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Abstract

In recent years, many researchers have used the Navier-Stokes
equations and Reaction-Diffusion systems for fluid simulation and
for the creation of textures on surfaces, respectively. For this
purpose it is necessary to obtain information about operators de-
fined on surfaces. We obtained the metric information of the dis-
tortion caused by the parametrization of Catmull-Clark subdivi-
sion surfaces. Then the Navier-Stokes equations and the systems
of Reaction-Diffusion on surfaces are solved in the domain of
parametrization of each surface patch. The solution can be com-
putationally expensive, but this process can be done in parallel for
each point in the discretization of the surface, so a GPU implemen-
tation can heavily speed up the computation.
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1 Introduction and Related Work

1.1 Fluid Simulation

There is a number of researches developed to use the Navier-Stokes
equations for fluid simulation. [Stam 1999] proposed an algo-
rithm called stable-fluids, that solves the Navier-Stokes equations
for three-dimensional fluids, which is fast, stable and it is the basis
to simulate smoke, water and fire, but this process is dissipative.
[Fedkiw et al. 2001] made a change in the discretization in order to
reduce the problem of dissipation. In this way, [Stam 2003] also de-
veloped a method for fluid simulation on surfaces of arbitrary topol-
ogy by solving the Navier-Stokes equations in the domain of the
surface parametrization. His method handles the distortion caused
by the parametrization and cross-patch boundary conditions. The
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author used a parametrization of a Catmull-Clark surface [Catmull
and Clark 1978], using his evaluation method described in [Stam
1998].

In particular, these investigations have contributed in many areas,
like special effects industry, for example [Bridson 2008] presented
a practical introduction to fluid simulation for computer graphics,
with an overview of algorithms used to simulate two and three-
dimensional incompressible flows.

Figure 1 shows two different steps of a sample fluid simulation on
a surface. The surface was obtained from a resulting mesh from the
work Mixed-Integer Quadrangulation [Bommes et al. 2009].

Figure 1: Fluid simulation on Rocker arm.

1.2 Reaction-Diffusion systems

A chemical mechanism for pattern formation called Reaction-
Diffusion was described for the first time by [Turing 1952]. Two
substances are affected by two processes: local chemical reactions,
which means that the substances are transformed into each other,
and diffusion which causes the substances to spread out over a sur-
face in space. This mechanism has been replicated and expanded
over the years by researchers in several areas [Epstein and Pojman
1998]. [Turk 1991] used it to generate textures that match the ge-
ometry of polyhedral surfaces. Moreover, [Sanderson et al. 2006]
used many Reaction-Diffusion models for textures synthesis. [Ba-
jaj et al. 2008] presented an approach to solve Reaction-Diffusion
systems on surfaces using a Galerkin based finite element meth-
ods. The mechanism of Reaction-Diffusion involves the numeric
solution of a non-linear partial differential equations system. This
nonlinearity makes it difficult to select appropriate parameters in
order to ensure the formation of stable patterns, which may take to
the user many attempts to obtain a reasonable result (see Figure 2).
Another problem is that the solution can be computationally expen-
sive, such that it can be too much time consuming.

1.3 GPU

Usually the calculation of the solution of systems used in Fluid sim-
ulation and Reaction-Diffusion on surfaces is a compute-intensive
task. To minimize this problem, algorithms can exploit the power
of multiple processors computers, solving the Partial Differential
Equations in parallel. A good choice is to use the Graphics Process-
ing Units (GPUs), which were originally developed to accelerate
graphics operations, like rendering a virtual scenario, but recently
they have been used to solve more general problems that require
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Figure 2: Some results of the method. Complex patterns are formed
in a few seconds using CUDA.

compute-intensive parallel computation, due to the design of these
units. In this case, they are called General Purpose GPUs, or simply
GP-GPU. Initially, developers could use the GPU power through
the graphics pipeline using shading languages such as Cg (C for
graphics) [Mark et al. 2003], but this requires that the program-
mers understand the graphics processing pipeline, and know how
to solve their problems in this context. More recently, NVIDIA de-
veloped CUDA, a general purpose parallel computing architecture
that allows the development of programs that run in GPU using C
as a high-level programming language [NVIDIA 2014]. With this
architecture it is not necessary for the developer to know the graph-
ical pipeline, so it is possible to make programs in the GPU without
having to adapt the solution of a problem to this pipeline. [Randima
2004] has developed numerous practical techniques for creating re-
alistic effects in the GPU, including the stable fluids method. Some
researchers implemented fluid simulation in the GPU, like [Chen-
tanez and Müller 2011] that implemented real-time simulations of
large scale three dimensional liquids. In [van der Laan et al. 2009]
a method was developed for rendering the surface of fluids in real-
time using SPH [Monaghan 1992]. In [Scheidegger et al. 2005] it
is described a technique to solve the incompressible Navier-Stokes
fluid equations using SMAC (Simplified Marker and Cell). All
these methods were developed for fluid simulation in non-curved
spaces with two or three dimensions. [Hegeman et al. 2009] sim-
ulate flow for an arbitrary surface of genus zero using GPU and
conformal map.

Contributions In this work we implemented a GPU version in
CUDA of the scheme introduced by [Stam 2003] for fluid simula-
tion on parametric surfaces of arbitrary topology. We have also used
this scheme for texture synthesis on surfaces using the biologically
motivated method known as Reaction-Diffusion. The high parallel
computation capabilities of Graphics Processing Units (GPUs) im-
prove significantly the computation time required to find the solu-
tion of the Navier-Stokes equations and of Reaction-Diffusion sys-
tems.

