T cells, CD4+T cells component of the endemic equilibrium depends only on R0 and X0,

enabling the estimation. The use of a model that ignores the immune response is based on

the fact that the immune system is slow to respond against the initial infection. However, the

effective response of immune system occurs during the acute infection [SdMB+13], significantly

affecting the dynamics post acute-infection. As the equilibrium points are different for the

models with and without immune response, this simplification can lead to significant errors.

Indeed, in the presence of a strong immune response the concentration of CD4+T cells provided

by the basic dynamics is λ/(dR0), instead of λ/(dRI). Thus, the relative error for this R0

estimation (ignoring noise measurements) will be (R0 − RI)/R0 and, if RI � R0, the error

will be quite large. However, if we use the dynamics described by Equation (1.1), this idea is

perfectly applicable to estimate RI , as we proposed above.



Another method for estimating R0 is the one proposed by Ribeiro et al. [RP+10], which is

an improvement of the proposal made by Nowak and May [NM00]. The main idea is to assume

that, in the early infection, the viral load has an exponential growth rate, i.e. is V (t) = V0e
r0t,

where r should be estimated from viral load of clinical data. Further assuming that, in the early

infection, X = X0 and using a model without the immune response, they obtain that

R0 ≈
(

1 +
r

a

)(
1 +

r

u

)
.

As they use only data of early infection and, in this period, the immune response is not

significant, the use of a model which does not include CD8+T cells is not a limitation. However,

a significant problem to apply this method is that, to perform the r0 estimation, clinical data

is required for the period for which the viral load grows exponentially (the period in which

X is approximately constant). But the peak viremia occurs approximately 3 to 4 weeks after

the viral infection [SdMB+13] and most patients do not seek medical attention during the first

weeks after infection [F+03]. As mentioned before, the majority (more than 95%) of diagnosed

cases [SdMB+13] occurs in the chronic infection. Thus, this method is not applicable to the

majority of individuals with HIV-1.

Note that the R0 estimation methods that we propose not suffer from these limitations, since

Model (1.1) covers the influence of CD8+T cells and the clinical data that we use refer to the

chronic infection period.

However the estimation of R0 by Equation (5.5) requires the prior knowledge of the parameter

p, for which we not found the estimate. Another aspect of this estimate that must be analyzed,

is the veracity of the assumption that CD8+T cells are in balance in the acute phase.

Meanwhile, the estimate by Equation (5.6) requires the prior knowledge of X0, u and the

burst size Bs. As previously mentioned, the values of X0 and u are not an issue.

The major problem concerns the lack of consensus on estimates of the burst size, as detailed

previously. Thus, while we do not get a more refined estimate for the burst size, this form of

estimating R0, although efficiency (as shown forward), cannot be applied to real data. However,

the minimal value of the burst size, Bmin
s , is well established. This allows us to estimate a lower

bound for R0

R̂min
0 =

β̂X0

u
Bmin
s . (5.7)



5.2 Robustness of the Method

In order to evaluate the robustness of the proposed parameter estimation method, it is necessary

to evaluate the impact caused by the errors of the equilibrium point estimation and the noise

in the measurements. As these parameters and the equilibrium points are in ratio scale, i.e. a

scale which has a true meaningful zero, we can evaluate these influences using the relative error

δA =
Â

A
− 1,

where A is the true value and Â the estimated value.

Synthetic data

To calculate the relative errors, we consider synthetic data based on the numerical solution of

System (1.1) and added to noise. In fact, in order to generate the numerical solutions faster

and avoid numeric instability due to difference in scale of the parameters involved, we use the

approximation of System (1.1) provided by the multiscale analysis made in Chapter 4.

For each simulation, the parameters RI , β, and R0 were chosen randomly in the intervals [1.1,

10], [10-6, 10-3] and ]max(8, RI), 20], respectively. The choice of such intervals was performed

taking into account the hypotheses of Theorem 2.2 to ensure that the equilibrium point given

by Equation (5.1) is stable (RI < R0 and R0 > 1). The other parameters were a = ln(2)/3,

d = ln(2)/87, b = ln(2)/77, u = ln(2)/(6/24), X0 = 103, Y0 = 10−12, V0 = 10−6, Z0 = 10−6,

p = 1. The parameters k and c were obtained against the parameters already determined.

In each simulation, fifteen time instants were chosen for which the numerical solutions were

calculated. These times represent the date of clinical test of the simulated patient. The choice

of such times was performed as follows

1st time: was taken randomly between 6 and 12 months after the beginning of the infection,

2nd to 15th time: were taken randomly from a normal distribution with mean in 6 month

after the last time and standard deviation of 20 days.

These times were generated in this way taking into account that the periodicity of the viral

load and the CD4+T cell count tests recommended for patients in the chronic stage is 6

months [dep13], and that the chronic stage goes from about 6 months to 8 years after the

infection [MK06,GC04].

After generating the numerical solutions, we added a multiplicative noise, in order to simulate

the measurement error. Specifically, we multiply each component of the numerical solutions

obtained by eαN where N is a standard normal distribution and α the noise parameter. The

analyses were performed considering the following values for α: 0, 0.05, 0.1, 0.15, 0.2, 0.25 and

0.3.



Estimate of the Equilibrium Values

Firstly, we analyze the relative error committed by estimating the components of the equilibrium

point. Figure 5.1 suggests that the accuracy of the Xeq estimate is quite satisfactory. Note that

the median of its relative errors (δX) did not exceed 0.1 even for α = 0.3. With respect to the

δV and δZ estimates, the median of its relative errors are slightly higher than the median of the

δX . But still, they seem sufficiently satisfactory, since they do not exceed 0.3.

The estimates of Xeq and Veq also showed a good precision, since their interquartile ranges

are small (Figure 5.2(a) and (b)). However, the precision of Z estimate is not so good, as we

can see by its interquartile ranges (Figure 5.2(c)).
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Figure 5.1: Median of |δX |, |δV |, and |δZ |. The relative errors were obtained based on 10000
simulations for each α considered.

Estimate of the RI

The robustness of the estimate of RI is as good as that of Xeq. This can be observed in

Figures 5.2(a) and 5.3.

