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Abstract

In this note we review the iteration-complexity of a relaxed Hybrid-Proximal Extragradient
Method under the large step condition. We also derive some useful proprieties of this method.
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Introduction

In this note we review Rockafellar’s Proximal Point Method and the Relaxed Hybrid Proximal-
Extragradient (r-HPE) Method. We also some useful properties of the (r-HPE) and analyze its
complexity under the large-step condition. All the presented results pertaining the r-HPE were
essentially proved in [9]. The unique exception are the first inequalities in item 5 of Lemma 2.1 and
in item 4 of Proposition 2.2.

1 Maximal monotone operators, the monotone inclusion problem,
and Rockafellar’s Proximal Point Method

Let H be a Hilbert space with inner product 〈·, ·〉 and associated norm ‖·‖. A point-to-set operator
in H, T : H ⇒ H, is a relation T ⊂ H ×H and

T (z) = {v | (z, v) ∈ T}, z ∈ H.

The inverse of T is T−1 : H ⇒ H, T−1 = {(v, z) | (z, v) ∈ T}. The domain and the range of T are,
respectively,

D(T ) = {z | T (z) 6= ∅}, R(T ) = {v | ∃z ∈ H, v ∈ T (z)}.
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When T (z) is a singleton for all z ∈ D(T ) it is usual to identify T with the map D(T ) 3 z 7→ v ∈ H
where T (z) = {v}. If T1, T2 : H ⇒ H and λ ∈ R, then T1 +T2 : H ⇒ H and λT1 : H ⇒ H are defined
as

(T1 + T2)(z) = {v1 + v2 | v1 ∈ T1(z), v2 ∈ T2(z)}, (λT1)(z) = {λv | v ∈ T1(z)}.

A point-to-set operator T : H ⇒ H is monotone if

〈z − z′, v − v′〉 ≥ 0 ∀(z, v), (z′, v′) ∈ T

and it is maximal monotone if it is a maximal element on the family of monotone point-to-set operators
in H with respect to the partial order of set inclusion. Minty’s theorem [3] states that if T is maximal
monotone and λ > 0, then the proximal map (λT + I)−1 is a point-to-point non-expansive operator
with domain H.

The monotone inclusion problem is: given T : H ⇒ H maximal monotone, find z such that

0 ∈ T (z). (1)

Rockafellar’s Proximal Point Method [8] (hereafter PPM) generates, for any starting z0 ∈ H, a
sequence (zk) by the approximate rule

zk ≈ (λkT + I)−1zk−1,

where (λk) is a sequence of strictly positive stepsizes. Rockafellar proved [8] that if (1) has a solution
and ∥∥zk − (λkT + I)−1(zk−1)

∥∥ ≤ ek, ∞∑
k=1

ek <∞, inf λk > 0, (2)

then (zk) converges to a solution of (1).
In each step of the PPM, computation of the proximal map (λT + I)−1z amounts to solving the

proximal (sub) problem

0 ∈ λT (z+) + z+ − z,

a regularized inclusion problem which, although well posed, is almost as hard as (1). From this fact
stems the necessity of using approximations of the proximal map, for example, as prescribed in (2).
Moreover, since each new iterate is, hopefully, just a better approximation to the solution than the
old one, if it were compute with high accuracy, then the computational cost of each iteration would
be too high (or even prohibitive) and this would impair the overall performance of the method (or
even make it infeasible).

Unfortunately, prescription (2) neither tells which is the convenient error tolerance ek to be used
in the k-th iteration, nor it guarantees that the next iterate will be a better approximation than the
current one.

2 Enlargements of maximal monotone operators and the Hybrid
Proximal Extragradient Method

The Hybrid-Proximal Extragradient Method [10, 11] (hereafter HPE) is a modification of the PPM
wherein
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(a) the proximal subproblem, in each iteration, is to be solved within a relative error tolerance and
(b) the update rule is modified so as to guarantee that the next iterate is closer to the solution set
by a quantifiable amount.
An additional feature of (a) is that, in some sense, errors in the inclusion on the proximal subproblems
are allowed. Recall that the ε-enlargement [1] of a maximal monotone operator T : H ⇒ H is

T [ε](z) = {v | 〈z − z′, v − v′〉 ≥ −ε ∀(z′, v′) ∈ T}, x ∈ H, ε ≥ 0. (3)

From now on, T : H ⇒ H is a maximal monotone operator. The relaxed HPE (r-HPE) method [14]
for the monotone inclusion problem (1) proceed as follows: choose z0 ∈ H and σ ∈ (0, 1); for
k = 1, 2, . . .

compute z̃k, vk, εk, λk > 0 such that vk ∈ T [εk](z̃k), ‖λkvk + z̃k − zk−1‖2 + 2λkεk ≤ σ2‖z̃k − zk−1‖2,
choose tk ∈ (0, 1] and set zk = zk−1 − tkλkvk.