The next sections present: the basic concepts of a surface formed by
parametric patches, with some differential operators defined on this
surface, and the transition functions that make coordinate changes
between patches; the parametrization of subdivision surfaces; a dis-
cretization of a surface and its operators; the solution of Navier-
Stokes equations in this scheme; the model developed by [Gray and
Scott 1985] in Reaction-Diffusion systems and finally the imple-
mentation in the GPU of the method.

2 Basic concepts

In this section, we define the basic concepts necessary for the cre-
ation of textures using Reaction-Diffusion systems and for fluid
simulation on surfaces. Let S be a surface formed by parametric
patches (see Figure 3) Xp : Ωp → R3, where Ωp = [0, 1]× [0, 1],
and Xp(x1, x2) = (y1

p(x1, x2), y2
p(x1, x2), y3

p(x1, x2)).

1

1

x1

x2

Figure 3: Example of surface with patches, the colors represent the
parameters (x1, x2) of each surface point.

To obtain some properties defined on S using values in the domain
space (x1, x2) ∈ Ωp, the calculations must include geometric in-
formation about the surface. We use the tangent vectors

Xxk =

(
∂y1

∂xk
,
∂y2

∂xk
,
∂y3

∂xk

)
, k = 1, 2,

where p is omitted to simplify notation, to define the local metric
matrix (gi,j):

gi,j = 〈Xxi , Xxj 〉 , i, j = 1, 2,

from which we get G = det(gi,j). The elements of the inverse
matrix (gi,j) = (gi,j)

−1 can be obtained by

g1,1 =
g2,2

G
, g2,2 =

g1,1

G
, g1,2 = g2,1 = −g1,2

G
.

With this metric information, we can calculate differential operators
of functions defined on S. These operators were taken from the
work of [Aris 1989]. The gradient of a scalar function ϕ on S is
given by

∇ϕ =

(
g1,j ∂ϕ

∂xj
, g2,j ∂ϕ

∂xj

)
,

where we are using Einstein notation1, with indices from 1 to 2.
The divergence of a vector function u is

∇ · u =
1√
G

∂

∂xi

(√
Gui

)
.

The Laplacian is then

∇2ϕ = ∇ · ∇ϕ =
1√
G

∂

∂xi

(√
Ggi,j

∂ϕ

∂xj

)
.

To correctly calculate these operators, we must deal with the in-
tersection of adjacent patches, using transition functions from one
domain to another. In [Stam 2003], each edge of a domain Ωp

1The Einstein notation means that aibi,jcj =
∑
i,j aib

i,jcj .



receives a label from 0 to 3, defined in a counterclockwise or-
der, then the transition function from patch pi to an adjacent patch
pj is given by φ〈ei,ej〉, where ei and ej are the labels of the
common edge of these patches, the operator 〈·, ·〉 is defined by2

〈ei, ej〉 = (4 + ei − (ej + 2)%4)%4, and

φ0(x1, x2) = (x1, x2),

φ1(x1, x2) = (x2, 1− x1),

φ2(x1, x2) = (1− x1, 1− x2),

φ3(x1, x2) = (1− x2, x1).

Figure 4 shows an example of the transition function from a patch pi
(on the left) to patch pj (on the right). In this case, ei = 1, ej = 0,
so 〈ei, ej〉 = 3, and the transition function is then φ3. So, for a
function ϕ defined on the surface, a value on the edge 1 of patch pi
is equal to a value in edge 0 of patch pj .
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Figure 4: Example of transition function.

In general the relation is given by ϕpi(x
1, x2) =

ϕpj (φ〈ei,ej〉Tei(x
1, x2)), where

T0(x1, x2) = (x1, x2 + 1),

T1(x1, x2) = (x1 − 1, x2),

T2(x1, x2) = (x1, x2 − 1),

T3(x1, x2) = (x1 + 1, x2).

To transform vectors from one patch to another, we also need the
Jacobian matrix Mi of each transition function φi, which we can
easily see that is a rotation matrix of angle i(π/2) counterclock-
wise, i.e.

Mi = Riπ/2, i ∈ [0, 3].

For a vector function v defined on the surface, the relation between
a vector in the edge between patches pi and pj is vpi(x

1, x2) =
M〈ei,ej〉vpj (φ〈ei,ej〉Tei(x

1, x2)).

3 Subdivision surfaces

Subdivision algorithms are one of the most successful modern tech-
niques for modelling free-form shapes in 3D [Farin et al. 2002].
These algorithms recursively subdivide the control mesh to create
a new mesh, which is topologically equivalent to the original one,
but with more faces, edges and vertices.

In computer graphics it is usual to use a coarse polygon mesh that
approximates the shape of a desired surface. To obtain the smooth
surfaces, each polygonal face is split into smaller faces that better
approximate the smooth surface and in the limit of subdivision we

2Where a%b means a modulus b.

get the smooth surface. The geometry of a mesh is defined by the
coordinates of the vertices in 3D. A subdivision scheme consists of
a set of rules for refinement and modification of the control mesh.
The number of refinements (levels of subdivision) are controlled by
user’s requirements and the purposes of subdivision. In the limit, a
subdivision scheme usually produces a smooth surface with a pos-
sible exception of some vertices that are called extraordinary. In
this paper we consider meshes with only triangular faces. The ex-
traordinary vertices for triangle meshes are all vertices of degree
different from 6.