This relationship becomes clear by looking at the relative error of the RI estimates written

as a function of the relative error of the Xeq estimation

δRI
= −

(
1 +

1

δX

)−1
.

As the robustness of the Xeq estimation is quite satisfactory so will be the robustness of the RI .



(a) Relative error of Xeq (b) Relative error of Veq

(c) Relative error of Zeq

Figure 5.2: Box plot of |δX |, |δV |, and |δZ |. The relative errors were obtained based on 10000
simulations for each α considered.

The β Estimation

The relative error obtained in the β estimation by Equation (5.3) is

δβ = (1 + δV )−1(1 + δX)−1
RI − (1 + δX)−1

RI − 1
− 1.

Note that, the only problem will be in the case where RI is very close to 1. Then, even for

δX and δV very small, δβ may be very large. However, the results obtained from the synthetic

data, with RI > 1.1, were quite satisfactory, as shown in Figure 5.4.

The R0 Estimation

The relative error of the estimate given by Equation (5.5) is

δR0 = δZ(1 + δRI
)

(
1− RI

R0

)
+ δRI

.

As RI < R0 , R0 > 0, and RI > 0, we have that 1 − RI/R0 ∈ (0, 1). Thus, the relative error

of such R0 estimate depends on the relative errors of the estimates of Zeq and RI . As we saw



Figure 5.3: Box plot of |δRI
|. The relative errors were obtained based on 10000 simulations

for each α considered.

Figure 5.4: Box plot of |δβ|. The relative errors were obtained based on 10000 simulations for
each α considered.

earlier, the estimate of Zeq does not have a good precision (Fig.5.2(c)), impacting negatively in

the robustness of this R0 estimation.

Concerning the estimate provided by Equation (5.6), we obtain the following expression for

its relative error

δR0 =
β̂X0Bs/u

βX0Bs/u
− 1 =

β̂

β
− 1 = δβ.

So, the R0 estimate will be as good as the β one and, as we saw earlier, it is quite satisfactory.



5.3 Parameter Estimation with Clinical Data

We obtained HIV-1 viral load and the CD4+T Lymphocyte count data from 31 individuals

HIV-1 positive. The data comes from SISCEL1 and correspond to patients in the chronic phase

of the HIV-1 infection without antiretroviral therapy. For each patients are available at least

five viral load tests and five CD4+T tests, corresponding to the chronic stage.

For all patients, we calculated RI given by Equation (5.2) and the median found was 1.95.

The first and the third quartiles found were 1.72 and 2.27, respectively. The values obtained for

each patient, in ascending order, can be seen in Figure 5.5.
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Figure 5.5: Estimate of RI for clinical data. Estimated basic reproductive ratio in the presence of
the immune response for each patient, given by Equation (5.2). The patients are organized in ascending
order of R̂I .

With respect to the infection rate parameter estimated by Equation (5.3), we obtained a

median of 1.96×10−5mm3virions-1 day-1. The first and the third quartiles found were 0.67×10−5

and 4.19× 10−5mm3virions-1 day-1, respectively. Figure 5.6 shows the estimated beta for each

patient.

As mentioned earlier, the estimate by Equation (5.4) does not seem appropriate. Applying

this method for the clinical data, we obtained a β of 4.56 × 10−5mm3virions-1 day-1. Note

that this value is greater than the third quartile (Q3) of the β estimate by Equation (5.3), i.e.

4.19 × 10−5mm3virions-1 day-1. This is a strong indication that the infection rate is patient

dependent. Furthermore, the interquartile range obtained by the first method estimation was of

3.52× 10−5mm3virions-1, which is quite large if we consider the magnitude of β. Therefore, we

consider that the estimate given by Equation (5.4) is not appropriate.

Finally, Equation (5.7) allowed us to estimate, for each patient, a lower bound for the basic

reproductive ratio in the absence of the immune response, for which we obtained a median of

7.07 with an interquartile range of 2.41 to 15.2, as shown in Figure 5.7

1Sistema de Controle de Exames Laboratoriais da Rede Nacional de Contagem de Linfócitos CD4+T /CD8+T
e Carga Viral, i.e. Control System for Laboratory Tests of the Brazilian Network for Lymphocyte Count (CD4+T
/CD8+T ) and viral load.
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Figure 5.6: Estimate of β for clinical data. Estimated infection rate for each patient, given by
Equation (5.3). The patients are organized in the same order that in Figure 5.5.
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Figure 5.7: Estimate of Rmin0 for clinical data. Estimation of a lower bound for the basic
reproductive ratio in the absence of the immune response, for each patient, given by Equation (5.7).
The patients are organized in the same order that in Figure 5.5.



5.4 Conclusion

The parameter estimation is a very significant aspect of the study of biological models, allowing

a better understanding of complex biological systems. However, obtaining a good estimate is not

always an easy process. One of the challenges concerns the collection of data, which are often

scarce or unavailable. In the case of the HIV-1 infection, we saw that patients rarely perform

clinical tests in the acute phase. This makes impracticable for most patients the parameter

estimation that requires data from acute phase. Even when data are available for the period

in question, they are enough to get a proper estimate. Several studies have been performed in

order to find the minimal number of measurement of the variables for a complete determination

of all parameters [XM03,JX05]. In this respect, our proposals are quite significative. Indeed, in

our methods the clinical data comes from the chronic phase, avoiding the data shortage problem.

Furthermore, as we use algebraic expressions (equilibrium points) to obtain the estimates, we

get a well-posed estimation. Another problem in comparing the data with the solution curves of

the mathematical model is the influence that the initial conditions will have on the estimates.

As the equilibrium points of System (1.1) do not depend on the initial conditions, we do not

have this problem.

Another challenge in parameter estimation is to achieve a robust method, since normally

the data has measurement noise. Using noise corrupted data, we show in Section 5.2 that our

method is robust. The proposed estimates for the CD4+T cells equilibrium and viral load

equilibrium were satisfactory. However, the estimate for the CD8+T cells equilibrium did not

show good precision. One reason maybe due to the assumption that the CD8+T cell count

balance in the chronic phase is not the correct one. Additionally, we have another problem to

estimate the equilibrium value of CD8+T cells. Not all laboratories perform tests of the CD8+T

cell count, greatly reducing the amount of data.