(4)

In practical applications, each problem has a particular structure which may render feasible the
computation of λk, z̃k, vk, and εk as above prescribed. For example, T may be Lipschitz continuous, it
may be differentiable, or it may be a sum of an operator which has a proximal map easily computable
with others with some of these properties. Prescription for computing λk, z̃k, vk, and εk under each
one of these assumptions were presented in [10, 16, 13, 15, 5, 4, 6, 7].

An exact PPM iteration for (1) is z+ = (λT + I)−1(z), where z is the current iterate, z+ is the
new iterate, λ > 0 is the stepsize, and I is the identity map. Computation of such a point z+ is
equivalent to solving, in the variables v, z+, the proximal inclusion-equation system:

v ∈ T (z+), λv + z+ − z = 0.

Whence, the error criterion in (4) relaxed both the inclusion and the equality in the above inclusion-
equation system. The next lemma shows that an approximate solution of the proximal inclusion-
equation system satisfying that error criterion still conveys useful information for solving (1).

Lemma 2.1. Take z ∈ H; suppose that λ > 0, σ ∈ [0, 1), t ∈ [0, 1], ε > 0

v ∈ T [ε](z̃), ‖λv + z̃ − z‖2 + 2λε ≤ σ2‖z̃ − z‖2; (5)

and define z+ = z − tλv, γ : H → R, γ(z′) = 〈z′ − z̃, v〉 − ε. Then

1. (1− σ)‖z̃ − z‖ ≤ ‖λv‖ ≤ (1 + σ)‖z̃ − z‖ and 2λε ≤ σ2‖z̃ − z‖;

2. z+ = argminz′∈H tλγ(z′) + ‖z′ − z‖2/2;

3. minz′∈H tλγ(z′) +
1

2
‖z′ − z‖2 ≥ 1

2

(
(1− σ2)t‖z̃ − z‖2 + t(1− t)‖λv‖2

)
;

4. for any z∗ ∈ T−1(0), γ(z∗) ≤ 0 and ‖z − z∗‖2 ≥ ‖z+ − z∗‖2 + (1−σ2)t‖z̃ − z‖2 + t(1− t)‖λv‖2;

5. for any z∗ ∈ T−1(0), ‖z∗ − z̃‖ ≤ ‖z∗ − z‖/
√

1− σ2 and ‖z̃ − z‖ ≤ ‖z∗ − z‖/
√

1− σ2.
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Proof of Lemma 2.1. Since λ > 0 and ε ≥ 0, ‖λv + z̃ − z‖ ≤ σ‖z̃ − z‖. Combining this inequality
with triangle inequality we conclude that the two first inequalities in item 1 hold. The last inequality
in item 1 follows trivially from the assumptions (5). Item 2 follows trivially from the definitions of γ
and z+.

Direct use of item 2 and of the definitions of z+ and γ yields

min
z′∈Rp

tλγ(z′) +
1

2
‖z′ − z‖2 =

1

2

(
t
[
‖z̃ − z‖2 −

(
‖λv + z̃ − z‖2 + 2λε

)]
+ t(1− t)‖λv‖2

)
,

which, combined with the inequality in (5) proves item 3.
The first inequality in item 4 follows from the inclusion v ∈ T [ε](z̃), the definition of γ, and the

definition of T [ε] (3), with z′ = z∗ and v′ = 0. Since λ > 0, t ≥ 0, and γ is affine, it follows from the
first inequality in item 4, item 2 and item 3 that

1

2
‖z∗ − z‖2 ≥ tλγ(z∗) +

1

2
‖z∗ − z‖2 =

1

2
‖z∗ − z+‖2 + tγ(z+) +

1

2
‖z+ − z‖2 (6)

which, combined with items 2 and 3 proves the second inequality in item 4.
To prove the last item, define ẑ = z − λv. Using item 4 with t = 1, z′ = ẑ and the inequality (5)

we conclude that

‖z∗ − z‖2 ≥ ‖z∗ − ẑ‖2 + (1− σ2)‖z̃ − z‖2, σ‖z̃ − z‖ ≥ ‖ẑ − z̃‖

Therefore,

‖z∗ − z̃‖ ≤ ‖z∗ − ẑ‖+ ‖ẑ − z̃‖ ≤ ‖z∗ − ẑ‖+ σ‖z̃ − z‖

≤
√
‖z∗ − ẑ‖2 + (1− σ2)‖z̃ − z‖2

√
1 +

σ2

1− σ2
≤ ‖z

∗ − z‖√
1− σ2

where the fist inequality follow from triangle inequality and the third from Cauchy-Schwarz inequality.