In this work we used the Catmull-Clark subdivision surface, which
is a generalization of bi-cubic uniform B-spline for arbitrary
meshes. This process generates limit surfaces that are C2 continu-
ous everywhere except at extraordinary vertices where they are C1

continuous. In particular, at each point on a surface the tangent
plane can be defined.

[Stam 1998] developed a technique to evaluate the limit surface of
a Catmull-Clark subdivision surface, whose result is a parametriza-
tion, where each quadrilateral in the polygonal base mesh gener-
ates a parametric patch Xp : Ωp → R3, where Ωp = [0, 1] ×
[0, 1], so it fits the scheme described in the last section, there-
fore it is a good candidate to be used in the method that we will
present. The author made his implementation publicly available
thanks to Alias–wavefront at http://www.dgp.toronto.
edu/˜stam/reality/Research/SubdivEval.

4 Discretization

We want to make calculations using differential operators in a dis-
crete set of points of S. At each point we must be able to obtain
the metric data from the parametrization, and the partial derivatives
necessary to the operators. Usually we can not get the continuous
derivatives, so we approximate them by using a finite differences
scheme.

4.1 Domain discretization

If each Ωp is quadrilateral, a simple and natural way of discretiz-
ing the points is by using an N × N regular grid. To get accurate
and unbiased derivatives we use the so-called MAC grid [Bridson
2008][Harlow and Welch 1965], which is a staggered grid, where
values from scalar functions are calculated at the center of cells, the
first coordinates of a vector function are located at vertical edges,
and the second coordinates are located at horizontal edges, see Fig-
ure 5. This kind of grid was also used by [Stam 2003], and we
mostly follow the model developed there.

Figure 5: Discretization grid.
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The metric values are stored in a denser (2N +1)× (2N +1) grid,
such that at every position of the grid (center, edges and corners),
there is the metric information. This has to be calculated only once,
in a precomputation step.

To handle boundary conditions, we add cells that are outside of the
patch domain (the gray cells in Figure 5). So the grid resolution for
each patch is in fact (N+2)×(N+2), the first coordinates of vector
fields are stored in a (N+3)×(N+2) grid, the second coordinates
in a (N + 2)× (N + 3) grid, and the metric values in (2N + 3)×
(2N + 3) grids. The values at the extern cells are obtained from
neighbour patches, or, when there isn’t a neighbour patch at some
side, they receive values according to boundary conditions. For
scalar fields, a value at a boundary cell can be obtained using grid
versions of the transition functions:

[0, i, j] = (i, j),

[1, i, j] = (j,N + 1− i),
[2, i, j] = (N + 1− i,N + 1− j),
[3, i, j] = (N + 1− j, i).

Then for a scalar field ϕ we make

ϕ0,i = ϕ3
[t3,N,i], ϕN+1,i = ϕ1

[t1,1,i]
,

ϕi,0 = ϕ0
[t0,i,N ], ϕi,N+1 = ϕ2

[t2,i,1],

where ϕk is the scalar field of the adjacent patch at edge k, i =
1, · · · , N , and tk = 〈k, ek〉, see Figure 6.
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Figure 6: Boundary cells.

For vector fields, it is necessary to multiply the values from a neigh-
bour patch adjacent to edge k by the transition matrix Mtk . De-
fine T such that Tu(i+0.5,j) =

(
u1

(i+0.5,j), 0
)

and Tu(i,j+0.5) =(
0, u2

(i,j+0.5)

)
for integer values i and j. Then we can get boundary

values for vector fields using:

(
u1
i− 1

2
,0, u

2
i,− 1

2

)
= Mt0

(
Tu0

[t0,i− 1
2
,N ] + Tu0

[t0,i,N− 1
2

]

)
,(

u1
N+ 3

2
,j , u

2
N+1,j− 1

2

)
= Mt1

(
Tu1

[t1,
3
2
,j] + Tu1

[t1,1,j− 1
2

]

)
,(

u1
i− 1

2
,N , u

2
i,N+ 3

2

)
= Mt2

(
Tu2

[t2,i− 1
2
,1] + Tu2

[t2,i,
1
2

]

)
,(

u1
− 1

2
,j , u

2
0,j− 1

2

)
= Mt3

(
Tu3

[t3,N− 1
2
,j] + Tu3

[t3,N,j− 1
2

]

)
,

where uk is a vector field of the adjacent patch at edge k.

To compute the metric information
√
G at a boundary cell, we just

copy this value from an adjacent patch like any scalar field, because
it does not depend on the orientation of the patches. When tk is
even then it is easy to see that the metric data g1,1, g1,2 and g2,2 do
not change, so they can be simply copied from the neighbour patch.
But for an odd tk, we must swap values g1,1 and g2,2, and change
the sign of g1,2, due to the changing in orientation of the derivatives
Xx1 and Xx2 .

To set the value at corner cells we may calculate some average of the
neighbours cells, our results were satisfactory using just the average
of the two boundary cells adjacent to each corner cell.