Anyway, we avoided this issue by proposing an alternative estimate for R0 that does not

depend on the concentration of CD8+T cells.

We emphasize that the estimate of the basic reproductive ratios and the infection rate for

each patient is of great importance to determine the severity of the disease in this patient.

Consequently, this can help to determine the appropriate treatment for each patient.



Part II

Dynamics of Residential Burglaries
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CHAPTER 6

Dynamics of Residential Burglaries

In recent decades, crime has become a major problem in most urban areas around the world.

Getting a better understanding of these events is very important in the study of criminology

with major implications for the development of strategies for effective crime prevention.

Along history various schools of thought have proposed different ways of considering

crime [Gor10]. However, the study of criminal behavior using mathematical tools is a fairly

new idea [RB10]. Mathematical modeling can be a powerful tool in the fight against crime.

It may be used to guide decision-making, develop policies, or to evaluate specific strategies

aimed at reducing crime. A number of mathematical models have been proposed in order

to describe criminology using different mathematical approaches such as agent-based mod-

els [FFM+12, Eps02, HB+11, Gro07, MHS10, B+11, Win03], game theory [SBD10, MKSD12],

epidemic or predator–prey models making use of ordinary differential equations [SNHGP11,

Var66, CSB12, NHP08, B+11], and reaction–diffusion models using partial differential equa-

tions [BRR13,BN10,RB10,PJ11,SBBT10] - we refer to Sooknanan [SBC13] and Gordon [Gor10]

for a review on mathematical modeling of criminality.

Although crimes occurrences are present almost everywhere, crimes do not appear to be

uniformly distributed. Research concerned with burglary indicates that it is clustered not only

at places but also in time [PJ11]. These aggregates of criminal occurrences are commonly

referred to as hotspots.

In this context, mathematical tools have been applied to better understand the mechanisms

governing these hotspots. Motivated by empirical observations of spatio-temporal clusters of

crime, Short et al. [SDP+08] present a quantitative mathematical model for residential burglary.

They consider a two-dimensional lattice model, where each site is characterized by a dynamic

attractiveness variable, and where each criminal is represented as a random walker. The burglar

dynamics are coupled to the level of attractiveness of target sites. The degree of attractiveness

of each site is a quantity that depends of previous burglary events at the same location and
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memory effects from burglaries at neighboring sites, incorporating the repeat (or near-repeat)

effect and the so-called broken windows theory. The repeat (or near-repeat) effect, refers to

the hypothesis that residential burglars prefer to return to a previously burglarized house, or

the ones adjacent to it. The broken windows theory, regards to the idea that past crimes

create an image of a crime-tolerant neighborhood, stimulating new occurrences of crimes. Based

on this discrete model, Short et al. [SDP+08] also exhibit a reaction-diffusion model, whose

local existence and uniqueness of solutions is proved by Rodriguez and Bertozzi [RB10]. This

continuous model is related to several other well-studied models, such as the Keller-Segel model

for aggregation based on chemotaxis. In this context, the robbers play role of bacteria, and the

attractiveness of each location the role of the chemical.

In [SBBT10], Short et al. present a bifurcation analysis of the bifurcations of this reaction-

diffusion model in order to detect crime hotspots. With this analysis, they obtained that crime

hotspots form when enhanced risk of repeated crimes diffuses locally, but not so far as to bind

distant crime together.

In [SDBT09], Short et al. conduct a study of the hotspots under a somewhat different

perspective. Instead of studying a model that encompass the repeat effect and the broken

windows theory, they analyze the evidence of these effects in the burglary data collected

from Long Beach, CA. For that, they perform different counting methods and determine the

probability distribution functions for the time intervals between repeated offenses. Then, they

compare these distributions with the theoretical distributions in which the repeat effects are due

solely to persistent risk heterogeneity. They found that risk heterogeneity alone cannot explain

the observed distributions, while a form of event dependence can.

Similar to Short et al. [SDBT09], our goal in this chapter is to ascertain the validity of some

assumptions regarding the burglaries hotspots. Specifically, we want to study these theories

based on real data of residential burglaries from a medium size Brazilian urban center (see

Section 6.3 for the details of the data).

Many theories have been presented to explain burglaries hotspots. Besides the repeat

(or near-repeat) effect and the broken windows theory, many other aspects may be able to

influence the burglaries hotspots. Among them we can mention, the structure of the urban

environment, time of the year, social level of the neighborhood, seasonal conditions, features of

each residence, presence of policing, economic conditions, periods for which the residences are

usually unoccupied, etc. We can separate these hypotheses according to three main aspects:

temporal, spatial, and spatio-temporal. By temporal aspects, we refer to factors such as week

day, time of year, or seasonal conditions. By spatial aspects, we mean factors that depend

only on the spatial component (at least in the short term), such as the structure of the urban

environment or the features of each residence. Finally, by spatio-temporal aspects, we mean

factors that will vary both in space and time. For example, the raise in the number of burglaries

in a certain region caused by previous events. That is, we are considering the possibility of an

influence in the current burglaries due to past burglaries (event dependence).

We analyze the real data of residential burglaries taking into account the influence of these



main aspects. Specifically, we performed tests in order to investigate the presence of temporal,

spatial, and spatio-temporal agglomerations (clusters) that could be statistically significant.

These analysis are shown in Sections 6.4, 6.5, and 6.6, respectively. The main tool used in the

spatial and spatio-temporal analysis was the measure of homogeneity given by the Ripley’s K

function. A brief review of this function is given in Section 6.1. In Section 6.2 we present some

examples to illustrate the analyses methods.

6.1 Preliminaries: Ripley’s K Function

Consider a set of spatial points within a finite spatial region. We shall denote this region by

a study region. In order to analyze the spatial arrangements of these points, a fundamental

problem is inferring whether a given arrangement is merely random or the result of some process.

A natural starting point is investigate if the points satisfy the Complete Spatial Randomness

(CSR) hypothesis, that is, if the points are equally likely to occur anywhere and do not interact

with each other. More precisely, CSR asserts that the number of points in any subregion of the

study region follows a homogeneous spatial Poisson process. The random countable subset Π is

called a homogeneous spatial Poisson process with intensity λ (number of points per unit of

area) if, for all Borel set V , the random variables N(V ) := |Π ∩ V | satisfy:

• If V1, V2, . . ., Vm are disjoint Borel sets, then N(V1), N(V1), . . ., N(Vn) are independent

random variables,

• N(V ) has the Poisson distribution with parameter λ|V |:

P (k, V ) =
(|V |λ)ke−|V |λ

k!
.