In the next proposition we show that zk is closer than zk−1 to the solution set, with respect to
the norm square, by a quantifiable amount and derive some useful estimations.

Proposition 2.2. For any k ≥ 1 and x∗ ∈ T−1(0),

1. (1− σ)‖z̃k − zk−1‖ ≤ ‖λkvk‖ ≤ (1 + σ)‖z̃k − zk−1‖ and 2λkεk ≤ σ2‖z̃k − zk−1‖2;

2. ‖z∗ − zk−1‖2 ≥ ‖z∗ − zk‖2 + tk(1− σ2)‖z̃k − zk−1‖2 ≥ ‖z∗ − zk−1‖2;

3. ‖z∗ − z0‖2 ≥ ‖z∗ − zk‖2 + (1− σ2)
∑k

j=1 tj‖z̃j − zj−1‖2;

4. ‖z∗ − z̃k‖ ≤ ‖z∗ − zk−1‖/
√

1− σ2 and ‖z̃k − zk−1‖ ≤ ‖z∗ − zk−1‖/
√

1− σ2.

Proof. Items 1 and 2 follow trivially from Lemma 2.1, items 1 and 4, and the assumption σ ∈ [0, 1).
Item 3 follows from item 2. Item 4 follows from Lemma 2.1, item 5.
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The aggregate stepsize Λk and the ergodic sequences (z̃ak), (ṽak), and (εak) associated with the
sequences (λk), (z̃k), (vk), and (εk) are, respectively,

Λk :=
k∑

i=1

tiλi,

z̃ a
k :=

1

Λk

k∑
i=1

tiλiz̃i, v a
k :=

1

Λk

k∑
i=1

tiλivi, ε ak :=
1

Λk

k∑
i=1

tiλi(εi + 〈z̃i − z̃ a
k , vi − v a

k 〉).

(7)

The relevance of these ergodic sequences rests on the following theorem.

Theorem 2.3. For any k ≥ 1, vak ∈ T [εak](z̃ak). Moreover, if d0 is the distance from z0 to T−1(0) 6= ∅,
then

‖vak‖ ≤
2d0
Λk

, εak ≤
2d20

Λk

√
1− σ2

for any k ≥ 1

Proof of Theorem 2.3. The first part of the theorem follows from definitions (7), the inclusion in (4),
and the transportation formula for the T [ε] [2, Theorem 3.11].

To prove the second part of the Theorem, let z∗ be the projection of z0 onto T−1(0). It follows
from Proposition 2.2 item 2 that ‖z∗ − zk‖ ≤ ‖z∗ − z0‖ = d0 for any k. Theretofore,

‖zk − z0‖ ≤ 2d0, ∀k ∈ N. (8)

Direct use of the update rule for zk in (4) and of the definition of Λk and vak in (7) yields

z0 − zk =

k∑
j=1

tjλjvk = Λkv
a
k . (9)

The first inequality follows from the above equation and (8).
Define, for k = 1, . . . , the affine functions γk,Γk : Rp → R,

γk(z) = 〈z − z̃k, vk〉 − εk, Γk(z) =

k∑
j=1

tjλjγj(z). (10)

We claim that for k = 1, 2, . . .

zk = argmin
z∈Rp

Γk(z) +
1

2
‖z − z0‖2, min

z∈Rp
Γk(z) +

1

2
‖z − z0‖2 ≥ 0. (11)

The first above relation follow trivially from (9). It follows from Lemma 2.1, items 2 and 3 and the
assumption 0 ≤ σ ≤ 1 that the second relation in (11) holds for k = 1. If the inequality in (11) holds
for k, as Γk+1 = Γk + tk+1λk+1γk+1, it follows again from Lemma 2.1 items 2 and 3, the assumption
0 ≤ σ ≤ 1, and the first relation in (11) that this inequality holds for k + 1.

It follows from (11) and definitions (10) that

Γk(z̃ak) +
1

2
‖z̃ak − z0‖2 =

1

2
‖z̃ak − zk‖2 + Γk(zk) +

1

2
‖zk − z0‖2 ≥

1

2
‖z̃ak − zk‖2
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Direct use of the transportation formula for the T [ε] [2, Theorem 3.11], (7), and (10) shows that
−Γk(z̃ak) = Λkε

a
k. Therefore

2Λkεk ≤ ‖z̃ak − z0‖2 − ‖z̃ak − zk‖2 = 2〈z̃ak − z0, zk − z0〉 − ‖zk − z0‖2

≤ 2d0

(
1 +

1√
1− σ2

)
‖zk − z0‖ − ‖zk − z0‖2 ≤

4d20√
1− σ2

Next we analyze the pointwise and ergodic complexities of the r-HPE when the large-step condition,
introduced in [5, 6], is satisfied and the relaxation parameters tk are bounded away from zero.