4.2 Discretization of operators

The differential operators must be discretized so we can work in the
domain described in last section. Let ϕ be a scalar field defined in
the center of each cell. The gradient of ϕ is a vector field, so we
store its coordinates in cell edges. The first coordinates are calcu-
lated in vertical edges (i− 0.5, j), the required derivatives at these
positions can be discretized as:(
∂ϕ

∂x1

)
i− 1

2
,j

≈ ϕi,j − ϕi−1,j

h
,(

∂ϕ

∂x2

)
i− 1

2
,j

≈ ϕi−1,j+1 − ϕi−1,j−1 + ϕi+1,j+1 − ϕi+1,j−1

4h
,

where h is the grid spacing.

Similarly, for values in horizontal edges we have(
∂ϕ

∂x1

)
i,j− 1

2

≈ ϕi+1,j − ϕi−1,j + ϕi+1,j−1 − ϕi−1,j−1

4h
,(

∂ϕ

∂x2

)
i,j− 1

2

≈ ϕi,j − ϕi,j−1

h
.

Then the gradient coordinates can be calculated:

(∇ϕ)1
i− 1

2
,j =

(
g1,1)

i− 1
2
,j

(
∂ϕ

∂x1

)
i− 1

2
,j

+
(
g1,2)

i− 1
2
,j

(
∂ϕ

∂x2

)
i− 1

2
,j

(∇ϕ)2
i,j− 1

2
=
(
g2,1)

i− 1
2
,j

(
∂ϕ

∂x1

)
i,j− 1

2

+
(
g2,2)

i− 1
2
,j

(
∂ϕ

∂x2

)
i,j− 1

2

To calculate the divergence of a vector field u we need the deriva-
tives:

(
∂

∂x1

(√
Gu1

))
i,j

≈

(√
Gu1

)
i+ 1

2
,j
−
(√

Gu1
)
i− 1

2
,j

h
,

(
∂

∂x2

(√
Gu2

))
i,j

≈

(√
Gu2

)
i,j+ 1

2

−
(√

Gu2
)
i,j− 1

2

h
,



where
(√

Gu1
)
i,j

=
(√

G
)
i,j
u1
i,j . Then we can get

(∇ · u)i,j =
1(√
G
)
i,j

(
∂

∂x1

(√
Gu1

))
i,j

+
1(√
G
)
i,j

(
∂

∂x1

(√
Gu1

))
i,j

.

The Laplacian can be calculated doing∇2ϕ = ∇ · ∇ϕ.

5 Fluid simulation

An incompressible fluid is a velocity field u satisfying the Navier-
Stokes equations:
∂u

∂t
= − 1

ρ
∇p− (u · ∇)u + 1

ρ
∇ ·
(
η
(
∇u +∇uT

))
+ f ,

∇ · u = 0

where p is the pressure, ρ is the fluid density, η is the viscosity
coefficient and f is an external force. The first equation is called the
momentum equation, and the second one is the incompressibility
equation, which is the same to say that the fluid’s volume is constant
(consequence of Reynold’s Transport Theorem).

Here we will treat the fluids from an Eulerian viewpoint, where
we look at quantities of the fluid at fixed points in space. Another
option would be a Lagrangian viewpoint, where the fluid is viewed
as a particle system, where each point is a separate particle with a
position x and velocity u [Bridson 2008]. The Eulerian viewpoint
was chosen because it is more suitable to the discretization scheme
described in the last section.

The Navier-Stokes equations can be solved numerically by split-
ting, where it is divided into four equations:

∂u

∂t
= −(u · ∇)u (advection),

∂u

∂t
=

1

ρ
∇ ·
(
η
(
∇u +∇uT

))
(viscosity),

∂u

∂t
= f (external forces),

∂u

∂t
= −1

ρ
∇p,

such that∇ · u = 0 (incompressibility).

[Temam 1969] was the first to prove that this splitting scheme
works. Let un be the solution of the Navier-Stokes equations at
time n∆t. We start with a divergence-free velocity field u0, which
is the initial condition for the equation. We calculate un+1 using
the values from un. Each equation can be solved using a suitable
algorithm, the result from one equation is given as input to the next
equation. This solutions must be calculated in a sequence such that
the output of one equation must satisfy the necessary conditions to
the input of the next equation. For example volume conservation is
guaranteed if the solution of the advection step is calculated from
a divergence-free velocity field, therefore this step must be com-
puted just after the incompressibility step [Bridson 2008]. This was
not followed by [Stam 2003], where the advection was calculated
before the incompressibility conditions, making his results less ac-
curate.

Given a divergence-free un, we can start calculating the result uA

of advection. Observe that, from the advection equation, we get

∂uA

∂t
= −(un · ∇)uA = −(ūn · ∇R2)uA,

where ūn = (u1
ng

11 +u2
ng

12, u1
ng

12 +u2
ng

22), and∇R2 is the gra-
dient in R2. This is equivalent to an advection in R2 with velocity
field ūn, which can be solved using a semi-Lagrangian technique,
where we calculate the trajectory of each point using ūn to find its
position at the time t − ∆t. This position can fall at any point of
the domain, or even at a point in the domain of another patch. To
get the velocity inside a domain Ω at an arbitrary position (i, j) we
interpolate the values around this position for each component. For
points outside the domain Ω, we look for a domain that contains
this point, searching this point in the domain of a neighbour patch,
always applying the transition function to get the coordinates of the
point in the current patch. This process is repeated until we find a
patch domain that contains the point. The velocity at position (i, j)
is multiplied by the transition matrix from the original domain to
the domain of the patch that contains this point, this matrix can be
calculated by the sum s of every tk from each visited patch do-
main, this sum results in the total number of rotations necessary to
go from the original domain to the final domain, then the matrix is
Ms%4.