P (k, V ) is the probability of finding exactly k points within an area V and with intensity λ.

In this context, a very useful tool is Ripley’s K function, also known as the K function and the

reduced second moment function. The K function gives a measure of the spatial homogeneity with

a distinguishing feature from others methods in this toolset, it summarizes spatial dependence

(clustering or dispersion) over a range of distances [Dix02]. The K function is defined by

K(r) = λ−1E[Nr],

where λ is the intensity of points and Nr is the number of points within a distance r of a

randomly chosen event.

For a homogeneous Poisson process in R2 this expected value can be analytically evaluated:

K(r) = πr2. For a set of points within a defined study region A, the K function (technically its

sample-based estimate) is defined as

K(r) =
1

λ̂

∑
i

∑
j 6=i

I(dij 6 r)

N
, (6.1)



where λ̂ = N/|A| is the estimated intensity, N is the number of points in the region A, |A| is

the area of A, dij are the distances between the i-th and j-th points, and I(x) is the indicator

function with the value 1 if x is true and 0 otherwise.

To gain an intuitive understanding of this estimate, consider a fixed r and consider the

expression
∑

i

∑
j 6=i I(dij 6 r). For each point i, we are counting the number of points inside

the circle centered at the point i with radius r (not counting the center point). This is depicted

by Figure 6.1(a). After doing this for each point, we divide by the total number of points, N ,

obtaining an average. In the case of CSR, this will be the number of points in any circular

region of radius r, i.e., the intensity multiplied by the area of the circle of radius r. The K

function estimate will be this average divided by estimated intensity, λ̂.

However, Equation (6.1) does not consider the boundary of A for the expected value

estimation. This leads to edge effects, that arise because the points outside the boundary of

the study region are not counted, even if they are within distance r of a point in the study

region. Consequently, the outcome may be biased, especially at large values of r. Taking this

into account, Ripley [Rip76] proposed the following sample-based estimate for the K function

K̂(r) =
1

λ̂

∑
i

∑
j 6=i

I(dij 6 r)

Nwij
, (6.2)

where wij is the weight function that provides the edge correction. The value of wij is the

proportion of the circumference centered at the point i with a radius dij that falls in the study

region (Figure 6.1(b)). If this circumference is completely inside A (case of Figure 6.1(a)), wij

has the value of 1.
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Figure 6.1: Estimated Ripley’s K function. (a) depicts the point counting of the estimated K
function given by Equation (6.1). (b) depicts the edge correction. In the case that part of the circle
(green) falls outside the domain, the weight function is the proportion of the circumference that falls in
the study region.

In order to analyze the spatial homogeneity, the K function for observed data is usually

compared to the K function for CSR. That is, if K(r) > πr2 (or G(r) > 1), the observed points

are more clustered than a homogeneous spatial Poisson process at the distance r. If K(r) < πr2

(or G(r) < 1), the observed points are more dispersed than a homogeneous spatial Poisson

process at the distance r.



In fact, to obtain a statistically significant result, we should compare the estimates of the K

function for the observed points with the envelope of this functions for the CSR. The envelope

is obtained by simulations of realizations of CSR. When the observed K value is larger than the

envelope value, spatial clustering for that distance is statistically significant. When the observed

K value is smaller than the envelope value, spatial dispersion for that distance is statistically

significant (Figure 6.2).

Observed
CSR
Envelope

statistically significant

K
(r

)

r

Figure 6.2: Interpreting Ripley’s K function. When the observed K value is larger than the
envelope value, spatial clustering for that distance is statistically significant. When the observed K
value is smaller than the envelope value, spatial dispersion for that distance is statistically significant.

CSR and Ripley’s K function are usually defined for two-dimensional spatial data. But they

can be generalized for a spatial data in other dimensions. Note that, for a spatio-temporal

domain, the CSR and Ripley’s K function, can theoretically be treated as a pure spatial process

by treating “time” as just another component of a vector space. But, in most applications, it is

convenient to treat the space and time separately, in order to emphasize the characteristics of

each variable. Although CSR is an acronym for the complete spatial randomness, we use the

same acronym for the spatio-temporal case.

Regarding to K-Ripley function in the spatio-temporal case, the main idea is that counting

the number of points is performed in cylinders instead of the circles. See Figure 6.3.

In this case the outcome is depicted as follows: when K(u, v) is greater than the envelope

for this point, (u, v) is marked by dark gray. This indicates statistically significant clustering.

When K(u, v) is smaller than the envelope for this point, (u, v) is marked by light pink. This

indicates statistically significant clustering. See Figure 6.4.

For more details of the K function, we refer to [Rip76, Rip77, Cra12, GD09, Dix02, Rip79,

GRD13].

Implementation of K function. All estimates of the K function used to generate the results

from this chapter were performed using The R Project for Statistical Computing. Specifically,

we use the functions Kest, and envelope of the spatstat package, and the STIKhat function of

the stpp package.
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Figure 6.3: Spatio-Temporal Ripley’s K function. Depicts the point counting of the estimated
K function in a spatio-temporal domain. The spatial variable is represented by u as the time variable,
by v.
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Figure 6.4: Interpreting Ripley’s K function (spatio-temporal). The regions of the K function
domain will be marked in accordance with the function value in relation to the envelope. If the K(u,v)
is outside the envelope, this point will be represented by dark gray or light pink (above and below,
respectively.



6.2 Examples

To illustrate the analyses methods used throughout this chapter, we present in this section

the outcomes of such analyses for synthetic data. These synthetic data will not be necessarily

generated following a specific distribution. Then, is not possible to evaluate analytically the

K function, either in the spatial domain or in spatio-temporal domain. Therefore, we use the

approximations of K functions described in the previous section. That is, we use the same

procedure as we will apply to real data.

Data Set Description

In order to visualize the contribution of each type of analysis, we generate synthetic data with

different types of agglomerations, regarding to temporal, spatial, and spatio-temporal aspect.