Theorem 2.4. Let d0 be the distance from z0 to T−1(0) 6= ∅. If for any k ≥ 1,

λk‖z̃k − zk−1‖ ≥ η > 0, tk ≥ τ > 0 (12)

then, for any k ≥ 1,

1. there exists i, 1 ≤ i ≤ k, such that

‖vi‖ ≤
d20

η(1− σ)kτ
, εi ≤

σ2

2η

d30

((1− σ2)kτ)3/2
;

2. vak ∈ T [εak](z̃ak),

‖vak‖ ≤
2d20

(τk)3/2η
√

1− σ2
, εak ≤

2d30
(τk)3/2η(1− σ2)

.

Proof. It follows from Proposition 2.2, item 3, that there exists 1 ≤ i ≤ k such that

‖z̃i − zi−1‖ ≤
d0√

(1− σ2)τk

It follows from the first part of Proposition 2.2 and (12) that, in particular for such an i,

‖vi‖ ≤
(1 + σ)‖z̃i − zi−1‖

λi
, εi ≤

σ2‖z̃i − zi−1‖2

2λi
,

1

λi
≤ ‖z̃i − zi−1‖

η
.

Item 1 follows from the above inequalities.
It follows from (12) and Proposition 2.2 item 3 that

k∑
j=1

τ
η2

λ2j
≤

k∑
j=1

tj‖z̃j − zj−1‖2 ≤
d20

1− σ2
.

Using this result and Lemma A.1 we conclude that

k∑
j=1

λj ≥ k3/2
(

d20
τη2(1− σ2)

)−1/2
and Λk ≥ (τk)3/2

η
√

1− σ2
d0

,

where the second inequality follows from (7) and the assumption tj ≥ τ for all j. Item 2 follows from
the second above inequality and Theorem 2.3.
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A Auxiliary results

Lemma A.1. If αi > 0 for i = 1, . . . ,m and
∑m

i=1 α
−2
i ≤ C then

∑m
i=1 αi ≥ m3/2/C1/2.

Proof. Take α ∈ Rm
++ such that

∑m
i=1 α

−2
i ≤ C and let ᾱ =

∑m
i=1 αi/m. As t−2 is convex for t > 0,

1

ᾱ2
≤ 1

m

k∑
i=1

1

α2
i

≤ C

m
;

therefore,
√
m/C ≤ ᾱ. To end the proof, use the definition of ᾱ.

The next result was proved in [12, Corollary 1]

Lemma A.2. If T : H ⇒ H is maximal monotone, z ∈ H and ṽ ∈ T [ε](z̃), then

‖λṽ + z̃ − z‖2 + 2λε ≥
∥∥z̃ − (λT + I)−1z

∥∥2 +

∥∥∥∥λ−1((λT + I)−1z − z
)∥∥∥∥2 .

References

[1] R. S. Burachik, A. N. Iusem, and B. F. Svaiter. Enlargement of monotone operators with
applications to variational inequalities. Set-Valued Anal., 5(2):159–180, 1997.

[2] R. S. Burachik and B. F. Svaiter. ε-enlargements of maximal monotone operators in Banach
spaces. Set-Valued Anal., 7(2):117–132, 1999.

[3] George J. Minty. Monotone (nonlinear) operators in Hilbert space. Duke Math. J., 29:341–346,
1962.

[4] R. D. C. Monteiro and B. F. Svaiter. Complexity of variants of Tseng’s modified F-B splitting
and Korpelevich’s methods for hemivariational inequalities with applications to saddle point and
convex optimization problems. SIAM Journal on Optimization, 21:1688–1720, 2010.

[5] R. D. C. Monteiro and B. F. Svaiter. On the complexity of the hybrid proximal extragradient
method for the iterates and the ergodic mean. SIAM Journal on Optimization, 20:2755–2787,
2010.

[6] R. D. C. Monteiro and B. F. Svaiter. Iteration-complexity of a Newton proximal extragradient
method for monotone variational inequalities and inclusion problems. SIAM J. Optim., 22(3):914–
935, 2012.

[7] R. D. C. Monteiro and B. F. Svaiter. Iteration-complexity of block-decomposition algorithms
and the alternating direction method of multipliers. SIAM J. Optim., 23(1):475–507, 2013.

[8] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control
Optimization, 14(5):877–898, 1976.

[9] Mauricio R. Sicre and Benar F. Svaiter. An O(1/k3/2) hybrid proximal extragradient primal-dual
interior point method for non-linear monotone complementarity problems. Preprint A735/2013,
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