We can then use uA as input for the next step, the addition of exter-
nal forces. The equation ∂u

∂t
= f can be discretized using a simple

forward Euler: uF = uA + ∆tf . So, we just sum the values of the
external forces to the current velocity.

When the fluid is viscous (η > 0) we need to solve the viscos-
ity equation ∂u

∂t
= 1

ρ
∇ ·

(
η
(
∇u +∇uT

))
. In the planar (or

volumetric) case, when η is constant this equation simplifies to
∂u
∂t

= η
ρ
∇ · ∇u, because ∇ · ∇uT = ∇(∇ · u) = ∇(0) = 0.

But in surfaces generally ∇ · ∇uT 6= ∇(∇ · u), so we can not
make this simplification. This was not noticed in [Stam 2003], the
author used the simplified equation, which can be viewed as an ap-
proximation of the fluid viscosity.

The viscosity equation is discretized as(
I − η

ρ
∆tA

)
uV = uF ,

where I is the identity function, and A is a discretization of the op-
erator ∇ ·

(
∇u +∇uT

)
, calculated using the discretization of the

gradient and divergent operators. This is a linear system that can
be solved using some simple iterative method. We only used con-
stant values for η, but this scheme can also be applied for variable
viscosity fluids.http://grooveshark.com/

According to Helmholtz-Hodge Decomposition Theorem we can
decompose the velocity field into a curl-free component and a
divergence-free component. To solve the incompressibility condi-
tions, we calculate the divergence-free component of the velocity
discretizing the equation ∂u

∂t
= − 1

ρ
∇p, as

uP = uV − ∆t

ρ
∇p.

This is a projection of the current velocity into a divergence-free
space. The pressure p can be obtained by solving the Poisson equa-
tion ∆t

ρ
∇2p = ∇ · uF , which is a linear system that can be solved

with some iterative method, improved with a multigrid technique.
Defining ϕ = ∆t

ρ
p, this becomes simply ∇2ϕ = ∇ · uF , and the

solution of projection is uP = uF −∇ϕ. Since this is the last step,
we have un+1 = uP .



We can add a scalar field representing the concentration of particles
moving through the velocity field, satisfying:

∂s

∂t
= −(u · ∇)s+ κ∇2s+ S

where s is the concentration, κ is a diffusion rate and S is source of
concentration. This field can be used to visualize the fluid. To find
this field we split its equation into three parts:

∂s

∂t
= −(u · ∇)s (advection),

∂s

∂t
= κ∇2s (diffusion),

∂s

∂t
= S (sources).

We can start with the sources equation, which is similar to the ex-
ternal forces addition for velocity field. The equation is discretized
by s1 = s0 + S∆t.

The next step is diffusion, which can be discretized by (I −
∆tκ∇2)s2 = s1, forming a sparse linear system of equations,
whose solution can be found (or approximated) using an iterative
method.

The last step is the advection, observe that

∂s

∂t
= −(u · ∇)s = −(ū · ∇R2)s,

where ū = (u1g11 +u2g12, u1g12 +u2g22). So we advect s using
the velocity field given by ū.

6 Reaction-Diffusion systems

Reaction-Diffusion systems are defined by the non-linear partial
differential equations:{

∂a
∂t

= F (a, b) + ra∇2a,
∂b
∂t

= G(a, b) + rb∇2b,

where a and b are substances distributed in space, F andG are func-
tions that control the production rate of a and b, and the coefficients
ra and rb are the diffusion rates.

We consider the Reaction-Diffusion model developed by [Gray and
Scott 1985], which is defined by

F (a, b) = −ab2 + f(1− a),

G(a, b) = ab2 − (f + k)b,

where f and k are real parameters.

The solution of this system produces different patterns, depending
on initial conditions, (see Figure 7). It is necessary to choose ap-
propriate values for the parameters, otherwise the result converge
to a trivial solution like a = 1, b = 0 for all points.

Splitting each equation into two parts:

∂a

∂t
= F (a, b) (non-linear),

∂a

∂t
= ra∇2a (linear),

∂b

∂t
= G(a, b) (non-linear),

∂b

∂t
= rb∇2b (linear),

Figure 7: Example of Reaction-Diffusion systems.

we can find the solutions of the systems with a method similar
to the one used in fluid simulation. The non-linear parts of the
equations are solved using a forward Euler method, i.e., aL =
an + ∆tF (an, bn) and bL = bn + ∆tG(an, bn), where an and
bn are the concentrations of a and b, respectivelly, at time n∆t.

The linear part is discretized as the following implicit equations:

(I −∆traA)an+1 = aL,

(I −∆trbA)bn+1 = bL,

where I is the identity function, A is a discretization of operator
∇2, and aL and bL are the solutions from the non-linear part of the
equation. These equations are solved using an iterative method.

7 Implementation in the GPU

We see that the solution of the problems described here can be eas-
ily parallelized, thus it is suitable to be solved using many core pro-
cessors, which can considerably improve the performance of the
method. One possibility is to use the processors of a graphics pro-
cessing unit (GPU). We implemented the method in the GPU using
CUDA.