Table 6.1 summarizes these choices. Each set of synthetic data contains 100 events whose spatial

domain is the unit square of R2. The description of each set considered are described below.

Data Set Temporal Clusters Spatial Clusters Spatio-Temporal Clusters

1 No No No
2 Yes No Yes
3 No Yes Yes
4 Yes Yes Yes
5 No No Yes

Table 6.1: Data sets of synthetic data. Types of clusters present in each synthetic data set.

Data Set 1: The spatial coordinates of the events were generated following a homogeneous

Poisson distribution. The number of burglaries in each day was taking as a constant equal to 1.

The choice of which location corresponds to which day was random. Figure 6.5 shows this set of

synthetic data.
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Figure 6.5: Synthetic data set 1. For each point of the data set, the spatial coordinates are depicted
by the dots, while the temporal coordinate is depicted by the superscript number. Data set 1 was
generated without temporal, spatial, and spatio-temporal cluster.



Data Set 2: The spatial coordinates of the events were generated following a homogeneous

Poisson distribution in the unit square of R2. We consider that these events occurred over 15 days,

and the number of thefts each day is given by the vector [1, 4, 9, 16, 25, 16, 9, 4, 1, 2, 3, 4, 3, 2, 1],

where the i-th coordinate is the number of events of the day i. The choice of which location

corresponds to which day was random. Figure 6.6 shows this set of synthetic data.
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Figure 6.6: Synthetic data set 2. For each point of the data set, the spatial coordinates are depicted
by the dots, while the temporal coordinate is depicted by the superscript number. Data set 2 was
generated without temporal clusters, but with spatial clusters.

Data Set 3: The spatial coordinates of the events were generated in the unit square of R2

following a normal distribution with mean [0.5, 0.5] and standard deviation [0.15, 0.15]. The

number of burglaries in each day was taking as a constant equal to 1. The choice of which

location corresponds to which day was random. Figure 6.7 shows this set of synthetic data.
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Figure 6.7: Synthetic data set 3. For each point of the data set, the spatial coordinates are depicted
by the dots, while the temporal coordinate is depicted by the superscript number. Data set 3 was
generated without spatial clusters, but with temporal clusters.



Data Set 4: The spatial coordinates of the events were generated in the unit square of R2

following a normal distribution with mean [0.5, 0.5] and standard deviation [0.15, 0.15]. We

consider that these events occurred over 15 days, and the number of thefts each day is given

by the vector [1, 4, 9, 16, 25, 16, 9, 4, 1, 2, 3, 4, 3, 2, 1], where the i-th coordinate is the number of

events of the day i. For the first day, the location of the event was chosen to be the closest to

the origin. For other days, the events location was chosen to be the closest to location of the

event of the previous day. Figure 6.8 shows this set of synthetic data.
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Figure 6.8: Synthetic data set 4. For each point of the data set, the spatial coordinates are depicted
by the dots, while the temporal coordinate is depicted by the superscript number. Data set 4 was
generated with spatial, temporal, and spatio-temporal clusters.

Data Set 5: The spatial coordinates of the events were generated following a homogeneous

Poisson distribution in the unit square of R2. The number of burglaries in each day was taking

as a constant equal to 1. For the first day, the location of the event was chosen to be the closest

to the origin. For other days, the events location was chosen to be the closest to location of the

event of the previous day. Figure 6.9 shows this set of synthetic data.
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Figure 6.9: Synthetic data set 5. For each point of the data set, the spatial coordinates are depicted
by the dots, while the temporal coordinate is depicted by the superscript number. Data set 5 was
generated without spatial and temporal clusters, but with spatio-temporal clusters.



Outcome Analysis

As mentioned before, the analysis with respect to spatial and spatio-temporal clusters will

be performed using the K-function, described in Section 6.1. The temporal analysis will be

performed looking for the function that provides the number of daily events, along the time

domain. In fact, as in K-function analysis, we will compare this function for the observed

data with the envelope of this function for data randomly generated (homogeneous Poisson

distribution). The days which the number of daily events is outside the envelope indicate a

temporal clustering statistically significant.

Here we present the outcomes of the analysis for the synthetic data. Note that, all analysis

showed the expected outcomes, taking into account the manner that the sets were generated.

Data Set 1: Figure 6.10(a) shows that the temporal analysis for Data Set 1 does not present

temporal clustering, since the number of daily events is inside the envelope for all days. The K

function analysis indicates that this data set does not display statistically significant spatial or

spatio-temporal agglomerations. See Figures 6.10(b) and (c).
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Figure 6.10: Analysis of data set 1. According to the analysis, the data set 1 has not temporal,
spatial, neither spatio-temporal clustering.



Data Set 2: According to the analysis, this data set has not spatial clustering, but it

has temporal clustering (Figure 6.11). Furthermore, the spatio-temporal analysis indicates

agglomeration for very small times (1 day) and large distances, and dispersion for large times.
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Figure 6.11: Analysis of data set 2. According to the analysis, the data set 2 not present spatial
clustering, but presents temporal and spatio-temporal clustering.

Data Set 3: According to the analysis, this data set has no temporal clustering, but will

present spatial clustering. (Figure 6.12). Furthermore, the spatio-temporal analysis indicates

agglomeration.
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Figure 6.12: Analysis of data set 3. According to the analysis, the data set 3 not present spatial
clustering, but presents temporal and spatio-temporal clustering.



Data Set 4: The analysis indicates that this data set has spatial, temporal, and spatio-

temporal clusters (Figure 6.13).
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Figure 6.13: Analysis of data set 4. According to the analysis, the data set 4 not present spatial
clustering, but presents temporal and spatio-temporal clustering.

Data Set 5: According to the analysis, this data set has not temporal clustering (Fig-

ure 6.14(a)), neither spatial clustering (Figure 6.14(b)). However, it has spatio-temporal

agglomeration for small times and for all distances (region in dark gray in Figure). It also has

dispersion for large times and almost all distances (region in light pink in Figure).
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Figure 6.14: Analysis of data set 5. According to the analysis, the data set 5 not present temporal
or spatial clustering, but presents spatio-temporal clustering.



6.3 Real Data Description

The data analyzed in this chapter refers to residential burglaries occurred in city of Cascavel,

a municipality in the west of Paraná state, Brazil (Figure 6.15(a)). Cascavel is the 5th most

populous city in Paraná with an urban population of 270,049 inhabitants according to an

estimate from IBGE1 in 2010. With an urban area of 55.8km2, its urban population density, in

2010, was 4839.59 hab/km2.

The data comes from the Police Department of Paraná state, therefore, they refer only to

burglaries that were reported to the police. The data set contains information of date, time,

and address, of residential burglaries occurred from 2010 to 2012. Before starting the analysis,

we removed the repeated events (same day, time and place), events outside the urban region of

Cascavel, and events with incomplete or incorrect address, resulting in 5,483 events. Then, we

performed the geocoding, i.e. converting addresses into geographic coordinates (latitude and

longitude). Figure 6.15(b) shows the location of these events on the map of Cascavel city.

Cascavel - PR

(a)

16kmx11km

(b)

Figure 6.15: Residential burglaries in Cascavel. (a) shows the location of Cascavel city in Brazil
map. (b) shows the locations (red dot) of each residential burglary reported to the police from 2010 to
2012.

1Brazilian Institute of Geography and Statistics.



6.4 Temporal Clusters

In this section we will analyze the data from Cascavel’s residential burglaries with respect to

temporal agglomerations. The main idea is to ascertain whether there are periods of time for

which the number of burglaries is significantly larger than in other periods.

First, we analyze the difference between the years for the total number of burglaries. Counting

the number of residential burglaries along each year, we have that in 2010 it is significantly

higher than the other years. In fact, in 2010 were recorded 46.5% more residential burglaries

than in 2011, and 33% more than in 2012. However, considering only the data until 300th day

of each year, these percentages fall to 4.6% and 4.1%, respectively. This indicates that the

difference in the number of burglaries in 2010 relative to the other years is due, essentially, to

the spike of burglaries on the months of November and December. This will become clearer in

the following analysis.

Calculating the quartiles of the number of burglaries per day stratified by month, we obtain

that November and December have an interquartile range significantly higher than other months,

although their medians are similar (Figure 6.16(a)). However, note that this peak of burglary

is not a characteristic of November and December in general, but only for 2010. Indeed, if we

consider only the years 2011 and 2012, this high difference disappears (Figure 6.16(b)).

(a) 2010 to 2012 (b) 2011 and 2012

Figure 6.16: Daily burglaries stratified by month. Both figures show the number of burglaries
per day in Cascavel stratified by month. In (a) the quartiles were obtained considering data from the
years 2010 to 2012, while in (b) only the data from the years 2011 and 2012.

We also analyzed the data with respect to the number of burglaries per day taking into

account the week day, the period of the month and day off. In the case of the day off we perform

two comparisons. Firstly, we compare the number of burglaries per day on holiday with the

others days. In fact we consider as holidays not only the day itself, but also the days of recesses

caused by it. After that, we compare the number of burglaries per day on the weekends with the

weekdays. The medians obtained in all cases are approximately the same and the interquartile

range are small (Figure 6.17). Thus, these characteristics do not seem to cause a significant

influence on the number of burglaries per day.



(a) Day of the week (b) Period of the month

(c) Holiday vs non-holiday (d) Weekend vs weekday

Figure 6.17: Daily burglaries stratified. Number of burglaries per day in Cascavel stratified by
day of the week, in (a), period of the month, in (b), holiday or not holiday, in (c), and weekday or
weekend, in (d).

In order to analyze if the number of burglaries per day is merely random, we compare

the Cascavel data with several sets of random data. Specifically, each synthetic data set was

generated by randomly choosing 5483 days between 1 and 1986. Note that 1986 days correspond

to the three years for which we have the burglary data, and 5483 is the number of events

(residential burglaries) over this period. After randomly choosing the days, we carried out the

burglary count per day. Finally, we compare the number of daily burglary of Cascavel with the

envelope computed with 10,000 synthetic data sets (Figure 6.18).

Note that, only the period between days 304 and 363 have a statistically significant increase

in the number of burglaries compared with random data. This is the same period for which we

have already detected a spike in burglaries (November and December 2010). According to our

analysis, this spike seems to be an outlier, and not a pattern of the dynamic.
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Figure 6.18: Number of daily burglary. Number of residential burglary per day along the years
2010, 2011, and 2012.



6.5 Spatial Clusters

In this section our focus will be on the analysis of the burglary data with respect to spatial

agglomerations. Here, we shall call by point the location of each burglary (ignoring the day of

the burglary).

First, we calculate the spatial intensity of burglaries, i.e. the number of burglaries per km2

along the three years. This was calculated in a two-dimensional lattice with constant spacing of

500m. As shown in Figure 6.19, the spatial intensity varies significantly along the grid.

Figure 6.19: Spatial intensity of burglaries in Cascavel. Number of residential burglaries per km2

in Cascavel over the years 2010, 2011 and 2013. The grid consists of squares of side 500m. The streets
of Cascavel can be viewed in the watermark.

However, this intensity map does not allow us to analyze the data with respect to CSR. For

this purpose we will use the K function.

To perform the K function analysis, we must first define the study region A. The choice

of this region will impact significantly the outcome of the analysis, since the inclusion of

uninhabited or non-residential areas will bias the outcome. It is noteworthy that our interest

is to analyze spatial agglomerations of the data in residential regions, otherwise we mainly

analyze the clustering of residential areas, not the clustering of residential burglaries. Indeed,

consider three distinct borders to delimit the study region A, as shown in Figure 6.20(a). The

first boundary is a rectangle containing all points (in red). The second frontier is the convex

hull of the points (in yellow). The third was manually selected, avoiding the countryside and

the city lake, and trying to contain almost all points. In fact, this region will contain 96% of the

data. We will call this border by polygonal hull. Calculating the K function considering each

one of these borders, we obtain different outcomes (Figure 6.20(b)). The function K indicates a

more expressive agglomeration when considering the rectangular border instead of the convex

hull. This in turn, also presents greater agglomeration than given by the polygonal hull border.
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Figure 6.20: Influence of the region A. Three possible choices for the borders of the data are
displayed in (a). In red, a rectangle containing all points. In yellow, the convex hull of the points. In
green, the polygonal hull, a border manually selected containing 96% of the points. The K function
estimated considering each region and the K function for CSR are presented in (b), with r ranging
from 0 to 2000 meters.