7.1 Data structures

The problem data must be transfered to the GPU memory to im-
plement the method in CUDA. In CPU the grid data are stored in
arrays of size w×h×n patches, where n patches is the number
of patches of the surface, such that the value g(i,j,p) at posi-
tion (i, j) and patch p ∈ [0, · · · , n patches − 1] is accessed via
g[i + j*w + p*w*h]. For scalar fields w = h = N + 2,
and the value ϕpi,j is stored at phi(i,j,p) For vector fields, the
first coordinate uses w = N + 3, h = N + 2 and the second co-
ordinate uses w = N + 2, h = N + 3. So u1(i,j,p) stores
the value (u1)pi−0.5,j of the first coordinate of a vector field u, and
u2(i,j,p) stores the value (u2)pi,j−0.5 of the second coordinate
of u. For the metric data we use w = h = 2N + 3 to store the
values

√
g, g11, g12 and g22. The value (

√
g)pi,j is accessed via

g(2*i, 2*j, p), and similarly for the other values.

The arrays could be just copied to the GPU global memory using
arrays in the same format and be used the same way as in the CPU,
but this way would not take advantage of the GPU capabilities. A
better option is to put data into the texture or surface memory, which
are cached in the texture cache, optimized for 2D spatial locality. In
our case we can use a layered texture/surface reference putting the



data of each patch in a layer. The data of the patches are stored in
CUDA arrays created with cudaMalloc3DArray() and copied
from and to CPU using cudaMemcpy3D().

The value g(i,j,p) of a grid in texture memory is accessed via

tex2DLayered(tex_ref, i+0.5, j+0.5, p)

where tex_ref is a texture reference bound to some CUDA array.
The sum with 0.5 is necessary to align the grid positions with tex-
ture coordinates. We use non-normalized texture coordinates, with
linear filtering. So if the value i is any floating-point number be-
tween 0 and w − 1, and j between 0 and h− 1, then the result is a
bilinear interpolation of the four neighbour grid points around this
position.

For a grid in surface memory, g(i,j,p) is accessed via

surf2DLayeredread(&a, surf_ref, i*4, j, p)

where we have to multiply the x-coordinate by the byte size of the
element because surface memory uses byte addressing. We can also
write in the grid using

surf2DLayeredwrite(a, surf_ref, i*4, j, p).

7.2 Precomputing

The surface evaluation needs to be calculated only once, we com-
pute for each point of the discretization its position on the surface,
the derivatives for each direction x1 and x2, and from that we cal-
culate the metric information.

The surface is evaluated with an implementation in CUDA of the
method described by [Stam 1998]. Each point on the surface is
given by Xp(x1, x2) =

∑K
i=1 ϕi(x

1, x2)ppi , where K is the num-
ber of control points used by patch p, ppi is the projection of the
i-th control point into the eigen-space of the Catmull-Clark subdi-
vision matrix, ϕ depends on the eigen-data of this matrix and on
cubic B-spline basis functions. To minimize the number of calcu-
lations, we firstly evaluate the basis functions, since they depend
only on the local coordinates of each point in the discretization, so
they can be used for every patch. Then we evaluate the surface us-
ing a CUDA implementation of the function EvalSurf described
by [Stam 1998], also calculating the first derivatives at each direc-
tion. With position and derivatives it is straightforward to get the
metric data. The positions and derivatives data are kept in OpenGL
vertex buffer objects to be used in the drawing of the surface.

In CUDA we create special functions called kernels, that are exe-
cuted in parallel, each one in one CUDA thread. The threads are
distributed hierarchically into blocks and grids, such that threads
form a one, two or three-dimensional block, and blocks form a one,
two or three-dimensional grid. Each thread block is managed by
one GPU core, that executes a group of 32 threads called warp. If
all the threads in a warp execute the same instructions then they are
all executed in parallel, otherwise each execution path is executed
serially. So to prevent loosing performance it is important to dis-
tribute the threads such that in the same block most of the kernels
have the same execution path.

Another important issue refers to the memory management. Using
appropriate structures we can improve the performance of the read-
ing/writing operations. In our case, using the texture and surface
memories we get the best performance in the execution of threads
in the same warp that read texture addresses that are close together
in 2D.

7.3 Solving equations

To solve the Navier-Stokes and reaction-diffusion equations, we
distribute the threads such that each block processes points in the
same patch of the surface. This way we prevent that threads in the
same warp execute data that are not close in 2D. Each block is two-
dimensional, containing a total number of threads that is a multiple
of 32, such that none of the warps contains less than the maximum
warp size. The blocks are organized in three-dimensional grids (this
requires a GPU with CUDA capabilities 2.0 or above), where the
first two dimensions correspond to the block distribution in a patch,
and the third dimension indicates the patch index. When we are
processing scalar fields, each kernel will process the point (i, j) of
patch p, where i, j ∈ [1, · · · , N ], p ∈ [0, · · · , n patches− 1]. To
identify (i, j) and p at each kernel, we calculate:

int i = blockIdx.x*blockDim.x +
threadIdx.x + 1;

int j = blockIdx.y*blockDim.y +
threadIdx.y + 1;

int p = blockIdx.z;

If N is not a multiple of the block dimensions, then in some blocks
we will have i > N or j > N , we can ignore these cases, but this
reduces the performance of the program, because there will be some
threads in the same warp with different execution paths. Then it is
better to avoid these cases, choosing properly the block dimensions.