Note that, even in the case of a polygonal hull border, the K function indicates statistically

significant spatial clustering for all r (Figure 6.21).
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Figure 6.21: K function - polygonal hull border. The black line is the estimated K function for
the observed data in the region delimited by the polygonal hull border. The figure also shows the K
function for CSR, in red dotted line, and the envelope of the K function, in gray, computed with 500
simulations. The radius r ranging from 0 to 2000 meters.

Although most of the countryside and the city lake area are not included in this region,

there are still many uninhabited or non-residential areas that may bias the result. For example,

parks, industries, colleges, schools, commercial areas, and vacant land. To avoid these possible

distortions, we opted to select 20 predominantly residential subregions of the city. These regions

(Figure 6.22) were manually chosen avoiding the inclusion of any nonresidential or unoccupied

area.

For each subregion we performed the K Riplye’s analysis. No subregion showed a spatial



Figure 6.22: Selected subregions of Cascavel. These 20 regions of the Cascavel city were chosen
avoiding include any nonresidential or unoccupied area, such as parks, industries, colleges, schools,
commercial areas, and vacant land.

dispersion that is statistically significant. Regarding spatial clustering, only regions 3, 6, 7, 11,

17, and 20 presented some indication of statistically significant agglomeration (Figure 6.23).

That is, only these subregions showed an interval for which the respective K function is greater

than the envelope of the K function for CSR. The r values in these intervals are small, not

exceeding 50 meters. In addition, the estimated K functions in these intervals are only slightly

higher than the envelope.

In order to get an idea of how significant is this difference in terms of agglomeration,

Figure 6.24 shows the K function analysis for two sets of data generated synthetically from a

normal distribution. Both sets were generated considering a region with area of 1km2 and 100

points. These values are approximately the same of the subregion 6.
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Figure 6.23: Estimated K function - subregions. The black line shows the estimated K function
for the observed data in the respective subregion. The figures also show the K function for CSR, in
red dotted line, and the envelope of the K function (in gray) computed with 10,000 simulations. The
radius r is expressed in meters.
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(b) K function for synthetic data 1

(c) Synthetic data 2
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(d) K function for synthetic data 2

Figure 6.24: K function for synthetic data. On the left, two set of data generated synthetically
from normal distribution, in a region with area of 1km2 and 100 points each. On the right, the
respective estimates of the K functions, in black. The graphs also show the K function for CSR, in
red dotted line, and the envelope of the K function (in gray) computed with 10,000 simulations. The
radius r is expressed in meters.



Although these subregions have not presented expressive indications of agglomeration, this

does not imply regularity in all these subregions together. Indeed, looking at the average

intensity of burglaries in each region (Figure 6.25) we note that there is a fairly significant

change. For example, the region 10 has about 183 burglaries per km2 against only 35 of the

region 12 (along the three years).
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Figure 6.25: Intensity of burglaries in the subregions. Number of residential burglaries per km2

in each subregion of Cascavel, along the years 2010, 2011 and 2012.

These results indicate a multiscale behavior. At small scales it is reasonable to look at the

dynamics of residential burglaries as random events (CSR). While at larger scales these events

display agglomeration.



6.6 Spatio-Temporal Clusters

In this section we will analyze residential burglaries with respect to spatio-temporal agglom-

erations. Our goal is to study the data regarding the event’s dependence. That is, we want

to know if there is any indication that the occurrence of an event influences the occurrence of

future events.

For that, we analyze the dispersion of the points with the spatio-temporal K Ripley’s function.

Note that, in this section, point means a localization (spatial coordinates) and a day (temporal

coordinate).

As we saw in Section 6.5, considering a large spatial region can cause a significant bias

in the outcome of K function due to inclusion of uninhabited or non-residential areas. So we

decided to perform the K-Ripley analysis on the sub-regions depicted in Figure 6.22, which have

been chosen to avoid any nonresidential or unoccupied area, such as parks, industries, colleges,

schools, commercial areas, and vacant land.

Moreover, these were the sub-regions for which we performed the spatial clustering analysis.

By this way we can make comparisons between the outcomes of both analyses.

Only five sub-regions showed some spatio-temporal agglomeration (or dispersal) statistically

significant. Namely, sub-regions 4, 7, 15, 19, and 20 (Figure 6.26). Sub-regions 4 and 7 showed

agglomerations for small distances (up to 30m) and long period of time (practically for all times

tested - 2 months). This indicates more a spatial agglomeration than a spatio-temporal one.

Subregions 15 and 19 also showed agglomerations for small distances (up to 10m) and for 17 to

27 days and 39 to 60 days, respectively. Additionally, sub-regions 7 and 15 showed dispersion

for a large distances (300m-320m and 240m-290m, respectively) and for a very short time (1

day). Note that these results are not expressive. On the other hand, sub-region 20 presented

a more interesting result, with substantial spatio-temporal cluster for large distances (upper

200m) and time upper to 35 days. It is noteworthy that this subregion had already submitted

agglomeration in the spatial analysis.

As in the spatial case, we will present an example in order to get an idea of how significant is

this difference in terms of agglomeration. Consider synthetic data following a diffusion equation

with diffusion coefficient of 5000 m2/day, where the data were generated along 300 days with

5 burglaries per day. K-function analysis shows that for this data, there is a very significant

spatio-temporal agglomeration (Figure 6.27).

Note that, the spatio-temporal clusters present in the synthetic data is much more significant

than in the case of the Cascavel data. In addition, if we redo the analysis considering only the

data from 2011 and 2012, no sub-region shows spatio-temporal clusters statistically significant.
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Figure 6.26: Estimated spatio-temporal K function - subregions. Outcome of the spatio-
temporal K function estimates considering the sub-regions of Cascavel. Considering data from 2010
to 2012, the results for the sub-regions 4, 7, 15, 19, and 20 are shown in (a), (b), (c), (d), and (e),
respectively. The colors of the points (u,v) indicate the position of the K function w.r.t. the envelope
of the K function for CSR, computed with 10,000 simulations. The regions of the graph in light gray
indicate the values of (u,v) for that K(u,v) is inside the envelope. The dark gray regions indicate
that K(u,v) is above the envelope, and the light pink regions that K(u,v) is bellow the envelope. The
variable of distance, u, is expressed in meters and the variable of time, v, in days.
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Figure 6.27: K function for synthetic data. On the left, a set of data generated synthetically from
a diffusion equation with diffusion coefficient of 5000 m2/day, where the data were generated along
300 days with 5 burglaries per day. On the right, the K-function outcome, indicating spatio-temporal
agglomeration for all distances and times analyzed. The variable of distance, u, is expressed in meters
and the variable of time, v, in days.



6.7 Discussion

According to the analysis performed, it is reasonable to model the residential burglaries in

Cascavel as a inhomogeneous spatial Poisson process. However, many residential areas are not

included in the analyzed subregions. Thus, it would be interesting to apply the analysis to the

K-Ripley function considering the study region as all residential areas.

However, it is not easy to determine such regions in the map. A possibility is to select regions

close to streets, avoiding uninhabited areas. Nonetheless, it is still including non residential

areas.

Another possibility is to use a concave hull of the burglary locations. That is, a region of the

plane containing all given points, and that its border is a simple polygon. Note that, removing

a few points, the region on the plane delimited by the polygonal hull described in Section 6.5

(green line in Figure 6.20), is an example of convex hull. But, unlike the convex hull, there is

not a unique concave hull for a given set of points. Thus, determining which concave hull is

appropriate for the problem at hand is an interesting topic for a future work.

From a statistical view point, a possible work direction is to compare the data with a Cox

process, which is a generalization of a Poisson process where the intensity is itself a stochastic

process.

Another aspect to be considered is the possibility of geographic characteristics interfering

in the connection between neighboring residences. That is, despite the distance between the

two residences be small, there is a geographical obstacle (like a river) that prevents the easy

locomotion from one to another. In this context, graph theory can be a very useful tool.

For example, the graph nodes may represent the residences, while the graph edges link the

neighboring houses that can be geographically connected.



6.8 Conclusion

The temporal analysis presented in Section 6.4, shows that the number of residential burglaries

per day, between the years 2010 and 2012, had a large increase in November and December

2010. This peak period for burglaries cannot be explained by simply randomness, as shown in

Figure 6.18. As this peak is the only one along the three years, it seems to be an isolated event,

and not a pattern for residential burglaries. A possible explanation for this peak period for

burglaries can be the temporary reduction of policing. In November 2010, there was a police

force reallocation due to creation of the 5th Regional Military Police Command [Bra10].

Regarding to the spatial analysis, in Section 6.5, we have that the number of residential

burglaries per km2 along the three years, i.e. the intensity of burglaries, is not the same in all

residential areas of Cascavel. This can be seen in Figure 6.19, which shows the intensity of

residential burglaries throughout the region, including uninhabited areas . This can be also

seen in Figure 6.25, that shows a bar graph with the spatial intensity of residential burglaries

calculated for 20 subregions of Cascavel. However, this macro-scale behavior does not appear

to be present on a smaller scale, since the K function analyze of 20 subregions of Cascavel

shown to be approximately random (Figure 6.23). One hypothesis that fits this observation is

that the burglars have a higher preference (attractiveness) for certain areas of the city, due to

geographical or social features. However, inside these regions the choice of the target is almost

random.

This peak period for burglaries also caused a bias in the first tests with respect to the

spatio-temporal clusters. Indeed, considering the data along the three years, the spatio-temporal

K analysis indicates a slight agglomeration in 4 of the 20 subregions analyzed. Among these

four, two have also an indication of dispersion. See Figure 6.26.

However, considering only the data along 2011 and 2012, such clusters disappear. Thus, it is

reasonable to consider that, in small scale, the burglaries are not event dependent.

Despite the burglaries in the subregions studied looks like a homogeneous spatial Poisson

process, the intensity of burglaries is not the same in all the subregions. Therefore, it seems

reasonable to model the residential burglaries as a inhomogeneous spatial Poisson process (the

intensity is not constant). One way would be to model the intensity of burglaries as a spatial

function constant for parts. Despite such a simplistic model, it may be useful to monitor the

intensity of burglaries and test hypotheses about policing. Figure 6.28 shows a simulation

performed considering the data from 2011. The real data was used to estimate the intensity in

each square of a grid of lattice of 1 km. After that, points were taken according to the intensity

estimated.
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Figure 6.28: Simulation of Residential burglaries in Cascavel.
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2013.

[Dix02] Philip M Dixon. Ripley’s k function. Encyclopedia of environmetrics, 2002.

[DP04] Narendra M Dixit and Alan S Perelson. Complex patterns of viral load decay

under antiretroviral therapy: influence of pharmacokinetics and intracellular delay.

Journal of Theoretical Biology, 226(1):95–109, 2004.

[DRK09] Daniel C Douek, Mario Roederer, and Richard A Koup. Emerging concepts in the

immunopathogenesis of Aids. Annual review of medicine, 60:471, 2009.

[Eps02] Joshua M Epstein. Modeling civil violence: An agent-based computational approach.

Proceedings of the National Academy of Sciences of the United States of America,

99(Suppl 3):7243–7250, 2002.
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[SDP+08] Martin B Short, Maria R D’ORSOGNA, Virginia B Pasour, George E Tita, Paul J

Brantingham, Andrea L Bertozzi, and Lincoln B Chayes. A statistical model

of criminal behavior. Mathematical Models and Methods in Applied Sciences,

18(supp01):1249–1267, 2008.

[SH03] Viviana Simon and David D Ho. HIV-1 dynamics in vivo: implications for therapy.

Nature Reviews Microbiology, 1(3):181–190, 2003.

[SH11] Paul M Sharp and Beatrice H Hahn. Origins of HIV and the Aids pandemic. Cold

Spring Harbor perspectives in medicine, 1(1):a006841, 2011.

[Sie12] Nourridine Siewe. The Tikhonov Theorem In Multiscale Modelling: An Application

To The SIRS Epidemic Model. PhD thesis, AIMS, 2012.

[SNHGP11] Juan Carlos Sanz Nuño, Miguel Ángel Herrero Garćıa, and Mario Primicerio.
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