To update values at boundary cells, we use a kernel that gets, for
each boundary of each patch, the corresponding neighbour patch
index and the transition number tk, and uses the transition function
to calculate the position of the cell at the neighbour patch. The in-
formation about the neighbour patches and the values tk are stored
each in an array of size 4∗n patches, created when the surface was
constructed. Then the neighbour patch index of patch p at edge e ∈
{0, 1, 2, 3} is accessed by doing neigh_indices[p*4 + e].
Another kernel is responsible for the corners cells, been called only
four times per patch, calculating the average of the cells next to
each cell.

7.3.1 Solving Navier-Stokes equations

For the velocity field each kernel of coordinates (i, j, p) processes
the values (u1)pi−0.5,j and (u2)pj,i−0.5, where i ∈ [1, · · · , N + 1]

and j ∈ [1, · · · , N ].

To calculate the advection step for the concentration and velocity
fields, we calculate the field ū of the velocity modified by the metric
data as we saw before, and put it in the current velocity field in
the texture memory, we also store a copy of the current velocity
and the current concentration s in the texture memory. For each
position of the velocity or concentration we calculate the trajectory
of a particle traveling according to the velocity ū. In the calculation
of this trajectory, the point can fall in an arbitrary position, where
the value of the velocity or concentration is calculated efficiently
by the GPU using its texture fetching units. Generally most of the
points fall in a nearby location, so the texture access is optimized
using the texture cache. When a point falls in a different patch we
may loose a bit of the performance, since threads in the same warp
may have different execution paths.

The addition of external forces is a simple operation, where we get
the forces defined by some function, and just sum them to the cur-
rent velocity multiplied by the time variation. Similarly we add
concentrations from sources, but in this case we limit the values to
avoid concentrations bigger then 100%.

For the viscosity step, we use an iterative method to solve the linear
system. In the GPU, the velocity values are updated in parallel, then



to avoid conflicts with reading/writing operations, in each thread we
calculate the new velocity value using the current velocity field, and
we call __syncthreads() to make sure that all other threads
had already calculated their corresponding new values so we can
safely update the field.

For the projection step we find ϕ (a scalar field) that satisfies
∇2ϕ = ∇ · u, using a multigrid v-cycle scheme with Jacobi itera-
tions [Kincaid and Cheney 2002]. We run some iterations to calcu-
late an approximation ϕA of ϕ in the highest level, improve this re-
sult summing it with the error e that satisfies∇2e = ∇·u−∇2ϕA.
The error e is calculated in a lower level, where the grid size is
smaller then the grid size of the highest level. Again we run some
iterations to find an approximation of e and improve it with the er-
ror of this approximation, calculated in a even smaller level. This
process of improving the error calculation is repeated until we reach
the lowest level, when N = 1, and then the result of one level is
summed to the next level and improved with more iterations until
we come back to the highest level, where we finally get ϕ. The
most computing intensive step is the calculation of the Jacobi itera-
tions, that must be done for each point of the grid of all the patches.
But it can be easily parallelized since the operation for each point
is exactly the same. So we created a kernel to calculate the Jacobi
iteration to improve the approximation for the current level. After
each iteration we must update the neighbour cells to keep the result
consistent. After finding ϕ we run a kernel that updates the velocity
subtracting∇ϕ from the current u.

For the diffusion of concentration, generally it is sufficient to do
some Jacobi iterations, but if a more precise result is desired it is
possible to use a multigrid scheme similar to the one used in the
projection step.

7.3.2 Solving Reaction-Diffusion systems

Reaction-Diffusion systems are simpler than fluid simulation, re-
quiring only the solution of four equations, one linear and one non-
linear for each chemical concentration, as seen in Sec. 6.

First the solutions of the non-linear parts of the equations are cal-
culated, where the intermediate concentration fields aL and bL are
computed at every point of the grid and they are stored in a per-
thread local memory. Then, after all threads have computed these
values (controlled by a call to __syncthreads()) they are as-
signed to the global memory.

After that, some iterations of a Jacobi method are executed to solve
the linear part of the equations, each kernel calculating the new
values for each point of the grid, again these values are kept in local
memory and assigned to global memory after all threads finish their
calculation.

8 Results

In our tests we used an NVIDIA GeForce GTX 470, which has 448
CUDA cores. The methods were also implemented in cpu for per-
formance comparison, where an 8 cores Intel R© CoreTM i7 processor
was used for the tests.

Fluid Simulation - We implemented some forces, like the gravity
force, also used by [Stam 2003], which is proportional to the con-
centration s and the projection of the downward direction into the
tangent plane at each surface point, and a force similar to something
“walking” on the surface, following a curve and pushing the fluid
with a force tangent to this curve.

For visualization of the fluid, we mapped the concentration values

to colors, assigning one color for the 0% concentration, another
one for the 100% concentration, and interpolating these colors for
intermediate concentration values.

Figure 8: Toroidal surface.

In Figure 8 we can see the result at two different steps with a
toroidal surface, where we put sources of concentration at the center
of each patch. In the left we see one of the first steps of the sim-
ulation, and in the right we see the result after several steps, also
changing the position of the surface (in the gravity force calcula-
tion, the downward direction is relative to the viewer, so it changes
in relation to the surface as we move it).

Figure 9: Two steps of the simulation using the bunny.

For Figure 9 we used a quadrangulation of the Stanford bunny, the
initial concentration is shown in the left, and in the right picture
we can see the result after some steps of the algorithm, using the
gravity force.

Figure 10: Forces following circular paths on the dog and fertility
models.

In Figure 10 we see for two surfaces the result after some steps
using forces “walking” in circular paths at each patch.

In Table 1 we can compare the time taken for one full step (in-
cluding all substeps) in the gpu and in the cpu for each surface we
tested. Figure 13 shows a speedup graph from data of Table 1. We
executed the simulation with the same parameters for all surfaces,
only changing the resolution of the grids. We can see how the gpu
implementation is much faster than the cpu implementation. A limi-
tation of the structures we used is that there is a limit size for texture
dimensions, so we were not able to run the program with N = 64
with the denser meshes (like bunny). However for dense meshes it
is usually sufficient to use a small grid size. In most of the cases it



surface (n patches) N = 8 N = 16 N = 32 N = 64

toroidal (128) 16/ 17/ 34/ 78/

41 131 474 1764

fertility (166) 16/ 21/ 42/ 98/

52 172 609 2216

dog (238) 17/ 28/ 58/ 141/

73 246 904 3352

rocker arm (1127) 65/ 107/ 235/ —
368 1394 4638

bunny (1292) 73/ 122/ 270/ —
430 1536 5367

Table 1: Time taken in milliseconds for one full step for each sur-
face tested in gpu/cpu.
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Figure 11: Speedup of gpu implementation.

is not even necessary to use more than a few hundreds of patches.
The fertility surface we used was created using a 3D modeling tool,
it only uses 166 patches, but it is a good approximation of the well
known triangular mesh.

In Table 2 we see how long each sub-step takes in the simulation. It
is based on the simulation using the fertility model (166 patches),
with the circular forces, andN = 32. We show all steps in the order
we run them, including the update of the texture, which is used
only for visualization. We can see that the most expensive steps
are the diffusion, viscosity and projection, taking more than 80%
of the total simulation. In most of the cases, we work with inviscid
fluids (without viscosity), so this step is not a big problem. We can
reduce the number of iterations used in the projection and diffusion
steps, so that it takes a smaller time to be computed, but this also
reduces the precision of the method. Changing this parameter we
can balance quality and performance as desired.

Step Average time Percent
add forces 1027µs 2.45%
projection 33584µs 80.17%
add sources 68µs 0.16%
advection rho 1926µs 4.60%
update texture 690µs 1.65%
advection 4595µs 10.97%
Total: 41890µs 100.0%

Table 2: Time taken (in microseconds) for each sub-step.

Reaction-Diffusion systems We initialize the concentration
values, assigning for most of the points 100% of a chemical a and
0% of b, and in some regions we assign 50% for a and 25% for b ,
with a ±1% random noise. In our examples we calculated circular

regions in the domain of the patches, randomly changing the center
and the radius of each circle. This randomness in the initial condi-
tions avoids too much symmetrical results, so we can get a larger
diversity of patterns generated by the method.

A texture can be created from the concentration values, using one
of the chemical concentrations mapped into colors.

Figure 12: Progress of a reaction-diffusion system. Complex pat-
terns are formed in a few seconds using CUDA.

Table 3 shows the time taken to calculate one iteration of the
method for some meshes, changing only the size of the grids. We
used quadrilateral meshes modeled using some tool or converted
from well known triangular meshes.

Surface n patches N = 8 N = 16 N = 32 N = 64

Toroidal 128 2/16 6/27 16/89 60/312

Fertility 166 3/15 7/36 22/110 75/500

Dog 238 4/24 10/51 30/155 107/531

Rocker arm 1127 33/89 55/250 144/786 —
Bunny 1292 29/102 56/295 160/911 –

Table 3: Time taken in milliseconds to calculate one iteration, vary-
ing the model and grid size, tested in gpu/cpu.
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Figure 13: Speedup of gpu implementation.

9 Conclusion and future works

In this work we showed fluid simulation and how to solve the sys-
tems of Reaction-Diffusion on surfaces using the GPU. We have
used a parametrization of Catmull-Clark surfaces. We used suit-
able structures to take advantage of the GPU resources, increasing
the performance of the numeric solution. For future works we may
study different solvers to improve even more the method, specially



Figure 14: Some results obtained for reaction-diffusion systems.

for the projection method, which is the most computationally ex-
pensive step. Moreover, we may study different schemes, to gener-
ate more complex results, simulating for example natural patterns
formed on the skin animals, or any other problems that are usually
solved in two dimensions, which we can extend to work on surfaces.
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de Navier-Stokes par la méthode des pas fractionnaires II. Arch.
Rat. Mech. Anal. 33, 377–385.

TURING, A. M. 1952. The chemical basis of morphogenesis.
Philosophical Transactions of the Royal Society of London. Se-
ries B, Biological Sciences 237, 641 (August), 37–72.

TURK, G. 1991. Generating textures on arbitrary surfaces using
reaction-diffusion. In Proceedings of the 18th annual conference
on Computer graphics and interactive techniques, ACM, New
York, NY, USA, SIGGRAPH ’91, 289–298.

VAN DER LAAN, W. J., GREEN, S., AND SAINZ, M. 2009. Screen
space fluid rendering with curvature flow. In Proceedings of the
2009 symposium on Interactive 3D graphics and games, ACM,
New York, NY, USA, I3D ’09, 91–98.


